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Abstract

During an explosive volcanic eruption, a hot mixture of volcanic particles and gas is
continuously ejected from the volcanic vent and develops an eruption column. When the
density of the mixture remains higher than that of the ambient air, the eruption column col-
lapses to produce pyroclastic density currents (PDCs). PDCs are characterized by strong
density stratification, whereby a dilute current (particle concentrations≲ 1 vol.%) over-
rides the dense basal current (particle concentrations∼ 10 vol.%). Each part is controlled
by different physical processes due to the difference in the particle volume fraction: the
dilute current is affected by air entrainment, thermal expansion of entrained air, frontal
resistance of ambient air, and particle settling; the dense current is affected by particle
supply from the dilute current, basal friction, and sedimentation. The relative magnitude
of the effects of these physical processes depends on source conditions (e.g., mass erup-
tion rate and temperature of erupted materials). As a result of these factors, the deposits
of PDCs are extremely variable in distribution and lithofacies. There is a vast amount of
field-based works related with the diversity of PDC deposits and experimental-analogue
studies related with the physical processes underlying PDC dynamics. We aim to relate
the underlying physical processes with the diversity of PDC deposits, by using numerical
simulations.

The essential behavior of PDCs can be described by the depth-averaged shallow-water
equations. In order to assess the effects of the above physical processes on PDC dynamics
and the resulting PDC deposits, we have developed a new two-layer shallow-water model.
Because the dilute layer is affected by strong density variation due to thermal expansion
of entrained air and particle settling, it is simulated by solving six basic equations: parti-
cle mass, entrained air mass, bulk mass, momentum and energy conservation equations,
and the equation of state. Because the basal dense layer is affected by the mass and mo-
mentum transfer processes due to basal friction, sedimentation and the particle supply
from the dilute layer, it is simulated by solving two basic equations: mass and momentum
conservation equations. These conservation equations are numerically solved by the finite
volume method using the HLL scheme.

We calculated time evolution of two-layer PDCs generated by dilute mixtures from the
collapsing column at a constant mass eruption rate. The dilute current, generated from the
collapsing column, produces the basal dense current, and a deposit aggrades upward from
the base. When the frontal region of the dilute current becomes lighter than ambient air
to reverse buoyancy and liftoff, the front of the dilute current does not propagate further.
When the mass flux of the dense current and the deposition rate at the base balance at
the frontal region, the front of the dense current does not propagate further. Finally, each
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layer converges to a steady state. We performed a parametric study by varying the mass
eruption rates at source,̇M0, from 103 to 1011 kg/s, the temperature of erupted material,
Tin, from 300 to 1200 K, the particle settling velocity at the base of the dilute current,
Ws, from 0.3 to 3.0 m/s, and the deposition rate at the base of the dense current,D, from
3.0 × 10−5 to 3.0 × 10−2 m/s. As a result, on the basis of the runout disntances of the
dilute and dense currents, the steady behaviors of the two-layer PDCs are classified into
three flow regimes: Regime 1, Regime 2a, and Regime 2b. In Regime 1, the dense current
does not develop, and the dilute current directly forms its deposits. In Regime 2a, the
dense current develops, but the steady runout distance of the dilute current is longer than
that of the dense current. In Regime 2b, the dense current develops, and the steady runout
distance of the dense current is longer than that of the dilute current.

In order to systematically understand mechanisms that make the above classification
possible, we have investigated the steady runout distances of the dilute and dense currents
by the following three steps. First, we have investigated the basic equations to identify
governing dimensionless parameters that control the steady runout distances (Step 1).
Secondly, we have derived analytical solutions under the condition where air entrainment
is not taken into account (Step 2). Finally, we have evaluated the effects of air entrainment
on the steady runout distances on the basis of numerical simulations (Step 3).

In Step 1, as a result of the non-dimensionalization, we have identified four govern-
ing dimensionless parameters:Ws/(Ua0), D/Ws, E|ū|/Ws, and(CpaTa)/(Cp0T0). The
parameterWs/U represents the ratio of the particle settling velocity at the base of the
dilute current to the horizontal velocity scale of the two-layer PDC. The velocity scaleU
depends on the mass eruption rate at sourceṀ0 (i.e.,U ∝ Ṁ

1/5
0 ). The parametera0 is the

aspect ratio of the height scale of the dilute current to the length (or radius) of the collaps-
ing column, which is imposed on a boundary condition. The parameterD/Ws represents
the relative magnitude of the effect of deposition from the base of the dense current to that
of particle supply from the dilute current. The parameterE|ū|/Ws represents the relative
magnitude of the effect of air entrainment to that of particle settling. Here,E|ū| is the en-
trainment velocity, wherēu is the local flow velocity andE is the entrainment coefficient.
The parameter(CpaTa)/(Cp0T0), defined as the ratio of the enthalpy of the entrained air
to the enthalpy scale of the dilute current, represents the degree of thermal expansion of
air entrained into the dilute current, whereCpa andCp0 are the heat capacities at constant
pressure of air and the dilute current at the collapsing column edge, respectively, andTa

andT0 is the temperatures of ambient air and the dilute current at the collapsing column
edge, respectively.

In Step 2, we have derived the analytical solution of the steady runout distances from
the mass conservation equations of the two-layer PDCs for the case without air entrain-
ment to understand the theoretical framework of the regime transition. The analytical
solution shows that the steady runout distances of the dilute and dense currents primar-
ily depend on the parameterWs/(Ua0), which in turn depends on the mass eruption rate
at sourceṀ0. The analytical solution also suggests that the boundaries of regimes (i.e.,
Regimes 1, 2a and 2b) are mainly determined by the parameterD/Ws, which is indepen-
dent of the mass eruption rate at sourceṀ0.

In Step 3, we have compared the analytical solution derived in Step 2 with numerical
results of the two-layer model where the effects of air entrainment are taken into consid-
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eration. The numerical results show that the parameterE|ū|/Ws is mainly determined by
the parameterWs/U . Thus, the runout distance of the two-layer PDCs is strongly affected
by air entrainment in the case of smallWs/(Ua0) (i.e., largeṀ0), whereas the effect of
air entrainment is limited in the case of largeWs/(Ua0) (i.e., smallṀ0).

The numerical results show that the effects of thermal expansion of entrained air on
the steady runout distances strongly depend on the parameter(CpaTa)/(Cp0T0). When the
temperature of erupted material is high (i.e., small(CpaTa)/(Cp0T0)), a large degree of
thermal expansion of entrained air significantly enhance the liftoff; as a result, the steady
runout distance of the dilute current decreases as the degree of air entrainment increases.
In this case, the steady runout distance of the dense current also decreases because ther-
mal expansion of entrained air leads to decreasing of the particle supply from the dilute
current to the dense current. When the temperature of erupted material is low (i.e., large
(CpaTa)/(Cp0T0)), on the other hand, the entrainment of air results in thickening of the
dilute current without enhancing liftoff; as a result, the steady runout distance does not
decrease or can even increase as the degree of entrainment increases. Because thickening
of the dilute current also leads to decreasing the particle settling from the dilute current to
the dense current, the steady runout distance of the dense current decreases as the degree
of entrainment increases for the large(CpaTa)/(Cp0T0) case, too.

The present results account for diverse features of PDC deposits (e.g., distributions
and sedimentary structures). A wide range of distributions of PDC deposits can be ac-
counted for by variable runout distances of PDCs, depending on the mass eruption rate
at source,Ṁ0. Generally, a wide variety of sedimentary structures of PDC deposits (e.g.,
massive and/or stratified lithofacies) result from the flow-particle interaction inside the
boundary layer at the bottom of PDCs. It is considered that some of the diversities of
PDC deposits are explained by the difference in the flow-particle interaction in the bot-
tom boundary layer between the dilute and dense currents. When stratified lithofacies are
dominantly observed from proximal to distal areas, the PDC deposits are interpreted to
be emplaced by PDCs of Regime 1. When massive lithofacies are dominantly observed
from proximal to distal areas, the PDC deposits are interpreted to be emplaced by PDCs
of Regime 2b. When distal lithofacies change from massive to stratified, the PDC de-
posits are interpreted to be emplaced by PDCs of Regime 2a. Our results that the region
of Regime 2a expands in the regime diagram as the temperature of erupted material de-
creases are consistent with the observation that stratified surge deposits are commonly
observed in the deposits of phreatomagmatic eruptions.
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Chapter 1

Introduction

During an explosive volcanic eruption, a hot mixture of volcanic particles and gas is

continuously ejected from the volcanic vent and develops an eruption column. When the

density of the mixture remains higher than that of the ambient air, the eruption column

collapses to produce pyroclastic density currents (PDCs; Figure 1.1a and b; e.g., Sparks

et al., 1997). PDCs deposit an extremely diverse range of pyroclastic deposits (Fisher &

Schmincke, 1984; Cas & Wright, 1987; Druitt, 1998; Branney & Kokelaar, 2002; Sulpizio

et al., 2014; Brown & Andrews, 2015; Figure 1.1c and d). In this thesis, we develop a

new two-layer shallow-water model for PDCs, and discuss the dynamics of PDCs and the

diversity of their deposits on the basis of the new model. Although PDCs also originate

from laterally inclined blasts or lava-dome collapses (e.g., Branney & Kokelaar, 2002),

we focus on the PDCs generated by collapse of an eruption column.

In this chapter, we briefly summarize the outline of the diversity of the deposits of

PDCs and the physical process on the PDCs (particularly the significance of vertical den-

sity stratification) to elucidate the whole view of the present problem.
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(a) (b)

(c) (d)

Figure 1.1:Pyroclastic density currents and their deposits. (a) Mount Lascar explodes, the 19
April 1993 ( c⃝Jacques Et Aicha Guarinos). (b) Mount Pinatubo explodes, the 17 June 1991
( c⃝Alberto Garcia/Corbis). (c) Pyroclastic density current deposit from the 18 May 1980 erup-
tion of Mount St. Hetens showing the typically massive lithofacies. Modified from Druitt (1998).
(d) Pyroclastic density current deposit of the 11 ka Upper Laacher See Tuff (Germany) showing
the well-developed sandwave stratified lithofacies. Modified from Druitt (1988).
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1.1 Diversity of the deposits of pyroclastic density cur-

rents

1.1.1 First-order features

Generally the global features of the PDC deposits are characterized by distribution, vol-

ume, shape, aspect ratio, mass fraction of co-ignimbrite ash, and temperature of emplace-

ment of PDC deposits. We call them the first-order features of the PDC deposits hereafter.

The diversity of the first-order features of the PDC deposits are summarized as follows.

PDC deposits can cover areas from1, 000 m2 to> 20, 000 km2, be found at distances

from 100 m to> 150 km from source (Miller & Smith, 1977; Fisher et al., 1993; Branney

& Kokelaar, 2002). The volumes of PDC deposits vary from0.001 to > 1, 000 km3

(Lindsay et al., 2001; Branney & Kokelaar, 2002; Cas et al., 2011; Brown & Andrews,

2015). The largest documented PDC deposits exceed3, 000 km3 (e.g., Toba caldera,

Costa et al., 2014). When mapped, PDC deposits show a range of general shapes, from

valley-confined deposits through to extensive near-circular sheets (Branney & Kokelaar,

2002; Brown & Branney, 2004; Brown & Branney, 2013). Valley-confined deposits are

interpreted to be generated by currents that are confined within a canyon or valley, for

example 1912 eruption of Valley of Ten Thousand Smokes (VTTS) ignimbrite, Alaska

(e.g., Hildreth & Fierstein, 2012). Extensive near-circular sheets are interpreted to be

generated by currents that traveled radially out from a volcano, for example the 28.5 ka

Taupo ignimbrite, New Zealand (e.g., Wilson & Walker, 1985).

The aspect ratio of PDC deposits is thought to be one of the most important parameters

which has been related to PDC dynamics and source conditions (Walker, 1983; Bursik &

Woods, 1996; Giordano & Doronzo, 2017). The aspect ratios are determined by the ratios

of the average thickness of the deposit to the diameter of a circle with the same surface

area as the deposit, and they vary from10−5 to 10−2 (Walker, 1983). High-aspect ratio

PDC deposits, characterized by the aspect ratio of10−2–10−3, are thick but not widely
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spread (e.g., Katmai and Mount Pinatubo). On the other hand, low-aspect ratio PDC

deposits, characterized by the aspect ratio of10−4–10−5, are thin but widespread (e.g.,

Taupo). Most large volume PDC deposits are low-aspect ratio PDC deposits.

Buoyant plumes associated with PDCs are another important feature that characterizes

the dynamics and deposits of PDCs. During a formation of a PDC, parts of the PDC

can become lighter than ambient air to reverse buoyancy and liftoff. The liftoff of PDCs

forms “co-ignimbrite ash plumes” (e.g., Woods & Kienle, 1994; Calder et al., 1997). This

phenomenon implies that not all particles that initially contribute to PDCs are deposited

within “PDC deposits.” Indeed large fractions of particles are elutriated into buoyant

co-ignimbrite plumes, whose deposits can amount to as much as50% of the erupted

mass (e.g., Machida & Arai, 1976, 1978; Sparks & Walker, 1977; Carey et al., 1990;

Woods & Kienle, 1994; Koyaguchi & Ohno, 2001b). When inferring PDC behavior and

eruption intensity (i.e., the mass eruption rate from source) from deposits, the fraction of

tephra that enters co-ignimbrite ash plumes is important (e.g., Bursik & Woods, 1996;

Koyaguchi & Ohno, 2001a and b; Andrews & Manga, 2012); however, it is difficult

correctly to detect the fraction of co-ignimbrite ash from field observations, because the

deposits of co-ignimbrite ash plumes are often areally extensive, very thin, and easily

eroded (Sigurdsson & Carey, 1989; Fierstein & Nathenson, 1992; Calder et al., 1997;

Branney & Kokelaar, 2002).

The temperature of emplacement of PDC deposits is also an important factor that con-

trols the dynamics and the mode of emplacement of PDCs; it varies from< 100 to 1, 000

◦C depending on eruption style (e.g., Trolese et al., 2017). PDC deposits can be loose

granular material or can be welding texture, because the onset of welding occurs at tem-

peratures of the order of600–750 ◦C (Smith, 1960). The emplacement temperatures of

PDCs are interpreted to depend on several factors, such as the starting magmatic temper-

ature and the degree of interaction between the erupted materials and external influences

such as air and/or water (McClelland & Druitt, 1989; Koyaguchi & Woods, 1996).
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1.1.2 Second-order features

PDC deposits are extremely variable in not only the first-order features, but also sedimen-

tary structures observed in single outcrops (i.e., lithofacies such as massive to stratified

bedforms, ground layers, stratified topographic veneers, lateral levees, and steep front

lobes). We call them the second-order features of the PDC deposits hereafter. The diver-

sity of the second-order features of PDC deposits are summarized as follows.

PDC deposits commonly show poorly sorted massive (i.e., non-stratified) to strati-

fied lithofacies, and multiple grading (i.e., normal and reverse grading, and density and

size grading) (Fisher & Schmincke, 1984; Cas & Wright, 1987; Druitt, 1998; Bran-

ney & Kokelaar, 2002; Sulpizio et al., 2014; Brown & Andrews, 2015). There are

two conceptual models for the deposition mechanisms of poorly sorted massive litho-

facies: “en massedeposition” and “progressive aggradation” (Branney & Kokelaar, 2002;

Roche, 2012). Inen massedeposition, the current with high particle concentration freezes

through its entire height (Sparks, 1976). In this model, the vertical structures of PDC de-

posits are considered to preserve the vertical flow structures (i.e., the paradigm of the

standard ignimbrite flow-unit; Sparks et al., 1973; Sparks, 1976). In progressive aggrada-

tion, the deposit builds up by progressive accumulation of material (Fisher, 1966; Branney

and Kokelaar, 1992). In this model, the vertical structures of PDC deposits reflect tem-

poral variations of the conditions of the lower portion of the flow that undergo deposition

(i.e., flow-boundary zone).

At bases of PDC deposits, a wide variety of thin, stratified and relatively sorted layers

commonly occurs (e.g., Sparks & Walker, 1973; Walker et al., 1981a; Valentine et al.,

1990; Fujii & Nakada, 1999). Such layers are called as “ground layer” (Sparks & Walker,

1973; Sparks, 1976). Ground layers may record the dynamics of PDC such as the initial

advance of the current across the landscape, and/or the flow-boundary conditions near the

flow front (Branney & Kokelaar, 2002).

Sedimentary structures of PDCs are also affected by local topography. Relatively thin
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and stratified lithofacies of PDC deposits are common on topographic highs (e.g., Wohletz

& Sheridan, 1979; Walker et al., 1981b). Such deposits are called as “stratified veneer.”

Stratified topographic veneers are inferred to derive from the “tail” or “skin” of a current

with high particle concentration (Walker et al., 1980a; Wilson & Walker, 1982; Wilson,

1986) or from a current with low particle concentration (e.g., Fisher et al., 1980b).

In some (small volume) PDC deposits, there are structures like lateral levees and steep

front lobes (e.g., Rowley et al., 1981; Lube et al., 2007). This morphology is formed by

large clasts, and typically inferred to indicate segregation in concentrated flow at the flow

front and margins (Gray & Kokelaar, 2010). The morphology is also inferred to be formed

by the spatial and temporal variations of friction caused by interstitial gas pore pressure

(Gueugneau et al., 2017).

Extremely diverse PDC deposits shown above are formed by transport and deposition

processes (e.g., Branney & Kokelaar, 2002). In PDC deposits, there are both aspects of

directly recording transport and deposition processes, such asen massefreezing (Sparks,

1976), and of not directly recording transport process, such as progressive aggradation

(Fisher, 1966; Branney & Kokelaar, 1992). Thus, in order to account for the diversity

of PDC deposits, not only the field-based work and experimental-analogue modeling of

PDC behavior and sedimentation but also numerical studies that unify the large-scale

field observation and individual physical processes are needed (e.g., Branney & Kokelaar,

2002; Roche et al., 2013b; Dufek et al., 2015; Dufek, 2016).

1.2 Physical processes

Generally physics of sedimentation is strongly dependent on volume fraction of sus-

pended particles in a fluid (e.g., Allen, 1984). The above diversity of PDC deposits is

considered to result mainly from a wide range of particle volume fraction in PDCs (Bran-

ney & Kokelaar, 2002). PDCs generally develop density stratification in which particle

concentrations remarkably increase toward the base (Valentine, 1987; Branney & Koke-
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laar, 2002; Burgisser & Bergantz, 2002; Breard et al., 2016). The density stratification

mainly consists of a coupled voluminous dilute turbulent suspension flow and the basal

thin dense flow (Figure 1.2a; e.g., Branney & Kokelaar, 2002; Roche et al., 2013b; Dufek

et al., 2015; Dufek, 2016). Indeed, Hoblitt (1986) observed a basal dense current some-

times revealed beneath turbulent ash clouds for the 22 July and 7 August 1980 flows of

Mount St. Helens.

The particle concentration is≲ 1 vol.% in the dilute current, and∼ 10 vol.% in

the dense current (e.g., Breard et al., 2016). Because of such difference in particle vol-

ume fraction, mechanisms that determine the runout distance are qualitatively different

between dilute and dense currents. Dilute currents can become lighter than ambient air

to reverse buoyancy and liftoff (e.g., Andrews, 2014). The runout distance of the dilute

current is, therefore, the distance between the liftoff position and source position (Figure

1.2a). The dense current can stop due to the basal friction and/or sedimentation (e.g.,

Roche, 2012). The runout distance of the dense current is the distance between the stop

position and source position (Figure 1.2a). The relative magnitude of these runout dis-

tances governs the distribution of PDC deposits, and may also affect the lithofacies of

PDC deposits. The runout distance of each part is controlled by different physical pro-

cesses due to the difference in the particle volume fraction (Figure 1.2b; e.g., Roche et al.,

2013b; Dufek et al., 2015; Dufek, 2016), which are summarized as follows.

