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Abstract 
 

Metal NSs have long attracted many researchers because of their unique properties, 

which are scalable by the diameter. For example, melting temperature is inversely 

proportional to the particle diameters. Another representative property is localized 

surface plasmon resonanes (LSPRs) that are collective oscillations of conduction 

electrons in response to incident light, intensifies with increase of the diameters. In 

contrast, metal clusters that are defined as further miniaturized NSs, exhibit novel 

properties, which are not scalable and predictable with the diameters. In case of gold, it 

is known that their structures and properties change drastically at a critical diameter of 

~2 nm. The atomic structures of thiolate-protected Au clusters undergo a transition from 

fcc structure to icosahedral or decahedral structures when the diameter becomes smaller 

than 2 nm. The optical response of AuNSs also changes at this size region from LSPRs 

to single electron transition between quantized levels. Chemical properties of metal NSs 

also show non-scalabe behavior in the cluster regime. For instance, Au clusters exhibit 

catalytic activities for oxidation reactions. 

We can regard anisotropy as another parameter to control the properties of metal 

nanostructures in addition to the diameters. The catalytic properties of Pt and Pd 

nanostructures depend strongly on their morphology. Gold nanorods (AuNRs) have 

been extensively studied as the representative anisotropic Au nanostructures. One of the 

attractive properties of AuNRs is LSPRs. AuNRs exhibit two LSPRs of transverse 

mode at around 500 nm and longitudinal mode in the vis–NIR region. The AuNRs are 
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expected to exhibit unique properties when their diameters become smaller than a 

critical size as observed in isotropic AuNSs. The synthesis of ultrathin gold nanowires 

(AuUNWs) with a diameter of ~1.6 nm and a length of µm scale has been reported. 

Fundamental questions arise as to how the structures, and basic properties of AuUNWs 

and ultrathin gold nanorods (AuUNRs) are different from those of conventional AuNRs. 

In order to answer these questions, we must overcome technical challenges that include 

controls of lengths while keeping the diameter of <2 nm, and observations of atomic 

structures of AuUNRs. 

 

In Chapter 2, I reported synthetic methods of ultrathin gold nanorods (AuUNRs) by 

slow reductions of gold(I) in the presence of oleylamines (OAs) as surfactants. 

Transmission electron microscopy revealed that the lengths of AuUNRs were tuned in 

the range of 5−400 nm by changing the concentration of OA while keeping the diameter 

constant (~2 nm). The surfactant OA was successfully transformed into glutathionate or 

dodecanethiolate by ligand exchange approach. 

In Chapter 3, I investigated the optical properties of AuUNWs and AuUNRs. 

AuUNRs exhibited a broad band in the IR region whose peak position was red-shifted 

with the length. Polarized extinction spectroscopy for the aligned AuUNWs indicated 

that the IR band was assigned to the longitudinal mode of LSPRs. Notably, the 

longitudinal LSPR wavelengths were significantly affected by the miniaturization of the 

diameter below ~2 nm: the longitudinal LSPR wavelengths for AuUNRs were 

remarkably longer than those of conventional AuNRs (diameter>10 nm) with the same 
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aspect ratio. The electromagnetic simulation suggested that the origin of the redshift 

was probably ascribed to the difference in permittivity. 

In Chapter 4, in order to understand the structure−property correlation of AuUNRs, 

their atomic structures were examined using aberration-corrected high-resolution 

transmission electron microscopy. Statistical analysis revealed that the most abundant 

structure observed in AuUNRs was a multiply twinned crystal, with a periodicity of 

∼1.4 nm in length. I proposed that the AuUNRs were composed of cuboctahedral Au147 

units, which were connected one-dimensionally through twin defects. The formation 

process of the atomic structures in AuUNRs that involved attachment of Au spherical 

clusters in OA micelles was proposed based on the time-resolved X-ray absorption 

spectroscopy and optical spectroscopy. 

