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Abstract 

 

The Golgi apparatus is a key station of glycosylation and membrane traffic. It consists 

of stacked cisternae in most eukaryotes. However, the mechanisms how the Golgi 

stacks are formed and maintained are still obscure. The model plant Arabidopsis 

thaliana provides a nice system to observe Golgi structures by light microscopy, 

because the Golgi in A. thaliana is in the form of mini-stacks that are distributed 

throughout the cytoplasm. To obtain a clue to understand the molecular basis of Golgi 

morphology, I took a forward-genetic approach to isolate A. thaliana mutants that show 

abnormal structures of the Golgi under a confocal microscope. In this thesis, I describe 

characterization of one of such mutants, named #46-3. The #46-3 mutant showed 

pleiotropic Golgi phenotypes. The Golgi size in #46-3 was in majority smaller than in 

the wild type, but varied from very small ones, sometimes without clear association of 

cis and trans cisternae, to abnormally large ones under a confocal microscope. At the 

ultrastructural level by electron microscopy, queer-shaped large Golgi stacks were 

occasionally observed. By positional mapping, genome sequencing, and 

complementation and allelism tests, I linked the mutant phenotype to the missense 

mutation D374N in the NSF gene, encoding the N-ethylmaleimide-sensitive factor 

(NSF), a key component of membrane fusion. This residue is near the ATP-binding site 

of NSF, which is very well conserved in eukaryotes, suggesting that the biochemical 

function of NSF is important for maintaining the normal morphology of the Golgi. 
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GENERAL INTRODUCTION 
 

All eukaryotic cells have various intracellular organelles, which have unique distinct 

roles for cell viability. Single membrane-bound organelles have a sophisticated system 

of protein transport called “membrane traffic” (Szul and Sztul, 2011) (Figure 1). Each 

organelle is compartmentalized which is defined by a specific component of proteins 

(Derby and Gleeson, 2007). In membrane traffic, diversified RAB (“rat brain”), small 

GTPase and SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor) molecules play crucial roles between vesicles and organelles. First, Sar/Arf 

family protein, also small GTPase facilitates vesicle budding from donor membrane, 

and Rab/Ypt family protein does vesicle tethering and fusion to target membrane (Saito 

and Ueda, 2009). Subsequently, SNAREs directly carry out membrane fusion (Ryu et 

al., 2016). Vesicle-associated SNARE (v-SNARE) interacts with target 

membrane-associated SNARE (t-SNARE). To date, a categorization based amino acid 

sequence within the characteristic “SNARE domain” has been established (Hong, 2005). 

According to it, v-SNAREs correspond to R-SNAREs and t-SNAREs correspond to 

Q-SNAREs. Furthermore, the Q-SNAREs are classified into three sub groups, Qa-, Qb-, 

and Qc-SNAREs, based on amino acid sequence similarity (Hong, 2005). The supercoil 

of SNARE helical bundle is formed on the lipid bilayer; it is greatly stable and requires 

both energy input (Fasshauer et al., 1998) and a specific apposition of called zero layer 

residues for their disassembly (Scales et al., 2001). After cargo release, disassembly of 
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SNARE complex is directly driven by ATP hydrolysis, which due to 

N-ethylmaleimide-sensitive factor (NSF) with association of soluble NSF attachment 

protein (SNAP) (Cipriano et al., 2013; Matveeva et al., 1997). Re-primed SNAREs take 

part in next round membrane fusion and these processes continuously occur in the 

living cells (Ryu et al., 2016). 

 

The Golgi apparatus exists in all eukaryotic cells, which was first discovered as the 

"internal reticular apparatus", a novel intracellular organelle by Camillo Golgi (Golgi, 

1898). He observed it in the Purkinje cells of the cerebellum by the silver impregnation 

for the staining of the nervous system. (Ito et al., 2014; Mazzarello et al., 2009). 

Because of insufficient microscopic techniques at that time, however the presence of the 

structure was under a debate for many years. Over half a century of controversy in the 

mid-1950s, the application of electron microscopy demonstrated its existence (Dalton, 

1951; Dalton and Felix, 1954) and since then, it has been revealed that secretory 

cargoes pass across the Golgi apparatus (Dunphy and Rothman, 1985; Klumperman, 

2011; Luini, 2011). 

The Golgi apparatus plays crucial roles in cargo sorting and processing such 

as glycosylation and usually consists of flattened disk-shaped membrane sac termed 

cisternae, each of which has distinct processing enzymes (Klumperman, 2011) (Figure 

2). These enzyme distributions show a conserved cis-to-trans polarity that reflects the 

order of oligosaccharide processing (Emr et al., 2009), thus early acting enzymes 

dominate in cis-cisternae, whereas late-acting enzymes are concentrated in 



 10 

trans-cisternae (Nilsson et al., 2009). The cis-side cisternae receive newly synthesized 

proteins from the endoplasmic reticulum (ER), which travel across the stack to the 

trans-side cisternae. Then they are sorted in the trans-Golgi network (TGN) and 

eventually transported to their final destinations such as outside of the cell, the plasma 

membrane (PM) and lysosomes/vacuoles. Coat protein complex II (COPII)-coated 

vesicles carry newly synthesized proteins from the ER to the Golgi in anterograde way 

(Matsuoka et al., 2001; Sato and Nakano, 2007; Suda et al., 2018) and coat protein 

complex I (COPI)-coated vesicles retrieve proteins such as the H/KDEL receptor from 

the Golgi to the ER in retrograde way and also within the Golgi in a similar manner 

(Martinez-Menárguez et al., 2001; Nakano, 2015; Orci et al., 1997, 2000; Rabouille and 

Klumperman, 2005). Clathrin-coated vesicles (CCV) work in the TGN and post-Golgi 

compartments (Kang et al., 2011; Takei and Haucke, 2001). Vesicle formations of 

COPI- and COPII-coated are controlled by Arf1 (ADP-ribosylation factor) and Sar1 

(secretion-associated and ras-superfamily-related) small GTPases, respectively (Glick 

and Nakano, 2009). 

 

There has been a debate about how cargo proteins are transported in the Golgi (Glick, 

2000; Glick and Malhotra, 1998; Pelham, 1998; Pelham and Rothman, 2000; Rabouille 

and Klumperman, 2005) (Figure 3). From mammalian-cell-based cell free assays, the 

vesicular transport model has been proposed, which assumes that the Golgi cisternae are 

stable static compartments and resident Golgi proteins are retained in the cisternae, 

while cargo proteins are conveyed by vesicles in the anterograde way (Rothman and 
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Wieland, 1996). Another model, called the cisternal maturation model derived cisternal 

progression model, considers that resident Golgi proteins move from later to earlier 

cisternae, thereby cisternae mature from cis to trans. Cargo can just stay in cisternae 

and eventually reach the trans side. This model was strongly supported by live imaging 

in the budding yeast Saccharomyces cerevisiae (Losev et al., 2006; Matsuura-Tokita et 

al., 2006), which clearly demonstrated that Golgi cisternae change their properties from 

cis to trans over time. In either of the two models, vesicles are believed to play critical 

roles in transport. General mechanisms of vesicular transport should apply to these 

intra-Golgi events. Namely, vesicles are formed by the budding machinery, which 

comprises COPI and the Arf GTPase, and are targeted to a particular cisterna by the 

fusion machinery, which involves tethers, Rab GTPases, NSF, SNAP and SNAREs. 

One reason why the cisternal maturation model is supported is because can explain the 

transport of large secretory cargo such as scale in algae (Becker et al., 1995) and 

procollagen in mammalian fibroblast (Bonfanti et al., 1998; Leblond and Inoue, 1989). 

Indeed, the cisternal maturation in yeast is strictly controlled by COPI, again supporting 

the main frame of the model (Ishii et al., 2016; Papanikou et al., 2015). It should also be 

noticed, however, that tubular extensions and interconnections can also play roles in 

intra-Golgi transport (Glick and Luini, 2011; Glick and Nakano, 2009) where COPI 

proteins bidirectionally regulate in both vesicular and tubular transport (Nakano, 2015; 

Park et al., 2015; Yang et al., 2011). 

