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Abstract 
Cellular drug responses are the most fundamental reactions in biology and medicine, which 

provides valuable information for understanding the fundamental mechanisms of biology 

and the development of new drugs. To investigate the drug responses efficiently and 

massively, high-throughput screening has played a major role over the past decades. This 

technique is powerful in exploring a large number of samples, but is often limited by the 

fact that it only acquires a single variate from each sample, for example, live or dead. 

Owing to the technological advances of imaging and robotics, image-based high-

throughput screening, namely high-content screening, has been developed to acquire a 

significantly larger number of variables in each sample to capture more information in the 

cellular drug responses. Such a multivariate image-based technique has been proven 

effective in a broad spectrum of quantitative analysis not simply in drug responses but also 

associated with genome and proteome analysis. 

Despite the utility of image-based screening, it falls short in addressing the full needs 

of biological applications as it inherently requires fluorescent labeling which has several 

drawbacks. First, fluorescent probes are not available for all target molecules and may 

interfere with natural cellular functions. Although a wide range of immunofluorescent 

probes are commercially available for cellular imaging, they are costly and require time-

consuming labeling processes including cell fixation which kills the cells, and thus hinders 

live-cell and large-scale assays. In addition, while fluorescently tagged cell lines can offer 

live-cell assays without such a labeling process, the development of such cell lines requires 

even more efforts than immunofluorescent labeling. Therefore, a method for image-based 

high-content screening without using fluorophores is desired for easy manipulation and 

economical assays. 

In my doctoral work, I studied cellular drug responses in a label-free manner by high-

throughput bright-field imaging with the aid of machine-learning techniques in various 

settings. Specifically, small morphological changes present in the cellular images, which 

are too subtle to be observed by human eyes, were consistently detected. Hence, dose 

dependence of the drug responses was visualized. In addition to the proof-of-concept 
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demonstration, I also applied the method to detection of drug responses in whole blood as 

well as in an ex vivo setting.  

 
 
Thesis Supervisor: Keisuke Goda 
Tile: Professor of Chemistry 



  iii 

Acknowledgement 
I would like to express my deepest gratitude to everyone who have made this thesis work 

possible. First of all, I am deeply grateful to my supervisor Keisuke Goda for accepting 

me in his group as a PhD student. His generosity and kindness allowed me to learn from a 

variety of works including setting up new laboratory rooms and writing grant applications. 

These works have been my precious experiences and greatly enriched my knowledge and 

perspectives. He also gave me the freedom to work on what I wanted while providing the 

necessary resources to help me succeeded in my work. His leadership and mentorship were 

demanding but instructive. I have to admit that I wouldn’t be able to come so far without 

his mentorship.  

Second of all, it has been my great fortune to work with Cheng Lei, my team leader. 

His greatness and mercifulness always encouraged and backed me to take on a challenge 

while helping me solve problems patiently. This thesis work will never be completed 

without his dedicated support. His humor entertained everyone in the laboratory. Thanks 

to him, I could also improve my Chinese dramatically and make many Chinese friends. I 

wish I could take him with me as I move onto the next stage of my professional career.  

I would also like to thank another team leader of mine Hideharu Mikami for his 

dedicated teaching and supervision. His superb technical skills and expertise about 

building optical setups, electronics and programming impressed me greatly. Most of my 

knowledge and skills about optics are inherited from him. His attitude toward research also 

influenced me greatly.  

Yuko Kanda has been an incredible supporter as well. Being a seasoned technician, 

she has been the only one who could help me for my biological experiments. She has also 

been one of the few people with whom I can discuss my results of biological experiment. 

My thesis work would not finish timely without her devoted support.I am also grateful to 

Kotaro Hiramatsu who has kindly been my supervisor for animal experiments. His advices 

substantially improved the quality of for my presentation at the preliminary thesis report. 

Akihiro Isozaki has also been a great supporter for teaching me and helping me perform 

microfluidic experiments. I enjoyed every discussion with him.  



  iv 

I am thankful to my research collaborators. First, I appreciate Haku Kyo, Ryohei 

Katayama and Naoya Fujia for providing me knowledge and resources for gene 

modification and animal experiments. I also thank Kazumichi Nagasawa and Hiroshi 

Watarai for providing FACS expertise. The advices given by Ming Li were invaluable, and 

accelerated my work significantly. My team members, especially Baoshan Guo and Yiyue 

Jiang have always been cheerful. I will never forget the days I spent with them. Finally, 

and most importantly, I am deeply grateful to my family for being supportive and letting 

me peruse my PhD degree. 

This work was funded by ImPACT Program of the CSTI (Cabinet Office, Government 

of Japan) and partly by Noguchi Shitagau Research Grant, New Technology Development 

Foundation, Konica Minolta Imaging Science Encouragement Award, JSPS KAKENHI 

Grant Numbers 15J02613, 25702024 and 25560190, JGC-S Scholarship Foundation, 

Mitsubishi Foundation, TOBIRA Award, and Takeda Science Foundation. 



  v 

Contents 
Abstract ............................................................................................................................... i 

Acknowledgement ............................................................................................................ iii 

Contents ............................................................................................................................. v 

List of Figures ................................................................................................................. viii 

List of Tables ..................................................................................................................... xi 

1 Introduction ................................................................................................................ 1 
1.1 Cellular drug responses in medicine ................................................................... 1 
1.2 High-throughput screening ................................................................................. 2 
1.3 High-content screening ....................................................................................... 4 
1.4 High-speed imaging modality in high-content screening ................................... 5 
1.5 Flow cytometry ................................................................................................... 7 
1.6 Scope and structure of thesis ............................................................................... 8 

2 Label-free detection of drug responses of cancer cells: principles ...................... 10 
2.1 Overview of OTS microscopy .......................................................................... 10 
2.2 Principles of optical time stretch ....................................................................... 11 
2.3 Microfluidic technology for OTS microscopy .................................................. 12 
2.4 Optofluidic time-stretch (OTS) microscopy ..................................................... 15 

2.4.1 Working mechanism of optofluidic time-stretch microscopy ....................... 15 
2.4.2 Specification of OTS microscope used in this thesis .................................... 20 

2.5 Theory of image feature extraction ................................................................... 21 
2.6 Theory of support vector machine classification .............................................. 22 

3 Label-free detection of drug responses of cancer cells: experimental 

demonstration .......................................................................................................... 24 
3.1 Introduction ....................................................................................................... 24 
3.2 Materials and methods ...................................................................................... 25 

3.2.1 Cell culture .................................................................................................... 25 



  vi 

3.2.2 Drug treatment .............................................................................................. 25 
3.2.3 Sample preparation ....................................................................................... 25 
3.2.4 Microfluidic device fabrication ..................................................................... 26 
3.2.5 Optofluidic time-stretch microscopic imaging ............................................. 27 
3.2.6 Conventional bright-field microscopic imaging ........................................... 28 

3.3 Results and discussion ...................................................................................... 28 
3.3.1 Optofluidic time-stretch imaging .................................................................. 28 
3.3.2 Classification of drug-treated and -untreated cells ....................................... 29 
3.3.3 Dose-dependent change in feature space ...................................................... 31 
3.3.4 Dose-dependent classification accuracy with a single model ....................... 35 

4 Label-free detection of drug responses of cancer cells in human whole blood .. 37 
4.1 Introduction ....................................................................................................... 37 
4.2 Material and methods ........................................................................................ 38 

4.2.1 Cell culture .................................................................................................... 38 
4.2.2 Drug treatment .............................................................................................. 38 
4.2.3 Cell viability assay ........................................................................................ 39 
4.2.4 Blood draw .................................................................................................... 39 
4.2.5 Sample preparation ....................................................................................... 39 
4.2.6 Microfluidic device fabrication ..................................................................... 39 

4.3 Results and discussion ...................................................................................... 40 
4.3.1 Image libraries of K562 and K562/ADM ..................................................... 40 
4.3.2 Dose-dependent drug responses in K562 and K562/ADM ........................... 40 
4.3.3 Evaluating microfluidic device by flowing undiluted whole blood .............. 45 
4.3.4 Imaging of K562 and K562/ADM spiked in undiluted whole blood ........... 47 

5 Label-free detection of drug responses of ex vivo cancer cells in mice ............... 50 
5.1 Introduction ....................................................................................................... 50 
5.2 Material and methods ........................................................................................ 52 

5.2.1 Cell culture .................................................................................................... 52 
5.2.2 Generation of fluorescent cell lines .............................................................. 52 
5.2.3 Tumor transplantation ................................................................................... 52 



  vii 

5.2.4 Ex vivo drug response assay .......................................................................... 52 
5.2.5 In vitro drug response assay .......................................................................... 53 
5.2.6 Cell viability assay ........................................................................................ 53 

5.3 Results and discussion ...................................................................................... 53 
5.3.1 Image libraries of A549/EGFP and PC-9/mRuby cultured in vitro .............. 53 
5.3.2 In vitro dose-dependent drug responses of A549/EGFP and PC9/mRuby ... 54 
5.3.3 Ex vivo dose-dependent drug responses of PC-9/mRuby and A549/EGFP .. 58 

6 Summary and outlook ............................................................................................. 61 

Table of Acronyms .......................................................................................................... 64 

Publications ..................................................................................................................... 66 

