
博士論文

Stiffness condition assessment of

bridge lateral resisting systems with

unscented Kalman filter using seismic

acceleration response measurements

(地震応答計測を利用したアンセンテッドカルマンフィルタによる

橋梁の水平方向復元力特性同定)

クレリ ミュゲ

KULELI MUGE





Abstract

Stiffness assessment of bridges under seismic excitation is of great importance espe-

cially in earthquake-prone countries. The identification reveals dynamic character-

istics and allows condition assessment. Seismic response measurements from small

and frequent earthquakes (e.g. aftershocks) and analysis of these records may reveal

deficiencies in stiffness which may be due to large main shocks or poor construction

quality. If condition is assessed, corresponding measures can be taken to prevent

failure/undesired response during future big earthquakes. Using seismic response

measurements from large earthquakes, both residual stiffness and hysteresis response

can be theoretically identified, which would provide substantial information on the

behavior of the element. Hysteresis response can provide the total energy dissipation

of the element and hence enable the engineer to assess occurred damage. Decisions to-

wards closure or repair may be made more rapidly in the aftermath. However, ground

motion and response records of bridges during earthquakes are often not available, ex-

cept for some signature bridges; even if data is available, the identification techniques

have limitations.

Current structural identification methods have several problems in terms of ap-

plication to real bridges. These methods can be grouped in two general categories,

namely, a) Frequency Domain Methods and b) Time Domain Methods. While the fre-

quency domain methods provide modal parameters, the conversion from the modal to

the physical domain is difficult as the conversion usually requires empirical knowledge.

In addition, most modal identification methods assume linear behaviors of structures;

the structural performance including the nonlinear characteristics, such as hysteresis

responses, is difficult to evaluate. On the other hand, typical time domain methods

of data assimilation methods, such as Extended Kalman Filter (EKF) and Unscented

Kalman Filter (UKF) can directly provide physical parameter estimations of non-

linear dynamic systems. The stiffness parameters are included in the state vector;

the parameters are estimated as a part of the augmented state vector. UKF, which

has been shown to be superior to EKF because UKF can deal with up to the second
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order of nonlinearity, however, has never been validated using laboratory or in-situ

measurements.

Common problem which prevents application of data assimilation methods to full-

scale bridges is the lack of robustness and the data. UKF requires initial process and

measurement noise covariance matrices to be known a-priori and keeps both matri-

ces constant over time. If these matrices are not known, UKF performs sub-optimal

or even diverges. In addition, UKF is also sensitive to initial state vector assign-

ments. These problems become severe in particular when the size of the state vector

is large. Thus, in order to practically apply UKF to structural identification, esti-

mation methods addressing these robustness issues are needed. Furthermore, seismic

response monitoring has been limited to some signature bridges where sensor net-

works are readily available. The number of channels is also limited. Seismic response

data to be utilized in the data assimilation methods is rare.

This thesis first prepares seismic response measurement data to be utilized in the

stiffness condition assessment of full-scale bridges and proposes the use of the Robbins-

Monro stochastic approximation scheme with UKF (UKF-RM) for the stiffness esti-

mation problems to address the robustness issues. The performance of the proposed

algorithm is then examined through simulations and measured records. Lastly, the

UKF-RM is extended to hysteresis loop estimation of structural elements under non-

linear motion.

To study the applicability and robustness of data assimilation techniques, the

availability of seismic response data is essential. The large-scale laboratory test on

an RC concrete pier and in-situ measurement of earthquake responses, which provide

data sets the proposed algorithm is investigated with, are first explained. The shake

table test on an RC pier conducted at the E-Defense facility provides detailed dy-

namic motion records during a variety of ground excitations. The pier is equipped

with numerous accelerometers, displacement sensors, and load-cells; input and output

records are all available together with data to validate the structural identification

results. Movies and detailed description of the pier during the excitation are also

available; stiffness identification results can be interpreted with these detailed infor-
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mation. The in-situ measurement, on the other hand, was made possible with the

recent advance in the wireless sensor technologies. Wireless sensor nodes with low

cost, weeks-long battery life, and seismometer-class high quality sensors made the

detailed seismic response measurements on ordinary bridges possible. Using the wire-

less sensors, shortly after April 2016 Kumamoto Earthquake, a 60 m span steel box

girder bridge was instrumented. The bridge sits on rubber bearings. Over a period

of two weeks, 61 seismic response records had been obtained. Records were obtained

on pier, abutment, and corresponding girder locations. These records provide input

and output information of the rubber bearing system.

Consequently, the use of the Robbins-Monro stochastic approximation scheme

with UKF (UKF-RM) has been proposed and numerically investigated. Through

simulations UKF-RM scheme is shown to significantly improve the robustness of the

filter when compared to conventional UKF. The performance is investigated in detail

through simulations considering changes in initial process, measurement, and error

covariance matrices, initial state vector, measurement noise, and UKF-RM parameter

𝛼. The sensitivities of the UKF-RM approach to the changes are shown low. In

addition, since UKF-RM adapts noise covariance during estimation, its convergence

rate is fast. The change in stiffness during nonlinear responses is traceable with

UKF-RM.

The method has been further validated using laboratory experiments on a re-

inforced concrete bridge column with response measurements from small and large

earthquakes. Experimental validation of the proposed algorithm is presented using

measurement records from shake-table laboratory tests of linear and nonlinear re-

sponse levels. In both cases, UKF-RM proved to be faster in convergence than the

conventional UKF. The proposed method is capable of tracing the stiffness change

of nonlinear behavior. This application is the first example of a stiffness condition

identification of a 1:1 scale bridge lateral resisting system component, an RC pier,

using UKF-RM.

The method is then validated using the in-situ measurement seismic response data.

The stiffness condition of the rubber bearings has been investigated with the proposed
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UKF- RM method. The stiffness coefficients of the bearings on the pier and on the

abutment have been successfully obtained considering multi-support excitation. The

identified stiffness coefficients are shown consistent with factory testing results.

Lastly, hysteresis response identification only using acceleration measurements are

proposed by employing the UKF-RM approach together with numerical integration of

the acceleration records. As the nonlinear model, non-degrading conventional Bouc-

Wen model is employed; the hysteresis is estimated by identifying the augmented

state vector including the non-linear parameters. First, the observability analysis was

performed. To make the system observable even when only one response observation

in addition to the ground motion is available, the reduction of the Bouc-Wen model

is shown necessary. The model is reduced considering the practical conditions of

the target structure. Then, the algorithm performance to identify the parameters of

the reduced model and the hysteresis loop was investigated numerically. UKF-RM

results in more robust and stable parameter estimations than the conventional UKF.

The effect of neglecting residual displacement due to the high-pass filtering associate

with the acceleration integration is investigated; the effect of residual displacement

on total energy dissipation is shown small. Except for the energy dissipated by the

residual displacement, the hysteresis response obtained with UKF-RM using double-

integrated acceleration as observation contains the hysteresis cycles where most of

the energy from the input excitation is dissipated by the RC pier. Finally, hysteresis

response identification with Bouc-Wen model using only acceleration measurements

with UKF-RM algorithm was validated using measurement from the shake table test.

The hysteresis estimated from the acceleration signals is shown consistent with the

hysteresis directly measured using displacement sensor and load-cells.
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Chapter 1

Introduction

Civil infrastructure is often referred "lifeline systems" which consist of power and wa-

ter supply facilities, transportation structures, and telecommunication lines. Among

lifeline systems, bridges are vital links which provide accessibility to society. Thus,

bridges are expected to continue service during and after natural disasters such as

earthquakes. Hence performance evaluation and maintenance of bridges hold impor-

tance so that serviceability conditions are met in times of extreme events.

Maintenance of civil infrastructure in practice has been a long-sought problem, yet

an unresolved issue. Although there are methodologies proposed by many researchers

there are problems preventing maintenance to be realized in a practice effectively.

The fundamental problem is the difficulties encountered during the decision-making

process, which requires condition assessment of an existing structure. Here, the "con-

dition" term refers to the physical state of characteristic structural parameters such

as mass, stiffness, damping. If the current status of structural parameters can be

identified, the degree of change in condition can be assessed by comparison to the

structure’s initial design. Consequently, decisions towards maintenance can be taken

in a quantitative manner.

Structural condition assessment for civil infrastructure, however, often not straight-

forward. From a general point of, first and foremost reason is the abundance of in-

frastructure in especially industrialized countries. For example, there are more than

150.000 bridges (>15 m) in Japan [4] and monitoring all structures is not practical.
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Thus, some representative regular bridges, important links on highway bridges and

signature bridges can be selected for condition assessment.

Secondly, condition assessment can be achieved by estimating structural parame-

ters with system identification using measured response data. However, lifelines such

as bridges are usually large structures with many elements are in complex interac-

tion with each other. In laboratory conditions, exciting a full-scale bridge with its

all components (i.e. foundation) is also not practical. In order to achieve successful

identification on existing bridges, dense and quality measurements are needed which

are usually not available except some signature bridges especially in the case of seis-

mic events. Thus, sensors without the need for external power which are capable of

measurements with a low average noise level for a sufficient time are needed to allow

system identification in practice.

Furthermore, Japan is a highly earthquake-prone country and thus both small and

big earthquakes occur very often. However, by instrumenting the selected bridges with

proper sensors, with a careful consideration of measurement planning, advantage can

be taken from the natural hazards which provide full-scale experiment chance.

On the other hand, selection of the feature to be extracted from the gathered

data should be determined before measurement. Stiffness is usually considered as the

most desired feature type among structural parameters since it directly relates to the

remaining capacity of the element, especially when seismic excitation is considered.

Usually, accelerometers are the most practical sensor type to carry out measurements

in practice because often measuring displacement or force is not possible. Thus,

the feasibility of identifying stiffness with only acceleration measurements should be

investigated.

Furthermore, exploiting target features of dynamic systems successfully does not

only depend on the input/output couple, but also the system description [5]. System

description includes the structure, algorithm, and uncertainties in the model. For

example, the selected algorithm should be capable of handling possible nonlinear

behavior when seismic induced vibration is considered. Moreover, often environmental

conditions or model errors are not known a-priori in the case of structural dynamics
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applications in the real world. Thus, algorithms should also be adapt themselves to

various noise and model errors in practical applications. Moreover, algorithms should

achieve convergence fast because earthquake excitation exert energy to systems in a

short amount of time where stiffness change occurs.

Thus, collaborative thinking from structural health monitoring and system iden-

tification fields is a beneficial approach to the parameter estimation problem when

dealing with stiffness identification of the lateral resisting components of bridges un-

der seismic loads.

1.1 Summary Review of Condition Assessment Meth-

ods

System identification techniques are either carried out in frequency (and modal) or

time domains. Although existing literature [6, 7] mostly focuses on the modal and

frequency domain based techniques, there are several problems with these approaches

need addressing to improve system identification applications in practice.

One of the problems is that data (e.g. acceleration, strain, etc.) is recorded in the

time domain and when converting it to frequency or further to modal domain there

may be information loss. Information loss when converting time to the frequency

domain is small when the system is linear [8]. However, in reality, civil structures

usually exhibit nonlinear behavior, especially under earthquake excitation. Secondly,

frequency and modal domain methods provide an indirect estimation of parameters

such as mode shapes which are in fact functions of physical parameters, i.e. stiffness.

Although such methods have been previously successfully applied to practical cases

in civil engineering they are usually limited to signature bridges [9].

Moreover, when frequency domain methods are adopted, conversion of estima-

tion from frequency to physical domain is needed to obtain stiffness. However, this

conversion process often requires empirical information and is prone to errors. On

the other hand, modal and frequency information is considered as global structural
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parameters so that local phenomenon such as stiffness change of an element cannot

be observed with such methods. The lower frequencies are usually associated with

global modes and not sensitive to changes in the properties of structural elements in

the large systems such as civil infrastructure.

On the other hand, time-domain methods eliminate the need for conversion be-

tween domains, because the measured data is in the same domain with the estimation

algorithm. Methods such as Least-squares based time domain methods were suc-

cessfully applied to significant bridges in practice under earthquake excitation [10].

However, such methods are also limited to the linear response. Furthermore, data

assimilation methods such as Kalman filters allow integration of model and measure-

ment and direct physical parameter estimation. In addition, Kalman filter [11] is

known to be robust to noise contaminated data under the assumption both process

and measurement noise are known a-priori.

However, parameter identification problems are often nonlinear. For example,

the joint state and parameter estimation problem itself is nonlinear even though

the system is linear. Thus, various extensions of Kalman filter has been developed,

namely extended Kalman filter (EKF) and unscented Kalman filter (UKF) which are

capable of handling different levels of nonlinearity in the system. However, studies

which dealt with direct physical parameter estimation methods in structural system

identification literature considered using simulated response and added artificial noise

with a limited attempt of practical application.

For instance, structural system identification using Extended Kalman filter (EKF)

were studied with simulated data and known damage scenarios [12, 13, 14, 15, 16].

However, structural identification on a realistic structure using EKF has not been

attempted until 2008 [17]. Similarly, although many studies demonstrated advantages

of the use of UKF in structural engineering related problems considering high non-

linearity [18, 19, 20], structural identification on a realistic structure using UKF has

not been attempted yet.

In addition, structural system identification inevitably deals with highly nonlinear

systems. In structures non-linear response is mainly due to energy dissipation in
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joints [21], structural elements such as reinforced concrete columns [22, 23], and also

mounted damping devices [24] which are usually characterized by hysteresis response.

The studies addressed UKF use in structural identification [18, 19, 20] often employs

Bouc-Wen model [25, 26] which is one of the most well-studied hysteresis models.

However, aforementioned studies explored the capabilities of UKF by implementing

known damage scenarios and using simulated data. Thus, experimental verification

of such a parametric identification tool yet remains an open area.

Recent studies in the literature which consider the application of data assimilation

methods to nonlinear structural parameter identification on realistic structures is as

follows. A scaled three-bent bridge was excited by one-directional earthquake input on

a shake-table in [17]. First, an FEM model was calibrated based on the experiment

results which was later used in extended Kalman filter as state transition matrix.

Elemental residual stiffness values of each bent were estimated using EKF.

In another study using simulated response measurements [19] structural parame-

ters of a 3DOF system which consists of a Bouc-Wen element in the first DOF were

estimated using GPS displacement for the first DOF observation and acceleration

measurements for the other two DOFs’ observations. Later in [27], systems including

Bouc-Wen elements were further investigated from the observability and identifiability

point of view as Bouc-Wen element consists of many parameters.

Recently, [28] proposed a method for online Bayesian model assessment for UKF.

However, process noise parameters are assumed as known which is not a real condition

when practical structures are considered. Verification examples were presented with

simulations and then a laboratory experiment on a test apparatus which was designed

to simulate a 2DOF non-conservative dissipative joint element as presented in [29].

1.2 Motivation and Objectives

There are many proposed system identification methods for stiffness condition as-

sessment of bridges, both in frequency and time domains. However, application of

such methods has been limited to some signature bridges where sensor networks are

33



readily available in practice. In addition, frequency domain methods are limited to

linear response and direct physical parameter estimation is not possible. On the other

hand, data assimilation methods, which are capable of handling non-linear motion,

have never been used to estimate stiffness condition of a full-scale civil infrastructure.

The common problem for system identification methods is that their application

to the real world is still limited, especially when the seismic response is considered.

There are two main reasons for this limitation. First is the lack of adequate response

measurements from full-scale structures during earthquakes. Second is the lack of

robust algorithms which can adapt themselves to unknown initial conditions and

noise, especially for highly nonlinear and time-variant systems.

First motivation of this study is; by taking advantage of the seismic hazards

in Japan, studying the feasibility of seismic response measurement on a full-scale

bridge using only wireless accelerometers. Bridge structures are usually large and

complex systems which require dense sensor arrays to achieve system identification.

Thus, considering only accelerometer measurements is important as they are the

most economically viable option for application of system identification methods to

the real world. Moreover, using obtained accelerometer measurements, the feasibility

of obtaining stiffness condition change should be investigated.

Secondly, although under small excitation the structure is in the linear range, as

both parameters and states are unknown in the system, estimation problem becomes

inherently nonlinear. In addition, when structures excited with large enough earth-

quakes they exhibit nonlinear behavior in terms of damage, such as cracking, yielding.

Implementation of a robust algorithm which can deal with high nonlinearity in the

system under unknown initial conditions and various noise is needed. Although many

algorithms were proposed, their performance investigation has been done using vari-

ous different models and input/output couples. Using publicly available data from 1:1

scale structural experiments, verification of the performance of the proposed methods

both under small and large earthquake excitation is needed.

Thirdly, in earthquake-prone countries, i.e Japan, both small and big earthquakes

occur very often. After verification of the proposed algorithm through laboratory
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experiments, the validation of the adopted stiffness parameter estimation algorithm

and its performance using responses of full-scale bridges under both small and big

earthquakes should be studied.

Small earthquakes can be grouped in two categories:

1. Single events, usually having small return period

2. After- and fore-shocks which occur in abundant numbers after and before large

earthquakes.

