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ABSTRACT 

 

In this dissertation, amino-based -conjugated nickel complex nanosheets were 

synthesized using a bottom up synthetic method. The dissertation opens with the background 

of such coordination nanosheets or CONASHs, the potential of such sheets and the aim of the 

research. 

Nickel(II) coordination nanosheets of various thicknesses have been successfully 

synthesized using the hexaaminobenzene (HAB) ligand with an optimized oxygen-assisted 

interfacial reaction to form NiDI. Chapter 2 focuses on the chemical method which uses 

reactants in a homogeneous aqueous solution first set up in the glove box. The slow exposure 

to atmospheric oxygen is the crux for the high crystallinity of the sheets formed. With this 

gas/liquid interfacial reaction method, large centimetre-scale NiDI nanosheets with high 

crystallinity visible to the naked eye can be obtained.  

Another synthetic method using electrochemical oxidation, which produces the NiDI 

nanosheet directly on an electrode surface, was also developed. Chapter 3 of this dissertation 

explores about the synthesis, characterization, as well as the investigations of the 

electrochemically synthesized NiDI nanosheet. This electrochemical method enables a more 

controllable growth of the nanosheet as compared to the gas-liquid interfacial reaction as the 

degree of oxidation can be precisely adjusted.  

Using the same chemical method which utilizes ambient oxygen for synthesis, new 

systems were investigated by changing the nickel ion source to other metal sources. New 

systems involving Group 10 elements were investigated and characterized. These findings 

and a discussion of the new systems formed are given in Chapter 4. 

 The concluding remarks and the research perspectives are then given in Chapter 5, the 

final chapter. 
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1 INTRODUCTION 

 

1.1. Coordination Compounds and their Dimensionalities 

 

Coordination compounds are made up of metallic atoms or ions which are 

surrounded by ions or bound molecules, known as ligands, that are usually organic 

components. Depending on the types of bridging ligands, some of these coordination 

compounds can form extended structures by repeating the coordination entities, while 

others would form metal clusters or discrete single molecular compounds. This 

generally depends on the number of available coordinating sites that the particular 

ligand contains and how many of these sites are coordinated to the metal centres. These 

possibilities and the resultant coordination compounds can form different dimensions 

such as a zero-dimensional complex, a one-dimensional wire, two-dimensional sheets or 

three-dimensional lattices. Coordination compounds are thus able to be classified by the 

additional property of dimensionality. 

 

One example of a zero-dimensional coordination compound would be the metal 

clusters or complexes which exist as discrete molecules and do not extend outwards. 

The ligands of the metal clusters usually only have a single binding site which do not 

allow any additional coordinations to other metal ions. These compounds are hence 

determined to be zero dimensional i.e. discrete coordination complexes. On the other 

hand, a structure can have higher dimensionalities when its array of bridging ligands 

allows extension in space. The eventual dimension of the compound depends on the 

number of directions in space the array extends in. If we take the x-axis to be the 

primary axis, a one-dimensional structure extends only in one axis in a straight line 

(along the x axis); a two-dimensional structure extends in a plane of two directions, both 

x and y axes); and a three-dimensional structure extends in all three directions (x, y, and 

z axes).1 This leads to the formation of metal complex wires (1D), two-dimensional 

metal coordination sheets and three dimensional framework materials, also known as 

Metal Organic Frameworks or MOFs.2 Fig. 1-1 shows some examples of the various 

dimensions of the possible coordination compounds. 
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For the formation of 1D structure such as one-dimensional wires, the ligands 

usually contain coordination sites along the main axis. For the higher dimensionalities, 

the ligands (the linkers) are typically with the potential to form polydentate organic 

components, whilst the central metal ions (the node) contain multiple coordination sites 

along different spatial axes, which enables infinite extensions in those directions. It is 

also possible to form higher dimensionality compounds by having repeating units of 

their corresponding compounds of lower dimensions. For example, a two-dimensional 

sheet could be made of wires lined up in a plane, or three dimensional materials can 

consist of multiple two-dimensional sheets stacked together. Such a node-and-linker 

approach to creating such coordination polymers is essential when designing new two- 

and three-dimensional materials. Depending on the arrangement and composition of 

each subcomponent/building block, different synthetic strategies can be employed 

which can affect the overall obtained yield of the compound.   

 

Various coordination compounds with different dimensionalities have been 

designed and synthesized over the years. Many of such uncommon and tuneable 

structures are necessary building blocks for the discovery and construction of various 

Fig. 1-1: Possible dimensionalities of coordination compounds and their 
examples. M represents metal ions while L represents ligands. 
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functional supramolecular devices or materials.3 The preparation of these different types 

and dimensionalities of coordination compounds is wide-ranging. They include 

molecular self-assembly and the crystallization of a metal salt with a ligand, where the 

mechanisms of crystal engineering and supramolecular chemistry are relevant.  

 

Molecular self-assembly based on the principle of crystal engineering has 

proven to be an efficient approach for the formation of 1D, 2D and 3D framework 

materials. The research on the chemistry of these coordination compounds in different 

dimensionalities has been developing rapidly for the last twenty years. This is especially 

so for the three dimensional MOFs, due to potential applications such as catalysis, gas 

storage, separations, drug delivery, magnetism, fluorescence, non-linear optics and 

photonics.4 This interest is also owing to their coordination possibilities and relative 

ease of synthesis, typically attributable to their relative stability.  
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1.2. Two-dimensional Compounds 

 

In recent years, the synthesis and study of the physicochemical properties of 

two-dimensional (2D) metal-ligand coordination compounds have been the focus of 

many material scientists, with particular interest on the investigation of the interaction 

between the d orbitals of the metal ions with the  orbitals of the ligands. Such 2D 

materials have similar functions and applications similar to that of their three-

dimensional (3D) compounds and exhibit unusual physical properties due to the 

quantum size effect associated with their ultra-thin structure.5 The electronic structure of 

a material is affected when one or more of its dimensions approach interatomic 

distances, like when the thicknesses of 2D materials are decreased. 

 

Graphene, which is a 2D single layer of carbon atoms, has been in the spotlight 

in the past two decades, becoming one of the most famous two-dimensional 

nanomaterials (Fig. 1-2).6 With a backbone of sp2-bonded carbon atoms, graphene is a 

π-conjugated system with one-atom-thick planar sheets of carbon atoms that are densely 

packed in a honeycomb structure. It is typically obtained from its three-dimensional 

layered structure of graphite and has shown exceptional electronic, optical, thermal, and 

mechanical properties.7 These properties make graphene promising for many applications, 

such as fuel cells, photovoltaic devices and biosensors.8  Some of its possible synthetic 

methods would be discussed later. 

Unlike graphene which is only made up of carbon atoms, there are also many 

other types of two-dimensional compounds which are made of a combination of 

Fig. 1-2: The most famous 2D material: Graphene, obtained from graphite.6c 
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different elements. Some of the examples include purely inorganic or organic based 

compounds such as metal carbides (MAX phase), graphitic carbon nitride (g-C3N4), 

hexagonal boron nitride (h-BN), black phosphorus (BP), or two-dimensional covalent 

organic frameworks. 9  Even with different components, the thin structures and the 

resulting quantum size effect of these two-dimensional compounds still retain the 

possibility that they may have many interesting properties worth exploring.  

 

In addition, another highly researched area is the chemical modifications of 

graphene-like materials. The addition or doping of other elements not only alters its 

electronic properties, but also improves the solubility of graphene in organic solvents.10 

With the increased solubility, the graphene-based materials become more viable since 

they can be easily functionalized and conjugated with other materials such as organic 

polymers, metallic nanoparticles and inorganic nanosheets.11 Such modifications further 

enable the tuning of the physical and electronic properties of graphene and increase the 

range of potential applicability of these materials as electrodes or solar devices.12 

 

Other than organic materials and graphene-based nanosheets, 2D coordination 

compounds containing metallic atoms or ions have also been investigated. Some 

examples of these compounds include layered transition metal oxides (TMOs; 

Cs0.67Ti1.83O4, K0.45MnO2, Ca2Nb3O10, VO2, MoO3, etc.), layered double hydroxides 

(LDHs) or layered transition metal dichalcogenides (TMDs; MoS2, SnS2, WS2, MoSe2, 

WSe2, etc.). These compounds have been actively explored for their ferroelectricity, 

semi-conductivity, photoluminescence characteristics and their use for various 

applications (Fig. 1-3).13  

 

Many of the aforementioned 2D coordination films and graphene have the 

commonality of being synthesized using a top-down method of exfoliation from their 

layered 3D bulk material. Using such a top-down approach enables the formation of 

individual or thinner layers of the desired 2D compounds. There are numerous top-

down synthetic methods to isolate 2D films, with the ‘Scotch tape’ exfoliation method, 

and the electrochemical method by intercalation of the layers using ions, being the most 

preferred and commonly employed methods (Fig. 1-4).  
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These types of top-down methods have been widely used for the syntheses of 2D 

films because of their relative simplicity and reproducibility. The main synthetic 

disadvantage, however, is that the structure of the derived 2D material is determined by 

the elemental composition and structure of the main bulk starting material. In other 

words, the syntheses of the 2D films are confined by the types and the structures of the 

bulk materials available, and are inherently limiting the variety of 2D compounds that 

can be synthesized. Furthermore, not all 3D compounds can be used to synthesize their 

corresponding 2D films; only the layered type structures are available. To overcome this 

problem, and to introduce flexibility and variety in the 2D materials that can be obtained, 

a different synthetic strategy should be considered.  
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1.3. Bottom-up Coordination Compounds 

 

One possible synthetic solution to the aforementioned challenge is the bottom-

up approach. This refers to the synthesis of materials starting from a smaller 

dimensionality (zero dimension or one dimension), to form materials of higher 

dimensionalities (Fig. 1-5).14b These two terms were first used in nanotechnology to 

describe the methods of creating new nanomaterials.15 

 

In the synthesis of two-dimensional coordination compounds, a bottom-up 

method can be considered more advantageous over the top-down method. For example, 

increased flexibility over their compositions and structures can be obtained as they are 

not fixed by the bulk materials. On the contrary, the bottom-up approach allows almost 

any plausible two-dimensional compounds to be designed and synthesized accordingly. 