Bibliography .................................................................................................................... 68 
 
 



  viii 

List of Figures 
Figure 1-1 Working mechanisms of charge-coupled device (CCD) camera and a point 

scanning imaging system. ............................................................................. 7 
Figure 2-1. Schematic illustration of optofluidic time-stretch microscope utilized in this 

thesis. ............................................................................................................ 11 
Figure 2-2. Using time-stretch technique can increase the number of sampling points with 

fixed sampling rate of ADC. ......................................................................... 12 
Figure 2-3. Schematic illustration and working principle of cell focusing in microfluidic 

devices. .......................................................................................................... 14 
Figure 2-4. Schematic illustration of time-stretch imaging. ............................................. 16 
Figure 2-5. Time-space conversion at a diffraction grating. ............................................. 17 
Figure 2-6. Imaging of target by mapping the spatial information into the spectrum of the 

illumination light. .......................................................................................... 18 
Figure 2-7. Time-space conversion at a diffraction grating. ............................................. 19 
Figure 2-8. Image construction in OTS imaging. ............................................................. 20 
Figure 2-9. The process of image processing and segmentation. ..................................... 21 
Figure 2-10. Illustration of SVM classifier setting a hyperplane. ..................................... 23 
Figure 3-1. Workflow of label-free detection of drug responses of cancer cells. ............. 25 
Figure 3-2. Design of microfluidic channel. ..................................................................... 27 
Figure 3-3. Process of microfluidic device fabrication. .................................................... 27 
Figure 3-4. Image libraries of drug-treated and -untreated MCF-7 cells under optofluidic 

time-stretch microscope (flowing at a speed of 10 m/s) and conventional 

microscope (static). ....................................................................................... 29 
Figure 3-5. Classification of drug-treated and -untreated cancer cells. ............................ 31 
Figure 3-6. Calculating maximum mean discrepancy (MMD) between the negative control 

and drug-treated cell population. Illustration of the maximum mean 

discrepancy (MMD). ..................................................................................... 32 
Figure 3-7. MMD between the negative control and drug-treated cell population at each 

drug concentration. ....................................................................................... 33 



  ix 

Figure 3-8. MMD of each feature in trial 1 at 1 µM and trial 2 at 100 nM. ..................... 33 
Figure 3-9. Classification accuracy dependence on the number of feature. ..................... 34 
Figure 3-10. Classification accuracy using single SVM models. Classification accuracy 

produced by the SVM models in the first experiment. ................................. 36 
Figure 3-11. Evaluation of single SVM models across different experiments. ................ 36 
Figure 4-1 Workflow of label-free detection of drug responses of K562 and K562/ADM 

cells. .............................................................................................................. 38 
Figure 4-2. Image libraries of drug-treated and untreated K562 (a) and K562/ADM (b) 

acquired with optofluidic time-stretch microscope. ...................................... 40 
Figure 4-3. Classification accuracy of K562 and K562/ADM at various drug 

concentrations after 24-hour drug treatment. ................................................ 41 
Figure 4-4. Maximum mean discrepancy of K562 and K562/ADM at various drug 

concentrations after 24-hour drug treatment. ................................................ 42 
Figure 4-5. Cell viability of K562 and K562/ADM treated with adriamycin for 24 and 72 

hours. ............................................................................................................. 43 
Figure 4-6. Reaction to measure caspase-3/7 activity. ...................................................... 43 
Figure 4-7. Caspase-3/7 activity of K562 and K562/ADM treated with adriamycin for 24 

hours. ............................................................................................................. 44 
Figure 4-8. Design of microfluidic channel. ..................................................................... 45 
Figure 4-9. Cell focusing at various position of the channel. ........................................... 47 
Figure 4-10. K562 and K562/ADM cells spiked in whole blood were clearly captured in 

the flow. ......................................................................................................... 48 
Figure 4-11. Classification accuracy of K562 and K562/ADM spiked in whole blood after 

24-hour drug treatment at various drug concentrations. ............................... 49 
Figure 4-12. Maximum mean discrepancy of K562 and K562/ADM spiked in whole blood 

after 24-hour drug treatment at various drug concentrations. ....................... 49 
Figure 5-1. Workflow of label-free detection of drug responses of PC-9/mRuby and 

A549/EGFP cells. .......................................................................................... 51 
Figure 5-2. Image libraries of drug-treated and untreated PC-9/mRuby (a) and A549/EGFP 

(b) acquired with optofluidic time-stretch microscope. ................................ 54 



  x 

Figure 5-3. Classification accuracy of PC-9/mRuby and A549/EGFP at various drug 

concentrations after 24-hour drug treatment. ................................................ 55 
Figure 5-4. Maximum mean discrepancy of A549/EGFP and PC-9/mRuby at various drug 

concentrations after 24-hour drug treatment. ................................................ 56 
Figure 5-5. Cell viability of A549/EGFP and PC-9/mRuby treated with adriamycin for 24 

hours. ............................................................................................................. 57 
Figure 5-6. Caspase-3/7 activity of A549/EGFP and PC-9/mRuby treated with gefitinib for 

24 hours. ........................................................................................................ 57 
Figure 5-7. Fluorescence intensity showing the populations of live and dead cells. ........ 59 
Figure 5-8. Classification accuracy of ex vivo PC-9/mRuby and A549/EGFP at various 

drug concentrations after 24-hour drug treatment. ....................................... 59 
Figure 5-9. Maximum mean discrepancy of A549/EGFP and PC-9/mRuby at various drug 

concentrations after 24-hour drug treatment. ................................................ 60 
 



  xi 

List of Tables 
Table 2–1. Specification of OTS microscope used in this thesis. ..................................... 20 
Table 4–1. IC50 of K562 and K562/ADM treated with adriamycin for 24 and 72 hours.43 



  1 

Chapter 1 

1 Introduction 

1.1 Cellular drug responses in medicine 
Cellular drug responses are the most fundamental reactions in biology and medicine. 

Historically, many drugs have been developed by the investigation of drug responses 

between cells and natural products. A recent analysis of new drugs approved by the US 

Food and Drug Administration (FDA) between 1999 and 2008 has revealed that among 

the discovery of first-in-class drugs1 small-molecule drugs2, 28 originated from phenotypic 

screening in which drug responses are monitored to select the leading compounds, whereas 

17 were discovered through target-based drug discovery where leading compounds were 

screened to act on specific hypothetical targets. Although most large molecule drugs have 

been isolated from target-based screening, phenotypic screening is also employed to isolate 

antibodies as new medicines against cancer and infectious diseases [1]. Moreover, recent 

rapid advances in biotechnology including the generation of induced pluripotent stem (iPS) 

cell [2], gene-editing technology such as CRISPR-Cas [3], and three-dimension cell 

culture technology such as spheroid [4], organ-on-chip [5] and organoids [6] opens up new 

fields for phenotypic screening.  

Looking into the cellular drug responses also helps understanding of the biology 

behind the pharmaceutical reactions. Coupled with genetic modification, studying cellular 

drug responses can elucidate the biology of diseases at a genome level. For example, by 

treating Drosophila primary neurons that expresses pathogenic Huntingtin protein with 

small molecule drugs and RNAi, a suppressing protein and four novel drugs of Huntington 

                                                
1 Drugs that have mechanisms of action different from those of preceding drugs. First-in-class drug is 

one indicator to scale the innovation of drug discovery. 
2 Small molecule drugs refer to drugs often with molecular weight lower than 900, which can easily 

enter cells through cell membranes. In contrast, large molecule drugs such as monoclonal antibodies 

are not able to diffuse across cell membranes. 
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disease were identified [7]. Another study found discrete functions of cell wall components 

in budding yeast by analyses of morphological changes after drug treatment [8]. By 

employing multi-variate methods, investigation in cellular drug responses can elucidate 

and characterize cellular heterogeneity [9]. As new therapeutic agents are rapidly gaining 

their momenta such as monoclonal antibodies, stem-cell therapy and gene-editing 

technology, the definition of “drug” is becoming more and more ambiguous. With the 

definition of drug in a broad sense, cellular drug responses can refer any perturbation that 

acts on cells including small molecule drugs, antibodies, RNAi and gene modification. In 

this context, studying cellular drug responses especially with multi-variate methods holds 

a great promise to uncover new biological findings. 

1.2 High-throughput screening 
High-throughput screening (HTS) is a platform typically designed for drug discovery and 

related biological research. It consists of multiple automated technologies including liquid 

handling, cell culturing and optical measurement collective implementation of automated 

technologies, which replaces former manual processes greatly improving the capacity and 

speed of drug discovery. The development of HTS can be traced back to the late 1980s in 

which microbes were used to screen antibiotics [10]. In the early 1990s HTS was applied 

to anticancer drug screening in which a panel of 60 human tumor cell lines were used to 

represent leukemia, melanoma, as well as cancers of colon, lung, ovary, kidney, and central 

nervous system [11]. In the first demonstration of HTS, cells treated with five 10-fold 

dilutions of test compounds for 48 hours were measured in an end-point assay of cell 

viability at a throughput of 400 compounds per week [11]. Owing to the advances of 

robotics, biochemistry and nanotechnology, a variety of assays is now compatible with 

HTS enabling the throughput up to 100,000 compounds per day [12].  