Small earthquakes can be used to estimate the stiffness condition of lateral resist-

ing systems especially in earthquake-prone countries such as Japan. Although they

only induce linear response the benefits may have two folds. First is, if the bridge

only experienced small earthquake however stiffness estimation of a structural ele-

ment deviates from the design assumption it may be an indicator of some deficiencies

(e.g. manufacturing/construction faults, etc.) which may be present of the bridge

starting from the construction. Using response measurement from frequent small

earthquakes the current stiffness condition of the element can be assessed. If the

estimation indicates any deficiency, corresponding measures can be taken to prevent

failure/undesired response during big earthquakes. Secondly, large seismic events are

usually followed by many smaller aftershocks. Using such ground excitation and re-

sponse measurements on the full-scale bridge, information on the post-seismic stiffness

capacity of the lateral resisting systems can be obtained which would help making

decisions towards inspection, maintenance in the aftermath.

Lastly, although estimated linear stiffness, either initial or residual, provides valu-

able information on the structure’s behavior, under large seismic excitation damage

is related to the energy dissipation of the elements. Thus, to have a complete under-

standing of the stiffness change hysteresis loops needs to be identified. Consequently,

capabilities of the proposed system identification algorithm also need to be inves-

tigated under extreme seismic events using input and output response acceleration

measurements.
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The objectives of this thesis are as follows. 1) Preparation of seismic response mea-

surement data to be utilized in the stiffness condition assessment of full-scale bridges

2) Proposal of a robust stiffness condition estimation algorithm 3) Verification and

validation of the proposed algorithm through full-scale laboratory experiments and

field measurements using only accelerometers 4) Extension of the proposed algorithm

to hysteresis loop estimation of structural elements non-linear motion.

1.3 Outline of Thesis

This research focuses on the realization of a system identification method on full-

scale bridge or bridge components by implementing an adaptive rule with Unscented

Kalman Filter. Specifically, stiffness condition assessment has been performed for two

different lateral resisting systems, namely; a reinforced concrete (RC) bridge column

and elastomeric rubber bearings under several levels of input excitation.

Chapter 2 provides information on the response measurements which are used to

verify and investigate the performance of the proposed stiffness estimation algorithm.

First, the test set up of a 3D shake-table test for a full-scale RC bridge pier is reviewed.

Then, measured input and response data and behavior of the test specimen during dif-

ferent shaking levels are explained. Moreover, a displacement estimation methodology

and its verification studies are presented. In the second section of this chapter, a field

measurement partially conducted by the author on two full-scale bridges, description

of test bridges and seismic monitoring system are provided. Moreover, characteristics

of the measured data with prototype wireless accelerometers investigated in detail in

terms of time-history, response spectra. Lastly, displacement trajectories and bearing

behavior characteristics are presented.

Chapter 3 first describes the theoretical background on the conventional UKF.

Then, the use of the Robbins-Monro stochastic approximation scheme with UKF

(UKF-RM) has been proposed to address robustness issues by adapting noise covari-

ances. Lastly, a simulation of an SDOF dynamic system considering a linear model

has been simulated. Performance of conventional UKF and UKF-RM methods is
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compared with an ideal case in which the noise covariances are manually fine-tuned.

Chapter 4 using a linear SDOF model, the performance of UKF-RM and conven-

tional UKF is further investigated considering their sensitivity to change in initial

state vector selection (model error), initial process noise covariance, initial measure-

ment noise covariance with various levels of measurement noise, initial error noise

covariance and selection of Robbins-Monro parameters, 𝛼𝑄, and 𝛼𝑅.

Chapter 5 describes experimental verification of the implemented algorithm. In

the first section, the shake-table test was used and validation has been confirmed

under both small and large earthquake response. Trackability and convergence rate,

estimation results in three different response ranges, namely; initial, nonlinear and

residual, are discussed based on the findings from the experiment. In the second

section, the applicability of the proposed system identification algorithm on a full-scale

bridge is shown by experimental verification using data obtained after Kumamoto

earthquake.

Chapter 6 first presents the theory for a hysteretic model. Observability analysis

and model reduction procedure are explained. Next, the applicability of the pro-

posed algorithm to a highly nonlinear SDOF system which consists of a Bouc-Wen

element is shown. Verification of the estimated parameters using only acceleration

measurements and simulated response data has been presented. Furthermore, using

the nonlinear SDOF model, the performance of UKF-RM is further investigated con-

sidering their sensitivity to change in initial state vector selection (model error), ini-

tial process noise covariance, initial measurement noise covariance with various levels

of measurement noise, initial error noise covariance and selection of Robbins-Monro

parameters, 𝛼𝑄 and 𝛼𝑅. Moreover, experimental verification of the hysteresis param-

eter estimation is described. Using a shake-table laboratory test data on a single

reinforced-concrete bridge pier the application of the proposed method to a full-scale

structural element in laboratory conditions has been confirmed by identification of

the hysteresis parameters with an SDOF system.
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Chapter 2

Measurement

In this chapter, two experiments on lateral resisting system components of bridges

and collected seismic response data are explained in detail. Obtained data sets are

later used to assess stiffness condition of various bridge lateral resisting systems in

the subsequent chapters of this thesis.

First, a laboratory experiment which was conducted on a full-scale reinforced

concrete (RC) bridge pier in a shake-table facility is presented. Data set consists

seismic response data measured with various types of instruments deployed as dense

arrays on RC pier under both small and large excitation levels. Both measured data

and the experiment report is open to public [1] which made validation of the proposed

stiffness estimation methodology and investigation of its performance on a realistic

bridge component possible.

Secondly, a field experiment on a full-scale single span bridge which was conducted

by the author is explained in terms of the structural properties of the target bridge,

instrumentation and collected seismic response data from aftershocks of a large earth-

quake. Considering the fact that real-world seismic response measurements had been

mostly limited to long-span bridges, gathered high-quality data holds importance as

it allows validation of the proposed parameter estimation algorithm on a full-scale

bridge using a sensor array that is practical and cost-effective.
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2.1 Laboratory Experiment

The performance of the proposed stiffness condition assessment method is first in-

vestigated using data obtained from a full-scale bridge pier shake table experiment,

conducted in E-Defense facility, provided by National Research Institute for Earth

Science and Disaster Prevention [1]. E-Defense shake-table facility was constructed

after 1995 Kobe Earthquake to provide open access benchmark experiment data on

real scale structures (so that data does not include scaling effects which are inherent

in small-scale specimens) to scientific community and thus pave the way to better

understanding of structures’ behavior and collapse mechanisms before another large

and devastating earthquake occurs [30]. With this purpose, a series of tests were con-

ducted on real scale reinforced concrete bridge piers which were designed based on

both before and after 1995 Kobe Earthquake seismic design criteria to understand the

collapse mechanisms. In this section specifications of one part of this experiment and

obtained data will be presented. Using various level of ground motions the bridge

pier excited with small and large inputs and detailed response measurements were

recorded using a dense array of various kinds of sensors including accelerometers, ve-

locimeters, displacement and strain gauges, and load cells. Design details of the RC

pier, sensor array and recorded measurements are presented as follows.

2.1.1 Description of Test Bridge Pier

Component test outlined in this section was conducted on a RC bridge pier which

was designed based on 1964 Japanese bridge design code [31]. The RC pier behaves

as a typical flexural failure dominant column. The set of specimen tests were called

C1-1 experiments [1]. C1-1 column design was based on working stress design under

an equivalent static lateral load and were representative of columns constructed in

1970s in Japan. The column was mounted on the shake table with its deck and

weights to represent the inertia force from the superstructure (Fig. 2-1). The test

configuration also consists a steel catch frame to prevent the column collapsing in case

it experiences excessive damage (Fig. 2-2). Arrangement of reinforcement in C1-1
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Figure 2-1: C1-1 Experiment setup on E-Defense shake table [1]

column cross section is given in Fig. (2-3). Design conditions, including cross-section

dimensions, weights and material properties, are given in Table (2.1).

The girder was not designed to obey strength and stiffness of a real deck but

to provide support to the mass blocks on top which represented the superstructure

inertia effect. Girders were connected to the bent cap with fix bearings where they

were connected to the end supports with movable bearings. Fig (2-4) depicts the

bearings conditions of the test specimen. The friction bearings (sliders) on both sides

of the fixed bearing on the column end were designed so that the rotation of the decks

around their own axis was prevented. Sliders on the end supports were designed to

prevent the deck rotation more than 10 degrees. More detailed explanations on the

support conditions and their experience can be found in [1, 30]. The design basis of

the support conditions were to avoid interference of the torsional rigidity of the deck

on the displacement of the pier.
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Figure 2-2: C1-1 Experiment support and catch system [2]

Figure 2-3: C1-1 column - Arrangement of reinforcements in cross section [1]
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Table 2.1: C1-1 column - Summary of design conditions (modified from [1])

Item Value

Pier Height, 𝐻 7.5𝑚
Section shape of pier Circular

Diameter of cross section, 𝐷 1.8𝑚
Reaction Force (dead load), 𝑅𝐷 2080𝑘𝑁

Weight Superstructure
Longitudinal, 𝑊𝐿𝐺

𝑈 2960𝑘𝑁
Transverse, 𝑊 𝑇𝑅

𝑈 2080𝑘𝑁

Weight Pier, 𝑊𝑃 794.5𝑘𝑁

Material strength
Concrete, 𝜎𝑐𝑘 27𝑁/𝑚𝑚2

Yield strength of reinforcement, 𝜎𝑠𝑦 345𝑁/𝑚𝑚2

Modulus of elasticity
Concrete, 𝐸𝑐 2.65𝑥104𝑁/𝑚𝑚2

Reinforcement, 𝐸𝑠 2.0𝑥105𝑁/𝑚𝑚2

Figure 2-4: C1-1 column - Bearing conditions (modified from [1])
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2.1.2 Description of Monitoring System

In total, 191 channels of acceleration, 32 channels of load, 256 channels of strain, 116

channels of displacement and 18 channels of velocity measurements were obtained

at various locations on the shaking table, the pier and the superstructure. From

which the acceleration measurements on the shake-table and column-top locations

were used in this study to investigate the performance of the proposed parameter

estimation algorithm. In addition, displacement measurements on top of the bent

cap were used to investigate the accuracy of displacement estimation scheme from

corresponding acceleration measurements by double-integration. Above mentioned

displacement estimation scheme will be explained in the next section in detail.

Figure 2-5: C1-1 column - Accelerometer measurement locations on the shake table
and bent cap (modified [1])

Fig. (2-5) shows the a summary of the accelerometer locations. All accelerometers

are TA-25E-10-1 (wired) from the manufacturer Tokyo KEIKI. Accelerometers on

shake-table, A1-12, are used as input to the system after averaging in each direction

in the subsequent sections in this study. Output acceleration response measurements
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Figure 2-6: C1-1 column - Displacement measurement locations on the bent cap [1]

at the column top locations, A25-33, are treated as the only measurements available

during laboratory validation of the proposed stiffness estimation methodology. In this

study, the accelerometer measurements from the nodes A1-12 and A25-36 are averaged

in each direction to obtain input and observation accelerations, respectively.

In addition, displacement measurements (Fig. 2-6) on the bent cap (D33-48)

which correspond to accelerometer locations are also available. The displacement

measurements were collected by DP-2000DS wired displacement transducers from

the manufacturer Tokyo Sokki which has a range of ±1000𝑚𝑚. In this study, the

displacement measurements from the nodes D33-48 are first corrected based on the

information provided in the experiment report [1] and then averaged in each direction.

Lastly, P05-4226 type load cells from Kyowa Electronic Instruments Co., Ltd.

were used to measure force under earthquake excitation. There are 32 load cells in

total and their locations are depicted in Fig. (2-7). The capacity of load cells are

250𝑘𝑁 in transverse (X and Y) and 400𝑘𝑁 in vertical (Z) directions. In this study,

the force measurements from all load cells are summed to find the force in the later

parts of this thesis.

2.1.3 Input and Measured Response Data

Excitation types consist of random excitations, pulse excitations and earthquake ex-

citations measured at Takatori station during the Kobe earthquake in 1995. Random
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Figure 2-7: C1-1 column - Loadcell locations on the bent cap (modified [1])
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excitations were applied in order to identify the dynamic characteristics of the whole

system including both the test structure and the shaking table. The Takatori excita-

tion was exerted on the RC column with various magnification factors.

Table 2.2: Example excitation data sets used in C1-1 experiment

ID Excitation type Excitation level
2007-1206-009-1M Pulse(XYZ) 100gal
2007-1206-010-1M Takatori 10%
2007-1206-011-1M Pulse(XYZ) 100gal
2007-1206-012-1M Takatori 20%
2007-1206-013-1M Pulse(XYZ) 100gal
2007-1206-014-1M Pulse(XYZ) 100gal
2007-1206-015-1M Takatori 20%
2007-1206-016-1M Pulse(XYZ) 100gal
2007-1212-006-1M Takatori(Modified) 30%
2007-1213-003-1M Pulse(XYZ) 100gal
2007-1213-004-1M Takatori(Modified) 100%
2007-1213-013-1M Pulse(XYZ) 100gal
2007-1213-014-1M Takatori(Modified) 100%
2007-1213-015-1M Pulse(XYZ) 100gal

Table 2.3: Publicly available data sets from the excitation used in C1-1 experiment

ID Excitation type Excitation level
2007-1212-006-1M Takatori(Modified) 30%
2007-1213-004-1M Takatori(Modified) 100%
2007-1213-014-1M Takatori(Modified) 100%

In some cases, the input signals to the shaking table system were modified to elim-

inate the effect of the test structure on the dynamic behavior of the shaking table.

14 datasets presented in Table 2.2 show example excitation during experiment. It

should be noted that the amplitude of the original Takatori excitation was reduced

to 80% of its original level at the beginning of the experiment considering the inter-

action between structures and the ground generally observed in real structures. The

magnification factors listed in the Table 2.2 are applied to this scaled down Takatori

excitation. Between the magnified Takatori excitations, the structural properties of
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Figure 2-8: Measured shake table input and column top response for 2007-1213-004-
1M (North-South direction)
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Figure 2-9: Measured shake table input and column top response for 2007-1213-004-
1M (East-West direction)
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the RC column were tested by 10𝐻𝑧 sinusoidal excitations. Among the represen-

tative excitation data, publicly available ones which are presented in Table 2.3 are

used for the validation of the proposed method in this study. Publicly available data

allow performance investigation of the parameter estimation algorithm both in linear

and nonlinear response ranges which will be explained in future chapters in detail.

Example acceleration time-history for 2007− 1213− 004− 1𝑀 input are depicted in

Figures (2-8) and (2-9) for North-South and East-West directions, respectively.

To understand the ground motion, some characteristics need to be defined. One of

the ground motion charateristics is peak ground value of one of the three time histories

namely; acceleration, velocity and displacement. Peak ground acceleration (PGA) is

one of the most widely used parameter. PGA is 5.78𝑚/𝑠2 and 8.22𝑚/𝑠2 for the 2007−

1213−004−1𝑀 input in North-South and East-West directions, respectively. PGAs

for the remaining inputs can be easily calculated based on the magnification factors.

However, only PGA (or PGV) is not solely sufficient to represent the characteristic

of the ground motion. The frequency content and also the duration need to be

examined [32]. In E-Defense experiment only one input was used to excite the RC pier

with different magnification factors, thus the dominant frequency range and duration

is same for all earthquake inputs. However, it is beneficial to give the duration

definition which is used in this study as one of the criteria to judge the convergence

rate performance of the parameter estimation algorithm in the successive chapters.

There are many duration definitions in literature, however current duration defini-

tions can be grouped into four categories [33]. These are; bracketed duration, uniform

duration, significant duration and structural response duration. Summary of studies

which proposed a definition for duration can be found in [32]. In this study signifi-

cant duration has been chosen to define the duration of the earthquake, in which the

energy transmission from input to the structure is identified.

Significant duration is the time interval in which a portion of the energy is accu-

mulated. The integral of the squared ground motion acceleration or velocity can be

chosen as the representative of the energy. When acceleration is used the integral is

related to the Arias Intensity [34] which is given by the equation below:
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𝐼𝐴 = 𝜋/2𝑔

∫︁ 𝑇

0

𝑎2(𝑡)𝑑𝑡 (2.1)

where, 𝑔 is the acceleration of gravity, 𝑎(𝑡) is the acceleration time history, and 𝑇

represents the complete duration of 𝑎(𝑡).

Then, the accumulated energy over time is tracked by the Husid plot [35] where it

is normalized value for 𝐼𝐴. Two intervals which are commonly accepted in literature

are the intervals between 5 − 95% and 5 − 75% of 𝐼𝐴 [33, 36]. In this study 5 −

95% of 𝐼𝐴 is adopted for the significant duration definition. Fig. (2-10) depicts

the input shake table acceleration for 2007-1213-004-1M (North-South direction) and

it’s corresponding Husid plot. In this figure, the first and second vertical red lines

represent the beginning, 𝐷𝑎5, and end ,𝐷𝑎95, of the significant duration which are

equal to 2.855𝑠𝑒𝑐 and 12.81𝑠𝑒𝑐 , respectively.
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Figure 2-10: Evaluation of significant duration for 2007-1213-004-1M (North-South
direction)

2.1.4 Displacement estimation from acceleration measurement

Displacement measurement is often more expensive than acceleration measurements

and is not always feasible due to a lack of reference point. In addition, simultaneous
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response data from many nodes is easier with accelerometers when compared to other

kinds of sensors, such as displacement transducers. Thus, displacement estimation

using acceleration has been an interest. Moreover, in terms of system identification

displacement measurement is often preferred as it closely relates to structural param-

eters such as stiffness.