Furthermore, a whole new range of 2D materials could be tailor-made according to their 

required properties, starting from the zero or one dimensional building blocks. Such a 

strategy precludes the dependence on the structure of 3D bulk materials and enables the 

customizability of the resulting 2D compounds, by simply changing the metal node, or 

modifying the shape and coordination geometry of the organic linker. As such, the 

diversity and utility of nanosheets can be greatly broadened. 

  

  

Fig. 1-5: Top-down and bottom-up approach of nanotechnology.14b 
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1.4.  Potential of 2D Coordination Nanosheets 

 

Kambe et al. have previously described the synthesis of a -conjugated 

bis(dithiolato)nickel nanosheet (NiDT) via a bottom-up approach. 16  This two-

dimensional coordination nanosheet coined CONASH was formed from the reaction 

between benzenehexathiol (BHT) and nickel(II) acetate in a biphasic mixture of water 

and dichloromethane. With benzenehexathiol acting as a tri-chelating ligand to extend 

outwards from the vertices of the ligand resembling an equilateral triangle and the 

nickel(II) ions in a square planer coordination mode, a two-dimensional planar NiDT 

nanosheet was formed from the bottom-up method.  

 

The NiDT product was formed at the interface of the immiscible reagent 

solutions of dichloromethane and aqueous solutions. This protocol of utilizing the 

interfacial layer of two immiscible liquids for the synthesis and growth of a 2D material 

is highly effective because the two-dimensional interface encourages the arrangement of 

the metal ions and ligands in a planar formation and aids the formation of a planar 

compound. Alternatively, vigorous mixing of the solution mixture or employing a 

liquid-liquid layering technique containing both starting materials dissolved in miscible 

mutually miscible solvents to synthesize NiDT would result in precipitation of 

amorphous solids rather than forming 2D sheets. A slightly modified method was used 

to form the thinner layers of NiDT. Instead of a liquid-liquid interfacial reaction, a gas-

liquid interfacial reaction with calculated amounts of the ligand was added to the 

surface of the aqueous metal ion solution for the formation of the compound on the 

aqueous solution surface. 

 

Furthermore, similar to the characteristics of metalladithiolene complexes, redox 

control of NiDT has been proved to be possible. The nanosheet, as prepared with a 

thickness of 1-2 µm, was found to have an average oxidation state of -3/4. The as-

prepared NiDT (ap-1) could be fully oxidized to 0 (ox-1) or fully reduced to -1 (red-1) 

using tris(4-bromophenyl)ammoniumyl hexachloroantimonate and sodium 

tetracyanoquinodimethane respectively (Fig. 1-6).17 Fully oxidized NiDT exhibited very 

high conductivity for a coordination compound with 1.6 × 102 S cm–1 at 300 K.   
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Other than its interesting chemistry and conductivity, this particular nanosheet 

has also been predicted to be an organic topological insulator by Wang et al.18  A 

topological insulator is defined by the existence of a robust conducting edge or surface 

states on the boundary of normal insulators. This essentially means that a single layer of 

the bis(dithiolato)nickel nanosheet is predicted to be an insulator with some exotic 

metallic states at the edges of the sheet (Fig. 1-7). These states have a topological origin, 

which makes the electrons travelling on such surfaces insensitive to scattering by 

impurities. As such, they have promising potential in technological applications in 

spintronic and quantum computation devices.19 

 

Recently, a slightly modified ligand from BHT has also been used to synthesize 

2D sheets. Sun et al. has discussed in two separate papers on the formation of two 

different types of CONASHs from the 1,3,5-triaminobenzene-2,4,6-trithiol ligand.20 The 

bis(aminothiolato)nickel (NiAT) formed could be interconverted reversibly to form 

bis(iminothiolato)nickel (NiIT), but both compounds have a distinct 5 orders difference 

in their electrical conductivity, from 3 × 10-6 S cm–1 to 1 × 10-1 S cm–1. 

 

 

Fig. 1-6: (a) Chemical structure of the bis(dithiolato)nickel NiDT nanosheet.  
(b) Schematic illustration on redox control in the stacked nanosheet. 
Reprinted with permission from ref. 17. Copyright (2014) American 
Chemical Society. 
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With such possibilities obtainable from just one type of nanosheet, two-

dimensional coordination compounds made from the bottom-up approach shows great 

potential for applications in many areas. Since the bottom-up method allows the 

composition, structure and various properties to be tailored at will, the new or improved 

properties which are achievable from new compounds stimulates the great interest and 

excitement in this area of research.  

 

  

Fig. 1-7: Bis(dithiolato)nickel complex nanosheet predicted to be a topological 
insulator (left), which has conducting electrons at its edge (as illustrated, 
right). Reprinted with permission from ref. 18. Copyright (2013) American 
Chemical Society. 
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1.5. The Choice of Ligand 

 

 

In this research, hexaaminobenzene (HAB) was chosen as the ligand used for 

the synthesis of the sheets. Noro et al. have previously reported their success in 

fabricating metal-organic thin-film transistors by using semiconducting bis(o-

diiminobenzosemiquinonato)nickel(II) complexes and their derivatives, which have 

successfully shown ambipolar characteristics (Fig. 1-8).21 Such ambipolar properties 

were also observed when aromatic amines are used. 

 

Although it is unclear if ambipolar characteristics would be observed in 

nanosheets containing such moieties, the lack of study in utilizing such motifs provides 

an opportunity to investigate the use of related highly symmetrical and multi-dentate 

aromatic amines that are coordinated to Ni(II) ions, to form such 2D materials.  

 

A similar two-dimensional system of nickel(II) ions coordinated with aromatic 

amines of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 was recently reported by Sheberla 

et al.22 In their report, the hexaaminotriphenylene ligand coordinated to nickel(II) ions 

forms slipped-stacked layered structure with an interlayer distance of 3.3 Å. This 

material displayed high electrical conductivity of up to 40 S.cm-1 at room temperature 
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(Fig. 1-9), and such a system is similar to the one that was previously studied in our 

group.  

 

  

Fig. 1-9: Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 reported by Sheberla et al. 
which shows high electrical conductivity. Reprinted with permission 
from ref. 22. Copyright (2014) American Chemical Society. 
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1.6. Aim of Research 

 

 As an extension and continuation of the research program in the Nishihara group, 

the use of the hexaaminobenzene ligand to create 2D nanosheets was investigated, and 

its synthesis and physicochemical properties will be thoroughly discussed in later 

chapters of this dissertation. Similar to the benzenehexathiol ligand, the 

hexaaminobenzene ligand is also a multi-chelating ligand which can extend in three 

directions when coordinated with any square planar type of metal ions. As such, it is 

plausible that a two-dimensional planar nanosheet with a C6 symmetry axis can be 

achieved based on the selective design strategy involving a nickel bis(diimino) moiety. 

It is also reasonable to expect that the desired product would be isostructural to the 

NiDT nanosheet. In addition, it is also proposed that this system would contain stronger 

interaction between the nickel ion and the ligand, since the hexaaminobenzene is 

smaller than that of the hexaaminotriphenylene ligand. 

 

The following chapter of this thesis focuses on the screening and optimization 

reactions, for the synthesis of various hexaaminobenzene-based nickel(II) nanosheets, 

including the synthesis of the ligand, nanosheets, and the analysis of their structure and 

the physicochemical properties. The use of a new electrochemical method to synthesize 

the hexaaminobenzene-based nickel(II) nanosheets would be covered in Chapter 3. The 

investigation of related systems containing other metal ions such as palladium(II) and 

platinum(II) and their corresponding properties, will be discussed in the penultimate 

chapter of this dissertation. Last but not least, the future work and further prospects of 

this research work covered in the last chapter.  
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2 CHEMICAL BIS(DIIMINO)NICKEL(II) NANOSHEETS 

 

2.1. Introduction 

  

 As discussed in the introductory chapter, the hexaaminobenzene (HAB) ligand 

is isostructural to the benzahexathiol ligand, which is one of the reasons why the ligand 

was chosen. As such, when the research of bis(diimino)nickel(II) nanosheets (NiDI) 

made from the hexaaminobenzene first started, a similar synthetic method to the NiDT 

which was also synthesized in Nishihara laboratory was attempted.1  

  

For NiDT, a liquid-liquid interfacial system was used for its bulk synthesis. The 

NiDT was formed at the interface of the immiscible reagent solutions of benzahexathiol 

in dichloromethane and aqueous solution of nickel(II) ions. For the thinner layers of 

NiDT, instead of a liquid-liquid interfacial reaction, a gas-liquid interfacial reaction 

with controlled amounts of the ligand dissolved in organic solvent was added to the 

surface of the aqueous metal ion solution for the formation of the compound on the 

aqueous solution surface. 