HTS compatible assays can be categorized into two types: biochemical assays and 

cell-based assays. Biochemical assays are designed to directly investigate specific 

molecules, and have a longer history in the pharmaceutical industry. Such assays include 

the measurement of enzyme activity (such as kinase [13], protease [14], and 

transferase [15]), receptor-ligand binding (such as G-protein coupled receptor [16], 

nuclear receptor [17], and ion-channel [18]) and protein-protein interaction [19]. Although 
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this type of assays is readily miniaturized with less variation, the output activities do not 

always represent the actual ones in a cellular context [20]. In addition, not all target 

molecules can be purified for this type of assays. Cell-based assays, on the other hand, are 

designed to assess an entire pathway as a whole, and do not require prior knowledge about 

target molecules. Such assays include functional assays [21,22], reporter gene 

assays [23,24], and phenotypic assays [25,26]. 

Diverse types of detection modality can be incorporated in HTS including LC-MS 

(liquid chromatography-mass spectrometry) [27], GC-MS (gas chromatography-mass 

spectrometry) [28], genome sequencing [29], RNA sequencing [30] and optical 

measurement such as detection of fluorescence, luminescence, absorbance, and 

spectroscopic approach. In the recent HTS, fluorescence detection is arguably the most 

broadly used method in HTS due to its high sensitivity, high specificity, a variety of 

fluorophores, and relatively simple operation comparing to other modalities. Fluorescence-

based assays can be categorized into two types: bulk detection and single-molecule 

detection. The first type includes detection of total fluorescence intensity, fluorescence 

polarization [31], fluorescence resonance energy transfer (FRET) [22], fluorescence 

lifetime [32], time-resolved fluorescence [33], and combinations of these parameters such 

as time-resolved fluorescence polarization [34]. The other type includes fluorescence 

correlation spectroscopy [35] and fluorescence intensity distribution analysis [36]. 

A major limitation in conventional HTS is that it only provides single variate readout 

from each well, which represents the average value of all the cells in the well. This becomes 

problematic particularly in cell-based assays because the cell populations that are used in 

assays often do not uniformly respond to the assay. The variation in the population in each 

well may be large enough to mislead the interpretation of assay results [37]. Not only 

overcome the limitation of single-variate methods, can access to multi-variate 

measurements also provide additional advantages [38]: 

• One can find a best variable to select the hits after running the whole assay. 

• More variables from the same samples can offer richer information to characterize the 

hits. 

• Variables from each cell in the same well can offer multiple statistical representations 

other than mean (e.g. median, variation, percentage of cells above a threshold).  
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• Per-cell data may be useful in combination with other single-cell analysis methods in 

downstream. 

• Certain variables may be useful to remove artifacts or unwanted cells (e.g. dead cells). 

Multivariated high-throughput screening is often referred to as high-content screening. 

This method will be discussed in the next section. 

1.3 High-content screening 
High-content screening (HCS) refers to a platform or technique by which more than one 

measurement are obtained from each well. In comparison with conventional HTS in which 

typically only one variable per well is obtained, HCS can offer richer information from the 

same cells simultaneously. In conventional single-variate HTS, the more variates one 

desires to obtain, the more wells one has to prepare, which dramatically increases the 

experimental costs, and thus in many cases, HTS is carried out with only a few or single 

drug concentration despite the sample number may be large [39,40]. To efficiently and 

quickly obtain a large number of variables, imaging modality is employed in HCS. This is 

why HCS normally refers to image-based screening methods. In the rest of this thesis, 

unless specially noted, HTS refers to single-variate screening, and HCS refers to image-

based screening. 

The first HCS was created in the late 1990s, in which each cell was labeled with 

multiple fluorescent reagents and analyzed at a subcellular resolution [41]. HCS was 

developed because HTS at that time could not fully meet the needs from pharmaceutical 

industry. This was because HTS can only deal with relatively simple assays such as mix-

and-read in spite of the complexity of drug responses, and traditionally the development 

of HTS focused to improve the handling and reading speed of plates [42]. Indeed, despite 

increasing investment in research and development, the productivity of pharmaceutical 

industry had decreased by the time of early 2000s [43].  

On the path of the development in HCS, there are two fundamental factors limiting 

the performance of HCS: imaging speed and the use of fluorescence. The former will be 

discussed in the next section, and hence we cover the limitation of fluorescence labeling 

in this section. As we discussed in the previous section, fluorescence detection is the most 

widely used method in HTS. This trend also applies to HCS because the HTS and HCS 
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share the same advantages. However, fluorescence labeling has several drawbacks. First 

of all, fluorescent probes are not available for all target molecules and may interfere with 

natural cellular functions [44]. While a wide range of immunofluorescent probes are 

commonly used in single-cell imaging for multivariate profiling, they are costly and 

require time-consuming labeling processes, including cell fixation which kills the cells, 

hindering large-scale assays [45]. Fluorescently tagged cell lines can offer live-cell assays 

without the labeling process, but the development of such cell lines requires more effort 

than immunofluorescent labeling [46]. Therefore, an alternative for image-based high-

content screening without the need for fluorophores is clearly needed for easy 

manipulation and economical assays. To address this limitation, this thesis describes a 

study of investigating cellular drug responses with an image-based method but without 

using fluorescence labeling. 

1.4 High-speed imaging modality in high-content screening 
High-speed imaging is one of the key factors in image-based screening. Increase in frame 

rate can directly enhance the throughput of screening. Currently all commercially available 

instruments for image-based screening use charge-coupled device (CCD) or 

complementary metal–oxide–semiconductor (CMOS) (including EMCCD (electron 

multiplied CCD) and sCMOS (scientific CMOS)) cameras for image acquisition [47]. 

CCD or CMOS cameras consist of an array of photodiode sensors in which each sensor 

convert photons to electric signals which are later digitized and output as each pixel of an 

image. The CCD camera has a single digitizer to digitize the sequential signal from all the 

pixels, while the CMOS camera uses multiple digitizers on each sensor to speed up the 

charge download [48]. However, regardless of CMOS or CCD, a fundamental limitation 

in a sensor array that hampers high-speed image acquisition is the time required to transmit 

signals from each sensor. Therefore, the number of pixels in each image must be reduced 

in exchange for increase frame rates. The penalty is that pixel resolution has to be 

compromised at high frame rates. As the maximum frame rate of commercially available 

state-of-art sCMOS is 100 fps with full pixel number (2560×2160  pixels) [49], the 

throughput of all commercially available HCS instruments is limited by the frame rate of 

camera. 
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Another scheme of image acquisition uses beam scanning and a single-pixel 

photodetector. In this scheme, the target object is scanned point-by-point with a moving 

illumination beam, and the resultant optical signal is detected by the single-pixel 

photodetector. This type of imaging methods is suitable for sensitive detection where only 

small number of photons can reach the photodetector. Accordingly, this imaging scheme is 

employed in confocal microscopy in which spatial resolution can be improved but 

acquirable photon number is lower than those of wide-field microscopy. The drawback of 

this scheme is the low frame rate as the imaging speed is determined by galvanometric 

mirrors. The maximum scan rate of galvanometric mirrors is typically up to a few kHz in 

one direction, thus the frame rate for a 1000-by-1000 pixels image is at most a few frames 

per second (fps). Besides, the field of view (FOV) in confocal microscopy is limited so 

that only one or a few cells can fit in. This is a significant drawback in the context of HCS, 

thus the manufactures of HCS instruments employ spinning disk confocal microscopy to 

circumvent the low frame-rate problem. Spinning disk microscopy uses “spinning pin hole 

array” to achieve high spatial resolution as the conventional confocal microscopy does but 

acquires photons with a sensor array (i.e. CCD or CMOS) to raise imaging speed. However, 

the frame rate spinning disk microscopy is ultimately limited by the frame rate of the sensor 

array. 

Time delay integration or TDI is another technique particularly used for CCD camera 

to improve its imaging speed by using a 2D image sensor as a 1D line-scanning sensor [50]. 

TDI is employed in the systems where the targets are moving linearly toward the same 

direction, and thus it has been utilized in both flow-cytometric or plate-wise HCS systems. 

When CCD transmit charges from photodiodes along each column as shown in Figure 1-1, 

TDI delays the timing of signal transfer and adds the charges from the photodiodes in the 

upper row to the next row synchronously with the moving target [51]. This technique 

allows the light from a given point consecutively expose on each pixel of the same column 

so that signal-to-noise ratio can be improved by virtually increase the exposure time 

without slowing the moving target. Despite this technique is useful in CCD cameras, it is 

incompatible with CMOS cameras because light is converted to digital signals at each pixel 

and no charge is passed to the photodiodes of next row [52].  
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The trade-off between pixel resolution and frame rate is a fundamental limitation. To 

overcome this limitation, an entirely new imaging modality has to be employed. In this 

thesis, we employed optofluidic time-stretch (OTS) microscopy to overcome this 

limitation. In short, this method takes the advantage of single-pixel photodetector that has 

higher sampling rate than that of sensor arrays. By changing the scanning mechanism from 

galvanometric mirror to an all-optical manner, the frame rate has dramatically increased. 

The principles and details will be discussed in the next chapter. 

 

 
Figure 1-1 Principles of charge-coupled device (CCD) camera and point scanning imaging system. 