While many researchers suggested effective yet complicated solutions to this prob-

lem, simple and effective methods are also readily available to obtain displacement

from acceleration measurements by double-integration. The current consensus on this

approach in structural dynamics area usually adopts only a high-pass filter (either in

time or frequency domain) and then double integrates the acceleration to obtain dis-

placement. However, preparation of data with appropriate pre-processing steps prior

to filtering, selection of cut-off frequency and application of the filter to the data are

also important parameters which needs attention. In engineering seismology area,

references such as ([37],[38]) present necessary steps for pre-processing targeting both

low and high frequency noise inherent in any kind of measurement. These suggestions

will be reviewed in this chapter briefly and then displacement estimation results will

be validated by comparison with the measured displacements during E-Defense test.

In any case, measured data will be contaminated by noise. The causes of these

noise in the records is not only from one source but often from multiple sources. For

example, analog to digital conversion [39], inherent analog or digital sensor noise, en-

vironmental noise, DC offset, effect of resolution (sampling rate) and unknown initial

conditions can be listed as some the error sources. Although basic understanding of

each source is necessary, quantification of errors is not considered realistic. However,

effects of noise are very distinct on the data and often reveals itself as distortion

of the obtained parameter. For instance, both integration and differentiation alters

the frequency characteristics of the data due to information loss. Integration causes

low-frequency noise accumulation while differentiation causes high-frequency noise ac-

cumulation. However, for specific engineering applications appropriate pre-processing

steps can be applied to obtain the information which is needed, such as displacement

from acceleration or vice versa with some limitations.
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The suggestions given by references [37],[38] are followed to understand the source

of the errors which cause erroneous displacement estimation due to integration. In

order to avoid distortion of obtained displacement history, several pre-processing steps

such as analysis of the noise levels, selection of cut-off frequency and selection filtering

procedure/order are briefly discussed.

Removal of nonstandard noise

One of the examples to nonstandard noise is given in [37], spurious spikes which

may be present in the data and can be identified by calculating the differentiation

of acceleration (jerk). Once they are identified, it is recommended to remove these

spikes with the mean of the acceleration measurement.

Second type of non-standard noise is the baseline shifts which may be present in

the measurement. Such shifts in acceleration can be identified from the velocity and

once identified, the baseline correction can be applied to acceleration data.

Selection of cut-off frequency

The key issue is to select the the cut-off frequency for the high-pass filter which ensures

an appropriate signal-to-noise ratio for the rest of the data. Three suggestions for the

criteria to decide a cut-off frequency were given by [37] as follows:

∙ Comparison of Fourier amplitude spectrum of the record with the instrument

noise or a portion of the data before the earthquake for digital records so that

the frequency where a ratio of 3 for signal-to-noise ratio can be identified.

∙ Second criteria is based on a seismological theory where the decay in long-period

portion of FAS is assumed to obey to the line provided by 𝑓 2. Because except

the residual displacement, the long-period motion of earthquake is pulse-like

and hence the FAS will be finite at zero. This assumption in fact similar to

structures which are excited by ground motion which will be shown later in this

chapter.

52



∙ Lastly, the visual inspection of calculated displacement and velocity and judging

whether there are any unreasonable portion is present.

Choice of high-pass (low-cut) filtering technique

Either in frequency or in time-domain, the choice of filter domain should not be

present in the filtered signal as long as the frequency response of filters are same.

In addition, although there may be minor differences in filter types such as Bessel,

Butterworth or any other, these should not result in drastic changes between the

filtered signals as long as the adopted filter is applied correctly.

More importantly, whether a filter is applied in a causal or acausal way is more

important. Causal filters are known to cause phase shifts where acausal filter results

in zero phase shift. The way to achieve an acausal filter applying the filter from start

to end, and then applying it reverse in the opposite direction starting from the end

in time domain. However, in order a filter to act as acausal the beginning and ends

of the data must be added with zero points so that the filter can start acting before

the actual data starts. This addition of zero values is called zero-padding and the

length of the pads required before and after the data depends on the filter order and

the cut-off frequency. The total duration of the zero-pad, 𝑇𝑧𝑝𝑎𝑑, is given by [40]

𝑇𝑧𝑝𝑎𝑑 = 1.5𝑛/𝑓𝑐 (2.2)

where is 𝑛 is the filter order of Butterworth filter and 𝑓𝑐 is the filter cut-off fre-

quency. Half of this duration is added to the front and remaining half is added to the

back of the data. Another issue when applying zero pads is to avoid abrupt changes in

data when passing to zero values. This can be achieved either applying zeros starting

from the first zero crossing or tapering. Further examples and details of the results of

causal and acausal filters can be further found in [37]. Selection of filter order can be

done by fitting a line to the velocity which is obtained by integration of the unfiltered

and unprocessed acceleration.
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Example displacement estimation procedure

Fourier amplitude spectra for 2007 − 1213 − 004 − 1𝑀 (North-South direction) is

depicted in Fig. (2-11). Due to the lack of noise study for the measurement sensor,

or an undisturbed potion of the recorded data, the cut-off frequency selection is first

made by judging the FAS plot of the record. In the figure, the red line shows the

𝑓 2 line. The decay of the acceleration in the long-period portion is actually slightly

faster (slope is steeper) than the 𝑓 2 line and it continues to decay until 0.16𝐻𝑧. Thus,

0.2𝐻𝑧 is selected for the cut-off frequency.
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Figure 2-11: Fourier amplitude spectra for 2007-1213-004-1M (North-South direction)

Judging from Fig. (2-12), velocity obtained by integration of the unprocessed and

unfiltered acceleration does not exhibit a trend except a slight linear trend. Thus,

filter order, 𝑛, is chosen equal to 2.

Then following the procedures explained above, displacement estimation from

double-integration of acceleration is obtained. Comparison between the estimated

displacement and the measured displacement is depicted in Fig. (2-13). The figure

shows good match between the peak displacements until the residual displacement

occurs. However, wave forms and magnitude of displacement also matches after the

residual displacement. Due to the application of high-pass filter recovery of residual

displacement is not possible. However, for the purposed of this study the elimination
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Figure 2-12: Velocity estimation with unprocessed acceleration from 2007-1213-004-
1M (North-South direction)

of the residual displacement is considered acceptable.

0 10 20 30 40 50 60
-10

-5

0

5

10

S
ha

ke
 T

ab
le

 (
m

/s
2
)

ID:2007-1213-004-1M

0 10 20 30 40 50 60
Time (sec)

-0.2

-0.1

0

0.1

0.2

C
ol

um
n 

T
op

 (
m

)

Displacement Response

Measured
Double Integration

Figure 2-13: Displacement Estimation and measured displacement comparison for
2007-1213-004-1M (North-South direction)

2.2 Field Measurement

In this section in-situ seismic response measurement on two bridges which were par-

tially conducted by the author is explained in detail.
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Figure 2-14: 2016 Kumamoto earthquake sequence aftershocks between 2016.05.02 –
2016.06.01 [http://www.hinet.bosai.go.jp/]
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Table 2.4: List of Recorded Aftershocks from Kumamoto Earthquake in chronological
order

Num Date - Time 𝑀𝑎 Dist.(𝑘𝑚)𝑏 PGA Tra.(𝑔𝑎𝑙)𝑐 PGA Lon.(𝑔𝑎𝑙)𝑑

1 2016.05.01-13:45:00 3.0 10 9.9 6.71
2 2016.05.01-23:23:00 3.9 34 4.35 4.56
3 2016.05.01-23:27:47 3.4 30 2.05 2.07
4 2016.05.01-23:32:25 2.4 8 1.09 1.22
5 2016.05.02-00:39:20 1.9 6 1.3 0.58
6 2016.05.02-15:06:04 2.8 11 1.88 1.39
7 2016.05.02-15:35:00 4.1 34 3.64 4.29
8 2016.05.02-19:58:52 3.3 8 5.54 6.71
9 2016.05.03-06:05:00 3.8 13 18.6 28
10 2016.05.03-19:59:10 1.9 7 0.63 0.6
11 2016.05.03-23:24:02 3.1 19 1.07 1.3
12 2016.05.04-02:34:25 2.6 7 3.59 4.32
13 2016.05.04-03:27:53 2.8 7 5.67 6.14
14 2016.05.04-07:52:00 4.0 28 4.24 4.88
15 2016.05.04-08:44:27 2.7 4 7.94 7.9
16 2016.05.04-08:48:15 2.8 13 1.55 1.46
17 2016.05.04-14:11:00 3.3 28 1.05 0.87
18 2016.05.04-15:55:25 2.3 4 2.85 2.28
19 2016.05.04-16:22:00 3.4 26 1.37 1.29
20 2016.05.04-17:16:52 3.8 14 9.67 15.4
21 2016.05.04-19:20:00 4.0 10 11.1 19
22 2016.05.04-22:24:00 3.5 28 2.15 1.87
23 2016.05.05-04:21:21 2.3 9 1.33 0.94
24 2016.05.05-04:58:34 2.4 8 1.44 1.22
25 2016.05.05-10:31:00 4.6 41 10.5 9.86
26 2016.05.05-10:40:00 4.9 39 7.87 7.91

𝑎: Magnitude, 𝑏: Distance to measurement site, 𝑐 and 𝑑: Peak ground acceleration in
transverse and longitudinal directions of the bridge, respectively
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Table 2.5: List of Recorded Aftershocks from Kumamoto Earthquake in chronological
order (cont.)

Num Date - Time 𝑀𝑎 Dist.(𝑘𝑚)𝑏 PGA Tra.(𝑔𝑎𝑙)𝑐 PGA Lon.(𝑔𝑎𝑙)𝑑

27 2016.05.05-11:55:51 2.5 12 4.82 1.86
28 2016.05.05-17:13:00 3.3 19 1.91 2.87
29 2016.05.06-02:03:20 3.2 17 2.19 2.38
30 2016.05.06-07:27:32 3.5 9 6.97 4.32
31 2016.05.06-13:09:41 3.0 20 2.41 1.62
32 2016.05.06-15:50:58 2.3 10 1.56 0.81
33 2016.05.06-16:18:44 3.8 27 5.39 5.88
34 2016.05.06-18:21:33 3.5 19 3.54 4.12
35 2016.05.07-16:35:59 2.6 6 12.6 4.23
36 2016.05.07-17:23:34 2.1 10 0.76 0.81
37 2016.05.07-18:03:01 1.3 8 0.75 0.59
38 2016.05.07-22:46:13 2.8 16 1.19 1.46
39 2016.05.07-23:10:47 3.3 16 1.37 1.86
40 2016.05.08-01:05:10 1.9 7 1.05 0.92
41 2016.05.08-13:00:23 3.6 12 4.02 5.23
42 2016.05.08-17:56:05 2.0 10 1.23 1.04
43 2016.05.08-18:06:50 3.0 7 3.77 2.56
44 2016.05.08-21:50:04 2.6 5 2.98 1.32
45 2016.05.09-01:39:09 2.9 17 0.93 0.92
46 2016.05.09-05:00:00 3.6 25 6.12 3.5
47 2016.05.09-05:36:10 3.3 9 9.69 6.57
48 2016.05.09-05:49:24 2.4 6 5.3 2.27
49 2016.05.09-07:10:44 1.8 6 1.87 0.94
50 2016.05.09-14:36:00 3.4 21 2.48 2.51
51 2016.05.09-20:55:00 3.5 7 6.79 4.62
52 2016.05.10-13:41:00 3.3 22 1.79 1.14
53 2016.05.10-14:40:00 3.0 22 0.91 1
54 2016.05.11-15:52:50 2.6 8 1.88 1.28
55 2016.05.12-03:41:01 2.8 10 2.44 3.21
56 2016.05.12-05:38:50 3.6 19 4.33 2.86
57 2016.05.12-17:04:00 4.1 20 25.4 24.1
58 2016.05.13-01:03:00 4.1 18 34.8 17.6
59 2016.05.13-13:05:00 2.8 23 1.21 1.05
60 2016.05.13-17:16:31 2.7 6 5.45 3.89
61 2016.05.14-00:04:00 3.1 25 1.08 0.95

𝑎: Magnitude, 𝑏: Distance to measurement site, 𝑐 and 𝑑: Peak ground acceleration in
transverse and longitudinal directions of the bridge, respectively
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Figure 2-15: Representative waveform from measurement at the ground node
(Node049)

Currently seismic response measurements have been limited to either to long-

span bridges and/or bridges at dedicated test beds with a limited number of input

excitation and response sensors. However, with the advent of stand-alone wireless

systems without the need of external power source and communication lines, such

measurements and investigations are recently made possible.

The sequence of 2016 Kumamoto earthquakes started with two strong fore-shocks,

at 2016.04.14, 21:26:00 with a M6.5 and 2016.04.15, 00:03:00 with a M6.4, followed by

a devastating M7.3 main-shock at 2016.04.16, 01:25:00 and thousands of aftershocks

(Fig. 2-14). Taking advantage of the large earthquake occurrence, shortly after 2016

Kumamoto earthquakes, wireless sensor arrays were deployed on two target bridges in

the area. Seismic response measurements on ground, pier, bearing, and superstructure

nodes were all recorded from 61 aftershocks in a synchronous manner and examined

in detail.

List of recorded earthquakes are presented in Tables (2.4) and (2.5). Represen-

tative waveform from the last recorded earthquake which occurred on 2016.05.14 at

00 : 04 : 00 are depicted in Fig. (2-15). In the following sections details of the target

test bridges, properties of wireless sensor arrays and characteristics of gathered data
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are described and presented.

2.2.1 Description of Test Bridges

One of the target bridges, located in Kumamoto, Japan is a 59-meter span steel box-

girder bridge, which forms the western end of a long viaduct. It is a road bridge

carrying two lanes of traffic which was opened to traffic in 2013. The west end of

the target span rests on an abutment and the east end is supported by a concrete

pier. The girders on the consecutive spans are steel I-girder configuration. During

visual inspection no obvious damage to the target bridge was observed. The bearing

stoppers on the east end of the consecutive span showed deformation in transverse

direction (Fig. 2-16) which was possibly due to the strong fore- and main-shocks.

Evidence of friction was also found on the surface of bearing plates.

Figure 2-16: Deformation of the bearing stopper of the consecutive span

Second target road bridge consists of a rigid frame pre-stressed concrete (PC)

box-girder and is supported by reinforced concrete piers. The construction of the

bridge was completed in March 2015. The east end of the bridge rest on an abutment.

During visual inspection large relative displacement at the joint between the abutment

end and PC-box girder of the target span (Fig. 2-17) was found. Large cracks in

the longitudinal direction of the bridge at the abutment joint were observed, which

suggests large soil-structure interaction forces occurred between the back-fill soil,

abutment, and the superstructure during the main events.
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Figure 2-17: Side view of abutment and observed crack at the abutment joint of the
PC-box girder bridge

2.2.2 Description of Seismic Monitoring System

Epson M-A351 [41] prototype wireless sensors have been developed and deployed on

the above mentioned two target road bridges in Kumamoto for 16 days to capture

seismic responses during aftershocks of the main event. The wireless sensors powered

by D-cell batteries synchronize with each other through multi-hop communication

and continuously record the acceleration in three directions at a sampling frequency

of 100Hz. The continuous measurement last more than two weeks on the batteries.

Average noise level is specified as 0.5𝜇g/
√
𝐻𝑧 and single-hop communication distance

of the prototype is about 20-30m [42, 43]. The collected data was saved in the SD card

on each node. The stand-alone wireless system without the need of external power

source or communication lines made it possible to establish this seismic monitoring
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system with a large number of measurement nodes in the earthquake hit area in a

short time after the main shock. In total more than 20 nodes were installed.

Figure 2-18: Sensor installation plan for steel box girder bridge

Sensors were deployed on abutment, girder-ends, pier caps, and ground at the

bottom of the pier at the steel box girder bridge. Note that, not only box-girder

side but also the girder ends on the I-girder side, where I-girders meet with the box-

girders, were also equipped with sensors. The sensor locations and the numbering are

presented in Figure (2-18). A1 denotes the abutment, and P1 denotes the pier. An

example of sensor installation on the steel I-girder and next to one of the bearings on

the pier at the measurement site is depicted on Figure (2-19). Epson M-A351 wireless

sensors are depicted in Figure (2-20)

Two spans on the east end of the PC-box girder bridge were selected as the target

and ten nodes were installed on the deck with 10-20m intervals including the sink

node. Furthermore, three sensors were installed on the ground near abutment, at

mid-elevation and at the bottom of the pier as depicted on the sensor installation

plan. Sensor installation plan and an example of sensor installation at the pier bottom

on measurement site are depicted in Figure (2-21).

Data collection from PC-box girder bridge nodes were only successful on four nodes

about ten hours. The sensors were installed on the road side near the wall (Figure

2-21); antenna inside the water-proof casing was set close to the wall confining the RF
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(a) Node 42

(b) Node 44

Figure 2-19: Sensor installation example (a) on the girder and (b) next to the bearing

(a) Sensor prototype (b) Installation on site

Figure 2-20: Epson M-A351 wireless sensor (a)prototype and (b) on site
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Figure 2-21: Sensor installation plan for PC box girder bridge

wave propagation fields, which is considered a partial reason behind the low success

rate at this bridge. Thus, in this study only the records collected from steel box girder

bridge are presented.