In Chapter 5, I studied the stability of AuUNRs and elucidated the decomposition 

process. I also found the method to improve the stability. AuUNR stabilized by OA 

were spheroidized when dispersed in chloroform containing a small amount of OA. 

Time-resolved optical spectroscopy and TEM analysis indicated that the AuUNRs were 

gradually shortened with the release of small Au nanospheres (AuNSs) because of 

Rayleigh instability, followed by transformation into plasmonic AuNSs (diameter >2 

nm). The OA surfactants played an essential role in stabilizing the morphology of 

AuUNRs by suppressing the diffusion of Au surface atoms. The stability of AuUNRs 

was improved by the surface modifications by thiolate due to the suppression of surface 

diffusion of Au atoms. 
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In Chapter 6, I summarized this thesis and stated the future prospects as concluding 

remarks. 
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General introduction 
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1.1. Isotropic metal nanostructures 

1.1.1. Metal nanospheres 

Metal nanospheres (NSs) have long attracted many researchers because of their 

unique structural properties. Figure 1.1 shows a typical model of NSs with fcc 

morphology (cuboctahedron), which are constructed by truncation of cubic fcc 

nanocrystals. Unique properties will be emerged due to the nano-size effects. In this 

section, a brief overview how the structures and properties of isotropic metal NSs 

change with the diameters. 

The most prominent structural feature of metal NSs is that the fraction exposed, the 

number ratio of the surface atoms with respect to the total atoms, is very large: 92, 76, 

 
Figure 1.1. Cuboctahedral model structures of metal NSs: M13, M55, and M147. 

Table 1.1. Diameter, number and ratio of surface atoms, fraction exposed and coordination 

number of M13, M55, and M147. 
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63 % for M13, M55, and M147 (M = metal), respectively. Namely, more than half of the 

constituent atoms of NSs are located on the surface. In addition, there are sites having 

small coordination numbers that may be reactive toward other molecules. This feature 

prompted us to apply them for catalysis. As a result of large surface area, the melting 

temperature is reduced dramatically with the decrease in diameter. For example, the 

melting point of gold nanospheres (AuNSs) monotonously decreases with the reduction 

of the diameter (Figure 1.2).1 The melting temperature (!!) of a NS with a diameter (d) 

and molar heat of fusion (L) is estimated by the following Pawlow relation 

    (1.1) 

where v, !s, !l are the specific molar volume, the surface free energy of the solid, and 

that of liquid, respectively. !! �  represent the melting temperature of the bulk metal. 

!!(r)
!!(∞) = 1– 4!!

!/!

! (!!2!!!/!– !!2!!!/!)
1
! 

 
Figure 1.2. Size dependences of the melting point and the diffusion coefficient of AuNSs. 

The bulk melting temperature of Au is indicated by the double arrow with !!(∞).1 

Reprinted from ref. 1 with permission. 2002 American Chemical Society. 
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As equation 1.1 indicated, the melting temperature is inversely proportional to the 

particle diameter. In other words, the melting temperature of metal NSs is scalable with 

respect to d. By taking advantage of this feature, metal NSs have been used to make 

conductive inks and films at low temperature.2,3 

 

Metal NSs have long been used as a colorant of stained glass before the 

understanding of the origin of the vivid colors. Michael Faraday revealed in the mid 

1800s that this color was originated from colloidal metal NSs.4 Later, Gustav Mie 

explained the origin of the color or the metal NSs in terms of localized surface plasmon 

resonance (LSPR).5 LSPRs are collective oscillations of conduction electrons when a 

metal NSs whose size is smaller than the wavelength of light is irradiated. In response 

to the oscillating electric field of light, electrons in the metal NSs are displaced from the 

nuclei of metal. This displacement makes a restoring force due to coulombic attraction 

between electrons and nuclei.6 Therefore, this restoring force is strongly depending on 

the shapes of metal nanostructures (see Sec.1.2.2). The exact solution of the LSPR is 

given for NSs in 1908. Since the equation based on Mie theory was very complicated, 

the equation was simplified by assuming the dipole oscillation contributes.7 The 

extinction cross-section (!!"#) of LSPR is expressed as 

     (1.2) 

where R is the radius of NS, ! is the wavelength of light, !! is the dielectric constant 

of the surrounding medium, and ! = !! + !!! is the complex dielectric constant of the 

NS. This equation predicts that a resonant peak appears when !! =– 2!! is satisfied. 

