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Abstract 

 

Plants can synthesize organic compounds through photosynthesis and thereby supply almost all 

organisms on earth with essential building blocks and energy for life. Since plants are 

multicellular organisms, synthesized compounds must be transported from one cell to another to 

be distributed across the whole plant body. Such transport process is mediated by various 

membrane transporters that bind and transport specific solutes across the lipid bilayer membranes. 

In this thesis, I aimed to understand the molecular mechanisms of two transporters, SWEET and 

TPT, which play fundamental roles in plant nutrient allocation but are poorly characterized at the 

structural level. 

 

Sugars Will Eventually be Exported Transporters (SWEETs) are a new family of sugar 

transporters that play major roles in long-distance sugar transport, seed filling, pollen 

development and nectar secretion. The SWEET family proteins exhibit no sequence homology to 

other known sugar transporter families, and thus their structure and mechanism remain elusive. I 

determined the structures of a bacterial homologue of SWEET, known as SemiSWEET, at two 

different conformations. The structures revealed a unique three-helix bundle architecture of 

SemiSWEET, forming a dimer to create a sugar translocation pathway across the membrane. 

Structural comparison revealed that a kink at transmembrane helix 1 triggers a conformational 

change that enables the alternating access of a substrate binding site from one side of the 

membrane to the other. 

 

The triose-phosphate/phosphate translocator (TPT) resides in the inner envelope membrane of 

chloroplasts and mediates the strict counter-exchange of triose-phosphate, 3-phosphoglycerate, 

and inorganic phosphate. TPT plays fundamental roles in delivering carbon and energy from 

chloroplast to cytosol during photosynthesis, but its mechanisms for substrate binding and 

antiport remain unknown. I determined the structures of TPT in complex with two substrates, 3-

phosphoglycerate and inorganic phosphate. TPT exhibits a 10-transmembrane helix topology 

belonging to the drug-metabolite transporter superfamily. The two substrates exclusively occupy 

the same central pocket, supporting a competitive binding model. A negatively-charged phosphate 

group, which is shared by the two substrates, is recognized by the three positively-charged 

residues. The pocket also accommodates the sugar moiety of 3-phosphoglyceric acid or the water 

molecules. These structures suggest a model in which competitive binding of substrates and 

subsequent conformational changes ensure the strict antiport of phosphorylated metabolites and 

a phosphate ion. 
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Chapter 1 General introduction 

 

1.1 Path of carbon in plants 

Plants can synthesize organic compounds from CO2 and thereby supply the Earth’s organisms 

with essential building blocks and energy for life. Since plants are multicellular organisms, 

synthesized compounds must be transported from one cellular compartment to another and 

ultimately distributed to the whole plant body (1). Such transport process is mediated by various 

transporters, which bind and transport specific types of solutes across the membrane. Of particular 

interest are sugar transporters, which play central roles in photosynthetic metabolism, carbon 

partitioning, sugar signaling, and plant-microbe interactions. Since these sugar transporters can 

significantly influence plant nutrition and growth, they are important targets of genetic 

modification for improving crop productivity (2). 

 

1.2 Sugar transporters 

Major plant sugar transporters in plants comprise sucrose transporters (SUTs) and 

monosaccharide transporters (MSTs) (1). Both these two groups belong to the major facilitator 

superfamily (MFS) (3). Recently, a novel family of sugar transporters belonging to a distinct 

superfamily were identified, and named SWEETs (4). In this section, I briefly discuss these 

transporter families in terms of their physiological roles, functional properties, structures and 

unsolved questions. 

 

1.2.1 SUTs 

Sucrose is the major form of sugar used for long-distance transport in most plants. An important 

step in the long-distance transport is the H+-driven sucrose uptake from the apoplast (extracellular 

space) to the sieve element-companion cell (SE-CC) complex, a process known as the phloem 

loading (5) (Figure 1a). From 1992 to 1994, molecular genetics studies have identified the 

transporters responsible for this process, named Sucrose Transporters (SUTs; alternately called 

SUCs) (6–8). Arabidopsis genome contains 9 SUT members (9), and rice genome contains 5 SUT 

members (10). According to a recent classification, SUTs are classified into 5 clades (SUT1–

SUT5), in which the SUT1 clade is dicot- specific and the SUT3 and SUT5 clades are monocot-

specific (11). 

 

Functionally, most SUTs function as H+/sucrose symporters (12). In phloem loading, this symport 

mode drives the import of sucrose from the apoplast (extracellular side) to the intracellular side, 

by using the H+ gradient of 1000-fold (from pH 5 to pH 8) (13). In sink organs such as potato 

tubers, SUTs can also operate in a reverse direction, functioning as sucrose exporters (14, 15). In 
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addition, some SUTs found in nodule-forming legume species are independent of pH gradients 

and function as sucrose facilitators (SUFs) (16), highlighting the diverse modes of transport 

within the same SUT family. Substrate specificities of SUTs are also diverse; some SUTs transport 

various glucosides other than sucrose, such as fraxin, exculin and helicin (17). Previous studies 

have shown that the glucose moiety of these sugar-conjugate compounds is important for substrate 

recognition (17, 18). Transport affinity for sucrose varies among different SUT members, with 

typical Km values within the range of 0.1–10 mM (15). 

 

 

Figure 1 | Sugar transporters in plants 

(a) Sucrose (Suc) transport in photosynthesizing leaves (source). Assimilated carbon is converted into Suc 

within the cytosol, and then loaded to phloem (sieve elements) either through plasmodesmata or by 

transporters. In the latter, Suc is exported to apoplast by SWEET, and then loaded into the phloem by SUT. 

(b) Sugar transport in non-green tissues (sink). Suc is unloaded from the phloem either through 

plasmodesmata or by transporters. In the latter, Suc is taken up by MST after hydrolysis into glucose (Glc) 

and fructose (Fru), or directly by SUT. Vacuole imports monosaccharides through an MST antiporter. 

Adapted from ref.  (19).  
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1.2.2 MSTs 

While disaccharide sucrose is the main sugar used for the long-distance transport, 

monosaccharides, glucose and fructose, are also widely used for cell-to-cell and subcellular sugar 

transport in plants. For instance, after long-distance transport, sucrose can be taken up by sink 

cells as glucose and fructose, after being cleaved by the cell-wall invertase in the apoplast (20, 

21) (Figure 1b). Monosaccharide transport is mediated by proteins called Monosaccharide 

Transporters (MSTs), which were first cloned from a unicellular alga Chlorella (22). Subsequent 

analyses have identified MSTs in land plants (23–26). MSTs constitute a very large group in most 

plant species, comprising 53 members in Arabidopsis and 65 members in rice. According to a 

phylogenetic analysis, MSTs have been classified into 7 distinct subfamilies, namely Sugar 

Transport Protein (STP), Vacuolar Glucose Transporter (VGT), Tonoplast Membrane Transporter 

(TMT), Plastidic Glucose Transporter (pGlcT), Polyol/Monosaccharide Transporter (PMT), 

Inositol Transporter (INT), and Early-Responsive to Dehydration 6-like (ERL) (25). Each 

subfamily contains 4 to 19 members, and the members within the same subfamily show high 

sequence homology (42%–96%), whereas those between distinct subfamilies show low homology  

(25). 

 

The function of MSTs are diverse. It involves all three types of transport modes: symporter, 

antiporter and uniporter. The STP subfamily involves H+/hexose symporters with differing degree 

of substrate specificities toward glucose, fructose and galactose (23, 27). The PMT and INT 

subfamilies involve H+-driven polyol symporters, with some members also transporting 

monosaccharides (28–32). In contrast to these plasma membrane-localized subfamilies, the VGTs 

and TMT subfamilies are mostly localized at the vacuolar-membranes, and function as H+/sugar 

antiporters (33, 34). Since plant vacuole lumens are acidified (pH ~5.5) (35, 36), this antiport 

mode drives the sugar import into the vacuole (37, 38) (Figure 1b). The ESL subfamily is also 

found at the vacuolar membrane, but its members have been characterized as facilitative 

uniporters (39). The pGlcT subfamily is the only subfamily found at the chloroplast membrane, 

and involve facilitative uniporters (40). With such a diverse range of transport functions, MSTs 

are involved in various physiological processes (3, 41). 

 

1.2.3 Major facilitator superfamily 

SUTs and MSTs described above belong to a large protein superfamily called the Major Facilitator 

Superfamily (MFS) (42). The typical architecture of the MFS protein comprises 12 

transmembrane (TM) helices, which can be divided into the N- and C-terminal 6-TM segments 

(43) (Figure 2a). These two 6-TM segments are thought to have occurred through gene duplication 

(44). The first crystal structure of an MFS protein, the bacterial lactose permease LacY, has 
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revealed that these two 6-TM segments fold into distinct structural units (the N- and C-bundles), 

forming a substrate-binding site at the interface (45) (Figure 2b). Subsequent structural analyses 

have revealed that this substrate-binding site is alternately exposed inward and outward to 

transport the substrate, accompanying a large inter-domain conformational change (45). These 

findings have made the MFS sugar transporter a ‘text-book’ model for all transporters (46–49) . 

Although the structures of plant SUTs and MSTs are yet to be determined, these available 

structures of MFS sugar transporters help understand the mechanisms of SUTs and MSTs (50). 

 

 

Figure 2 | Major facilitator superfamily (MFS) sugar transporter 

(a) Topology of MFS sugar transporters. Adapted from ref. (44). 

(b) The crystal structures of the lactose permease LacY. In the inward-open structure (left; PDB 1PV7), a 

substrate analog β-D-galactopyranosyl-1-thio-β-D-galactopyranoside (TDG) is bound at the central cavity, 

accessible from the cytoplasmic side. In the outward-open structure (right; PDB 4OAA), TDG is bound at 

the same central cavity, but is now accessible from the periplasmic side. 

 

1.2.4 SWEETs 

Although molecular identities of most sugar transporters involved in plant metabolism have been 

characterized by around the 2000s, some key transporters involved in sugar export have remained 

elusive. In 2010, a new class of sugar transporters were identified and named SWEETs (Sugars 

Will Eventually be Exported Transporters) (51). SWEETs are prevalent in plants than animals, 

comprising 17 members in Arabidopsis and 21 in rice (4, 52–57). The plant SWEETs have been 

classified into four clades (clades I–IV), and each clade shows slightly different preference 

towards monosaccharides and disaccharides (4). The animal SWEETs comprise only a few 

members in each species (1 in human and 7 in Caenorhabditis elegans), and their functions are 

not well characterized (4). 

 

Functionally, SWEETs are uniporters that catalyze facilitative diffusion of sugars down the 

concentration gradient (58, 59). In physiological contexts, most SWEET members mediate sugar 
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efflux from sugar-rich compartments to extracellular space (58, 59). For example, AtSWEET11 

and AtSWEET12 have been found to mediate sucrose efflux from phloem parenchyma cells to 

apoplast, supplying sucrose for long-distance transport in phloem (60). This discovery has 

resolved the long-standing questions on the molecular identities of enigmatic sugar exporter 

during long-distance transport (61) (Figure 1a). In angiosperms, flower nectary can secrete high 

concentration of sugar for attracting pollinators (61). AtSWEET9 mediate sucrose export from 

flower nectary and is thus essential for nectar secretion (58, 62). In maize and rice, ZmSWEET4c 

and OsSWEET4 mediate hexose import into seeds, playing essential roles in seed filling (4, 52, 

53, 63, 64). Some SWEETs are localized in the vacuolar membranes and mediate sugar import to 

modulate intracellular sugar levels (4, 52–54). Substrates of SWEETs include monosaccharides, 

glucose, fructose and galactose (57, 65, 66) and the disaccharide, sucrose (67). Some SWEET 

members have been recently implicated in the transport of gibberellin, a plant hormone without a 

sugar moiety (4, 53, 57, 64). Transport affinities of SWEETs are relatively low, typically within 

the 1–70 mM range (68). 

 

SWEET is predicted to possess 7 transmembrane (TM) helices, which consist of the two ‘3-TM 

repeats’ at the N- and C-terminal halves (TM1–3 and TM5–7), connected by a ‘linker helix’ 

(TM4). This architecture is distinct from any other known transporter families. Recently, a 

prokaryotic homologue of SWEET has been identified (68). This bacterial SWEET homologue 

possesses only one unit of the 3-TM repeat, and thus appears to be ‘half-sized’ from its eukaryotic 

counterpart. Therefore, this bacterial SWEET homologue has been named SemiSWEETs (68). 

Phylogenetic analysis has shown that SemiSWEET is an ancestor of SWEET, probably forming 

a functional transporter by assembling as an oligomer. However, unlike the MFS proteins, SUTs 

and MSTs, the mechanism of sugar transport by SWEET and SemiSWEET transporters is not 

understood. 

 

1.3 Sugar-phosphate transporters 

In addition to sugars, sugar phosphates are important metabolites in plant metabolism. For 

instance, in photosynthesizing leaves, assimilated carbon is exported from the chloroplast in the 

form of triose phosphates (triose-P; dihydroxyacetone phosphate and glyceraldehyde-3-

phosphate) (69). This export is achieved in exchange for the import of inorganic phosphate (Pi) 

from the cytosol (74). In non-photosynthetic organs such as roots and seeds, import of glucose-6-

phosphate into the plastid is important for starch synthesis (78). Sugar phosphates are especially 

important for connecting the chloroplast-cytosol metabolisms. Since chloroplasts are enclosed by 

the two lipid bilayer membranes, called the outer and the inner envelopes, specialized transporters 

are needed to deliver these compounds between chloroplast and cytosol. The inner envelope 
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membrane is responsible for the specific transport of sugar phosphates (88), whereas the outer 

envelope membrane is non-specifically permeable to a wide variety of solutes (73). 

 

1.3.1 pPTs 

The plastidic phosphate translocators (pPTs) are a family of transporters found on the plastid inner 

envelope membrane (72, 73). In land plants, the pPT family consists of four subtypes, the triose-

phosphate/phosphate translocator (TPT), the phosphoenolpyruvate/phosphate translocator (PPT), 

the glucose-6-phosphate/phosphate translocator (GPT) and xylulose-5-phosphate/phosphate 

translocator (XPT). 

 

TPT is found at the inner envelope membrane of all chloroplasts (Figure 3a). TPT catalyzes either 

triose-P/Pi or triose-P/3-PGA exchange across the chloroplast inner envelope membrane. The 

former reaction delivers a carbon skeleton to the cytoplasm and transports Pi back into the 

chloroplast for ATP regeneration (74). The latter reaction, known as the triose-P/3-PGA shuttle, 

indirectly exports chemical energy (ATP and NADPH) without the net transport of carbon (75). 

PPT is expressed in both chloroplast and non-green plastids, and exchanges phosphoenolpyruvate 

(PEP) with Pi, playing important roles in amino acid and fatty acid biosynthesis (76) (Figure 3b). 

PPT also serves as a part of the CO2 concentration mechanism of C4 and CAM photosynthesis 

(76, 77). GPT is mainly expressed in non-green plastids like amyloplasts and exchanges glucose-

6-phosphate (Glc-6-P) with Pi, functioning as a carbon importer (78). XPT is expressed in both 

chloroplasts and non-green plastids and mediate the exchange of xylulose-5-phopshate (Xul-5-P), 

triose-P, and Pi, thereby supplying precursors for pentose phosphate pathway in the plastids or the 

cytosol (79, 80). The pPTs are also found in apicomplexan parasites (81, 82), which cause 

toxoplasmosis and malaria in humans. Since these apicomplexan pPTs are essential for the 

survival of the parasites (83), they are potential drug targets for parasitic infections (84). 

 

All pPT proteins are known to catalyze the strict 1:1 exchange reactions, which guarantee the total 

balance of the plastid and the cytosol while allowing the transport of carbon and energy (72, 85). 