2.2.3 Measured Seismic Response Data

During the 16-days measurement period, 61 aftershocks occurred with a maximum

magnitude of 4.9 according to Japanese Meteorological Agency (JMA) and National

Research Institute for Earth Science and Disaster Resilience (NIED) databases. The

response of the steel box girder bridge from all events were successfully captured.

In Table 2.5, magnitude, distance of the epicenter to the bridge site, and PGA

in the transverse and longitudinal directions of the bridge were given. Figure 2-
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Figure 2-22: Magnitude and distance relationship of recorded earthquakes at the
ground node
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Figure 2-23: PGA measured at the Ground Node 049 (near the bottom of the pier)
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22 depicts the magnitude - distance relationship of the recorded seismic motions at

the ground node of the target bridge. The event with the largest magnitude was a

𝑀𝑤 4.9 earthquake with an epicenter distance of 39 𝑘𝑚 to bridge site. The farthest

earthquake epicenter was 41 𝑘𝑚 with a magnitude of 𝑀𝑤 4.6.

Fig. (2-23) shows the the relationship between the measured PGA at the ground

node near the bottom of the pier in the transverse and longitudinal directions.
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Figure 2-24: Representative waveform from measurement at the ground node
(Node049)

Event data was extracted based on the occurrence times on JMA and NIED

databases presented in the Appendix. The epicenter locations of the recorded events

are in 40 km range from the target site. Figure (2-24) shows a representative waveform

of the smallest events which were recorded at the ground node of steel box girder

bridge. Even though the seismic excitation level is very low, the prototype sensors

have a high sensitivity and are able to capture the responses.

Moreover, in the vertical direction the beginning of each event is inspected to val-

idate the synchronization between nodes. Figure (2-25) shows the recorded responses
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Figure 2-25: Synchronization between ground, pier and abutment nodes

at the beginning of an event in vertical direction. All nodes are found synchronized

in a satisfactory manner. However, the synchronization error for one node is found

0.01 second (one sample) due to unexpected loss of one sample in the SD card sav-

ing process. For the purposes of this study the synchronization error is considered

negligible.

Response Spectra of the Records

Figure 2-26: Response Spectra of ground node – Transverse direction

The response spectra in the transverse direction is calculated for the ground node
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(Node 049) and presented in Figure (2-26). The peak horizontal acceleration ranges

between 34.8 – 0.6 gal. and 27.9 – 0.6 gal. in transverse (X) and longitudinal (Y)

directions of the target bridge. The peak vertical acceleration ranges between 14.8

– 0.2 gal. (see Tables (2.4) and (2.5)). Detailed inspection of the loading conditions

based on response spectra will be given in section 4 in relation with the displacement

response analysis of the bearings.

Displacement Estimation

Displacement estimation using acceleration is important because displacement mea-

surement is not always feasible due to the lack of reference point and often more

expensive than acceleration measurements. While many researchers suggested effec-

tive yet complicated solutions to this problem, simple and effective methods are not

readily available. The suggestions given by references ([37],[38]) are followed to under-

stand the source of the errors, which in turn cause erroneous displacement estimation

due to integration, and to remove them with several pre-processing steps such as anal-

ysis of the noise levels, selection of cut-off frequency, and filtering procedure/order,

tapering, and zero-padding.

Figure 2-27: Frequency amplitude spectra of the response of the bearing on Node 46
during EQ9

68



Figure 2-28: Relative displacement of a bearing under earthquake loads in horizontal
direction

In order to eliminate the low-frequency noise and to obtain a realistic displacement

estimation, first, cut-off frequency of the high-pass filter needs to be determined.

Through examination of the descending trends of Fourier amplitude spectra (Figure

2-27) for each response record on bearings in low-frequency range it is obtained as

0.2-0.5 Hz. To achieve a signal-to-noise ratio of three for each earthquake is the reason

for obtaining different cut-off frequencies. For instance, when a low amplitude signal

is examined, to obtain a signal-to-noise ratio of three is possible with a selection of

a high cut-off frequency such as 0.5 𝐻𝑧, or vice versa. By examining the estimated

displacements and to be consistent among all recorded response, the cut-off is chosen

as 0.5 𝐻𝑧 for high-pass filter for each recorded seismic response.

In addition, zero-padding was applied to avoid the errors due to unknown initial

conditions of velocity and displacement and thus tapering was applied both ends

of the data to ensure the smooth transition from data to the zero-padded regions

before filtering the records. Acceleration data was filtered (Butterworth IIR filter)

in time domain twice, i.e. once in one direction and then in the reverse direction,

to achieve zero-phase. Figure (2-28) shows a representative estimated displacement
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time-history for a bearing under earthquake 6 in vertical direction. Here, between 10-

15 sec. the displacement waveform presents some irregularity. This is due to the fact

that some of the earthquake responses contaminated by vehicular load disturbance.

Since the vehicular response cut-off frequency is different ( 0.2 𝐻𝑧) from the seismic

response cut-off, when high-pass filtered with a cut-off of (0.5 𝐻𝑧), distortions in the

displacement estimation occurs as an overshoot where there is a vehicular disturbance

in the response data. The time frames of the vehicle disturbances within seismic

response are determined and removed from the data before calculating displacements

of the bearings.

In addition, the largest vehicular response in transverse, longitudinal, and vertical

directions are found 0.8, 0.25 and 0.06 mm, respectively. Because the corresponding

maximum displacements under seismic loads are 2, 1, and 0.04 mm, the horizontal

behavior of the bearing during relatively large aftershocks is larger than the bearing

motion due to vehicular passages. The bearing motion during aftershocks are thus

studied.

Bearing Behavior

Bearing motions are obtained by subtracting the pier/abutment motion from the

girder-end motion and by using the above mentioned method. Bearing behavior

under some of the representative earthquakes are discussed in this section.

Based on the bearing displacement response, the demand from EQ57 and 58 in

transverse direction is more dominant than the longitudinal direction. Displacement

trajectories are presented in Figure (2-29). The node numbers of the bearings are

presented on top of each figure and the locations can be seen from Figure 2-18. The

relative displacement of the bearings located on the I-girder span are about twice

larger than the displacement of the bearings supported by pier on the box-girder

span, which are similar to the behavior of the bearings on the abutment.

Moreover, EQ58 has the largest PGA in the transverse direction (Tables (2.4)

and (2.5)) of the viaduct and the PGA is about twice larger than the PGA in the

longitudinal direction. On the other hand, although EQ57 has the second largest
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Figure 2-29: Bearing relative displacements under EQ57 (blue lines) and EQ58 (or-
ange lines)

Figure 2-30: Response spectra on Node 049 for EQ57 (blue lines) and EQ58 (orange
lines)

PGA (25.4 gal) in transverse direction, the PGA in the longitudinal direction is also

similar (24.1 gal.). When response spectra (Figure 2-30) on Node 49 is examined in

the longitudinal direction, both earthquakes have similar demands over the 0.1-0.25

period range. On the contrary, EQ58 has about twice larger energy input to the

system between 0.12 – 0.3 period range in the transverse direction.
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Chapter 3

Theory and Method Verification

Data assimilation methods such as Kalman filters has capability to estimate unknown

states and system parameters jointly as long as the system is observable. However, in

structural dynamics area their capability has been mostly investigated using simula-

tions and not illustrated on a problem of practical significance. One of the important

reason for this limitation is that data assimilation methods require full knowledge of

the system noise statistics in order to achieve successful estimates. However, noise

statistics of a system is unknown a-priori. In addition, for practical parameter esti-

mation under seismic loads there are also other important goals to achieve in order

to be successful. This is mainly due to the variation of each seismic input. First of

all, robustness against initial conditions is of significance because for instance after a

large earthquake the current condition of the structure is not known, so is the initial

state vector which is needed for the algorithms. In this perspective, the more robust

the algorithm, against unknowns, the more reliable the results of the estimation.

Secondly, seismic input transfers most of its energy to the system in a limited

amount of time. This time period is known as "significant duration" and it is usually

at the order of 2-8 seconds. Before and after this duration the observation (data)

gathered from the system is mostly not informative so that the algorithm learn about

the system and achieve an estimate. Moreover, significant duration is also a limited

time for the algorithm to learn the information. Thus, in order to accomplish mean-

ingful estimation under seismic loads algorithm should quickly converge and be able
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to track the system behavior in a stable manner after the convergence. The conver-

gence rate and track ability of the algorithm also depends on the unknown statistics,

mainly the process noise covariance.

In this chapter, first a well studied nonlinear data assimilation method namely

Unscented Kalman Filter (UKF) will be explained. In UKF, the initial process and

measurement noise covariance always need to be fine tuned as they are kept constant

over the estimation period. Unless the noise covariances are true, UKF cannot con-

verge or provide a satisfactory estimation, especially for parameters. Consecutively, to

overcome this drawback a stochastic approximation scheme, namely Robbins-Monro,

has been adopted to optimize and update noise covariances during the estimation as

suggested by [44]. Robbins-Monro scheme and its usage with UKF is explained in

detail in Section 3.2. In the last section of this chapter, verification simulations are

illustrated for UKF-RM with comparisons to UKF considering an ideal case. Here, an

ideal case refers to the case where there is no measurement noise. In addition, process

noise matrix, 𝑄 is found manually by trial and error method. Then two algorithms’

performance is studied comparatively.

3.1 Unscented Kalman Filter (UKF)

With the use of the Unscented Transform in Kalman filter [45, 46], Unscented Kalman

Filter (UKF) eliminates the need of linearization, and hence calculation of Jacobians,

to find solutions for nonlinear parameter estimation problems. Although UKF is a

considerably new filter compared to its counterpart such as Extended Kalman filter

(EKF), it has been proven that UKF [47, 44] is superior based on the convergence

performance, estimation accuracy especially when dealing with higher order nonlin-

ear problems. Moreover, in structural dynamics the problems are often inevitably

nonlinear when especially joint estimation of parameters and states is sought. Joint

estimation problem is intrinsically nonlinear even though a linear model is considered

due to its augmented state vector. UKF has also been proven to be highly capable

when dealing with nonlinearities in the governing equations in structural dynamics
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area when compared to its counterpart, EKF [18].

Such nonlinear problems are often the interest due to necessity in structural engi-

neering. For example, using a softening SDOF system showed UKF’s capability when

dealing with highly nonlinear systems is better than EKF.

General UKF equations using scaled unscented transformations [48] are as follows.

𝑥𝑎(𝑘 + 1) = 𝐹 (𝑥𝑎(𝑘)) + 𝑤(𝑘) (3.1)

where 𝐹 : state transition function, 𝑥𝑎: augmented state vector and 𝑤: process

noise with covariance Q and

𝑧(𝑘) = 𝐻(𝑥𝑎(𝑘)) + 𝑣(𝑘) (3.2)

where 𝐻: observation function, 𝑧: measurements and 𝑣: measurement noise with

covariance R.

Initialize with:

𝑥̂0 = 𝐸[𝑥0] (3.3)

and

𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)
𝑇 ] (3.4)

For 𝑘 ∈ [1, ...,∞]

Calculate sigma points using unscented transform as:

X𝑘−1 =

[︂
𝑥̂𝑘−1 𝑥̂𝑘−1 + 𝛾

√
𝑃𝑘−1 𝑥̂𝑘−1 − 𝛾

√
𝑃𝑘−1

]︂
(3.5)

These sigma points are propagated through the nonlinear function 𝐹 (𝑥𝑘)

X𝑖
𝑘|𝑘−1 = F[X𝑖

𝑘−1] (3.6)

where 𝑖 = 0, ..., 2𝐿 and 𝐿 is the dimension of the state vector 𝑥𝑎.

75



The set of the sample points X𝑖
𝑘|𝑘−1 represents the predicted probability density

𝑝(𝑥𝑘|𝑦1:𝑘−1) where

𝑝(𝑥𝑘|𝑦1:𝑘−1) = 𝑁(𝑥𝑘; 𝑥̂𝑘|𝑘, 𝑃𝑘|𝑘) (3.7)

In Eq. (3.7), 𝑁(𝑥;𝑚,𝑃 ) represents a Gaussian density with argument 𝑥, mean 𝑚

and covariance 𝑃 .

After propagation of sigma points through function 𝐹 (𝑥𝑘), the mean and covari-

ance of the next state are approximated using a weighted sample mean and covariance

of the posterior sigma points and the time update step is continued as follows:

𝑥̂𝑘|𝑘−1 =
2𝐿∑︁
𝑖=0

𝑊 (𝑚)
𝑖X

𝑖
𝑘|𝑘−1 (3.8)

𝑃𝑘|𝑘−1 =
2𝐿∑︁
𝑖=0

𝑊 (𝑐)
𝑖[X

𝑖
𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1][X

𝑖
𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1]

𝑇 +Q𝑘−1 (3.9)

where 𝑄 is the process noise covariance.

Consecutively the predicted measurements are obtained as propagating sigma

points through measurement equation as follows:

Z𝑖
𝑘|𝑘−1 = H[X𝑖

𝑘|𝑘−1] (3.10)

𝑧𝑘|𝑘−1 =
2𝐿∑︁
𝑖=0

𝑊 (𝑚)
𝑖Z

𝑖
𝑘|𝑘−1 (3.11)

Then the measurement update equations are as follows:

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 +𝐾𝑘(𝑧𝑘 − 𝑧𝑘|𝑘−1) (3.12)

Here 𝑒 = (𝑧𝑘 − 𝑧𝑘|𝑘−1) is called innovation which represents the difference between

the actual measurements and the final estimation at the current time-step.

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑘𝑃𝑘
𝑍𝑍𝐾𝑘

𝑇 (3.13)
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where 𝐾𝑘 is the Kalman gain and equal to

𝐾𝑘 = 𝑃𝑘
𝑋𝑍(𝑃𝑘

𝑍𝑍)
−1

(3.14)

𝑃𝑘
𝑍𝑍 =

2𝐿∑︁
𝑖=0

𝑊 (𝑐)
𝑖[Z

𝑖
𝑘|𝑘−1 − 𝑧𝑘|𝑘−1][Z

𝑖
𝑘|𝑘−1 − 𝑧𝑘|𝑘−1]

𝑇 +R𝑘 (3.15)

𝑃𝑘
𝑋𝑍 =

2𝐿∑︁
𝑖=0

𝑊 (𝑐)
𝑖[X

𝑖
𝑘|𝑘−1 − 𝑥̂𝑘|𝑘−1][Z

𝑖
𝑘|𝑘−1 − 𝑧𝑘|𝑘−1]

𝑇 (3.16)

where R𝑘 is the measurement noise covariance.

For a given dynamic system we usually do not know the parameter values accu-

rately a-priori and they need to be determined to obtain the response. Such system

parameters can be estimated when clean system states is known which is almost never

the real case [44]. Thus the estimation problem at hand becomes a nonlinear esti-

mation problem inherently where both states and parameters need to be estimated

simultaneously even the system itself is linear. This is one of the reasons why UKF

is chosen as the solution algorithm in this study.

Although UKF is a powerful tool for parameter estimation of nonlinear dynamic

systems, it is a well known fact the performance of the filter is affected by the initial

conditions provided to it such as process and measurement noise covariance matrices.

If they are not provided correctly, the filter suffers from divergence, instability or

false-true convergence [49]. On the other hand, for most of the dynamic systems

in real world it is not possible to know these noise covariance a-priori. Thus, the

application of UKF to real-world applications especially in structural dynamics is

limited or non-existent.

Furthermore, for dynamic systems under such excitation as earthquakes the pro-

cess itself is nonstationary and time variant, so as system response (measurement) is

also nonstationary. Thus, in addition to the lack of knowledge on the initial condi-

tions, the process and measurement noise are also not constant throughout the system

which increases the uncertainty. Here 𝑄 and 𝑅 matrices are covariance of the process
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and measurement noise respectively and play an important role in the performance of

UKF estimation. Especially 𝑄 play an important role in terms of rate of convergence

and tractability of the estimation. Thus, in order to be able to use UKF in real-world

problems a method that can adapt or approximate the noise covariance is needed.

Examples which illustrate these problems will be numerically shown later in Chapter

4.

3.2 UKF with Robbins-Monro Scheme (UKF-RM)

Although adaptative linear Kalman filters have been studied in the literature exten-

sively [50, 51, 52] and applied successfully to different dynamic problems, adaptive

nonlinear Kalman filters are an open area. From a general proint of view, adaptive

algorithms can be grouped in four categories, namely; Bayesian, maximum likelihood,

correlation and covariance matching as described by [51]. Some example methods can

be found in [53, 54, 55]

Current ad hoc approaches to make the filter convergent are limiting P from going

to zero, add Q to increase P before calculating the gain, multiplying P by a factor to

limit K which all have drawbacks and limitations [56].

In many fields such as aerospace engineering [57] adaptive Unscented Kalman fil-

ters have been a topic of recent interest. [44] summarized some options to approximate

unknown process and measurement noise covariance matrices for nonlinear Kalman

filters as follows:

∙ Constant diagonal noise covariance matrices obtained by trial and error

In structural dynamics problems, this approach is widely adopted to define the

noise covariance for the filter. The initial Q and R matrices are manually set

by trial and error method and kept constant over time. Manual setting such

values can be time-consuming and in fact does not always guarantee the optimal

solution.