1.5 Flow cytometry 
Flow cytometry is a technology to investigate each cell in a suspension by detecting the 

scatter light and fluorescence of the cell while it is flowing in a stream of fluid. The two 

types of scatter light are used to assess cell size (forward scatter) and granularity (side 

scatter). Fluorescence is employed as indicators from the cell for biomarker detection. A 

short introduction of flow cytometry is given in this section to offer a better comprehension 

of this thesis as the new method developed in this thesis also falls in the category of flow 

cytometry. 

In conventional flow cytometry, that is to say non-imaging flow cytometry, the signal 

collected from each cell is a waveform representing the total amount of light, whether it is 

scatter light or fluorescence. Three parameters can be extracted from the waveform: peak 

intensity (height), width, and the area under the curve (area). Among witch, width is used 

for calibration, height or area are used as the final readout, and thus only single variate is 

obtained for one observation per cell. Multivariate profiling can be done only by increasing 

the number of wavelengths of fluorescence. Although the currently commercially available 
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instruments can obtain more than 30 parameters simultaneously, labeling cells with more 

than 10 different wavelengths of fluorophores becomes extremely difficult for sample 

preparation due to heavy overlap in wavelength.  

Numerous efforts have been made to apply flow cytometry to clinical diagnosis. Today, 

flow cytometry has been approved for clinical diagnosis especially for leukemia [53,54]. 

Flow cytometric methods offer some advantages in diagnosis over other genetic methods. 

First, flow cytometry provides relatively quick assays with low costs in contrast to most 

molecular methods [55]. Second, it is more robust in targeting marker when compared with 

genetic methods such as quantitative PCR [56]. For example, leukemic blast populations 

often contain multiple subpopulations which carries varying number of different 

mutations [57]. Moreover, chemotherapy can also change the landscape of mutations or 

even generate new mutations, making it difficult to target a specific marker [58,59].  

Given the advantages of using flow cytometry for clinical diagnosis, I also explored 

the feasibility of applying the method developed in this thesis to more practical situations 

such as using whole blood and xenografts. 

1.6 Scope and structure of thesis 
This thesis explores the possibility of only using high-throughput bright-field imaging (i.e. 

label-free) to investigate drug responses in cancer cells. The work focuses on the 

investigation of dose-dependent morphological changes from which cellular drug 

responses can be interpreted. Not only demonstrating the proof-of-concept, does this thesis 

also explore the feasibility of using high-throughput bright-field imaging in various 

applications such as the investigation of cells spiked in undiluted whole blood and cells 

extracted from xenografts in mice.  

Chapter 2 discusses the principles of the major components that were employed in my 

study including optofluidic time-stretch (OTS) microscopy, microfluidic design, image 

processing and machine learning. Chapter 3 describes the experimental demonstration of 

distinguishing cellular drug responses through morphological changes as a proof-of-

concept. Specifically, I treated MCF-7, a human breast cancer cell with different 

concentrations of paclitaxel, a conventional anticancer drug to induce morphological 

changes on cells. While those morphological changes are too subtle to be observed by 
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human eyes, they were consistently detected on images through the method I developed in 

my thesis. Chapter 4 describes a challenging application of label-free detection of drug 

responses with whole blood. In this chapter, K562, a chronic myeloid leukemia cell line, 

and its drug resistant strain K562/ADM were treated with adriamycin, another 

conventional anticancer drug. which drug responses of cancer cells were evaluated as they 

were spiked in undiluted blood. The drug treated cells were further spiked into whole blood 

to mimic a practical situation in blood diagnosis, and their morphological changes were 

successfully captured by our system. Chapter 5 describes another challenging application 

where the drug responses of cancer cells harvested from mouse xenografts were evaluated. 

In this chapter, A549/EGFP and PC-9/mRuby (two lung cancer cell lines into which 

fluorescence proteins, mEGFP and mRuby2 were genetically inserted respectively) were 

generated to discriminate them from somatic murine cells. These cells were transplanted 

into athymic nude mice, and harvested after grown. The collected cells were further treated 

with gefitinib, an anticancer drug as targeted medicine for the evaluation of drug responses. 

Finally, Chapter 6 discusses the advantages and limitations in label-free detection of drug 

responses as well as possible future work. 
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Chapter 2 

2 Label-free detection of drug responses 

of cancer cells: principles 

2.1 Overview of optofluidic time-stretch microscopy 
OTS microscope is the key experimental setup that allows us to acquire high-speed images 

of flowing cells. The whole schematic illustration is shown in Figure 2-1. In this section, 

an overview of OTS microscope will be briefly introduced. Detailed discussions about 

each key component will follow. The whole setup can be divided into two parts: bright-

field imaging part (Figure 2-1a) and non-imaging fluorescence signal acquisition part 

(Figure 2-1b). The results described in Chapter 3 were acquired only with bright-field 

imaging part. In Chapter 4, fluorescence detection with 488 nm excitation was utilized to 

efficiently capture target cells that were spiked in whole blood. In Chapter 5, fluorescence 

detection with 405, 488 and 561 nm excitations were utilized to distinguish transplanted 

human cells from somatic murine cells as well as examine cell viability. Note that although 

fluorescence labeling was utilized, it did not influence the label-free analysis of cellular 

image. Fluorescence labeling in this thesis only works as “ground truth” indicator for the 

validation of the label-free analysis.  

The bright-field imaging part of OTS microscope consists of multiple independently 

evolved technologies including optical time stretch, spatial-temporal mapping, and 

microfluidic focusing. Optical time stretch is the essential technology enabling high-speed 

imaging, and microfluidic focusing technology ensures cells are adequately align on the 

focal plane while offers high flow speed enabling high-throughput capability. These two 

technologies will be discussed before we get in to the detail of other components. The 

fluorescence detection part, on the other hand, only functions as a part of conventional 

flow cytometer, and will not be further discussed in this chapter. 
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Figure 2-1. Schematic illustration of optofluidic time-stretch microscope utilized in this thesis.  (a) 

bright-field imaging part, (b) non-imaging fluorescence excitation and detection part. OL: objective 

lens, DB: dichroic beam splitter, PMT: photomultiplier, CW: continuous wave, BP: band pass filter. 

2.2 Principles of optical time stretch 
Time stretch is a basic component of OTS microscope, and thus it is important to 

understand the working mechanism of time stretch as well as why time stretch has been 

employed. In this section, we introduce the principle and the motivation of using times 

stretch.  

The term “time stretch” refers to a technique that stretches very fast optical signals in 

time domain before they are detected by an electric detector or digitized by an analog-to-

digital converter (ADC). The time stretching is realized by a process called dispersive 

Fourier transformation (DFT) in which the spectrum of the pulse is mapped to a temporal 

waveform by the large group velocity dispersion3 (GVD) in the dispersive element [60]. 

In the applications where an optical signal is at a very high speed, the ADC cannot precisely 

                                                
3 Group velocity dispersion refers to a characteristic of an optical element that the group velocity of 

light depends on the optical wavelength.  
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restore the waveform of optical signal to a digital signal due to the ambiguity in quantizing 

the amplitude and a jitter of the sampling clock (Figure 2-2). The former is caused by the 

gain bandwidth of the transistor, and the latter is caused by the phase noise of the sampling 

clock [61]. In such case, time stretch technique is useful to alleviate the speed limitation 

of ADC [62,63] making the signal acquisition closer to its optimum condition. In our OTS 

microscope, the original illumination light is a 30-fs pulse, and thus detecting the spatial 

information encoded in the pulse without using time-stretch technique is not possible at 

current technology.  

 
Figure 2-2. Using time-stretch technique can increase the number of sampling points with fixed 

sampling rate of ADC. 

2.3 Microfluidic technology for optofluidic time-stretch (OTS) 

microscopy 
Microfluidic device plays an important role in the OTS microscopy to 1) flow cells at a 

very high speed, 2) ensure a constant linear flow at a uniform velocity, and 3) physically 

focus and align cells in the optical focal plane and field-of-view (FOV) to ensure the image 

is in focus, and covers the whole cell. Since our OTS microscope does not have an active 
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scanning device, the imaging target has to be moving by itself. This is why the microfluidic 

device which controls the movement of cells directly affects the quality of the images.  

1) The flow speed in our OTS microscope determines the imaging speed, or in other 

words frame rate. As we discussed in the previous section, imaging speed determines 

the throughput. Consequently, the throughput of our OTS microscope is determined 

by the flow speed.  

2) A constant unidirectional flow at a uniform velocity is very important because cells 

are sequentially scanned while they are moving. If the flow direction or velocity 

randomly changes, every image will be distorted in a random way which cannot be 

compensated in the post-processing.  

3) Physical focusing of the cells in the microfluidic channel also determines the optical 

focusing. As the cells flow at more than 10 m/s in our OTS microscope, it is impossible 

to mechanically auto-focus the objective lens to each cell. Therefore, each cell has to 

be physically or hydrodynamically focused in the optical focal plane as well as FOV 

so that every cell can be entirely imaged in focus.  

In order to meet above-mentioned requirements, two types of microfluidic device have 

been used in imaging flow cytometry, i.e. hydrodynamic focusing (Figure 1-1a) and inertial 

focusing (Figure 1-1b). Hydrodynamic focusing technique [64] historically have been the 

mainstay in commercial flow cytometers for continuous cell positioning. In this technique, 

a slower flowing sample stream is encompassed by a faster flowing sheath stream from 

one or more sides. Once the sample stream and sheath stream begin flowing side-by-side 

and in the same direction in a laminar flow condition, the center stream (sample fluid) is 

surrounded by the second streams (sheath fluids) and thus cells are focused in the center. 