1.2.1 Dilute part

The dynamics of dilute PDCs is mainly controlled by frontal resistance of ambient air,

particle settling, entrainment air, and thermal expansion of entrained air. Each of these

process has been studied on the basis of laboratory experiments.

Dilute PDCs share much in common with a simple gravity current generated by some

laboratory experiments which have commonly taken the form of lock-exchange experi-

ments (e.g., Huppert & Simpson, 1980; Rottman & Simpson, 1983; Marino et al., 2005).
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Dilute part
Dense part

Deposit

Co-ignimbrite ash plume

Runout distance of dilute part

Runout distance of dense part

(a)

Basal friction

Entrainment of air

Thermal expansion
Frontal resistance of air

Particle settling
(Deposition)

(b)

Figure 1.2:Schematic illustrations of pyroclastic density currents. (a) Vertical density stratifi-
cation and runout distance. The vertical density stratification mainly consists of a voluminous
dilute turbulent suspension (red region) and the basal thin dense part (blue region). (b) Physical
processes underlying the dynamics of pyroclastic density currents.
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Typically, the gravity current were generated by releasing a saline fluid into water where

the density contrast between both fluids was small. Experiments and theoretical modeling

have shown that the dynamics of the gravity currents are critically affected by a mechan-

ical balance between the buoyancy pressure driving the current front and the resistance

pressure caused by the acceleration of the ambient fluid around the front (e.g., Benjamin,

1968; Huppert & Simpson, 1980; Ungarish, 2007; Shimizu et al., 2017). This condition is

known as the front condition (Ungarish, 2009). The momentum loss due to the resistance

of the ambient fluid at the front leads to the morphology defined as comprising a head

preceding a body.

Lock-exchange experiments and theoretical modeling for a particle-laden gravity cur-

rent have also shown that the degree of particle settling from the base of the current can

change the dynamics of the gravity current and the deposition pattern of the sediment

(Bonnecaze et al., 1993). Further experiments were undertaken where the interstitial fluid

in the gravity current was lighter than the ambient fluid (Sparks et al., 1993). In these ex-

periments, when sufficient particles settled, the bulk density of the gravity current became

less than that of the ambient fluid, and the gravity current rose as a plume.

When a current propagates rapidly, ambient air is entrained in the gravity currents

owing to high shear conditions around the flow surface. From laboratory experiments,

the role of entrainment of the ambient air into the gravity current has been quantified as a

function of non-dimensional number, the Richardson number, which represents the ratio

of the stabilizing stratification of the current to destabilizing velocity shear (Ellison &

Turner, 1959; Parker et al., 1987). The empirical law derived from the experiments has

been used in a wide range of numerical models of gravity currents (e.g., Bursik & Woods,

1996; Johnson & Hogg, 2013; Shimizu et al., 2017).

As mentioned above, when much ambient fluid is entrained and thermally expanded

prior to the current sedimentation of much particles, some portions of the hot current

undergo a buoyancy reversal, creating secondary plumes (Woods & Kienle, 1994; Bursik

& Woods, 1996; Calder et al., 1997; Andrews & Manga, 2012; Andrews, 2014). This
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general feature of spreading of hot dilute PDCs and generation of co-ignimbrite plumes

have been reproduced in experiments for dilute turbulent suspension gravity currents at

ambient and high temperatures (Andrews & Manga, 2012; Andrews, 2014).

1.2.2 Dense part

The dynamics of dense PDCs is mainly controlled by basal friction, deposition, and par-

ticle supply from the upper dilute current. Dense PDCs share much in common with a

(fluidized) granular flow generated by an instantaneous release of an initially fluidized bed

(e.g., Roche et al., 2008). The lock-release experiments on the initially fluidized granu-

lar flows showed that their dynamics depends on the diffusion timescale of the high-pore

pressure developed initially (Roche et al., 2008; Roche, 2012). Because of the differences

of the pore pressure, the initially fluidized granular flows can be either propagating as

inertial flows having a high-mobility under a fluid-inertial regime or as dry granular flows

under a granular-frictional regime (Roche, 2012). Once the pore-pressure has decreased

by diffusion, the flow, which initially behaves as a inertial flow, enters the frictional regime

and stopping phase (Roche, 2012; Gueugneau et al., 2017).

Experiments of granular flows on erodible ground bed indicate that erosion of the

ground bed may play a role under some conditions. The initially fluidized granular flows

generally consist of a sliding head preceding a body (Roche et al., 2010). The body is

characterized by a flow with a no-slip boundary condition wherein the deposit is aggraded

at a nearly constant rate (Gilorami et al., 2008, 2010, 2015). In the sliding head, on the

other hand, slip-velocity develops at the base, which can cause erosion of the ground bed

(Roche et al., 2013a). The deposition and erosion processes of the (fluidized) granular

flows is not fully understood.

Finally, recent large scale experiments of PDCs with strong density stratification (Breard

et al., 2016; Breard & Lube, 2017) indicate that the interaction between the dilute and

dense parts is of importance. In these experiments, a significant particle mass flux from
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the overriding dilute current into the basal dense current is observed, which controls the

global dynamics of the dilute and dense currents.

1.3 Object of this study

We aim to relate the above diverse features of PDC deposits with the above underlying

physical processes, by investigating PDC dynamics under the various supplied conditions.

As shown above, there is a vast amount of field-based works related with the diversity of

PDC deposits and experimental-analogue and numerical studies related with the physi-

cal processes underlying PDC dynamics. On the other hand, there are only few studies

that unify the diversity of PDC deposits and the underlying physical processes (e.g., Bur-

sik & Woods, 1996; Dade & Huppert, 1996; Doyle et al., 2008). Accordingly, a global

relationship between the sedimentological features of PDC deposits, the underlying phys-

ical processes, and the PDC dynamics connecting them under various eruption conditions

(e.g., the mass eruption rate, grain size distribution, and temperature) remains unsolved.

In order to assess the effects of the above physical processes on PDC dynamics and

the resulting deposits, we will model PDC dynamics by the depth-averaged shallow-water

equations. The essential behavior of density currents can be described by the depth-

averaged shallow-water equations (e.g., Ungarish, 2009; Dufek, 2016). Since the under-

lying physical processes are described explicitly in the shallow-water equations, an ex-

tensive parametric analysis based on the shallow-water equations offers better prospects

for assessing the effects of these physical processes on the global dynamics of gravity

currents.

The depth-averaged shallow-water approach has been widely used to model PDCs

(Table 1.1). Bursik & Woods (1996) developed a one-layer model for dilute turbulent

suspension currents at steady state. In this model, particle settling from the base of the

current and thermal expansion of air entrained from the upper surface of the current re-

duce the density of the current, eventually leading to buoyancy reversal and final runout of

11



the current. On the basis of this model, Bursik & Woods (1996) have explicitly shown that

the runout distance of the dilute current is critically controlled by magma discharge rate

of eruptions. This one-layer model for dilute currents, however, does not account for the

effects of the dense current. As mentioned above, the strong density stratification devel-

ops in PDCs, and the dilute and dense parts are controlled by different physical processes

(Figure 1.2b). Thus, we will take a two-layer approach as Doyle et al. (2008). Doyle et al.

(2008, 2010, 2011) developed an unsteady two-layer model for PDCs with strong density

stratification, in which dilute and dense layers evolve separately but are coupled through

mass exchange as suspended particles in the dilute layer settles into the basal dense layer.

In this model, particles settling from the dilute turbulent current form the basal dense

current. Doyle et al. (2008) showed that the strong density stratification leads to quali-

tatively different regimes for determining the runout distance; however, their model does

not provide a quantitative estimation of runout distance, because the effects of the thermal

expansion of air entrained into the dilute current are not taken into consideration in their

model.

To assess the effects of all the physical processes, including the effects of thermal

expansion of entrained air and strong density stratification, on PDC dynamics and the

resulting deposits, we develop a new unsteady two-layer model (Table 1.1). We previously

showed that frontal resistance of air is especially important in behavior of the dilute layer

(Shimizu et al., 2017), so that we also consider this effect correctly in our model.
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The two-layer approach that we will take can capture the essential natures of the dy-

namics of PDCs with strong density stratification. It may be difficult to distinguish the

dilute and dense parts on the basis of the observations from outside. Clast concentrations

in the density stratification of natural PDCs “gradually” increase toward the base. More-

over, a part of the dilute current may be derived by elutriation from the underlying dense

parts. For example, when much particles are transported by the dilute current, the fluid

dynamical feature can be approximated by the two-layer model where the dilute current

travels more rapidly than the underlying dense layer (Figure 1.3a). On the other hand,

when much particles are transported by the dense current, the fluid dynamical feature

can be approximated by the two-layer model where the lower dense current travels more

rapidly than the overlying dilute layer (Figure 1.3b). We, therefore, consider that the two-

layer approach is very useful to relate such PDC dynamics with the diverse features of

PDC deposits.

u

u

Particle settling

Elutriation

(b)

(a)

Figure 1.3:Schematic illustrations of the dynamics of pyroclastic density currents.u is horizontal
velocity. Modified from Branney & Kokelaar (2002). (a) Much particles are transported by the
upper dilute part. (b) Much particles are transported by the lower dense current.
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The present thesis provides insights into the relationships between the diversity of

PDC deposits and the physical processes dominating PDC dynamics, on the basis of nu-

merical simulations of the new unsteady two-layer shallow-water model. The remainder

of this thesis is organized as follows. Chapter 2 describes the formulation of the new

unsteady two-layer shallow-water model. Chapter 3 describes numerical procedures of

the model. Chapter 4 shows the representative numerical results of the model. Chapter

5 discusses the origin of the fluid dynamical feature of the numerical results, particularly

mechanisms determining the runout distance of PDCs. Chapter 6 describes geological

implications of the numerical study on the diversity of PDC deposits. Finally, Chapter 7

represents the conclusion of this thesis and future studies.
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Chapter 2

Formulation

We formulate a new unsteady two-layer shallow-water model for the dynamics of py-

roclastic density currents (PDCs). In general, PDCs are unsteady phenomena and are

characterized by strong density stratification due to particle settling (e.g., Branney and

Kokelaar, 2002), whereby a dilute gravity current (particle suspension flow) overrides the

dense basal gravity current (fluidized granular flow) (Figure 1.2).

In previous unsteady two-layer models (Doyle et al., 2008, 2010, 2011; Kelfoun,

2017; Kelfoun et al., 2017), the mass and momentum conservation equations of each

layer are solved, but the energy conservation equation of dilute layer is not solved. The

dynamics of the dilute part of PDCs is strongly affected by the thermal expansion of

entrained air (Bursik & Woods, 1996; Andrews & Manga, 2012). Although a steady

energy conservation equation of the dilute layer is formulated in Bursik & Woods (1996),

the unsteady energy conservation equation has not been formulated yet. Therefore, in this

chapter, we derive a generalized unsteady one-layer shallow-water equations including

the energy conservation equation (Section 2.1), and formulate a new unsteady two-layer

PDC model on the basis of the generalized unsteady one-layer model (Section 2.2). The

notations of variables shown in these models are summarized in Appendix A.
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2.1 One-layer model of inviscid gravity currents

In this section, we derive a generalized unsteady one-layer shallow-water equations in-

cluding the energy conservation equation from the inviscid Navier–Stokes equations. The

basic methodology of deriving these equations is based on Chapter 2 in Ungarish (2009).

2.1.1 Inviscid Navier–Stokes equations

We consider an inviscid gravity current propagating into an ambient of densityρa, along

a slope inclined atθ(= const) to the horizontal (wherex is parallel to the slope andz

perpendicular, Figure 2.1). The conservation equations of mass,x-direction momentum,

z-direction momentum and total energy for the inviscid gravity current are (e.g., Toro,

2009)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂z
(ρw) = 0, (2.1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂z
(ρuw) = ρg sin θ, (2.2)

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂z
(ρw2 + p) = −ρg cos θ, (2.3)

∂

∂t
(ρetot) +

∂

∂x
((ρetot + p)u) +

∂

∂z
((ρetot + p)w) = 0. (2.4)

This system is called the inviscid Navier–Stokes (i.e., Euler) equations. Here,t is the

propagation time,ρ(x, z, t) is the mass density,u(x, z, t) is thex-component of veloc-

ity, w(x, z, t) is thez-component of velocity,p(x, z, t) is the thermodynamic pressure,

etot(x, z, t) is the total energy per unit mass, andg is the acceleration due to gravity. The

etot(x, z, t) is defined with

etot ≡ e+
1

2
(u2 + w2) + g(z cos θ − x sin θ), (2.5)

wheree is the specific internal energy,(u2+w2)/2 is the specific kinetic energy,g(z cos θ−

x sin θ) is the specific potential energy.
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Figure 2.1:Schematic illustration of the inviscid gravity current of depthh(x, t), propagating
along a slope inclined atθ to the horizontal, withx parallel to the slope andz perpendicular.
There are three interfaces, between the top of the current and the surrounding ambient fluid (z =
zf(x, t)), between the front of the current and the ambient fluid (x = xN(t)), and between the
bottom of the current and the local topography imposed on the slope (z = zb(x, t)).

For an ideal gas, thermodynamic variables (i.e., pressurep, densityρ and temperature

T ) can be related via the thermal equation of state

1

ρ
=

RT

p
, (2.6)

whereR is a constant, which depends on the kind of gas. The temperatureT can also be

related to the internal energye via a caloric equation of state

de = CvdT (2.7)

or

d

(
e+

p

ρ

)
= CpdT, (2.8)

whereCv (= const) is the heat capacity at constant volume andCp (= const) is the heat
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capacity at constant pressure. From Eqs. (2.6), (2.7) and (2.8),

R = Cp − Cv (2.9)

is obtained.

2.1.2 Kinematic conditions

To derive the depth-averaged shallow-water equations from the Navier–Stokes equations

(i.e., Eqs. (2.1)–(2.4)), we must integrate the Navier–Stokes equations across the depth of

the current. Before integrating the Navier–Stokes equations, we introduce the kinematic

condition, which is applied to determine the elevation of the free surface.

We consider the interface of the gravity current as a discontinuity of the density, and

denote the locus of this discontinuity by using a functionΣ(x, z, t) = 0 (e.g., Ungarish,

2009). The full differential ofΣ(x, z, t) = 0 yields

dΣ = 0

∴ ∂Σ

∂t
+

dx

dt

∂Σ

∂x
+

dz

dt

∂Σ

∂z
= 0 (∵ dt ̸= 0). (2.10)

The rates of displacement of the interface,dx/dt anddz/dt, are the velocities of the fluid

at the interface, so that the kinematic condition for the interface of the gravity current:

∂Σ

∂t
+ u

∂Σ

∂x
+ w

∂Σ

∂z
= 0 (2.11)

is obtained.

There are three interfaces, between the top of the current and the surrounding ambient

fluid, between the front of the current and the ambient fluid, and between the bottom of

the current and the local topography imposed on the slope (Figure 2.1). The interface

between the top of the current and the ambient fluid is denoted by the subscriptf, the
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locus of which is given byΣf = z − zf(x, t) = 0. Substituting this into Eq. (2.11), we

obtain the kinematic condition atz = zf(x, t):

∂

∂t
(z − zf(x, t)) + uf

∂

∂x
(z − zf(x, t)) + wf

∂

∂z
(z − zf(x, t)) = 0

∴ ∂zf
∂t

+ uf
∂zf
∂x

− wf = 0, (2.12)

whereuf andwf are the velocities of the fluid atz = zf(x, t). The interfacezf(x, t) is

related with the current depthh(x, t) and the local topographyzb(x, t) via

zf(x, t) = h(x, t) + zb(x, t). (2.13)

The interface between the bottom of the current and the local topography is denoted by

the subscriptb, the locus of which is given byΣb = z − zb(x, t) = 0. Substituting this

into Eq. (2.11), we obtain the kinematic condition atz = zb(x, t):

∂zb
∂t

+ ub
∂zb
∂x

− wb = 0, (2.14)

whereub andwb are the velocities of the fluid atz = zb(x, t). The interface between

the front of the current and the ambient fluid is denoted by the subscriptN, the locus of

which is given byΣN = x − xN(t) = 0. Substituting this into Eq. (2.11), we obtain the

kinematic condition atx = xN(t):

∂

∂t
(x− xN(t)) + uN

∂

∂x
(x− xN(t)) + wN

∂

∂z
(x− xN(t)) = 0

∴ dxN

dt
= uN, (2.15)

whereuN andwN are the depth averaged velocities of the fluid atx = xN(t).
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2.1.3 Depth integrating

We integrate Eqs. (2.1)–(2.4) fromz = zb(x, t) to z = zf(x, t). The kinematic conditions

(2.12) and (2.14) are used in this integration. We give Leibniz’s rule for differentiation of

an integral for the following derivations:

d

dη

∫ b(η)

a(η)

f(z, η) dz =

∫ b(η)

a(η)

d

dη
f(z, η) dz + f(b, η)

db

dη
− f(a, η)

da

dη
. (2.16)

Mass conservation equation

The mass conservation Eq. (2.1) is integrated fromz = zb(x, t) to z = zf(x, t) to yield

∫ zf

zb

∂ρ

∂t
dz +

∫ zf

zb

∂

∂x
(ρu) dz + ρfwf − ρbwb = 0. (2.17)

Applying Leibniz’s rule (2.16) to Eq. (2.17), we obtain

∂

∂t

∫ zf

zb

ρ dz − ρf
∂zf
∂t

+ ρb
∂zb
∂t

+
∂

∂x

∫ zf

zb

(ρu) dz − ρfuf
∂zf
∂x

+ ρbub
∂zb
∂x

+ρfwf − ρbwb = 0

∴ ∂

∂t

∫ zf

zb

ρ dz +
∂

∂x

∫ zf

zb

(ρu) dz

−ρf

(
∂zf
∂t

+ uf
∂zf
∂x

− wf

)
+ ρb

(
∂zb
∂t

+ ub
∂zb
∂x

− wb

)
= 0. (2.18)

Using this formula and the kinematic conditions (2.12) and (2.14), we write

∂

∂t

∫ zf

zb

ρ dz +
∂

∂x

∫ zf

zb

(ρu) dz = 0. (2.19)

We introduce the straightforward definitions of the depth-averaged density and mass flux:

ρ ≡ 1

h

∫ zf

zb

ρ dz , ρu ≡ 1

h

∫ zf

zb

(ρu) dz. (2.20)
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Using these and Eq. (2.13), we rewrite Eq. (2.19) as

∂

∂t
(ρh) +

∂

∂x
(ρuh) = 0. (2.21)

Momentum conservation equation in thex direction

Thex-momentum conservation Eq. (2.2) is integrated fromz = zb(x, t) to z = zf(x, t)

to yield

∫ zf

zb

∂

∂t
(ρu) dz +

∫ zf

zb

∂

∂x
(ρu2 + p) dz + ρfufwf − ρbubwb = g sin θ

∫ zf

zb

ρ dz. (2.22)

Applying Leibniz’s rule (2.16) to Eq. (2.22), we obtain

∂

∂t

∫ zf

zb

(ρu) dz − ρfuf
∂zf
∂t

+ ρbub
∂zb
∂t

+
∂

∂x

∫ zf

zb

(ρu2) dz − ρfu
2
f

∂zf
∂x

+ ρbu
2
b

∂zb
∂x

+
∂

∂x

∫ zf

zb

p dz − pf
∂zf
∂x

+ pb
∂zb
∂x

+ ρfufwf − ρbubwb = g sin θ

∫ zf

zb

ρ dz

∴ ∂

∂t

∫ zf

zb

(ρu) dz +
∂

∂x

∫ zf

zb

(ρu2) dz +
∂

∂x

∫ zf

zb

p dz − pf
∂zf
∂x

+ pb
∂zb
∂x

−ρfuf

(
∂zf
∂t

+ uf
∂zf
∂x

− wf

)
+ ρbub

(
∂zb
∂t

+ ub
∂zb
∂x

− wb

)
= g sin θ

∫ zf

zb

ρ dz.