The affinity for transport by the pPTs are typically in the millimolar range, close to the 

physiological concentrations of sugar-phosphates and Pi within plastids (88) . In addition to sugar-

phosphate/Pi hetero-exchange reactions, all functionally characterized pPTs can catalyze the Pi/Pi 

homo-exchange reaction, which is known as the signature activity of this family (89). Previous in 

vitro studies have shown that the direction of import and export reactions can be reversed, 

although in physiological contexts the net transport direction is dominated by the concentration 

difference of substrates between the two compartments (86). 
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Despite a wealth of molecular and biochemical studies, the structure and mechanism of the pPTs 

are poorly understood. The first molecular cloning of the pPT has been achieved for a spinach 

TPT, which has revealed that TPT possesses seven highly hydrophobic regions, suggestive of a 

7-TM architecture (70). Later studies have proposed different architectures consisting of 6 to 9 

TMs (86). All pPTs are nuclear-encoded proteins, and are therefore targeted to chloroplasts after 

being translated as precursor proteins, which include the target sequences called the chloroplast 

transit peptides (cTPs) (91). The cTP is about 90 residues in each precursor protein (4) and is 

cleaved after membrane insertion, giving rise to a mature translocator protein. 
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Figure 3 | Roles of the pPTs in plastid metabolism. 

(a) The function of TPT in chloroplasts. TPT catalyzes the antiport of triose-P, 3-PGA and Pi across the 

inner envelope membrane. OEM and IEM denote the outer and inner envelope membranes, respectively. 

(b) The functions of PPT, GPT and XPT. 

(c) Chemical structures of the pPT substrates. 
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1.3 Aim of the thesis 

In this thesis, I aim to elucidate the molecular mechanisms of two metabolite transporters, SWEET 

and TPT. These transporters play important roles in photosynthetic carbon fixation, plant nutrition 

and growth, but are poorly understood at the molecular levels. I therefore undertook structural 

and functional studies on these transporters, by using X-ray crystallography and in vitro functional 

characterizations. 

 

Specific goals of this research are: 

1) To elucidate the structures of these transporters by using X-ray crystallography. 

2) To reveal the molecular basis of substrate recognition and transport with structure-based 

functional analyses. 
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Chapter 2 X-ray crystallographic analysis of SemiSWEET 

 

2.1 Introduction 

As discussed in Chapter 1, the SWEET family proteins are a new class of sugar transporters that 

play fundamental roles in plant sugar allocation (4). SWEET is a 7TM protein, and its bacterial 

homologue SemiSWEET shares the common architecture consisting of the 3-TM repeat (68). 

SWEETs and SemiSWEETs are also related to a protein family called the PQ-loop family, which 

includes lysosomal amino acid exporters implicated in human disease cystinosis (92–94). The 

members of the PQ-loop family share the same ‘3-TM repeats’ architecture and possess a 

signature motif consisting of Pro-Gln residues (PQ-loop motif), which is located on the first TM 

helix of each 3-TM repeat. The first proline residue is conserved in both the SemiSWEETs and 

SWEETs, while the second glutamine residue is conserved in only the SemiSWEETs, suggesting 

the critical role of the proline residue in their transport mechanisms. 

 

Eukaryotic SWEETs have been shown to form homo- and hetero-oligomers in yeast two-hybrid 

assays and split ubiquitin assays (68). In addition, co-expression of the defective SWEET mutants 

with wild-type SWEET have exhibited marked decrease in glucose transport activity, indicative 

of negative dominance. These results have suggested that SWEETs would form a sugar 

translocation pathway by assembling as an oligomer (68). Figure 4 shows a proposed model for 

oligomerization, which assumes that four 3-TM repeats form a 12-TM architecture, resembling 

the well-studied MFS structure. However, the precise mechanisms by which SemiSWEETs and 

SWEETs assemble to form such a sugar translocation pathway is not understood. Notably, 

SemiSWEET is the smallest sugar transporter identified to date, and is thus a good model system 

for studying not only the architecture of SWEET family proteins, but also the minimal functional 

unit of sugar transporters in general. Therefore, I aimed to determine the structure of SemiSWEET 

for understanding the shared molecular mechanisms of the SWEET family transporters. 
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Figure 4 | Proposed model for SWEET and SemiSWEET oligomerization 

(a,b,c) Models for the functional oligomers of SemiSWEET (a), SWEET (b) and the lactose permease LacY 

(c). The functional unit is assumed to be a dimer for SWEET and a tetramer for SemiSWEET. Reproduced 

from ref. (68). 
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2.2 Materials and methods 

2.2.1 Cloning 

The SemiSWEET genes were cloned from bacterial and archaeal genomes by using polymerase 

chain reaction (PCR) with specific primers. These primers were designed to add the XhoI and 

NdeI cleavage sites at the 5’ and 3’ termini of the genes, respectively. The cloned gene fragments 

were cut by XhoI/NdeI double digestion and ligated into the XhoI/NdeI site of a modified pET28a 

vector. This vector was designed to introduce a tobacco etch virus (TEV) protease-cleavage site 

and a His8-tag at the C-terminus of the SemiSWEET protein. The genome accession numbers, the 

nucleotide accession numbers, and the primer sequences used for cloning are summarized in Table 

1. 
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Table 1 | Primers used for cloning SemiSWEETs 

Genome JCM 

No. 

Nucleotide 

(Gene ID: start-end) 

Primer sequences (5’–3’) 

Bradyrhizobium 

japonicum 

10833 gi|384213726: 

c3075640-3075380 

GCGCCATATGGACCCGTTCTTGATCAAGCTGATCG* 

GCGCCTCGAGGCCGTATCTCAGCTTCATCACCAG 

Magnetospirillum 

gryphiswaldense 

21280 gi|23014828: 

16911-17207 

GCGCCATATGGACTGGCTTTCACCCACCGACC 

GCGCCTCGAGCTGGTTCAAGCTGGTCCGGGTGCC 

Desulfovibrio vulgaris 14930 gi|218885109: 

2360689-2360985 

GCGCCATATGCCCGCACCCACCGCAGACTCCG 

GCGCCTCGAGCAGCTGGCGGGAATAGCGCAGCTT 

Methanosarcina 

mazei 

9314 gi|21226102: 

2327857-2328168 

GCGCCATATGATCGGCTATATCGCAGGTGCCC 

GCGCCTCGAGCTTCCTGAGAGAAGCATTTTTATT 

Methanocaldococcus 

jannaschii 

10045 gi|15668172: 

c106892-106611 

GCGCCATATGGTGATTAATATGGACTTTGATA 

GCGCCTCGAGAGATTTTCTCATCTCATCTCTTAT 

Methanocaldococcus 

fervens 

15782T gi|256809973: 

329575-329862 

GCGCCATATGGGTATAACGATTATTGGCTACA 

GCGCCTCGAGAGTTATTAATTCTGATTTGCTACC 

Methanocaldococcus 

infernus 

15783 gi|296108688: 

1158684-1158956 

GCGCCATATGGATTTAACCATTATTGGTTACT 

GCGCCTCGAGTCTTTTCTTCCAATTTCTCACCAC 

Escherichia coli 20135 gi|510922005: 

72678-72947 

GCGCCATATGGATACCATTCTTTTAACCGGGC 

GCGCCTCGAGTACGTGTTTTTTCCTGCGGTTGAT 

Microlunatus 

phosphovorus 

9379 gi|336115651: 

c3894738-3894127 

GCGCCATATGCTCGTCGTAGCCCTGGGTTGGG 

GCGCCTCGAGAGCGGACATGAGCGCCAGGCGAGC 

*XhoI and NdeI sites are underlined. 

 

2.2.2 Protein expression 

The plasmids outlined in 2.2.1 was transformed into E. coli Rosetta 2 (DE3) cells. The cells were 

inoculated in Luria-Bertani (LB) medium supplemented with 50 μg/ml ampicillin and 30 μg/ml 

chloramphenicol at 37ºC. Protein expression was induced with 0.2 mM isopropyl β-D-

thiogalactopyranoside (IPTG) when the culture reached A600 = 0.6. After growth for 20 h at 20ºC, 

the cells were pelleted and resuspended in a buffer containing 50 mM Tris-HCl, pH 8.0, 150 mM 

NaCl, and 0.1 mM phenylmethylsulfonyl fluoride (PMSF), and then disrupted using a 

Microfluidizer processor (Microfluidics) with three passes at 15,000 p.s.i. Cell debris was 

removed by low-speed centrifugation at 10,000 g for 10 min, and the membrane fraction was 

collected by ultracentrifugation at 138,000 g for 1 h. 

 

2.2.3 Fluorescence-detection size-exclusion chromatography 

The fluorescence-detection size-exclusion chromatography (FSEC) was performed following 

established protocols (95, 96). To monitor the solution behavior of non-GFP-tagged SemiSWEET 

constructs, a polyhistidine-tag specific fluorescence probe, known as P3NTA was employed (90). 

The membrane fraction from 4 ml-culture was routinely solubilized in a 300 μl buffer containing 
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50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1 mM PMSF, 2% dodecyl-β-D-maltopyranoside 

(DDM) and 0.4% cholesteryl hemisuccinate (CHS) for 90 min at 4ºC, and insoluble components 

were removed by ultracentrifugation at 138,000 g, 20 min, in a micro-ultracentrifuge CS100FNX 

(Hitachi Kohki). To 100 μl of supernatant the P3NTA reagent was added at 100:1 (v/v) and 

allowed to bind for 30 min. 50 μl of resulting solution was subjected to FSEC analysis on a 

Superdex 200 10/300 column (GE Healthcare), equilibrated in a buffer containing 10 mM Tris-

HCl, pH 8.0, 150 mM NaCl, and 0.03% (w/v) DDM. The elution profile was monitored by a 

fluorescence detector RF-20Axs (Shimadzu). The excitation and emission wavelengths were set 

to 482 nm and 520 nm, respectively. 

 

2.2.4 Protein purification 

The membrane fractions were solubilized in a buffer containing 20 mM Tris-HCl, pH 8.0, 150 

mM NaCl, 10 mM imidazole, 2% dodecyl-β-D-maltopyranoside (DDM) and 0.4% cholesteryl 

hemisuccinate (CHS), for 90 min at 4 ºC. Insoluble components were removed by 

ultracentrifugation at 138,000 g for 30 min, and the supernatant was mixed with Ni-NTA 

Superflow resin (Qiagen) for 90 min. The resin was washed with 20 mM Tris-HCl, pH 8.0, 150 

mM NaCl, 50 mM imidazole, 0.05% DDM and 0.01% CHS, and the protein was eluted with the 

same buffer supplemented with a final concentration of 300 mM imidazole. The eluate was treated 

with tobacco etch virus (TEV) protease to cleave the His8-tag, and dialyzed overnight against the 

imidazole-free buffer. The sample was then reloaded onto the Ni-NTA Superflow resin (Qiagen) 

to remove the cleaved tag and the TEV protease. The flow-through fraction containing 

SemiSWEET was concentrated to about 5 mg ml-1 with a 30 kDa concentrator (Millipore), and 

was further purified by chromatography on a Superdex 200 Increase 10/300 gel filtration column 

(GE Healthcare), in a buffer containing 10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.05% DDM 

and 0.01% CHS. The purified protein was concentrated to 15 mg ml-1, flash frozen in liquid 

nitrogen, and stored at −80ºC until crystallization. The typical protein yield was 0.9 mg per one 

liter of bacterial culture. The SeMet-labeled SemiSWEET protein was produced in E. coli B834 

(DE3) cells in a LeMaster medium (Wako), and purified by the same procedure as for the native 

protein. 

 

2.2.5 Crystallization 

Purified samples were thawed and reconstituted into the lipidic cubic phase (LCP) of 1-oleoyl-R-

glycerol (monoolein) at a protein to lipid ratio of 2:3 (w/w), using the two-syringe mixing method 

(91). Crystallization experiments were performed in two different setups: the sandwich-drop and 

the hanging-drop methods. For the sandwich-drop crystallization, aliquots of the protein-LCP 

mixture were dispensed onto 96-well glass plates and overlaid with the precipitant solution, using 
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a mosquito LCP (TTP LabTech). For hanging-drop crystallization, the protein-LCP drops were 

manually spotted onto siliconized glass coverslips and overlaid with the precipitant solutions, and 

then the coverslips were placed upside down onto 24-well plates, sealing each well containing 

300 μl of reservoir solution, with the same composition as that of the precipitant solution. The 

native protein was crystallized under two similar conditions (Crystal-I and Crystal-II). Crystal-I 

was grown in sandwich-drop plates, with 50 nl protein-LCP drops overlaid with 700 nl precipitant 

solutions, which consisted of 28% PEG550MME, 100 mM Tris-HCl, pH 8.0, 350 mM MgSO4 

and 3% galactose. Crystal-II was grown in hanging-drop plates, with 50 nl protein-LCP drops 

overlaid with 800 nl precipitant solution, which consisted of 23% PEG550MME, 100 mM Tris-

HCl, pH 8.0, 350 mM NH4-citrate and 3% dimethyl sulfoxide. The SeMet-labeled protein was 

crystallized under conditions similar to those for Crystal-I, using a precipitant solution consisting 

of 23–30% PEG550MME, 100 mM Tris-HCl, pH 8.0 and 150–200 mM (NH4)SO4. All crystals 

were harvested and flash-cooled in liquid nitrogen for data collection. 

 

2.2.6 X-ray diffraction data collection 

X-ray diffraction data were collected at the SPring-8 beamline BL32XU, using a helical data 

collection method with a 1 × 10 μm (width × height) microbeam. The detector used was 

MX225HS CCD detector (Rayonix). For Crystal-I, data were collected for 540º from a single 

crystal, using X-ray wavelength of 1.0000 Å and the camera distance of 200 mm. For Crystal-II, 

data were collected for 180º from a single crystal, with X-ray wavelength of 1.0000 Å and the 

camera distance of 250 mm. For SeMet-labeled crystals, data were collected for a total of 1120º 

from six crystals, with X-ray wavelength of 0.9792 Å and the camera distance of 300 mm. All 

diffraction data were processed using XDS (91). Multiple data sets from SeMet-labeled crystals 

were scaled and merged using XSCALE (92). 

 

2.2.7 Data processing and structure determination 

For Crystal-I, the structure was determined by the SAD method, using the merged data from six 

SeMet-labeled crystals. Selenium sites were first determined using SHELXD (93), and those sites 

were used to calculate initial phases using AutoSHARP (94, 95). The model was automatically 

built from using PHENIX AutoBuild (96). The obtained model was transferred to the native 

Crystal-I data, and then iteratively rebuilt and refined using COOT (104) and PHENIX, 

respectively. For Crystal-II, the structure was determined by molecular replacement in PHASER 

(93), using the SemiSWEET monomer of Crystal-I as a search model. The resulting model was 

manually rebuilt using COOT. Initial rounds of refinement were performed using REFMAC (101) 

with ‘use jelly-body refinement’ option, and subsequent rounds were performed with PHENIX. 
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2.2.8 Transport assays 

The purified SemiSWEET protein was reconstituted into liposomes with the following procedure. 

E. coli Polar Lipid Extract (Avanti) was dissolved in chloroform and dried into a thin film in a 

glass vial. The film was then resuspended to a final lipid concentration of 20 mg ml-1 in a buffer 

containing 10 mM Tris-HCl, pH 8.0, and 100 mM NaCl, and sonicated for 1 min to obtain a 

liposome solution. The purified protein was added to the liposome solution at a lipid to protein 

ratio of 100:1 (w/w), while 0.05% DDM was also added to avoid protein denaturation. The 

protein-liposome mixture was freeze-thawed three times for full reconstitution, and then sonicated 

for 1 min for unilamellar vesicle formation. Protein-free liposomes were prepared by a similar 

procedure, except that the protein solution was replaced with the buffer used for the final 

purification step. 