!!"# =
24!!!!!!!/!

!
!!

(!! + 2!!)! + !!!
 



 5 

In case of coinage metal such as Au, Ag, and Cu, the LSPR band appears at ~520, ~360, 

and ~580 nm, respectively.  

1.1.2. Metal clusters 

When metal NSs are further miniaturized to ultrafine particles called as clusters, 

their properties change dramatically. In case of gold, it is known that their structures 

and properties change drastically at a critical diameter of ~2 nm (Figure 1.3).8 Recently, 

it was demonstrated that the atomic structures of thiolate-protected Au clusters undergo 

a transition from fcc structure to icosahedral or decahedral structures between 

Au144(SR)60 and Au187(SR)68. Reduction of the surface energy is a driving force of the 

transition to non-closest packed structures. 

 

The optical response of AuNSs also changes at this size region. As can be seen in 

Figure 1.4b, the LSPR band reduce the intensity with decrease in the cluster size and 

disappeared on going from Au187(SR)68 to Au144(SR)60. The Au clusters smaller than 

Au144(SR)60 exhibit structured optical spectra whose structures become more 

 
Figure 1.3. Transition of geometric and electronic structures of dodecanethiolate-protected 

gold clusters.8 Reprinted from ref. 8 with permission. 2015 American Chemical Society. 
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pronounced with the decrease in temperature. This optical response of small clusters 

indicates that single electron transition between quantized levels is induced upon 

photoirradiation as in the case of conventional molecules. Further reduction of size 

below Au39(SR)24 shows the increase of the HOMO-LUMO gap and appearance of 

photoluminescence. This is due to the elongation of the lifetime of electronically excited 

 

Figure 1.4. Optical spectra of a) dodecanethiolate-protected Au clusters8 and b) 

glutathionate-protected Au clusters.9 I: Au38, II: Au104, III: Au130, IV: Au144, V: Au187, VI: 

Au~226, VII: Au~253, VIII: Au329, IX: Au~356, X: Au~520, 1: Au10–12, , 2: Au15, 3: Au18, 4: Au22, 

5: Au22, 6: Au25, 7: Au29, 8: Au33, Au35, 9: Au38, Au39 Reprinted from ref. 8, and 1 with 

permissions for a) and b), respectively. 2015, and 2005 American Chemical Society. 
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states10,11 in sharp contrast to the short lifetime of electronically excited states in the 

bulk due to efficient phonon-electron and electron-electron couplings.9  

Chemical properties of metal NSs also show non-scalabe behavior in the cluster 

regime.12 Typical examples can be found in Au clusters. It is widely known that gold is 

chemically inert and does not show any catalysis. However, Au clusters exhibit catalytic 

activities for oxidation reactions. The turn over frequency of oxidation reaction of 

p-hydroxybenzyl alcohol in Figure 1.5 is enhanced with the decrease of sizes.13 This 

size-specific oxidation catalysis of Au clusters has been ascribed to the electronic 

structure: the key step is proposed to be the activation of oxygen molecule by electron 

transfer from negatively charged Au clusters. 

 

As shown above, the metal NSs show interesting properties that are scalable by the 

diameter. In contrast, metal clusters exhibit novel properties which are not scalable and 

not predictable with a simple scaling law. This suggests that reduction of the dimension 

of nanostrucrures below a certain critical dimension (~2 nm in case of gold), we can 

 
Figure 1.5. Catalytic activity of polymer stabilized Au clusters as a function of the size. 
Reprinted from ref. 13 with permission. 2006 Elsevier B. V. 
 