The cross-sectional area of the focused flows can be controlled by manipulating the relative 

flow rates of sample stream and sheath stream. Commonly, the sheath fluid is introduced 

at a far higher flow rate than that of sample fluid to occupy a larger portion of the channel, 

forcing the sample fluid into a small cross-sectional area in the center of the channel. On 

the way of this confinement, hydrodynamic focusing also aligns cells one-by-one into the 

core stream to prevent cells from overlapping each other as shown in Figure 1-1a. While 

this technique is relatively easy to implement, the use of a cell-free sheath flow with high 

flow rate will dilute the sample and limit the overall sample throughput. 
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Figure 2-3. Schematic illustration and working principle of cell focusing in microfluidic devices.  (a) 

Two-dimensional hydrodynamic focusing technique. (b) Two-dimensional inertial focusing technique 

 
Inertial focusing [65] is a passive technique (i.e. no sheath stream required) for cell 

focusing in confined channel flows at moderate Reynolds number (~1 < Re < ~100) (Figure 

1-1b). Reynolds number (Re) is a dimensionless quantity in fluid mechanics to estimate 

flow conditions. It expresses the ratio of inertial forces to viscous forces and is defined by  

 Re =
𝜌𝑢𝐿
𝜇

 (1) 

where 𝜌 is the density of the fluid (kg/m3), 𝑢 is the velocity of the fluid (m/s), L is the 

characteristic length defined by the channel geometry, 𝜇 is the dynamic viscosity of the 

fluid (kg/m・s). In the inertial focusing channel, two inertial lift forces (i.e. shear-gradient 

lift and wall-effect lift forces) are formed perpendicular to the main flow direction. These 

forces make the cells migrate across streamlines, focus, and order deterministically at 

equilibrium positions between the centerline and walls of the channel. The number of 

equilibrium positions in a channel depends on the symmetry of the channel (e.g. a 

rectangular channel yields 2-4 equilibrium positions depending on Re). For instance, 

single-stream focusing of mammalian cells [66] and microalgae cells [67] have been 

demonstrated using a stepped channel, in which a low aspect ratio straight rectangular 

channel equipped with a series of steps in the channel upper wall induced local helical 
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secondary flows allowing cells to migrate to the focal plane as shown in Figure 1-1b. The 

focusing process begins with cell migration to the vertical center from random positions 

under the effect of inertial lift forces, and is followed by a lateral migration in response to 

the pair of helical secondary flows induced by the step. Finally, cells are directed to a single 

equilibrium position. Compared to hydrodynamic focusing, inertial focusing only requires 

a single stream of fluid, which does not suffer from sample dilution due to sheath fluid, 

and thus in this sense it can achieve higher throughput. However, it may be problematic 

when the sample is highly heterogeneous in size and shape because the inertial lift forces 

and resultant focal positions are dependent on these properties. While several applications 

in imaging flow cytometry using inertial focusing technique have been reported  [68-71], 

we did not employ this technique in this thesis mainly due to the limitation in the flow 

speed. Inertial focusing works effectively only at moderate Reynolds number (~1 < Re < 

~100) whereas flow speed at more than 10 m/s usually exceeds this range of Reynolds 

number. In addition, the inherent drawback of hydrodynamic focusing that sample fluid is 

diluted by sheath fluid can actually benefit us in the application of using whole blood. This 

application will be described in Chapter 4.  

2.4 Introduction of OTS microscopy 

2.4.1 Working mechanism of OTS microscopy 

Time-stretch imaging including optofluidic time-stretch microscopy is one of the most 

successful application of time-stretch technique and dispersive Fourier transformation 

(DFT). The optical time-stretch imaging is characterized by:  

1) Generation of an illumination light with a spatially dispersed broadband pulse. (Figure 

2-4a) 

2) Optical mapping of the spatial information of imaging target into the optical spectrum 

as the process of imaging. (Figure 2-4b) 

3) Conversion of the spatial information into a one-dimensional temporal data stream by 

optical time-stretch. (Figure 2-4c) 

4) Optical detection of the data stream with a single-pixel photodetector. (Figure 2-4d) 
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Figure 2-4. Schematic illustration of time-stretch imaging. (a) Generation of an illumination light with 

a spatially dispersed broadband pulse. (b) Optical mapping of the spatial information of imaging target 

into the optical spectrum as the process of imaging. (c) Conversion of the spatial information into a one-

dimensional temporal data stream by optical time-stretch. (d) Optical detection of the data stream with 

a single-pixel photodetector. 

The entire process is schematically shown in Figure 2-4. The whole system consists 

of five essential components including generation of time-stretched illumination light, 

time-space conversion of illumination light, imaging, time-space conversion of transmitted 

light, and photo detection in time domain. The pulse light generated from the femtosecond 

laser has a broadband in spectrum. While a femtosecond laser is not strictly required and 

a picosecond laser can also support OTS imaging [72,73], the spectral bandwidth becomes 

narrower when the pulse width is longer. The broadband pulse light is temporally stretched 

in the optical fiber as longer wavelength of the light transmits faster than the shorter 

wavelength part. For this reason, the optical fiber is also called dispersive fiber. As a result, 

the pulse light comes out from the dispersive fiber is spectrally aligned in the time domain 

as Figure 2-5 shows. This pulse is further diffracted by the diffraction grating to various 

angles depending on the wavelength. With this, spatially dispersed broadband pulse is 

formed and ready for imaging.  
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Figure 2-5. Frequency-space conversion at a diffraction grating. The temporally stretched broadband 

pulse is mapped into space domain. 

After the diffraction grating, spatially dispersed pulse is focused at the imaging target 

through an objective lens. Each spectral component is focused at different locations as 

shown in Figure 2-6. The spatial information of the imaging target is mapped into the 

spectrum of the illumination light as it passes through the target. This transmitted light is 

collected with another objective lens and converted from space domain back to time 

domain for the detection at the single pixel photodetector (Figure 2-7).  
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Figure 2-6. Imaging of target by mapping the spatial information into the spectrum of the illumination 

light.  

Optically, the second time-space conversion is identical to the first one, except that 

the dispersed light now bears the spatial information of the target. The two sets of time-

space conversion work as point-scanning system in which spatial information is 

sequentially scanned and collected by a single-pixel photodetector. However, in 

comparison with conventional mechanical point-scanning system, OTS imaging scans 

target with a passive optics system which can achieve exceptionally higher scan rate. In 

our OTS microscope, the broadband pulse is stretched to approximately 9.2 ns in which 

about 4 ns is used for illuminating the FOV. This means that a single line scan is performed 

in 4 ns which is impossible with mechanical devices. The scan rate for each line is 

determined by the repetition rate of the pulse laser. In our system, the repetition rate of our 

femtosecond laser is 75 MHz, which makes the line scan every 13 ns. This is also not 

possible with a mechanical scanner.  
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Figure 2-7. Frequency-space conversion at a diffraction grating. The transmitted light from sample is 

converted back to a single stream of stretched pulse, but now bearing the spatial information of the 

target. 

The recorded raw data of OTS imaging is a continuous waveform. To construct a two-

dimensional image out of the raw data, signal processing has to be done by digitally 

stacking each line as shown in Figure 2-8 [74]. The number of pixel in lateral direction is 

determined by the sampling rate of ADC. For example, in our system, each lateral line is 

measured in approximately 4 ns with a sampling rate of 50 GS/s (Giga samples per second). 

This setting produces about 200 pixels in each lateral line. Given that the FOV in lateral 

direction is approximately 80 µm, the pixel resolution is about 400 nm/pixel. This is 

slightly lower than the diffraction limit (~660 nm) of our system where the actual spatial 

resolution is 780nm [75]. The number of pixel in longitudinal direction is determined by 

the recording time in our OTS microscope because the imaging target is scanned as the 

target moves through illumination area. In principle, the image can be as long as the 

memory in the oscilloscope can afford. The pixel resolution depends on the repetition rate 

of the pulse and how fast the target moves. Given the repetition rate of 75 MHz and the 

flow speed of 10 m/s for a cell in our system, the cell moves 133 nm between each line 

scan. This is about 1/5 of the theoretical diffraction limit and 1/6 of the actual spatial 
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resolution, which indicates that our system is capable of acquiring cellular image moving 

(flowing) at 50-60 m/s with diffraction-limited resolution.  

 
Figure 2-8. Image construction in OTS imaging. Each pulse is digitally stacked to create a two-

dimensional image.  

2.4.2 Specification of OTS microscope used in this thesis 

The specification of OTS microscope used in this thesis is descried in the following table. 

Table 2–1. Specifications of components of the OTS microscope used in this thesis. 