 

 When the system is adapted for NiDI, as the HAB ligand is used in its 

trihydrochloride form (HAB.3HCl), HAB was used in an aqueous solution instead, and 

the nickel(II) ions were dissolved in an organic phase. The aim was to let the reaction 

happen at the interface of the immiscible ether and water solutions. As illustrated in Fig. 

2-1, 10 mL of bis(diacetylacetonato)nickel(II) in ether was layered onto an aqueous 

solution of 5 mL aqueous ammonia mixed with 10 mL of HAB.3HCl. However, as seen 

in the figure, the resulting NiDI sample is not cleanly formed between the two 

immiscible solutions unlike that in NiDT. Instead, the formation of the compound could 

be found both at the interface and along the vial walls. A lot of amorphous solids could 

also be seen in the system. 

 

 In addition, when a similar set up was carried out in the glovebox under argon 

atmosphere, it was found that the reaction did not take place and after a very long time, 

a small amount of brown solids could be seen at the interface (Fig. 2-2). It could be 
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observed that there is a difference in the visual properties of the nanosheets formed in 

and out of the glove box. As seen in Fig. 2-1, the resulting sample that was formed 

under atmospheric conditions is black and sinks to the bottom of the reaction vial. On 

the other hand, the NiDI which was synthesized in the glove box, was visibly 

determined to be light brown and remained at the interface of the two liquids. These two 

results are very different, which led to the hypothesis that oxygen could play a part in 

the formation of NiDI. 

  

To confirm the hypothesis, the system that was set up and left to stand for many 

days in the glove box, was taken out of the glove box and then observed. Fig. 2-2 shows 

Fig. 2-1: Liquid-liquid interfacial syntheses of NiDT as compared to NiDI. 
 

Fig. 2-2: Liquid-liquid interfacial synthesis of NiDI set up in the glovebox, which 
was then taken out. 
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what happened to the reaction system after 1 minute, 1 day and 3 days. It can be seen 

that after 1 minute (almost immediately), the nanosheets formed at the interface of the 

liquids turned darker. The vial was then capped and left to stand, and the whole system 

could be seen to turn visibly much darker and the system very much resembled that of 

the system that was made outside the glovebox. On the other hand, the control which 

was left in the glove box did not have such drastic colour changes. The observations 

suggest that oxygen is required for the formation of NiDI. These investigations then 

paved the way for the current research thesis and would be described in the next 

sections. 
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2.2. Optimizing the NiDI system 

 

 From the previous section, two important findings of the NiDI system have been 

established. Firstly, oxidation is required for the formation of NiDI. This can be seen 

from the fact that the reaction does not occur when the system is set up in the glove box 

but occurs rapidly when the reaction vial is exposed to atmospheric air. Secondly, it can 

be observed that there is a need to optimize or develop a new system for the formation 

of the NiDI system since the tried and tested liquid-liquid interfacial methods of other 

systems do not work well. 

  

 Keeping in mind the two findings, the journey to find the best method for the 

synthesis of NiDI began. Firstly, why the current results are obtained should be 

explained. The interface of the two liquids should be the only place where all the 

reagents required for the formation are present, so theoretically that should be the only 

place where the final product is formed, which is like how usual liquid-liquid interfacial 

reactions are carried out. Referring to Fig. 2-3, in the case of NiDI, things start getting 

complicated since the oxygen from the atmospheric air is also involved in the reaction. 

The oxygen comes from the top of the system, so the reaction occurs at other parts of 

the reaction vial other than just the interface of the two liquids.  

 

 As this NiDI system is characteristically different from the other systems, a 

method to make use of the oxygen coming from the top of the system to form some 

Fig. 2-3: Illustration showing the difference in the usual liquid-liquid interfacial 
system as compared to the NiDI case, as well as the postulated new 
homogenous system. 
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films should be developed. This meant that the interface where the reaction is happening 

should be at the top. The interface is important for the formation of good two-

dimensional films. As such, the idea of having a homogenous system with all the 

reagents inside was conceived, and that the oxygen which comes from the top would be 

the determining factor for formation of NiDI on the homogeneous solution interface. As 

illustrated in Fig. 2-3, it is postulated that a target film would be formed at the top of the 

homogeneous system when oxygen is also considered as one of the variables. 

 

 Since HAB.3HCl easily solubilizes in water, the homogeneous system should be 

an aqueous system, and a new nickel(II) ion source should be used. As such, nickel(II) 

acetate was used as the nickel(II) ion source. Also, it is important that the new 

homogeneous system has to be set up in the glove box, then taken out and left 

undisturbed in atmospheric conditions, as amorphous solids would be easily formed if 

the solution is quickly mixed with oxygen. 
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2.3. Chemical Synthesis of NiDI 

 

The optimized synthesis of the NIDI nanosheet formation is performed through 

an oxidation assisted reaction and is formed by the reaction between the 

hexaaminobenzene trihydrochloride ligand (0.4 mM) and nickel(II) acetate (15 mM) in 

4.5 M excess concentrated ammonia solution. By varying the rate and amount of 

dioxygen introduced into the gas phase just above the aqueous solution of reaction, 

different thickness of crystalline black sheets were formed at the surface of the solution, 

affording the NiDI nanosheet as shown in Fig. 2-4. Fig. 2-5(a) - (h) shows the formation 

of the NiDI nanosheet at different time intervals after the setting up of the experiment. 

The metallic lustre of thicker nanosheets can be observed in Fig. 2-4, indicating a 

certain level of crystallinity of the NiDI CONASH.  

 

 

Fig. 2-4: Reaction conditions (left) and crystalline NiDI which has been transferred 
onto a glass substrate (right). 

Fig. 2-5: Photographs taken during the formation of chemically synthesized NiDI. 
(a) Beginning of experiment (0 hours). (b) After 7 hours. (c) After 15 
hours. (d) After 20 hours. (e) After 1 day (26 hours). (f) After 1.5 days 
(approximately 36 hours). (g) After 2 days (approximately 48 hours). (h) 
After 3 days (approximately 72 hours). 
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This novel sheet is slowly formed on the calm liquid surface over time, as 

oxygen is required for the formation. This is due to the need for the biradical formation 

with structures similar to bis(o-diiminobenzosemiquinonato)nickel(II), Ni(isq)2 (isq = o-

diiminobenzosemiquinonate), which has been synthesized under air. The slow exposure 

to atmospheric oxygen is the crux for the high crystallinity of the sheets formed. With 

this gas/liquid interfacial reaction method based on the previous interfacial synthesis, 

we are able to obtain large centimetre-scale NiDI nanosheets with high crystallinity 

visible to the naked eye as shown in Fig. 2-4. 

 

The formation mechanism is shown in Fig. 2-6. In the as-prepared solution, two 

hexaaminobenzene ligands, which are formed by the neutralization of the 

trihydrochloride salts with ammonia, reversibly coordinate with the nickel ion since the 

coordination ability of anilines is not strong enough. As dioxygen is introduced, a pair 

of the coordinated amines of each ligand is oxidized, resulting in a -conjugated five 

membered metallacycle, which dramatically improves the coordination ability of the 

ligand and stabilizes the complex. Then, the other two pairs of free amines on the ligand 

are also oxidized to coordinate stably to other nickel ions, which then coordinate with 

other ligands. Eventually, the complexes expand to become a large coordinated sheet on 

the gas/liquid interface.  

 

 

 

Fig. 2-6: Mechanism of NiDI formation and the resulting kagome lattice. 
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2.4. Characterization and Structure 

 

2.4.1. X-ray photoelectron spectroscopy (XPS) 

 

 

 

Characterizing the NiDI sheets using X-ray photoelectron spectroscopy (XPS) 

showed the presence of N1s, Ni2p, and C1s peaks, proving the formation of the NiDI 

nanosheet. The Si2s peak is from the SiO2 substrate on which the NiDI was transferred 

to. The elemental ratio of nickel to nitrogen was found to be 1:4.2, which is close to the 

expected 1:4 ratio for the NiDI nanosheet. 

 

From the XPS spectrum, the NiDI CONASH formed is found to be neutral, with 

the basic structure of [NiDI]0 similar to the centre neutral complex in Fig. 1-8. Other 

than the presence of the peaks which represents the presence of NiDI, substrate peaks 

and O1s peaks which are from ubiquitous oxygen or small amount of water molecules 

adsorbed onto the films, no other peaks are present. For example, Cl peaks, originating 

from the HAB.3HCl ligand, are absent. This shows the absence of any trapped anionic 

chlorides to compensate a possible cationic structure.  

 

In addition, when the high-resolution XPS analyses of the Ni2p and N1s regions 

are observed, a single type of Ni and N environment is seen (c.f. Fig. 3-4). This suggests 

that possible cations, such as extraneous Ni2+ or NH4
+ ions, to balance anionic NiDI is 

Fig. 2-7: XPS spectrum of neutral NiDI films formed by the chemical method. The 
sample was measured on a silicon substrate which explains the presence of 
Si2s peaks present in the spectrum. 
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absent. Since no other cations or anions could be formed from the reagents used, it can 

be inferred that a neutral form of NiDI has been obtained. 