∙ Adaptation of noise estimation for 𝑄. There are many ways to achieve adapta-
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tion as explained in [58]. For example, 𝑄 can be defined as 𝑄 = (𝜆−
𝑅𝐿𝑆1) * 𝑃

where 𝜆𝑅𝐿𝑆 is the "forgetting factor" determined by the recursive least-squares

algorithm. This way, past data is assigned approximate exponentially decaying

weighting. Details of the approach can be found in [59]. Selecting a single value

for adaptation of Q may cause problems as the ratio between the elements of Q

are not known a-priori and not equal between every couple. For example let’s

assume the correct ratio is X, a scalar value, between the elements of a diagonal

2x2 Q matrix. If we start with a wrong value of the ratio between them, the

correct value of the elements cannot be reached as the forgetting factor is always

one value and both of the elements are multiplied with this same value.

∙ Adaptation of noise estimation for Q, R or both based on the Robbins-Monro

stochastic approximation scheme [60] which can minimize the roots of func-

tions through noisy observations in an iterative manner. Use of Robbins-Monro

scheme to approximate noise estimations have been presented in [61] and its

use in EKF has been explored by [62, 63]. Then, Wan and van der Merwe in

[64] presented its use with UKF and discussed possible advantages. It allows

update of Q and R based on the time-varying weighting calculated from the

learned information during estimation.

Selection of these different approaches result in some advantages and disadvan-

tages regarding the problems at hand and such investigations are still an area of

open research [64]. On the other hand, adaptation of process and measurement noise

estimations in Unscented Kalman Filter for nonlinear state and parameter estima-

tion problems is necessary as explained in the previous section. Consequently, in this

chapter the advantages of using an adaptation scheme for noise covariance determina-

tion in UKF, namely the Robbins-Monro method, has been explored and compared

with the traditional method for structural dynamics problems via first simulations

and then application to real-world problems.

Estimates of the noise covariance Q and R using Robbins-Monro stochastic ap-

proximation scheme can be formulated as follows [62],[61],[44].
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𝑄𝑘 = (1− 𝛼𝑄) * (𝑄𝑘−1) + 𝛼𝑄 * (𝐾𝑘) * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 * (𝐾𝑇

𝑘 ) (3.17)

𝑅𝑘 = (1− 𝛼𝑅) * (𝑅𝑘−1) + 𝛼𝑅 * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 (3.18)

where 𝛼: a small positive number, which is usually chosen at the order of 10−2,

𝐾𝑘: Kalman Gain and (𝑧𝑘 − 𝑧−𝑘 ): innovation

After each time step, Q and R are calculated based on the latest estimation and

fed back as the new noise covariance into the next estimation step.

Recently the above given Robbins-Monro scheme has been used in UKF applica-

tion in varying fields such as; robotics [65], image processing [66], computer science

[67].

3.3 Simulation Results for UKF and UKF-RM: Ideal

Case

Using the E-Defense pier structural parameters, a SDOF system is defined. Mass is

obtained from the E-Defense C1-1 experiment report [1]. The reaction force in the

vertical direction measured by the load cells located on the pier cap is given equal to

2080𝑘𝑁 (Table 2.1) from the dead load of the girder and added mass on top of the

girder. In addition, the weight of the pier is given as 794.5𝑘𝑁 . Consequently, the

mass is calculated as

𝑚 = (2080 + 794.5/2)/𝑔 = 252.5𝑡𝑜𝑛 (3.19)

where 𝑔 = 9.81𝑚/𝑠2 is the acceleration of gravity. Thus, half of the pier weight

also contributes to the structure mass.

Design value for stiffness was also given as 𝑘 = 32506𝑘𝑁/𝑚 [1]. However, this

value was used only to set an initial value for state vector by multiplying it by a
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factor. In addition, 𝜁 = 3% viscous damping is assumed as 2−5% viscous damping is

considered a reasonable range for a single reinforced concrete column. Corresponding

damping factor 𝑐 is calculated based on mass and stiffness as 𝑐 = 𝜁2
√
𝑚𝑘. For a

SDOF system excited at its base with ground acceleration the governing equation of

motion becomes:

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = −𝑚𝑥𝑔(𝑡) (3.20)

where 𝑥(𝑡) is the displacement response and 𝑥𝑔(𝑡) is the ground motion accelera-

tion.

SDOF system response is simulated with the above given structural parameters

and using fourth order Runge-Kutta integration method to solve the governing equa-

tion. The input acceleration is the 100% Takatori (Modified) excitation.

Based on the above given governing equation the augmented state vector becomes

𝑋𝑎 = [𝑥, 𝑥̇, 𝑘, 𝑐]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 (3.21)

with states [𝑥, 𝑥̇, 𝑘, 𝑐] are to be estimated. Only mass is assumed as known in all

following structural parameter estimation cases.

Based on Eq. (3.20) the state space equation is formulated as:

𝑋̇𝑎 = 𝑓(𝑋𝑎(𝑡), 𝑢(𝑡)) (3.22)

where

𝑓(Xa(𝑡),u(𝑡)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥2

(−𝑥3𝑥1 − 𝑥4𝑥2)/𝑚+ 𝑥𝑔

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.23)

In Equation (3.23) 𝑢(𝑡) is the input force and 𝑢(𝑡) = 𝑚 𝑥𝑔

From simulated acceleration response, displacement response of the system is cal-
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culated with double-integration as explained in Chapter 2.1.3. Displacement calcu-

lated from the acceleration response of the system is considered as the observation in

the following parameter estimation algorithms. The reason why this displacement is

used as observation in estimation algorithms is actually straight-forward. In a real-

world measurement, often measuring velocity or especially displacement and force

is not currently possible during a seismic event. Thus, obtaining stiffness condition

of the target system with a practical tool using only acceleration measurements is

needed so that it can be adopted widely in practice. Thus, the observation equation

becomes:

𝑦 =

[︂
𝑥1

]︂
(3.24)

The input acceleration, simulated displacement and calculated displacement from

simulated acceleration response is presented in (Figure 3-1). From the top figure,

it can be seen that max. PGA is about 5𝑚/𝑠2. The bottom figure shows that

displacement response which is calculated from acceleration response with double

integration matches well with the simulated displacement response. The vertical red

lines correspond to the start and end of the 𝐷5 − 95% significant duration which

contains 5− 95% of the total energy of the input.

In the following sections, using the above described system, performance compar-

ison between the conventional UKF and UKF-RM are presented based on sensitivity

to selection of different initial values. Namely, the definition of initial values for the

elements of the process and measurement noise covariance 𝑄 and 𝑅, error noise co-

variance 𝑃 , initial state vector 𝑋0 and constants in Robbins-Monro 𝛼𝑄 and 𝛼𝑅 are

used as parameters to judge the performance of both algorithms and presented as

follows.

For the purpose of a fair investigation between two methods, namely UKF and

UKF-RM first, so-called optimum Q and R matrix covariance elements, which corre-

spond to each state and measurement, respectively are found by conventional trial and

error method. At this stage, only the common practice customs are used to determine
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Figure 3-1: Input acceleration at the column bottom; Displacement response at the
column top from simulation and double-integration of acceleration response

all the unknown initial filter parameters, e.g. 𝑄 ,and find a good estimation result

with conventional UKF. Then, using same initial filter parameters estimation has

been performed with UKF-RM. Finally, the results of two algorithm are compared.

Augmented state vector:

𝑋𝑎 = [𝑥, 𝑥̇, 𝑘, 𝑐]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 (3.25)

As displacement and velocity starts from zero, the corresponding initial state

vector values are assigned as zero. However, the current condition of stiffness and

damping, hence, the initial values, is not known in practice. About a 20% difference

from the true value is chosen for both because conventional UKF is also capable of

handling such model error. Initial state vector is shown below.

𝑋0 = [0, 0, 0.8𝑘, 0.8𝑐]𝑇 (3.26)

Initial error covariance, by definition, is set to
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𝑃0 = 𝑑𝑖𝑎𝑔[0, 0, (𝑘𝑡𝑟𝑢𝑒 −𝑋0(3))
2, (𝑐𝑡𝑟𝑢𝑒 −𝑋0(4))

2] (3.27)

Initially no measurement noise case is considered. Accordingly, 𝑅, measurement

noise covariance is set to zero.

Using the SDOF system explained above and initial values, parameter estimation

with UKF has been performed in which𝑄 and 𝑅matrices are kept constant during the

algorithm. Suitable 𝑄 values corresponding to each state vector element is searched,

meaning the filter is manually tuned, until the convergence of the state estimations is

obtained. The resultant 𝑄 matrix is shown below. Figures (3-2,3-3) shows the results

of state and parameter estimations from UKF.

𝑄 = 𝑑𝑖𝑎𝑔[10−4, 10−1, 2× 105, 2× 102] (3.28)
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Figure 3-2: State estimation results for correct initial selection 𝑄, 𝑅, 𝑃 with UKF

Using same process noise covariance shown above, parameter estimation with

UKF-RM algorithm has been performed. Figures (3-4,3-5) show the state and pa-

rameter estimation results, respectively. In UKF-RM extra parameters, 𝛼𝑄 and 𝛼𝑅,

which do not exist in UKF, are both set to 1/30 without any further consideration at
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Figure 3-3: Parameter estimation results for correct initial selection 𝑄, 𝑅, 𝑃 with
UKF

this stage. The sensitivity of the results to the selection of 𝛼 values are later presented

in Section 4.3
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Figure 3-4: State estimation results for correct initial selection 𝑄, 𝑅, 𝑃 with 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

From Figures (3-2,3-4), displacement and velocity response can be obtained with
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Figure 3-5: Parameter estimation results for correct initial selection 𝑄, 𝑅, 𝑃 with
both 𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30

both UKF and UKF-RM.

Furthermore, Figures (3-3) and (3-5) show that both methods can successfully

estimate both stiffness and damping when the part of the data after the significant

duration is considered.

However, in Figure (3-3), the stiffness estimation convergence does not occur until

about 10 seconds from the beginning of the data. Considering the fact that the

significant duration starts and end at 2.85 sec and 12.81 sec, the stiffness estimation

during this important region could not achieved with UKF. However, with UKF-RM

(Figure 3-3), the stiffness estimation convergence occur as soon as the significant

duration begins and remains stable. Mean percentage error between the two vertical

green lines (2 sec after the beginning and end of the significant duration) is 0.2% for

stiffness estimation.

When damping estimations are compared, the UKF damping estimation is again

slower than UKF-RM estimation inside the significant duration and remains stable.

UKF-RM damping estimation convergence occur when the significant duration starts

while with UKF convergence is achieved close to the end of significant duration. Mean

percentage error of the damping estimation between the two vertical green lines is
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2.1%.

It is a well known fact that the process noise covariance affects the tracking per-

formance and the convergence rate in UKF [44]. Thus, with this simple example it

is concluded that as UKF-RM can update the 𝑄 matrix during the estimation pro-

cess. Its convergence rate and track-ability are superior over the conventional UKF

in which 𝑄 is kept constant.
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Figure 3-6: Change in elements of 𝑄 with 𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30 for UKF-RM
and UKF

Figures (3-6,3-7) displays the change in the elements of 𝑄 matrix and 𝑅, as the

estimation propagates. Elements in 𝑄 and 𝑅 evolves based on the learned new infor-

mation from the filter UKF-RM while the conventional UKF keeps them constant.

Figure (3-8) displays the change in the elements of 𝑃 matrix as the estimation

propagates. As mentioned before 𝑃 represents the error noise covariance in Kalman

filter and it is the an evolving variable as estimation proceeds and it is common to
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Figure 3-7: Change in elements of 𝑅 with 𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30 for UKF-RM
and UKF

both conventional UKF and UKF-RM. However, it is the only evolving variable for

UKF and thus, it can be seen as the only learning source of the filter.

When the trend of change in 𝑃 matrix elements which correspond to stiffness and

damping parameters is examined, it can be seen that they are getting larger in UKF

with a very slow rate. This can be interpreted as the filter’s evolution rate is also slow.

In addition, it may be seen as an attempt to keep the filter stable and convergent by

increasing P. On the other hand with UKF-RM same elements seems to get smaller

with a much faster rate than UKF. This is due to better learning performance of

UKF-RM as it updates not only 𝑃 but also 𝑄 and 𝑅 at each time step. In addition,

it consists of a forgetting factor, 𝛼 which helps the filter to forget the history and

enforces learning from new information faster. These issues will be discussed more in

detail in the following Section (4.1) with more insight given for physical meanings of

these variables.

Comparison of two methods with the so-called "true" Q and R matrices in this

section showed two important results. First is that the performance of convergence

and track-ability of the parameter estimation algorithm is important, especially when

the response under seismic excitation is of interest. Because response is divided into
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Figure 3-8: Change in elements of 𝑃 with 𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30 for UKF-RM
and UKF

three regions based on the energy exerted on the structure, namely; before, during,

and after significant duration. Before and after significant duration the response

can be considered as linear response. For example, when only residual stiffness is

of interest, UKF results showed that the filter has enough time to converge and

thus convergence rate and track-ability may not be crucial performance targets of

concern. However, when large earthquake response is of interest, the seismic energy

is mostly dissipated by structural elements during significant duration. Thus, thus

the convergence rate and tractability inside significant duration becomes significant.

Secondly, nonetheless, UKF needs manual fine tuning to achieve a successful esti-

mation, which is not practical especially when seismic response is of concern. Thus,

the performance of two estimation methods, the sensitivity of the estimation results

to change in initial assumptions of the filters must be comparatively investigated.
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These initial assumptions include; initial filter statistics, 𝑄0, 𝑅0 and 𝑃0; initial state

vector, 𝑋0 in both filters. Moreover, the sensitivity UKF-RM results to change in

the scalar parameters 𝛼𝑄 and 𝛼𝑅 should also be examined. To do so, the following

sections will focus on the physical meanings of these parameters in the context of the

filter. Simulations will be carried out to show the sensitivity of estimation results

to the change in initial variables considering different response regions under seismic

excitation.
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Chapter 4

Simulation Results for Sensitivity

Investigation with Linear Model

4.1 Sensitivity to initial filter statistics; 𝑄0, 𝑅0 and

𝑃0

Kalman filter requires filter statistics, 𝑃0, 𝑄0 and 𝑅0, to be known a-priori [50]. Cur-

rently, the widely accepted method in structural dynamics is tuning these statistics

manually by trial and error method which is time-consuming and does not guarantee

optimal solution. Although there are attempts for adaptive procedures, filter tuning

does not have a commonly accepted procedure especially for the nonlinear variants

of the Kalman filter such as Extended Kalman filter or Unscented Kalman Filter

in structural dynamics area. In order to have an estimation method which can be

applied in practical estimation problems related to structural dynamics, especially

under earthquake loads, using candidate estimation algorithms the sensitivity of esti-

mation results to initial selection of the filter statistics 𝑄, 𝑅, 𝑃0 should be investigated

comparatively.

In Kalman Filter, the noise is assumed to be zero mean, and Gaussian. Consider

the noise is additive. Q, process noise covariance, controls the evolution of the filter

because it represents the uncertainty injected in the state equations providing. Thus,
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it provides assistance to the filter to learn through measurements. If it is 0, filter does

not learn any new information from the measurements [68, 56]. On the other hand,

finding an analytical approximation for Q is almost impossible because it represents

errors rising from many different sources, such as modeling errors, numerical errors,

and computational errors. In addition, the ratio of its elements also holds importance

during estimations.

𝑃0 and 𝑄 are closely related because they both contribute to the evolution of

the filter. 𝑃0 is especially effective during the transition from the initial transient

response to the steady state response, which is controlled by both 𝑃 and 𝑄 as the

filter evolves.

One trick that is applied in the current conventional UKF method is to assign

the initial P matrix, 𝑃0, rather a large value than it should be, so that the filter is

forced to converge quickly. However it is clear from above explanations that both

𝑃0 and 𝑄 have significant roles in order to make a filter optimal. Selecting large 𝑃0

values to enforce convergence may only be a quick fix, and can merely be a solution

for practical applications when this complex interacting problem at hand.

R, measurement error covariance, may be the easiest noise statistics to deal with,

as long as there is no measurement fault which requires special attention. In this

study, measurement fault detection is not a focus. Thus R will be treated as mea-

surement noise where the errors are assumed to be risen only from sources such as

environment noise and inherent sensor noise. R is also zero mean, Gaussian noise

and assumed to be additive similar to Q. Statistics of R can be determined from the

measured data objectively, when there is no measurement fault. However, it will be

treated as unknown in this section for the purpose of sensitivity investigation and for

revealing the capabilities of the algorithms.

When searching for upper and lower bound for each initial filter parameter, the

judging criteria is that the filter must be able to achieve a successful estimate of

states from the beginning of the data, stiffness and damping from the beginning of

the significant duration. The following suggestions on bounds is given based on this

criteria.
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4.1.1 Sensitivity to change in elements of 𝑄:

Let’s first consider the system in Section (3.3) and all other initial values are same as

before except Q matrix. The elements of Q is changed one by one and convergence

and stability of the filter is examined in both the "residual stiffness" and "significant

duration" ranges of the response. Suggestions to choose Q are made accordingly.

The so called correct Q was found as Eq. (3.28):

𝑄 = 𝑑𝑖𝑎𝑔[10−4, 10−1, 2× 105, 2× 102] (4.1)

in the previous section.