(2.23)

Using this formula and the kinematic conditions (2.12) and (2.14), we write

∂

∂t

∫ zf

zb

(ρu) dz +
∂

∂x

∫ zf

zb

(ρu2) dz +
∂

∂x

∫ zf

zb

p dz − pf
∂zf
∂x

+ pb
∂zb
∂x

= g sin θ

∫ zf

zb

ρ dz.

(2.24)

We introduce the straightforward definitions of the depth-averagedx-momentum flux and

thermodynamic pressure:

ρu2 ≡ 1

h

∫ zf

zb

(ρu2) dz , p ≡ 1

h

∫ zf

zb

p dz. (2.25)

23



Using these and Eqs. (2.13) and (2.20), we rewrite Eq. (2.24) as

∂

∂t
(ρuh) +

∂

∂x
(ρu2h+ ph)− pf

∂zf
∂x

+ pb
∂zb
∂x

= ρgh sin θ. (2.26)

Momentum conservation equation in thez direction

Thez-momentum conservation Eq. (2.3) is integrated fromz = zb(x, t) to z = zf(x, t)

to yield

∫ zf

zb

∂

∂t
(ρw) dz +

∫ zf

zb

∂

∂x
(ρuw) dz

+ρfw
2
f − ρbw

2
b + pf − pb = −g cos θ

∫ zf

zb

ρ dz. (2.27)

Applying Leibniz’s rule (2.16) to Eq. (2.27), we obtain

∂

∂t

∫ zf

zb

(ρw) dz − ρfwf
∂zf
∂t

+ ρbwb
∂zb
∂t

+
∂

∂x

∫ zf

zb

(ρuw) dz − ρfufwf
∂zf
∂x

+ ρbubwb
∂zb
∂x

+ρfw
2
f − ρbw

2
b + pf − pb = −g cos θ

∫ zf

zb

ρ dz

∴ ∂

∂t

∫ zf

zb

(ρw) dz +
∂

∂x

∫ zf

zb

(ρuw) dz − ρfwf

(
∂zf
∂t

+ uf
∂zf
∂x

− wf

)
+ρbwb

(
∂zb
∂t

+ ub
∂zb
∂x

− wb

)
+ pf − pb = −g cos θ

∫ zf

zb

ρ dz. (2.28)

Using this formula and the kinematic conditions (2.12) and (2.14), we write

∂

∂t

∫ zf

zb

(ρw) dz +
∂

∂x

∫ zf

zb

(ρuw) dz + pf − pb = −g cos θ

∫ zf

zb

ρ dz. (2.29)

We introduce the straightforward definitions of the depth-averagedz momentum andz-

momentum flux:

ρw ≡ 1

h

∫ zf

zb

(ρw) dz , ρuw ≡ 1

h

∫ zf

zb

(ρuw) dz. (2.30)
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Using these and Eqs. (2.13) and (2.20), we rewrite Eq. (2.29) as

∂

∂t
(ρwh) +

∂

∂x
(ρuwh) + pf − pb = −ρgh cos θ. (2.31)

Energy conservation equation

The energy conservation Eq. (2.4) is integrated fromz = zb(x, t) to z = zf(x, t) to yield

∫ zf

zb

∂

∂t
(ρetot) dz +

∫ zf

zb

∂

∂x
(ρetotu+ pu) dz

+ρfetot,fwf − ρbetot,bwb + pfwf − pbwb = 0. (2.32)

Applying Leibniz’s rule (2.16) to Eq. (2.32), we obtain

∂

∂t

∫ zf

zb

(ρetot) dz − ρfetot,f
∂zf
∂t

+ ρbetot,b
∂zb
∂t

+
∂

∂x

∫ zf

zb

(ρetotu) dz − ρfetot,fuf
∂zf
∂x

+ ρbetot,bub
∂zb
∂x

+
∂

∂x

∫ zf

zb

(pu) dz − pfuf
∂zf
∂x

+ pbub
∂zb
∂x

+ρfetot,fwf − ρbetot,bwb + pfwf − pbwb = 0

∴ ∂

∂t

∫ zf

zb

(ρetot) dz +
∂

∂x

∫ zf

zb

(ρetotu) dz +
∂

∂x

∫ zf

zb

(pu) dz

−ρfetot,f

(
∂zf
∂t

+ uf
∂zf
∂x

− wf

)
+ ρbetot,b

(
∂zb
∂t

+ ub
∂zb
∂x

− wb

)
−pf

(
uf
∂zf
∂x

− wf

)
+ pb

(
ub

∂zb
∂x

− wb

)
= 0. (2.33)

Using this formula and the kinematic conditions (2.12) and (2.14), we write

∂

∂t

∫ zf

zb

(ρetot) dz +
∂

∂x

∫ zf

zb

(ρetotu) dz +
∂

∂x

∫ zf

zb

(pu) dz + pf
∂zf
∂t

− pb
∂zb
∂t

= 0.

(2.34)
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We introduce the straightforward definitions of the depth-averaged total energy and total

energy fluxes:

ρetot ≡
1

h

∫ zf

zb

(ρetot) dz, ρetotu ≡ 1

h

∫ zf

zb

(ρetotu) dz, pu ≡ 1

h

∫ zf

zb

(pu) dz. (2.35)

Using these and Eqs. (2.13), we rewrite Eq. (2.34) as

∂

∂t
(ρetoth) +

∂

∂x
(ρetotuh) +

∂

∂x
(puh) + pf

∂zf
∂t

− pb
∂zb
∂t

= 0. (2.36)

By using Eq. (2.5), I divide the depth-averaged total energyρetot and total energy flux

ρetotu in Eq. (2.36) into three components, associated with the internal energy, the kinetic

energy, and the potential energy. The product of the total energyetot in Eq. (2.5) and the

densityρ(x, z, t) is integrated fromz = zb(x, t) to z = zf(x, t) to yield

∫ zf

zb

(ρetot) dz =

∫ zf

zb

(ρe) dz +
1

2

∫ zf

zb

(
ρ(u2 + w2)

)
dz

+g cos θ

∫ zf

zb

(ρz) dz − gx sin θ

∫ zf

zb

ρ dz. (2.37)

The product of the total energyetot, the densityρ(x, z, t) and the velocityu(x, z, t) is

integrated fromz = zb(x, t) to z = zf(x, t) to yield

∫ zf

zb

(ρetotu) dz =

∫ zf

zb

(ρeu) dz +
1

2

∫ zf

zb

(
ρ(u2 + w2)u

)
dz

+g cos θ

∫ zf

zb

(ρzu) dz − gx sin θ

∫ zf

zb

(ρu) dz. (2.38)
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We introduce the straightforward definitions of the depth-averaged values:

ρe ≡ 1

h

∫ zf

zb

(ρe) dz , ρeu ≡ 1

h

∫ zf

zb

(ρeu) dz ,

ρw2 ≡ 1

h

∫ zf

zb

(ρw2) dz , ρu3 ≡ 1

h

∫ zf

zb

(ρu3) dz , ρuw2 ≡ 1

h

∫ zf

zb

(ρuw2) dz ,

ρz ≡ 1

h

∫ zf

zb

(ρz) dz , ρzu ≡ 1

h

∫ zf

zb

(ρzu) dz. (2.39)

Using these and Eqs. (2.13), (2.20), (2.25) and (2.35), we rewrite Eqs. (2.37) and (2.38)

as

ρetot = ρe+
1

2
(ρu2 + ρw2) + ρzg cos θ − ρxg sin θ (2.40)

and

ρetotu = ρeu+
1

2
(ρu3 + ρuw2) + ρzug cos θ − ρuxg sin θ, (2.41)

respectively. Substituting Eqs. (2.40) and (2.41) into Eq. (2.36), we obtain

∂

∂t

(
ρeh+

1

2
ρu2h+

1

2
ρw2h+ ρzgh cos θ − ρxgh sin θ

)
+

∂

∂x

(
ρeuh+

1

2
ρu3h+

1

2
ρuw2h+ ρzugh cos θ − ρuxgh sin θ

)
+

∂

∂x
(puh) + pf

∂zf
∂t

− pb
∂zb
∂t

= 0. (2.42)

2.1.4 Shallow-water assumption

By applying the shallow-water assumption that thez component of acceleration is negli-

gible to the depth-integratedz-momentum conservation Eq. (2.31), we derive the depth-

averaged hydrostatic pressure and the associated expressions. Subsequently, we apply

these to the depth-integratedx-momentum conservation Eq. (2.26) and the depth-integrated

energy conservation Eq. (2.42) to derive the system of the shallow-water equations.
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We introduce the shallow-water assumption that thez component of acceleration is

negligible (i.e., ∂
∂t
(ρwh) + ∂

∂x
(ρuwh) = 0). Insertion of this condition into the depth-

integratedz-momentum conservation Eq. (2.31) gives

pf − pb = −ρgh cos θ. (2.43)

This is the same as the depth integration of

∂p

∂z
= −ρg cos θ, (2.44)

which is obtained from thez-momentum conservation Eq. (2.3) with the shallow-water

assumption (i.e.,∂
∂t
(ρw) + ∂

∂x
(ρuw) + ∂

∂z
(ρw2) = 0).

By using Eqs. (2.43) and (2.44), we derive the depth-averaged hydrostatic pressure

and the associated expressions. The depth-averaged thermodynamic pressurep in Eq.

(2.25) can be rewritten as

p ≡ 1

h

∫ zf

zb

p dz

=
1

h

∫ zf

zb

(
p
dz

dz

)
dz

=
1

h

(
zfpf − zbpb −

∫ zf

zb

(
z
∂p

∂z

)
dz

)
. (2.45)

Applying Eq. (2.44) to Eq. (2.45), we obtain

p =
1

h

(
zfpf − zbpb +

∫ zf

zb

(ρgz cos θ) dz

)
=

1

h

(
zfpf − zbpb + g cos θ

∫ zf

zb

(ρz) dz

)
. (2.46)

Using Eq. (2.39), we rewrite Eq. (2.46) as

p =
1

h
(zfpf − zbpb + ρzgh cos θ) . (2.47)
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We use Eq. (2.43) to eliminatepb from Eq. (2.47) and obtain

p =
1

h
(pfh+ (ρz − ρzb)gh cos θ)

= pf + (ρz − ρzb)g cos θ. (2.48)

Consideringρz = ρ̄z̄, we obtain

p̄ = pf + ρ̄(z̄ − zb)g cos θ. (2.49)

Introducing the straightforward definitions of the depth-averaged height:

z ≡ 1

h

∫ zf

zb

z dz =
1

h

[
z2

2

]zf
zb

=
1

h

z2f − z2b
2

=
h

2
+ zb (∵ Eq. (2.13)), (2.50)

we rewrite Eq. (2.49) as

p̄ = pf +
1

2
ρ̄gh cos θ. (2.51)

Considering that the density of the ambient fluid is the constantρa, we can write the

hydrostatic pressure of the ambient fluidpa as

pa(x, z) = pa0 + ρagx sin θ − ρagz cos θ, (2.52)

wherepa0 is a constant hydrostatic pressure of the ambient fluid at the reference point

(x = 0, z = 0); see Figure 2.2. Using Eq. (2.52),pf in Eq. (2.51) is represented as

pf ≡ pa(x, z = zf) + ∆pf

= pa0 + ρagx sin θ − ρagzf cos θ +∆pf (∵ Eq. (2.52))

= pa0 + ρagx sin θ − ρag(h+ zb) cos θ +∆pf (∵ Eq. (2.13)), (2.53)
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where∆pf is the pressure difference atz = zf between the current and the ambient fluid;

in general,∆pf = 0 (Figure 2.2).

In the following, the above expressions with the shallow-water assumption are applied

to the depth-integratedx-momentum conservation Eq. (2.26) and the depth-integrated

energy conservation Eq. (2.42) to derive the system of the shallow-water equations.

Figure 2.2:Schematic illustration of the current hydrostatic pressurep(x, z, t), the ambient hy-
drostatic pressurepa(x, z), and the pressure difference∆p(x, z, t), under the shallow-water as-
sumption.
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Momentum conservation equation in thex direction

We use Eq. (2.43) to eliminatepb from the depth-integratedx-momentum conservation

Eq. (2.26) and obtain

∂

∂t
(ρuh) +

∂

∂x
(ρu2h+ ph)− pf

∂zf
∂x

+ (pf + ρgh cos θ)
∂zb
∂x

= ρgh sin θ

∴ ∂

∂t
(ρuh) +

∂

∂x
(ρu2h+ ph)− pf

∂h

∂x
+ ρgh cos θ

∂zb
∂x

= ρgh sin θ. (2.54)

We substitute Eq. (2.51) into Eq. (2.54) to eliminatep and obtain

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

(
pf +

1

2
ρ̄gh cos θ

)
h

)
− pf

∂h

∂x
+ ρ̄gh cos θ

∂zb
∂x

= ρ̄gh sin θ

∴ ∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

1

2
ρ̄gh2 cos θ

)
+ h

∂pf
∂x

+ ρ̄gh cos θ
∂zb
∂x

= ρ̄gh sin θ. (2.55)

Furthermore, we substitute Eq. (2.53) into Eq. (2.55) to eliminatepf and obtain

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

1

2
ρ̄gh2 cos θ

)
+h

∂

∂x
(pa0 + ρagx sin θ − ρag(h+ zb) cos θ +∆pf)

+ρ̄gh cos θ
∂zb
∂x

= ρ̄gh sin θ

∴ ∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

1

2
(ρ̄− ρa)gh

2 cos θ

)
= (ρ̄− ρa)gh sin θ − (ρ̄− ρa)gh cos θ

∂zb
∂x

− h
∂

∂x
(∆pf), (2.56)

where∆pf = 0 in general (Figure 2.2).
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Energy conservation equation

We substitute Eq. (2.43) into the depth-integrated energy conservation Eq. (2.42) to

obtain

∂

∂t

(
ρeh+

1

2
ρu2h+ ρzgh cos θ − ρxgh sin θ

)
+

∂

∂x

(
ρeuh+

1

2
ρu3h+ ρzugh cos θ − ρuxgh sin θ

)
+

∂

∂x
(puh) + pf

∂zf
∂t

− (pf + ρgh cos θ)
∂zb
∂t

= 0

∴ ∂

∂t

(
ρeh+

1

2
ρu2h+ ρzgh cos θ − ρxgh sin θ

)
+

∂

∂x

(
ρeuh+

1

2
ρu3h+ ρzugh cos θ − ρuxgh sin θ

)
+

∂

∂x
(puh) + pf

∂h

∂t
− ρgh cos θ

∂zb
∂t

= 0, (2.57)

where thez component of kinetic energy is negligible (i.e.,∂
∂t
(1
2
ρw2h) + ∂

∂x
(1
2
ρuw2h) =

0). We substitute Eq. (2.51) into Eq. (2.57) to eliminatepf and obtain

∂

∂t

(
ρ̄ēh+

1

2
ρ̄ū2h+ ρ̄z̄gh cos θ − ρ̄xgh sin θ

)
+

∂

∂x

(
ρ̄ēūh+

1

2
ρ̄ū3h+ ρ̄z̄ūgh cos θ − ρ̄ūxgh sin θ

)
+

∂

∂x
(p̄ūh) +

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
− ρ̄gh cos θ

∂zb
∂t

= 0. (2.58)

Using Eq. (2.50), we can rewrite Eq. (2.58) as

∂

∂t

(
ρ̄ēh+

1

2
ρ̄ū2h+ ρ̄

(
h

2
+ zb

)
gh cos θ − ρ̄xgh sin θ

)
+

∂

∂x

(
ρ̄ēūh+

1

2
ρ̄ū3h+ ρ̄

(
h

2
+ zb

)
ūgh cos θ − ρ̄ūxgh sin θ

)
+

∂

∂x
(p̄ūh) +

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
− ρ̄gh cos θ

∂zb
∂t

= 0. (2.59)
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2.1.5 Treatment of the depth-averaged thermodynamic pressurēp

In the derivation processes of the momentum and energy conservation Eqs. (2.56) and

(2.59), the depth-averaged thermodynamic pressure in the current,p̄, is a function de-

pending on variables such ash(x, t) (i.e., Eqs. (2.51) and (2.53)). On the other hand,

Bursik & Woods (1996) assume thatp̄ is a constant atmospheric pressure only in the

equations of energy and state. In this subsection, we investigate how the system of the

shallow-water equations is affected by this difference for the treatment ofp̄ (while, in

the next section,̄p in the two-layer PDC model will be fixed at a constant atmospheric

pressure, in the same way as Bursik & Woods’ formula).

We consider a simple case whereθ = 0 andzb = 0, in this subsection. Then, the

momentum conservation Eq. (2.56) is reduced to

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

ρ̄− ρa
2

gh2

)
= 0. (2.60)

The energy conservation Eq. (2.59) is also reduced to

∂

∂t

(
ρ̄CvT̄ h+

1

2
ρ̄ū2h+

1

2
ρ̄gh2

)
+

∂

∂x

(
ρ̄CvT̄ ūh+

1

2
ρ̄ū3h+

1

2
ρ̄ūgh2 + p̄ūh

)
+

(
p̄− 1

2
ρ̄gh

)
∂h

∂t
= 0, (2.61)

whereē = CvT̄ from Eq. (2.7) since the heat capacity at constant volumeCv is constant.

Use of the momentum conservation Eq. (2.60) and the mass conservation Eq. (2.21) and

some algebra rewrite the energy conservation Eq. (2.61) as

∂

∂t

(
ρ̄CvT̄ h

)
+

∂

∂x

(
ρ̄CvT̄ ūh

)
+ p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= 0 (2.62)

(see Subsection 2.1.7 for the details of the algebra). Furthermore, we substitute the ther-
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mal equation of state (2.6) into Eq. (2.62) to obtain

∂

∂t

(
Cv

p̄

R
h
)
+

∂

∂x

(
Cv

p̄

R
ūh
)
+ p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= 0

∴ ∂

∂t

(
p̄

γ − 1
h

)
+

∂

∂x

(
p̄

γ − 1
ūh

)
+ p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= 0 (∵ Eq. (2.9)),

(2.63)

whereγ(≡ Cp/Cv) is the ratio of the specific heats. We consider the two cases for the

treatment of the depth-averaged thermodynamic pressurep̄:

p̄ =


pa0 − ρagh+ 1

2
ρ̄gh

pa0(= const),

(2.64)

wherepa0 is a constant hydrostatic pressure of the ambient fluid at the reference point

(x = 0, z = 0); see Figure 2.2. The variable-typēp (i.e., the first expression in Eq.

(2.64)) is obtained in the derivation processes of the momentum and energy conservation

Eqs. (2.56) and (2.59). The constant-typep̄ (i.e., the second expression in Eq. (2.64)) is

a simplified version of the variable-typēp. Thus, we have the four Eqs. (2.21), (2.60),

(2.63) and (2.64) for the four unknowns (h, ρ̄, ū andp̄).

Firstly, we consider the case using the constant-typep̄ (i.e., the second expression in

Eq. (2.64)). In this case, Eq. (2.63) is reduced to

∂

∂t

(
γp̄

γ − 1
h

)
+

∂

∂x

(
γp̄

γ − 1
ūh

)
= 0

∴ ∂h

∂t
+

∂

∂x
(ūh) = 0. (2.65)

Use of this and the mass conservation Eq. (2.21) givesρ̄(x, t) = const if ρ̄(x, t = 0) =

const. On the other hand, in the case using the variable-typep̄ (i.e., the first expression in

Eq. (2.64)),ρ̄(x, t) ̸= const even if̄ρ(x, t = 0) = const. Thus, using the variable-typep̄

makes the system of shallow-water equations complicated. We note that the variable-type
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p̄ can be approximated by the constant-typep̄ whenh ≪ pa0/(|ρ̄/2− ρa|g).