 

The time-dependent [14C]-sucrose uptake assay was initiated by mixing the liposome solution 

with an equal volume of the extra-liposomal solution, consisting of 10 mM Tris-HCl, pH 8.0, 100 

mM NaCl, and 10 mM [14C]-sucrose (1 μCi ml-1). After the reaction at 37ºC for indicated times, 

the liposomes were isolated by gel-filtration with Sephadex G-50 (GE Healthcare), and the 

radioactivity of the incorporated [14C]-sucrose was measured by liquid scintillation counting. The 

concentration-dependent [14C]-sucrose uptake was measured by a similar procedure, with 

different concentrations of the extra-liposomal [14C]-sucrose. For mutational analyses, mutations 

were introduced by a PCR-based method. The mutant proteins were expressed, purified and 

reconstituted into liposomes, and the transport activities were measured by a similar procedure to 

that for the wild-type. 
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2.3 Results 

2.3.1 Identification and screening of SemiSWEET orthologues 

At the beginning of the study, the only functionally characterized SemiSWEET protein has been 

the one from a nodule-forming bacterium Bradyrhizobium japonicum (68). To identify suitable 

candidates for structural and functional studies, we first searched for SemiSWEET orthologues in 

bacteria and archaea. BLAST searches into the National Center for Biotechnology Information 

(NCBI) database identified more than 90 SemiSWEET orthologues, among which we could clone 

9 genes from the available genomes in the laboratory. We heterologously expressed these 

SemiSWEETs in Escherichia coli as poly-histidine-tagged proteins (Figure 5), and subjected 

them to the fluorescence-detection size exclusion chromatography (FSEC) (95, 96). To avoid 

possible artefacts stemming from fusing GFP (~290 residues) to smaller SemiSWEET proteins 

(~100 residues), we labeled the proteins with a fluorescence probe called P3NTA, which binds to 

a polyhistidine tag (97). This method allowed us to rapidly evaluate the expression levels and 

solution behaviors of the SemiSWEET candidates from unpurified, crude membrane fractions. 

Figure 6 shows the fluorescent profiles of different SemiSWEET orthologues in the size exclusion 

chromatography. We observed the highest expression level for a SemiSWEET from E. coli, which 

also exhibited the most homogeneous size distribution. Therefore, we selected this E. coli 

SemiSWEET for subsequent biochemical and structural studies. 

 

 

Figure 5 | Expression constructs of SemiSWEET 

(a) Construct used for expression screening. 

(a) E. coli SemiSWEET construct used for purification. His8-tag were fused to the C-terminus with a TEV 

protease recognition site. 
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Figure 6 | FSEC profiles of the SemiSWEET orthologues 

(a) Superposition of fluorescence traces of different SemiSWEET orthologues in size exclusion 

chromatography, detected with the histidine tag-specific fluorescence probe P3NTA. mAU!!! 

(b) Individual chromatograms of (a). The peaks of E. coli SemiSWEET are highlighted by red arrowheads. 
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2.3.2 Purification of E. coli SemiSWEET 

We purified E. coli SemiSWEET to homogeneity by immobilized metal affinity chromatography 

and size exclusion chromatography (Figure 7). E. coli SemiSWEET shares a 36% sequence 

identity and a 57% similarity with B. japonicum SemiSWEET (Figure 9), which has been 

characterized as a sucrose uniporter (4, 57). To test the transport function of E. coli SemiSWEET, 

we reconstituted the purified proteins into liposomes and measured the uptake of [14C]-labeled 

sucrose. E. coli SemiSWEET showed slow but significant [14C]-sucrose uptake, as compared to 

the control empty liposomes, confirming its sucrose transport activity (Figure 8a). The rate of 

[14C]-sucrose was not saturated even up to 300 mM concentration, indicating the low-affinity 

binding of SemiSWEET to sucrose (Figure 8b). Previous studies have also shown that the plant 

SWEETs exhibit low affinities for sugars (Km >70 mM) (90), suggesting a common transport 

mechanism. The unusually slow uptake observed here suggests that sucrose might not be a 

physiological substrate for E. coli SemiSWEET, but these data confirm the sugar transport activity 

of E. coli SemiSWEET. 

 

 

Figure 7 | Purified E. coli SemiSWEET 

(a) Gel filtration profile of the final sample used for crystallization. 

(b) SDS-PAGE gel of (a). 

 

Figure 8 | Functional characterization of E. coli SemiSWEET 

(a) Time-course of [14C]-sucrose uptake by proteoliposomes containing E. coli SemiSWEET (solid black 

squares) or empty control liposomes (open black squares). Mean ± s.e.m., n = 6. 

(b) Plots of the sucrose uptake rate vs. the extra-liposomal sucrose concentration (mean ± s.e.m., n = 3). 
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Figure 9 | Sequence alignment of E. coli SemiSWEET and other SWEET family proteins 

Sequence alignment of E. coli (Ec), B. japonicum (Bj), Leptospira biblexa (Lb), Vibrio sp. (Vs) 

SemiSWEETs and Arabidopsis thaliana (At) SWEET1–17, created using ClustalW2 and manually 

adjusted. SemiSWEET sequences are duplicated to align with two 3-TM domains in SWEETs, and are 

thus designated as SemiSWEETx2. The conserved functional residues are indicated by red arrowheads, 

and the glutamine residue in the PQ motif is by a white arrowhead. 
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2.3.3 Crystallization of E. coli SemiSWEET 

We performed crystallization trials for purified E. coli SemiSWEET by the lipidic cubic phase 

method (LCP) (4). After screening ~600 conditions, we obtained crystals under multiple 

conditions. Subsequent refinement yielded two types of diffraction-quality crystals, the first one 

belonging to the space group P21212 (designated as Crystal-I) and the second one to C2 (Crystal-

II) (Figure 10). For Crystal-II, changing the crystallization setup from a typical sandwich-drop 

method to a hanging-drop method has increased the crystal size dramatically (Figure 10b). 

 

2.3.4 Structure determination 

We collected X-ray diffraction data for both crystal forms at the microfocus beamline SPring-8 

BL32XU (Figure 11). To determine the initial phases, we prepared the SeMet-labeled crystals in 

a similar condition to that of Crystal-I (Figure 10c). We collected anomalous diffraction data from 

these SeMet-labed crystals at a wavelength of 0.9792 Å, which corresponds to the peak 

wavelength of selenium atoms. By using the SeMet single-wavelength anomalous diffraction (Se-

Met SAD) method, 9 selenium sites were identified (Figure 12a). The experimental map at 2.6 Å 

resolution was of sufficient quality for us to build the atomic model de novo (Figure 12b). With 

this model, the native structures of Crystal-I and Crystal-II were built and refined to 2.0 Å and 

3.0 Å resolutions, respectively (Figure 12c, d, Figure 13, Figure 14 and Table 2; please also see 

Section 2.2.7 Data processing and structure determination). 

 

 

Figure 10 | Crystals of E. coli SemiSWEET 

(a) Crystal-I. (b) Crystal-II. (c) SeMet-labeled crystal. 
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Figure 11 | X-ray diffraction images of SemiSWEET 

(a) Diffraction image of Crystal-I. The outermost ring indicates 1.93 Å resolution. Note, a part of the 

detector experienced an unexpected failure (yellow). Data from this area were excluded during processing. 

(b) Diffraction image of Crystal-II. The outermost ring indicates 2.34 Å resolution. 

(c) Diffraction image of the SeMet-labeled crystal. The outermost ring indicates 2.70 Å resolution. 
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Figure 12 | Structure determination of SemiSWEET by Se-SAD 

(a) Anomalous electron density map after Se-SAD in SHELXD, countered at 3.0σ, revealing nine selenium 

peaks in the crystallographic asymmetric unit. These peaks correspond to the positions of three 

methionine residues (Met39, Met42 and Met56) in each SemISWEET protomer. The initial model is 

overlaid as Cα traces. 

(b) The experimental electron density map after AutoSHARP, contoured at 1.5σ. 

(c, d) The final 2Fo-Fc electron density maps for Crystal-I (c) and Crystal-II (d), contoured at 1.0σ. 
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Figure 13 | Crystal packing and dimerization of SemiSWEET 

(a) The crystal packing of Crystal-I. Chains A, B and C are labeled as Mol I-A, I-B and I-C, and colored 

blue, red and pink, respectively. The crystallographic axes are depicted as arrows. 

(b) The crystal packing Crystal-II. Chains A, B, C and D are designated as Mol II-A, II-B, II-C and II-D, and 

colored green, light green, orange and light orange, respectively. 

(c–f) Dimeric assemblies of SemiSWEET. The dimers I-A/I-A (c), I-B/I-C (d) and II-A/II-B (e) adopt almost 

identical conformations (the inward-open state), whereas the dimer II-C/II-D (f) adopts a distinct 

conformation (the outward-open state).  
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Figure 14 | Crystal packing interactions 

(a,b) The crystal packing of Crystal-I (a) and Crystal-II (b). 

(c,d) Stereo views of the inter-layer packing interactions observed in Crystal-I (c) and Crystal-II (d). These 

interactions might have contributed to the formation of two different conformations in our crystals. The 

residues potentially involved in the interactions are shown as stick models. Residues 90–93 are an artificial 

linker sequence introduced to the C-terminus as a result of the cloning strategy. The 2Fo-Fc electron 

density maps are shown, contoured at 1.0σ. Electron densities for some sidechains are missing, and those 

sidechains are not modelled.   
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Table 2 | Data collection and refinement statistics of E. coli SemiSWEET 

 Native 

Crystal-I 

SeMeta 

Crystal-I 

Native 

Crystal-II 

Data collection    

Space group P21212 P21212 C2 

Cell dimensions    

 a, b, c (Å) 53.7, 102.1, 59.0 53.8, 101.0, 58.65 118.0, 34.6, 123.2 

 σ, β, γ () 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 102.9, 90.0 

  Peak  

Wavelength (Å) 1.0000 0.9792 1.0000 

Resolution (Å) 50.0–2.00 (2.07–2.00)b 50.0–2.60 (2.69–2.60) 50.0–3.00 (3.11–3.00) 

Rpim 0.032 (0.431) 0.049 (0.693) 0.072 (0.480) 

CC1/2 0.999 (0.688) 0.986 (0.094) 0.993 (0.655) 

I / σI 17.7 (2.0) 15.1 (1.4) 8.2 (1.7) 

Completeness (%) 99.9 (100.0) 99.9 (100.0) 98.0 (98.4) 

Redundancy 19.5 (18.0) 46.8 (31.3) 3.3 (3.2) 

    

Refinement    

Resolution (Å) 50–2.00  50–3.00 

No. reflections 22,575  9,943 

Rwork / Rfree (%) 19.7 / 22.4  28.1 / 32.8 

No. atoms    

 Protein 2,077  2,679 

 Lipid/ion 259   

 Water 66   

B-factors    

 Protein 36.02  67.17 

 Lipid/ion 55.07   

 Water 47.37   

R.m.s deviations    

 Bond lengths (Å) 0.0024  0.0035 

 Bond angles () 0.639  0.713 

Ramachandran plot    

 Favored (%) 100.0  97.8 

 Allowed (%) 0.0  2.2 

 Outliers (%) 0.0  0.0 

aSeMet data were collected from six crystals and others were from one crystal. 

bValues in parentheses are for highest-resolution shell. 
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2.3.5 Overall structure of SemiSWEET 

The crystallographic asymmetric unit of Crystal-I contains three SemiSWEET molecules. Two 

molecules assemble to form a dimer, and the other molecule forms a similar dimer with its 

crystallographic symmetry molecule related by a two-fold axis (Figure 13). As the two dimers are 

structurally almost identical, with a root mean square deviation (r.m.s.d.) value of 0.55 Å over all 

Cα atoms, the non-crystallographic dimer of SemiSWEET will be discussed here. The two 

protomers are arranged with identical membrane topologies, with the central two-fold axis 

perpendicular to the membrane (Figure 15a). Each protomer comprises three transmembrane 

(TM) helices (TM1, TM2 and TM3). TM1 is largely kinked in the middle and separated into two 

segments (TM1a and TM1b). The short TM2 helix is almost entirely buried inside the membrane, 

while the long TM3 helix protrudes into the aqueous environment on the intracellular side. A total 

of 6 TM helices from two protomers create a central cavity that is widely open to the intracellular 

side (Figure 15a). This cavity penetrates into the dimer core, but is completely occluded from the 

extracellular side and the lipid environment by the tight association of the extracellular regions 

and the surrounding TM helices. Hence, we designated this structure as the inward-open 

conformation. 

 

In Crystal-II, the asymmetric unit contains four SemiSWEET molecules organized as two separate 

dimers (Figure 13). Whereas the conformation of one dimer is almost identical (r.m.s.d.) to that 

of the inward-open state in Crystal-I, the other dimer adopts a markedly different conformation. 

In this alternative conformation, the extracellular halves of the protomers are separated from each 

other, while the intracellular halves approach the central axis (Figure 15b). Consequently, the 

central cavity formed by the dimer is open toward the extracellular side. Hence, we designated 

this structure as the outward-open state. 
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Figure 15 | Structure of SemiSWEET 

(a) Overall structure of the inward-open SemiSWEET, viewed parallel to the membrane (upper) or from the 

intracellular side (lower). TM1, TM2 to TM3 of one protomer is colored blue, green and red from, and the 

other protomer is in gray. Surface representations are colored according to electrostatic potential. The two-

fold axis is indicated by dashed lines and an almond-shaped symbol. 

(d) Overall structure of the outward-open SemiSWEET dimer, viewed parallel to the membrane (upper) 

and from the extracellular side (lower), colored as in (c). 

 

2.3.6 Substrate-binding site 

The largely open cavities on the intracellular and extracellular sides in the inward-open and 

outward-open conformations, respectively, suggested that the substrate sugar is translocated along 

the central axis of the SemiSWEET dimer, accompanied by a conformational change. The high 

resolution structure of Crystal-I revealed the presence of a monoolein molecule occupying the 

cavity of the inward-open state (Figure 16 and Figure 17). The glycerol head group of the 

monoolein molecule is located in the pocket formed by symmetrically arranged residues in the 

dimer core. Within the pocket, the hydroxyl of the glycerol head group forms direct and water-

mediated hydrogen bonds with the side chains of Asn66 (Figure 16c,e). In addition, the glycerol 

head group is sandwiched by the aromatic rings of the Trp50 side chains, which are stabilized by 

the side chains of Thr15 (Figure 16c,e). Given that glycerol and sugar share similar polyol 

moieties, the glycerol head group of the bound monoolein molecule is likely to be mimicking the 

sugar substrate. This pocket has a width of approximately 8–9 Å and a length of 11 Å along the 

central axis, and is suitable for accommodating a monosaccharide or disaccharide (Figure 16a,b). 

Furthermore, in the outward-open state, this pocket is exposed to the extracellular environment, 

while the arrangement of the lining residues is preserved (Figure 16b,d,f). Together, these 

observations implicated this central pocket as the binding site for transport sugars. 
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To investigate the functional role of this putative substrate-binding pocket, we introduced 

mutations to Trp50 and Asn66, and measured the sucrose uptake activities of these mutants 

(Figure 16f). The N66A mutation significantly decreased the sucrose uptake activity, suggesting 

that the hydrophilic moiety of the Asn66 side chain is important for sucrose binding (Figure 16g). 

In contrast, the W50F mutation did not affect the sucrose uptake, and the W50A mutation actually 

greatly increased the sucrose uptake activity, suggesting that Trp50 is not essential for sucrose 

binding (Figure 16g). This result is inconsistent with the recent report showing the crucial role of 

the equivalent tryptophan residue of Arabidopsis thaliana SWEET1 in glucose transport (98). 