Starting with the element that corresponds to stiffness, 𝑄(3, 3), first an upper

bound value that results in convergent and stable state and parameter estimation

has been searched. Usually when searching for such values it is common to in-

crease/decrease the element value by a factor of 10. Thus with new Q matrix as

𝑄 = 𝑑𝑖𝑎𝑔[10−4, 10−1, 106, 2× 102] (4.2)

estimation algorithm with UKF is run.
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Figure 4-1: State estimation with UKF - 𝑄(3, 3) = 106
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Figure 4-2: Parameter estimation with UKF - 𝑄(3, 3) = 106
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Figure 4-3: Parameter estimation with UKF - 𝑄(3, 3) = 106 (zoomed)

Figures (4-1,4-2) show the results of state and parameter estimations from UKF

with 𝑄(3, 3) = 106. Although state estimations are correct, the stiffness estimation

starts a small divergent behavior starting across the significant duration at about 9

sec. This is also displayed in the zoomed estimation results Figure (4-3). In addition,

from the same figure it is observed that damping estimation convergence also slows
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down. Although it stays stable after convergence, the full convergence to the true

value could be achieved only after 20 sec.

Here there are two relevant information should be pointed out. First is the fact

that this is a simulation example. Thus, the uncertainty is considered to be small, or

controlled, when compared to a practical case and both algorithms strictly expected

to perform good. However, even with a small change in one of the elements in Q, the

corresponding parameter estimation results suffer.

Second point is, although the Q(4,4) was kept as the so-called true value as in

previous section, the change in Q(3,3) had an negative effect on the estimation con-

vergence of damping parameter. This is simply an evidence that the ratio of the

elements of Q is as much as significant as the individual values itself. Small changes

in the elements of Q which changes the ratio between the elements has a negative

effect on the individual estimation results.
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Figure 4-4: State estimation with UKF - 𝑄(3, 3) = 107

When 𝑄(3, 3), is increased one more time by a factor of 10 as:

𝑄 = 𝑑𝑖𝑎𝑔[10−4, 10−1, 107, 2× 102] (4.3)

The estimation results display the points made above more clear. Figures (4-4,4-
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Figure 4-5: Parameter estimation with UKF - 𝑄(3, 3) = 107
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Figure 4-6: Parameter estimation with UKF - 𝑄(3, 3) = 107 (zoomed)

5) show the results of state and parameter estimations from UKF with 𝑄(3, 3) = 107.

Although state estimations are correct, the weak performance of stiffness and damping

estimations are more clear. Divergence occurs in stiffness estimation which starts

inside the significant duration and becomes obvious at the later stages of the response.

In fact, even the "residual stiffness" cannot be estimated. In addition, from Figure
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(4-6) it is observed damping estimation convergence is even slower when compared

to previous cases and eventually it converges to a smaller value than the true value.
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Figure 4-7: State estimation with UKF - 𝑄(3, 3) = 105
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Figure 4-8: Parameter estimation with UKF - 𝑄(3, 3) = 105

Then 𝑄(3, 3) is set to 105 to search for a lower bound value which results in a

successful estimation of all states and parameters. Figures (4-7,4-8) shows the results
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of state and parameter estimations from UKF with 𝑄(3, 3) = 105. Although state

estimations are correct, stiffness estimation converges to a wrong (lower value) which

means filter is unable to learn enough from the information provided to it to ensure a

convergence. The only reason behind it is assigning a lower value to 𝑄(3, 3), because

the filter can estimate states and parameters correctly with Q equal to Eq. (3.28).

Here it should be noted that the value of 𝑄(3, 3) is lowered by only a factor two

which shows UKF’s extreme dependency to the correct assignment of noise statistics

in order to be able to achieve a successful estimation. This is often referred as "fine

tuning" in literature as Kalman Filter needs the exact noise statistics a-priori.

Another note is that estimation of parameters in a practical problem would not

let the user to judge what is the correct final estimate. As the current condition is

unknown, and in fact the target of the solution, by not using the exact correct noise

statistics the results of the estimation may be misjudged or even may not be possible.

This is one of the reasons why the sensitivity analysis is done using simulated data

in a controlled environment.

Figure (4-9) displays the change in the elements of P matrix as the estimation

propagates. As mentioned before P represents the error noise covariance in Kalman

filter and it is the only evolving noise statistics in conventional UKF. Hence, it is the

only learning source for the filter. When it is compared to Figure (3-8) P values in the

case of failed estimation are close to the case (Section 3.3) where successful estimation

is achieved. Thus, it can be concluded that there is no change in the evolution rate

of the filter. Hence this the best conventional UKF can do and it can only handle

small deviations from the true Q matrix.

Finally, 𝑄(3, 3) is lowered one more time by a factor of 10 and set to 104 to

study the UKF behavior. State estimations were successfully obtained. However,

parameter estimations suffer from the performance of the filter as depicted in Figure

(4-10). Stiffness estimation converges to a lower value which means filter performance

depends very much on the initially assigned Q value because of the lack of adaptation.

In addition, as the ratio of the elements of Q to each other is also important to ensure

a good filter performance, when the ratio is disturbed by changing only one element
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Figure 4-9: Change in P values with UKF - 𝑄(3, 3) = 105
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Figure 4-10: Parameter estimations with UKF - 𝑄(3, 3) = 104
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Figure 4-11: Change in P values with UKF - 𝑄(3, 3) = 104

of the matrix (corresponding to stiffness parameter) the second parameter, damping,

also suffers from divergence.

The poor evolution ability of the filter is also evident from the rate of change in P

element as depicted in Figure (4-11). As the assigned 𝑄(3, 3) is small, 𝑃 (3, 3) stays

almost constant and equal to its initial value as the estimation proceeds. Hence, filter

cannot learn new information as it becomes available.

When such lower and upper bounds is searched for UKF-RM with similar method-

ology above, it has been found that the range can be selected is much wider.

As for the lower bound, it seems there is none. As a representative, estimation

results of states and parameters that correspond to 𝑄(3, 3) = 10−20 are presented as

follows. From Figure (4-12) that displacement and velocity response can be obtained

successfully with UKF-RM even though 𝑄(3, 3) has been intentionally set to a very
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Figure 4-12: State estimation results with UKF-RM - 𝑄(3, 3) = 10−20 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-13: Parameter estimation results with UKF-RM - 𝑄(3, 3) = 10−20 and
𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30

small value. Figure (4-13) shows the parameter estimation results. We can clearly see

that when the significant duration starts, the convergence is achieved for both stiffness

and damping. The mean percentage error between the two vertical green lines is

only 0.2% for stiffness estimation. When damping estimation is examined, although
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the initial ripples in damping estimation seems larger than stiffness estimation, the

percentage error of the mean between the vertical green lines is about 2.1%. It should

be noted that when a merely smaller value was set in UKF, parameter estimation

results was very much affected as evolution rate of the filter was very slow. The

results obtained with UKF-RM proves that with Robbins-Monro stochastic scheme,

𝑄 can be updated and thus filter can reach to a successful parameter estimation even

when a wrong initial 𝑄 is set.
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Figure 4-14: State estimation results with UKF-RM - 𝑄(3, 3) = 1013 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30

As for the higher bound, 𝑄(3, 3) = 1013 seems to be the value as filter results in

divergence when 𝑄(3, 3) = 1𝑒14. From Figure (4-14) that displacement and velocity

response can be obtained successfully with UKF-RM even though 𝑄(3, 3) has been

intentionally set to a large value. Figure (4-15) shows the parameter estimation re-

sults. We can clearly see that 2 seconds after the significant duration the convergence

is achieved for both stiffness and damping. In both stiffness and damping estimation

although there is a small ripple right after the convergence the estimation is consid-

ered stable as the mean percentage error between the two vertical green lines (2 sec

after the beginning and end of the significant duration) is less than 1%.

With the above investigation when𝑄(3, 3) is assigned a value with in the [10−20 1013]

102



0 5 10 15 20 25 30 35 40 45 50
Time (sec)

2

2.5

3

3.5

4

S
tif

fn
es

s[
kN

/m
]

×104

True Stiffness
Estimated
Significant Duration

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

0

100

200

300

D
am

pi
ng

 [k
gs

-1
]

Figure 4-15: Parameter estimation results with UKF-RM - 𝑄(3, 3) = 1013 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

limits, the proposed method is able to reach stable and consistent successful state and

parameter estimation results. Given limits for initial selection of an element in Q ma-

trix is much wider and provides flexibility in the analysis. This conclusion hold true

for both "residual stiffness" and the stiffness estimation inside the significant dura-

tion which corresponds to nonlinear behavior range for this case. Additionally the

change in Q, R and P matrix elements for both both lower and upper bound of 𝑄(3, 3)

are presented as follows in Figures (4-16-4-21). From these figures it is evident that

although the assigned Q value for stiffness is wrong, the filter adapts itself as the

new information becomes available and does it in a quick manner as all estimation

results in a satisfactory performance even inside the significant duration. Thus, the

proposed method is promising especially to be applied in problems of practical sig-

nificance. In the following chapter practical application of UKF-RM to a variety of

practical problems will be studied.

Now let’s look at the ratio of each Q element as the estimation evolves. Figure

(4-22) presents the ratio of 𝑄(3, 3)/𝑄(4, 4) which represents the change of the ratio

of Q elements that corresponds to stiffness parameter to Q elements that corresponds

to damping parameter. Both parameter converges to their true values just around 5
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Figure 4-16: Change in Q values with UKF-RM - 𝑄(3, 3) = 10−20 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30

seconds. Before this time, both 𝑄(3, 3) and 𝑄(4, 4) try to settle down as they try to

achieve convergence, hence the ratio of these values is not constant. After 5 seconds,

the ratio of change in Q elements becomes constant as convergence occurs for both

parameters.

Furthermore, Figure (4-23) presents the ratio of 𝑄(3, 3)/𝑄(1, 1) which represents

the change of the ratio of Q elements that corresponds to stiffness parameter to Q

elements that corresponds to displacement state. Figure (4-24) presents the ratio of

𝑄(3, 3)/𝑄(2, 2) which represents the change of the ratio of Q elements that corre-

sponds to stiffness parameter to Q elements that corresponds to velocity state.

Thus, the change in ratio between the elements of Q as the estimation evolves

proves that UKF-RM is capable to update Q by scaling the noise covariance matrix

by multiple factors and provides a robust estimation scheme.
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Figure 4-17: Change in Q values with UKF-RM - 𝑄(3, 3) = 1013 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30
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Figure 4-18: Change in R values with UKF-RM - 𝑄(3, 3) = 10−20 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-19: Change in R values with UKF-RM - 𝑄(3, 3) = 1013 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30
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Figure 4-20: Change in P values with UKF-RM - 𝑄(3, 3) = 10−20 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30
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Figure 4-21: Change in P values with UKF-RM - 𝑄(3, 3) = 1013 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

In a similar manner, lower and upper bounds also searched for 𝑄(4, 4) which

relates to damping parameter. The lower and upper bounds for 𝑄(4, 4) element in

Q matrix are found as [10−20 108]. The proposed method is able to reach stable and

consistent successful state and parameter estimation results within the given limits

of initial value for 𝑄(4, 4). When 𝑄(4, 4) is set to 1099 the algorithm encounters a

numerical failure and stops estimation. Thus 𝑄(4, 4) = 108 is selected as the upper

bound. For the lower bound, as in the case for 𝑄(3, 3) it seems like there is no limit

also for 𝑄(4, 4). Even when it is assigned as equal to 10−200 the estimation proceeds

and results in successful state and parameter estimation. However, as setting such a

low value for Q is not realistic the lower bound is limited to 10−20. Results of state

and parameter estimations are given in Figures (4-25) and (4-26) as representative

when 𝑄(4, 4) = 108. Corresponding change in Q, R and P changes during estimation
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Figure 4-22: Ratio of 𝑄(3, 3)/𝑄(4, 4) with UKF-RM - 𝑄(3, 3) = 1𝑒13 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-23: Ratio of 𝑄(3, 3)/𝑄(1, 1) with UKF-RM - 𝑄(3, 3) = 1𝑒13 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30

are depicted in Figures ((4-27-4-29)).

Thus, it can be concluded that initial values of the elements in Q matrix which

correspond to unknown parameters can be assigned in a flexible way when this prob-

lem setting is considered. As given before, the problem consists of 20% modeling
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Figure 4-24: Ratio of 𝑄(3, 3)/𝑄(2, 2) with UKF-RM - 𝑄(3, 3) = 1𝑒13 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-25: State estimation results with UKF-RM - 𝑄(4, 4) = 108 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30

error as initial parameter assumption and 𝑃0 is given as in Eq. (3.27) and there is no

measurement error. Although both states and parameters were successfully estimated

regardless of the assigned initial values of 𝑄(3, 3) and 𝑄(4, 4), it should be carefully

noted the simulations are in a controlled environment and in practice there is larger
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Figure 4-26: Parameter estimation results with UKF-RM - 𝑄(4, 4) = 108 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

uncertainty. In theory, as Q becomes close to zero the evolution ability of the filter

also decreases for conventional UKF. Although this drawback can be overcome using

UKF-RM as shown with the above investigation, it is recommended to assign initial

values of Q for parameters at the order (or higher) of the parameter value itself.

Following, sensitivity to change in elements of Q that correspond to states, 𝑄(1, 1)

and 𝑄(2, 2) is investigated. First, let’s consider 𝑄(1, 1) which corresponds to the

process noise covariance of displacement state. The lower and upper bounds for

𝑄(1, 1) element in Q matrix are found as [10−17 1031], which results in successful

estimation of both states and parameters starting from the beginning of the significant

duration. When 𝑄(1, 1) is set to 10−18 the algorithm encounters a numerical failure

and stops estimation. Thus 𝑄(1, 1) = 10−17 is selected as the lower bound. Results of

state and parameter estimations are given in Figures (4-30) and (4-31) when 𝑄(1, 1) =

10−17. Moreover, when 𝑄(1, 1) is set to 1032 or a larger value divergence occur in state

estimations, namely in velocity. When 𝑄(1, 1) = 1𝑒31 both states and parameters

can be estimated successfully. Results of state and parameter estimations are given

in Figures (4-32) and (4-33) when 𝑄(1, 1) = 1031. However, successful damping and

stiffness parameter estimations can only be achieved after the significant duration
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Figure 4-27: Change in Q values with UKF-RM - 𝑄(4, 4) = 108 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30
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Figure 4-28: Change in R values with UKF-RM - 𝑄(4, 4) = 108 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30
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Figure 4-29: Change in P values with UKF-RM - 𝑄(4, 4) = 108 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

ends. Thus, by lowering the upper bound gradually an acceptable upper bound for

the criteria in consideration is found as 108. 2 seconds after the start of the significant

duration, both stiffness and damping results in an estimation with an error less than

5% away from the true value. Results of state and parameter estimations are given

in Figures (4-34) and (4-35) when 𝑄(1, 1) = 108.

Similarly, the lower and upper bounds for 𝑄(2, 2) element (which corresponds to

velocity) in Q matrix are found as [10−20 1012], which results in successful estimation

of both states and parameters starting from the beginning of the significant duration.

For the lower bound, as in the case for 𝑄(3, 3) it seems like there is no limit also

for 𝑄(2, 2). Even when it is assigned as equal to 10−200 the estimation proceeds and

results in successful state and parameter estimation. However, as setting such a low

value for Q is not realistic the lower bound is limited to 10−20. Results of state and
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Figure 4-30: State estimation results with UKF-RM - 𝑄(1, 1) = 10−17 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-31: Parameter estimation results with UKF-RM - 𝑄(1, 1) = 10−17 and
𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30

parameter estimations are given in Figures (4-36) and (4-37) as representative when

𝑄(2, 2) = 10−20.

For the upper bound, when 𝑄(2, 2) = 1024 or larger than the velocity estimation

starts to get affected adversely, thus divergence occurs in velocity state. Displacement
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Figure 4-32: State estimation results with UKF-RM - 𝑄(1, 1) = 1031 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-33: Parameter estimation results with UKF-RM - 𝑄(1, 1) = 1031 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

and both parameters can be estimated successfully. When it is set to 𝑄(2, 2) = 1023

both states (Figure 4-38) and damping are estimated satisfactorily however stiffness

estimation was only successful after the significant duration ends (Figure 4-39). The

upper bound which can satisfy the stiffness estimation criteria is found as 𝑄(2, 2) =
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Figure 4-34: State estimation results with UKF-RM - 𝑄(1, 1) = 108 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-35: Parameter estimation results with UKF-RM - 𝑄(1, 1) = 108 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

1012. The proposed method is able to reach stable and consistent successful state

and parameter estimation results within the given limits of initial value for 𝑄(2, 2).

Results of state and parameter estimations are given in Figures (4-40) and (4-41) as

representative when 𝑄(2, 2) = 1012.
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Figure 4-36: State estimation results with UKF-RM - 𝑄(2, 2) = 10−20 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-37: Parameter estimation results with UKF-RM - 𝑄(2, 2) = 10−20 and
𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30

Although UKF-RM can overcome incorrect initial values as shown with the above

investigation for both states, assigning 𝑄(1, 1) and 𝑄(2, 2) a very large value is not

likely. It is recommended to assign initial values of Q for states at the order of the

states’ maximum value itself or a lower value.