  

The Golgi consists of stacked cisternae in most eukaryotes. This principal structural 
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future of the Golgi is considered to reflect its function such as efficient transport and 

correct processing in order (Mollenhauer and Morré, 1991). There are marked variations 

among organisms in the morphological and organizational patterns of the Golgi (Figure 

4).  

In the budding yeast S. cerevisiae, the Golgi does not form stacks and 

individual cisternae as transient structures are dispersed in the cytoplasm (Losev et al., 

2006; Matsuura-Tokita et al., 2006; Preuss et al., 1992). In Pichia pastoris, the other 

budding yeast strain, the Golgi shows the stacked structure and each Golgi is dispersed 

throughout the cytoplasm whereas the number of the Golgi is fewer than that in S. 

cerevisiae (Mogelsvang et al., 2003; Rambourg et al., 1995). In mammalian cells by 

contrast, the Golgi forms a giant and complex structure called “Golgi ribbon”, which is 

densely concentrated to the perinuclear centrosomal region (Ladinsky et al., 1999, 

2002). In flowering plants such as Arabidopsis and tobacco, the Golgi is in the form of 

mini-stacks of cisternae, which are individually functional units, being distributed 

throughout the cytoplasm and moving along actin filaments (Ito et al., 2017; Staehelin 

and Kang, 2008). In some green algae such as Scherffelia dubia, the Golgi represents a 

large stack consisting of a numerous cisternae (Donohoe et al., 2007, 2013; McFadden 

and Melkonian, 1986; Staehelin and Kang, 2008). The Golgi apparatus in flowering 

plants is thus regarded as a nice model to study its morphology in detail by light 

microscopy (Faso et al., 2009; Hanton et al., 2005; Matheson et al., 2005). In spite of 

morphological and functional studies of the Golgi apparatus, the question what the 

significance of the peculiar stacked structure is given to it in most eukaryotic organism 
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is yet to be answered.  
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Figure 1. llustration of membrane fusion in membrane traffic. 

Vesicle budding occurs on donor membrane with facilitation by small GTPase such as 

Sar1/Arf1 and Rab. Coatmer is decoated during vesicle transport. Vesicle associates 

with accepter membrane with facilitation by Rab. The SNARE complex consists of 

Q-SNAREs and R-SNARE, bridging two fusing membranes and cargoes are released. 

NSF disassembles the SNARE complex by ATP hydrolysis with co-factor, SNAPs (Ryu 

et al., 2016; Saito and Ueda, 2009).
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Figure 2. Structure of the Golgi and intra-Golgi trafficking. 

COPII vesicles bud from the ER and fuse homotypically each other to form a cis-most 

cisterna and this cisterna grows full-size cisterna. ER-resident proteins are recycled 

from a cis-most cisterna to the ER via COPIa vesicles. A progression occurs from cis to 

medial and trans cisternae. Both medial and trans cisternae are involved in cargo 

glycosylation and material retrievals are carried out via COPIb vesicles when the nature 

of the cisternae gradually changes as they progress (Glick and Nakano, 2009; Ito et al., 

2014; Nakano and Luini, 2010). 
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Figure 3. Two models for intra-Golgi trafficking. 

(A) The vesicular transport (stable compartments) model. In this model, the Golgi 

stacks are stable static compartments, and resident Golgi proteins are retained in 

the cisternae while cargo are conveyed by vesicles in the anterograde way. 

(B) The cisternal progression/maturation model. In this model, resident Golgi proteins 

move from older to younger cisternae, thereby new cisternae matures from cis to 

trans.  

Blue arrows and pink arrows are indicated anterograde way and retrograde way, 

respectively (Glick and Nakano, 2009; Ito et al., 2014; Nakano and Luini, 2010).
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Figure 4. Comparison of Golgi organization among eukaryotic organisms. 

(A) In Budding yeast Saccharomyces cerevisiae. The Golgi does not show stacking and 

individual cisternae as transient structures are dispersed in the cytoplasm (Losev et 

al., 2006; Matsuura-Tokita et al., 2006; Preuss et al., 1992).  

(B) In mammalian cells. The Golgi forms a giant and complex ribbon-shaped structure, 

which is densely centralized to perinuclear centrosomal region in mammals 

(Ladinsky et al., 1999, 2002). 

(C) In plants. The Golgi is in the form of mini-stacks of cisternae, which are 

individually distinct and functional units, distributing throughout the cytoplasm 

and moving along actin filaments (Donohoe et al., 2007, 2013; Staehelin and Kang, 

2008).
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INTRODUCTION 
 

Molecular mechanisms of the membrane traffic have been investigated in plant cells, as 

following the studies from yeast and mammal (Nakano, 2004; Saito and Ueda, 2009; 

Südhof, T.C. 2013). Many studies have revealed that plants use similar machinery to 

mammals and fungi, while plant-specific molecules also participate in regulating their 

unique phenomena in plant life (Saito and Ueda, 2009; Ueda and Nakano, 2002). In 

endomembrane system of eukaryotic organisms, the secretory pathway comprises a 

numerous number of morphologically and functionally distinct organelles, which act 

together for extracellular environmental stimuli and maintenance of cell homeostasis. 

 

In membrane traffic of eukaryotic cells, the Golgi apparatus is a key station of 

glycosylation and one of the most beautiful and elaborate organelle. The Golgi consists 

of cisternae, which usually are organized into polarized stacks and looks like a 

“pancake”. The number of cisternae per Golgi stack ranges from three to, sometimes 

hundreds cisternae depending the organisms and their cell types. The plant Golgi 

apparatus forms distinct individual mini-stacks and they are dispersed throughout the 

cytoplasm and move on actin filaments driven by myosin motors so-called the 

actomyosin system (Boevink et al., 1998; Hawes et al., 2008; Nebenführ et al., 1999). 

Each Golgi stack shows clear cis-trans polarity due to in order of oligosaccharides 

modified by a series of glycosylation enzymes that reside at characteristic locations 
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(Emr et al., 2009; Nilsson et al., 2009). The way of intra-Golgi trafficking, cisternal 

maturation model is more favored and supportive during cargo transport (Figure 3). 

Then, it was recently proposed that the Golgi underwent three stages. According to it, it 

is cisternal assembly, carbohydrate and carrier formation stage (Day et al., 2013; 

Papanikou and Glick, 2014). Initially, COPII-coated vesicles bud from the ER where 

taken place at specialized ER exit site (ERES) (Robinson et al., 2015; Stealin and Kang, 

2008; Tang et al., 2005). How to transport proteins from the ER to the Golgi has been 

controversy whether new cis cisterna is born de novo, because in mammals ER-Golgi 

trafficking is carried out via ER-Golgi intermediate compartment (ERGIC) and travels 

along microtubules to the Golgi ribbon (Appenzeller-Herzog and Hauri, 2006.), but 

plant cells seem not to employ ERGIC (Day et al., 2013). Ito and her colleagues showed 

that Golgi regeneration was accomplished from cis to trans in order after fungal toxin 

Brefeldin A (BFA) washout in tobacco BY2 cells with super-resolution confocal 

live-imaging microscopy SCLIM (2012). Amazingly, she most recently demonstrated 

that in ER-Golgi trafficking cargo transport did via a COPII-independent scaffold 

named Golgi entry core compartment (GECCO) (Ito et al, 2018). Subsequently, 

COPII-coated vesicles fuse homotypically each other and assemble to form a cis-most 

cisterna while ER-resident proteins are recycled from a cis-most cisterna to the ER via 

COPIa-coated vesicles in plant cells (Day et al., 2013; Donohoe et al., 2013). Thus, 

COPII coat assembly is initiated by activating Sar1 GTPase with its guanine nucleotide 

exchange factor (GEF), Sec12 (Barlowe and Schekman, 1993; Nakano and Muramatsu, 

1989). COPII coat complex including Sec23/24 and Sec13/31 are recruited in turns (Bi 
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et al., 2007; Matsuoka et al., 2001; Sato and Nakano, 2005). Sequentially, a cis-most 

cisterna grows full-size cisterna and a progression occurs from cis to medial and to 

trans cisternae. Both medial and trans cisternae are mainly involved in cargo 

glycosylation and material retrievals that are carried out via COPIb-coated vesicles 

when the nature of the cisternae gradually changes as they progress. COPI-coated 

vesicle formations are regulated by activating Arf1 GTPase with its GEF, a conserved 

Sec7 catalytic domain (Jackson and Casanova, 2000) such as GBF and BIG. 