This might be due to the different size of the substrates used for the transport assays. As the 

disaccharide sucrose has a larger molecular size than the monosaccharide glucose, the increased 

sucrose uptake activity of the SemiSWEET W50A mutant might be attributed to the enlargement 

of the pocket, by the replacement of the bulky Trp residue with a smaller Ala residue, which likely 

promotes sucrose entry into the pocket. Taken together, both our results and the previous studies 

suggest that the transported sugars are accommodated in the central pocket lined by Trp50 and 

Asn66. 

 

As compared to other sugar transporters such as human GLUT1 (99, 100), SemiSWEET has fewer 

hydrogen-bonding residues within the substrate-binding pocket. This feature could reflect the 

low-affinity transport by SemiSWEET as observed in our liposome assay (Figure 8). The Trp50 

and Asn66 residues are highly conserved among the SemiSWEET and SWEET families (Figure 

9), suggesting that the two families share substrate-binding pockets with similar architectures. 

Therefore, our structural and functional analyses provide insight into the low-affinity transport by 

the SWEET transporters. 
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Figure 16 | Putative substrate-binding site of SemiSWEET 

(a, b) Cut-away surface representations of the inward- (a) and the outward-open (b) structures. The 

position of the putative substrate-binding site is indicated by red circles. The monoolein molecule is shown 

as a ball-and-stick model. 

(c–f) Close-up views of the substrate-binding site in the inward- (c,e) and the outward-open (d,f) structures. 

Hydrogen bonds are depicted as black dotted lines. 

(g) Sucrose uptake by the SemiSWEET mutants in the liposome assay (mean ± s.e.m., n = 3). (-) is for 

empty control liposomes. Significant differences from the wild-type value (WT) are indicated by asterisks 

(**P < 0.01, Student’s t-test). 
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Figure 17 | Electron density of lipid monoolein 

Stereo view of the omit electron density map, calculated without the monoolein molecule in the pocket. The 

Fo-Fc map is shown in green, contoured at 3.0σ, and the 2Fo-Fc map is in blue, contoured at 1.0σ. 
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2.3.7 The role of conserved PQ-loop motif 

A structural comparison of the individual protomers in the inward-open and outward-open 

conformations revealed an approximately 30-degree kink between TM1a and TM1b, at Pro21 in 

the PQ-loop motif (Figure 18a). Furthermore, a structural comparison of the dimers in the two 

distinct conformations revealed the relative rotational motion of the two symmetrical helix 

bundles, consisting of TM1b, TM2, and TM3 from one protomer and TM1a’ from the other 

protomer (Figure 18b). Each helix bundle from the two conformations can be superimposed well, 

suggesting their rigid-body movement (Figure 18c). This conformational change resembles a 

‘binder clip’, in which the opening of the extracellular cavity is coupled with the closing of the 

intracellular cavity, with the kink at the PQ-loop motif serving as a molecular hinge. 

 

In addition, Gln22 in the PQ-loop motif interacts with the main chain atoms of the residues on the 

intracellular loop connecting TM1 and TM2, at the position immediately next to TM2 (Figure 

18d,e). In the outward-open state, the oxygen atom of the Gln22 side chain hydrogen bonds with 

the backbone amide group of Ser36 (Figure 18e). In the inward-open conformation, although the 

side chain of Gln22 is not within hydrogen-bonding distance with the equivalent residue, it still 

points toward the backbone carbonyl of Gly34 on the same loop and retains within a close distance 

(Figure 18d). In contrast, the cytoplasmic end of TM1b moves largely apart from the adjacent 

protomer. The Cα distance between Asn31 of one protomer and Gly34 of the adjacent protomer 

is about 10 Å longer in the inward-open conformation than in the outward-open conformation. 

These observations suggest that Gln22 may stabilize the hinge by bridging the two helix bundles 

to allow for a dynamic structural change in TM1b and the following cytoplasmic loop. 

 

To verify the functional importance of the PQ-loop motif, we introduced alanine mutations to 

Pro21 and Gln22, and then measured the sucrose uptake by these mutants (Figure 18f). The P21A 

mutation, which was expected to decrease the conformational flexibility of TM1, significantly 

decreased the sucrose uptake activity almost to the level of the control empty liposomes, thus 

demonstrating the essential role of this conserved proline residue in sucrose transport. In contrast, 

the Q22A mutant showed slightly decreased sucrose uptake activity as compared to that of the 

wild type, indicating the less important role of Gln22 in sucrose transport, which is consistent 

with the fact that this glutamine residue is not conserved in the SWEETs (Figure 9). Together, our 

structural and functional analyses indicated that the proline and glutamine residues in the PQ-loop 

motif serve as a flexible hinge, thereby enabling the binder clip-like motion of SemiSWEET. 

Because this proline residue is highly conserved in the SWEETs and the PQ-loop family 

transporters (68, 101) and its significance for the transport function in vivo has been demonstrated 

(102, 103), the binder clip-like motion of SemiSWEET is likely to be conserved in all of these 
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transporters. 

 

 

Figure 18 | The PQ-loop motif 

(a) Superimposition of TM1 between the two conformations. The inward- and outward-open conformations 

are colored blue and pink, respectively. 

(b) Structural comparison of the two conformations. The structural unit consisting of TM1b, TM2, TM3 and 

TM1a’ (from the adjacent protomer) is enclosed by black lines, and its counterpart by gray dotted lines. 

(c) Superimposition of the structural units between the two states, colored as in (a). 

(d, e) Close-up views of the PQ-loop motif. The hydrogen bond is depicted as a black dotted line.  

(f, g) The 2Fo-Fc electron density maps around the PQ-loop motif, contoured at 1.5σ. In the inward-open 

conformation, a water molecule mediates a hydrogen-bonding interaction in the backbone. 

(h) Sucrose uptake by SemiSWEET mutants in the liposome assay (mean ± s.e.m., n = 3). (-) is for empty 

control liposomes. A significant difference from the wild-type value (WT) is indicated by asterisks (**P < 

0.01, Student’s t-test). 
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2.3.8 Extracellular and intracellular gates 

The structures of the inward-open and outward-open conformations revealed the formation of two 

distinct gates on the extracellular and intracellular sides, which restrict the accessibility of the 

substrate-binding pocket (Figure 19a,b). The extracellular gate is formed by the amino acid 

residues on a loop connecting TM2 and TM3. In the inward-open conformation, Tyr53, Arg57 

and Asp59 interact with the equivalent residues of the adjacent protomer; Asp59 forms a salt 

bridge with Arg57 and hydrogen bonds with Tyr53, and the Arg57 side chain hydrogen bonds 

with the Arg57 main-chain carbonyl group (Figure 19c). These interactions completely seal off 

the substrate-binding pocket from the extracellular environment. In contrast, in the outward-open 

conformation, these interactions are not observed, due to the outward movements of TM2 and 

TM3 (Figure 19d). 

 

On the opposite side of the membrane, the intracellular gate is formed by hydrophobic residues 

on TM1 and TM2 (Figure 19e,f). In the outward-open conformation, Phe19, Met39, Tyr40 and 

Phe43 of the two protomers form a cluster of aromatic and hydrophobic residues through van der 

Waals interactions (Figure 19f). These interactions seal off the substrate-binding pocket from the 

intracellular environment. In contrast, in the inward-open state, these hydrophobic residues are 

separated from each other, thereby creating a cytoplasmic cavity that allows substrate access to 

the substrate-binding pocket (Figure 19e). Overall, these observations suggested that the 

extracellular and intracellular gates restrict the central translocation pathway, and determine the 

accessibility of the substrate-binding pocket. 

 

The binder clip-like motion of SemiSWEET implied that the opening and closing of the 

intracellular and extracellular gates are closely related. To investigate the functional significance 

of these gates, we created various mutants of the residues constituting these gates, and measured 

their sucrose transport activities (Figure 19g). Y53F and R57A, which would disrupt the 

hydrogen-bonding or salt bridge interactions in the extracellular gate, showed significantly 

increased activities. In contrast, F19A and Y40A, which would weaken the hydrophobic 

interactions in the intracellular gate, showed significantly decreased activities. These results 

revealed that the defects in the extracellular and intracellular gates have the opposite effects on 

the sucrose transport. These opposite effects could be explained on the basis of the different 

preferences of the two conformations of SemiSWEET, as follows. The temperature factors for the 

two conformations in Crystal-II implied that the outward-open conformation is inherently less 

stable than the inward-open conformation, suggesting that SemiSWEET probably prefers the 

inward-open conformation in the lipid environment. Therefore, the mutation in the extracellular 

gate may result in the release of the extracellular ‘lock’, which preferentially captures 
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SemiSWEET in the inward-open state. The observed increased sucrose uptake activities of the 

mutants are likely due to the facilitated state transition between the inward-open and outward-

open conformations, by disrupting the interactions in the extracellular gate. In contrast, the defects 

in the intracellular gate may arrest SemiSWEET in the rather stable inward-open state, thus 

resulting in the lower sucrose uptake activities. 
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Figure 19 | Extracellular and intracellular Gates 

(a, b) Ribbon representations of the inward- (a) and outward-open (b) states. The residues constituting the 

extracellular and intracellular gates are shown as stick models. 

(c, d) Close-up views of the extracellular gate in the inward- (c) and outward-open (d) states. The 

hydrogen-bonding and salt bridge interactions are depicted as black dotted lines. 

(e, f) Close-up views of the intracellular gate in the inward- (e) and outward-open (f) states. (g) Sucrose 

uptake by SemiSWEET mutants in the liposome assay (mean ± s.e.m., n = 3). (-) is for empty control 

liposomes. Significant differences from the wild-type value (WT) are indicated by asterisks (*P < 0.05, **P 

< 0.01, Student’s t-test). 
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2.3.8 Occluded SemiSWEET structures from different species 

During the course of this study, we noticed two papers that reported the structures of 

SemiSWEETs from different species, namely from Leptospira biflexa, Vibrio sp. and 

Thermodesulfovibrio yellowstonii (109, 110) . These structures were resolved in the novel 

occluded conformation, as well as in the outward-open conformation that resembles our structure. 

Notably, in the occluded conformation of L. biflexa SemiSWEET, both the extracellular and 

intracellular gates are ‘closed’ (Figure 20). A structural comparison of this occluded conformation 

of the L. biflexa SemiSWEET with the present inward- and outward-open conformations of E. 

coli SemiSWEET and revealed a slight bend at TM2 in the L. biflexa SemiSWEET (Figure 20a). 

This bend allows the closing of the both extracellular and intracellular gates in the occluded 

conformation (Figure 20b). This observation suggested that the helix bundle constituting each 

piece of the ‘binder clip’ does not move as an exact rigid body, but it may allow a slight bend in 

TM2. The extracellular and intracellular gates might associate with each other through this 

elasticity. 

 

 

Figure 20 | Occluded conformation of L. biflexa SemiSWEET. 

(a) Crystal structure of L. biflexa SemiSWEET (PDB 4QNC), showing the slight bending of TM2. 

(b) Close-up view of the extracellular gate of L. biflexa SemiSWEET. The hydrogen-bonding and salt 

bridge interactions are depicted as black dotted lines. 

(c) Close-up view of the intracellular gate of L. biflexa SemiSWEET. 
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2.4 Discussion 

The structural and functional analyses performed here allowed us to propose a possible sugar 

transport mechanism of SemiSWEET (Figure 21). In the present structure in the inward-open 

conformation, the putative substrate-binding pocket is occupied by the monoolein molecule 

mimicking the substrate sugar, indicating that the observed structure represents an inward-open, 

substrate-binding state (Figure 21a). The PQ-loop motif serves as a hinge that enables the binder 

clip-like motion of SemiSWEET to transit toward the outward-open state. Along with this 

transition, the slight bend of TM2 might close the intracellular gate, leading to the occluded state 

(Figure 21b), while the closely associated opening/closing of the gates would prevent the 

formation of an open channel. Subsequently, the opening of the extracellular gate allows the 

substrate to exit (Figure 21c). Since the inward-open and outward-open conformations were 

simultaneously captured in Crystal-II in the absence of any sugars (Figure 13), the transition 

between these two conformations could spontaneously occur even without any substrates (Figure 

21d). These sequential conformational changes allow the small amphipathic molecules that can 

be accommodated in the central pocket to permeate through the membrane, while preventing the 

leakage of the larger molecules or ions. 

 

In summary, the current structures and functional analyses revealed the molecular detail of 

“alternating-access” by the SWEET and PQ-loop transporters mediated by the binder clip-like 

motion. The mechanistic insight presented here will aid further experiments towards 

understanding the substrate selectivity, transport kinetics, and regulatory mechanism of the plant 

SWEETs, and the malfunction of the human PQ-loop transporters. 
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Figure 21 | Transport mechanism of SemiSWEET 

(a–d) Schematics of the SemiSWEET dimer in the inward-open (a), substrate-bound occluded (b), 

outward-open (c) and substrate-free occluded (d) states, viewed parallel to the membrane. (a) and (c) are 

drawn based on the present crystal structures. 
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Chapter 3 X-ray crystallographic analysis of TPT 

 

3.1 Introduction 

As discussed in Chapter 1, the triose-phosphate/phosphate translocator (TPT) plays a central role 

in the transport of Calvin-Benson cycle intermediates from chloroplasts to cytosol during 

photosynthesis. Discovered more than 40 years ago (70), TPT is the most rigorously characterized 

transporter of the chloroplast at both genetic and biochemical levels (111, 112). TPT is also the 

most abundant protein on the chloroplast envelope membranes, constituting up to 15% of total 

proteins, highlighting its important role in plastid function (113). 

 

There has been a long-standing debate regarding the structure of TPT. Previously proposed 

models include the 6-TM, 7-TM, 8-TM and 9-TM topology models, which are structurally diverse 

(75). A biophysical study has suggested that TPT forms a dimer within the membrane, and has 

one substrate-binding site per dimer (114, 115). Figure 22 shows a proposed structural model of 

spinach TPT (116, 117) , in which two 6-TM protomers are arranged as a dimer with the two-fold 

symmetry, creating a substrate-translocation pore. However, without the three-dimensional 

structure, it has been difficult to understand the mechanisms for substrate recognition and 

transport. Therefore, to fully understand the molecular mechanisms of TPT, I undertook structural 

analyses on TPT. 

 

 

Figure 22 | Proposed structural model of TPT 

Top view of the predicted structural model of spinach TPT. Numbers refer to the TM helices of each 

protomer. The positions of Thr139 are indicated by arrows. Reproduced from ref. (117). 
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3.2 Materials and methods 

3.2.1 Cloning 

The total cDNAs from plants were purchased from ZYAGEN. The cDNAs of Cyanidioschyzon 

merolae and Galdieria sulphuraria were provided by Dr. Ayumi Minoda at Tsukuba University. 

The genes encoding pPT family proteins were amplified from these plant and algal cDNAs with 

specific primers. The nucleotide regions coding for putative chloroplast transit peptides (cTPs; 

about 80–100 amino acid residues) were removed during cloning. The amplified gene fragments 

were ligated into a modified pYES2 vector with In-Fusion method following manufacturer’s 

protocols. This vector was designed to add a tobacco etch virus (TEV) protease cleavage site, an 

enhanced green fluorescent protein (EGFP) and a His8-tag at the C-terminus of the target protein. 