2.1.6 Front condition

At the flow frontx = xN(t) (see Figure 2.1), the kinematic condition (2.15):dxN/dt =

uN and the mass, momentum and energy conservation equations should be taken into

account. In addition, to describe realistic gravity current dynamics, we must consider a

quasi-steady balance between the buoyancy pressure driving the current front (∼ (ρ̄N −

ρa)ghN cos θ) and the resistance pressure caused by the acceleration of the ambient fluid

around the front (∼ ρaū
2
N), because the flow front is affected by the resistance of the

ambient fluid. This condition is known as the front condition, and can be written as

follows (e.g., Ungarish 2007):

ρaū
2
N

(ρ̄N − ρa)ghN cos θ
= Fr2N0

∴ ūN = FrN0

√
ρ̄N
ρa

√
ρ̄N − ρa

ρ̄N
ghN cos θ (2.66)

whereFrN0, which is an imposed frontal Froude number in a Boussinesq system (i.e.,

ρ̄N/ρa ≈ 100), is assumed to be a constant of order100. Inviscid theory suggestsFrN0 =
√
2 (Benjamin, 1968). On the other hand,FrN0 was experimentally evaluated by Huppert

& Simpson (1980) to be1.19 and by Marino et al. (2005) to be0.87.

2.1.7 Summary of Section 2.1

We summarize the system of the generalized one-layer shallow-water equations derived

in Section 2.1. There are six unknown variables (depthh, densityρ̄, velocity ū, internal

energyē, temperaturēT , and thermodynamic pressurep̄) in the six equations (the mass,

momentum and energy conservation equations, the thermal equation of state, the caloric

equation of state, and the equation associated with the thermodynamic pressure). At the

flow front, the front condition is solved to describe realistic gravity current dynamics.
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Mass conservation equation

Form Eq. (2.21), the mass conservation equation is written as

∂

∂t
(ρ̄h) +

∂

∂x
(ρ̄ūh) = Ṁa, (2.67)

whereṀa is the rate of change of the mass due to physical processes such as entrainment

of ambient fluid.

Momentum conservation equation

From Eq. (2.56), the momentum conservation equation is written as

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

ρ̄− ρa
2

gh2 cos θ

)
−(ρ̄− ρa)gh sin θ + (ρ̄− ρa)gh cos θ

∂zb
∂x

+ h
∂

∂x
(∆pf) = Ṁo, (2.68)

whereṀo is the rate of change of the momentum due to physical processes such as basal

drag.∆pf is 0 in general (Figure 2.2).

Energy conservation equation

From Eq. (2.59), the energy conservation equation is written as

∂

∂t

(
ρ̄ēh+

1

2
ρ̄ū2h+ ρ̄

(
h

2
+ zb

)
gh cos θ − ρ̄xgh sin θ

)
+

∂

∂x

(
ρ̄ēūh+

1

2
ρ̄ū3h+ ρ̄

(
h

2
+ zb

)
ūgh cos θ − ρ̄ūxgh sin θ

)
+

∂

∂x
(p̄ūh) +

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
− ρ̄gh cos θ

∂zb
∂t

= Ṁe + Q̇, (2.69)

whereṀe is the rate of exchange of mechanical energy between the inside and outside of

the system, anḋQ is the rate of exchange of heat between the inside and outside of the
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system. Instead of solving Eq. (2.69), we also can solve the internal energy conservation

equation:

∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh) + p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= Q̇+ Ṁe −

(
Ṁoū− Ṁa

ū2

2
+ Ṁag(z̄ cos θ − x sin θ)

)
, (2.70)

which is derived by substituting the mass and momentum conservation Eqs. (2.67) and

(2.68) into the energy conservation Eq. (2.69); see Appendix B for the details of the

algebra.

The thermal equation of state

From Eq. (2.6), the thermal equation of state is written as

1

ρ̄
=

R̄T̄

p̄
, (2.71)

whereR̄ is the gas constant, which may vary due to physical processes as entrainment of

ambient fluid into the current.

The caloric equation of state

The caloric equation of state is written as

∂T̄

∂t
+ ū

∂T̄

∂x
=

1

C̄v

(
∂ē

∂t
+ ū

∂ē

∂x

)
(2.72)

from Eq. (2.7) or as

∂T̄

∂t
+ ū

∂T̄

∂x
=

1

C̄p

(
∂

∂t

(
ē+

p̄

ρ̄

)
+ ū

∂

∂x

(
ē+

p̄

ρ̄

))
(2.73)

from Eq. (2.8), where the heat capacity at constant volumeC̄v and that at constant pres-

sureC̄p may vary due to physical processes such as entrainment of ambient fluid into the
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current.

The equation associated with the thermodynamic pressurēp

In the derivation processes of the momentum and energy conservation Eqs. (2.68) and

(2.69), the thermodynamic pressurep̄ is Eq. (2.51) with Eq. (2.53):


p̄ = pf +

1
2
ρ̄gh cos θ

pf = pa0 + ρagx sin θ − ρag(h+ zb) cos θ +∆pf ,

(2.74)

wherepa0 is a constant hydrostatic pressure of the ambient fluid at the reference point

(x = 0, z = 0); see Figure 2.2. Instead of solving Eq. (2.74), we may be able to use the

simplified version of Eq. (2.74):

p̄ = pa0 (= const). (2.75)

Front condition

The front condition, which represents a quasi-steady balance between the buoyancy pres-

sure driving the current front and the resistance pressure caused by the acceleration of the

ambient fluid around the front, is written as Eq. (2.66):

ūN = FrN0

√
ρ̄N
ρa

√
ρ̄N − ρa

ρ̄N
ghN cos θ at x = xN(t), (2.76)

whereFrN0, which is an imposed frontal Froude number in a Boussinesq system (i.e.,

ρ̄N/ρa ≈ 100), is assumed to be a constant of order100.

2.2 Two-layer model of pyroclastic density currents

We formulate a new unsteady two-layer PDC model, on the basis of the generalized un-

steady one-layer shallow-water model derived in Section 2.1. Many PDCs spread ra-
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dially from a volcanic vent, although some PDCs are confined within a canyon or val-

ley. Thus, we formulate the dynamics of two-layer PDCs spreading both radially and

restricted within one-dimensional channel. Since the one-layer model derived in Section

2.1 describes the behavior of one-dimensional channelized currents, we firstly formulate

a one-dimensional channelized two-layer PDC model (Subsections 2.2.1–2.2.3), subse-

quently formulate a radially spreading two-layer PDC model (Subsection 2.2.4).

The two-layer model consists of a dilute layer and the underlying dense basal layer

(Figure 2.3). The two layers evolve separately, but are coupled through physical processes

as suspended volcanic ash particles in the dilute layer settle into the basal dense layer.

Deposits are produced by the dilute and/or dense layers. The interface between the dilute

layer and the surrounding ambient air (z = zf(x, t)) and the interface between the dilute

and dense layers (z = zm(x, t)) are written as

zf = h+ zm (2.77)

zm = hH + zb, (2.78)

using the local topography or the height of deposits formed by the current (zb(x, t)), the

depth of the dilute layer (h(x, t)), and the depth of the dense layer (hH(x, t)), where the

subscriptH denotes the dense layer.

2.2.1 Dilute layer

We model the dilute current as a highly turbulent, well-mixed, particle-laden suspension

flow. The dynamics of the dilute current is controlled by particle settling (e.g., Bonnecaze

et al., 1993; Sparks et al., 1993), entrainment of ambient air (e.g., Bursik & Woods, 1996;

Johnson & Hogg, 2013), basal drag (e.g., Hogg & Pritchard, 2004), and frontal resistance

of ambient air (e.g., Ungarish, 2007; Shimizu et al., 2017). The entrainment of ambient air

causes the thermal expansion of the dilute current (e.g., Bursik & Woods, 1996; Andrews

& Manga, 2012). It is composed of the solid particles, volcanic gas, and the air entrained
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Figure 2.3:Schematic illustration of the two-layer PDC model, propagating along a slope in-
clined atθ to the horizontal, withx parallel to the slope andz perpendicular. There are three
interfaces, between the top of the dilute layer and the surrounding ambient air (z = zf(x, t)), be-
tween the dilute and dense layers (z = zm(x, t)), and between the bottom of the current and the
local topography imposed on the slope (z = zb(x, t)).
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from ambient, so that the mass fractions (n̄) obey

n̄s + n̄a + n̄g = 1, (2.79)

where the subscriptss, g, anda denote solid particles, volcanic gas, and air, respectively.

There are seven main unknown variables (bulk densityρ̄, depthh, velocity ū, internal

energȳe, temperaturēT , the mass fraction of the entrained airn̄a, and the mass fraction of

solid particles̄ns) in the following seven equations (i.e., Eqs. (2.80), (2.81), (2.82), (2.85),

(2.89), (2.90) and (2.91)). At the flow front of the dilute current, the front condition (2.93)

is solved to describe realistic gravity current dynamics (e.g., Shimizu et al., 2017).

Mass conservation equations

On the basis of Eq. (2.67), the mass conservation equations for the entrained air, the

particles in the current, and the bulk can be written as

∂

∂t
(n̄aρ̄h) +

∂

∂x
(n̄aρ̄ūh) = ρaE|ū|, (2.80)

∂

∂t
(n̄sρ̄h) +

∂

∂x
(n̄sρ̄ūh) = −n̄sρ̄Ws cos θ, (2.81)

∂

∂t
(ρ̄h) +

∂

∂x
(ρ̄ūh) = ρaE|ū| − n̄s

nsH

ρ̄Ws cos θ, (2.82)

respectively. Here,ρa is a constant density of ambient air,E is the entrainment coefficient,

Ws is the settling velocity of the particles from the base of the dilute layer, andnsH(=

const) is the mass fraction of solid particles in the dense layer (see Subsection 2.2.2 for

the details).

The entrainment of ambient air into the dilute layer is taken into account in the the

right-hand side in Eq. (2.80) and the first term of the right-hand side in Eq. (2.82). Air

entrainment is assumed to occur on the upper surface of the dilute layer (e.g., Bursik &

Woods, 1996; Johnson & Hogg, 2013). In the same way as Bursik & Woods (1996), we
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adopt the entrainment coefficient proposed by Parker et al. (1987):

E =
0.075

(1 + 718Ri2.4)0.5
, (2.83)

where the Richardson number:Ri ≡ ((ρ̄− ρa)gh cos θ)/(ρ̄ū
2); see Figure 2.4.
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Figure 2.4:The entrainment coefficientE proposed by Parker et al. (1987) vs. the Richardson
numberRi (Eq. (2.83)).

Particle settling from the dilute layer to the dense layer or the deposit is taken into

account in the right-hand side in Eq. (2.81) and the second term of the right-hand side in

Eq. (2.82). Note that, in the second term of the right-hand side in Eq. (2.82), the mass

transfer of the particles and the volcanic gas is taken into account.Ws is given by (e.g.,

Sparks et al., 1997; Dellino et al., 2005):

Ws =

√
4(ρs − ρ̄g&a)gd

3Cdsρ̄g&a

, (2.84)

whereρs is the density of particles,d is their diameter,̄ρg&a is the density of the gas phase

composed of volcanic gas and entrained air, and a drag coefficientCds is herein set to 1
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(cf. Woods & Bursik, 1991); see Figure 2.5.
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Figure 2.5:Particle settling velocityWs vs. solid particle diameterd (Eq. (2.84)). Here, solid
particle densityρs is assumed to be1000 kg/m3, and gas phase densityρ̄g&a is assumed to ambient
air densityρa(= 1.23 kg/m3).

Momentum conservation equation

On the basis of Eq. (2.68), the momentum conservation equation can be written as

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h+

ρ̄− ρa
2

gh2 cos θ

)
= (ρ̄− ρa)gh sin θ − (ρ̄− ρa)gh cos θ

∂zm
∂x

− n̄s

nsH

ρ̄ūWs cos θ − τm, (2.85)

whereτm is the interfacial drag between the dilute layer and the dense layer or the deposit.

Note that the friction on the side wall of the channel is neglected. The terms of the

right-hand side of this momentum conservation equation represent the downslope and

topographic acceleration, the momentum lost from the dilute current owing to the particle

settling, and the interfacial drag. We model the interfacial drag as a Chézy-type drag (e.g.,
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Doyle et al., 2008, 2010, 2011):

τm = Cdmρ̄(ū− ūH)|ū− ūH|, (2.86)

whereūH is the velocity of the dense layer, andCdm is a Ch́ezy drag coefficient. We

estimate the drag coefficientCdm using the empirical formula proposed by Hager (1988)

and given by

Cdm = 0.025Re−0.2
0 , (2.87)

whereRe0 is a characteristic Reynolds number of the dilute current (see Figure 2.6; cf.

Hogg & Pritchard, 2004).

10
-4

10
-3

10
-2

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

C
d

Re0

Figure 2.6: The drag coefficientCd proposed by Hager (1988) vs. a characteristic Reynolds
numberRe0 (Eq. (2.87)).
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Energy conservation equation

On the basis of Eq. (2.69), the energy conservation equation can be written as

∂

∂t

(
ρ̄ēh+

1

2
ρ̄ū2h+ ρ̄

(
h

2
+ zm

)
gh cos θ − ρ̄xgh sin θ

)
+

∂

∂x

(
ρ̄ēūh+

1

2
ρ̄ū3h+ ρ̄

(
h

2
+ zm

)
ūgh cos θ − ρ̄ūxgh sin θ + p̄ūh

)
+

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
− ρ̄gh cos θ

∂zm
∂t

= ρaE|ū|g ((h+ zm) cos θ − x sin θ)− n̄s

nsH

ρ̄Ws cos θ (zm cos θ − x sin θ)

−1

2

n̄s

nsH

ρ̄ū2Ws cos θ − τmū

+ρaE|ū|CpaTa − n̄sρ̄Ws cos θ CsT̄ − 1− nsH

nsH

n̄sρ̄Ws cos θ CpgT̄ , (2.88)

wherep̄ is the thermodynamic pressure of the dilute current,Cs is the specific heat of

the solid particles,Cpg is the specific heat of volcanic gas at constant pressure,Cpa is

the specific heat of air at constant pressure, andTa is a constant temperature of ambient

air. The terms of the right-hand side of this total energy conservation equation represent

the potential energy gained or lost from the dilute current owing to the entrainment of

ambient air and the particle settling, the kinetic energy lost from the dilute current owing

to the particle settling and the interfacial drag, and the thermal energy gained or lost from

the dilute current owing to the entrainment of ambient air and the particle settling.

By using the mass and momentum conservation Eqs. (2.82) and (2.85), we can rewrite

the total energy conservation Eq. (2.88) as

∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh) + p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= ρaE|ū|CpaTa − n̄sρ̄Ws cos θ CsT̄ − 1− nsH

nsH

n̄sρ̄Ws cos θ CpgT̄

+
ū2

2
ρaE|ū|+ gh cos θ

2

(
ρaE|ū|+ n̄s

nsH

ρ̄Ws cos θ

)
; (2.89)

see Eq. (2.70). The fourth term of the right-hand side of Eq. (2.89) represents the rate at
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which kinetic energy is transferred to the entrained air. The fifth and sixth terms of the

right-hand side of Eq. (2.89) represents the rate at which potential energy is converted to

heat. Instead of Eq. (2.88), we use Eq. (2.89) with the constant thermodynamic pressure

p̄ = pa0(≡ ρaRaTa = const), whereRa is the gas constant of air.

Thermal equation of state

On the basis of Eq. (2.71), the thermal equation of state can be written as

1

ρ̄
=

n̄s

ρs
+

T̄

p̄
(n̄aRa + n̄gRg). (2.90)

Here,Rg is the gas constant of volcanic gas. In Eq. (2.90) as well as the energy conserva-

tion Eq. (2.89), the thermodynamic pressure is treated as a constant atmospheric pressure

p̄ = pa0(≡ ρaRaTa = const).

Caloric equation of state

In the same way as Bursik & Woods (1996), we use the simplified version of the caloric

equation of state (2.73):

ē+
p̄

ρ̄
= C̄pT̄ . (2.91)

Here,C̄p is the mass averaged specific heat at constant pressure of the current, given by

C̄p = n̄sCs + n̄aCpa + n̄gCpg. (2.92)

In Eq. (2.91) as well as the energy conservation Eq. (2.89) and the thermal equation

of state (2.90), the thermodynamic pressure is treated as a constant atmospheric pressure

p̄ = pa0(≡ ρaRaTa = const).
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Front condition

On the basis of Eq. (2.76), the front condition of the dilute current can be written as

ūN = FrN0

√
ρ̄N
ρa

√
ρ̄N − ρa

ρ̄N
ghN cos θ at x = xN(t), (2.93)

where the subscriptN denotes the front of the dilute current.

2.2.2 Dense layer

We model the dense current as a fluidized granular flow. The dynamics of the dense

current is controlled by basal drag (e.g., Hogg & Pritchard, 2004; Roche et al., 2008;

Gueugneau et al., 2017), progressive sedimentation (e.g., Doyle et al., 2007; Girolami

et al., 2008, 2010; 2015; Doyle et al., 2010), and particle supplying from the overlying

dilute current (e.g., Doyle et al., 2011; Breard et al., 2016; Kelfoun, 2017). The dense

current, consisting of solid particles and volcanic gas, is assumed to have a constant bulk

density

ρH =

(
nsH

ρs
+

1− nsH

ρgH

)−1

= ρsϕsH + ρgH(1− ϕsH) = const, (2.94)

whereρgH is a constant density of volcanic gas, andϕsH is a constant volume fraction of

solid particles in the dense layer. The constant mass fraction of solid particles in the dense

layer is given bynsH = ϕsHρs/ρH. There are two main unknown variables (depthhH and

velocity ūH) in the following two equations (i.e., Eqs. (2.95) and (2.97)).

Mass conservation equation

On the basis of Eq. (2.67), the mass conservation equation can be written as

ρH
∂hH

∂t
+ ρH

∂

∂x
(ūHhH) =

n̄s

nsH

ρ̄Ws cos θ − ρHD, (2.95)

47



whereD is a deposition rate. The terms of the right-hand side of this mass conservation

equation represent the particle supply from the dilute layer and the progressive sedimen-

tation.

Although the deposition and erosion processes, determining the value ofD, is not fully

understood, the deposition rateD is assumed to be a hindered particle settling velocity

in previous models of debris flows and fluvial flows (e.g., Cao, 2004; Li et al., 2017).

We assume that the deposition rateD can be modeled as the hindered settling velocity

to estimate the value ofD using the empirical formula proposed by Richardson & Zaki

(1954) and given by

D = (1− ϕsH)
mWsH, (2.96)

whereWsH is the terminal velocity of a single particle atϕsH ≈ 0, andm is an empirical

exponent that can vary from approximately7 to 12 (see Figure 2.7; Druitt et al., 2007).

WsH is given by
√

4(ρs − ρgH)gd/(3CdsρgH) in the same manner asWs (Eq. (2.84)).

Because typical range of particle volume fractionϕsH is 0.4–0.5 (e.g., Breard et al., 2016),

D/WsH is the order of10−3–10−2 (Figure 2.7).

Momentum conservation equation

On the basis of Eq. (2.68), the momentum conservation equation can be written as

ρH
∂

∂t
(ūHhH) + ρH

∂

∂x

(
ū2
HhH +

1

2

ρH − ρa
ρH

gh2
H cos θ

)
= (ρH − ρa)ghH sin θ − (ρH − ρa)ghH cos θ

∂zb
∂x

− hH
∂

∂x
((ρ̄− ρa)gh cos θ)

+
n̄s

nsH

ρ̄ūWs cos θ − ρHūHD + τm − τb, (2.97)

whereτb is the basal drag. The terms of the right-hand side of this momentum conserva-

tion equation represent the downslope and topographic acceleration, the pressure gradient

on the basal layer exerted by variations in the height of the overlying dilute layer, the
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Figure 2.7:The non-dimensional deposition rateD/WsH vs. volumetric fraction of solid particles
ϕsH. The deposition rateD is estimated by the hindered particle settling velocity proposed by
Richardson & Zaki (1954) (i.e., Eq. (2.96)).

momentum gained from the overlying dilute layer owing to the particle settling, the inter-

facial drag between the dense layer and the overlying dilute layer, and the basal drag.