COPI-coated vesicles are generated on the Golgi cistenal rims and the rims are occupied 

by numerous numbers of the vesicles (Donohoe et al., 2007; Pimpl et al., 2000; 

Ritzenthaler et al., 2002). Notably, it was showed that in plant cells ARF1 also localized 

to the Golgi cistenal rims (Ritzenthaler etal., 2002; Xu and Scheres, 2005). The 

characterization and identification of these coat proteins (COPII, COPIa and COPIb) 

so-called “coatmer” (Serafini et al., 1991; Waters et al., 1991) were achieved in 

according to their morphological features as size and electron density in electron 

topographic micrograph of rapidly frozen cells (Donohoe et al., 2007, 2013; Stealin and 

Kang, 2008). Then, it has also been revealed that basic common machineries involved 

in tubular connections are employed intra-Golgi trafficking among eukaryotic organism 

(Glick and Luini, 2011; Glick and Nakano, 2009, Nakano, 2015). 

 

To further comprehend functional integrity of plant membrane traffic, combined 

microscopic technique with fluorescent protein variants has been demonstrated how 

plant homologues that are known their roles in non-plant cells and plant-specific 
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proteins that have unknown roles did work in the cells. By completion of a 

whole-genome sequencing of Arabidopsis thaliana, explosive genomic information 

allowed researchers to be available (Arabidopsis Genome Initiative, 2000). Moreover, 

recent next-generation sequencing techniques for mapping mutation have been 

remarkably developed (Austin et al., 2011; Schneeberger and Weigel, 2011; Uchida et 

al., 2011), reducing the time and labor for classical fine mapping. Combined with these 

tools, the development of forward genetic screens has led to identify various mutants of 

the secretory and the endocytic pathway (Sparkes and Brandizzi, 2012). The screens are 

based on identification of the structure labeled fluorescent marker such as green 

fluorescent protein (GFP), which exhibits morphological phenotype that is different 

from the wild type. Then it is widely known that ethyl methanesulfonate (EMS) 

mutagenesis generates point mutations in the genomic DNA and it is therefore expected 

to isolate missense mutants. The EMS mutant is assumed to show knockdown of gene 

function whereas the T-DNA (transfer DNA) mutant is considered to completely 

knockdown of that and may be lethal. Several examples of identification and 

characterization mutants whose responsible genes work at organelles located in the 

secretory pathway by visual screens are mentioned below. 

 

First, screens of ER morphology defects using the ER lumenal marker GFP-h identified 

two ermo (endoplasmic reticulum morphology) mutants displaying ER-derived 

abnormal spherical bodies (Nakano et al., 2009). Large globular aggregates were 

observed in g92/ermo2 cells and the mutation was mapped to a missense mutation in 
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AtSEC24A (Faso et al., 2009; Nakano et al., 2009), which was one of the Arabidopsis 

isoforms encoding the COPII protein SEC24. The complete loss of AtSEC24A is lethal, 

but AtSEC24A perhaps shares their functions with the two other AtSEC24 isoforms. As 

another example, the small vacuolar protein labeled ST-GFP, a trans-Golgi marker 

(sialyl transferase from rat) (Boevink et al., 1998), mislocalized to and retained into the 

ER in gold36 (Golgi defective 36) mutant (Marti et al., 2010). Thereafter, it was 

demonstrated that development of ER body (Matsushima et al., 2001) were observed in 

a certain type of cells of ermo/mvp1/gold36 mutant, and suggested that 

ERMO3/MVP1/GOLD36 then was required for maintenance of ER morphology and 

integrity, and was pivotal for ER body-related defense systems (Nakano et al., 2012). 

One more example shows a mutant exhibiting aberrant ER morphology. Screen based 

on the distribution of sec-GFP, sporamin signal peptide to GFP showed that 

identification of the ROOT HAIR DEFFECTIVE 3 allele (rhd3-1), which an 

ER-anchored GTPase required for maintenance of ER morphology and supposed that 

RHD3 was important for ER-Golgi trafficking (Orso et al., 2009; Zheng et al., 2004). 

Arabidopsis has three RHD3 isoforms that are homologous to the yeast Sey1p and to 

the mammalian atlastin GTPases involved in formation of ER tubules (Chen et al., 

2011; Zhang, and Hu, 2013). Accordingly, it was suggested that molecular mechanisms 

regulating ER tubules might not be entirely conserved among eukaryotes because 

Arabidopsis RHD3 and Sey1p were not interchangeable each other (Chen et al., 2011).  

Moreover, I mentioned one prominent discovery that mutant screens using 

sec-GFP, it is the identification and characterization of a gnome-like 1 (GNL1) (The and 
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Moore, 2007). GNL1 is the closest homolog of Arabidopsis GNOM, which was first 

identified as a GBF-ARF GEF in plants. GNOM was found to act in recycling of auxin 

efflux carrier PIN1 from endosomes to the PM (Geldner et al., 2003). Thereafter, it was 

demonstrated that GNL1 localized at the Golgi stack where regulated coatmer 

recruitment and, was involved in ER-Golgi trafficking (Naramoto et al., 2014; Richter 

et al., 2007, 2010). The study clarified that GNL1 was BFA resistant unlike GNOM was 

BFA sensitive and that they played roles in selective endocytic pathway and in 

maintenance of Golgi morphology. In gnl1 mutant, the Golgi stack was approximately 

50% larger than the wild type (The and Moore, 2007). Additionally, it was revealed that 

ermo1 was gnl1 mutant allele and that GNL1/ERMO1 was responsible for organizing 

and maintaining ER structure (Nakano et al., 2009). These finding suggested that plant 

ARF GEF might not only act on various secretory unlike mammal but also form and 

maintain the morphology of organelles.  

Meanwhile, the screens using PIN1pro:PIN1-GFP, PIN1, an auxin efflux carrier, which 

localized to the PM at the basal side led to identify proteins affected trafficking (pat) 

mutants that showed strong partial accumulation of PIN1-GFP to aberrant vacuolar 

structures (Zwiewka et al., 2011). pat mutant phenotypes were caused by members of 

AP-3 adaptin complex, which were known as key regulators of cargo sorting into 

vesicles (Dell'Angelica, 2009). Thereby, it was manifested that AP-3 complex was 

present not only in yeast and mammal but also in plants. Furthermore, the AP-3 β 

adaptin could interact with clathrin, which was known to work in post-Golgi trafficking. 
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It was suggested that AP-3 complex might be given plant-specific roles for regulating 

biogenesis and the function of vacuoles (Feraru et al., 2010).  

 

Finally, screens for Golgi defects was only reported that isolated several mutant 

candidates showing the abnormal distribution of the Golgi marker, ST-GFP (Boulaflous 

et al, 2008). However, there has been no evidence to identify a mutant whose 

responsible gene required for formation and maintenance of Golgi morphology in A. 

thaliana. To understand more about the elements in the mechanism how the Golgi 

stacks are formed and maintained, I decided to employ a forward-genetic approach 

combined with confocal microscopy-based visualization to isolate mutants from 

Arabidopsis thaliana that show abnormal morphology of the Golgi. Among 30 mutant 

candidates I isolated. In this thesis, I describe the identification and characterization of a 

recessive EMS mutant. I named the mutant #46-3, which shows aberrant structures in 

the stack under a confocal microscopy and an electron microscopy. The mutation 

responsible for the phenotype was point mutation that was experimented by a 

combination of positional mapping, genome sequencing, and complementation tests. 