The species names, gene accessions, amplified target regions and the specific primers used for 

cloning were summarized in Table 3. 
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Table 3 | Primers used for cloning pPTs 

No. Species Protein Region Primer sequences (5’–3’) * 

1 Arabidopsis 

thaliana 

At5g46110 

(AtTPT) 

88–410 AACGAGGAATTCATGGGTGGAGATACCGCTGGGG 

CAAGTTTTCGGTACCTGCTTTCTTTCCTTGCCGTTTCT 

2 Arabidopsis 

thaliana 

At5g33320 

(AtPPT1) 

87–408 AACGAGGAATTCATGACTGCAGTTCCTGAAAGTGCTGAG 

CAAGTTTTCGGTACCAGCAGTCTTTGGCTTTGGCTTAATA 

3 Arabidopsis 

thaliana 

At3g01550 

(AtPPT2) 

56–383 AACGAGGAATTCATGTCAGCTACAGTTCCGGAGAATGTG 

CAAGTTTTCGGTACCAGACATTTTTGGATTTGGTTTGACTTG 

4 Arabidopsis 

thaliana 

At5g54800 

(AtGPT1) 

73–388 AACGAGGAATTCATGTCAGAGCCTCATCCGATCGG 

CAAGTTTTCGGTACCGAGCTTTGCCTGGGAATACAAGAAG 

5 Arabidopsis 

thaliana 

At1g61800 

(AtGPT2) 

77–388 AACGAGGAATTCATGTCCCGTCCACTGGACATCAAC 

CAAGTTTTCGGTACCCTGCTTCGCCTGTGAGTAGAGGA 

6 Arabidopsis 

thaliana 

At5g17630 

(AtXPT) 

89–417 AACGAGGAATTCATGTCAAATCCAGACGAAAAATCCGAT 

CAAGTTTTCGGTACCGTTCTTCTTATCACCTCCCACTTCA 

7 Oryza sativa Os01g13770 

(OsTPT1) 

100–417 AACGAGGAATTCATGGGGGAAGCGAAGCCAGCG 

CAAGTTTTCGGTACCTGCACTCTTCGCCCTTTTCTCCTC 

8 Oryza sativa Os05g15160 

(OsTPT2) 

86–404 AACGAGGAATTCATGGGGGAAGCAAAGCCTGTGGG 

CAAGTTTTCGGTACCTGCGCTCTTCATTTGCGTTTTCTC 

9 Oryza sativa Os09g12600 

(OsPPT1) 

92–408 AACGAGGAATTCATGGGTGAGGCAGGGGCGGAG 

CAAGTTTTCGGTACCGGCAGTCTTGGGCTTGGGTTTAAG 

10 Oryza sativa Os08g25624 

(OsPPT2) 

90–407 AACGAGGAATTCATGGGGGACGCCAAGGCGG 

CAAGTTTTCGGTACCCGCAGCCTTGGGCTTGG 

11 Oryza sativa Os01g07730 

(OsPPT3) 

83–393 AACGAGGAATTCATGGGGCGGGAGAGAGGCG 

CAAGTTTTCGGTACCGGCATTCTTTGGTTTTGTTCTCTTC 

12 Oryza sativa Os05g07870 

(OsPPT4) 

101–404 AACGAGGAATTCATGGGCGGCGCCGTCG 

CAAGTTTTCGGTACCTGCAGTCTTAGCCTTTGGTTTAGCT 

13 Oryza sativa Os08g08840 

(OsGPT1) 

79–387 AACGAGGAATTCATGTCTAAGACCGAGGTGGTGCCC 

CAAGTTTTCGGTACCCTGCTTTGCCTGAGAATACAGGAAT 

14 Oryza sativa Os07g34006 

(OsGPT2) 

79–392 AACGAGGAATTCATGGGCGCCCGGCCGGT 

CAAGTTTTCGGTACCCTGCTTCGCCTGAGAGTAGATGAAA 

15 Solanum 

lycopesicum 

Solyc01g081390 96–422 AACGAGGAATTCATGGGAACCCCAGAAGAAGTGAGTCC 

CAAGTTTTCGGTACCGTCCTTCTTTTCCACTGCCTCTTTC 

16 Solanum 

lycopesicum 

Solyc02g086650 77–397 AACGAGGAATTCATGGGTGAATCTGAGGTTGTGAAACCC 

CAAGTTTTCGGTACCCGCATCTTTTGGCTTCCCC 

17 Solanum 

lycopesicum 

Solyc03g112870 94–410 AACGAGGAATTCATGAGCGCTGGAGAGGCACCC 

CAAGTTTTCGGTACCTTCTGTTTTTGCCTTGGCCTTAATG 

18 Solanum 

lycopesicum 

Solyc07g064270 88–395 AACGAGGAATTCATGCCGATGGAAGGACCTGAATCG 

CAAGTTTTCGGTACCTTGTTTTGCCTGTGAGTACAAGAAAGTT 

*The overlap regions used for In-Fusion reactions are underlined. 
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Table 3 | Continued 

No. Species Protein Region Primer sequences (5’–3’) 

19 Nicotiana 

tobacum 

CAA52979 80–401 AACGAGGAATTCATGGGCAGCGATTCCGCCG 

CAAGTTTTCGGTACCGGCAGCTTTCTTTTGCCTTTTCTCT 

20 Nicotiana 

tobacum 

AAB40648 77–385 AACGAGGAATTCATGACATCCGTGCCCGAGAGTGC 

CAAGTTTTCGGTACCTTCCGTTTTTGCCTTAGGTTTAATG 

21 Nicotiana 

tobacum 

AAB40647 79–398 AACGAGGAATTCATGACGTCGTCGGAGCCCGA 

CAAGTTTTCGGTACCAGCTGTCTTTGGCTTAGGTTTGATG 

22 Triticum 

aestivum 

AAK01174 80–402 AACGAGGAATTCATGTCCGCCGAGCCCGCC 

CAAGTTTTCGGTACCCGCGGCCTTCGCCCTT 

23 Triticum 

aestivum 

AAP80864 77–385 AACGAGGAATTCATGTCAAAGGCTGAGGTGTTGCCAG 

CAAGTTTTCGGTACCCTGCTTTGCCTGAGAGTACAGGAAT 

24 Triticum 

aestivum 

CDM81988 79–398 AACGAGGAATTCATGGCACCGGCGTCGGACG 

CAAGTTTTCGGTACCTGAGCTCTTTGGCTTTGTTTTCTTG 

25 Glycine max XP_003542721 81–406 AACGAGGAATTCATGGGCAGTGATTCCGCCGGAG 

CAAGTTTTCGGTACCTGCTGCTTTTGCTTGTCGCTTTTC 

26 Glycine max XP_006594434 96–391 AACGAGGAATTCATGAACATTGAGCTGCCGGC 

CAAGTTTTCGGTACCCTGTTTAGCCTGTGAATAGAGGAAG 

27 Glycine max XP_003519000 87–395 AACGAGGAATTCATGTCAGAGGTTGAGGGTGCAAGC 

CAAGTTTTCGGTACCTAGTTTCGCCTGTGAATACAAGAAG 

28 Glycine max XP_006600314 83–392 AACGAGGAATTCATGAACATTGAGCTCCCTGATGAAGAAG 

CAAGTTTTCGGTACCTTGTTTCGCCTGTGAATACAAGAAG 

29 Glycine max XP_003545984 95–418 AACGAGGAATTCATGAATCCTGAAGGAGAAAATGTAGCCC 

CAAGTTTTCGGTACCACTACTCTTTTCACCTTCAATTTTCATT 

30 Glycine max XP_003537155 96–419 AACGAGGAATTCATGAATCCTGAAGGAGAAAATGTAACCC 

CAAGTTTTCGGTACCACTAGTCTTTTCATCTTCAATTTTCTGTG 

31 Glycine max XP_003545023 88–395 AACGAGGAATTCATGTCAAAGGTTGGAGGGGCTG 

CAAGTTTTCGGTACCCTGATTTGCCTGTGAATACAAGAAG 

32 Glycine max XP_003519563 90–395 AACGAGGAATTCATGTCAGAGGTTGGAGGGGCTCC  

CAAGTTTTCGGTACCCTGATTTGCCTGTGAATACAAGAAG 

33 Glycine max XP_003527013 77–406 AACGAGGAATTCATGCCTCCCCGCGCCG 

CAAGTTTTCGGTACCAGCTGTTTTTGGCTTTGCCTTAATA 

34 Glycine max NP_001242209 83–408 AACGAGGAATTCATGCCTTCTTCACCTCCTCGCGC 

CAAGTTTTCGGTACCAGCTGTTTTTGGCTTTGCCTTAATA 

35 Glycine max XP_003550731 67–382 AACGAGGAATTCATGTCCTCTATACCTGATGCTAGAAGTGAT 

CAAGTTTTCGGTACCATTTGTCTTTTGGACTGACTTGATC 

36 Glycine max XP_003538441 124–447 AACGAGGAATTCATGACCTCCGTGCCGGAGAGC 

CAAGTTTTCGGTACCAGTTGTCTTTGGCTTAAGTCGCTTC 

37 Glycine max XP_006591369 85–408 AACGAGGAATTCATGTCAGCACAAAAGGAAGAAGAAGAAG 

CAAGTTTTCGGTACCCTTGCTTCTCTTTTTGGCTTCACTG 
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Table 3 | Continued 

No. Species Protein Region Primer sequences (5’–3’) 

38 Cyanidioschyzon 

merolae 

CYME_CMK114C 101–422 AACGAGGAATTCATGTCAGGTGGTGTGCCAAAACC 

CAAGTTTTCGGTACCCCTCTGCTGTTTTGAACCCCG 

39 Cyanidioschyzon 

merolae 

CYME_CMO269C 90–409 AACGAGGAATTCATGAGCGCGGGTGACGCG 

CAAGTTTTCGGTACCGGCGGCCTTTTTCTTGGCT 

40 Cyanidioschyzon 

merolae 

CYME_CMN328C 75–394 AACGAGGAATTCATGAGCGGCACGAGTGCGC 

CAAGTTTTCGGTACCGGCTTTTTTCACCTTACCGCCTC 

41 Galdieria 

sulfuraria 

Gs21660 

(GsTPT) 

82–406 AACGAGGAATTCATGTCCATCAAAGTGACGGAAGCT 

CAAGTTTTCGGTACCCTTTATTTTTTGACTGTAATAATATTTGGTTAA 

42 Galdieria 

sulfuraria 

Gs53050 

(GsPPT) 

79–407 AACGAGGAATTCATGTCTTCTACTGGGACCTCATCTTCG 

CAAGTTTTCGGTACCTTCTATTTTCTCCTTCTTCTTGGTGGATATAT 

43 Galdieria 

sulfuraria 

Gs48050 

(GsGPT) 

91–410 AACGAGGAATTCATGTCTCCTCAAAAGTCCAGTGTAGGAGTG 

CAAGTTTTCGGTACCCTGCTTTTCTCGCTTCGATGGTAG 
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3.2.2 Fluorescence-detection size-exclusion chromatography 

The GFP-based screening and optimization were performed based on published protocols (95, 96, 

118). The plasmids outlined in Section 3.2.1 were transformed into Saccharomyces cerevisiae 

cells (strain BY4742) using Frozen-EZ Yeast Transformation II Kit (ZYAGEN) following 

manufacturer’s protocol. Transformed cells were grown in a CSM −URA medium containing 2% 

raffinose, and protein expression was induced by adding 2% galactose when the culture reached 

an A600 = 0.6. After allowing protein expression for 22 h at 30ºC, cells were harvested by 

centrifugation at 8,000 g for 1 min and disrupted in a buffer containing 50 mM Tris-HCl, pH 8.0, 

150 mM NaCl and protease inhibitors, using acid-washed glass beads (200–400 μm; Sigma). Cell 

debris were removed by centrifugation at 1,000 g for 1 min. The supernatants were 

ultracentrifuged at 138,000 g for 60 min with a micro-ultracentrifuge CS100FNX (Hitachi Kohki) 

to prepare the membrane fraction. 

 

Expression levels and solution behaviors of candidate proteins were evaluated by the following 

procedure. Membrane fractions from 2 ml-culture were solubilized in a 300 μl buffer containing 

50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5% glycerol, 1 mM β-mercaptoethanol (β-ME), protease 

inhibitors (phenylmethylsulfonyl fluoride, aprotinin, leupeptin and pepstatin) and 1–2% of 

specified detergents. After solubilization for 90 min at 4ºC, insoluble materials were removed by 

ultracentrifugation. 50 μl of supernatants were subjected to a fluorescence-detection size-

exclusion chromatography on a Superdex 200 10/300 Increase column (GE Healthcare), 

equilibrated with a buffer containing 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.03% DDM. 

The elution profile was monitored by a fluorescence detector RF-20Axs (Shimadzu) with the 

excitation and emission wavelengths at 480 nm and 512 nm, respectively. To evaluate thermal 

stability, protein samples were heated at various temperature for 10 min. After removing protein 

aggregates by ultracentrifugation, 50 μl supernatants were subjected to FSEC analysis as 

described above. 

 

3.2.3 Protein purification 

For large-scale purification, proteins were overexpressed in insect-baculovirus system. The gene 

regions encoding selected pPT proteins were transferred to a modified pFastbac vector, with a C-

terminal TEV cleavage site, EGFP and a His10-tag. Suspension cultures of Spodoptera frugiperda 

Sf9 cells were maintained in SF900 II SFM medium (Thermo Fisher Scientific). Recombinant 

baculoviruses were produced with the Bac-to-Bac system (Invitrogen), and were used to infect 

sf9 cells at a density of 2–3×106 cells ml-1. After growth for 48 h at 27ºC, the cells were harvested 

and sonicated in a lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl and protease inhibitors). 

The cell debris was removed by low-speed centrifugation (10,000 g, 10 min), and the membrane 
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fraction was collected by ultracentrifugation (138,000 g, 1 h). The membrane fraction was 

solubilized in a solubilization buffer (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1% (w/v) lauryl 

maltoside neopentyl glycol (LMNG) (119) and 1 mM β-mercaptoethanol (β-ME)) for 3 h at 4ºC. 

The supernatant was isolated by ultracentrifugation (138,000 g, 30 min) and subjected to 

immobilized metal ion affinity chromatography (IMAC) with Ni-NTA resin (Qiagen). The resin 

was washed with an IMAC buffer (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 0.05% LMNG, 1 

mM β-ME and 30 mM imidazole), and the protein was eluted with an IMAC buffer supplemented 

with 300 mM imidazole. The eluate was treated with TEV protease and dialyzed overnight against 

a dialysis buffer (20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 0.01% LMNG and 1 mM β-ME). The 

cleaved EGFP-His10 and TEV protease were removed by reverse IMAC with Ni-NTA. The 

protein was concentrated to 2–3 mg ml-1 using a 50 kDa MWCO concentrator (Millipore), and 

further purified by size-exclusion chromatography (SEC) on a Superdex 200 Increase 10/300 

column (GE Healthcare) in a SEC buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.01% LMNG 

and 1 mM β-ME). The peak fractions were collected, concentrated to 10–20 mg ml-1, flash-frozen 

in liquid nitrogen and stored at −80ºC until crystallization. 

 

3.2.4 Size exclusion chromatography coupled to multi-angle laser light scattering 

(SEC-MALLS) 

The instrument setup for the SEC-MALLS experiment consisted of an Agilent 1100 Series HPLC 

system connected in series with a Shimadzu SPD-10Avp UV absorbance detector, a Wyatt DAWN 

HELEOS 8+ light scattering detector and a Shodex RI 101 refractive index detector. Analytical 

size-exclusion chromatography was performed at 25ºC on a Superdex 200 10/300 column 

equilibrated with a buffer containing 10 mM Tris-HCl, pH 8.0, 150 mM NaCl and 0.01% LMNG. 

A 90 μl portion of the purified GsGPT sample (1.5 mg ml-1) was injected into the column and 

eluted at 0.5 ml min-1. Elution was monitored in line with the three detectors, which 

simultaneously measured UV absorption, light scattering and refractive index. A 658 nm laser 

was used in the light scattering measurement. Molecular masses were calculated using the three-

detector method (120), as implemented in the ASTRA software package (Wyatt Technology). 

 

3.2.5 Crystallization 

Purified samples were thawed and mixed with 1-oleoyl-R-glycerol (monoolein), at a protein to 

lipid ratio of 2:3 (w/w) to prepare the lipidic cubic phase (LCP) as previously described (98). 