The basal dragτb is determined by the rheology of the dense current. According

to experimental studies for an initially fluidized granular flow (e.g., Roche et al., 2008,

2010), the dense current initially has a fluid-inertial behavior (this stage is referred to

as fluid-inertial regime; cf. Roche, 2012). This behavior is caused by the reduction of

interparticle friction due to high internal gas pore pressure. Finally, the dense current

decelerates and eventually stops because the pore pressure diffuses out and the interpar-

ticle friction increases (this stage is referred to as granular-frictional regime; cf. Roche,

2012). The basal drag of some dense PDC models is modeled as a Coulomb-type drag:

τb = tan δ(ρH − ρa)ghH cos θūH/|ūH|, whereδ is a dynamic basal friction angle (e.g.,

Kelfoun & Druitt, 2005; Patra et al., 2005; Doyle et al., 2008, 2010, 2011; Kelfoun et al.,

2009; Kelfoun, 2017). The Coulomb-type drag reproduces the granular-frictional behav-

ior, but does not reproduce the fluid-inertial behavior (Roche et al., 2008; Shimizu et al.,
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2017). On the other hand, a Chézy-type drag, which is often used to describe the basal

drag of inviscid fluids (e.g., Hogg & Pritchard, 2004), reproduces the fluid-inertial behav-

ior, but does not reproduce the granular-frictional behavior (Roche et al., 2008; Shimizu

et al., 2017).

A significant part of the emplacement of the dense current is though to be the fluid-

inertial regime. Thus, in order to reproduce the fluid-inertial behavior, we model the basal

drag as a Ch́ezy-type drag:

τb = CdbρHūH|ūH| (2.98)

whereCdb is a Ch́ezy drag coefficient. We estimate the drag coefficientCdb using the

empirical formula proposed by Hager (1988) and given by

Cdb = 0.025Re−0.2
H0 (2.99)

whereReH0 is a characteristic Reynolds number of the dense current (see Figure 2.6; cf.

Hogg & Pritchard, 2004).

Front condition

On the basis of Eq. (2.76), the front condition of the dense current can be written as

ūNH = FrN0

√
ρH
ρa

√
ρH − ρa

ρH
ghNH cos θ at x = xNH(t), (2.100)

where the subscriptNH denotes the front of the dense current.

50



2.2.3 Deposit

Assuming that the deposit is not erodible and has the same bulk density as the dense

current, we may define the aggradation rate of material in the depositional system as

∂zb
∂t

=


n̄s

nsH

ρ̄

ρH
Ws cos θ (Sedimentation from the dilute current)

D (Sedimentation from the dense current)

(2.101)

The mass conservation equation of the dense current (2.95) determines which of the two

layers forms the deposit.

2.2.4 Radially spreading case

The dynamics of the radially spreading dilute and dense layers can be formulated, in the

same way as the one-dimensional channelized case. The distance (i.e., radius) from the

volcanic vent is represented byr. The conservation equations of the dilute layer can be
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written as

Conservation of entrained air mass:

∂

∂t
(n̄aρ̄h) +

1

r

∂

∂r
(n̄aρ̄ūhr) = ρaE|ū|, (2.102)

Conservation of solid particle mass:

∂

∂t
(n̄sρ̄h) +

1

r

∂

∂r
(n̄sρ̄ūhr) = −n̄sρ̄Ws cos θ, (2.103)

Conservation of bulk mass:

∂

∂t
(ρ̄h) +

1

r

∂

∂r
(ρ̄ūhr) = ρaE|ū| − n̄s

nsH

ρ̄Ws cos θ, (2.104)

Momentum conservation:

∂

∂t
(ρ̄ūh) +

1

r

∂

∂r

(
ρ̄ū2hr

)
+

∂

∂r

(
ρ̄− ρa

2
gh2 cos θ

)
= (ρ̄− ρa)gh sin θ − (ρ̄− ρa)gh cos θ

∂zm
∂r

− n̄s

nsH

ρ̄ūWs cos θ − τm, (2.105)

Energy conservation:

∂

∂t
(ρ̄ēh) +

1

r

∂

∂r
(ρ̄ēūhr) + p̄

(
∂h

∂t
+

1

r

∂

∂r
(ūhr)

)
= ρaE|ū|CpaTa − n̄sρ̄Ws cos θ CsT̄ − 1− nsH

nsH

n̄sρ̄Ws cos θ CpgT̄

+
ū2

2
ρaE|ū|+ gh cos θ

2

(
ρaE|ū|+ n̄s

nsH

ρ̄Ws cos θ

)
. (2.106)

The conservation equations of the dense layer can be written as

Mass conservation:

ρH
∂hH

∂t
+ ρH

1

r

∂

∂r
(ūHhHr) =

n̄s

nsH

ρ̄Ws cos θ − ρHD, (2.107)

Momentum conservation:

ρH
∂

∂t
(ūHhH) + ρH

1

r

∂

∂r

(
ū2
HhHr

)
+

∂

∂r

(
1

2

ρH − ρa
ρH

gh2
H cos θ

)
= (ρH − ρa)ghH sin θ − (ρH − ρa)ghH cos θ

∂zb
∂r

− hH
∂

∂r
((ρ̄− ρa)gh cos θ)

+
n̄s

nsH

ρ̄ūWs cos θ − ρHūHD + τm − τb. (2.108)
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The other equations are the same as the one-dimensional channelized case.
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Chapter 3

Numerical treatment

In Section 2.2, we have formulated a new unsteady two-layer PDC model. In this chapter,

we describe numerical treatments of the model.

3.1 Finite volume method

As the system (2.77)–(2.101) are nonlinear and hyperbolic, shocks may develop in the

currents. Consequently, we use a finite volume method with shock-capturing capability

(e.g., LeVeque, 2002; Toro, 2001). Since the conservation equations in the system are

not homogeneous equations (i.e., the terms of the right-hand sides of the conservation

equations are non-zero), we use a fractional-step method (e.g., LeVeque, 2002) to solve

the conservation equations with source terms (i.e., the terms of the right-hand sides of the

equations) numerically, that is, the conservation equations with source terms:

∂

∂t
q +

∂

∂x
f(q) = s(q) (3.1)

are split into two subproblems that can be solved independently:


∂
∂t
q + ∂

∂x
f(q) = 0

∂
∂t
q = s(q),

(3.2)
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whereq, f ands are the vectors of the conserved variables, fluxes and sources, respec-

tively. Thus, we update a piecewise constant functionQn
i that approximates the average

value of the solutionq in each grid celli at time stepn (i.e.,Qn
i ≡ 1

∆x

∫ xi+1/2

xi−1/2
q(x, tn)dx),

using the expression


1st step: Q∗

i = Qn
i − ∆t

∆x

(
Fi+1/2 − Fi−1/2

)
2nd step: Qn+1

i = Q∗
i +∆t S(Q∗

i ),

(3.3)

where∆x(= xi+1/2 − xi−1/2) is the constant cell length and∆t(= tn+1 − tn) is the

time interval. The time interval∆t is limited by the Courant-Friedrichs-Lewy condition

(e.g., LeVeque, 2002; Toro, 2001). The intercell flux between cellsi andi+ 1, Fi+1/2(≡
1
∆t

∫ tn+1

tn
f(q(xi+1/2, t))dt), is obtained by using an approximate Riemann solver, such as

the HLL scheme (e.g., Toro, 2001):

Fi+1/2 ≈


Fi if Si ≥ 0,

F hll ≡ Si+1Fi−SiFi+1+Si+1Si(Qi+1−Qi)
Si+1−Si

if Si < 0 < Si+1,

Fi+1 if Si+1 ≤ 0.

(3.4)

For the case of the dilute current, the wave speed estimatesSi andSi+1 are given by

Si = ūi − aiqi, Si+1 = ūi+1 + ai+1qi+1, (3.5)

whereaK (K = i, i+ 1) is given by

aK =

√
ρ̄K − ρa

ρ̄K
ghK cos θ (3.6)
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andqK (K = i, i+ 1) is given by

qK =


√

1
2

[
(h∗+hK)h∗

h2
K

]
if h∗ > hK ,

1 if h∗ ≤ hK .

(3.7)

Here,h∗ is an estimate for the exact solution forh in “star region”, given by

h∗ =
1

2
(hi + hi+1)−

1

4
(ūi+1 − ūi)(hi + hi+1)/(ai + ai+1). (3.8)

For the case of the dense current, the wave speed estimatesSi andSi+1 are given in the

same way as the case of the dilute current.

3.2 Flow front

An mentioned above, PDCs are characterized by strong density stratification due to parti-

cle settling (e.g., Branney & Kokelaar, 2002), whereby a dilute current withρ̄/ρa = 100–

101 overrides the dense basal current withρH/ρa = 102–103. if we are to capture the

effects of the density ratio (i.e.,̄ρ/ρa andρH/ρa), it is important to calculate the front

condition (i.e., Eqs. (2.93) and (2.100)) correctly (Ungarish, 2007). Previously, two types

of numerical models have been proposed to calculate the front condition. In one, the front

condition is calculated as a boundary condition at each time step (e.g., Ungarish, 2009).

We refer to this model as the Boundary Condition (BC) model (Figure 3.1a). In the other,

the front condition is calculated by setting a thin artificial bed ahead of the front (e.g.,

Toro, 2001). We refer to this as the Artificial Bed (AB) model (Figure 3.1b). In the AB

model, the resistance of the ambient fluid at the flow front is modeled by the reaction of

the force pushing the artificial bed at the flow front. We assessed the BC and AB mod-

els by comparing their numerical results with the analytical results (see Appendix C for

the details). The results from the BC model agree well with the analytical results when

the density ratio≲ 102. In contrast, the AB model generates good approximations of
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the analytical results for the density ratio≳ 102. On the basis of these results, we use

the BC model for the overlying dilute layer (ρ̄/ρa = 100–101) and the AB model for the

underlying dense layer (ρH/ρa = 102–103).

h
(x

,t
)

x
xN

(a) Boundary Condition (BC) model

(b) Artificial Bed (AB) model

Parameter: ρN/ρa

Numerical 

boundary

h
(x

,t
)

Parameter: ε

x
xNH

Artificial bed accumulation

−

H

Figure 3.1:Schematic illustration of the numerical models used to calculate the front condition.
(a) Boundary Condition (BC) model. (b) Artificial Bed (AB) model.

3.2.1 Boundary Condition (BC) model

In the BC model, the physical values at the flow front (the conserved variables andxN)

are calculated as boundary conditions of the current from the front condition and the

conservation equations at each time step. In the present numerical method, because we

apply a fixed spatial coordinate with constant∆x, the front positionx = xN(t) generally

does not coincide with the margins of the grid cells. We therefore define the cell that

includes the front as the front cell (i = FC(t), whereFC(t) is an integer), and the width

of the region that the current occupies in the front cell as∆xFC(t) (0 ≤ ∆xFC(t) < ∆x;
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see Figure 3.2). UsingFC(t) and∆xFC(t), we can write the front position as

xN(t) = (FC(t)− 1)∆x+∆xFC(t). (3.9)

Thus, in the conservation equations at the flow front, the kinematic condition (dxN/dt =

ūN) should be taken into account.

h
(x

,t
)

x
xN

iCell number

∆xFC

F
FC−1/2

FCFC−1FC−2

∆x∆x

Figure 3.2:Schematic illustration of the computational domain of the Boundary Condition (BC)
model.

3.2.2 Artificial Bed (AB) model

In the AB model, the conservation equations are numerically solved using a shock-capturing

method for not only the interior, but also the outside of the current bya priori setting a

thin artificial bed ahead of the front. Through this numerical procedure, the flow front is

generated as the flow following a shock formed ahead of the front without any additional

calculation. We give a sufficiently small value10−10 to the non-dimensional thickness of

the artificial bed,ε (Figure 3.1b; see Appendix C for the details).
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3.3 Liftoff of dilute current

The dilute current is initially denser than ambient air. But, as it settles particles and

thermally expands the entrained air, parts of it can become lighter than ambient air to

reverse buoyancy. In natural pyroclastic density currents, this part can liftoff into air to

produce a buoyant plume. In our numerical model, this part is not calculated after liftoff.
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Chapter 4

Results

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 5

Discussion

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 6

Geological implication

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Chapter 7

Conclusion

In this thesis, a new two-layer model of pyroclastic density currents (PDCs) has been

developed by using the unsteady shallow-water equations. The two-layer model, which is

composed of a basal dense current and an overlying dilute current, captures the essential

features of the dynamics of PDCs with strong vertical density stratification. The dynamics

of the dilute current is controlled by frontal resistance of ambient air, air entrainment,

thermal expansion of entrained air and particle settling. In the dense current, on the

other hand, basal friction, progressive sedimentation and particle supply from the upper

dilute current govern its dynamics. To understand the origin of diversity of PDC deposits,

a series of numerical simulations of radially spreading or one-dimensional channelized

PDCs were performed, involving a wide range of the mass eruption rates at source (i.e.,

the collapsing column edge)̇M0, the temperatures of erupted materialTin, the particle

settling velocities at the base of the dilute currentWs, and the deposition rates at the base

of the dense currentD. We focused on time evolution of two-layer PDCs generated by

initially dilute mixtures from collapsing eruption columns.

Numerical results show that a dilute PDC, generated from the collapsing column,

produces a basal dense current (i.e., a two-layer PDC) as it flows, and a deposit aggrades

upward from the base. When the frontal region of the dilute current becomes lighter

than ambient air to reverse buoyancy and liftoff, the front of the dilute current does not
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propagate further. When the mass flux of the dense current and the deposition rate at the

base balance at the frontal region, the front of the dense current does not propagate further.

Consequently, each layer converges to a steady state. These results provide a global view

of the dyanamics and deposition of PDCs with strong density stratification. Since the

dilute current is about100 km thick, it may surmount topographic barriers to emplace its

deposits on the topographic barriers. On the other hand, since the dense current is about

100 m thich, it may travel as valley-confined tongues being affected by local topography.

The combination of the dilute and dense currents exhibits diverse features of dynamics

depending on local topography, and hence, diverse features of deposits.

On the basis of the steady runout distances of the dilute and dense currents, the be-

haviors of the two-layer PDCs are classified into three regimes: Regime 1, Regime 2a,

and Regime 2b (Chapter 4). In Regime 1, the dense current does not develop, and the

dilute current directly forms its deposits. In Regime 2a, the dense current develops, but

the steady runout distance of the dilute current is longer than that of the dense current.

In Regime 2b, the dense current develops, and the steady runout distance of the dense

current is longer than that of the dilute current (Figure??). We have systematically clari-

fied the mechanisms which lead to the above classification of the flow regime through the

following three steps.

First, we have identified governing dimensionless parameters:Ws/(Ua0), D/Ws,

E|ū|/Ws, and(CpaTa)/(Cp0T0) (Step 1; Section??). The parameterWs/U represents

the ratio of the particle settling velocity at the base of the dilute current to the horizontal

velocity scale of the two-layer PDC. The velocity scaleU depends on the mass eruption

rate at sourceṀ0 (i.e., U ∝ Ṁ
1/5
0 ). The parametera0 is the aspect ratio of the height

scale of the dilute current to the length (or radius) of the collapsing column, which is im-

posed on a boundary condition. The parameterD/Ws represents the relative magnitude

of the effect of deposition from the base of the dense current to that of particle supply

from the dilute current. The parameterE|ū|/Ws represents the relative magnitude of the

effect of air entrainment to that of particle settling. Here,E|ū| is the entrainment velocity,
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whereū is the local flow velocity andE is the entrainment coefficient. The parameter

(CpaTa)/(Cp0T0), defined as the ratio of the enthalpy of the entrained air to that of the

dilute current, represents the degree of thermal expansion of air entrained into the dilute

current. Here,Cpa andCp0 are the heat capacities at constant pressure of air and the dilute

current at the collapsing column edge, respectively, andTa andT0 is the temperatures of

ambient air and the dilute current at the collapsing column edge, respectively.

Secondly, we have derived the analytical solution of the steady runout distances from

the mass conservation equations of the two-layer PDCs for the case without air entrain-

ment to understand the theoretical framework of the regime transition (Step 2; Section

??). The analytical solution shows that the steady runout distances of the dilute and dense

currents primarily depend on the parameterWs/(Ua0), which in turn depends on the mass

eruption rate at sourcėM0. The analytical solution also suggests that the boundaries of

regimes (i.e., Regimes 1, 2a and 2b) are mainly determined by the parameterD/Ws,

which is independent of the mass eruption rate at sourceṀ0.

Finally, we have compared the analytical solution with numerical results of the two-

layer model where the effects of air entrainment are taken into consideration (Step 3;

Subsection??). The numerical results show that the runout distance of the two-layer

PDCs is strongly affected by air entrainment in the case of smallWs/(Ua0) (i.e., large

Ṁ0), whereas the effect of air entrainment is limited in the case of largeWs/(Ua0) (i.e.,

smallṀ0).

The numerical results also show that the effects of thermal expansion of entrained air

on the steady runout distances strongly depend on the temperature of erupted material

(i.e., the parameter(CpaTa)/(Cp0T0)) (Subsection??). When the temperature of erupted

material is high (i.e., small(CpaTa)/(Cp0T0)), a large degree of thermal expansion of

entrained air significantly enhances the liftoff; as a result, the steady runout distance of

the dilute current decreases as the degree of air entrainment increases. In this case, the

steady runout distance of the dense current also decreases because thermal expansion

of entrained air in the overlying dilute current leads to decreasing of the particle supply
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from the dilute current to the dense current. When the temperature of erupted material

is low (i.e., large(CpaTa)/(Cp0T0)), on the other hand, the entrainment of air results in

thickening of the dilute current without enhancing liftoff; as a result, the steady runout

distance does not decrease or can even increase as the degree of entrainment increases.

Because thickening of the dilute current also leads to decreasing the particle settling from

the dilute current to the dense current, the steady runout distance of the dense current

decreases as the degree of entrainment increases for the large(CpaTa)/(Cp0T0) case, too.

Through the above discussions, we have established a diagram showing the transi-

tions of the flow regimes (i.e., Regimes 1, 2a and 2b) in the parameter space ofD/Ws

vs. Ws/(Ua0) (Section??). The analytical solution shows that the transition condition

between Regimes 1 and 2a is dependent on the parameterD/Ws but is independent of the

other parameters. The analytical solution indicates that the transition between Regimes

2a and 2b is also dependent on the parameterD/Ws alone under the condition without

air entrainment. However, when the effect of air entrainment is considered, the transition

between Regimes 2a and 2b depends on the temperature of erupted material; the region

of Regime 2a expands in the regime diagram asWs/(Ua0) decreases, in the case of low

temperature.

In the numerical results of our unsteady model using the shallow-water equations, we

commonly observe “overshoot”: namely, the maximum runout distance of the transitional

state exceeds the steady runout distance (Section??). The overshoot of the dilute current

results from the formation of head, which in turn is caused by the frontal resistance of

ambient air. Because the head is thicker than the body, the particle settling rate in the

head is lower than that in the body, so that the head can flow further than the body, the

rear of which roughly corresponds to the steady runout distance. The overshoot of the

dense current, on the other hand, results from two types of mechanisms. One is that the

overshoot of the dense current results from formation of the dense current head (Figure

??a). Because the head of the dense current is thicker than the body of the dense current,

the head can flow further than the body, the rear of which roughly corresponds to the
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steady runout distance of the dense current. The other mechanism is that the overshoot of

the dense current is directly formed by the dilute current flowing further than the steady

runout distance of the dense current (Figure??b).