Therefore, I concluded that a D-to-N missense mutation in the NSF gene, encoding a 

key factor in membrane fusion, is the cause of the phenotype. 
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RESULTS 
 

Visualization of the Golgi in Arabidopsis thaliana 

To isolate mutants that show abnormalities in the morphology of the Golgi apparatus, I 

decided to use the A. thaliana line that expresses ERD2-GFP driven by 35S promoter, a 

well-established cis-Golgi marker (Bar-Peled et al., 1995; Boevink et al, 1998; 

Takeuchi et al., 2000, 2002). The fluorescence of ERD2-GFP shows disk-like structures, 

which are dispersed through the cytoplasm. The parent line A21, expressing ERD2-GFP, 

was treated with ethyl methanesulfonate to induce mutations. After due processes, M2 

lines were established and subjected to visual screen under a confocal microscope, 

Olympus IX81 equipped with a spinning-disk confocal unit CSU10. As the morphology 

of the Golgi appeared to vary in different tissues, I selected the third-leaf-petioles of 

16-day-old seedlings, which reproducibly show large and bright Golgi structures 

(Figure 5). 

 

Isolation of a mutant with abnormality in the Golgi morphology 

By manual examination of approximately 10,000 M2 lines, I selected 30 mutant 

candidates that showed altered shapes of the Golgi. The morphological phenotypes were 

of a wide variety; large, small, with tubules, large and bent, large aggregates, and so on 

(Figure 6). They were further subjected to crossing with the parent to determine 

dominant or recessive natures. The mutant line named #46-3, which is the subject of 
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this thesis, displayed abnormalities in the size and shape of the Golgi and this 

phenotype turned out recessive to the wild type. Otherwise, the #46-3 mutant did not 

show any discernible macroscopic phenotypes. The mutant plants grew normally and 

were fertile (Figure 7). 

 

Microscopic Golgi phenotype in #46-3 mutant  

The abnormality of the Golgi morphology in #46-3 was the peculiarity of size and shape 

as shown in Figure. 8A. While the ERD-GFP fluorescence in the wild type showed 

mostly disk-like shapes in similar sizes, in the #46-3 mutant the shape looked irregular 

and the size varied from smaller to larger as compared to the wild type (Figure 8A and 

B). To quantify the Golgi size, I measured the areas of fluorescent signals in 10 

epidermal cells of petioles (expressed as pixels). The distribution of the Golgi size in the 

wild type and in #46-3 is shown as histograms in Figure. 9. It clearly shows that the 

Golgi size of #46-3 is in majority smaller than the wild type. It should be noted that 

abnormally large Golgi was also occasionally seen in the #46-3 mutant (Figure 8C). 

 

Localization analysis of cis- and trans-Golgi in the #46-3 mutant 

To further investigate the anomalies of the Golgi morphology, the arrangement of cis 

and trans cisternae in Golgi stacks was examined in the wild-type and #46-3 plants 

stably expressing ST-mRFP, a trans-Golgi marker (Boevink et al., 1998; Boulaflous et 

al, 2008; Ito et al., 2012; 2017), in addition to ERD2-GFP (Figure 10). As shown in 

Figure 11, fluorescence signals of ERD2-GFP and ST-mRFP were mostly adjacent to 
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each other. Sometimes the distance between the peaks of GFP and mRFP signals was 

markedly larger in the #46-3 mutant. GFP signals without associating mRFP signal 

were also occasionally observed in the #46-3 mutant (Figure 12). Moreover, I compared 

the size of the cis-Golgi with that of trans-Golgi. Smaller cis-Golgi tended to associste 

with smaller trans-Golgi or none (Figure 13). 

 

Electron microscopic analysis of the Golgi structure in the #46-3 mutant 

I next analyzed the Golgi morphology in the #46-3 mutant by transmission electron 

microscopy. The Golgi stacks in the wild-type Arabidopsis usually consist of around 5 

cisternae as shown in Figure 14A. Abnormally small Golgi structures, which were often 

seen in fluorescence, were not easy to identify in the leaf epidermal cells of #46-3, 

perhaps because they did not show typical stacks. Figure 14B shows one example of 

electron micrograph showing two Golgi-like structures harboring 2-3 cisternae. I 

sometimes observed abnormal Golgi stacks consisting of increased numbers of cisternae 

in the #46-3 mutant. In the example shown in Figure 14C, as many as 9 cisternae can be 

counted in what appeared to be a single Golgi stack. In another example (Figure 14D), a 

Golgi stack bore an unusually large trans-most cisterna. To quantify the cisternal 

number per Golgi stack, I counted that in the epidermal cells of petioles. The 

distribution of the cisternal number in the wild type and #46-3 is shown as histograms 

in Figure 15. The cisternal numbers did not appear significantly different in the Golgi 

stacks between the wild type and the #46-3 mutant, the latter showing a broader 

distribution. As mentioned above, abnormal Golgi that did not show typical stacks 
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might be overseen in electron micrographs. Combined with the fluorescence 

observation, I concluded that the #46-3 mutant had a pleiotropic defect in normal 

arrangement of Golgi stacks in both size and shape. 

 

Rough map 

To identify the mutation in the genome that caused the phenotype of #46-3, I proceeded 

to identify the mutation locus. I crossed the #46-3 plants with the wild-type plants 

(Col-0) expressing ERD2-GFP to determine the inheritance pattern. Segregation of the 

F2 population from the third backcross indicated that the #46-3 mutation was recessive 

to the wild type (Figure 16). To generate a mapping population, I crossed #46-3 with a 

different ecotype Landsberg erecta. The genomic DNA of F2 plants exhibiting the 

abnormal phenotype was roughly mapped with markers of simple sequence length 

polymorphisms (SSLPs) and cleaved amplified polymorphic sequence (CAPSs) 

(Konieczny and Ausubel, 1993; Bell and Ecker, 1994) (Figure 17).  

 

Linkage analysis by next-generation sequencer 

Then, the candidate region containing the mutation was analyzed by the linkage analysis 

using a next-generation DNA sequencer. The results of these analyses nailed down the 

causal mutation on the upper arm of the chromosome 4 at 1-5.5 Mbp interval (Figure 

18). Among nucleotide differences within this region, only 3 were predicted to be 

non-silent in open-reading frames (Figure 19). They were in the loci At4g02410, 

At4g02750, and At4g04910, which were annotated to encode L-type lectin-like protein 
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kinase 1 (AtLPK1), tetratricopeptide repeat (TPR)-like superfamily protein, and 

N-ethylmaleimide-sensitive factor (NSF), respectively (Figure 20). Among these three, 

At4g04910 was of particular interest to me, because NSF is well known as a key protein 

required for membrane fusion.  

 

Alignment of NSF amino acid sequence among eukaryotic organisms 

The At4g04910 locus of #46-3 had a G-to-A point mutation at the nucleotide number 

2492290, which led to a GAT to AAT codon change resulting in the amino acid change 

from aspartic acid to asparagine at the residue position 374 (D374N). A. thaliana has 

only one ortholog of NSF in the genome. Comparison of NSF sequences indicates that 

this aspartate residue is very well conserved in eukaryotes (Figure. 21). 

 

Complementation test 

To examine whether the D374 mutation in NSF was indeed responsible for the observed 

phenotype, I performed a complementation test. I cloned the genomic DNA fragment 

from the wild-type plants containing the whole At4g04910 locus including the promoter 

and the open-reading frame and introduced into the #46-3 mutant. I analyzed the Golgi 

morphology in leaf petioles of two independent T2 seedlings under a confocal 

microscope. As shown in Figure 22 and 24, the #46-3 phenotype in the Golgi shape and 

the Golgi size distribution was almost fully complemented. These plants genome 

extracted were genotyped using a primer set of the sequence both vector pHGW and 

NSF gene (Figure 23). DNA fragments containing At4g02410 or At4g02750 did not 



 32 

complement the defect (Figure 25). 

 

Allelism test 

I also conducted an allelism test. I obtained from the ABRC stock center three A. 

thaliana lines containing T-DNA insertions at the NSF gene locus in the Col-0 

background. I confirmed that T-DNA was inserted in the 5’ UTR both in 

SALK_091598/SALK_138721 (at nucleotide 2495839) and in SAIL_1155_C06 (at 

nucleotide 2495824) and in the third exon in SAIL_620_E12 (at nucleotide 2495008) of 

the NSF gene (Figure 26). I could make a homozygous line of 

SALK_091598/SALK_138721 but not for SAIL_1155_C06 and SAIL_620_E12, 

probably because the complete knockout of NSF is lethal. Then, I crossed #46-3 with 

SAIL_1155_C06 to establish a heterozygous line and examined its Golgi morphology. 