Crystallization experiments were performed with 96-well glass sandwich plates (Molecular 

Dimensions), using a Gryphon LCP robot (Art Robbins Instruments). Typically, 50 nl of protein-

laden LCP drops were overlaid with 800 nl of precipitant solution. After extensive co-

crystallization screening, needle-shaped crystals appeared under conditions containing high 
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concentrations of 3-PGA or Pi. Optimized crystals of the 3-PGA-bound state were obtained in 

35–40% PEG200, 100 mM Na-citrate, pH 6.0, 50–100 mM citrate 3K and 50–100 mM 3-

PGA·2Na. Optimized crystals of the Pi-bound state were obtained in 43–48% PEG200, 50–100 

mM MES-NaOH, pH 6.0 and 200–250 mM (NH4)2HPO4. Crystals were harvested and flash-

cooled in liquid nitrogen for data collection. 

 

3.2.6 X-ray diffraction data collection 

X-ray diffraction experiments were performed at the micro-focus beamline BL32XU at SPring-

8. The locations of well-diffracting crystals were identified by raster scanning, and data were 

collected for a 5–30º wedge from each crystal. For the Pi-bound datasets, the detectors used were 

MX225HS CCD detector (Rayonix) and EIGER X 9M (Dectris), with the camera distances of 

220 mm and 180 mm, respectively. For the 3-PGA-bound crystals, the detector used was EIGER 

X 9M (Dectris) with the camera distance of 250 mm. All diffraction data were processed with 

XDS (99), and merged with XSCALE based on the hierarchical clustering analysis with BLEND 

(121) or with the cross-correlation method as implemented in the KAMO software 

(https://github.com/keitaroyam/yamtbx). 

 

3.2.7 Data processing and structure determination 

For the determination of the Pi-bound structure, molecular replacement trials were performed on 

Phaser (105) using various truncated structures of DMT proteins as search models. Initial 

solutions were obtained with a full-length polyalanine model of the YddG monomer (PDB 5I20). 

After initial refinement in PHENIX (96), the resulting map (Rfree value 53%) showed poor or no 

electron density for substantial portions of the structure, particularly for TM5, TM10 and all loop 

regions. These invisible segments were deleted from the model and rebuilt by multiple trials of 

manual modelling of new polyalanine helices using COOT (104) and refinement with 

phenix.refine, to find the correct helix assignment. After subsequent rounds of model building 

and refinement, we could build ten helix backbones and several sidechains into the visible electron 

density. However, at this point, further model building did not improve the Rfree value or the 

quality of the electron density. We then noticed that the model was of a ‘swapped’ form of the 

protein, where the N-terminal repeat (TM1–5) and the C- terminal repeat (TM6–10) were 

inversely assigned to each other. We corrected this swapping by renumbering the residues in 

COOT and proceeded with further model building. After building the protein regions (residues 

100–404), strong electron densities were observed within the central cavities of the two monomers, 

which were unambiguously assigned as bound Pi molecules. During the later stages of refinement, 

electron densities for water and lipid molecules were also identified. The structure was iteratively 

rebuilt and refined with COOT and PHENIX to achieve good stereochemistry and Rfree values. 
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The 3-PGA-bound structure was determined using the Pi-bound GsGPT dimer as the starting 

model, and iteratively rebuilt and refined with COOT and PHENIX. All molecular graphics were 

illustrated using CueMol (http://www.cuemol.org). 

 

3.2.8 Transport assays 

Yeast membranes expressing recombinant proteins were prepared as previously described (122), 

with slight modifications. The region of GsGPT encoding residues 91–410 was cloned into a 

modified pYES2 vector, with a C-terminal His6 tag. For mutant assays, mutations were introduced 

by a PCR-based method. The plasmids were transformed into Saccharomyces cerevisiae cells 

(strain BY4742). Transformed cells were grown in CSM−URA medium containing 2% raffinose, 

and protein expression was induced with 2% galactose when the culture reached an A600 = 0.6. 

After growth for 22 h at 30ºC, the cells were harvested and disrupted in a lysis buffer (50 mM 

Tricine-KOH, pH 7.5), 0.1 mM phenylmethylsulfonyl fluoride and 5% glycerol), using acid-

washed glass beads (200–400 μm; Sigma). Glass beads and cell debris were removed by low-

speed centrifugation (4,000 g, 2 min), and the membrane fraction was collected by 

ultracentrifugation (138,000 g, 1 h). The membrane pellet was resuspended in 50 mM Tricine-

KOH, pH 7.5, flash-frozen in liquid nitrogen and stored at −80ºC until use. Aliquots of the 

resuspended membranes were subjected to SDS-PAGE, and the His6-tagged recombinant proteins 

were detected by a western-blot analysis, using an anti-His-tag polyclonal antibody (code PM032; 

MBL). 

 

Soybean L-α-phosphatidylcholine (Avanti) in chloroform was dried into a thin film under a stream 

of nitrogen gas, and further dried under vacuum. Dried lipids were resuspended at 20 mg ml-1 in 

intra-liposomal solution (120 mM Tricine-KOH, pH 7.5, and 30 mM NaH2PO4) or Pi-free intra-

liposomal solution (150 mM Tricine-KOH, pH 7.5), and sonicated for 5 min at 4ºC to form 

unilamellar vesicles. This unilamellar vesicle solution was reconstituted with the yeast 

membranes at 19:1 (v/v), by the freeze-thaw procedure. The reconstituted liposomes were 

sonicated again for 5 min at 4ºC, to form unilamellar vesicles. The extra-liposomal solution was 

exchanged by gel-filtration on Sephadex G-50 (GE Healthcare) pre-equilibrated with 150 mM 

Tricine-KOH, pH 7.5. 

 

For assays in the purified system, the unilamellar liposome solution was reconstituted with 

purified GsGPT at a lipid-to-protein ratio of 100:1 (w/w), by the freeze-thaw procedure. The 

resulting proteoliposomes were sonicated and buffer-exchanged, as described above. Protein-free 

liposomes were prepared by the same procedure, except that the protein solution was replaced 

with the SEC buffer used in the purification. 
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The liposome assays were performed as previously described (122), with slight modifications. 

For the time-dependent uptake assay, the reaction was started by mixing the reconstituted 

liposome solution with an equal volume of extra-liposomal solution (150 mM Tricine-KOH, pH 

7.5, and 1 mM [32P]-NaH2PO4 (0.1 mCi ml-1)). At different time points, liposomes were isolated 

by anion exchange on AG-1 X8 resin (acetate form, 200–400 dry mesh size; Bio-Rad), pre-

equilibrated with 150 mM sodium acetate. The radioactivity of the incorporated [32P]-Pi was 

quantified by liquid scintillation counting. Mutant assays were performed with a similar 

procedure, and the total amounts of incorporated [32P]-Pi were compared at 30 min. For the 

counter-flow assay, the liposomes containing 30 mM Pi, 30 mM 3-PGA or no substrate were 

mixed with extra-liposomal solution containing 0.25 mM [32P]-Pi. The total amounts of 

incorporated [32P]-Pi were compared at 3 min. For the competitive inhibition assay, the liposomes 

containing 30 mM Pi were mixed with extra-liposomal solution containing 0.25 mM [32P]-Pi and 

40 mM of the indicated competitive inhibitor. The total amounts of incorporated [32P]-Pi were 

compared at 3 min. For the determination of kinetic constants, the Michaelis constant (Km) for Pi 

was analyzed using various external concentrations of [32P]-Pi (0.3125–10 mM) and a fixed 

internal concentration of Pi (30 mM). Inhibitor constants (Ki) were assessed with two different 

external concentrations of [32P]-Pi (0.5–2.5 mM) and four different concentrations of the indicated 

inhibitors (0–10 mM). To assess the background uptake, control experiments were performed with 

membranes from yeast cells transformed with empty vector. Enzyme kinetic data were analyzed 

by non-linear regression fitting, as implemented in the GraphPad Prism 7 software. 

 

3.2.9 Molecular dynamics simulation 

All molecular dynamics simulations were performed by Mr. Mizuki Takemoto at the University 

of Tokyo. The simulation system included the GsGPT dimer, 1-phosphoryl-2-

oleoylphosphatidylcholine (POPC), TIP3P water and 150 mM NaCl. The disordered sidechains 

in the GsGPT crystal structure were modelled by COOT. To embed the protein within the POPC 

bilayer, we used the protocol described by Javanainen (123). One POPC molecule was placed in 

the GsGPT dimerization interface, corresponding to the two monoolein molecules in the crystal 

structure. Finally, the periodic boundary systems, including 136,668 (with Pi) and 136,652 

(without Pi) atoms, with the size of 90.7×147.9×100.0 Å, were prepared. The net charge of the 

solute was neutralized with sodium and chloride ions. The molecular topologies and force field 

parameters from CHARMM36 (124) were used. Molecular dynamics simulations were performed 

by the program Gromacs, version 5.0.5 (125). First, energy minimization was performed using 

the steepest descent, with a cut-off of 1,000.0 kJ mol-1 nm-1. Next, random velocities were 

assigned according to a Maxwell distribution, at a temperature of 310 K for each atom, and an 
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equilibration run (eq1) was performed for 100 ps in the canonical (NVT) ensemble (310 K, 

90.7×147.9×100.0 Å volume). Finally, an equilibration run (eq2) was performed for 1,000 ps in 

the isothermal-isobaric (NPT) ensemble (310 K, 1 bar). The positions of non-hydrogen atoms in 

the protein and phosphates were restrained with a force constant of 1,000 kJ mol-1 nm-2, in the 

minimization and equilibration runs. Production runs were performed for 100 ns in the NPT 

ensemble (310 K, 1 bar). The same simulation was performed twice with different initial velocities, 

and similar results were obtained. Constant temperature was maintained by using V-rescaling 

(126) with a time constant of 0.1 ps in eq1, and a Nosé-Hoover thermostat (127, 128) with a time 

constant of 0.5 ps in eq2 and the production runs. Pressure was controlled with semiisotropic 

coupling to a Parrinello-Rahman barostat (129), with a time constant of 5.0 ps and a 

compressibility of 4.5×10-5 bar-1. The LINCS algorithm (130) was used for bond constraints. 

Long range electrostatic interactions were calculated with the particle mesh Ewald method (131). 
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3.3 Results 

3.3.1 Expression screening of TPT homologues 

To elucidate the structure and the molecular mechanism of TPT, we first performed systematic 

screening of dozens of plant pPTs for identifying candidates with good expression and stability. 

Since previous studies have used yeast cells for heterologous expression of the pPTs (122, 132–

135), we selected yeasts as the primary expression host in initial trials. Our expression construct 

includes a C-terminal GFP fusion and a His8 tag for purification, and an N-terminal truncation 

that essentially omits the chloroplast transit peptide (~90 residues), giving rise to a mature 

translocator protein (Figure 23). Expression trials in the fluorescent-detection size-exclusion 

chromatography showed that most plant pPTs could be readily overexpressed and solubilized 

(Figure 24). Among those candidates, two GPT orthologues from Oryza sativa (rice) and Glycine 

max (soybean), designated as OsGPT1 and GmGPT1, exhibited good solution behavior, with 

apparent melting temperatures (Tm) of >70ºC (Figure 25). We purified these proteins from insect-

baculovirus expression system and proceeded with crystallization trials. However, even after 

extensive screening, both of them yielded no crystals. 

 

To identify more suitable candidates for crystallization, we extended our expression trials to the 

pPTs from other species. We reasoned that the organisms that inhabit high-temperature 

environments could possess more stable proteins. We thus focused on the two unicellular 

thermophilic red algae, Cyanidioschyzon merolae and Galdieria sulphuraria, which naturally 

inhabit hot springs and can grow at temperatures up to 45ºC and 56ºC (136, 137). We found that, 

among the six pPTs coded within these red algal genomes, GsGPT (122) exhibits the best solution 

behavior, with an apparent Tm of ~60ºC when solubilized in lauryl maltose neopentyl glycol 

(LMNG), a newly-developed detergent (119) (Figure 25). After optimization, we were able to 

purify GsGPT to high purity and homogeneity (Figure 26), which were then subjected to further 

functional and structural studies. 
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Figure 23 | Expression construct for pPTs 

(a) Construct used for expression screening. The chloroplast transit peptide (cTP) was truncated. 

(a) GsGPT construct used for purification. The TEV protease cleavage site, EGFP and His8-tag were fused 

to the C-terminus. 
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Figure 24 | FSEC profiles of pPTs 

(a) Superposition of fluorescence traces of different pPTs in size exclusion chromatography. The numbers 

correspond to the proteins summarized in Table 3. Note, experiments were performed in three separate 

batches (1–6, 8–37 and 38–43), and thus those chromatograms are superposed separately. 

(b) Individual chromatograms of (a). Candidates that exhibit good solution behavior are highlighted by red 

arrows. Note, some proteins (No. 7, 9, 11, 12, 14 and 35) showed no expression, and thus they are not 

displayed here. 
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Figure 25 | FSEC-based thermal stability assay on pPTs 

FSEC traces of OsGPT1, GmGPT1 and GsGPT after being kept on ice (4ºC) or heated at indicated 

temperatures (50–70ºC, 10 min). OsGPT1 and GmGPT1 were solubilized in 2% DDM + 0.4% CHS, and 

GsGPT was in 1% LMNG. 

 

 

Figure 26 | Purified GsGPT 

(a) Final gel filtration profile of the crystallized sample. 

(b) SDS-PAGE gel of (a). 
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3.3.2 Functional characterization of TPT from red alga 

The function of GsGPT has not been fully characterized (122). To characterize the transport 

function of GsGPT, we performed liposome-based assays on its crystallization construct (residues 

91–410). Counter-flow assays with radiolabeled substrates confirmed the ‘signature’ Pi/Pi homo-

exchange activity of GsGPT (Figure 27a), as well as the 3-PGA/Pi hetero-exchange activity 

(Figure 27b,c). Competitive inhibition assays by various phosphorylated metabolites suggested 

that GsGPT transports phosphorylated C3, C4 and C5 compounds with linear sugar moieties, but 

not phosphorylated C5 and C6 compounds with ring sugar moieties (Figure 27d), reminiscent of 

the function of TPT (70, 72). Further measurement of the kinetic constants confirmed that the 

substrate specificity of GsGPT is comparable to that of higher plant TPTs: the Michaelis constant 

(Km) for Pi is about 1.3 mM, and the inhibition constants (Ki) for triose-P, 3-PGA and 

phosphoenolpyruvate (PEP) are about 1.0, 0.6 and 8.3 mM, respectively (Figure 27e,f). The 

affinities for phosphorylated C4 and C5 compounds were slightly lower than those for triose-P 

and 3-PGA. These biochemical data show that GsGPT is functionally similar to TPT, although it 

has been named GPT based on the sequence similarity (122). 
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Figure 27 | Functional characterization of GsGPT 

(a) Pi/Pi homo-exchange activity of GsGPT. Liposomes were reconstituted with yeast membranes 

expressing GsGPT, and the time-dependent uptake of [32P]-Pi was measured in the presence (filled 

circles) or absence (open squares) of internal Pi (30 mM). Error bars are s.e.m. (n=3). All transport 

experiments were performed using similar yeast-based assays, unless otherwise stated. 

(b) Counter-flow assay. The uptake of [32P]-Pi was measured in the presence of the indicated internal 

substrates (30 mM). Control experiments were performed with membranes from yeast cells harboring 

empty vector. Error bars are s.e.m. (n=3). 

(c) Transport activity of the purified protein. Liposomes were reconstituted with purified GsGPT, and 

counter-flow assays were performed as in (b). Control experiments were performed with protein-free 

liposomes. Error bars are s.e.m. (n=3). 