 8 

expect emergence of unprecedented properties. In this sense, nanoscience can be viewed 

as a modern alchemy for new materials. 

 

1.2. Anisotropic metal nanostructures 

1.2.1. Morphology and properties 

Metal nanostructures with various morphologies such as cubes, cages, stars, rods, 

and wires, exhibit unique properties owing to the unique morphologies have been 

reported so far. For example, El-Sayed demonstrated that the catalytic properties of Pt 

and Pd nanostructures depend strongly on their morphology: NSs, nanotriangles, and 

nanocages.14 This finding was ascribed to the facet-dependent catalysis. We can regard 

anisotropy as another parameter to control the properties of metal nanostrucrtures in 

addition to the diameter. 

 

1.2.2. Gold nanorods 

Gold nanorods (AuNRs) have been extensively studied as the representative 

anisotropic Au nanostructures over the last two decades. One of the breakthroughs in 

the study of AuNRs is a development of synthetic methods based on template 

methods.15,16 In the early stage of the research, AuNRs had been synthesized using a 

vapor–liquid–solid (VLS) method, which is similar to a chemical vapor deposition used 

in the synthesis of semiconductor nanowires.17 In 1997, a new synthesis method has 

been developed based on electrochemical reduction in hard templates such as porous 

alumina and polycarbonates.18 In 2001, the wet chemical synthesis of seed-mediated 

chemical growth using soft templates of cetyltrimethylammonium bromide (CTAB)19–21 

has been developed (Figure 1.6). TEM studies revealed that AuNRs take fcc structures 



 9 

of single crystals or five-fold twin structures (Figure 1.7).22 These crystal structures 

have been selectively synthesized with or without silver ions.22 This method of 

seed-mediated growth enables researchers to synthesize AuNRs with controlled 

structures reproducibly and promote the studies of various properties of AuNRs.  

One of the attractive properties of AuNRs is LSPRs. A correlation between the 

anisotropic shapes and optical property of LSPRs was theoretically predicted in early 

1900s by Gans.23 The nanostructures with ellipsoid shapes exhibit two modes of LSPRs 

depending on the orientations of the electric field of light with respect to the ellipsoids. 

The extinction cross-section (!!"#) is given by7 

 

 
Figure 1.6. Synthetic scheme of seed-mediated growths to form AuNRs. 

 
Figure 1.7. Two model structures of AuNRs.22 Reprinted from ref. 22 with permission. 2011 

Royal Society of Chemistry. 
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    (1.3) 

where V is the volume of the rod and Pj (j = a, b, c; a > b = c,: a = length, b = c = width) 

are depolarization factors for ellipsoids. These Pj are expressed as 

     (1.4) 

       (1.5) 

where e is the rod’s ellipticity known as !! = 1− !–!. ! is equal to the aspect ratio 

(length/diameter). As expected from Gans theory, AuNRs exhibited two LSPRs of 

transverse mode at around 500 nm and longitudinal mode in the Vis–NIR region 

(Figure 1.8a).24 These LSPR modes originate from the collective motion of electrons 

along transverse or longitudinal axes, respectively (Figure 1.8b). A unique feature is 

that the longitudinal mode of LSPRs can be tunable in the wide range from visible to IR 

region.25 The longitudinal mode of LSPRs can be applied to various fields such as 

photo-catalysis and sensing.26 Above all, highly tunable longitudinal mode of LSPRs is 

suitable for applications in the field of biology. By controlling the aspect ratio of 

AuNRs, the resonant wavelength of LSPRs can be tuned to the optical windows of 

tissues (650–900 and 1000–1350 nm).27,28 Excitation of LSPR band of AuNRs with 

intense laser induces local heating and can be used for plasmonic photothermal therapy. 

AuNRs irradiated by intense laser are spheroidized and become transparent to the IR 

light.29 

!!"# =
2!"!!!/!
3!

1
!!!
!!

(!! +
1–!!
!! !!)! + !!!!

 

!! =
1– !!
!!