As shown in Figure 27 and 28, the Golgi phenotype seen by ERD2-GFP signals in the 

transformed #46-3/SAIL_1155_C06 plant phenocopied that of the #46-3 mutant under a 

confocal microscope.  

Taken together, I concluded that the D374 missense mutation in NSF caused 

the Golgi morphology phenotype of #46-3. 
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DISCUSSION 
 

Morphology of organelles is considered to reflect their functions. Stacking of cisternae 

in the Golgi apparatus is one of the most striking structural features, which has been 

attracting many cell biologists, and is believed very important for efficient processing 

and sorting of cargo molecules. However, the fact that the budding yeast S. cerevisiae 

does not have a stacked structure of the Golgi yet managing efficient cargo processing 

leaves the significance of stacking elusive. From a mechanistic point of view, how these 

stacked structures are formed and maintained is also intriguing. The roles of Golgi 

matrix proteins have been argued for animal cells, but most of these molecules are not 

conserved in plants, whose Golgi nevertheless shows beautiful stacked structures. We 

have recently revealed by super-resolution confocal live imaging microscopy (SCLIM) 

(Kurokawa et al., 2013) that Golgi stacks in tobacco cells are formed in the order from 

cis- to trans-cisternae and that the presence of scaffold at cis-most side, which we 

named Golgi entry core compartment (GECCO), plays a role of receiving cargo from 

the ER (Ito et al., 2012, 2018). Furthermore, computational simulation has implicated 

self-organizing properties of Golgi cisternae during reassembly processes (Tachikawa 

and Mochizuki, 2017). 

To obtain further insights into the molecular basis for Golgi morphogenesis in 

plant cells, I have sought for mutations that affect Golgi morphology in Arabidopsis by 

a forward-genetic approach. In this study, I have demonstrated that the mutant #46-3 
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has a D374N missense mutation in NSF, which is responsible for the morphological 

defect of the Golgi. 

 

NSF is a key player in membrane fusion events 

NSF, N-ethylmaleimide-sensitive factor, was first identified as a key protein functioning 

in intra-Golgi trafficking. Inactivation of the Golgi membrane by N-ethylmaleimide in a 

cell-free reconstitution system caused perturbation of intra-Golgi transport (Glick and 

Rothman, 1987). This assay allowed purification of NSF (Block et al., 1988; Malhotra 

et al., 1988). As interacting molecules with NSF, SNAP was isolated (Weidman et al., 

1989), and as the membrane receptors for SNAP, SNARE proteins were discovered 

(Söllner et al., 1993). All these components are now known to constitute the pivotal 

machinery for membrane fusion. 

NSF is a member of the ATPases associated with diverse cellular activities 

plus (AAA+) family, which are present in all kingdoms of eukaryotes (Erzberger and 

Berger, 2006; Iyer et al., 2004). The most important role of ATP hydrolysis by NSF is 

to disassemble the SNARE complex after membrane fusion (Owen and Schiavo, 1999). 

NSF is now known to be essential for numerous membrane fusion events (Südhof, 

2013; Sutton et al., 1998; Weber et al., 1998). 

 As such, the NSF function is essential for many cellular activities and thus 

must be essential for life. Indeed, the S. cerevisiae SEC18 gene that encodes NSF is 

essential for growth. Our results that A. thaliana lines that were homozygously null for 

NSF were never obtained from two T-DNA insertion lines (in this study), probably 
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indicate that the complete loss of NSF is lethal.  

 The missense mutation of NSF that we identified as the cause of the abnormal 

Golgi morphology was D to N substitution at the amino acid residue #374. A D-to-N 

mutation is often regarded as subtle because the structural change in the side chain is 

small. It is probably why this mutant was obtained without an appreciable growth 

phenotype. Microscopically, the phenotype of this mutant is pleiotropic. At the 

fluorescence confocal microscope level, the Golgi size was in majority smaller than the 

wild type, but varies from very small ones, sometimes without clear association 

between cis and trans cisternae, to abnormally large ones, which were rather rare. At the 

ultrastructural level by transmission electron microscopy, abnormally small Golgi 

structures were hard to find, perhaps because they did not look like typical Golgi, but 

queer-shaped large Golgi stacks were occasionally observed.  

 

Asp374 in the NSF-D1 domain is highly conserved among eukaryotes 

In the process of membrane fusion, several reactions proceed in a sequential manner. 

The leading player is the SNARE proteins; R-SNARE on the vesicle membrane and the 

Qa-, Qb- and Qc-SNAREs on the target membrane, form 4-helix bundles to execute 

physical fusion of two lipid bilayers. After fusion, the SNARE bundles have to be 

disassembled for the next round of fusion reactions. NSF and SNAP play roles in this 

SNARE disassembly. Hydrolysis of ATP by NSF is essential for the disassembly 

reaction.  

 The molecular structure of NSF has been analyzed by X-ray crystallography 
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(Lenzen et al., 1998; May et al., 1999). NSF consists of an amino-terminal region that 

interacts with other components of the vesicle trafficking machinery, followed by the 

two homologous ATP-binding cassettes, designated D1 and D2, which possess essential 

ATPase and hexamerization activities, respectively. The D374 residue of Arabidopsis 

NSF lies in the D1 domain near the ATP-binding site, around which the amino acid 

sequence is very well conserved among eukaryotes (Figure 21). Thus the D374N 

mutation of Arabidopsis NSF may well affect its ATP-binding or hydrolysis activities 

of NSF, which should be examined in detail on purified proteins in the future. 

 

Membrane fusion and the Golgi morphology 

Now the question is how the lesion of NSF can affect the Golgi structure. Is it the 

membrane fusion events that are directly involved in cisternal arrangements? 

Regardless the model of cargo transport within the Golgi, it is obvious that the 

membranes in the Golgi have to be in a very dynamic equilibrium. Vesicle budding and 

membrane tubulation together with membrane fusion events must be always going on to 

maintain the steady-state morphology of the Golgi. Finding of a missense mutation in 

NSF, the essential factor of fusion, will provide a clue to further understanding of how 

the beautiful structure of the Golgi is formed and maintained. 

In sum of this study, I proposed a model the Golgi phenotypic changes in the 

#46-3 mutant (Figure 29). It is considered that disassembly of SNARE complex by NSF 

is slower due to missense mutation D374N. According to it, the equilibrium of 

intra-Golgi trafficking is little broken; Small Golgi observed under confocal microscopy 
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and decreasing the cisternal numbers per Golgi stack showed under electron microscopy 

in the #46-3 mutant is caused by delay of COPII vesicle disassembly on cis-most 

cisternae (Figure 29B). Putative Golgi stack therefore loses cis-to-medial maturing, 

resulting in small and bearing a few cisternae. In contrast, large Golgi observed under 

confocal microscopy, and increasing the cisternal numbers and the trans-most cisternal 

sizes per Golgi stack under electron microscopy is caused by delay of COPIb vesicle 

disassembly on medial/trans cisternae (Figure 29C). It was demonstrated that COPI 

protein was critically needed for Golgi cisternal maturation and dynamics (Ishii et al., 

2016; Papanikou et al., 2015). Because each medial and/or trans cisternal maturing is 

probably prolonged, thereby visualized Golgi cisternae are large and/or more layered. 
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Figure 5. Visualization of the Golgi stacks in Arabidopsis living cells. 

Confocal optical sections of the epidermal cells from the parent line A21 plants. The 

Golgi stack is disk-shaped structure and they are dispersed throughout the cytoplasm.   

(A) Epidermal of third-leaf-petioles at 16 DAG. 

(B) Trichome in the third-leaf at16 DAG.  

(C) Epidermal cell in the leaf-blade at 16 DAG. 

(D) Epidermal cell in the cauline-leaf at 25 DAG.  

(E) Main root at 16 DAG.  
Scale bar, 10 µm. 
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Figure 6. Mutant candidates show abnormal Golgi morphology. 

Confocal optical sections of leaf epidermal cells of third-leaf-petioles from the M2 line 

cells.  

(A) The parent line A21 as wild type.  

(B) #14-6 shows the large Golgi.  

(C) #25-6 shows the small Golgi.  