 

2.4.2. Infrared spectroscopy 

 

Infrared spectroscopy of pelletized NiDI ground with solid KBr gave distinct 

bands which correspond to the expected structure of the NiDI and are in similar to those 

observed for mononuclear equivalent bis(o-diiminobenzosemiquinonato)nickel(II), 

Ni(isq)2 (isq = o-diiminobenzosemiquinonate). The representative peaks are however 

much broader than the peaks of Ni(isq)2 because of the polymeric structure and 

presence of hydrogen bonding in NiDI. This causes the many similar bonds present to 

exhibit slightly different environments from their counterparts and lead to a broadening 

of the peaks found at their expected wavenumber range. Fig. 2-8 shows the IR spectra 

of NiDI and mononuclear bis(o-diiminobenzosemiquinonate) nickel(II) complex.  

 

 The bands at about 3200 cm-1 and 3440 cm-1 can be assigned to the N-H 

stretching (purple) while peaks at 640 cm-1 and 1600 cm-1 can be assigned to be the 

aromatic ring (green) while the strong signal at about 1400 cm-1 matches with C=N 

stretching (orange). Based on these assignments, it can be inferred that the structure of 

the NiDI nanosheet most likely to be that of the proposed structure in Fig 2-6. 

Fig. 2-8: IR spectra of NiDI (red) and mononuclear bis(o-diiminobenzosemiquinonate) 
nickel(II) complex (black). The coloured regions are the peaks assigned to N-
H stretching (purple), aromatic ring (green) and C=N stretching (orange) 
respectively. Inset shows the structure of the mononuclear Ni(isq)2 complex. 

Ni(isq)2 

Ni(isq)2 

NiDI 
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2.4.3. Powder X-ray diffraction 

 

Powder X-ray diffraction (PXRD) data obtained for the bulk NiDI sheet 

obtained using high energy synchrotron radiation (λ = 0.80 Å) showed distinct peaks, 

further proving the crystallinity of the product formed. Further analysis of the pattern, as 

shown in Fig. 2-9, were found to match the pattern obtained from simulated data of an 

eclipsed nanosheet array with the crystal lattice parameters of a = b = 13.01 Å and c = 

3.25 Å. These values were also found to match the ones obtained from DFT calculations 

which were based on an extended NiDI lattice. 

 

The two relatively sharp peaks at 2θ = 4.05˚ and 8.05˚ belong to the [100] and 

[200] diffraction planes, while the relatively broad peak at 2θ = 14.10˚ was found to be 

a combined signal from the [001] and [011] planes. This is most likely due to the 

slightly poorer long-range order in the stacking of the sheets in the crystallographic c-

axis. The remaining peaks have been assigned to the [120], [300], [201], [330], [510] 

and [600] planes accordingly.  

 

 The simulated pattern of the NiDI sheet stacked in a staggered pattern was also 

calculated and compared but is found to be less well-matched as compared to the 

eclipsed form as shown in Fig. 2-10.  

 

Fig. 2-9: Powder XRD spectrum of experimental NiDI (blue) matching with simulated spectrum 
of eclipsed NiDI. Inset shows the illustration of eclipsed NiDI. 
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2.4.4. Microscopy images 

 

The NiDI sample was determined to have a sheet-like layered structure under 

the different microscopes. When transferred onto substrates and then observed under the 

optical microscope, large domains greater than a few hundreds of micrometres can be 

observed (see Fig. 2-11(a)). This further supports the large centimetre-size black film as 

seen in Fig. 2-4, and this film is also clearly a continuous sheet with rather large 

domains as observed by microscopy. 

 

The sheet-like layered topology can also be seen clearly from the scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) images in Fig. 

2-11(b) and (c). Atomic force microscopy (AFM) images of the control NiDI sample 

Fig. 2-10: (a) Simulated pXRD spectra and structure of eclipsed NiDI nanosheet.  
(b) Simulated pXRD spectra and structure of staggered NiDI nanosheet 
(wavelength = 0.80 Å). 
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(see Fig. 2-11(d)), revealed that the sheet thickness is approximately 20 nm and spans 

an area of approximately 10 m by 20 m.  

 

Further control of the exposure time to dioxygen resulted in the detection of 

even thinner sheets with an edge of just 0.8 nm thickness, corresponding to a single 

layer nanosheet, as seen in Fig. 2-11(e). To confirm that this is indeed a monolayer 

NiDI and not just simply a step edge of the substrate, the corresponding phase diagram 

is given in Fig. 2-11(f). This shows that the area of monolayer mentioned is a totally 

different phase from the surroundings, indicating that it is a monolayer directly on the 

SiO2 substrate. 

 

  

Fig. 2-11: Microscopy images of NiDI sheet. (a) Optical microscopy image. Scale bar 
represents 100 µm. (b) SEM image. Scale bar represents 5 µm. (c) TEM image. Scale 
bar represents 100 nm. (d) AFM image and height profile of large domain NiDI. Scale 
bar represents 5 µm. (e) Topography AFM image and height profile of thin NiDI at 
edges. Scale bar represents 50 nm. (f) Phase diagram of (e). 

 



Chapter 2 
 

32 
 

2.5. Physical Properties 

 

2.5.1. Cyclic Voltammetry 

 

 The redox activity of a NiDI nanosheet deposited on HOPG was investigated 

using cyclic voltammetry (CV) in 1 M Bu4NClO4-MeCN. The redox behaviour of the 

NiDI nanosheet shown in the steady state CV in Fig. 2-12 is not very reversible unlike 

the mononuclear complexes of bis(diimino)nickel derivatives2; however, oxidation and 

rereduction peaks appear at approximately 0.28 V vs. ferrocenium/ferrocene (Fc+/Fc), 

indicating the redox reaction is chemically reversible. This peak couple can be ascribed 

to [NiDI]+/[NiDI]0 based on the redox behaviour of the mononuclear bis(diimino)nickel 

complex. 

 

 

 

2.5.2. Conductivity 

 

Electrical conductivity of a NiDI nanosheet in its pelletized form was measured 

using a four-terminal method under helium while varying the temperature. Fig. 2-13 

shows the temperature dependent electrical resistivity of NiDI which rises as a function 

of inverse temperature. The electrical conductivity () of the NiDI nanosheet increased 

Fig. 2-12: Cyclic voltammogram of chemically synthesized NiDI nanosheet on 
HOPG vs Fc+/Fc. 
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with temperature and was 1.3 × 10-3 S·cm-1 at 298 K, indicating its semiconducting 

nature with the activation energy of 0.16 eV. Similar results of two independent samples 

indicating the repeatability of the measurement is given in Fig. 2-14. The activation 

energy was calculated as follows: Gradient of Ln(Resistivity) graphs = Ea/1000kB; Ea1 = 

0.163 eV; Ea2 = 0.160 eV (see appendix 1).  

 

Fig. 2-14: Temperature-dependent resistivity of 2 independent NiDI CONASH 
plotted as conductivity vs. temperature and log(ρ) vs. 1000T-1. 

Fig. 2-13: Temperature-dependent resistivity of NiDI CONASH plotted as log(ρ) 
vs. 1000T-1. 
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While the  value obtained is lower than the ones obtained from the pelletized 

sample of structurally similar NiDT nanosheet (0.15 S·cm−1)1b or Ni3(HITP)2 nanosheet 

(2 S·cm−1)3, they were still comparable to other films formed by coordination bonds.4 

The -conjugation fully extended in two-dimensional plane, the redox property of the 

bis(diimino)nickel motif in a NiDI nanosheet, and the overlap between the layers 

would be attributed to the electronic conduction in the bulk NiDI nanosheet. 

  

2.5.3. Magnetic Properties 

 

Magnetic properties of the NiDI CONASH were investigated using 

superconducting quantum interference device (SQUID). Some sample batch 

dependence was confirmed but all of the data exhibited non-negligible magnetic 

moments that did not follow the Curie-Weiss law. The data of a particular sample is 

shown in Fig. 2-15. T decreases linearly with temperature down to 30 K, then rapidly 

decreases at lower temperature. The experimental susceptibility data could be simulated 

by considering temperature-independent term 𝜒଴ in addition to the Curie-Weiss term 

according the formula: χ(𝑇) = 𝐶଴(𝑇 − ିଵ + 𝜒଴ . The fitting from 2 K to 400 K 

afforded Curie constant  𝐶଴ = 0.12 cm3·K·mol-1 and Weiss temperature 𝜃 = −3.0 K. 

The Curie term suggests the existence of local magnetic moments and the negative 𝜃 

value indicates the antiferromagnetic interaction between the spins in the NiDI sample. 

𝜒଴ can correspond to either the Pauli paramagnetism or Van Vleck paramagnetism, or a 

combination of both terms. 

 

These results are intriguing because the neutral Ni(isq)2, a fundamental 

constituted unit of the NiDI nanosheet, forms a non-magnetic singlet state owing to the 

strong antiferromagnetic coupling between the two S = 1/2 spins.5 It is assumed that 

these observations are caused by randomness of the interlayer hydrogen bonding which 

resulted in a less ordered stacking of the NiDI nanosheets. The hydrogen bonding 

through the NH moieties is expected to perturb the singlet biradical characteristics of 

the Ni(isq)2 unit to give rise to localized magnetic moments and conducting carriers, 

whose intensity/magnitude would be directly affected by the stacking (hydrogen-
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bonding) pattern. However, more investigations regarding the magnetic properties are 

needed before deductions that are more conclusive can be made.  