116



0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.05

0

0.05

0.1

di
sp

la
ce

m
en

t[m
] Double Integrated

Estimated

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2
ve

lo
ci

ty
[m

/s
]

Figure 4-38: State estimation results with UKF-RM - 𝑄(2, 2) = 1023 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-39: Parameter estimation results with UKF-RM - 𝑄(2, 2) = 1023 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

In summary, UKF-RM can achieve successful estimation of states and parame-

ters in a wide range of Q values. On the other hand UKF cannot achieve a good

estimation unless the correct Q values are assigned to the filter a-priori by manual

fine-tuning. The criteria to judge the performance is that the filter must be able to
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Figure 4-40: State estimation results with UKF-RM - 𝑄(2, 2) = 1012 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-41: Parameter estimation results with UKF-RM - 𝑄(2, 2) = 1012 and 𝛼𝑄 =
1/30 and 𝛼𝑅 = 1/30

achieve a successful estimate of states from the beginning of the data, stiffness from

the beginning of the significant duration and damping from the end of significant

duration. Table (4.1) gives the summary of the sensitivity of the UKF-RM results to

change in the initial Q, process noise matrix based on this criteria.
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Table 4.1: Upper and lower bound suggestions based on the sensitivity analysis for
initial Q matrix

𝑄(1, 1) 𝑄(2, 2) 𝑄(3, 3) 𝑄(4, 4)
Lower B. 10−17 10−20 10−20 10−20

Upper B. 108 1012 1013 108

4.1.2 Sensitivity to change in elements of 𝑅 and measurement

noise:

R, measurement noise covariance matrix is one dimensional since there is only one ob-

servation, namely; displacement. Four cases will be considered to investigate the sen-

sitivity of estimation performance of both algorithms to change in initial R value,𝑅0,

assignment in case of a variety of measurement noise. By assigning initial R value,

𝑅0, different values the table below shows the considered measurement noise cases

where measurement noise with a covariance, 𝑅𝑅 is set to:

∙ Observation consists no measurement noise, 𝑅𝑅 = 0

∙ 𝑅𝑅 = (0.01×𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)
2

∙ 𝑅𝑅 = (0.05×𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)
2

∙ 𝑅𝑅 = (0.10×𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)
2

where 𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 is the root mean squared value of the measurement.

Measurement noise 𝑤 with a covariance equal to 𝑅𝑅, is added to the simulated

measurement to obtain observation as follows:

𝑤 = 𝑤ℎ𝑖𝑡𝑒𝑛𝑜𝑖𝑠𝑒+
√
𝑅𝑅 (4.4)
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𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡+ 𝑤 (4.5)

Considered cases are summarized in Table (4.2) as follows:

Table 4.2: Cases considered for sensitivity analysis for initial Q matrix

Case Measurement Noise 𝑅0 Result
1 0 20% UKF-RM:OK

UKF:OK
2 1% 20% UKF-RM:OK

UKF:OK
3a 5% 1% UKF-RM:OK

UKF:Diverge
3b 5% 10% UKF-RM:OK

UKF:Diverge
4a 10% 1% UKF-RM:OK

UKF:Diverge
4b 10% 20% UKF-RM:OK

UKF:Diverge
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Figure 4-42: State estimation results with UKF - Case 1

Results of state and parameter estimations from UKF and UKF-RM that cor-

respond to cases 1 and 2 are given in Figures (4-42-4-49). Case 1 represents no
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Figure 4-43: Parameter estimation results with UKF - Case 1

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.05

0

0.05

0.1

di
sp

la
ce

m
en

t[m
] Double Integrated

Estimated

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2

ve
lo

ci
ty

[m
/s

]

Figure 4-44: State estimation results with UKF-RM - Case 1 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

measurement noise and Case 2 represents the case where a low measurement noise is

considered. In both UKF and UKF-RM estimations 𝑅0 is set to 20% which is very dif-

ferent from the actual value. As seen from the figures, both algorithms can estimate

states successfully. However, stiffness parameter estimations were convergent only
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Figure 4-45: Parameter estimation results with UKF-RM - Case 1 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-46: State estimation results with UKF - Case 2

after the significant duration in the case of UKF, where UKF-RM was successfully

estimated stiffness inside the significant duration with an error less than 1%. In ad-

dition, damping parameter was successfully estimated with UKF after the significant

duration in both cases. UKF-RM estimates damping parameter inside the significant
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Figure 4-47: Parameter estimation results with UKF - Case 2
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Figure 4-48: State estimation results with UKF-RM - Case 2 and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

duration with an error less than 1% in no measurement noise case, and with an error

less than 3% in Case 2. Thus, it may be concluded that damping parameter estima-

tions are more sensitive to changes in noise statistics and filter characteristics than

stiffness parameter estimations. Consecutively, although UKF-RM is more robust
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Figure 4-49: Parameter estimation results with UKF-RM - Case 2 and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30

than UKF as the rate of convergence is much faster, UKF can also be considered as

robust in the low measurement noise cases.
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Figure 4-50: State estimation results with UKF - Case 3a

Results of state and parameter estimations from UKF and UKF-RM that corre-

spond to cases 3a and 3b are given in Figures (4-50-4-57). In both cases 5% mea-
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Figure 4-51: Parameter estimation results with UKF - Case 3a
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Figure 4-52: State estimation results with UKF-RM - Case 3a and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

surement noise is added to the observation, which is usually considered as a regular

value. Case 3a corresponds to estimations with 𝑅0 is set to 1% and Case 3b corre-

sponds to estimations with 𝑅0 is set to 10% within both algorithms. As seen from

the figures, both algorithms can estimate states successfully. However, during param-
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Figure 4-53: Parameter estimation results with UKF-RM - Case 3a and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-54: State estimation results with UKF - Case 3b

eter estimations divergence occurs with UKF in both cases 3a and 3b. On the other

hand, with UKF-RM stiffness parameter was able to be estimated with an error 1%

inside the significant duration in both cases. In addition, damping parameter was

able to be estimated with an error 3% inside the significant duration in both cases.
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Figure 4-55: Parameter estimation results with UKF - Case 3b
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Figure 4-56: State estimation results with UKF-RM - Case 3b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

Consecutively, UKF-RM proves to be more robust than UKF even when a regular

measurement noise is considered.

Change in R values with UKF-RM considering case 3b is given in Figure (4-58).

Change in P values considering case 3b are depicted in Figures (4-59) and (4-60) for
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Figure 4-57: Parameter estimation results with UKF-RM - Case 3b and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-58: Change in R values with UKF-RM - Case 3b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

UKF-RM and UKF, respectively.

Considering a large measurement noise (10%), cases 4a and 4b are run with both

algortighms. Results of state and parameter estimations from UKF and UKF-RM

that correspond to cases 4a and 4b are given in Figures (4-61-4-68). Case 4a corre-
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Figure 4-59: Change in P values with UKF-RM - Case 3b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

sponds to estimations with 𝑅0 is equal to 1% and Case 4b corresponds to estimations

with 𝑅0 is equal to 20% within both algorithms. As seen from the figures, both

algorithms can estimate states successfully. However, during parameter estimations

divergence occurs with UKF in both cases 4a and 4b. On the other hand, with

UKF-RM stiffness parameter was able to be estimated with an error 2% inside the

significant duration in both cases. In addition, damping parameter was able to be es-

timated with an error 6% inside the significant duration in both cases. Consecutively,

UKF-RM proves to be more robust than UKF even when a regular measurement

noise is considered.

Change in R values with UKF-RM considering Case 4b is given in Figure (4-69).

Change in P values considering Case 4b are depicted in Figure (4-70) for UKF-RM.

In conclusion, UKF-RM is robust against erroneous assignment of 𝑅0 in both
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Figure 4-60: Change in P values with UKF - Case 3b
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Figure 4-61: State estimation results with UKF - Case 4a
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Figure 4-62: Parameter estimation results with UKF - Case 4a
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Figure 4-63: State estimation results with UKF-RM - Case 4a and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

small and large measurement noise conditions, where UKF is only robust when mea-

surement noise is very small (1%) or non-existent. The reason why UKF is not robust

is that, actually all filter statistics are related to each other. In order to achieve an

optimal estimation all statistics should be defined exactly correct. For example in this
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Figure 4-64: Parameter estimation results with UKF-RM - Case 4a and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-65: State estimation results with UKF - Case 4b

section even though 𝑄 and 𝑃0 matrices are kept as the so-called true matrices since

𝑅0, and hence 𝑅 in UKF is changed. Consecutively, values such as 𝑄/𝑅 are changed

which had an adverse affect on the estimation performance of UKF. This shows the

fact, when one of the filter statistics is changed the remaining must be fine-tuned in
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Figure 4-66: Parameter estimation results with UKF - Case 4b
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Figure 4-67: State estimation results with UKF-RM - Case 4b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

order to be able to achieve a satisfactory estimation which is not a practical way to

deal with estimation problems in real world.
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Figure 4-68: Parameter estimation results with UKF-RM - Case 4b and 𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30
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Figure 4-69: Change in R values with UKF-RM - Case 4b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

4.1.3 Sensitivity to change in elements of 𝑃0:

𝑃 and 𝑄 are closely related and 𝑃0 also one of the evolving parameter in the filter. 𝑃0

controls the transition from the initial transient response to the steady state response
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Figure 4-70: Change in P values with UKF-RM - Case 4b and 𝛼𝑄 = 1/30 and
𝛼𝑅 = 1/30

which is controlled by 𝑄. Thus, although effect of 𝑃0 quickly during estimation, if

it is not selected correctly the estimations end up sub-optimal. When 𝑃0 = 0, it

means there is no error in the initial estimates (initial state vector) which in turn

the filter ignores and learns nothing from measurements. On the other hand, it is is

extremely large then the filter will ignore or provide small weights to the state model

and trust in the measurements which would cause large fluctuations in the estimates

of parameter and states along with large final uncertainty.

For example, One trick that is applied in the current conventional UKF method

is to select the initial P matrix, 𝑃0, rather a large value than it should be so that

the filter is enforced to converge more quickly. However it is clear from previous

explanations that both 𝑃0 and 𝑄 have significant yet separate roles in order to make

a filter optimal. Selecting larger 𝑃0 values to enforce convergence may only be a quick
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fix, and merely can be a solution for practical applications, in this complex interacting

problem at hand.

As given in the beginning, an appropriate definition for 𝑃0 can be given as follows:

𝑃0 = 𝑑𝑖𝑎𝑔[0, 0, (𝑘𝑡𝑟𝑢𝑒 −𝑋0(3))
2, (𝑐𝑡𝑟𝑢𝑒 −𝑋0(4))

2] (4.6)

The sensitivity to change in P values will be investigated in this section. Consid-

ered cases are summarized in Table (4.3). In the table, 𝑃 𝑡𝑟𝑢𝑒
0 corresponds to the value

given in above Eq. (4.6)

Table 4.3: Cases considered for sensitivity analysis for initial P matrix, 𝑃0

Case 𝑃0 Stiffness Damping
1 10−6 × 𝑃 𝑡𝑟𝑢𝑒

0 UKF-RM:OK OK
UKF:OK OK

2 102 × 𝑃 𝑡𝑟𝑢𝑒
0 UKF-RM:OK OK

UKF:1% 10%
3 106 × 𝑃 𝑡𝑟𝑢𝑒

0 UKF-RM:OK OK
UKF:Diverge Diverge

Figure (4-71) depicts the results of parameter estimation with UKF-RM. In the

figure all three cases which correspond to Table (4.3) are shown. First, both stiffness

and damping estimations were successfully obtained just 2 seconds after the significant

duration begins. Estimation error inside the significant duration is about 1% and 2%

for stiffness and damping, respectively. Until the convergence achieved, as the 𝑃0

gets larger (e.g. Case 3 is the largest) fluctuations gets larger too. This is due to the

transient response of the filter which depends on 𝑃0. However, it is important to note

the convergence rate (which is mostly controlled by 𝑄) does not affected by different

𝑃0 and all three cases reach to convergence almost at the same time and exhibits a

stable behavior afterwards. All these observations made from UKF-RM are beneficial

in terms of application of system identification in realistic structures.

On the other hand Figure (4-72) presents a different story. Let’s first examine

stiffness estimation with UKF considering three different 𝑃0 assigned to the filter.

The fluctuations in the beginning of the data is very small as expected in Cases 1
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Figure 4-71: Parameter estimations with UKF-RM - Sensitivity to 𝑃0 (𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30)

and 2. Case 1 convergence time (at about 10-15 seconds) is almost same as the true

value, however, when 𝑃0 is assigned 100 times larger than the true value for the first

time the stiffness estimation with 1% error inside the significant duration is achieved

by UKF algorithm. However, corresponding damping estimation is overestimated by

10%. When 𝑃0 is increased more as in case 3, then the stiffness estimation starts

converging at about 10-15 seconds similar to case 1. In addition damping estimation

is also converged, it is overestimated by 180%, which is basically false convergence.

Thus, the results of UKF shows that there is a fine line between an optimal solution

and sub-optimal solution when the filter is not adapted and noise statistics are kept

constant over the estimation. In practice, this would result in many complicated

situations and judging the true value would become impossible. Thus, UKF-RM

proves itself as a good candidate as it results in fast and stable results with very
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Figure 4-72: Parameter estimations with UKF - Sensitivity to 𝑃0

flexible choices for initial noise covariance.

4.2 Sensitivity to initial state vector, 𝑋0, values

Initial state vector defines the starting value for each state and parameters. As

mentioned before we previously assumed a rather small model error and assigned the

initial state vector as:

𝑋0 = [0, 0, 0.8𝑘𝑡𝑟𝑢𝑒, 0.8𝑐𝑡𝑟𝑢𝑒]
𝑇 (4.7)

Now let’s consider 𝑋00 is equal to [0, 0, 𝑘𝑡𝑟𝑢𝑒, 𝑐𝑡𝑟𝑢𝑒]
𝑇 . Table (4.4) shows range of

initial values considered for the parameters with both UKF and UKF-RM in terms

of 𝑋00.
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Table 4.4: Cases considered for sensitivity analysis for initial state vector, 𝑋0

Case 𝑋0 residual stiffness Stiffness (S.D.) Damping
1 0.2 *𝑋00 UKF-RM:OK OK OK

UKF:OK - Diverge
2 0.5 *𝑋00 UKF-RM:OK OK OK

UKF:OK - Diverge
3 0.8 *𝑋00 UKF-RM:OK OK OK

UKF:OK - OK
4 1.2 *𝑋00 UKF-RM:OK OK OK

UKF:OK - Diverge
5 1.5 *𝑋00 UKF-RM:OK OK OK

UKF:OK - Diverge
6 1.8 *𝑋00 UKF-RM:OK OK OK

UKF:OK - Diverge
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Figure 4-73: Parameter estimations with UKF - Sensitivity to 𝑋0
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Figure 4-74: Parameter estimations with UKF-RM - Sensitivity to 𝑋0 (𝛼𝑄 = 1/30
and 𝛼𝑅 = 1/30)

Figure (4-73) shows parameter estimation results with UKF considering a variety

of initial state vectors. It is evident from the figure that stiffness estimation converges

at around 10 seconds regardless of the initial state vector. When the residual stiffness

portion is considered, maximum error in estimation was about 3%. However, damping

estimation can only be achieved with Case 3, which was the base case in all earlier

analysis. Hence it can be concluded, damping is more sensitive to changes in the

initial state vector and hence requires further tuning when ever the initial state vector

changes. In practical applications, such requirements are considered as burden. In

addition, and more importantly, as the current condition is the target of the problem,

a robust estimation algorithm should not be heavily affected by the choice of initial

state vector to achieve unbiased and understandable estimations.

On the other hand, UKF-RM (Figure (4-74)) can estimate both stiffness inside sig-
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nificant duration and after the significant duration with an error about 1%. Similarly,

it can also estimate both stiffness inside significant duration and after the significant

duration with an error about 2%.

4.3 Sensitivity to 𝛼𝑄 and 𝛼𝑅 selection

In UKF-RM, estimates of the noise covariance Q and R using Robbins-Monro stochas-

tic approximation scheme can be formulated as follows [62],[61],[44].

𝑄𝑘 = (1− 𝛼𝑄) * (𝑄𝑘−1) + 𝛼𝑄 * (𝐾𝑘) * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 * (𝐾𝑇

𝑘 ) (4.8)

𝑅𝑘 = (1− 𝛼𝑅) * (𝑅𝑘−1) + 𝛼𝑅 * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 (4.9)

where 𝛼: a small positive number, which is usually chosen at the order of 10−2.

Both 𝛼𝑄 and 𝛼𝑅 controls the adaptability of the filter. It can be considered as a

forgetting factor, which tells to the filter how quickly it should forget the previous

data and learn more from the new information as it becomes available. If it is a

rather small value, then the UKF-RM filter becomes more like the conventional one

as adaptability is low and evolution ability of the filter is ignores. As it becomes

larger, vice versa. However, the sensitivity of the filter to the selection of 𝛼 should

be investigated to find out whether fine-tuning is necessary or not for this filter. This

way, a fair comparison between UKF-RM and UKF can be made.