(D) #38-5 shows the Golgi with different fluorescence.  

(E) #45-11 shows the Golgi with tubules.  

(F) #46-3 shows abnormalities in the size and shape of the Golgi. 

(G) #62-5 shows the large and bent Golgi.   

(H) #64-11 shows large aggregates of the Golgi. 
Scale bars, 5 µm.  
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Figure 8. The #46-3 mutant grow normally. 

The #46-3 mutant exhibited no visible abnormal phenotype. Plants are 35 DAG.
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Figure 8. #46-3 shows an abnormal Golgi morphology. 

(A) Confocal optical sections of leaf epidermal cells of third-leaf-petioles from the 
wild-type and the #46-3 mutant A. thaliana cells. Scale bar, 5 µm.  

(B) Close-up images of the wild-type and #46-3 mutant cells. White arrows indicate 
small Golgi structures in the #46-3 mutant. Scale bar, 5 µm. 

(C) Abnormally large Golgi in the #46-3 mutant. Yellow arrow indicates large Golgi 
structures in the #46-3 mutant. Scale bar, 5 µm.
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Figure 9. Comparison of the Golgi size between the wild type and independent 

three lines of the #46-3 mutant. 

The Golgi sizes in 10 petiole cells were measured with ImageJ software and expressed 

as pixels. 
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Figure 10. Localization analysis of the cis-Golgi marker ERD2-GFP and the 

trans-Golgi marker ST-mRFP. 

Two confocal slices of epidermal cells of third-leaf-petioles of the wild type and the 
#46-3 mutant. Scale bars, 10 µm. 
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Figure 11. The fluorescence profile across the cis-to-trans Golgi stack. 

The fluorescence profiles along the red arrows across the Golgi stacks indicated by 

white boxes in Figure 10. The intensity is shown relative to the maximum intensity in 

each signal of fluorescence, which is represented as 1.
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Figure 12. Cis-Golgi without trans-Golgi. 

A magnified view of the Golgi stack indicated by the arrowhead in Figure 10. Note the 

lack of the ST-mRFP signal. 
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Figure 13. Comparison of the size of cis-Golgi and trans-Golgi between dependent 

10 #46-3 mutant lines. 

Confocal optical sections indicated by blue box in Figure 10. The size is shown relative 

to the maximum size in each signal of fluorescence, which is represented as 1. Smaller 

cis-Golgi tends to associate with smaller trans-Golgi or none.
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Figure 14. Ultrastructure of the abnormal Golgi morphology.  

(A) An electron micrograph of the Golgi in the wild type. The cisternal number is 5 in 

this example.  

(B-D) Electron micrographs of the Golgi in the #46-3 mutant. In (B), the structures did 

not look like typical Golgi stacks but appeared to have smaller number (2-3) of 

cisternae. In contrast, the cisternal number of the Golgi is increased in (C) and the Golgi 

stack bears an extremely large trans-most Golgi cisterna in (D). Scale bar, 200 nm.
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Figure 15. Comparison of the cisternal number of the Golgi between the wild type 

and the #46-3 mutant. 

Histograms showing the cisternal number distribution in individual Golgi stacks. 
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Figure 16. The #46-3 mutation is recessive to the wild type. 

Segregation of the F2 population indicates that the #46-3 mutation is recessive mutation.
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Figure 17. Rough map. 

To generate a mapping population, the #46-3 mutant was crossed with Landsberg erecta. 

The genomic DNA of F2 plants exhibiting the abnormal phenotype was roughly 

mapped with SSLPs and CAPSs markers. The high ratio is showed in position of 

JV30/31, upper arm of chromosome 4 markers.
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Figure 18. Linkage analysis using a next-generation DNA sequencer.  

The candidate region containing the mutation was analyzed by NGS. The results of 

these analyses nailed down the causal mutation on the upper arm of the chromosome 4 

at 1-5.5 Mbp interval by SNP calling. The high ratio is concentrated in position of 

JV30/31, upper arm of chromosome 4.
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Figure 19. Three genes are predicted to be missense mutaion. 

From results in the rough map and the linkage analysis by NGS, only 3 are predicted to 

be non-silent in open-reading frames (yellow highlighted). They are in the loci 

At4g04910, At4g02410, and At4g02750.
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Figure 20. Candidate genes in the #46-3 mutant. 

3 non-silent mutation are in the loci At4g02410, At4g02750, and At4g04910, which 

were annotated to encode L-type lectin-like protein kinase 1 (AtLPK1), tetratricopeptide 

repeat (TPR)-like superfamily protein, and N-ethylmaleimide-sensitive factor (NSF), 

respectively.
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Figure 21. Alignment of the amino acid sequences of NSF. 

Sequence alignment of a part of the D1 domain of NSF among different eukaryotic 

species is shown. Note that the sequence around the position D374 of Arabidopsis (red 

colored) is highly conserved.
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Figure 22. The genomic DNA of NSF complements the phenotype of abnormal 

Golgi morphology in the #46-3 mutant.  

Confocal optical sections of epidermal cells of third-leaf-petioles in two independent T2 

seedlings, which express the whole sequence of NSF in the #46-3 background. Scale bar, 
5 µm.
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Figure 23. Full length genomic DNA of the NSF gene is introduced into the #46-3 

mutant. 

Genotyping using a primer set of the sequence both vector pHGW and NSF gene.
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Figure 24. Comparison of the Golgi size between the #46-3 mutant and 

independent two lines of the complementation lines. 

(A) Histograms showing the Golgi size distribution. The Golgi size in 10 petiole cells 

were measured with ImageJ software.  

(B) Statistic analysis of the histograms in (A). The horizontal line in each box 

represents the median value of the distribution. The boundaries of a box represent 

the lower and upper quartile values. The whiskers extending vertically from the 

upper and lower portions of each box represent the extent of the rest of the data. 

Numbers denote p values based on Welch’s test. 
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Figure 25. The cording sequence of At4g02410 and At4g02750 do not complement 

the phenotype of abnormal Golgi morphology in the #46-3 mutant.  

Confocal optical sections of epidermal cells of third-leaf-petioles in each T1 seedling 

expressing the CDS of the two candidate genes in the #46-3 background. Scale bar, 5 
µm.
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Figure 26. Three lines containing T-DNA insertions at the NSF gene. 

T-DNA was inserted in the 5’ UTR both in SALK_091598/SALK_138721 and in 

SAIL_1155_C06 and in the third exon in SAIL_620_E12, respectively. Establishment a 

homozygous line of SALK_091598/SALK_138721 but not for SAIL_1155_C06 and 

SAIL_620_E12, probably because the complete knockout of NSF is lethal. 
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Figure 27. The Golgi of the #46-3/SAIL_1155_C06 heterozygous line shows the 

abnormal phenotype. 

Confocal optical sections of epidermal cells of third-leaf-petioles in the 

#46-3/SAIL_1155_C06 heterozygous seedlings. Arrows indicate small Golgi. Scale bar, 
5 µm.



 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

Figure 28. Comparison of the Golgi size between the #46-3 mutant and 

#46-3/SAIL_1155_C06 heterozygous line.  

(A) Histograms showing the Golgi size distribution.  

(B) Statistic analysis of the histograms in (A). Numbers denote p values based on 

Welch’s test.
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Figure 29. Model of the Golgi phenotypic changes in the #46-3 mutant. 

(A) Normal Golgi in wild type and in the #46-3 mutant. 

(B) Small Golgi observed under confocal microscopy and decreasing the cisternal 

numbers per Golgi stack showed under electron microscopy in the #46-3 mutant is 

caused by delay of COPII vesicle disassembly on cis-most cisternae. 

(C) Large Golgi observed under confocal microscopy, and increasing the cisternal 

numbers and the trans-most cisternal sizes per Golgi stack under electron 

microscopy is caused by delay of COPIb vesicle disassembly on medial/trans 

cisternae.



 65 

 

 

 

 

CHAPTER 3
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GENERAL DISCUSSION AND PERSPECTIVES 
 

In this study, I attempted to screen and isolate abnormal Golgi morphological mutant 

designated #46-3 and identified as the responsible gene, NSF in Arabidopsis thaliana. 