 

 

 

  

Fig. 2-15: Temperature-dependent magnetic susceptibility of NiDI CONASH. The dotted 
line is the fitting curve of χ(𝑇) = 𝐶଴(𝑇 − ିଵ + 𝜒଴ using the parameter 𝜒଴ = 1.9 × 10ିସ 
cm3·mol−1, 𝐶଴ = 0.12 cm3·K·mol-1 and  θ = -3.0 K. Inset shows a C4H4N4Ni magnetic unit. 
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2.6. Band Structure Calculations 

 

The band structure for single layer, bilayer, and bulk NiDI were calculated using 

DFT first-principles methods, as implemented in Vienna ab initio simulation package. 

The projected augmented wave and the generalized gradient approximation6 exchange-

correlation potentials were used. For the bulk calculation, experimental crystal lattice 

parameters of a = b = 13.01 Å and c = 3.25 Å, as obtained from PXRD results, were 

adopted. For the single layer and bilayer calculation, the same lattice constants a and b 

were adopted with a vacuum layer thicker than 15 Å along the z direction to eliminate 

the interaction between the other layers. The Brillouin zone sampling was set as 7 × 7 × 

9 and 11 × 11 × 1 for the bulk and layer calculations, respectively. The plane wave cut-

off energy was set to 400 eV and the structural relaxations were carried out until the 

force on each atom was less than 0.02 eV·Å-1.  

 

The band structure of monolayer and bilayer NiDI is similar, as seen from Fig. 

2-16(a) and (b), which shows metallic behaviour with the conduction band mainly 

formed by -conjugated pz orbitals from carbon and nitrogen. The band structure of 

bulk NiDI is displayed in Fig. 2-16(c) with the corresponding Brillouin zone and high-

symmetry k-points depicted in Fig. 2-16(d). Unlike the weak van der Waals interaction, 

such as that between graphene layers, the interaction between the NiDI layers is 

rather strong, as indicated by the interlayer band structure (blue region from Γ to A), 

which contributes to an interlayer electronic conductivity. The intrinsic bulk NiDI also 

shows a metallic feature like the layered nanosheets. However, with different oxidation 

or reduction environments, the location of the Fermi level can be changed, which in turn 

changes the electrical properties. This is especially when the Fermi level is moved into 

the two intra-layer gap regions (grey regions) by proper doping; the intra layer NiDI 

conduction changes from metallic to semiconducting, which suggests the possibility to 

tune the conductivity similar to NiDT CONASH. 
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Fig. 2-16: First-principles band structures of NiDI (a) monolayer, (b) bilayer, and (c) 
bulk NiDI, where the grey regions indicate the intra-layer bandgap and the 
blue region indicates the interlayer conducting. (d) The first Brillouin zone 
and high-symmetry K-points for the layered and bulk systems, respectively. 
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2.7. Discussion 

 

 As of the time of writing, two other groups have also published their research on 

this particular system. However, their synthetic approach and properties of their 

material were found to be slightly different. In this section, some comparisons between 

both reported methods will be briefly discussed. 

 

 The first paper was reported by Lahiri et al., who synthesized their films in a 

surprisingly similar method to that of the initial studies of this work.7 Ethyl acetate 

solution of nickel(II) acetylacetonate was layered onto a degassed aqueous HAB.3HCl 

solution and then left to stand for 4 hours under atmospheric conditions. The difference 

between their method and the initial studies of this work is that sodium bromide was 

also added into the aqueous system. The resulting film was also an anionic one, with 

Na+ ions as counter ions, as confirmed by XPS. Also, by exposing their setup under 

ambient atmospheric conditions the authors inadvertently but unexpectedly used 

molecular oxygen as an oxidant to synthesize the desired nanofilms. In addition, the 

authors also described the fabrication of devices using their films. Interestingly, it was 

reported that these devices were insulating, with resistivities in the range of GΩ, which 

is significantly different from the semiconductive properties of NiDI found in this work.  

 

 Dou et al. then published their research using their own method of synthesis, 

which included warming solution mixtures of water and dimethylsulfoxide, up to 60 

˚C.8 It was reported that the film they obtained is neutral and also noted the important 

role of oxygen for the reaction. However, they concluded that their obtained nanosheet 

has a slipped parallel structure (CmCm space group) rather than an eclipsed structure 

(P6/mmm space group). 

 

The difference in reaction temperature might cause a difference in crystalline 

film growth rate, which resulted in the absence of peak [041] from Dou's structure for 

our nanosheet in the powder XRD pattern.  Thus, our calculated band structure is based 

on an eclipsed structure. Since the calculated band structure is different, it is reasonable 

to rationalize that the resulting band structure would also be different. Comparatively, 
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both calculations strongly suggest a metallic nature of bulk NiDI, even though both 

groups observed semiconducting behaviour. This could be attributed to the thermally 

activated hopping of carriers between grain boundaries since a pelletized sample was 

used. 
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2.8. Conclusion 

 

A novel redox active NiDI nanosheet has been synthesized using a new kind of 

gas/liquid interfacial reaction under mild conditions. By utilizing molecular oxygen to 

generate radicals during the coordination reaction, the exposure to atmospheric oxygen 

on the surface allows for a slow diffusion and slow formation of the nanosheets, which 

in turn, led to the formation of large crystalline nanosheets on a calm liquid interface. 

Previous synthetic protocols typically require sacrificial radical-containing/generating 

compounds, which usually involve stirring the reaction mixtures. Although such 

mechanical agitation is effective, it requires a longer reaction time, and thus smaller 

nanosheets are obtained. The new slow diffusion layering method is independent of 

mechanical stirring, which enables the formation of very large nanosheets. In fact, the 

only limitation to the size of nanosheet formed would be the size of the reaction vessel 

used, as that determines the surface area of the solution exposed for oxidation. 

 

This NiDI nanosheet is also potentially useful for many applications in the 

future such as electronic devices since it exhibited electron-conducting properties. 

Interesting magnetic data has also been obtained, although yet to be fully explained. 

Band structure calculations also suggest the possibility of tuning physical properties of 

the NiDI, such as its conductivity, by using doping or redox reactions. 
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2.9. Experimental Section 

 

FT-IR spectra were recorded using a JASCO FT/IR-6100 at room temperature 

under vacuum using a KBr pellet. Surface IR (ATR) was recorded using ThermoFisher 

Nicolet iS-50 FT-IR. 1H (500 MHz) NMR spectra were recorded on a Bruker-DRX500 

spectrometer. Powder X-ray diffraction (pXRD) pattern of chemically synthesized NiDI 

was obtained using synchrotron radiation (λ = 0.80 Å) at Beamline BL02B2, at Super 

Photon ring-8 GeV (SPring-8) in Japan. The sample was ground finely packed into a 0.5 

mm-diameter soda tube. 

 

Field Emission-Scanning Electron Microscopy images were collected using a 

JEOL JSM-7400FNT equipped with an EDS analyzer (JEOL EX-2300). TEM images 

were recorded at 75 kV using a Hitachi HF-2000 equipped with an AMT-CCD camera. 

X-ray Photoelectron Spectroscopy data were obtained using PHI 5000 VersaProbe 

(ULVAC-PHI, INC.). Al Kα (15 kV, 25 W) was used as the X-ray source, and the beam 

was focused on a 100 μm2 area. The spectra were analysed using the MultiPak Software 

and standardized using a C1s peak at 284.6 eV. Atomic Force Microscopy (AFM) was 

carried out using an Agilent Technologies 5500 Scanning Probe Microscope, under 

ambient conditions, in the high-amplitude mode (tapping mode), with silicon cantilever 

PPP-NCL (Nano World). DFT calculations were performed on Gaussian 09. PXRD 

simulations were calculated on CrystalDiffract program. 

 

Cyclic voltammetry used a three-electrode configuration electrochemical cell 

with 1 M acetonitrile solution of tetrabutylammonium hexafluorophosphate as the 

electrolyte solution, a Pt coil as the counter electrode and an Ag+/Ag electrode as the 

reference electrode. Their set ups were monitored by the 650DT electrochemical 

analyzers. (BAS Co., Ltd.) The reported potentials were adjusted from Ag+/Ag to 

Fc+/Fc using the difference in potentials between the two redox couples. 

 

For substrate preparations, Highly Ordered Pyrolytic Graphite (HOPG) was 

obtained from Alliance Biosystems, Inc. (Grade SPI-1/2 10 × 10 × 2 mm) and its 

surface renewed with adhesive tape just before use. Silicon wafers (P-doped with a 
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concentration of 3 × 1018 cm–3) with thermally grown 100 nm-thick SiO2 were 

purchased from Yamanaka Semiconductor, and cut into 12 mm by 12 mm small squares. 

Hexamethyldisilazane (HMDS) treatment was then carried out by submerging the 

silicon wafers in an ethanol solution (10 mL) of HMDS (100 µL) for 1 day. After 

rinsing with ethanol, the wafers were annealed at 120 oC for 2 hours and then dried 

under vacuum. 

 

Band structure calculations were carried out kindly by Liu’s group from 

University of Utah. The band structure for single layer and bulk NiDI were calculated 

using DFT first-principles methods as implemented in Vienna ab initio simulation 

package. For the bulk calculation, experimental crystal lattice parameters of a = b = 

13.01 Å and c = 3.25 Å, as obtained from PXRD results, were adopted. For the single 

layer calculation, we adopted the same lattice constants a and b with a vacuum layer 

thicker than 15 Å along the z direction to eliminate the interaction between the other 

layers. The Brillouin zone sampling was set as 7 × 7 × 9 and 11 × 11 × 1 for the bulk 

and layer calculations, respectively. The plane wave cut-off energy was set to 400 eV 

and the structural relaxations were carried out until the force on each atom was less than 

0.02 eV·Å-1. 