(d) Competitive inhibition assay. The uptake of [32P]-Pi was assayed in the presence of the indicated 

competitive inhibitors (40 mM) in the external solution. Error bars are s.e.m. (n=3). 

(e) Concentration-dependent uptake of [32P]-Pi. Error bars are s.e.m. (n=3). 

(f) Kinetic constants of GsGPT and other pPTs. The Michaelis constant (Km) of GsGPT was calculated from 

the experiment shown in Figure 1e. Inhibitor constants (Ki) of GsGPT were evaluated at two different Pi 

concentrations with increasing inhibitor concentrations. Data are mean ± s.e.m. (n=3); n.d., not detectable. 

Values for the plant and apicomplexan pPTs were adopted from refs. (79, 81, 84, 132). 
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3.3.3 Crystallization and structure determination 

Toward high-resolution structure determination of GsGPT, we performed crystallization trials by 

using the lipidic cubic phase method (138). After extensive screening, co-crystallization with high 

concentrations (50–250 mM) of 3-PGA or Pi yielded diffraction-quality crystals belonging to the 

P21212 space group (Figure 28). We collected diffraction data from several hundred crystals using 

the microfocus X-ray beam (Figure 29), and then merged those good data based on the 

hierarchical clustering method (121) to obtain the complete, high-quality datasets (Table 4). 

 

A previous bioinformatics analysis suggested the classification of TPT into the drug/metabolite 

transporter (DMT) superfamily (139), which involves a diverse range of membrane proteins 

possessing 4, 5, 9 or 10 transmembrane (TM) helices. Therefore, we tried calculating the initial 

phases by molecular replacement by using available structures of DMT proteins. After extensive 

molecular replacement trials with full-length or truncated search models, an initial solution was 

obtained from a poly-alanine model of the 10-TM DMT transporter SnYddG (140) (Figure 30). 

The final structures were determined at 2.2 and 2.1 Å resolutions for the 3-PGA- and Pi-bound 

states, respectively (Figure 31 and Figure 32). Except for the bound ligands, the two co-crystal 

structures are almost identical, with an r.m.s.d. value of 0.18 Å over 608 Cα atoms. 

 

 

Figure 28 | Crystals of GsGPT 

(a) 3-PGA co-crystals. (b) Pi co-crystals. 
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Figure 29 | X-ray diffraction images of GsGPT 

(a) Diffraction image of the 3-PGA-bound crystal. The outermost ring indicates 2.17 Å resolution. 

(b) Diffraction image of the Pi-bound crystal. The outermost ring indicates 2.10 Å resolution. 

 

Figure 30 | Structure determination of GsGPT by molecular replacement 

The 2Fo-Fc electron density map after molecular replacement, contoured at 1.8σ. The SnYddG structure 

used as the search model is shown as Cα traces. We identified two molecules in the asymmetric unit. 
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Figure 31 | Electron density maps of the 3-PGA-bound GsGPT 

(a) The 2Fo-Fc electron density map after refinement, contoured at 1.0σ. 

(b) Stereo view of the omit electron density map, calculated without 3-PGA. The Fo-Fc map is shown in 

green, contoured at 3.0σ, and the 2Fo-Fc map is in blue, contoured at 1.0σ. 
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Figure 32 | Electron density maps of the Pi-bound GsGPT 

(a) The 2Fo-Fc electron density map after refinement, contoured at 1.0σ. 

(b) Stereo view of the omit electron density map, calculated without Pi. The Fo-Fc map is shown in green, 

contoured at 3.0σ, and the 2Fo-Fc map is in blue, contoured at 1.0σ. 
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Table 4 | Data collection and refinement statistics of GsGPT 
 

3-PGA-bounda Pi-boundb 

Data collection 

  

Space group P21212 P21212 

Cell dimensions 

  

 a, b, c (Å) 107.05, 165.33, 41.14 106.55, 164,97, 41.42 

 α, β, γ ()  90, 90, 90 90, 90, 90 

Resolution (Å) 50.0–2.20 (2.28–2.20)c 50.0–2.10 (2.18–2.10) 

Rpim 0.087 (1.035) 0.138 (4.357) 

CC1/2 0.994 (0.698) 0.995 (0.653) 

I / σI 13.3 (1.3) 11.3 (1.1) 

Completeness (%) 100.0 (99.9) 99.8 (100.0) 

Redundancy 39.2 (27.0) 90.3 (87.0)    

Refinement 

  

Resolution (Å) 50.0–2.20 50.0–2.10 

No. reflections 38,123 43,639 

Rwork / Rfree (%) 19.0 / 22.9 19.5 / 22.6 

No. atoms 

  

 Protein 4,713 4,721 

 Substrate 22 10 

 Lipid 426 558 

 Other 235 283 

B-factors 

  

 Protein 28.70 24.82 

 Substrate 23.45 20.09 

 Lipid 41.58 43.90 

 Other 36.85 35.94 

Ramachandran plot 

  

 Favored (%) 99.3 99.5 

 Allowed (%) 0.7 0.5 

 Outliers (%) 0 0 

aDiffraction data were collected from 199 crystals. 

bDiffraction data were collected from 319 crystals.  

cValues in parentheses are for highest-resolution shell. 
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3.3.4 Overall structure 

The overall structure of GsGPT reveals a 10-transmembrane (TM) helix topology with both the 

N- and C-termini on the stromal side (inside), rather than the previously predicted 6–9 TM helix 

topologies (75) (Figure 33). GsGPT contains two ‘inverted’ structural repeats, comprising the N- 

and C-halves. Viewed from the intermembrane space side (outside), the five helices within the N- 

and C- halves (i.e., TM1–5 and TM6–10) are arranged in counter-clockwise and clockwise 

manners, respectively (Figure 34). This fold is essentially similar to that of the bacterial DMT 

superfamily transporter SnYddG (140), despite the low sequence identity (13.9%), suggesting 

that this ‘10-TM DMT fold’ could be conserved across all putative 10-TM members of the DMT 

superfamily (141). In contrast to the ‘outward-open’ conformation of SnYddG, the current 

structure of GsGPT shows that its substrate-binding site is occluded from both sides of the 

membrane, revealing the ‘occluded’ conformation of a DMT protein for the first time. 

 

Although the purified GsGPT protein is monomeric in solution, GsGPT forms a dimer in the 

crystallographic asymmetric unit (Figure 35). The inter-protomer interaction involves polar 

interactions at TM5, TM10 and a short β-strand connecting TM4 and TM5, and hydrophobic 

contacts through the lipid molecules bound at the interface. The same topological orientation of 

the monomers within the membrane suggests that this dimeric assembly could be physiologically 

relevant (114), although we cannot exclude the possibility that this is a crystallization artifact. 

 

3.3.5 3-PGA and Pi recognition 

The electron density maps clearly showed that 3-PGA and Pi are bound to the same site located 

halfway across the membrane, as if trapped in a central ‘cage’ formed by TM1–4 and TM6–9 

(Figure 31 and Figure 32). The phosphate moiety of both ligands is identically recognized by 

ionic bonds with Lys204, Lys362 and Arg363 and a hydrogen bond with Tyr339 (Figure 33c,d). 

While the three oxygen atoms of the phosphate (P-O2, O3 and O4) are directly recognized by 

these sidechains, the remaining oxygen atom (P-O1) is not directly recognized. In the 3-PGA-

bound structure, this P-O1 is attached to the glycerate group, which extends into the space on the 

opposite side of the phosphate moiety and forms specific interactions with protein sidechains 

(Figure 33c). The carboxyl group on the C1 atom forms an ionic bond with the sidechain of 

His185, and the hydroxyl group on the C2 atom hydrogen bonds with the sidechain of Tyr339. In 

addition, the C2 and C3 atoms form hydrophobic contacts with the sidechains of Thr188, Phe192 

and Phe263 (Figure 36). 

 

In the Pi-bound structure, the corresponding space near P-O1 is occupied by three water molecules 

(Figure 33d). These water molecules form polar interactions with His185 and Tyr339, 
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contributing to the indirect recognition of P-O1. Notably, the positions of these water molecules 

roughly correspond to those of the three oxygen atoms of the glycerate moiety of 3-PGA, 

mimicking the organic carbon structure. This water-mediated hydrogen-bonding network is likely 

to lower the energy of the Pi-bound state and could explain why Pi, which lacks a sugar moiety, 

is transported with a similar affinity to those of other sugar phosphates (76). To examine the 

functional importance of the observed interactions, we performed mutational assays of the five 

residues involved in the phosphate recognition (Figure 33f). All of the tested mutations exhibited 

greatly reduced Pi/Pi homo-exchange activity, confirming their essential roles in transport. 

 

The observed binding mode of 3-PGA suggests that triose-P can be recognized in a similar manner. 

Indeed, modelling of triose-P into the crystal structure indicates a good fit, with the oxygen atoms 

at the C1 and C2 positions forming similar polar interactions with His185 and Tyr339 (Figure 

33e). Therefore, the structures suggest that triose-P, 3-PGA and Pi, the three major counter-

substrates of TPT, are similarly recognized in a single pocket. The structures also reveal that this 

substrate-binding pocket could not accommodate two or more phosphate moieties at a time, 

explaining why pyrophosphate or bisphosphate compounds are not readily transported across the 

chloroplast envelope membrane (69, 70). 
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Figure 33 | Overall structure of GsGPT 

(a, b) Ribbon representations of the 3-PGA- (a) and Pi-bound (b) structures. IEM denotes the chloroplast 

inner envelope membrane. 

(c, d) Close-up views of the 3-PGA- (c) and Pi-binding site (d). Dotted lines indicate polar interactions. 

(e) Model of triose-P (dihydroxyacetone phosphate) binding. 

(f) Liposome-based mutational analysis. The levels of [32P]-Pi uptake by GsGPT mutants were compared 

to that of the wild-type. Error bars are s.e.m. (n=3). Western blotting confirmed the comparable expression 

levels of the wild type and mutant proteins (small inset). 
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Figure 34 | Structural pseudo-symmetry of GsGPT. 

(a) Transmembrane topology of GsGPT. TM1 to TM10 are color-coded in rainbow. 

(b) Transmembrane topology of SnYddG, showing the same helix topology and overall fold. 

(c) Superimposition of the two inverted structural repeats of GsGPT. The N-terminal (TM1–TM5; residues 

100–245) and the C-terminal halves (TM6–TM10; residues 246–404) could be superimposed with an 

approximately 180º rotation. Structures were superimposed with the SSM algorithm (142). 

  



3.3 Results 

72 

 

Figure 35 | Dimerization of GsGPT within the lipid bilayer 

(a, b) Crystal packing of the 3-PGA- (a) and Pi-bound (b) structures. 

(c) Monoolein molecules identified near the dimer interface. The 2Fo-Fc electron density maps of the six 

monoolein molecules, contoured at 1.0 σ, are overlaid onto the structure. 

(d, e) Interactions at the dimer interface. Polar sidechains form hydrogen bonding interactions (d) and the 

loops connecting TM4 and TM5 form a short, two-stranded β-sheet between the two protomers (e). 

(f) SEC-MALLS analysis of GsGPT. The gray chromatogram represents the reading of the light scattering 

detector, with values given on the left axis. The cyan and red curves indicate the calculated molecular 

masses of the protein-detergent complex (Mc) and the protein only (Mp), respectively, with values given on 

the right axis. The black arrow highlights the position of the elution peak of GsGPT. The refractive index 

increments (dn/dc) of the protein and the detergent were assumed to be 0.185 and 0.132, respectively 

(143). 

(g) Molecular mass values determined by the SEC-MALLS experiment. The protein mass was determined 

to be about 29.6 kDa, corresponding to the theoretical mass of the GsGPT monomer, 36.4 kDa. 
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Figure 36 | 3-PGA and Pi recognition mechanisms 

(a) Stereo view of the 3-PGA binding site. Dotted lines indicate polar interactions. Red balls represent 

water molecules. 

(b) Stereo view of the Pi binding site. 

(c) Schematic diagram of the 3-PGA coordination. 
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3.3.6 Similarity and diversity among pPT subtypes 

A sequence comparison revealed that the four residues directly recognizing the phosphate (Lys204, 

Tyr339, Lys362 and Arg363) are strictly conserved in all higher plant pPTs (Figure 37 and Figure 

38). Besides these residues, most of the residues near the phosphate moiety are also strictly 

conserved (Figure 37a). In contrast, the residues distant from the phosphate, or near the sugar 

moiety, are varied among the different pPT subtypes (Figure 37a). These findings suggest that the 

variant residues of the different pPT subtypes recognize the attached sugar moieties and thus 

determine their distinct substrate specificities, while the conserved residues similarly recognize 

the phosphate. 

 

To better understand the substrate selectivities of the pPT family members (74), we generated 

homology models of five representative pPTs, namely Arabidopsis thaliana TPT (AtTPT), PPT1 

(AtPPT1), GPT1 (AtGPT1), and XPT (AtXPT) and Toxoplasma gondii APT (TgAPT). (Figure 

37b–m). The AtTPT model suggests that the plant TPTs similarly recognize the substrates as in 

the current GsGPT structure, since the residues recognizing 3-PGA are highly conserved (His184, 

Lys203, Tyr338, Lys359 and Arg360 in AtTPT) (Figure 37b,e,j). TPT prefers three-carbon 

compounds phosphorylated at the C3 position (triose-P and 3-PGA) to those phosphorylated at 

the C2 position (PEP and 2-PGA) by ~10-fold (115, 144). The AtTPT model indicates that the 

‘branched’ C3 methylene group of PEP would sterically clash with the bulky Phe262 sidechain, 

explaining the lower preference for PEP (75) (Figure 37c,f). In contrast, the C3 carbon of PEP 

can be accommodated in the widened pocket of the AtPPT1 model, where Phe is replaced by 

Asn262, consistent with the PPT’s preference for PEP (79) (Figure 37d,g). The apicomplexan 

pPTs, including TgAPT, PfipPT and PfopPT, have ‘dual specificity’, as they transport both triose-

P and PEP with similar affinities (84, 86). The TgAPT model explains its dual specificity well, as 

it can accommodate both triose-P and PEP (Figure 37h,i). 

 

GPT transports glucose-6-phosphate (Glc-6-P), the largest substrate of all pPTs, as well as smaller 

substrates such as triose-P and 3-PGA (78). The AtGPT1 model has the largest pocket space, 

which can accommodate the bulky C6 sugar (Figure 37k,l), consistent with its broad substrate 

specificity. As compared with GPT, the AtXPT model has a rather small pocket, which might be 

suitable for the C5 sugar moiety of its substrate, xylulose-5-phosphate (69) (Xul-5-P) (Figure 

37m). Collectively, our crystal structures and the homology models address how different pPT 

members transport distinct sugar phosphates and thereby play diverse roles in plastid metabolism 

(74). 
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Figure 37 | Deducing the substrate specificities in different pPTs 

(a) Amino-acid sequence conservation within the substrate-binding site of GsGPT. Conserved residues are 

colored violet and non-conserved residues are cyan. 

(b–m) Homology-modelled structures of the substrate-binding sites of the pPTs. Key residues involved in 

substrate recognition are shown as stick models. Substrate molecules were modelled manually, based on 

the coordination of 3-PGA in GsGPT. Protein surfaces are shown for the regions around the substrate. In 

(c) and (f), the C3 carbon of PEP sterically clashed with the sidechain of Phe262, indicating non-preferable 

binding. 
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Figure 38 | Sequence alignment of the pPTs 

(a) Amino acid sequence alignment of the pPTs. 