Thereby, I demonstrated that missense mutation D374N caused pleiotropic Golgi 

phenotypes in the #46-3 mutant. NSF is one of the most general factors of membrane 

fusion in eukaryotes (Figure 1). Since it has been well investigated for its function 

especially in yeast and animals. A dominant negative mutant of S. cerevisiae SEC18 

was exhibited accumulation of a membranous tubular structure (Steel et al., 2000). In 

zebrafish Danio rerio it was showed that the NSF was needed for pigmentation of 

retinal pigment epithelium (Hanovice et al., 2015). On the other hand, in Drosophila 

melanogaster a neuro-paralytic lethal comatose mutation of NSF gene revealed that 

NSF was particularly required during developmental stage in their life (Pallanck et al., 

1995; Sanyal and Krishnan, 2001). In human NSF knockdown suggested a potential 

role of the NSF in the pathophysiology of autism (Iwata et al., 2014).  

 

Each NSF protomer makes up itsself hexamer with a total molecular mass of -500 kDa, 

constituting three domains including one N terminal domain and two D domains. 

NSF-N domains are associated with adapter such as SNAP with electric interaction 

(Zhao et al., 2015). On the other hand, NSF has two ATPase domains that the D1 

domains are responsible for the majority of the ATPase activity whereas the D2 

domains are responsible for hexamarization of themselves, respectively. NSF-D1 
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domain has several characteristic motifs (Neuwald, 1999; Neuwald et al., 1999). 

Especially, Motif of Walker-A, Walker-B, sensor-1, sensor-2 and arginine fingers have 

been investigated to be important for ATPase activity (Datal et al., 2004; Hanson and 

Whiteheart, 2005; Matveeva et al., 1997; Ogura et al., 2004; Steel et al., 2000) (Figure 

21). 

To date, the membrane fusion and disassembly process was clarified with an 

advantage of recent single-particle EM technique without X-ray crystallography (Cheng, 

2015; Cheng et al., 2015). In fact, crystal structures of NSF-N domain and NSF-D2 

domain have been already obtained, respectively (Yu et al., 1998, 1999). Additionally, 

crystal structures of the SNARE complex and SNAP/sec17 (yeast homolog) have also 

elucidated (Rice and Brunger, 1999; Sutton, et al., 1998). Although, crystal structure of 

the NSF-D1 domain has been not veiled yet. At last, Zhao et al. revealed that the 

structure of not only NSF-D1 domain but also structural difference between ATP- and 

ADP-bound NSF with a clear asymmetric feature implied conformational changes due 

to ATP hydrolysis (2015). Additionally, it was also suggested how the NSF formed 20S 

complex (SNARE-SNAP-NSF binding) and it disassembled SNARE-SNAP complex 

(Ryu et al., 2016; Zhao and Blunger, 2016). Now, several working models are proposed 

how to disassemble in mechanical detail such as distributive, processive or global 

disassembly (Ryu et al., 2016).  

Exceptionally, it has been found that as a binding partner with NSF except 

SNAP-SNARE complex, AMPA receptors, a class of postsynaptic ionotropic glutamate 

receptors (Haas, 1998; Lin and Sheng, 1998), and β-arrestin-1, a peripheral membrane 
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protein also involved in the internalization of many G-protein-coupled receptors 

(Lefkowitz, 1998; McDonald et al., 1999). These examples indicate that NSF has some 

functions except ATP-dependent hydrolysis in membrane fusion and disassembly. 

Indeed, ATPase-deficient comatose mutants are displayed lethal phenotype in 

Drosophila, but the Golgi reassembly could sustain to from mitotic Golgi fragments in 

vitro (Pallanck et al., 1995). 

 

A meaningful mutagenesis experiments demonstrated that the NSF(E329Q), 

ATP binding site mutagenesis caused reduction of NSF-dependent transport activity 

(Whiteheart et al., 1994) and disrupted Golgi morphology in HeLa cells (Datal et al., 

2004; Zhao et al., 2010; Fan et al., 2017). These reports revealed that NSF-D1 domain 

had ability of not only primary ATP hydrolysis but also alteration of Golgi morphology. 

Interestingly, Fan et al. demonstrated that NSF knockdown abolished exocytosis of 

transferrin receptor (TfR) and altered Golgi ribbon structure, but it had virtually no 

effect on cell viability and constitutive traffic as monitored by vesicular stomatitis virus 

glycoprotein G (VSVG) trafficking in HeLa cells (2017). Therefore, it is possible that 

differential requirement of NSF activity for different trafficking pathways in 

endomembrane system depending the organism and their cell types.  

 

NSF phylogenetically belongs to the “classic clade” of AAA+ members (Erzberger and 

Berger, 2006). CDC48 (yeast homolog) and valosin-containing protein (VCP/p97, 

mammalian homolog) as a closest homolog to NSF and of course, CDC48/VCP/p97 
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also belongs to the “classic clade” AAA+ (Feiler at al., 1995). The function of CDC48 

has been studied to be involved in ubiquitin-proteasome system and in endoplasmic 

reticulum-associated degradation (ERAD), and in plants too (Bègue et al., 2017). Both 

NSF and CDC48/VCP/p97 share a common domain structure; consisting of two 

ATPase rings (generally so-called Type II AAA+). It was demonstrated that 

NSF(E329Q) disrupted the Golgi ribbon but not affect the ER whereas the p97(E578Q) 

perturbed the ER but not affect the Golgi ribbon in mammalian cells (Datal etal., 2004; 

Rabouille et al., 1995). It is indicated that not only function but also requirement of NSF 

and CDC48/VCP/p97 was unambiguously different in the secretory pathway. 

 

In Arabidopsis, NSF is a single-copy gene as in other eukaryotes (Sanderfoot et al., 

2000). In contrast, based on phylogenetic analysis in plants, many SNARE species have 

been characterized and classified among the green plants (Sanderfoot, 2007). In the 

Golgi apparatus of A. thaliana of cultured cells, nine SNARE molecules ware mapped; 

two Qa-SNAREs, AtSYP31 and AtSYP32; four Qb-SNAREs, AtGOS11, AtGOS12, 

AtMEMB11, and AtMEMB12; two Qc-SNAREs, AtBS14a and AtBS14b; and one 

R-SNARE, AtVAMP714 (Uemura et al., 2004). Furthermore, El-Kasmi et al. 

demonstrated that in Arabidopsis mutant of R-SNARE SEC-22, which localize to the 

ER and cis-Golgi, showed to cause male sterility by reciprocal crosses and Golgi 

fragmentation during pollen developmental stage by electron microscopy (2011). As 

showed in this study, both in SAIL_620_E12 and SAIL_1155_C06, T-DNA insertion 

mutants, homozygous plants were lethal. It was implied that they were male sterility 
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because of never available their progeny when their pollen were reciprocally crossed. I 

presume that intra-Golgi trafficking is active during pollen developmental stage and 

membrane fusion event is accelerated, that SNAREs and NSF are significantly required 

for pollen maturing and maintenance of Golgi morphology in pollen.  

Additionally, it is known as a plant-specific phenomenon, formation of the 

cell plate is processed after cytokinesis is occurred. In animal and fungal cells, 

cytokinesis proceeds with an actomyosin ring contracting. In contrast, in plant 

cytokinesis a number of vesicles delivered along a cytoskeleton to the plane of cell 

division. By the way, It is not entirely revealed that how the Golgi is inherit when cell 

division. Of course, NSF is supposed to hardly work at that time with SNAREs such as 

KNOLLE, cytokinesis-specific Qa-SNARE (Jürgens et al., 2015; Lauber et al., 1997; 

Lukowitz et al., 1995) during cytokinesis including pollen mitosis. 