In this study, we have discussed not only radially spreading (axisymmetric) PDCs, but

also one-dimensional (1D) channelized currents (Section??). Although the results of 1D

channelized currents show basically similar tendencies to those of the radially spreading

case, there are some different features between two cases as follows; (1) the runout dis-

tance of the 1D channelized currents is much longer than that of the radially spreading

currents, (2) the effect of air entrainment to that of particle settling is less remarkable in

the 1D channelized currents than that of the radially spreading currents. These features

are explained by the fact that the 1D channelized currents are thicker than the radially

spreading currents (Figure??).

We consider that the present model has improved the results of existing models of

PDCs in several aspects (Section??). In the one-layer dilute PDC models of Bursik

& Woods (1996), Dade & Huppert (1996) and Dade (2003), the strong vertical density

stratification is not taken into account. Although the runout distances predicted by these

models are qualitatively consistent with that of the present model for Regimes 1 and 2a,

they substantially underestimate the runout distance of PDCs for Regime 2b. In the mod-

els of Dade & Huppert (1996) and Dade (2003) and the unsteady two-layer PDC models

of Doyle et al. (2008, 2010, 2011) and Kelfoun (2017), air entrainment is not taken into

account. As a result, these previous models significantly overestimate the runout distances

of the dilute current with high temperature and the dense current, and underestimate the

runout distances of the dilute current with low temperature, particularly when the relative

magnitude of the effect of air entrainment to that of particle settling is large (i.e., small

Ws/(Ua0)).

The present results account for diverse features of PDC deposits (e.g., distributions

and sedimentary structures) (Chapter 6). A wide range of distributions of PDC deposits

can be accounted for by variable runout distances of PDCs, depending on the mass erup-
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tion rate at source,Ṁ0. Generally, a wide variety of sedimentary structures of PDC de-

posits (e.g., massive and/or stratified lithofacies) result from the flow-particle interaction

inside the boundary layer at the bottom of PDCs (Branney & Kokelaar, 2002). Because

the flow-particle interaction in the bottom boundary layer is significantly different be-

tween the dilute and dense currents, it is considered that some of the diversities of PDC

deposits are explained by the difference in the flow-particle interaction in the bottom

boundary layer between the dilute and dense currents. When stratified lithofacies are pre-

dominantly observed from proximal to distal areas, the PDC deposits are interpreted to

be emplaced by PDCs of Regime 1. When massive lithofacies are predominantly ob-

served from proximal to distal areas, the PDC deposits are interpreted to be emplaced by

PDCs of Regime 2b. When distal lithofacies change from massive to stratified, the PDC

deposits are interpreted to be emplaced by PDCs of Regime 2a. Our results that the re-

gion of Regime 2a expands as the temperature of erupted material decreases in the regime

diagram are consistent with the observation that stratified surge deposits are commonly

observed in the deposits of phreatomagmatic eruptions (e.g., base surge deposits; see Cas

& Wright, 1987).

Although we believe that the conclusions derived in this thesis are robust and provide

new insights into the dynamics of PDCs and the diversity of PDC deposits, we should bear

in mind the limitations of the present model. We suggest some future works as follows.

• The deposition rate at the base of the dense current,D, must be accurately modeled,

becauseD critically affects the transitions of the above regimes. In the present

study, we tentatively modeled the value ofD on the basis of the hindered settling

velocity; however, the values ofD is considered to be determined by combinations

of the deposition and erosion processes in the dense currents. Some experimental

studies of an initially fluidized granular flows are in progress (e.g., Roche et al.,

2010; Girolami et al., 2010, 2015; Roche, 2012), but the deposition and erosion

processes are not yet fully understood.
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• The elutriation process from the dense current may play an important role in PDC

dynamics and PDC deposits. In the present model, we assumed that the upper dilute

current is formed by the collapsing eruption column edge; however, field observa-

tions of natural PDCs indicate that dilute ash clouds are also formed by elutriation

from the dense current (Branney & Kokelaar, 2002). It is also suggested that the

dilute current derived by the elutriation may proceed the parent dense current (e.g.,

Kelfoun, 2017; Kelfoun et al., 2017).

• A gradual density stratification develops in the upper dilute part of natural PDCs

(e.g., Dufek, 2016; Breard et al., 2016), whereas the present two-layer PDC model

is depth-averaged within each layer. To quantitatively reproduce PDC dynamics

and PDC deposits, the vertical profiles of the density stratification within the dilute

current should be taken into consideration.

• The pore-pressure diffusion in the dense current causes an increase of friction (e.g.,

Gueugneau et al., 2017). In the present model, although this effect is not directly

considered, the effects of stopping of the dense current due to the the friction are

indirectly taken into account in the deposition process with the (effective) deposi-

tion speedD. To quantitatively reproduce PDC dynamics and PDC deposits, the

effects of the pore-pressure diffusion in the dense current should be fully taken into

account.

A more sophisticated model that takes the above effects into account needs to be devel-

oped to reproduce quantitative features of field observations.
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Appendix A

Summary of notations

a0 Aspect ratio ofH to r0 (or x0)

b0 Aspect ratio ofy0 to r0 (or x0)

Cd Drag coefficient

Cp Heat capacity at constant pressure

Cs Heat capacity of solid particle

Cv Heat capacity at constant volume

D Deposition rate at the base of dense current [m/s]

d Diameter of solid particle [m]

E Entrainment coefficient

e Internal energy per unit mass [m2/s2]

etot Total energy per unit mass [m2/s2]

Fr Froude number of current

FrN0 Imposed frontal Froude number

g Gravitational body force [m/s2]

h Thickness of current [m]

H Characteristic height scale of current [m]

Ṁ0 Mass eruption rate at the collapsing eruption column edge [kg/s]

n Mass fraction (or time step)

75



p Pressure [Pa]

R Gas constant [J/(kg·K)]

r Radius (distance) from volcanic vent (in radially spreading cases) [m]

Re Reynolds number of current

Ri Richardson number of current

T Temperature [K]

t Time [s]

T Characteristic time scale [s]

u Velocity component inx (or r) direction [m/s]

U Characteristic velocity scale [m/s]

w Velocity component inz direction [m/s]

Ws Particle settling velocity at the base of (dilute) current [m/s]

x Distance from volcanic vent (in one-dimensional channelized cases) [m]

y0 Width of the one-dimensional channel [m]

z Coordinate in the direction perpendicular to ground surface [m]

Subscript

a Air

ave Used to emphasize a horizontally averaged variable

b Upper surface of ground or deposit (i.e., base of (dense) current)

base Base of current

c Current

f Upper surface of dilute current

FC Front cell of Boundary Condition model

g Volcanic gas

g&a Gas phase (i.e., volcanic gas and air)

H Dense (i.e., high particle concentration) current
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in Volcanic vent

m Upper surface of dense current

N Nose (i.e., front) of current

s Solid particle

0 Collapsing eruption column edge or other reference point

∞ Steady runout distance of current

Upper- and over-script

* Used to emphasize a non-dimensional variable

(a dimensional variable only in Appendix C.4)

– Used to emphasize a depth-averaged (i.e.,z-averaged) variable

Greek

γ Ratio of specific heatsCp/Cv

Γ Riemann Invariants

∆p Pressure differencep− pa [Pa]

δ Dynamic basal friction angle [◦]

ε Non-dimensional thickness of artificial bed in Artificial Bed model

η Viscosity [Pa·s]

τ Drag at the base of current [kg/(m·s2)]

θ Angle between thex (or r) axis and the horizontal axis [◦]

ρ Mass density [kg/m3]

ϕ Volume fraction
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Appendix B

Derivation of the internal energy

conservation Eq. (2.70)

The energy conservation Eq. (2.69) can be rewritten as

∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh)

= − ∂

∂t

(
1

2
ρ̄ū2h

)
− ∂

∂x

(
1

2
ρ̄ū3h

)
− ∂

∂t
(ρ̄gh (z̄ cos θ − x sin θ))− ∂

∂x
(ρ̄ūgh (z̄ cos θ − x sin θ))

− ∂

∂x
(p̄ūh)−

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
+ ρ̄gh cos θ

∂zb
∂t

+Q̇+ Ṁe. (B.1)

In this chapter, by using the mass and momentum conservation Eqs. (2.67) and (2.68), we

transform the right-hand side of Eq. (B.1) to derive the internal energy conservation Eq.

(2.70).
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Using the mass conservation Eq. (2.67), we can obtain

∂

∂t
(ρ̄gh(z̄ cos θ − x sin θ)) +

∂

∂x
(ρ̄gūh(z̄ cos θ − x sin θ))

= ρ̄gh cos θ

(
∂z̄

∂t
+ ū

∂z̄

∂x

)
− ρ̄gūh sin θ

+g(z̄ cos θ − x sin θ)Ṁa. (B.2)

We substitute Eq. (B.2) into Eq. (B.1) to obtain

∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh)

= − ∂

∂t

(
1

2
ρ̄ū2h

)
− ∂

∂x

(
1

2
ρ̄ū3h

)
−ρ̄gh cos θ

(
∂z̄

∂t
+ ū

∂z̄

∂x

)
+ ρ̄gūh sin θ

− ∂

∂x
(p̄ūh)−

(
p̄− 1

2
ρ̄gh cos θ

)
∂h

∂t
+ ρ̄gh cos θ

∂zb
∂t

+Q̇+ Ṁe − g(z̄ cos θ − x sin θ)Ṁa

= − ∂

∂t

(
1

2
ρ̄ū2h

)
− ∂

∂x

(
1

2
ρ̄ū3h

)
−ρ̄gūh cos θ

∂z̄

∂x
+ ρ̄gūh sin θ

− ∂

∂x
(p̄ūh)− p̄

∂h

∂t

+Q̇+ Ṁe − g(z̄ cos θ − x sin θ)Ṁa (∵ Eq. (2.50)). (B.3)
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We can rewrite the momentum conservation Eq. (2.68) as

∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h

)
+

∂

∂x

(
1

2
ρ̄gh2 cos θ

)
+h

∂pf
∂x

− ρ̄gh sin θ + ρ̄gh cos θ
∂zb
∂x

= Ṁo (∵ Eq. (2.74))

∴ ∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h

)
+

∂

∂x

((
pf +

1

2
ρ̄gh cos θ

)
h

)
−pf

∂h

∂x
− ρ̄gh sin θ + ρ̄gh cos θ

∂zb
∂x

= Ṁo

∴ ∂

∂t
(ρ̄ūh) +

∂

∂x

(
ρ̄ū2h

)
+

∂

∂x
(p̄h)

−pf
∂h

∂x
+ ρ̄gh cos θ

∂zb
∂x

− ρ̄gh sin θ = Ṁo (∵ Eq. (2.74)). (B.4)

Using the expressions

ū
∂

∂t
(ρ̄ūh) =

∂

∂t
(ρ̄ū2h)− ρ̄ūh

∂ū

∂t

=
1

2

∂

∂t
(ρ̄ū2h) +

1

2

∂

∂t
(ρ̄ū2h)− ρ̄ūh

∂ū

∂t

=
1

2

∂

∂t
(ρ̄ū2h) +

ū2

2

∂

∂t
(ρ̄h) + ρ̄h

∂

∂t

(
ū2

2

)
− ρ̄ūh

∂ū

∂t

=
1

2

∂

∂t
(ρ̄ū2h) +

ū2

2

∂

∂t
(ρ̄h) (B.5)

and

ū
∂

∂x
(ρ̄ū2h) =

∂

∂x
(ρ̄ū3h)− ρ̄ū2h

∂ū

∂x

=
1

2

∂

∂x
(ρ̄ū3h) +

1

2

∂

∂x
(ρ̄ū3h)− ρ̄ū2h

∂ū

∂x

=
1

2

∂

∂x
(ρ̄ū3h) +

ū2

2

∂

∂x
(ρ̄ūh) + ρ̄ūh

∂

∂x

(
ū2

2

)
− ρ̄ū2h

∂ū

∂x

=
1

2

∂

∂x
(ρ̄ū3h) +

ū2

2

∂

∂x
(ρ̄ūh), (B.6)
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we can rewrite Eq. (B.4) as

∂

∂t

(
1

2
ρ̄ū2h

)
+

∂

∂x

(
1

2
ρ̄ū3h

)
= −ū

∂

∂x
(p̄h) + pf ū

∂h

∂x
− ρ̄ghū cos θ

∂zb
∂x

+ ρ̄ghū sin θ

+ūṀo −
ū2

2

(
∂

∂t
(ρ̄h) +

∂

∂x
(ρ̄ūh)

)
= −ū

∂

∂x
(p̄h) + pf ū

∂h

∂x
− ρ̄ghū cos θ

∂zb
∂x

+ ρ̄ghū sin θ

+ūṀo −
ū2

2
Ṁa (∵ Eq. (2.67)). (B.7)

We substitute Eq. (B.7) into Eq. (B.3) to obtain

∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh)

= ū
∂

∂x
(p̄h)− pf ū

∂h

∂x
+ ρ̄ghū cos θ

∂zb
∂x

− ρ̄gūh cos θ
∂z̄

∂x

− ∂

∂x
(p̄ūh)− p̄

∂h

∂t

+Q̇+ Ṁe − ūṀo +
ū2

2
Ṁa − g(z̄ cos θ − x sin θ)Ṁa

= ū
∂

∂x
(p̄h)− pf ū

∂h

∂x
− 1

2
ρ̄ghū cos θ

∂h

∂x

− ∂

∂x
(p̄ūh)− p̄

∂h

∂t

+Q̇+ Ṁe − ūṀo +
ū2

2
Ṁa − g(z̄ cos θ − x sin θ)Ṁa (∵ Eq. (2.50))

= ū
∂

∂x
(p̄h)− p̄ū

∂h

∂x

− ∂

∂x
(p̄ūh)− p̄

∂h

∂t

+Q̇+ Ṁe − ūṀo +
ū2

2
Ṁa − g(z̄ cos θ − x sin θ)Ṁa (∵ Eq. (2.74))

∴ ∂

∂t
(ρ̄ēh) +

∂

∂x
(ρ̄ēūh) + p̄

(
∂h

∂t
+

∂

∂x
(ūh)

)
= Q̇+ Ṁe − ūṀo +

ū2

2
Ṁa − g(z̄ cos θ − x sin θ)Ṁa. (B.8)
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Appendix C

Applicability of numerical models for

the front condition

This Chapter is based on a paper published in Progress in Earth and Planetary Science

(Shimizu et al., 2017).

As mentioned in Chapter 1, PDCs are characterized by strong density stratification

due to particle settling (e.g., Branney & Kokelaar, 2002), whereby a dilute gravity current

(particle suspension flow) overrides the dense basal gravity current (fluidized granular

flow). The ratio of the density of the dilute current,ρ̄, to the ambient air,ρa, is on the

order100–101. And, the ratio of the density of the basal dense current,ρH, to ρa is on the

order102–103. If we are to capture the effects of the density ratio (i.e.,ρ̄/ρa andρH/ρa), it

is important to calculate the front condition (i.e., Eqs. (2.93) and (2.100)) correctly (Un-

garish, 2007). In this chapter, we present a numerical method for the front condition for a

wide range of the density ratio. In the following sections, we formulate the mathematical

problem and show that the numerical treatment of the front condition is key to correctly

solving the dynamics of gravity currents for a wide range of the density ratio within the

framework of the shallow-water model. We also assess previous numerical methods that

have been used to calculate the behavior of the flow front by comparing numerical and

analytical results, and we propose a numerical method to simulate the dynamics of gravity
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currents for a wide range of the density ratio under various geophysical conditions.

C.1 Formulation

We consider a planar, inviscid, incompressible, immiscible gravity current of densityρc in

a thick ambient fluid of densityρa, as shown in Figure C.1. The current propagates along

a smooth horizontal bottom in the positivex∗ direction in timet∗, and gravitational accel-

erationg acts in the negativez∗ direction, where asterisks denote dimensional variables

although asterisks denote non-dimensional variables in other chapters. The propagating

current is initially stationary in a reservoir of lengthx0 and heighth0, and propagation

occurs after a dam atx∗ = x0 is rapidly removed att∗ = 0. The boundary atx∗ = 0 is a

rigid wall. The flow front atx∗ = x∗
N(t

∗) is affected by the resistance of the ambient fluid,

whereN denotes the front. This problem is referred to as the “dam-break problem” (e.g.,

Ungarish, 2009), and is a simple geophysical scenario.

 0
 0

x
xN

ρ
c

ρ
a

Current

z

x 0

h 0

Dam

Ambient

hNuN

g

 *

 *

 *  *

 *

Figure C.1:Schematic of the gravity current released from a dam in a thick ambient fluid. Al-
though asterisks denote non-dimensional variables in other chapters, asterisks denote dimensional
variables in this chapter.

We assume that the current is shallow, withh0/x0 ≪ 1, and is in hydrostatic equilib-

rium in the vertical direction (i.e., the shallow-water approximation). In the shallow-water

approximation, we can obtain the vertically averaged conservation equations of mass and
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momentum for the flow interiorx∗ < x∗
N (e.g., Ungarish, 2007) as follows:

∂h∗

∂t∗
+

∂

∂x∗ (u
∗h∗) = 0, (C.1)

∂

∂t∗
(u∗h∗) +

∂

∂x∗

(
u∗2h∗ +

1

2

ρc − ρa
ρc

gh∗2
)

= 0, (C.2)

whereh(x, t) is the local height andu(x, t) is the local horizontal velocity.

At the flow frontx∗ = x∗
N(t

∗), the kinematic condition (dx∗
N/dt

∗ = u∗
N) and the mass

and momentum equations should be taken into account. In addition, to describe realistic

gravity current dynamics, we must consider a quasi-steady balance between the buoyancy

pressure driving the current front (∼ (ρc − ρa)gh
∗
N) and the resistance pressure caused by

the acceleration of the ambient fluid around the front (∼ ρau
∗2
N ). This condition is known

as the front condition, and can be written as follows (e.g., Ungarish, 2007):

u∗
N = FrN0

√
ρc − ρa

ρa
gh∗

N at x∗ = x∗
N(t

∗), (C.3)

whereFrN0, which is an imposed frontal Froude number, is assumed to be a constant of

order100 (e.g.,
√
2; Benjamin, 1968).

Here, usingx0 as the length scale andh0 as the height scale, we rewrite all dimensional

variables to dimensionless variables as follows:

x = x∗/x0, h = h∗/h0, u = u∗/U, t = t∗/T, (C.4)

with

U =

√
ρc − ρa

ρc
gh0, T = x0/U. (C.5)
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Applying this scaling to Eqs. (C.1)–(C.3), we obtain

∂

∂t
q +

∂

∂x
f = 0 (C.6)

uN = FrN0

√
ρc/ρa

√
hN at x = xN(t) (C.7)

with

q =

 h

uh

 ; f =

 uh

u2h+ 1
2
h2

 . (C.8)

Note that the density ratioρc/ρa is included only in the front condition (C.7). Hence,

to capture the effects ofρc/ρa, it is important to calculate the front condition correctly

(Ungarish, 2007).