(b) Sequence identity matrix of the pPTs. Identities were calculated for the mature translocator regions 

(corresponding to residues 101–410 in GsGPT). 
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3.3.7 Basis of strict 1:1 exchange 

Previous biochemical studies have shown that the transport by TPT is mediated by ‘alternating-

access’ (145), in which the substrate-binding site is alternately exposed on either side of the 

membrane. In the current structure, the substrate is completely occluded from both sides of the 

membrane by the two gates (Figure 39a). The ‘outside gate’ is formed by Phe192 and Ile197 on 

the tips of TM3 and TM4, and seals the substrate from the outside solvent (Figure 39b). The 

‘inside gate’ is formed by Leu347, Phe352 and Pro355 on the tips of TM8 and TM9, and similarly 

seals the substrate from the inside solvent (Figure 39c). The helix ends of both gates are further 

capped by the conserved Lys128 and Lys271 residues (Figure 39b,c). 

 

To deduce the conformational change during the alternating-access, we compared this occluded 

structure of GsGPT with the available outward-open structure of the DMT transporter SnYddG. 

The structural superimposition revealed a prominent structural difference at TM3 and TM4 with 

a ~30º outward tilting in GsGPT (Figure 39a), suggesting that these helices undergo rocker-switch 

(146) movements to open and close the outside gate. The pseudo-symmetric structure of GsGPT 

suggests that similar motion would occur in the symmetrical counterpart, TM8 and TM9, to open 

and close the inside gate. 

 

To further understand the conformational changes, we performed molecular dynamics simulations 

of GsGPT in the presence or absence of the bound Pi (Figure 40a–e). In the Pi-bound simulation, 

GsGPT did not undergo any significant structural change during 100 ns and remained in the 

occluded conformation (Figure 40f–i). In contrast, in the apo simulation, GsGPT underwent rapid 

conformational changes within about 10 ns to the inward-open or outward-open conformations, 

and stably adopted these open conformations until the end of the simulation (~100 ns) (Figure 

40j–m). These conformational changes were consistent with our model proposed from the 

structural comparison with SnYddG, which involves the rocker-switch movements of the helix 

bundles TM3-TM4-TM6 and TM1-TM8-TM9 to open and close the two gates. 

 

The different behaviors in the Pi-bound and apo simulations suggest that the conformational 

change of GsGPT is completely dependent on the substrate binding (Figure 41). Without a 

substrate, due to the electrostatic repulsion between the cationic residues (Lys204, Lys362 and 

Arg363) in the middle of the helix bundles, GsGPT prefers the outward- or inward-open states, 

as shown in the MD simulation. In contrast, phosphate or organic phosphate binding allows the 

close approximation of these cationic residues and thus leads to the occluded state, as in the 

current crystal structures. This ligand-dependent conformational change ensures the substrate-

dependent transition between the inward- and outward-open states, and thus explains the strict 
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1:1 exchange kinetics of the pPTs (76). 

 

 

Figure 39 | Occluded structure and conformational change of GsGPT 

(a) Superimposition of the occluded GsGPT structure and the outward-open SnYddG structure (PDB 5I20). 

The substrate and gate-forming residues are shown as CPK models. The red arrow highlights the putative 

rocker-switch movements in TM3 and TM4. 

(b) Stereo view of the outside gate. 

(c) Stereo view of the inside gate. 
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Figure 40 | Molecular dynamics simulation of GsGPT 

(a) R.m.s.d. plot of each monomer (Mol A and B) in the Pi-bound and apo simulations. 

(b–e) Final structures in the Pi-bound and apo simulations, performed in two independent runs. Red 

arrowheads highlight the pocket opening. (f–m) Comparison of the initial (0 ns, transparent) and the final 

structures (100 ns, opaque). Red arrows highlight helix movements.  
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Figure 41 | Model of strict 1:1 exchange mechanism by GsGPT 

(a–d) Illustration of a hypothetical conformational cycle of GsGPT. Substrate binding enables the 

association of the helix bundles (a, c), triggering the conformational transition. Without a substrate, the 

translocator cannot undergo the conformational transition due to the electrostatic repulsion (b, d). 
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3.4 Discussion 

The proposed coupling mechanism between the substrate binding and the conformational change 

is quite different from the transport mechanism proposed for YddG, another 10-TM member of 

the DMT superfamily. YddG is a uniporter (140) that permeates substrates down a concentration 

gradient, indicating the lack of structural coupling. This difference could be explained by the 

composition of its substrate-binding site. The substrate-binding pocket of YddG mostly consists 

of hydrophobic residues (140), which would lack electrostatic repulsion. YddG can thus adopt the 

occluded state without any substrate, consistent with its uniporter function. Therefore, even 

though GsGPT and YddG share the similar 10-TM DMT fold, the different compositions of their 

substrate-binding sites result in distinct transport mechanisms. 

 

Previous studies suggested that the members of the NST/TPT family share a common substrate-

binding site (147). To explore this possibility, we created a sequence alignment of representative 

NST/TPT members (Figure 42). The alignment shows that the two phosphate-binding lysine 

residues (Lys204 and Lys362) are conserved at the corresponding positions in most plant NSTs 

(the KT, KV/A/G, KD and KR groups), supporting their proposed role in negative charge 

recognition (147). Meanwhile, these residues are not conserved in important animal NSTs (for 

example, the SLC35A subfamily), suggesting that these members might use distinct residues for 

recognizing the substrates. Mapping of known disease-causing mutations in NSTs (148) indicates 

their locations on the TM helices surrounding the central pocket, suggesting their involvement in 

substrate recognition. Taken together, these observations suggest that the pPTs and NSTs share a 

common substrate-binding site, but use distinct residues for recognizing their respective 

substrates. 

 

In conclusion, we determined the high-resolution structures of TPT in complex with two counter-

substrates. The structures resolve the long-standing controversy over its helix topology (75, 90) 

and provide the framework to address its substrate recognition and strict 1:1 exchange mechanism. 

Further mechanistic understanding of the pPT family members could provide opportunities to 

engineer chloroplast transporters for improving crop productivity (149, 150), or to develop new 

drugs targeting plastid organelles of apicomplexan parasites (86). 
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Figure 42 | Alignment of GsGPT and NSTs. 

Sequence alignment between selected NST/TPT family members. The multiple sequence alignment was 

calculated for 14 members from the human SLC35 subfamilies A–D (148), 50 members from the 

Arabidopsis NST/TPT family (151) and GsGPT, using Clustal Omega (152). Only selected sequences are 

shown, and gaps were manually refined based on the secondary structure. Blue boxes highlight the 

positions of the phosphate-binding residues in GsGPT. 
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Chapter 4 Concluding remarks 

 

4.1 Summary of the thesis 

In this thesis, I have determined the structures of SemiSWEET and TPT in different states that 

reflect their functional properties. In Chapter 2, I have described the structure of SemiSWEET, a 

bacterial homologue of SWEET, in the two opposite conformations. These structures revealed the 

molecular basis of ‘alternating-access’ in one of the smallest transporters identified to date. 

Although this study has only focused on a bacterial SWEET member, the conserved 3-TM repeat 

domain architecture suggests that the mechanistic insights gained here will also apply to 

eukaryotic SWEET proteins. In Chapter 3, I have described the structures of TPT bound to two 

different counter-substrates. These structures have defined the recognition mechanisms of 

phosphorylated metabolites and phosphate ion during photosynthetic product transport. The 

structures have also provided a model that accounts for the strict antiport activity of the pPT 

family proteins, which play important roles in phosphate homeostasis and regulation during 

photosynthesis. 

 

4.2 Insights from other studies 

After the publication of two original papers that constitute this thesis, several other groups have 

published the papers that are relevant to this study. In this section, I briefly discuss those recent 

findings and further implications on the function and mechanisms of these transporters. 

 

4.2.1 Eukaryotic SWEETs 

In 2015, the first structure of a eukaryotic SWEET transporter was reported (153) . The structure 

was of Oryza sativa SWEET2b (OsSWEET2b), the closest relative of Arabidopsis vacuolar sugar 

transporter AtSWEET2 (63). OsSWEET2b exhibits a 7-TM architecture, and the two 3-TM 

repeats (TM1–3 and TM5–7) form a substrate-translocation pathway, consistent with a 

SemiSWEET dimer (Figure 43a). The linker helix TM4 packs tightly against the first 3-TM repeat, 

but not the second one, playing structural roles rather than just being an inversion linker (68). 

This finding explains the previous observation that the split expression of TM1–4 and TM5–7 of 

AtSWEET1 remained functional, while TM1–3 and TM4–7 did not (68). 

 

Notably, the structure of OsSWEET2b revealed a trimeric assembly, with the three protomers 

arranged in a non-crystallographic three-fold symmetry (153) (Figure 43b). The same trimeric 

assembly was consistently observed in two different crystal forms, supporting its functional 

relevance. A previous study has proposed the oligomerization of SWEET on the basis of dominant 

negative effects of several mutants to the wild-type proteins (68). The trimeric architecture of 
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OsSWEET2b thus explains such phenomenon based on the inter-protomer structural coupling, 

that is, the mutant protein inhibits the conformational change of the wild-type proteins within the 

trimer (Figure 43c). 

 

In 2017, another group reported the structure of Arabidipsis thaliana SWEET13 (AtSWEET13) 

(154). AtSWEET13 has been identified as a sucrose transporter, and the structure contained a 

substrate analog, 2’-deoxycytidine-5’-monophosphate (dCMP), in its inward-open substrate-

binding pocket. The asparagine (Asn76 and Asn176) and the tryptophan pairs (Trp58 and Trp180), 

which correspond to Trp50 and Asn66 in E. coli SemiSWEET, form hydrogen-bonding and 

stacking interactions with dCMP, consistent with the model that these residues recognize the 

substrate. The crystallization construct of AtSWEET13 contained four thermostabilizing 

mutations, V23L, S54N, V145M and S176N, located at the substrate-binding pocket. Interestingly, 

equivalent substitutions are found in the SWEET members that transport monosaccharides. 

Consistent with this, the crystallization construct showed the decrease in the sucrose transport 

activity, but retained a glucose transport activity. Therefore, these data indicate that the pocket 

size determines the mono- and disaccharide selectivity of different SWEET family members. 

 

 

Figure 43 | Structure of OsSWEET2b 

(a) Ribbon representation of the OsSWEET2b protomer. The first 3-TM repeat (TM1–TM3) is colored in 

cyan, and the second one (TM5–TM7) is in magenta. The linker helix (TM4) is colored in yellow. 

(b) Trimeric assembly of OsSWEET2b. Protomer A is colored as in (a), and protomers B and C are in grey. 

TM4, colored in yellow, participates in the oligomerization. 

(c) Schematics of the inter-protomer structural coupling. The ellipses represent protomers. 
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Figure 44 | Structure of AtSWEET13 and its substrate recognition mechanism 

(a) The 2Fo-Fc electron density map of 2’-deoxycytidine-5’-monophosphate (dCMP), contoured at 1.0σ. 

(b) The structure of AtSWEET13, highlighting the residues in the substrate-binding pocket. The mutated 

residues (V23L, S54N, V145M and S176N) are colored in magenta. 

(c) Sizes of glucose (Glc) and sucrose (Suc). The mutations introduced in AtSWEET13 would reduce the 

pocket size from approximately 12 Å to 6 Å, making it too narrow for a sucrose to be accommodated. Note, 

the structure is in the inward-open conformation, and these mutated residues should come closer to each 

other upon conformational change, further constricting the substrate-binding site. 

 

4.2.2 Molecular dynamics simulation 

In 2017, a study reported the molecular dynamics simulation of SemiSWEET (155). The authors 

performed long-time, unbiased simulations (~2 μs) starting from the occluded conformation of L. 

biflexa SemiSWEET (109) and from the outward-open conformation that were newly determined. 

The authors conclude that 1) the gates play important roles not only in blocking substrate passage 

but also in driving the conformational changes by forming favorable interactions, 2) the formation 

and breakage of hydrogen-bonding interactions during the conformational change appear to offset 

each other to lower the activation energy during the transport cycle and 3) the presence or absence 

of the substrate does not largely affect the transporter conformation. These findings corroborate 

our facilitative diffusion model, since they explain the ‘driving force’ of conformational changes 

in the presence or absence of a substrate. 
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4.2.3 Nucleotide sugar transporters (NSTs) 

The pPTs are closely related to the Golgi-localized nucleotide sugar transporters (NSTs), which 

are conserved in all eukaryotes. In 2017, the first structure of a yeast NST, known as Vrg4, was 

reported (156). The structure of Vrg4 revealed a DMT-superfamily fold similar to SnYddG and 

GsGPT, with 10 TM helices surrounding the central substrate-binding pocket. The structures were 

determined in the absence or presence of a substrate, GDP–mannose. Although the resolution was 

limited at 3.6 Å, the authors could model the substrate, with its mannose moiety pointing toward 

TM4 and TM9, and its GDP moiety toward TM2 and TM8, corroborating previous biochemical 

data (157, 158). 

 

The most intriguing finding was that Vrg4 requires a short-chain lipid (mirystoyl fatty acid; 14 

carbons) for optimal activity in the liposome assays (156). The authors reasoned that the 

hydrophobic mismatch causes the inactivation of Vrg4 in the liposomes with long-chain lipids 

(16 and 18 carbons). The Golgi is known to have a thinner bilayer because of its different lipid 

composition to that of the plasma membrane (159). Consistent with this, Vrg4 adopts a compact 

structure with an apparent hydrophobic thickness of ~26 Å (Figure 45), significantly thinner than 

those of typical plasma membrane proteins, which are approximately 31–35 Å (160). The authors 

proposed that lipids may play regulatory roles during the dynamic membrane trafficking process 

in the Golgi complex (161, 162), so that Vrg4 only functions in the correct cellular context. 

However, whether the bilayer thickness itself or the binding of specific lipids is important for 

activity is currently unclear. We found that, when compared with Vrg4, GsGPT also adopts a 

compact structure with an apparent hydrophobic thickness of ~27 Å. Thus, GsGPT might also 

favor thinner bilayer for proper function. 

 

Figure 45 | Structure of Vrg4 and hydrophobic thickness 

The structures of the Golgi-localized nucleotide sugar transporter Vrg4 (left), the plastid inner envelope 

membrane-localized GsGPT (center) and the plasma membrane-localized glucose transporter GLUT3 

(right). The hydrophobic thicknesses were calculated on PPM web server (163). Membrane-anchoring 

residues (Trp, Tyr, Lys and Arg) are shown as stick models.  
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4.3 Perspectives 

Although our and other’s studies have provided important insights into the structure and functions 

of SWEET and pPT family proteins, several questions still remain. First, plant SWEET paralogues 

are known to form homo- and hetero-oligomers (68), but how one paralogue preferentially 

associates with a specific paralogue to the others is not understood. Therefore, future studies 

should address the structural basis of selectivity in homo- and hetero-oligomerization of SWEETs. 

Second, although the structure of AtSWEET13 provided some insights into mono- or disaccharide 

discrimination mechanism, detailed recognition mechanisms for different sugars, including 

glucose, fructose, galactose and sucrose, remain elusive (4, 52–57). As did the high-resolution 

resolution structure of GLUT3 reveal its α- and β-anomer recognition mechanisms (164), detailed 

structural and functional analyses are required to fully understand the sugar selectivity 

mechanisms of different SWEET family proteins. Third, the structures of GsGPT have suggested 

possible involvement of lipid molecules in dimerization, but its physiological relevance remains 

to be characterized. The lipid compositions of the chloroplast envelope membranes are known to 

be different from that of the plasma membrane or the chloroplast thylakoid membrane (165–167). 

Future studies should address the role of lipids on the structure, dynamics and transport activity 

of the pPTs. Finally, the structure of GsGPT described here is hitherto the only known structure 

of the plastid envelope protein (168). Structural elucidation of other members will allow further 

understanding on the unique aspects of plastid envelope proteins, such as membrane insertion 

mechanism (169–172), evolutionary origin (173–176), post-translational modification (177–179), 

redox regulation (180, 181) and protein-protein or lipid-protein interactions (182–187). 
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