 

For the conductivity measurements, the NiDI obtained from vacuum filtration 

were first ground using a mortar and pestle before pressing into a pellet. The pelletized 

form was then approximately sliced into flat rectangular strips for the resistivity 

measurements. The direct-current resistivity measurements were performed with the 

pelletized NiDI using the standard four-probe method. Electrical contacts were obtained 

by gluing four gold wires (15 m diameter) to the pellet with carbon paste. 

 

The temperature dependencies of the magnetic susceptibilities of NiDI were 

measured with a Quantum Design MPMS SQUID magnetometer. Aluminium foil was 

used as a sample container; its magnetic contribution was subtracted as background by 

measuring its own magnetic susceptibilities during every measurement.  
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2.9.1. Synthesis of Ligand 

 

The chemicals were bought commercially and used without any further 

purification from Kanto Chemical Co. Inc., Sigma-Aldrich Co. and Wako Pure 

Chemical Industries Ltd. Dry solvents were purified with a Glass Contour Solvent 

Dispensing System (Nikko Hansen & Co., Ltd.). Water was purified using the Milli-Q 

purification system (Merck KGaA).  

 

Hexaaminobenzene trihydrochloride (HAB.3HCl) was synthesized using 

slightly modified literature procedures according to the scheme as shown in Fig 2-17.9 

 

Synthesis of 1,3,5-Trichloro-2,4,6-trinitrobenzene (1) 

 

Fuming nitric acid (4.9 mL, 112 mmol) was added slowly to a stirring solution 

of fuming sulfuric acid (50%，250 mL) at 0 °C. After the addition was complete, the 

ice-bath was removed and a condenser was equipped, and then the mixture was heated 

to 80 °C. The precursor, 1,3,5-trichlorobenzene (20.3 g, 22.4 mmol), was added portion 

wise and then the temperature was raised to 130 °C and left overnight. The reaction 

mixture was then allowed to cool to room temperature and then poured onto roughly 

300 mL of ice. The resulting solid was vacuum filtered and then washed with water and 

Fig. 2-17: Synthetic scheme for hexaaminobenzene trihydrochloride ligand. 
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diethyl ether, respectively. The resulting white solid, 1, (5.09 g, 72%) was >95% purity 

by gas chromatography mass spectroscopy. The slight impurity was found to be 

tetrachlorodinitrobenzene. IR (ATR, cm-1): υ 1546, 1343, 951, 848. MS (GCMS): 315 

[M]+.  

 

Synthesis of 1,3,5-Triamino-2,4,6-trinitrobenzene (2) 

 

Compound 1, 1,3,5-trichloro-2,4,6-trinitrobenzene (4.34 g, 13.7 mmol) was 

dissolved in toluene (90 mL). Anhydrous ammonia was bubbled through the solution 

heated under reflux for 30 h. After being cooled to room temperature, the resulting 

mixture was filtered. The yellow residue was washed with toluene, acetone and water 

until the solvents ran clear and finally with some acetone once again to dry the final 

yellow solid, 2 (2.73 g, 77%). IR (ATR, cm-1): υ 3316, 3216, 1612, 1568, 1446, 1321, 

1222, 1176, 1028. MS (EI): 258 [M]+.  

 

Synthesis of Hexaaminobenzene Trihydrochloride (3) 

 

Triaminotrinitrobenzene (2) (503.5 mg, 1.95 mmol) was placed in a 50 mL 

Schlenk flask together with 10% Pd/C (90 mg) and dry EtOAc (50 mL) as a solvent and 

the joints were sealed tightly. The air in the reaction flask was removed with a quick 

vacuum without evaporating too much of EtOAc and replaced with H2 gas from a 

balloon. The reaction was left to stir for 2 days, with the H2 balloon replaced when the 

pressure of the balloon decreased. Then, concentrated hydrochloric acid (15 mL) was 

added to the system, and the reaction was continued under H2 for an additional 3.5 h. 

The colour of the mixture would have changed from black to slightly grey. The reaction 

mixture was filtered under reduced pressure over Celite to remove catalyst. About 50 

mL of 1 M hydrochloric acid (HCl) was then used to wash the solids. The 

hexaaminobenzene trihydrochloride then crystallized out in the filtrate. More 

concentrated HCl is added to the filtrate to encourage recrystallization. The white or 

pale pink solids were collected by suction filtration by using polytetrafluoroethylene 

(PTFE) membrane (0.5 μm pore) and washed thoroughly with EtOAc and dried to 

afford 415.8 mg of 3 (77% yield). The product was kept in tightly sealed vials under 
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argon. IR (KBr, cm–1): υ 3384, 3249, 2977, 2565, 1671, 1636, 1582, 1554, 1480, 1279, 

1203, 1166, 1096.  

 

2.9.2. Synthesis of Nanosheets 

 

0.05 M of aqueous nickel(II) acetate solution was prepared with degassed water 

and an equivalent amount of concentrated aqueous ammonia was added. 15 mL of the 

resulting deep blue solution was then added to 10 mL of 1 mM of aqueous ligand 

solution under argon atmosphere in a 50 mL vial. The vial and its resulting solution 

were then exposed to atmospheric air at room temperature, with the duration controlled 

if thinner sheets are required. The shiny black film formed on the aqeuous surface was 

the NiDI. In the case of thinner NiDI sheets, the sheets were collected and transferred 

under argon atmosphere with exposure to atmospheric air ranging from 1 to 5 hours. 
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3 ELECTROCHEMICAL BIS(DIIMINO)NICKEL(II) NANOSHEETS 

 

3.1. Introduction 

  

In Chapter 2, a new method for the synthesis of NiDI which skilfully makes use 

of oxygen to obtain relatively large and crystalline sheets has been developed. This 

method however, requires a relatively long time without a qualitative control. 

Furthermore, due to the prevalence of N-H bonds in the NiDI sample, hydrogen 

bonding can sometimes causes the difficulty of adsorption onto the substrates we want 

to transfer to. The NiDI film which is being formed on an aqueous surface, forms strong 

hydrogen bonding with water molecules. During the transfer, small amounts of water 

molecules are trapped between the sample and the substrate surface. This sometimes 

causes the detachment of the NiDI film from its substrate when the sample is being 

dried. An example can be seen in Fig. 2-4, where the NiDI film on the glass substrate is 

not lying flat on the substrate but is standing in air. 

 

In the exploration of methods to adsorb our samples tightly onto substrates, we 

developed the electrochemical method of synthesis which also utilizes oxidation but in 

another form of removing electrons. This method synthesizes the NiDI directly onto an 

electrode surface, so the adhesion of the film is not a point of consideration anymore. 

This also adds another advantage as compared to films transferred onto substrates, as 

being synthesized directly on the substrate means the reduction of air or water 

molecules that can contribute to a slight increase in resistance between the sample and 

substrate. Furthermore, using the electrochemical method, we are able to control the 

amount of charge supplied to the system which is used to oxidize the reagents and hence 

control the amount of NiDI CONASH formed. 
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3.2. Synthesis of Electrochemical NiDI 

 

Discovering the necessity for oxidation, another synthetic method using 

electrochemical oxidation was developed, which produces the NiDI nanosheet directly 

on an electrode surface. The electrochemical polymerization was carried out at an 

indium-tin oxide (ITO) glass in a HAB·3HCl-Ni(OAc)2-NH3 aqueous solution with 0.1 

M NaBF4 as electrolyte under an argon atmosphere as illustrated in Fig. 3-1. A black 

film immediately formed and adhered strongly to the ITO electrode when a constant 

potential of 0.56 V vs. Ag/AgCl was applied to oxidize the HAB. In comparison, 

electro-oxidation of nickel-free reaction solution (HAB·3HCl-NH3-NaBF4) afforded no 

film on the electrode, indicating the role of nickel ions for the polymerization.  

 

 

This electrochemical method enables a more controllable growth of the 

nanosheet as compared to the gas-liquid interfacial reaction as the degree of oxidation 

can be precisely adjusted. A series of samples with synthetic times varying from 10 s to 

60 s can be synthesized as seen in Fig. 3-2. It can be seen that the amount of NiDI 

Fig. 3-1: Illustration of the synthetic set up for electrochemical synthesis of NiDI. 

Fig. 3-2: Photograph of samples of NiDI on ITO with increasing synthetic time. 
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formed on the ITO substrate increases with the increase in synthetic time as indicated by 

the increasing opacity with time. 

 

As the chemistry of the NiDI formation is the same, it is postulated that the 

same reaction mechanism as described in section 2.3 and illustrated in Fig. 2-6 is 

applicable for the electrochemical synthesis of NiDI. 
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3.3. Characterization 

 

3.3.1. X-ray photoelectron spectroscopy (XPS) 

 

 

 

The electrochemically synthesized NiDI sheets were characterized using X-ray 

photoelectron spectroscopy (XPS) as seen in Fig. 3-3 and the wide spectrum showed the 

similar presence of N1s, Ni2p, and C1s peaks to the chemically synthesized NiDI 

nanosheet (Fig. 2-7). The elemental ratio of nickel to nitrogen was also found to be 1:4, 

same as the expected ratio. From the XPS spectrum, since no other cations or anions 

could be formed from the reagents used, it is concluded that a neutral form of NiDI has 

been obtained similarly using this new synthetic method. 