The behavior of the analytical solutions for the above equations depends onρc/ρa

(Figure C.2; Ungarish, 2007). The analytical solutions of the dam-break problem consist

of an initial “slumping” stage and a subsequent “self-similar” stage (Figure C.2a; e.g.,

Hogg, 2006). During the slumping stage, the front moves with a constant speed and

height. During this stage, an initial backward-propagating rarefaction wave arises from

the rapidly removed dam, and then a wave arises from the reflection of this rarefaction

wave at the back wallx = 0 at t = 1. The slumping stage continues until the front

is caught by this reflection wave. After the slumping stage, the solution is asymptotic

to a self-similar solution as time tends to infinity (i.e., the self-similar stage). During

this stage, the velocity and height of the front decrease with time. The dependence of the

solution onρc/ρa is clearly observed in the behavior of the flow front. Whenρc/ρa ∼ 100,

the front heighthN is on the order of10−1 during the slumping stage and in the early self-

similar stage (Figure C.2a). On the other hand, whenρc/ρa ∼ 103, hN is much smaller

than 10−1, even from the beginning, and the front velocityuN is substantially greater

thanuN for ρc/ρa ∼ 100 (Figure C.2b). These differences can be interpreted as follows:

the momentum lost due to the resistance of the ambient fluid at the front becomes less
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significant with respect to the momentum of the current asρc/ρa increases. We aim to

numerically reproduce these features of the analytical solution below.
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Figure C.2: Analytical solutions ofh(x, t) for the dam-break problem. Here,FrN0 =
√
2

(Benjamin, 1968) is used. (a)ρc/ρa = 1.01. (b) ρc/ρa = 1000. In (a), the currents att = 0.5,
1.0, 1.5, and 3.0 are in the slumping stage, and the current att = 5.0 is in the self-similar stage.
The initial backward-propagating rarefaction wave arising from the rapidly removed dam travels
toward the back wallx = 0 (see the profile att = 0.5), reaching the wall att = 1.0. Then, a wave
arises from the reflection of the rarefaction wave and travels toward the front (see the profiles at
t = 1.5 and 3.0). After the front is caught by this reflection wave, the current is in the self-similar
stage (see the profile att = 5.0). In (b), all the currents are in the slumping stage. In this case (i.e.,
ρc/ρa = 1000), the slumping stage continues untilt ∼ 226 (see Hogg (2006) for details).

C.2 Numerical methods

In this chapter, we developed a numerical method for modeling gravity currents for a

wide range ofρc/ρa by discretizing the dimensionless mass and momentum conservation

equations (Eqs. (C.6) and (C.8)). As these equations are nonlinear and hyperbolic, shocks
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may develop in the currents. Consequently, we used a finite volume method with shock

capturing capability (e.g., Toro, 2001; LeVeque, 2002). The finite volume method updates

a piecewise constant functionQn
i that approximates the average value of the solutionq in

each grid celli at time stepn, using the expression

Qn+1
i = Qn

i −
∆t

∆x
(Fi+1/2 − Fi−1/2), (C.9)

where∆x is the constant cell length, and∆t is the time interval.Fi+1/2, which is the

intercell flux between cellsi andi+1, is obtained by using an exact Riemann solver or an

approximate Riemann solver, such as the Roe scheme (e.g., Toro, 2001; LeVeque, 2002).

The time interval∆t is limited by the Courant–Friedrichs–Lewy condition (e.g., Toro,

2001; LeVeque, 2002).

As mentioned above, if we are to capture the effects ofρc/ρa, it is important to calcu-

late the front condition (C.7) correctly. Previously, two types of numerical models have

been proposed to calculate the front condition. In one, the front condition is calculated

as a boundary condition at each time step (e.g., Ungarish, 2009). We refer to this model

as the Boundary Condition (BC) model (Figure 3.1a). In the other, the front condition is

calculated by setting a thin artificial bed ahead of the front (e.g., Toro, 2001). We refer

to this as the Artificial Bed (AB) model (Figure 3.1b). In the AB model, the resistance

of the ambient fluid at the flow front is modeled by the reaction of the force pushing the

artificial bed at the flow front. These models will be described below.

C.2.1 Boundary Condition (BC) model

In the BC model, three quantities at the flow front (xN, hN, anduN) are calculated as

boundary conditions of the current from the three equations (mass and momentum con-

servation equations and front condition) at each time step. In the present numerical

method, because we apply a fixed spatial coordinate with constant∆x, the front position

x = xN(t) generally does not coincide with the margins of the grid cells. We therefore
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define the cell that includes the front as the front cell (i = FC(t), whereFC(t) is an

integer), and the width of the region that the current occupies in the front cell as∆xFC(t)

(0 ≤ ∆xFC(t) < ∆x; see Figure 3.2). UsingFC(t) and∆xFC(t), we can write the front

position as

xN(t) = (FC(t)− 1)∆x+∆xFC(t). (C.10)

The values ofhN anduN are approximated by the values ofh andu at the front cell (i.e.,

hFC anduFC).

When the kinematic condition (dxN/dt = uN) is taken into account, the discretized

equations for mass and momentum conservation at the flow front are given by

∆xn+1
FC hn+1

FC = ∆xn
FCh

n
FC +∆tf1 (C.11)

and

∆xn+1
FC (uh)n+1

FC = ∆xn
FC(uh)

n
FC +∆t

(
f2 −

1

2
(hn+1

FC )2
)
, (C.12)

respectively, where(f1, f2)T represents the intercell fluxFFC−1/2. From the front condi-

tion (i.e., Eq. (C.7)) we obtain

(uh)n+1
FC

hn+1
FC

= FrN0

√
ρc/ρa

√
hn+1
FC . (C.13)

Solving these three equations analytically (e.g., using Ferrari’s method for the solution of

the quartic equation) or numerically (e.g., using the Newton–Raphson iteration method),

we obtainhn+1
FC , un+1

FC , and∆xn+1
FC , and hence,hN, uN, andxN at each time step.
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C.2.2 Artificial Bed (AB) model

In the AB model, the conservation equations (Eqs. (C.6) and (C.8)) are numerically solved

using a shock capturing method for not only the interior, but also the outside of the cur-

rent bya priori setting a thin artificial bed ahead of the front. Through this numerical

procedure, the flow front is generated as the flow following a shock formed ahead of the

front without any additional calculation (see Figure 3.1b). In this model, the thickness of

the artificial bed (ε in Figure 3.1b) is the parameter that controls the front condition (i.e.,

the values ofhN anduN for different values ofρc/ρa; see section 10.8 in Toro (2001)).

Here, we analytically determined the relationship betweenε andρc/ρa, as well as

that betweenuN andε, on the basis of the analytical solution for the slumping stage of

the dam-break problem (e.g., Toro, 2001; LeVeque, 2002; Ungarish, 2009). The initial

conditions areh = 1 andu = 0 in the domain0 ≤ x ≤ 1, andh = ε andu = 0 in

the domainx > 1, at t = 0. Let us consider the time evolution of the current before the

rarefaction wave reaches the back wallx = 0 (i.e.,0 < t ≤ 1).

For hyperbolic equations such as those used in the present system (i.e., Eqs. (C.6)

and (C.8)), the relationships between the variables (i.e.,h andu) on the characteristics

c± = u±
√
h are represented as follows:

Γ± = u± 2
√
h = const on

dx

dt
= c±, (C.14)

whereΓ± are the “Riemann Invariants”. Considering thatc+ from the domain with one

initial condition (h = 1, u = 0) enter the front domain (h = hN, u = uN), we can obtain

uN = 2(1−
√

hN) (C.15)

from Eq. (C.14). The equation provides the relationship betweenh = hN andu = uN

inside the current.

On the other hand, when an artificial bed withh = ε andu = 0 is set, a shock wave
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traveling with speedS occurs ahead of the front. Across this shock wave, the Rankine–

Hugoniot condition,

f(qR)− f(qL) = S(qR − qL) (C.16)

should hold. Here, the subscriptR denotes the state on the right side of the shock andL

denotes the state on the left side. From Eq. (C.16), we obtain the state of the front domain

behind the shock (i.e., the relationship betweenh = hN andu = uN) as

uN = (hN − ε)

√
1

2

(
hN + ε

hNε

)
, (C.17)

and the shock speed as

S =

√
1

2

(hN + ε)hN

ε
. (C.18)

EliminatinghN from Eqs. (C.15), (C.17), and (C.18), we obtainuN andS as a function

of ε (Figure C.3a). Using the front condition (C.7) as well as these equations, we also

obtain the relationship between the artificial bed thicknessε and the density ratioρc/ρa

(Figure C.3b) as

(
1− 2

FrN0

√
ρc/ρa + 2

)
4
√
2ε

FrN0

√
ρc/ρa + 2

=


(

2

FrN0

√
ρc/ρa + 2

)2

− ε


√√√√( 2

FrN0

√
ρc/ρa + 2

)2

+ ε. (C.19)

Note that because we use Eq. (C.15) here, these relationships (Figure C.3) are in the

slumping stage.

In Figure C.3a,S is larger than the front velocity,uN, because of the accumulation

of the artificial bed at the flow front (see Figure 3.1b). This deviation ofS from uN is

substantial forε ≳ 10−3. This implies that the position of the shock does not always
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approximate the flow front. If we are to extract the correct position of the flow front,

we must calculate an advection equation for a passive tracer concentration,ϕ (ϕ = 1 for

0 ≤ x ≤ 1, andϕ = 0 for x > 1, at t = 0):

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (C.20)

after solving the equations of fluid motion (see section 13.12 in LeVeque (2002) for de-

tails).
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Figure C.3:Analytical solutions for the AB model during the slumping stage. (a) Front velocity
ūN (red curve) and shock speedS (blue curve), as functions ofε. (b) Relationship betweenε and
ρc/ρa, in whichFrN0 =

√
2 (Benjamin, 1968) is used. Dashed curves represent the solutions for

ρc/ρa < 1.

C.3 Comparison of analytical and numerical results

In this section, we compare the numerical results obtained from the BC and AB models

with the analytical results, and assess the applicability of these models.
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Figure C.4 shows the numerical results from the BC model along with the analytical

results for the cases ofρc/ρa = 1.01 (a) and1000 (b). The numerical results forρc/ρa =

1.01 agree well with the analytical results from the early slumping stage to the late self-

similar stage. The numerical results forρc/ρa = 1000 also appear to agree with the

analytical results, but the speed of the front position,ẋN, shows a numerical oscillation

that is not observed in the analytical result (Figure C.5a). In particular, in the initial

stage (t ≲ 0.0002 in Figure C.5a),ẋN tends to be overestimated. These oscillation and

overestimation are caused by the assumption that the values ofhFC anduFC are uniform

across the width of the front cell∆xFC in the present numerical method at first-order

accuracy. For a largeρc/ρa, becausehN has a small value, the value of∆xFC tends to be

overestimated when a constanthFC is assumed (Figure C.5b). We suggest, therefore, that

the BC model is favorable for simulating gravity currents with relatively lowρc/ρa.

Figure C.6 shows the numerical results from the AB model along with the analytical

results. In these calculations, the values ofε for given values ofρc/ρa are set based on

the relationship of Eq. (C.19) (see Figure C.3b). In Figure C.6b, the numerical results for

ρc/ρa = 1000 (ε = 4.58 × 10−7) agree well with the analytical results. The numerical

oscillations observed in the BC model do not occur with the AB model (Figure C.5a). In

Figure C.6a, on the other hand, the numerical results forρc/ρa = 1.01 (ε = 6.58× 10−2)

agree well with the analytical results only during the slumping stage (t ≲ 4.5), but deviate

from the analytical results during the self-similar stage (t ≳ 4.5). This agreement during

the slumping stage and deviation during the self-similar stage occurs becauseε is set using

the analytical relationship (Eq. (C.19)) for the slumping stage of the dam-break problem.

During the slumping stage,hN anduN are constant so thatε based on Eq. (C.19) provides

the correct front condition. During the self-similar stage, on the other hand, the driving

pressure, and hencehN anduN, decrease with time; therefore, the assumed value ofε is

no longer consistent with the front condition Eq. (C.7).

The good agreement in the results of the AB model forρc/ρa = 1000 reflects the

fact that the dynamics of the gravity current becomes insensitive to the front condition
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for large values ofρc/ρa. In Figure C.3b,ε approaches0 asρc/ρa increases. In the limit

asρc/ρa → ∞ andε → 0, uN asymptotically approaches its maximum value,2, andhN

asymptotically approaches 0. For sufficiently smallε, the solution converges to that in the

limit as uN → 2 andhN → 0, and it becomes insensitive to the value ofε (see Figure

C.3a). Indeed, as shown in Figure C.6b, we can confirm that the result of the AB model

with a very smallε (ε = 1.0 × 10−10) is indistinguishable from that forρc/ρa = 1000

(ε = 4.58 × 10−7). According to Figure C.3, the results of the AB model for the dam-

break problem are insensitive toε whenε ≲ 10−5, which corresponds toρc/ρa ≳ 102

(Figure C.3b). Consequently, we suggest that the AB model is favorable for simulating

gravity currents with highρc/ρa for which the dynamics of the current is insensitive to

the assumed value ofε.

C.4 Applicability of the BC and AB models

Our results indicate that the BC and AB models each have their own advantages and

disadvantages. The results obtained from the BC model agree well with the analytical

results whenρc/ρa ≲ 102 (Figure C.4a), whereas they show a numerical oscillation at

the flow front and tend to overestimate the front speed whenρc/ρa ≳ 102 (Figure C.5).

No such numerical oscillation nor overestimation is observed in the results from the AB

model. For currents withρc/ρa ≳ 102, the AB model provides good approximations of

the analytical results, given a sufficiently smallε (Figures C.3 and C.6b). For currents

with ρc/ρa ≲ 102, however, the AB model may fail to reproduce the analytical results

for currents where the height and speed of the front change with time (Figure C.6a).

Accordingly, we propose that the BC model should be used for currents withρc/ρa ≲ 102

and the AB model is applicable only to currents withρc/ρa ≳ 102.

Because of its simple coding and numerical stability, the AB model with an arbitrarily

small ε is commonly used for simulations of gravity currents in many geophysical situ-

ations (e.g., Denlinger & Iverson, 2004; Larrieu et al., 2006; Doyle et al., 2007, 2008,
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2011). This model would be applicable in simulating gravity currents with high values

of ρc/ρa, such as debris flows (e.g., Denlinger & Iverson, 2004). However, our results

suggest that it may provide inaccurate results for gravity currents withρc/ρa ≲ 102,

such as turbidity currents and dilute pyroclastic density currents. Numerical results for

ρc/ρa = 10 show that the problem arises mainly from the behavior of the flow front (Fig-

ure C.7). Generally, a gravity current with a relatively low value ofρc/ρa is characterized

by the formation of a large front height, which is caused by the resistance of the ambient

fluid. This large front height is successfully reproduced by the BC model (Figure C.7a),

while the AB model fails to capture it. The results from the AB model withε = 10−10

(Figure C.7b) show that the resistance at the front is too small to develop a large front

height; consequently, the flow speed is substantially overestimated.
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Figure C.7: Numerical results ofh(x, t) for ρc/ρa = 10. (a) BC model. (b) AB model with
ε = 1.0× 10−10. In (b),ρc/ρa = 10 is given when the basic equations (Eqs. (C.1) and (C.2)) are
non-dimensionalized using Eqs. (C.4) and (C.5).

C.5 Conclusion of this chapter

A numerical shallow-water model of simulating gravity currents for a wide range ofρc/ρa

has been proposed. In the model, the effects of varyingρc/ρa are taken into account via the

front condition. We have assessed two types of numerical models for the front condition

(the Boundary Condition (BC) model and the Artificial Bed (AB) model) by comparing
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their numerical results with the analytical results. The results from the BC model agree

well with the analytical results whenρc/ρa ≲ 102. In contrast, the AB model generates

good approximations of the analytical results forρc/ρa ≳ 102. Therefore, we found that,

in two-layer models of pyroclastic density currents (PDCs), the BC model must be used

for the overlying dilute part (ρc/ρa = 100–101) and the AB model can be used for the

underlying dense part (ρc/ρa = 102–103).
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Appendix D

Estimation of the characteristic

Reynolds numbers in Eqs. (2.87) and

(2.99)

In this chapter, to determine the Chézy drag coefficient of the dilute currentCdm and that

of the dense currentCdb on the basis of Eqs. (2.87) and (2.99), we estimate characteristic

Reynolds number of the dilute current,Re0, and that of the dense current,ReH0.

The characteristic Reynolds number of the dilute current,Re0, is defined as

Re0 ≡
ρ0UH
η

, (D.1)

whereη is an effective viscosity of the dilute current,ρ0 is a reference density of the dilute

current,U is a characteristic velocity scale of the dilute current, andH is a characteristic

thickness scale of the dilute current. The effective viscosityη is of the order of1.0×10−6

Pa·s, because the effective viscosity of the dilute current is approximated as the viscosity

of gas (∼ 10−6 Pa·s) (cf. Iverson, 1997). The density of the dilute current at the collapsing

column edge is used as the reference density (see Subsections??and??, and Section??).

The characteristic scale of thicknessH and that of velocityU are given by Eqs. (??) and
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(??), respectively. They depend on the mass eruption rate at the collapsing column edge

Ṁ0 (see Figure??). Thus, the characteristic Reynolds numberRe0 depends on the mass

eruption rateṀ0 (Figure D.1). When the mass eruption rateṀ0 ranges between103–1011

kg/s, the characteristic Reynolds numberRe0 ranges between107–1012.

The characteristic Reynolds number of the dense current,ReH0, is defined as

ReH0 ≡
ρHUHHH

ηH
, (D.2)

whereηH is the effective viscosity of the dense current,ρH is the density of the dense

current,UH is a characteristic velocity scale of the dense current, andHH is a characteristic

thickness scale of the dense current. We estimate the effective viscosityηH, which is

influenced by the presence of particles in the pore gas (cf. Iverson, 1997), using the

empirical formula proposed by Thomas (1965) and given byηH = ηgH(1 + 2.5ϕsH +

10.05ϕ2
sH + 0.00273 exp (16.6ϕsH)), whereϕsH is the volume fraction of solid particle in

the dense current, andηgH is the viscosity of the gas in the dense current and is of the

order of1.0 × 10−6 Pa·s. The characteristic velocity scaleUH is given byU , because

the momentum supplied from the dilute current is the main driving force for the motion

of the dense current at least initially. The characteristic thickness scaleHH is defined as

ns0

nsH

ρ0
ρH
WsT . Here,ns0 is the mass fraction of solid particle in the dilute current at the

collapsing column edge (see Subsections?? and??, and Section??), nsH is the mass

fraction of solid particle in the dense current (see Subsection 2.2.2),Ws is the particle

settling velocity of the dilute current (see Subsection 2.2.1), andT is the characteristic

time scale (Eq. (??)). The characteristic scale of velocityUH (i.e.,U) and that of timeT

depend on the mass eruption rate at the collapsing column edgeṀ0 (see Figure??). Thus,

the characteristic Reynolds numberReH0 depends on the mass eruption rateṀ0 (Figure

D.1). When the mass eruption ratėM0 ranges between103–1011 kg/s and the particle

settling velocityWs ranges between0.3–3 m/s, the characteristic Reynolds numberReH0

ranges between106–1010.

100



10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

R
e

Mass eruption rate, M0

Re0
ReH0(Ws=3)
ReH0(Ws=1)

ReH0(Ws=0.3)

.

R
e

y
n

o
ld

s
 n

u
m

b
e

r,
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Appendix E

Verification of a flow-type change

depending on the Richardson number

at the collapsing column edgeRi0

本章については、5年以内に雑誌等で刊行予定のため、非公開。
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Appendix F

Supplementary note concerning Bursik

& Woods (1996)

Burisk & Woods (1996) investigated the dynamics of dilute PDCs, using a steady one-

layer shallow-water model. In Bursik & Woods (1996), all of the equations used to close

the system are not explicitly shown, and there are many misprints. Furthermore, we have

found that there are two erroneous points in Bursik & Woods (1996). We correct these in

this chapter.

F.1 Basic equations of the steady one-layer dilute PDC

model

In this section, we show (or modify) the equations explicitly given by Bursik & Woods

(1996), and give other equations to close the system. We focus on the case of the currents

propagating over a horizontal ground surface (i.e., slope angleθ = 0◦) and monodisperse

particles.
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F.1.1 The equations explicitly given by Bursik & Woods (1996)

In Bursik & Woods (1996), the dilute PDCs spreading both radially and restricted within

one-dimensional channel are modeled as a steady highly turbulent, well-mixed, particle-

laden suspension flow. The currents are composed of the solid particles, volcanic gas, and

the air entrained from ambient. They are influenced by particle settling, entrainment of

ambient air, and basal drag.