Item Value 

Center wavelength of the laser 790 nm 

Bandwidth of pulse 40 nm 

Repetition rate of the laser 75 MHz 

Average output power of the laser 650-700 mW 

Group-velocity dispersion of the optical fiber -120 ps/nm/km 

Length of the optical fiber 2 km 

Groove density of diffraction gratings 1200 lines/mm 

Magnification of the objective lenses 40 

Numerical aperture of the objective lenses 0.6 

Detection bandwidth of the photodetector 12 GHz 

Detection bandwidth of the oscilloscope 16 GHz 
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Sampling rate of the oscilloscope 50 GS/s 

2.5 Theory of image feature extraction 
In order to perform single-cell analysis, the acquired images need to be transformed into a 

numerical feature space that preserves relevant information of the cell. Although each pixel 

in the image can be considered as a numerical feature, the pixels only contain local 

information and therefore a very complex and nonlinear model  [76] is required to capture 

the geometry or high-level cellular features from the pixel level. And complex nonlinear 

models, such as convolutional neural networks (CNNs) [77], are generally more difficult 

to train since they have a large number of trainable parameters (require more training 

samples) and are more likely to overfit on training data. For this reason, feature extraction 

is recommended in this protocol. If the goal is to extract features that are interpretable and 

have biological meaning, CellProfiler, an open-source software for cellular image analysis, 

can be employed to extract human-interpretable numerical features [78,79]. On the other 

hand, if interpretability is not the primary concern, then CNNs pre-trained on natural 

images, such as the VGG net [80] or ResNet [81], can be used as a feature extractor [82]. 

 
Figure 2-9. The process of image processing and segmentation. 

In this thesis, we used CellProfiler for feature extraction. CellProfiler is convenient 

for feature extraction but limited in the functionality of segmentation. Due to the 

discrepancy in the mechanism of image generation in optofluidic time-stretch microscopy 

and conventional cameras, some types of noises (e.g. horizontal lines) that can be often 

seen on time-stretch images may not be frequently appear in the images taken by 

conventional cameras. For this reason, in order to perform more accurate and robust 

segmentation to all images, cell segmentation is performed on Matlab [83,84]. The quality 

of segmentation depends on the image quality. Noise reduction prior to segmentation can 
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improve the accuracy of segmentation. Segmentation may not be properly completed when 

multiple cells are captured in the same image or the cell is not completely captured in the 

field of view. In such case, these images were discard those images. 

2.6 Theory of support vector machine classification 
In this thesis, we propose and demonstrate a method using multivariate data to visualize 

minute changes expressed in the cellular morphology which were induced by drug 

treatment. We employed machine learning technique (particularly supervised learning) to 

analyze multivariate data rather than using multivariate analysis because we focus on 

extracting a predictive model from data, which will be useful for screening and diagnostic 

application. Nevertheless, our method is certainly compatible with any type of multivariate 

analysis such as linear discriminant analysis (LDA) [85]. In fact, we employed maximum 

mean discrepancy (MMD) as an alternative approach to validate the analysis based on 

machine learning techniques.  In this thesis, we mainly employed support vector machine 

or SVM, which is a type of machine learning technique used for classification or regression 

by setting up a hyperplane to separate two populations.  

The working mechanism of SVM can be described as following:  

1) SVM maps the input data into a high dimensional feature space through a mapping 

operation called kernel methods [86]. In this space, two populations are expected to 

be linearly “separable.” (Figure 2-10a)  

2) Among the infinite possible hyperplanes (Figure 2-10b), SVM sets up a unique one 

by maximizing the margin between the nearest sample points (Figure 2-10c). 

3) If two populations are nonseparable, penalty is introduced according to the distance 

between the hyperplane and each sample. A unique hyperplane is determined by 

minimizing the summation of penalty (Figure 2-10). The margin defined in such way 

is called soft margin. 

While a number of derivations of SVM have been developed to extend its functionality, 

in this thesis, we only perform binary classification which is the most fundamental function 

of SVM. The classifier we choose is the soft-margin support vector machine, which aims 

to find large-margin separating hyperplane [87] 
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Figure 2-10. Illustration of how SVM classifier sets up a hyperplane to separate two populations. (a) 

Data points are distributed to a high dimensional feature space. (b) Multiple hyperplanes can be set to 

separate two populations. (c) SVM sets up a unique hyperplane in the feature space by maximizing the 

margin between the nearest samples. (d) In the cases two populations are nonseparable, SVM classifier 

assigns penalty to each sample point according to the distance to the hyperplane. SVM classifier sets 

up the hyperplane by minimizing the sum of penalties.  
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Chapter 3 

3 Label-free detection of drug responses 

of cancer cells: experimental 

demonstration 

3.1 Introduction 
As we discussed in the Chapter 1, label-free method has been desired to overcome the 

disadvantages that fluorescence techniques have posed. In this chapter, we describe the 

experimental demonstration of using optofluidic time-stretch (OTS) microscopy to probe 

drug responses in a label-free manner. While a few recent researches demonstrated that 

bright-field images in combination with dark-field [45] or phase images [88] can be used 

to distinguish different types of cells or cells in different cell cycles, the evaluation of drug 

responses via solely bright-field images has yet to be investigated.  Here, we present a 

method for evaluating cellular drug responses only by high-throughput bright-field 

imaging with the aid of machine learning. We also quantitatively analyzed morphological 

change of cells which inferred from SVM classification accuracy, suggesting that the 

morphological change observed from bright-field images can be utilized as an indicator 

for drug discovery.  

The workflow can be separated as four parts as illustrated in Figure 3-1. Specifically, 

Drug-treated and -untreated cells were imaged by the OTS microscope, followed by feature 

extraction on computer. The extracted numerical features were then subject to binary 

classification between drug-treated and -untreated populations. Higher classification 

accuracy obtained from the classification suggests that more morphological changes were 

captured through images and the feature extraction. 
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Figure 3-1. Workflow of label-free detection of drug responses of cancer cells. Drug-treated and -

untreated cells were imaged by the optofluidic time-stretch microscope. Then, the morphological features 

were extracted from the acquired images, based on which the two types of cells were classified into two 

groups. 

3.2 Materials and methods 

3.2.1 Cell culture 

MCF-7 (DS Pharma Biomedical), a human breast cancer cell line, was employed as model 

cells. The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Wako 

Chemicals) supplemented with 10% fetal bovine serum (MP Biomedicals) and 1% 

penicillin streptomycin (Wako Chemicals), at 37°C in 5% CO2. One day prior to drug 

treatment, cells were seeded to a 12-well plate at 105 cells/mL with 1mL/well culture 

medium.  

3.2.2 Drug treatment 

Paclitaxel, an FDA-approved and classic anti-cancer drug, was employed as a model drug. 

Paclitaxel (Cayman Chemical) in a powder form was dissolved in dimethyl sulfoxide 

(DMSO, Wako Chemicals) to make a concentration of 1 mM as a stock solution. Paclitaxel 

was serially diluted with culture medium in 10-fold and applied to the cells to make the 

final concentration ranging from 1 nM to 10 µM including negative controls in which no 

paclitaxel was added. 

3.2.3 Sample preparation 

Paclitaxel-treated cells were harvested, and suspended in the culture medium by 

trypsinization at two intervals (12, 24 hours). The final concentration of cell suspension 

was adjusted to approximately 105 – 106 cells/mL to ensure reliable single-cell image 
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acquisition in each image frame. The cell suspensions were filtered with 30-µm nylon 

mesh (Sysmex) to break up aggregated cells and remove debris before taken up by 1-mL 

syringes and ready for image acquisition with the OTS microscope. 

3.2.4 Microfluidic device fabrication 

The structure of microfluidic device was designed on AutoCAD, a CAD (computer aided-

design) software. The channel design is shown in Figure 3-1. The design was printed on a 

transparent film as a photomask. The whole fabrication process is described in Figure 3-2. 

Specifically, KMPR1035 (MicroChem), a negative photoresist, was spin-coated on a 

silicon wafer. Spin-coated silicon wafer was soft baked at 100 °C for 15 min, then cooled 

down to room temperature. Spin-coated wafer was then exposed to UV light for 60 sec, 

followed by another bake at 100 °C for 3 min. After cooled down to room temperature, 

photoresist was then developed by submerging the wafer in SU-8 developer (Nippon 

Kayaku) to completely remove unexposed photoresist. After removing residual SU-8 

developer by rinsing with isopropanol and deionized water, the photoresist on the wafer 

can be used as a master mold. A 10:1 mix of PDMS (polydimethylsiloxane) base and curing 

agent (Dow Corning) was poured onto the master mold followed by degas to purge trapped 

air. PDMS was cured at 80 °C for 1 hour. The cured PDMS was removed from the master 

mold, and punched holes at inlets and outlet. Trimmed PDMS and a slide glass were treated 

with O2 plasma for 3 min to form irreversible bonding between them. A microfluidic 

device is completed after PEEK (Polyetheretherketone) tubes were inserted in inlets and 

outlet. The final dimension of the micro channel at the observation are was 100 µm wide 

and 44 µm high. 
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Figure 3-2. Design of microfluidic channel. Water flows in the dark area. Scale bar: 100µm. 

 
Figure 3-3. Process of microfluidic device fabrication. (a) Print the channel design on a transparent film 

as a photomask. (b) Photoresist is spin-coated on a silicon wafer. (c) Photoresist coated silicon is 

exposed to UV light. (d) Photoresist is then developed by SU-8 developer to remove unexposed 

photoresist. (e) PDMS mixture is poured on top of silicon wafer and cured by baking. (f) PDMS is 

peeled off and cut into a device shape. (g) Inlets and outlet holes are punched. (h) PDMS and a slide 

glass were bonded by a plasma treatment. 