 

Also, when the high resolution XPS spectra of the two types of NiDI are 

compared in Fig. 3-4, it can be seen that both types of NiDI show peaks with similar 

binding energies. This further proves that the NiDI formed by the two methods are 

identical in terms of their composition. 

Fig. 3-3: XPS spectrum of neutral NiDI films formed by the electrochemical 
method. 



Chapter 3 
 

52 
 

 

 

 

 

 

3.3.2 Infrared spectroscopy 

 

Solid KBr infrared spectroscopy of the electrochemically synthesized NiDI in 

Fig. 3-5 gave distinct bands and these are similar to the spectrum of the chemically 

synthesized NiDI. The band at about 3200 cm-1 is assigned to the N-H stretching band 

(purple), the peak at approximately 1600 cm-1 can be assigned to be signal from the 

aromatic ring (green) while the strong signal at about 1400 cm-1 match with the C-N 

stretching band (orange). These bands from infrared spectroscopy further prove that the 

structure of the electrochemically synthesized NiDI nanosheet is the similar to that of 

the chemically synthesized as described in Chapter 2. 

 

. 

Fig. 3-4: Comparison of high resolution XPS spectra of chemical and electrochemical 
NiDI. (a) and (b) shows high resolution XPS spectra of both samples in the 
nitrogen 1s and nickel 2p regions respectively. 
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3.3.3 Powder X-ray Diffraction 

 

Powder X-ray diffraction (PXRD) analysis of the electrochemically synthesized 

NiDI sheet obtained using high energy synchrotron radiation (λ = 1.08 Å) gave some 

broad peaks, which shows that this method give products with crystallinity much lower 

than that of the chemically synthesized NiDI. The less ordered structure of 

electrochemically prepared NiDI is, however, understandable as it results from the 

quick formation and the difference of the reaction field (solid-liquid interface for the 

electropolymerization versus gas-liquid interface for the chemical polymerization). 

 

These peaks obtained, as seen in Fig. 3-6(a), were found to also match the 

simulation data of an eclipsed nanosheet array with the crystal lattice parameters of a = 

b = 13.01 Å and c = 3.25 Å. The three relatively obvious peaks at 2θ = 5.5˚, 11.0˚ and 

19.0˚ were found to match to the [100], [200] and [001] diffraction planes respectively.  

 

Although the simulated pattern of the NiDI sheet stacked in a staggered pattern 

as shown in Fig. 3-6(b) also have corresponding peaks at similar positions for 

diffraction planes [100], [011] and [002], it was concluded to be less matched as 

compared to the eclipsed form to the experimental data. This is due to the absence of the 

[201] diffraction peak which should appear at about 14.5˚, which if present, should give 

a peak of slightly lower intensity to the peak at 11.0˚. 

Fig. 3-5: IR spectrum of electrochemically synthesized NIDI. 
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(a) 

(b) 

Fig. 3-6: Powder XRD spectrum (λ = 1.08 Å) of experimental NiDI (blue) matching with 
simulated spectrum of (a) eclipsed NiDI and (b) staggered NiDI.  



Chapter 3 

55 
 

3.4. Time as a Variable 

 

Using time as a variable, several NiDI samples on ITO have been synthesized to 

obtain different amounts of NiDI on the electrodes. As pictured in Fig. 3-2, the longer 

time the ITO electrode is exposed to the constant potential, the more NiDI is deposited 

as seen from the increasing opacity with time. Using these NiDI samples with a time 

variable of 10 s to 60 s, some new properties of the NiDI CONASH was investigated. 

 

3.4.1. Ultraviolet-visible-near infrared Spectroscopy 

 

   Electronic data was previously not really obtainable using the chemical NiDI as 

the CONASH obtained did not adsorb well on the electrodes. The thicker sheets which 

are able to adsorb well on the substrates are usually too opaque to be measured. 

 

 This electrochemical method enables a more controllable growth of the 

nanosheet as compared to the gas-liquid interfacial reaction as the degree of oxidation 

can be precisely adjusted. Fig. 3-7 shows the UV-vis-NIR spectra of six different 

samples obtained by applying a constant potential of 0.56 V vs Ag/AgCl in a 

HAB·3HCl-Ni(OAc)2-NH3 aqueous solution with 0.1 M NaBF4 under argon 

atmosphere for 10 s to 60 s, respectively. 

 

 

 

 

Fig. 3-7: UV-vis-NIR spectra of electrochemically synthesized NIDI by constant 
potential electrolysis at 0.56 V vs Ag/AgCl in a HAB·3HCl-Ni(OAc)2-
NH3 aqueous solution with 0.1 M NaBF4 under Ar for 10 s to 60 s 
respectively. 
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 It can be observed that the absorbance increases with the synthetic time, which 

matches the observation of the increased opacity. However, when compared to similar 

nickel-amino based mononuclear compounds from past studies, the spectra are 

distinctively different.1 This could be due to the extended delocalization of electrons in 

the polymeric structure. The spectra exhibit a broad peak over 700 – 1500 nm with max 

= ca. 1060 nm and have a non-linear relationship with the synthetic time. This non-

linear relationship would be further elaborated in a later section. 

 

3.4.2. Atomic Force Microscopy (AFM) images 

 

To investigate more into the structure and thicknesses of the NiDI formed on the 

ITO electrode as a comparison to the chemically synthesized NiDI, representative 

scratched samples with synthetic times of 20 s, 40 s and 60 s were observed under the 

AFM.  The samples were scratched with a blade to expose a section of bare ITO such 

that a more accurate relative height of the NiDI deposited could be determined. The 

samples with longer synthetic time have thicker depositions are easier to scratch. It can 

be observed that the non-scratched regions of the samples show non-planar and jagged 

surfaces from their AFM topographical images as seen from Fig. 3-8. The scratched 

regions are as indicated in the topography images. 

 

 

 

Fig. 3-8: AFM topography images and height profiles of scratched AFM samples 
obtained by 0.56 V for 20 s, 40 s and 60 s, respectively. Scale bars 
represent 5 µm. 

scratched 

scratched scratched 
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As seen from the height profile, the empty spaces (blank ITO without NiDI) of 

the deposited CONASH at the non-scratched areas decreased while the topographical 

height increased gradually with time. After 60 s of synthesis, the average thickness of 

the NiDI film was 75 nm. As observed by the jagged height profiles, it seems to indicate 

the growth of perpendicularly deposited NiDI nanosheets. This is illustrated in Fig. 3-9 

where the NiDI which are perpendicularly deposited on the ITO electrodes are 

gradually increasing in height and amount. The illustration of chemically synthesized 

NiDI using the interfacial method and then transferred parallel onto the substrates is 

also given as a comparison.   

 

 

 

 

 

3.4.3. Cyclic Voltammetry 

 

Redox activities of the electrochemically synthesized NiDI nanosheets were 

investigated using cyclic voltammetry (CV) in 1 M Bu4NClO4-MeCN as electrolyte, Pt 

as counter electrode and Ag+/Ag as reference electrode. The 20 s sample of the 

electrochemically synthesized NIDI on ITO was used directly for the measurement and 

the obtained data is given in Fig. 3-10. Comparing with Fig. 2-12 of the chemically 

synthesized NiDI, the NiDI nanosheet samples synthesized from both methods exhibit 

their peak couples at approximately 0.28 V vs. ferrocenium/ferrocene (Fc+/Fc) with 

chemical reversibility. This peak couple can also be ascribed to [NiDI]+/[NiDI]0 based 

on the redox behaviour of the mononuclear bis(diimino)nickel complex.  

 

Fig. 3-9: Illustration of scratched NiDI samples on ITO with increasing synthetic 
time. The illustration of the chemical NiDI transferred onto substrates is 
given as a comparison. 
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Representative cyclic voltammograms of the electrochemically prepared NiDI 

on ITO were also plotted together in Fig 3-11 to show an increase in their charge 

capacity with the increase in synthetic time. This is especially obvious when the graphs 

are compared to the bare ITO which is unable to hold any charges. 

This observation shows that there is an increase in charge capacity with the 

amount of NiDI. Together with its stable redox behaviour and electrical conductivity, 

this observation, which was not possible with the previous chemical method, reveals the 

potential of NiDI for charge storage applications.  

Fig. 3-11: Cyclic voltammograms showing increasing capacity of NiDI with 
increasing synthetic timings of 10 s, 20 s and 50 s respectively as 
compared to blank ITO. 

 

Fig. 3-10: Cyclic voltammogram of 20 s sample of electrochemically synthesized 
NiDI on ITO electrode. 
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3.5. Discussion 

 

The electrochemical method for the synthesis of NiDI has obvious advantages 

even though the resulting samples are not as crystalline. From the various 

characterizations, the samples with different amounts of NiDI could be compared, 

which was previously not possible using only the chemical method. These various 

findings also further revealed other characteristics of the NiDI-modified ITO electrodes.  