Bursik & Woods (1996) explicitly shows the following five equations, in which there

are eight main unknown variables (bulk densityρ̄, depthh, velocity ū, temperaturēT , the

mass averaged specific heat at constant pressureC̄p, the mass averaged gas constantR̄,

the mass fraction of the entrained airn̄a, and the mass fraction of solid particlesn̄s). The

mass conservation equations of one-dimensional channelized current for the particles in

the current is written as

d

dx
(n̄sρ̄ūh) = −n̄sρ̄Ws, (F.1)

whereWs is the settling velocity of the particles from the base of the current. The mass

conservation equations of one-dimensional channelized current for the bulk is written as

d

dx
(ρ̄ūh) = ρaE|ū| − n̄sρ̄Ws, (F.2)

whereρa is a constant density of ambient air, andE is the entrainment coefficient, given

by Eq. (2.83). The momentum conservation equation of one-dimensional channelized

current for the bulk is written as

d

dx

(
ρ̄ū2h+

ρ̄− ρa
2

gh2

)
= −n̄sρ̄ūWs − τm, (F.3)

whereτm is the basal drag. The source terms of this momentum conservation equation

represent the momentum lost from the dilute current owing to the particle settling, and
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the basal drag. The basal drag is modeled as a Chézy-type drag:τm = Cdmρ̄ū|ū|, where

Cdm is a Ch́ezy drag coefficient. The energy conservation equation of one-dimensional

channelized current for the bulk is written as

d

dx

(
ρ̄C̄pT̄ ūh+

1

2
ρ̄ū3h

)
= ρaE|ū|CpaTa − n̄sρ̄WsCsT̄ , (F.4)

wherep̄ is the thermodynamic pressure of the dilute current,Cs is the specific heat of

the solid particles,Cpg is the specific heat of volcanic gas at constant pressure,Cpa is

the specific heat of air at constant pressure, andTa is a constant temperature of ambient

air. The thermodynamic pressurep̄ is approximated by a constant atmospheric pressure

pa0(≡ ρaRaTa = const), whereRa is the gas constant of air. The source terms of this total

energy conservation equation represent the thermal energy gained or lost from the dilute

current owing to the entrainment of ambient air and the particle settling. The thermal

equation of state is written as

1

ρ̄
=

n̄s

ρs
+

(1− n̄s)R̄T̄

p̄
. (F.5)

For radially spreading currents, the following conservation Eqs.:

1

r

d

dr
(n̄sρ̄ūhr) = −n̄sρ̄Ws (F.6)

1

r

d

dr
(ρ̄ūhr) = ρaE|ū| − n̄sρ̄Ws (F.7)

1

r

d

dr

(
ρ̄ū2hr

)
+

d

dr

(
ρ̄− ρa

2
gh2

)
= −n̄sρ̄ūWs − τm (F.8)

1

r

d

dr

(
ρ̄C̄pT̄ ūhr +

1

2
ρ̄ū3hr

)
= ρaE|ū|CpaTa − n̄sρ̄Ws (F.9)

are used instead of Eqs. (F.1)–(F.4).
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F.1.2 Other equations to close the system

In order to close the system, three other equations are needed. We consider the following

three equations: the mass conservation equation of one-dimensional channelized current

for the entrained air

d

dx
(n̄aρ̄ūh) = ρaE|ū|, (F.10)

the equation of the mass averaged specific heat at constant pressure

C̄p = n̄sCs + n̄aCpa + (1− n̄s − n̄a)Cpg, (F.11)

and the equation of the mass averaged gas constant

R̄ =
n̄aRa + (1− n̄s − n̄a)Rg

1− n̄s

, (F.12)

whereRg is the gas constant of volcanic gas.

For radially spreading currents, the following conservation Eq.:

1

r

d

dr
(n̄aρ̄ūhr) = ρaE|ū|, (F.13)

is used instead of Eq. (F.10).

F.2 Erroneous points in Bursik & Woods (1996)

In order to compare the numerical results of our unsteady two-layer PDC model with

the results of the steady one-layer dilute PDC model of Bursik & Woods (1996), we at-

tempted to reproduce the results of Bursik & Woods (1996). In the process, we found that

there may be two erroneous points in Bursik & Woods (1996). One is that the boundary

temperature at the collapsing column edge,T0, is not correctly calculated. The other is
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that the analytical solutions of the steady runout distances of the current without air en-

trainment are not correctly written in the text of Bursik & Woods (1996). In this section,

we correct the two erroneous points.

F.2.1 The boundary temperature at the collapsing column edge,T0

Bursik & Woods (1996) calculated the dynamics of the dilute PDCs at steady state, by

giving a steady supply of the dilute current from the collapsing column edge as the bound-

ary conditions (see Subsections?? and?? for the details). The temperature of the dilute

current at the collapsing column edge,T0, is obtained by conservation of heat between

the erupted material of temperatureTin and the entrained air of temperatureTa (see Eq.

(??)). We found that, in the results of Bursik & Woods (1996), the boundary temperature

at the collapsing column edge,T0, is not correctly calculated due to inverting the value of

the specific heat at constant pressure of airCpa and that of volcanic gasCpg. We show the

details below.

Bursik & Woods (1996) show the figure ofT0 as a function of mass fraction of gas at

the collapsing column edge (1− ns0) on the basis of Eq. (??) (see the black solid curves

in Figure F.1c; Figure 2b in Bursik & Woods (1996)). In the figure, it is specified that

the temperatures of the erupted materialTin = 1200, 1000 and800 K are considered. On

the other hand, the values of the temperature of ambient airTa, the solid particle mass

fraction in the erupted materialns,in, the specific heat of solid particleCs, the specific

heat at constant pressure of airCpa and the specific heat at constant pressure of volcanic

gasCpg are not specifically shown. To reproduce Figure 2b in Bursik & Woods (1996)

(i.e., the black solid curves in Figure F.1c), we giveTa = 273 K andns,in = 0.97, which

is often used as typical values in Bursik & Woods (1996). We also giveCs = 1100

[J/(kg · K)], Cpa = 1004 [J/(kg · K)], andCpg = 1810 [J/(kg · K)] (e.g., Suzuki et al.,

2016; Table.??). We substitute these values into Eq. (??) to obtain Figure F.1a. Figure

2b in Bursik & Woods (1996) (i.e., the black solid curves in Figure F.1c) is qualitatively
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different from Figure F.1a; namely, a upward-convex curve is produced in Figure F.1a

whereas a convex-downward curve is produced in Figure 2b in Bursik & Woods (1996)

(i.e., the black solid curves in Figure F.1c).

We investigate the cause of the qualitative difference between Figure F.1a and Figure

2b in Bursik & Woods (1996) (i.e., the black solid curves in Figure F.1c). Because the

mass fraction of solid particle in the erupted materialns,in is constant, the increase of the

mass fraction of gas at the collapsing column edge,1 − ns0, means the increase of the

mass fraction of entrained air at the collapsing column edge,na0 (i.e.,na0 = 1−ns0/ns,in;

see Subsections?? and?? for the details). In Figure F.1a and Figure 2b in Bursik &

Woods (1996) (i.e., the black solid curves in Figure F.1c), the boundary temperature at

the collapsing column edge,T0, agrees with the temperatures of the erupted material,Tin,

when the mass fraction of gas at the collapsing column edge,1−ns0, is the most smallest

(i.e.,na0 = 0). Because we giveCpa smaller thanCpg andCs, na0 should be remarkably

large to significantly cool the mixture at the collapsing column edge. Accordingly, the

upward-convex curve in Figure F.1a is consistent with physical intuition. In fact, the

results inverting the value of the specific heat at constant pressure of airCpa and that

of volcanic gasCpg (Figure F.1b) agree well with Figure 2b in Bursik & Woods (1996)

(see Figure F.1c). We also mathematically proved that Eq. (??) as a function of mass

fraction of gas at the collapsing column edge (1 − ns0) must produce a upward-convex

curve in the case ofCpa < Cpg andCpa < Cs (the details are not presented here). Thus,

the boundary temperature at the collapsing column edge,T0, may not correctly calculated

due to inverting the value of the specific heat at constant pressure of airCpa and that of

volcanic gasCpg, in Figure 2b of Bursik & Woods (1996) (i.e., the black solid curves in

Figure F.1c).
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Figure F.1:The boundary temperature at the collapsing column edge,T0, as a function of the
gas mass fraction in the current at the collapsing column edge (1 − ns0). The solid particle mass
fraction in the erupted materialns,in = 0.97; the temperature of the erupted materialTin = 800 K
(blue), 1000 K (green), 1200 K (red). (a) the values ofCpa andCpg are correctly given (see Table
??); (b) the values ofCpa andCpg are inverted; (c) (b) is superposed on Figure 2b of Bursik &
Woods (1996).
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F.2.2 Analytical solutions of steady runout distance without entrain-

ment effect

Bursik & Woods (1996) approximately derived analytical solutions of the steady runout

distance of the steady dilute PDCs without air entrainment. We found that the analytical

solutions are not correctly written in Bursik & Woods (1996). We show the details below.

Radially spreading currents

We derive the analytical solution of the steady runout distance of the radially spreading

dilute PDCs without air entrainment. Then, we compare the analytical solution derived

by us with that written in Bursik & Woods (1996).

Assuming that the rate of entrainment of ambient air is negligible, the volume flux

of the currentV̇ (≡ 2πūhr), the temperature of the currentT̄ and the gas constant of the

currentR̄ remain approximately constant along the length of the current (i.e.,V̇ = V̇0 ≡

2πu0h0r0; T̄ = T0; R̄ = R0). Then, the particle mass conservation Eq. (F.6) may be

reduced to

d

dr
(n̄sρ̄) = −n̄sρ̄

2πWs

V̇0

r

∴ d(n̄sρ̄)

n̄sρ̄
= −2πWs

V̇0

r dr. (F.14)

This is integrated from the collapsing column edger = r0 to yield

∫ n̄sρ̄

ns0ρ0

d(n̄′
sρ̄

′)

n̄′
sρ̄

′ = −
∫ r

r0

2πWs

V̇0

r′ dr′

∴ ln

[
n̄sρ̄

ns0ρ0

]
= −

∫ r

r0

2πWs

V̇0

r′ dr′. (F.15)

Assuming thatWs remains approximately constant with distance from the collapsing col-
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umn edge, Eq. (F.15) is reduced to

ln

[
n̄sρ̄

ns0ρ0

]
= −πWs

V̇0

(r2 − r20). (F.16)

The bulk densitȳρ is expressed in

ρ̄ =

[
n̄s

ρs
+

(1− n̄s)R0T0

p̄

]−1

(∵ Eq. (F.5))

≈ p̄

(1− n̄s)R0T0

(∵ n̄s/ρs ≪ (1− n̄s)R0T0/p̄). (F.17)

Substituting Eq. (F.17) into Eq. (F.16), we obtain

ln

[
n̄s/(1− n̄s)

ns0/(1− ns0)

]
= −πWs

V̇0

(r2 − r20)

∴ n̄s/(1− n̄s)

ns0/(1− ns0)
= exp

[
−πWs

V̇0

(r2 − r20)

]
∴ n̄s

1− n̄s

=
ns0

1− ns0

exp

[
−πWs

V̇0

(r2 − r20)

]
. (F.18)

Becausēρ = ρa at the steady runout distancer∞, we may express the gas mass fraction

at the steady runout distance in

1− n̄s∞ =
RaTa

R0T0

(∵ p̄ = ρaRaTa) (F.19)

by using Eq. (F.17), whereas1− n̄s∞ = Ta/T0 is written in Bursik & Woods (1996) (see

the next paragraph for the details). Substituting Eq. (F.19) into Eq. (F.18), we can obtain
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the steady runout distancer∞ as

R0T0

RaTa

(
1− RaTa

R0T0

)
=

ns0

1− ns0

exp

[
−πWs

V̇0

(r2∞ − r20)

]
∴ R0T0 −RaTa

RaTa

=
ns0

1− ns0

exp

[
−πWs

V̇0

(r2∞ − r20)

]
∴ (R0T0 −RaTa)(1− ns0)

RaTans0

= exp

[
−πWs

V̇0

(r2∞ − r20)

]
∴ ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]
=

πWs

V̇0

(r2∞ − r20)

∴ r∞ =

√
r20 +

V̇0

πWs

ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]

∴ r∞ =

√
r20 +

Ṁ0

πρ0Ws

ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]
. (F.20)

In the text of Bursik & Woods (1996), the gas mass fraction at the steady runout

distance

1− n̄s∞ =
Ta

T0

(F.21)

is used instead of Eq. (F.19). Accordingly, in the text of Bursik & Woods (1996), the

steady runout distancer∞ is expressed in

r∞ =

√
r20 +

V̇0

πWs

ln

[
Tans0

(T0 − Ta)(1− ns0)

]

=

√
r20 +

Ṁ0

πρ0Ws

ln

[
Tans0

(T0 − Ta)(1− ns0)

]
. (F.22)

Next, we reproduce Figure 3b in Bursik & Woods (1996) (see the black curves in

Figure F.2d) by using Eq. (F.20) or Eq. (F.22). This figure shows the steady runout

distances as a function of mass fraction of gas at the collapsing column edge (1 − ns0).

Bursik & Woods (1996) are thought to use the correct Eq. (F.20) or the incorrect Eq.

(F.22) to describe Figure 3b in Bursik & Woods (1996) (i.e., the black curves in Figure
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F.2d). Furthermore, in this figure, the boundary temperature at the collapsing column

edge,T0, may be erroneously calculated due to inverting the value of the specific heat

at constant pressure of airCpa and that of volcanic gasCpg (see Subsection F.2.1 for the

details). Thus, we show the results of the following three cases: (1) the correct Eq. (F.20)

is used and the values ofCpa andCpg are correctly given (Figure F.2a); (2) the correct Eq.

(F.20) is used and the values ofCpa andCpg are inverted (Figure F.2b); (3) the incorrect

Eq. (F.22) is used and the values ofCpa andCpg are inverted (Figure F.2c). Then, we

compare these results with Figure 3b of Bursik & Woods (1996) (Figures F.2d and e).

Figure F.2d and e shows that Figure 3b of Bursik & Woods (1996) agrees much better

with the results of case (2) than with the results of case (3). This means that, although the

incorrect Eq. (F.22) is written in the text of Bursik & Woods (1996), the correct Eq. (F.20)

may be used in Figure 3b of Bursik & Woods (1996). And, Figure F.2a and d shows that

Figure 3b of Bursik & Woods (1996) agrees much better with the results of case (2) than

with the results of case (1). This means that the boundary temperature at the collapsing

column edge,T0, may be erroneously calculated due to inverting the value of the specific

heat at constant pressure of airCpa and that of volcanic gasCpg in Figure 3b of Bursik &

Woods (1996).

One-dimensional channelized currents

We derive the analytical solution of the steady runout distance of the one-dimensional

channelized dilute PDCs without air entrainment. Assuming that the rate of entrainment

of ambient air is negligible, the volume flux of the currentV̇ (≡ ūhy0), the temperature of

the currentT̄ and the gas constant of the currentR̄ remain approximately constant along

the length of the current (i.e.,̇V = V̇0 ≡ u0h0y0; T̄ = T0; R̄ = R0). Here,y0 is the
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Figure F.2: Steady runout distances as a function of the gas mass fraction in the current at
the collapsing column edge (1 − ns0). The mass eruption rate at the collapsing column edge
ρ0u0h0r0 = 109 kg/s; particle settling velocityWs = 1 m/s; the distance of the collapsing column
edger0 = 1 km; the temperature of the erupted materialTin = 800 K (blue),1000 K (green),1200
K (red); the solid particle mass fraction in the erupted materialns,in = 0.97 (solid curves), 0.94
(dashed curve). (a) the correct Eq. (F.20) is used and the values ofCpa andCpg are correctly given
(see Table??); (b) the correct Eq. (F.20) is used and the values ofCpa andCpg are inverted; (c)
the incorrect Eq. (F.22) is used and the values ofCpa andCpg are inverted; (d) (b) is superposed
on Figure 3b in Bursik & Woods (1996); (e) (c) is superposed on Figure 3b in Bursik & Woods
(1996).
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channel width. Then, the particle mass conservation Eq. (F.1) may be reduced to

d

dx
(n̄sρ̄) = −n̄sρ̄

Ws

V̇0

y0

∴ d(n̄sρ̄)

n̄sρ̄
= −Ws

V̇0

y0 dx. (F.23)

This is integrated from the collapsing column edgex = x0 to yield

∫ n̄sρ̄

ns0ρ0

d(n̄′
sρ̄

′)

n̄′
sρ̄

′ = −
∫ x

x0

Ws

V̇0

y0 dx
′

∴ ln

[
n̄sρ̄

ns0ρ0

]
= −

∫ x

x0

Ws

V̇0

y0 dx
′. (F.24)

Assuming thatWs remains approximately constant with distance from the collapsing col-

umn edge, Eq. (F.24) is reduced to

ln

[
n̄sρ̄

ns0ρ0

]
= −Ws

V̇0

y0(x− x0). (F.25)

The bulk densitȳρ is expressed in

ρ̄ =

[
n̄s

ρs
+

(1− n̄s)R0T0

p̄

]−1

(∵ Eq. (F.5))

≈ p̄

(1− n̄s)R0T0

(∵ n̄s/ρs ≪ (1− n̄s)R0T0/p̄). (F.26)

Substituting Eq. (F.26) into Eq. (F.25), we obtain

ln

[
n̄s/(1− n̄s)

ns0/(1− ns0)

]
= −Ws

V̇0

y0(x− x0)

∴ n̄s/(1− n̄s)

ns0/(1− ns0)
= exp

[
−Ws

V̇0

y0(x− x0)

]
∴ n̄s

1− n̄s

=
ns0

1− ns0

exp

[
−Ws

V̇0

y0(x− x0)

]
. (F.27)

115



Becausēρ = ρa at the steady runout distancex∞, we may express the gas mass fraction

at the steady runout distance in

1− n̄s∞ =
RaTa

R0T0

(∵ p̄ = ρaRaTa) (F.28)

by using Eq. (F.26), whereas1 − n̄s∞ = Ta/T0 is used in the text of Bursik & Woods

(1996) (see the next paragraph for the details). Substituting Eq. (F.28) into Eq. (F.27), we

can obtain the steady runout distancex∞ as

R0T0

RaTa

(
1− RaTa

R0T0

)
=

ns0

1− ns0

exp

[
−Ws

V̇0

y0(x∞ − x0)

]
∴ R0T0 −RaTa

RaTa

=
ns0

1− ns0

exp

[
−Ws

V̇0

y0(x∞ − x0)

]
∴ (R0T0 −RaTa)(1− ns0)

RaTans0

= exp

[
−Ws

V̇0

y0(x∞ − x0)

]
∴ ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]
=

Ws

V̇0

y0(x∞ − x0)

∴ x∞ = x0 +
V̇0

y0Ws

ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]
∴ x∞ = x0 +

Ṁ0

ρ0y0Ws

ln

[
RaTans0

(R0T0 −RaTa)(1− ns0)

]
. (F.29)

In the text of Bursik & Woods (1996), the gas mass fraction at the steady runout

distance

1− n̄s∞ =
Ta

T0

(F.30)

is used instead of Eq. (F.28). Accordingly, in the text of Bursik & Woods (1996), the

steady runout distancex∞ is expressed in

x∞ = x0 +
V̇0

y0Ws

ln

[
Tans0

(T0 − Ta)(1− ns0)

]
= x0 +

Ṁ0

ρ0y0Ws

ln

[
Tans0

(T0 − Ta)(1− ns0)

]
. (F.31)
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