 

What controls the cisternal numbers in the Golgi? The alteration of Golgi morphology 

attributed to increasing/decreasing cisternal number of the Golgi in the #46-3 mutant (in 

this study). The mechanisms controlling the cisternal number per Golgi stack are 

unknown, however it has been proposed that a change in influx/efflux ratio within the 

Golgi is one of important factors for maintenance of organelle size (Sengupta and 

Linstedt, 2011). Therefore, it is considered that transport velocity is one of important 

factor for cisternal increasing. Because during flagella regeneration the Golgi produced 

one cis-most cisterna for 15 seconds in S. dubia while it generated that for 2-4 minutes 

in A. thaliana (Donohoe et al., 2013). It is suggested that COPII-coated vesicle budding 
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on the ERES and cisternal assembly are faster than COPI-coated vesicle generation on 

the cisternal rims in S. dubia. As mentioned above, without doubt, it was clearly 

demonstrated that the membranes in the Golgi are in a very dynamic equilibrium by the 

cisternal maturation and retrieval of COPI-coated vesicles (Ishii et al., 2016; Losev et 

al., 2006; Matsuura-Tokita et al., 2006; Papanikou et al., 2015). Hence, I consider that 

in the #46-3 mutant observed abnormal Golgi stacks consisting of increased numbers of 

cisternae is due to hindrance of the equilibrium in intra-Golgi trafficking because 

disassembly of COPI-coated vesicles are delayed. 

Previously, it was experimented that in mammalian cells the increases in the 

size of trans-cisternae resulted in block the exit of protein cargo from the Golgi 

(Ladinsky et al., 2002). Subsequently, recent ultrastructural study also demonstrated 

that the depletion of Rab6, mammalian small GTPase localized trans-cisternae, caused 

the significant increases in cisternal number and accumulation of COPI-coated vesicles 

at trans-Golgi (Storrie et al., 2012). Additionally, the arf1Δ mutation (partially 

depleting the Arf GTPase) showed to mature the Golgi more slowly and less frequently, 

but not to abolish the maturation kinetics (Bhave, et al., 2014). It is suggested that the 

Golgi size depending on their cisternal number and equilibrium of intra-Golgi 

trafficking is controlled by not only COPI proteins bat also Arf GTPase. Then, in planta 

it showed that Arabidopsis Qb-SNARE MEMB11 (membrin, mammalian homolog) 

mainly localized to cis-Golgi interacted with Arf1 from biochemical assay and live 

imaging (Marais et al., 2015). It is expect to get more information how SNAREs and 

small GTPase are involved in maintenance of Golgi morphology in not only cultured 
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cells but also whole plants.  

 

Ultimately, I have one provocative question. Why does the #46-3 mutant show 

pleiotropic Golgi phenotypes but not uniformal? I speculate that the individual Golgi 

stack has each unique function alternatively specialized such as glycosylation and 

phosphorylation. Otherwise, the NSF possibly has plant-specific functions except 

ATP-dependent hydrolysis in membrane fusion events.  

I believe that the discoveries in this study will contribute to reveal the 

molecular mechanism to form and maintain the Golgi morphology by the NSF; it would 

be realized soon with an advance in state-of-the art live imaging techniques. 
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EXPERIMENTAL PROCEDURES 
 

Plant materials and growth conditions 

For wild-type plants of A. thaliana, ecotypes Colombia-0 (Col-0) and Landsberg erecta 

were used in this study. Seeds of the transgenic plant of A. thaliana (Col-0) expressing 

ERD2-GFP (Boevink et al., 1998; Takeuchi et al., 2000, 2002) (named A21) were 

mutagenized by treatment with 0.3% ethyl methanesulfonate (EMS) for 16 h. A21 and 

mutagenesis M2 seeds are gifts from Ms. Keiko Shoda. ST-mRFP expressing plant is 

provided from Dr. Tomohiro Uemura. T-DNA insertion mutants, 

SALK_091598/SALK_138721, SAIL_1155_C06 and SAIL_620_E12 were obtained 

from the Arabidopsis Biological Resource Center (Columbus, OH, USA). Mutants were 

backcrossed three times with the wild-type Col-0. Surviving seedlings were individually 

grown up and subjected to self-pollination to establish M2-generation lines. M2 seeds 

were sown on MS medium [1 x MS salt, 1% sucrose, vitamin mix and 0.2% agar], 

vernalized in the dark at 4°C for 4 days, and grown at 23°C under continuous light. 

Selection media contained glufosinate ammonium salt (BASTA; final concentration 7.5 

µg/ml) or kanamycin (50 µg/ml) for T-DNA insertion lines and hygromycin (25 µg/ml) 

for complementation lines. 

 

Plasmid Constructions 

To isolate the NSF gene under its own promoter (proNSF:NSF), a genomic fragment 

was amplified by PCR using a primer set (5’- 



 74 

AACCAATTCAGTCGACTCGGAGAAAAGAGGGCAAGT-3’ and 5’ 

AAGCTGGGTCTAGATAATGTTGTGCGAAGTGAGAGTC-3’). Gateway pENTR 

1A dual selection vector (Thermo Fisher Scientific/Invitrogen, Waltham, MA, USA) 

was amplified by PCR using a primer set (5’-AACCAATTCAGTCGAC-3’ and 

5’-AAGCTGGGTCTAGATA-3’). After treatment of Gateway pENTR 1A with 

restriction enzymes SalI and EcoRV, the genomic fragment was cloned into the vector 

pENTR 1A and recombined into pHGW (Karimi et al., 2002) by LR Clonase II 

(Thermo Fisher Scientific/Invitrogen). Transformed lines were obtained with a floral 

dip procedure (Clough and Bent, 1998). 

 

Isolation of the #46-3 mutant and genetic analysis 

M2 ERD2-GFP seeds were grown for 16 days and observed under a confocal 

microscope. A homozygous mutant line named #46-3, showing abnormal morphology 

of the Golgi, was crossed with Landsberg erecta to generate a F2 mapping population. 

A. thaliana ecotype-specific markers of simple sequence length polymorphisms and 

cleaved amplified polymorphic sequences were used for rough mapping on 20 

individuals showing the abnormal Golgi phenotype.  

For genome-sequencing, bulked F2 seedlings exhibiting the mutant phenotype 

were selected and purified genome is followed several steps; (1) Preparation of genomic 

DNA samples for deep-sequencing; extracted DNA were fragmented by ultrasonic and. 

Samples were added ‘A’ bases to the end of the DNA fragments and ligated adapters to 

that. Then, samples were enriched the adapter-modified DNA fragments by PCR and 
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confirmed the quality of genomic DNA library after purified ligation products. (2) 

Deep-sequencing, (3) SNP data acquisition against the reference Col-0 genome, (4) 

Linkage analysis by the index of enrcment of homozygous SNPs, (5) SNP filtering and 

SNPs calling, a modified method from Uchida et al. (2011) was used. SNPs calling was 

performed under Strand NGS software (Strand Life Sciences).  

 

Confocal microscopy 

For single-color imaging, transgenic plants were visualized under an Olympus IX81 

fluorescence microscope equipped with a confocal laser-scanning unit (CSU10, 

Yokogawa Electronic, Tokyo, Japan) and images were acquired by a CCD camera 

ORCA-R2 (Hamamatsu Photonics, Hamamatsu, Japan). Dual-color imaging was carried 

out with a LSM780 confocal microscope (Zeiss, Jena, Germany). The central regions of 

petioles 16 days after germination were mounted with water on glass slides. Images 

were processed and analyzed with ImageJ 1.49i (National Institute of Health, Bethesda, 

MD, USA). For size measurement of the Golgi, image processing was carried out by 

Otsu's method with ImageJ 1.49i. (Otsu, 1979).  

 

Electron microscopy 

16-day-old petioles of seedlings (wild type and #46-3) were rapidly frozen in a 

high-pressure freezer (HPM010; Bal-Tec). Frozen samples were transferred to 2% 

osmium tetraoxide in anhydrous acetone that had been precooled with liquid nitrogen. 

Samples were maintained at –80 °C for 7 days, at -20°C for 2 h, at 4°C for 2 h, and then 
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at room temperature for 2 h. After several washes with anhydrous acetone, samples 

were embedded in Spurr’s resin (Nisshin EM). Ultrathin sections (thickness 60-80nm) 

were cut for electron microscopic observation after thin sections (thickness 1µm) were 

cut for light macroscopic observation to confirm where was the cell type. Every time 

cutting ultrathin section, thin sections were also cut because of avoidance same Golgi 

included within the section. Ultrathin sections then stained with uranyl acetate and lead 

citrate, and observed under a transmission electron microscope (JEM-1010; JEOL).
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