 

Cyclic voltammograms of electrochemically prepared NiDI nanosheet on ITO 

exhibits not only faradaic currents but also very large charging currents. The amount of 

charge (labelled as charge A) gained from each sample with increasing synthetic 

durations during its CV has been plotted against time in Fig. 3-12. The absorbance of 

the respective samples at λmax (1060 nm) and the gradual increase of the charge 

(labelled as charge B) consumed during their syntheses, using a 60 s sample as an 

example, were also plotted against the same time axis. Charge vs time graph for each of 

the respective samples during cyclic voltammetry. The three different sets of data all 

increases non-linearly with time and matches approximately to the same relationship.  

 

This non-linear increase corresponds to the previous hypothesis of the 

perpendicular growth of NiDI on the ITO electrodes as described in the previous section. 

Charges A and B showing the same relationship indicates that the amount of charge that 

Fig. 3-12: Absorbance at λmax of the samples synthesized by differing durations 
corresponding to the charge A, the electro activity charges, and charge 
B, the charge obtained during the synthesis of the sample with 60 s of 
0.56 V vs Ag/AgCl constant potential. 
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each sample contains corresponds to the amount that is gained during the synthesis itself. 

This is also further proven in the absorption at λmax which is indicative of the amount of 

NiDI on each of the electrodes. In other words, since the three sets of data correspond to 

each other, it means that the amount of charge that is absorbed during the synthesis of 

the sample has all been used up for the synthesis of the compound, deposited onto the 

ITO electrodes, and all of the NiDI formed has also remained attached on the electrodes. 

 

One other comparison would be between the cyclic voltammograms of the 

chemical and electrochemical NiDI samples. It has already been mentioned that both 

the NiDI nanosheet samples exhibit the peak couples at approximately 0.28 V vs. 

ferrocenium/ferrocene (Fc+/Fc). However, there is a slight difference between the 

potential difference of the oxidation and reduction peaks for the two types of samples.  

 

Fig. 3-13 shows the cyclic voltammograms of both samples stacked together on 

the same potential axis vs ferrocenium/ferrocene. The highlighted regions represent the 

difference in potentials for each sample in their representative colours. It can be 

observed that the black region indicating the potential difference for the electrochemical 

sample is much smaller than the red region representing the chemical sample. 

 

 

Fig. 3-13: Cyclic voltammograms of both the electrochemical and chemical NiDI 
samples. The coloured regions highlight the potential difference between 
oxidation and reduction potentials for each type of sample in their 
respective colors. 
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This smaller difference in the potential difference essentially indicates a smaller 

electroresistance between the sample and the substrate for the electrochemical NiDI 

sample on ITO. This is to be expected since the NiDI CONASH has been synthesized 

directly onto the ITO electrode while transferred films could potentially contain water 

molecules or just a thin layer of air between the film and substrate, thus increasing the 

resistance. Although the difference is not too great, a lower amount of resistance is more 

advantageous if the NiDI material is eventually utilized for applications such as charge 

storage devices. 
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3.6. Conclusion 

 

Two separate methods of slow oxidation and controlled oxidation have been 

successfully used to synthesize and characterize NiDI. The initial chemical method was 

useful to obtain structure information since the resulting CONASH was relatively more 

crystalline. The electrochemical method described in this chapter proved to give the 

same NiDI product with a slight difference in the eventual orientation of the sheets on 

the substrates when compared with the chemically synthesized samples. 

 

The electrochemically synthesized NiDI samples also gave an additional option 

of investigating the change in properties of the samples with increasing amounts of 

NiDI. Absorption spectra and cyclic voltammograms of samples with gradual 

increasing amounts of NiDI synthesized under a minute found that all the charges used 

in the electrochemical synthesis were used to oxidize and form the product and the 

resulting CONASH was all directly attached to the ITO electrode used. The potential of 

this material as a charge storage material and an additional advantage over the chemical 

NiDI in device applications was also revealed though this electrochemical method of 

synthesis. 
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3.7. Experimental Section 

 

FT-IR spectra were recorded using a JASCO FT/IR-6100 at room temperature 

under vacuum using a KBr pellet. Powder X-ray diffraction (pXRD) pattern of the 

electrochemically synthesized NiDI was obtained from Beamline BL44B2 (λ = 1.08 Å) 

at Super Photon ring-8 GeV (SPring-8) in Japan. The sample was ground finely packed 

into a 0.5 mm-diameter soda tube. 

 

X-ray Photoelectron Spectroscopy data were obtained using PHI 5000 

VersaProbe (ULVAC-PHI, INC.). Al Kα (15 kV, 25 W) was used as the X-ray source, 

and the beam was focused on a 100 μm2 area. The spectra were analysed using the 

MultiPak Software and standardized using a C1s peak at 284.6 eV. Atomic Force 

Microscopy (AFM) was carried out using an Agilent Technologies 5500 Scanning 

Probe Microscope, under ambient conditions, in the high-amplitude mode (tapping 

mode), with silicon cantilever PPP-NCL (Nano World). PXRD simulations were 

calculated on CrystalDiffract program. 

 

Cyclic voltammetry used a three-electrode configuration electrochemical cell 

with 1 M acetonitrile solution of tetrabutylammonium hexafluorophosphate as the 

electrolyte solution, a Pt coil as the counter electrode and an Ag+/Ag electrode as the 

reference electrode. Their set ups were monitored by the 650DT electrochemical 

analyzers. (BAS Co., Ltd.) The reported potentials were adjusted from Ag+/Ag to 

Fc+/Fc using the difference in potentials between the two redox couples. 

 

3.7.1. Synthesis of Nanosheets 

 

Electrochemical synthesis of the NiDI nanosheets used a three-electrode 

configuration electrochemical cell with 1 M acetonitrile solution of Bu4NClO4 as the 

electrolyte solution, a Pt coil as the counter electrode and an Ag+/Ag electrode as the 

reference electrode. Their set ups were monitored by the 650DT electrochemical 

analyzers. (BAS Co., Ltd.) The electrochemical polymerization was carried out on an 

indium-tin oxide (ITO) glass in a HAB·3HCl-Ni(OAc)2-NH3 aqueous solution with 0.1 
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M NaBF4 as electrolyte under an argon atmosphere at a constant potential of 0.56 V vs. 

Ag/AgCl to oxidize the HAB. The black film on the ITO after applying the potential is 

the NiDI formed. 
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5. CONCLUSION AND PERSPECTIVE 

 

 Using a bottom-up synthetic method, amino-based -conjugated group 10 metal 

complex nanosheets were synthesized. These coordination nanosheets have been 

successfully synthesized using the hexaaminobenzene (HAB) ligand with optimized 

oxidation promoted interfacial reactions. This method, which was optimized based on 

the characteristic properties of the formation of a biradical during the synthesis of NiDI, 

has been proven to be applicable for the synthesis of other nanosheets such as the PdDI. 

This indicates a possibility that other similar 2D systems which involve oxidation can 

also utilize the new chemical or electrochemical methods to obtain large crystalline 

compounds for characterization ease or modified electrodes useful for measuring 

electrical properties. 

 

 In this dissertation, a few new CONASH systems have been investigated. 

Through the investigations of these systems formed, a variety of different physical 

properties of the each CONASH system have been found. Other than the 

electroconductivity in the semiconducting region, unexpected magnetic properties and a 

potential for charge storage applications have been found for the NiDI system. As for 

the PdDI system, a similar semiconductivity has been found, together with its memory 

effect which is the first time such effects have been found for 2D coordination 

compounds. This shows that even though these new CONASH systems are very similar 

in their structure and are all formed by group 10 metal ions, the resulting physical 

properties could be rather different, as observed by the lack of memory effect for NiDI. 

 

These types of coordination nanosheets have proven to be rather intriguing, 

since many of their properties found can be yet to be fully explained. Furthermore, the 

bulk properties and the single or few layer samples could be very different as predicted 

from theoretical calculations. The latter, however, is difficult to achieve experimentally 

on a large scale with the current experimental method. As such, obtaining the 

monolayer or few-layer thick 2D materials is likely to be the one of the next goals for 

experimental research in this field. In this aspect, a combination of a bottom-up and top-

down synthetic method could be considered. For example, after the formation of the 
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target compound by bottom-up synthesis, a top down method could be used to separate 

the sheets and obtain thinner or even monolayers of the target material. 

 

Slight changes to the synthetic methods of these materials have also shown to 

cause some distinctive changes in their properties, such as in the case of NiDI when 

comparing the conductivity values found in this research and other research groups. It is 

plausible that by synthesizing them in a different way, the CONASH systems have 

slight structural differences and could be utilized differently in their applications. 

Further investigations could possibly shine a light into this relatively unknown terrain of 

these systems. 

 

For the realm of 2D systems, much could be learnt from the graphene system, 

which is probably the best researched 2D system. Particularly for the modification of 

graphene for example, many graphene based materials have been modified to 

specifically tailor their properties for desired applications. This could probably also be 

applied to the CONASH systems which have been investigated in this dissertation. 

These systems also have pores present, which means a possibility of ion inclusion or 

trapping as an extension. 

 

Although the permutations and combinations of metal and ligands to form 

coordination compounds seem to be endless, a couple of new 2D CONASH systems 

and their bulk properties have been thoroughly investigated in this dissertation. These 

discoveries pave the way for utilizing these systems in the future for plausible electronic 

or other storage devices. 
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Appendix 1: 

 

Ln (Resistivity) graphs of NiDI 
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Appendix 2: 

 

Conductivity data of another independent sample of PdDI 
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Appendix 3: 

 

Ln (Resistivity) graph of PdDI (described in thesis) 
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