1
2! ln

1+ !
1− e − 1  

!! = !! =
1− !!
2  
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1.2.3. Ultrathin gold nanorods 

Metal NRs are expected to exhibit unique properties when their diameters become 

smaller than a critical size as observed in isotropic metal NSs. The synthesis of ultrathin 

gold nanowires (AuUNWs) with a diameter of ~1.6 nm and a length of µm scale has 

been reported in 2007–2009.30–34 In these reports, two growth mechanisms have been 

proposed (Figure 1.9): (1) Oriented attachment of Au clusters and (2) one-dimensional 

growth of Au(0) atoms. In the former mechanism, small AuNSs formed initially are 

attached into one-dimensional structures. In the latter mechanism, Au(I) ions arranged 

one-dimensionally due to aurophilic interaction aggregate into one-dimensional 

structures upon reduction. 

AuUNWs show promise for a variety of applications,35–43 including mechanical 

energy storage devices,37 pressure sensors with fast response, high sensitivity and good 

stability,36 flexible electrodes with high transparency and metallic conductivity,35 

bio-sensors using an electrochemical and near-infrared photo-acoustic imaging 

 
Figure 1.8. a) Dispersions and TEM images of AuNRs.26 b) Schematic images of optical 

spectra of AuNRs. Reprinted from ref. 26 with permission for a). 2005 Elsevier B. V. 
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method,38,39 surface-enhanced Raman scattering (SERS),34 and catalysis.40 Thus, the 

AuUNWs with a diameter of ~1–2 nm are fascinating nanomaterials with new 

functionalities. 

Smaller, atomically-precise anisotropic Au clusters have already been reported 

since 2007. For example, single crystal X-ray diffraction (SXRD) analysis of 

[Au25(PPh3)10(SC12H25)5Cl2]2+ (ref. 44, Figure 1.10a) and Au38(SC2H4Ph)18 (ref. 45, 

Figure 1.10b) revealed that these two clusters are constructed by two icosahedral Au13 

clusters bonded via vertex-shared and facet-shared bonding, respectively. Very recently, 

anisotropic Au clusters with an aspect ratios larger than ~3 have been reported. 

[Au37(PPh3)10(SC2H4Ph)10Cl2]+ (ref. 46, Figure 1.10c) has a tri-icosahedral core which 

shares a vertex Au atoms with three Au13 icosahedrons. Another series of anisotropic 

Au clusters which are composed of cuboctahedral Au13 have been also reported. Two 

anisotropic Au clusters of Au28(TBBT)20 (ref. 47) and Au30S(StBu)18 (ref. 48) consist of 

two interpenetrating Au13 cuboctahedrons. Au76(4-MEBA)44 (ref. 49, Figure 1.10d) 

composed of five face-sharing Au13 cuboctahedra was also reported. These clusters 

exhibit intense peaks in IR region (Figure 1.11) that are not assigned to LSPR but to a 

single electron transition between molecular-like discrete electronic levels. On the other 

hand, theoretical simulation suggests that one-dimensional polymers of Au13 

 
Figure 1.9. Synthesis scheme of AuUNWs: a) oriented attachment and b) one-dimensional 

chain.  
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icosahedrons exhibit the different electrical conductivity depending on the vertex-shared 

or facet-shared bonding.50 

 

 

 

Figure 1.10. Atomic structures of a) Au25 (ref. 44), b) Au24 (ref. 45), c) Au37 (ref. 46), and d) 

Au49 (ref. 49) cores in clusters. Reprinted from ref. 44, 45, 46, and 49 with permissions. 

2007, 2010, 2015, and 2015 American Chemical Society. 

 

Figure 1.11. UV–vis–NIR spectra of a) Au37 (ref. 46) and b) Au49 (ref. 49) cores in clusters. 