3.2.5 OTS microscopic imaging 

The principle and instrumentation of optofluidic time-stretch microscopy is described in 

Chapter 2. In the experiment described in this chapter, a flow rate of 2.75 mL/min was 

achieved resulting a flow speed of approximately 10 m/s. Consequently, each frame was 

acquired in 4 µs corresponding to 250,000 frames/s. That is to say, the theoretical 
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maximum throughput is 250,000 cells/s. However, due to a low concentration of cell 

suspension, the actual throughput would lie between 10,000 and 100,000 cells/s. All 

images were formatted to 192 × 192 pixels for downstream analysis. 

3.2.6 Conventional bright-field microscopic imaging 

For a comparison between time-stretch images and conventional bright-field microscopic 

images, a conventional inverted microscope (Olympus) and a CMOS camera (DCC1545M, 

Thorlabs) were used to acquire static images of suspended MCF-7 cells. Cells were 

prepared following the procedure described in 3.2.1 through 3.2.3. Each static image was 

cropped to 200 × 200 pixels.  

3.3 Results and discussion 

3.3.1 Optofluidic time-stretch imaging 

To underscore the imaging quality of optofluidic time-stretch microscope in taking bright-

field images of flowing cells at a very high speed, two image libraries of drug-treated and 

-untreated MCF-7 cells that were taken under a conventional microscope and our 

optofluidic time-stretch microscope is shown in Figure 3-4. The fine structures in the cells 

can be clearly seen in the optofluidic time-stretch images with sufficient contrast, at an 

equivalent level in the conventional bright-field microscopic images. In addition to the 

imaging quality, both static and optofluidic time-stretch images (i.e. cells are in the flow) 

demonstrate consistent cellular morphology, indicating no significant morphological 

changes are induced by the flow. It is noteworthy that all blur-free optofluidic time-stretch 

image were acquired in 4 µs (corresponding to a frame rate of 250,000 frames/s), while 

maintaining the same imaging quality and pixel resolution as those taken by a CMOS 

camera on a conventional bright-field microscope. In contrast to most of the conventional 

high-speed cameras such as CCD or sCMOS where pixel resolution will be deteriorated 

when used at such high frame rate, the high pixel resolution of our optofluidic time-stretch 

microscope retain as much cellular information as conventional bright-field images do. 

The high frame rate of our system also enables high-throughput imaging, which favors the 

application of machine learning techniques to mine the cellular information in the images 

since these techniques often require a large number of training data for creating an accurate 
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prediction model. With the above-mentioned advantages of optofluidic time-stretch 

microscope, we evaluated the cellular drug responses only by bright-field imaging, which 

had been challenging otherwise. 

 
Figure 3-4. Image libraries of drug-treated and -untreated MCF-7 cells under optofluidic time-stretch 

microscope (flowing at a speed of 10 m/s) and conventional microscope (static). Despite the high flow 

speed, the optofluidic time-stretch microscope acquires blur-free cellular images with equivalent image 

quality as the static images obtained by a conventional microscope. Scale bar: 10 µm. 

3.3.2 Classification of drug-treated and -untreated cells 

To quantitatively evaluate the impact of an anti-cancer drug concentration on the 

morphological change of cancer cells, we treated MCF-7 cells with various concentrations 

of paclitaxel for 24 hours. We performed binary SVM classification between the negative 

control and each drug-treated population. Figure 3-5a shows the distribution of 
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classification scores between the two populations. As we use a linear kernel for the SVM 

classification, the classification score is given by  

 𝑌 = 𝒘 ∙ 𝒙 + 𝑏 (2) 

where w is the normal vector to the hyperplane, representing the weight assigned to each 

feature, x is the test data, and b is the bias. The separation between the two populations 

becomes larger as the drug concentration increases up to 1 µM, indicating that features 

corresponding to each class (drug-treated or negative control) become more distinct. Given 

that extracted features correspond to morphological change, the SVM classification 

suggests a dose-dependent drug-induced morphological change. This dose-dependent 

change was further supported by four trials of SVM classification as shown in Fig. 3b, 

where higher classification accuracy equates to larger separation between the two 

populations. The classification accuracy here is defined by 𝐴 = (𝑋7 + 𝑋8)/𝑁, where 𝑋7 and 

𝑋8 are the are the numbers of correctly assigned incidences and N is the total number of test 

data points. The accuracy range is from 50% (random) to 100% (perfect). We note that 

classification accuracy reaches its maximum at 1 µM for 24-hour drug-treated cells and 

then drops at 10 µM. The drop at 10 µM is possibly due to the presence of the high 

concentration of DMSO (1% v/v). Next, we evaluated the impact of drug-treatment time 

on morphological change. We performed the same dose-ranging experiment with a 12-

hour drug treatment whose classification accuracy evolution is shown in Figure 3-5b. The 

classification accuracy curve shows a relatively monotonic increase, but lower accuracy at 

each drug concentration than that of the cells treated for 24 hours. This result illustrates 

that shorter treatment time induces less discrepancy in the features of each class, hence 

making it more difficult to identify drug-induced morphological change. Accordingly, we 

use the data acquired from the 24-hour treatment on the quantitative analysis shown below. 
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Figure 3-5. Classification of drug-treated and -untreated cancer cells. (a) Histograms of SVM 

classification scores for MCF-7 cells treated with various concentrations of paclitaxel for 24 hours. 

Each population consists of up to 10,000 cells. (b) Classification accuracy at various drug 

concentrations and incubation times. The error bars represent standard errors of the cross-validation 

estimation of average classification accuracy (n = 4). 

3.3.3 Dose-dependent changes in feature space 

In order to analyze the amount and type of morphological changes in the feature space, we 

calculated the maximum mean discrepancy (MMD) between the populations of drug-

treated and -untreated cells at each drug concentration. Here the MMD represents the 

distance between the mean embeddings of distributions in a reproducing kernel Hilbert 

space (RKHS), in our case, defined by a Gaussian kernel11 (Figure 3-6). If the extent of 

morphological change is reflected in the extracted numerical features, then one would 

expect a larger MMD score at concentrations with greater change in morphology, since the 

two classes should be more distinguishable. Figure 3-7 shows the change in the MMD 

against drug concentration for two experimental trials (see Methods), in which the pillars 

for both experimental results are similar. The trend of the MMD shown in Figure 3-7 is 

also consistent with the trend of classification accuracy in Figure 3-5b, demonstrating that 

the measured dose dependence in the SVM results is supported by the MMD score of the 

feature space. Note that in contrast to the histograms shown in Figure 3-5a, in which the 

separation of two classes is made possible by supervised learning with respect to class 
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labels, the MMD (the distance between the distributions of two classes) is computed in a 

closed form and therefore does not require supervised learning. As a larger MMD indicates 

a larger morphological change present in the distribution, it is more likely that the SVM 

model at the drug concentration giving the largest MMD assigns large weights to features 

that reflect this drug-induced morphological change. Accordingly, we also quantitatively 

analyzed the MMD for each feature at the drug concentrations in which the overall MMD 

between the two class distributions is largest (1 µM of the first experiment and 100 nM of 

the second experiment as shown in Figure 3-7). We computed the MMD of each feature to 

examine the variation between the two experiments. Figure 3-8 shows that the features 

giving larger MMD scores are highly correlated between the two experiments, indicating 

that the significant features are consistent in both experiments. It is also observed in Figure 

3-8 that features with large MMD score represent various types of information of cell 

images, such as geometry, granularity, intensity, and texture, indicating that the 

multivariate data provided by single-cell images is effective for identifying the cellular 

response to the drug. 

 
Figure 3-6. Calculating maximum mean discrepancy (MMD) between the negative control and drug-

treated cell population. Illustration of the MMD. 
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Figure 3-7. MMD between the negative control and drug-treated cell population at each drug 

concentration. Trial 1: data from the first experiment. Trial 2: data from the second experiment. 

 
Figure 3-8. MMD of each feature in trial 1 at 1 µM and trial 2 at 100 nM. At these concentrations, the 

MMD in the whole feature space is the largest in each experiment. Features with a higher score of the 

MMD in both trials are highly correlated, indicating that the significant features were consistent in both 

experiments. The color scale represents feature index, showing types of morphological changes that 

undergo larger scores of the MMD. 
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We further investigated how the number of features contributes to the classification 

accuracy. We iteratively performed SVM classification between negative control and the 

data at 1 µM in the first experiment by removing the features with lower MMD (Figure 

3-9). Consequently, we found that an accuracy of 90% (dotted line in Figure 3-9) was 

maintained when more than 400 features were removed, suggesting that with 

approximately 100 features, the performance of our label-free method is comparable to 

that obtained with fluorescence imaging techniques [89]. This property is noteworthy 

because fluorescence imaging requires fluorescent labeling with several inherent 

drawbacks as mentioned above. In other words, the high specificity of fluorescence 

imaging can also be provided by the combination of high-throughput bright-field imaging 

and machine learning, which is highly beneficial for pharmaceutical industry in which the 

cost of drug discovery is one of the major limiting factors. 

 
Figure 3-9. Classification accuracy dependence on the number of feature. (a) Feature ranking of trial 1 

based on MMD (b) Classification accuracy with a reduced number of features. Lower MMD features 

were removed based on the ranking of the MMD for each feature in the classification between the 

negative control and the dataset at 1 µM in the first experiment (top). The classification accuracy was 
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maintained over 90% with more than 100 features (bottom). The color scale is consistent with that in 

Figure 3-8. Feature ranking and the number of remaining features are illustrated in logarithmic scale. 

The error bars represent standard errors of the cross-validation estimation of average classification 

accuracy (n = 10). 

3.3.4 Cell classification of different experimental trials with a single model 

We tested whether a single SVM model with a linear kernel can represent the dose 

dependence through the classification accuracy at all concentrations. We applied the SVM 

model trained at one specific concentration to all the other concentrations, and show the 

result in Figure 3-10a and Figure 3-10b. The result shows that the SVM models of those 

concentrations with larger MMD between two class distributions (such as 100 nM and 1 

µM) can better preserve the tendency in classification accuracy as shown in Figure 3-5b, 

whereas the SVM models of those concentrations with lower MMD (such as 1 nM) fail to 

demonstrate such trend. Therefore, it is reasonable to conclude that our approach can 

provide a single classification model exhibiting the dose dependence of drug-induced 

morphological change. In addition, we further tested whether the single SVM models can 

be applied to different experimental trials. Specifically, we applied the model trained at the 

concentration with the largest MMD in the first experiment to the dataset of the second 

experiment, and vice versa (Figure 3-11). For the sake of comparison, the classifications 

in which both training and testing data are from the same trial of experiment are also 

included in the Figure 3-11. The result shows a consistent tendency in classification 

accuracy regardless of whether the training and testing data are from different trials of 

experiment, suggesting that the SVM models trained at the concentration giving the largest 

MMD can demonstrate the dose dependence across multiple experiments. This is a 

significant property in comparison with most of the previous work where a new training is 

required for a new dataset of images [90].  
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Figure 3-10. Classification accuracy using single SVM models. Classification accuracy produced by 

the SVM models in the first experiment.  (a) and the second experiment (b). Each row demonstrates the 

classification accuracy at each drug concentration produced by a single SVM model. 

 
Figure 3-11. Evaluation of single SVM models across different experiments. Each row demonstrates 

the classification accuracy at each drug concentration produced by a single SVM model trained with 

the data from 1 µM in the first experiment (upper) and 100 nM in the second experiment (lower). Each 

column demonstrates the testing data from different trial of experiments. 
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Chapter 4 

4 Label-free detection of drug responses 

of cancer cells in human whole blood 
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Chapter 5 

5 Label-free detection of drug responses 

of ex vivo cancer cells in mice 
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Chapter 6 

6 Summary and outlook 
In this thesis, we proposed and experimentally demonstrated a method to detect cellular 

drug responses via drug-induced morphological change which are inarguably too subtle 

for the human eye to identify, but are identifiable with the combination of numerous bright-

field cell images and machine learning. By leveraging machine learning techniques, we 

captured these subtle changes and successfully distinguished drug-treated and -untreated 

cells only by the use of bright-field images at a high classification accuracy of over 90% 

without the need for any labeling techniques. Furthermore, we evaluated the feasibility of 

this method in various perspectives.  

In Chapter 3, we have demonstrated the proof-of-concept of our method, and verified 

that our approach is capable of robustly capturing invariant and distinctive features in drug-

induced morphological change, such that a one-time trained classifier model can be used 

for different datasets. This is an important property for screening applications because the 

system does not require a new retraining for a new trial of screening, which can 

significantly reduce the computation costs. 

In Chapter 4, we have examined our method with different types of cells including 

drug susceptible and resistant strains. We have successfully demonstrated that the 

difference in drug responses inherited in the cell line were clearly expressed through 

morphological changes and machine learning. This result suggests that our method can be 

applied to detect the drug resistant cells or evaluate the drug susceptibility in a label-free 

manner. This potential capability is particularly beneficial for blood diagnosis where drug 

susceptibility test is desired to be done in a high-throughput manner. To this end, we 

evaluated the feasibility of using whole blood as a sample to evaluate the drug induced 

morphological changes. We have successfully demonstrated that our optofluidic time-

stretch microscope achieved a flow speed of 15 m/s. , enabling a frame rate up to 380,000 

frames/s, corresponding to an unprecedented throughput of 380,000 cells/s, which is over 

50 times higher than that of commercial imaging flow cytometers [107]. Despite its high 
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throughput, the spatial resolution of our microscope is maintained at the diffraction limit 

of 780 nm [75], which is comparable to that of conventional optical microscopes. To the 

best of our knowledge, this is the first experimental demonstration of an imaging flow 

cytometer capable of taking diffraction-limited images with a throughput of more than 

100,000 cells/s, which is challenging even for conventional non-imaging flow 

cytometry [108-110]. Moreover, by flowing whole blood, which contains blood cells in a 

very high concentration, we further achieved an extreme throughput of 106 cells/s. 

Although the throughput of 106 cells/s was achieved previously by parallelizing inertia-

focusing channels [97], the pixel resolution was sacrificed, and the sample blood has to be 

diluted down to 1% due to its low flowing speed. In addition, in inertia-focusing channel, 

the focusing efficiency is greatly affected by the cell size which makes it unsuitable for 

blood diagnosis. With our method, the combination of such high-throughput and high-

resolution capabilities allows us to use only bright-field images and simple machine 

learning algorithms to identify the miniscule drug-induced morphological change of cells 

with high accuracy.  

We further explored other combination of cell types and drug to examine the 

applicability in various settings. In Chapter 5, we have demonstrated that the drug 

responses of two lung cancer cell line, A549/EGFP and PC-9/mRuby (both were 

genetically modified to express fluorescent proteins) against gefinitib, a FDA-approved 

anticancer drug for targeted therapy were also expressed through our method. This 

combination is essentially distinct from the drugs used in previous chapters because 

gefitinib only inhibits a certain type of molecules with a very high specificity [111]. By 

demonstrating the feasibility of identifying the drug responses induced by gefitinib, it is 

suggested that a molecular specific reaction occurring inside a cell may be detectable 

through label-free bright-field images. We have also examined the drug responses of cells 

that were dissociated from xenograft of nude mice. Although the results show differences 

in drug responses of these dissociated cells, we found that the experimental processes are 

highly influenced by the efficiency of dissociation where some types of cells are easier to 

become single cells while some are not. Further optimization for dissociation and the 

overall experimental process will improve the quality of the results. 
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Although some of the cells we used in this thesis are adhesive cells whose 

morphological change is typically observed when they are adhered on a surface [112,113], we 

chose to observe their morphological change in suspension despite the risk of losing their 

morphological change during the process of trypsinization, because higher throughput can 

be achieved in the flow-cytometric manner. Nonetheless, we demonstrated that 

morphological change can also be investigated for the adhesive cells in a suspended 

condition with our approach, suggesting that it can be applied in distinguishing dissociated 

tissue samples via their morphological variations. We also chose linear SVM classifier in 

this study for the proof-of-concept because it is a simple machine-learning algorithm and 

is unlikely to overfit. More advanced machine-learning algorithms can also be applied to 

achieve higher accuracy; for instance, ensemble methods [45] or deep architectures [88] 

can be used for classification. In addition, instead of hand-coding features, convolutional 

networks can be used to extract features that are problem-specific and therefore further 

improve classification accuracy.  
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Table of Acronyms 

Acronyms Full Name 

ADC analog-to-digital converter 

Cas CRISPR associated protein 

CCD charge-coupled device 

CMOS complementary metal–oxide–semiconductor 

CNN convolutional neural network 

CRISPR clustered regularly interspaced short palindromic repeats 

DFT dispersive Fourier transformation 

DMEM Dulbecco’s modified eagle medium 

DMSO dimethyl sulfoxide  

EGFP enhanced green fluorescent protein 

EGFR epidermal growth factor receptor 

EMCCD Electron multiplying charge-coupled device 

FDA US Food and Drug Administration 

fps frames per second 

FOV field of view 

FRET fluorescence resonance energy transfer 

GC-MS gas chromatography-mass spectrometry 

GF-AFC glycylphenylalanyl-amino uorocoumarin 

GVD group velocity dispersion 

HCS high-content screening 
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HTS high-throughput screening 

iPS induced pluripotent stem 

LC-MS liquid chromatography-mass spectrometry 

LDA linear discriminant analysis 

OTS optofluidic time-stretch 

PCR polymerase chain reaction 

PEEK polyetheretherketone 

PDMS polydimethylsiloxane 

Re Reynolds number 

RNA ribonucleic acid 

RNAi ribonucleic acid interference 

sCMOS scientific complementary metal–oxide–semiconductor 

TDI time delay integration 

UV ultraviole 
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During my Ph.D., I have worked on a couple of different projects, some of which are 

related to OTS microscope and others are not. Listed below are my publication in peer-
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1. Label-free detection of cellular drug responses by high-throughput bright-field 
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3. Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime 

limit, Mikami H, Harmon J, Kobayashi H, Hamad S, Wang Y, Iwata O, Suzuki K, Ito 

T, Aisaka Y, Katsuna N, Nagasawa K, Watarai H, Ozeki Y, Goda K, Optica. 2018. 
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