The peaks in NIR region are highlighted by gray and red for Au37, and Au49 respectively. 
Reprinted from ref. 46, and ref. 49 with permissions. 2015 American Chemical Society. 
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1.3. Aim of this study 

1.3.1. Target and aim 

The target nanostructure of this thesis is ultrathin Au nanorods (AuUNRs, Figure 

1.12). The diameter of AuUNRs is much thinner than those of conventional AuNRs 

(>10 nm), but comparable to ~2 nm at which remarkable transitions of electronic and 

geometric structures take place (Figure 1.3). However, less is known about the 

structures and properties AuUNRs mainly because their synthetic method has not been 

developed since the first report in 2008.51 Therefore, the following questions arise 

concerning the structures and properties of AuUNRs: (1) Do the AuUNRs have single 

crystals or twinned crystal structures? (2) Do the AuUNRs exhibit LSPRs? If yes, is the 

 

Figure 1.12. Target of this study. 
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correlation between wavelength and aspect ratio similar to that of the conventional 

AuNRs? (3) What determines the morphology of the AuUNRs? 

 

1.3.2. Challenges 

To answer these questions, there are several challenges that must be overcome. The 

first challenge is the synthesis of AuUNRs with well-defined size control and chemical 

modification of the surface. In case of synthesis of AuNRs, the length of AuNRs has 

been controlled by chain length of surfactants and concentration of silver ions.16 On the 

other hand, as for AuUNWs, it is not clear what the factor controls the length of 

AuUNRs. 

The second challenge is the determination of atomic structures of AuUNRs. 

Transmission electron microscopy is a powerful tool to observe the morphology and 

atomic structures of small particles that cannot be crystalized. The spatial resolution ! 

is estimated by ! = ~!. where ! is the wavelength of radiation. The resolution of 

TEM is given by  

       (1.6) 

where E is electron energy in electron volts.52 For a 100 keV TEM, ! is calculated to 

be ~4 pm, which is sufficient to observe the atomic structures of Au nanostructures 

theoretically. However, the spatial resolution of TEM is limited mainly due to 

chromatic and spherical aberrations. The chromatic aberration originates from the 

dispersion of the kinetic energy of electrons: the electrons with different kinetic 

energies focus at different points. The contribution from chromatic aberration is 

negligibly small if the TEM samples are thin enough. On the other hand, the spherical 

! (nm) = 1.22
!!/!  
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aberration leads to lowering the resolutions of TEM. The electrons focus at different 

points depending on their electron paths because the electromagnetic lenses in TEM are 

not perfect and the error of focuses becomes large especially in off-center electron paths 

in the lenses. This spherical aberration is corrected using extra electromagnetic lens and 

as a result, the resolution up to ~1Å is improved. In this thesis, the samples of AuUNRs 

are so thin that the chromatic aberration is the negligible. Therefore, TEM that is 

equipped with the spherical aberration corrector (aberration corrected TEM: AC TEM) 

was used for observation of atomic structures.  

 

1.3.3. Outline 

The present thesis is organized as follows. 

In Chapter 2, I report the length control method of AuUNWs and AuUNRs by 

reducing the concentrations of reagents and the surface modification methods by 

thiolates. 

In Chapter 3, I report optical properties of AuUNRs. I correlate the resonant 

wavelengths with aspect ratio. The correlation of AuUNRs are compared with that of 

conventional AuNRs with diameters of >10 nm. I revealed that resonant wavelength of 

LSPRs of AuUNRs is remarkably red shifted, compared to that of AuNRs with same 

aspect ratios. 

In Chapter 4, I observe crystal structures by using AC HRTEM, and analyze these 

TEM images statistically, and propose the model atomic structures. The formation 

process of atomic structures of AuUNRs is investigated. 

In Chapter 5, I reveal the decomposition mechanisms of AuUNRs in dispersions 

without excess amount of OA and surfactant-concentration and temperature dependence 
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on stability of AuUNRs. I also report the improvement of stability of AuUNRs via the 

surface modification from amines to thiolates. 

In Chapter 6, I describe the concluding remarks including summary of the contents 

and future prospects.   
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