First, let’s consider a variety of 𝛼𝑄 values where 𝛼𝑅 is kept constant. As mentioned

before, the convergence rate depends on 𝑄 value and thus 𝛼𝑄 is important in this

manner. Figure (4-75) depicts parameter estimation results for a variety of 𝛼𝑄 values

when 𝛼𝑅 = 1/30. When 𝛼𝑄 is too small such as 0.001 then UKF-RM filter basically

behaves like the conventional UKF in terms of convergence rate. The estimation of

both stiffness and damping is only realized around about 10 seconds. However, as 𝛼𝑄

keeps increasing adaptability of the filter increases. Stiffness estimation is successfully
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Figure 4-75: Parameter estimations with UKF-RM (Linear model) - Sensitivity to
𝛼𝑄 (𝛼𝑅 = 1/30)

achieved inside the significant duration with an error about 1% and then it stays stable

until the end of the data. In addition, damping is also achieved successfully after the

significant duration ends in all cases with an error less than 2%. Damping is more

sensitive than stiffness estimation, inside and outside of the significant duration which

is a similar general conclusion drawn before. When damping parameter inside the

significant duration is of interest then selecting an 𝛼𝑄 value at about the order of 0.01

or larger is suggested.

Now let’s consider a similar sensitivity analysis by assigning the initial 𝑄 matrix

elements which correspond to stiffness and damping parameters a different value than

the so-called true one (Eq. 4.10).

𝑄0 = 𝑑𝑖𝑎𝑔[1𝑒− 4, 1𝑒− 1, 2𝑒5, 2𝑒2]𝑇 (4.10)
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New 𝑄0 matrix is selected in a random manner as follows:

𝑄0 = 𝑑𝑖𝑎𝑔[1𝑒− 8, 1𝑒3, 1𝑒8, 1𝑒− 2]𝑇 (4.11)
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Figure 4-76: Parameter estimations with UKF-RM (Linear model) with 𝑄0 = Eq.
(4.11) - Sensitivity to 𝛼𝑄 (𝛼𝑅 = 1/30)

Figure (4-76) shows parameter estimation results for a variety of 𝛼𝑄 values when

𝛼𝑅 = 1/30 and 𝑄0 = Eq. (4.11). When 𝛼𝑄 is equal to 0.001 then filter acts similar to

conventional UKF since the adaptation is slow and stiffness estimation convergence

occurs at around 10-15 seconds. However, damping estimation is not updated at all,

which is an evidence of the inference above that the filter acts like conventional non-

adaptive UKF. When 𝛼𝑄 is assigned a value larger than 0.001, then filter’s ability to

adapt gradually increases. Finally when it is assigned 0.01 or a larger value, stiffness

estimation is successfully achieved inside the significant duration with an error less
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than 1%. In addition, damping is also achieved successfully inside the significant

duration with an error less than 2% when 𝛼𝑄 ≥ 1/30. Thus, when damping parameter

inside the significant duration is of interest then selecting an 𝛼𝑄 value at about the

order of 1/30 or larger is suggested.
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Figure 4-77: Parameter estimations with UKF-RM (Linear model) with 𝑄0 = Eq.
(4.10) - Sensitivity to 𝛼𝑅 (𝛼𝑄 = 1/30)

Finally, the performance of UKF-RM based on its sensitivity to 𝛼𝑅, assuming 5%

measurement noise, 𝑅0 = 1% and𝑄0 = Eq. (4.10) is investigated. Stiffness estimation

is very robust both inside and after the significant duration when 𝛼𝑅 is chosen at the

order of [0.0010.1] and estimation error is about 2%. Moreover, damping estimations

are also successfully achieved for all cases inside the significant duration. damping

estimation results in an error of about 9% or less after the significant duration as

shown in Figure (4-77). Damping estimation results in an error of about 5% or less

during the significant duration as shown in Figure (4-77).
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Figure 4-78: Change in R values with UKF-RM with 𝑄0 = Eq. (4.10) and varying
𝛼𝑅 (𝛼𝑄 = 1/30)

Figure (4-78) depicts the change in R values as the filter adaptively estimates the

states and parameters. In theory, R value is expected to settle at a constant value

after finding the correct one, unless there is measurement faults. From figure, when

𝛼𝑅 = 0.1, the fluctuations in R value is considerably large when it is compared to

other two cases. This means when 𝛼𝑅 = 0.1, filter searches for a correct R value in a

larger range since the adaptivity increases as 𝛼 increases.
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Chapter 5

Stiffness Estimation using Seismic

Response Measurements

In this chapter, the proposed method will be first validated through laboratory exper-

iment using only acceleration measurements under small and large seismic excitation.

Furthermore, response measurement obtained from a full-scale bridge during after-

shocks of Kumamoto Earthquake are used to identify its rubber-bearing stiffness and

validate the applicability of the proposed stiffness identification algorithm.

5.1 Bridge Pier Shake Table Experiment

In this section, identification of stiffness will be validated with the proposed method

using small and large earthquake response measurements from E-Defense experiment.

The system can be considered as SDOF system as the bearings on the bent cap which

girder mass rests on is fixed as mentioned in Chapter 2.1.1. Thus for an SDOF system

excited at its base with ground acceleration the governing equation of motion becomes:

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = −𝑚𝑥𝑔(𝑡) (5.1)

where 𝑥(𝑡) is the displacement response and 𝑥𝑔(𝑡) is the ground motion accelera-

tion.
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Based on the above given governing equation the augmented state vector becomes

𝑋𝑎 = [𝑥, 𝑥̇, 𝑘, 𝑐]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 (5.2)

with states 𝑥, displacement; 𝑥̇, velocity; 𝑘,stiffness and 𝑐, damping are to be

estimated. Only mass, 𝑚 is assumed as known in all following structural parameter

estimation cases.

Mass is obtained from the E-Defense C1-1 experiment report [1]. The reaction

force in the vertical direction measured by the load cells located on the pier cap

is given equal to 2080𝑘𝑁 (Table 2.1) from the dead load of the girder and added

mass on top of the girder. In addition, the weight of the pier is given as 794.5𝑘𝑁 .

Consequently, the mass is calculated as

𝑚 = (2080 + 794.5/2)/𝑔 = 252.5𝑡𝑜𝑛 (5.3)

where 𝑔 = 9.81𝑚/𝑠2 is the acceleration of gravity. Thus, half of the pier weight

also contributes to the structure mass.

Design value for stiffness was also given as 𝑘 = 32506𝑘𝑁/𝑚 [1]. However, this

value was used only to set an initial value for state vector by multiplying it by a factor.

In addition, an approximate initial damping constant also calculated by assuming

viscous damping 𝜁 = 3% because 2− 5% viscous damping is considered a reasonable

range for a single reinforced concrete column. Corresponding damping factor 𝑐 is

calculated based on mass and stiffness as 𝑐 = 𝜁2
√
𝑚𝑘. However, both 𝑘 and 𝑐 are

parameters to be identified and unknown as mentioned above.

UKF-RM parameters, 𝛼𝑄 and 𝛼𝑅 are both set to 1/30.

Based on Eq. (5.1) the state space equation is formulated as:

𝑋̇𝑎 = 𝑓(𝑋𝑎(𝑡), 𝑢(𝑡)) (5.4)

where
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Table 5.1: Selected data sets from the excitations used in C1-1 experiment

ID Excitation type Excitation level
2007-1212-006-1M Takatori(Modified) 30%
2007-1213-004-1M Takatori(Modified) 100%
2007-1213-014-1M Takatori(Modified) 100%

𝑓(Xa(𝑡),u(𝑡)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥2

(−𝑥3𝑥1 − 𝑥4𝑥2)/𝑚+ 𝑥𝑔

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.5)

Among the experiment dataset, three input and response measurements (Tab. 5.1)

are selected for experimental validation of the proposed stiffness estimation algorithm

because these data are publicly available. The identification procedure is carried out

to the undamaged pier in all four cases because the SDOF model is linear in this

section. However, during the experiment ground motion was applied to the system

in the same order as they appear in the table which is in chronological order.

During ID #2007 − 1212 − 006 − 1𝑀 excitation, the experiment column was

undamaged because excitation level is small and system response remains in linear

range.

Furthermore, ID #2007 − 1213 − 004 − 1𝑀 excitation is the first input to the

system which results in nonlinear response and column bottom experiences some level

of stiffness loss as mentioned in 2.1.3. Finally, the last excitation, ID #2007− 1213−

014− 1𝑀 had been exerted to the system which was already damaged. Thus, during

the second 100% Takatori excitation, the pier bottom damage kept accumulating,

eventually resulting in failure.

Acceleration, velocity, displacement, force and strain response under the above-

presented ground motion was measured with dense sensor arrays as mentioned in

Chapter 2.1.2. Among these, only acceleration response measurements on top of the

pier cap were considered available for the purpose of this study. Displacement and
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force measurements on top of the column were used to investigate the accuracy of the

estimated stated and performance of the UKF-RM algorithm.

From simulated acceleration response, displacement response of the system is cal-

culated with double-integration as explained in Chapter 2.1.4. Displacement calcu-

lated from the acceleration response of the system is the observation in the following

parameter estimation cases. With only displacement measurement available on top

of the column, the observation equation is as follows:

𝑦 =

[︂
𝑥1

]︂
(5.6)

5.1.1 Small Earthquake

The full-scale bridge pier was excited with small and large level earthquakes in a

chronological order. In this section, only small level earthquakes will be the focus.

First, using acceleration measurements obtained on top of the bridge pier, displace-

ment response is calculated by pre-processing the data and double integration. Then,

the calculated displacement is compared with the measured displacement response

to verify the accuracy of the estimation. Figure 5-1 shows good match between the

measured and estimated displacement responses obtained from the acceleration mea-

surement on top of the column during input 2007 − 1212 − 006 − 1𝑀 . The cut-off

frequency for the high-pass filter is set to 0.4𝐻𝑧

Fig. (5-2) shows that both estimated displacement and velocity response matches

well with the measured displacement and velocity response on top of the pier cap.

Fig. (5-3) shows the stiffness and damping estimation results under excitation

𝐼𝐷 : 2007− 1212− 006− 1𝑀 . Estimated stiffness is calculated as the averaged value

over the significant duration and equal to 31817𝑘𝑁/𝑚. The reference stiffness value

is calculated as the slope of the force displacement relationship from the measure-

ment data. For example, in Fig. (5-4) gray line is the measured force-displacement

relationship during the experiment under excitation 𝐼𝐷 : 2007 − 1212 − 006 − 1𝑀 .

The input level is small and the RC pier is mostly in linear range. Thus, the linear

fit to the measured force-displacement relationship represents the stiffness value of
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Figure 5-1: Displacement response estimation from acceleration response under exci-
tation 2007− 1212− 006− 1𝑀
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Figure 5-2: State estimation results under 2007 − 1212 − 006 − 1𝑀 excitation with
𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30

the column. Accordingly, true stiffness value was calculated as 32506𝑘𝑁/𝑚 under

excitation 𝐼𝐷 : 2007 − 1212 − 006 − 1𝑀 . Calculated corresponding damping factor

is found as 8%, however, since there is no reference value for damping, it will not be

presented here again.
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Figure 5-3: Parameter estimation results under 2007 − 1212 − 006 − 1𝑀 excitation
with 𝛼𝑄 = 1/30 and 𝛼𝑅 = 1/30
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Figure 5-4: Reference stiffness calculation under excitation 2007− 1212− 006− 1𝑀

Stiffness estimation results obtained with UKF-RM under 30% Takatori excitation

is summarized in Table 5.2.

152



Table 5.2: Parameter estimation results under small earthquake excitation

True stiffness [kN/m] Estimated stiffness [kN/m] Error [%]
𝐼𝐷 : 2007− 1212− 006− 1𝑀 32506 31817 2.1

5.1.2 Large Earthquake

After small-level earthquakes, two large level earthquake inputs exerted on the bridge

column in a sequence which induced damage and hence nonlinearity in the column

behavior. In this section, the proposed algorithm’s performance of convergence rate

and ability to track changes in stiffness are investigated under the effect of large

seismic inputs. Data corresponding to the first 7𝑠𝑒𝑐 are deleted for both earthquake

inputs because they do not hold information.
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Figure 5-5: Displacement response estimation from acceleration response under exci-
tation 2007-1213-004-1

First, using acceleration measurements obtained on top of the bridge pier, displace-

ment response is calculated by pre-processing the data and double integration. Then

the calculated displacement is compared with the measured displacement response to

verify the accuracy of the estimation. The cut-off frequency for the high-pass filter

for both earthquakes is set to 0.2𝐻𝑧. Figures 5-5 and 5-6 show the comparison and
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Figure 5-6: Displacement response estimation from acceleration response under exci-
tation 2007-1213-014-1M

good match between the measured and estimated displacement responses for inputs

2007−1213−004−1𝑀 and 2007−1213−014−1𝑀 . Here, from the displacement-time

history figures it can be seen that the displacement which was obtained by double

integration of the acceleration lack the pseudo-static displacement due to the applied

high-pass filter. Except the residual displacement the remaining information was able

to be captured.

In the earlier section it has been shown that the residual stiffness can be esti-

mated with a good accuracy. However, in structural dynamics often large earthquake

response is of interest and parameter estimation algorithm’s ability to track response

during significant duration should be investigated. Because, during significant dura-

tion most of the energy from the input is exerted to the structure and thus most of

the damage occurs in this region.

UKF-RM extra parameters, 𝛼𝑄 and 𝛼𝑅 are both set to 1/30.

(Figs. 5-7,5-8) show the state and parameter estimation results under excitation

2007-1213-004-1M, respectively.

Fig. (5-7) shows that both estimated displacement and velocity response matches

well with the measured displacement and velocity response on top of the pier cap
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Figure 5-7: State estimation results under excitation 2007-1213-004-1M

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.1

0

0.1

0.2

di
sp

la
ce

m
en

t[m
]

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

2

3

st
iff

ne
ss

[k
N

/m
]

×104

Figure 5-8: Parameter estimation results under excitation 2007-1213-004-1M

except the permanent displacement part which was an expected outcome as the input

does not consist this part neither.

Fig. (5-8) shows the stiffness estimation result under excitation 𝐼𝐷 : 2007 −

1213− 004− 1. Shortly after start of the significant duration, the stiffness estimation

starts converging. During significant duration, where the experiment column bottom
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experiences cracks and yielding damage, the stiffness change can be observed from

the estimation. After significant duration ends, the estimation stabilizes and stays

on the same value which is equal to the residual stiffness of the reinforced concrete

bridge column.
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Figure 5-9: Reference stiffness values for three different response regions under exci-
tation 2007-1213-004-1M

The corresponding reference stiffness values is calculated as the slope of the force

displacement relationship from the measurement data in three regions: initial re-

sponse, nonlinear response and residual response, respectively. For example, in Fig.

(5-9) force-displacement curve which was constructed from the measured data during

experiment is shown under excitation 𝐼𝐷 : 2007−1213−004−1. The above mentioned

response regions are presented in the figure in color coded manner. Initial response

corresponds to the pink line, the nonlinear response region corresponds to the blue

line and lastly the residual response region corresponds to the black line. Linear fit

to each particular response is calculated and the slope of the resultant fitted line is

taken as the reference value. The residual stiffness is estimated as 12120𝑘𝑁/𝑚, where

the true residual stiffness is 11181𝑘𝑁/𝑚. Thus, the error is found 7.6%.

Moreover, the nonlinear response range also divided into different regions based on

the measured force-displacement relationship (Fig. 5-10). Under earthquake 2007 −
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Figure 5-10: Reference stiffness values for various nonlinear response regions under
excitation 2007-1213-004-1M
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Figure 5-11: Estimated stiffness values for various nonlinear response regions under
excitation 2007-1213-004-1M

1213− 004− 1𝑀 , there are two different hysteresis curves corresponding to different

stiffness levels which represent the nonlinear response. For example, between 3.17−

5𝑠𝑒𝑐 the stiffness is 14813𝑘𝑁/𝑚 and between 5− 10𝑠𝑒𝑐 the stiffness is 6417𝑘𝑁/𝑚. In

Fig. (5-11) the dotted orange and cyan lines represent the reference stiffness values
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which were shown in (Fig. 5-10). The estimated stiffness is calculated as the mean

value of estimation at corresponding times and they are equal to 15281𝑘𝑁/𝑚 and

7187𝑘𝑁/𝑚, respectively. Thus, the error percentages based on the reference stiffness

values are 3% and 11%, respectively. Actually, 11% error in stiffness estimation may

be considered as large. However, this difference may be attributed to the model

assumption which is linear. Due to energy dissipation the force-displacement curves

are getting a fat loop shape and thus the reference stiffness value cannot be represented

as a single linear fitted line’s slope. Consecutively, it can be concluded that even

though the model is linear, the proposed method is able to track stiffness change even

in nonlinear range with an acceptable performance. In the next chapter, stiffness

condition change will be investigated considering a nonlinear model.

In fact, damage patterns of the experiment column are tracked during the tests

and recorded [1]. Under 𝐼𝐷 : 2007 − 1213 − 004 − 1 excitation, the column bottom

experiences hair cracks at around 𝑡 = 4𝑠𝑒𝑐, vertical cracks due to compression forces

at around 𝑡 = 6𝑠𝑒𝑐 and concrete cover spalling at around 𝑡 = 7𝑠𝑒𝑐. In the depicted

stiffness estimation figure the stiffness change is clearly visible where concrete column

experiences damage and dissipates energy.
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Figure 5-12: Parameter estimation results under excitation 2007-1213-014-1M
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Figure 5-13: Reference stiffness values for three different response regions under ex-
citation 2007-1213-014-1M

Stiffness estimation results (Fig. 5-12) and corresponding reference stiffness (Fig.

5-13) for three response regions are presented below also under excitation 𝐼𝐷 : 2007−

1213−014−1𝑀 . Again, stiffness condition can be tracked in all three response regions.

The residual stiffness is estimated as 8396𝑘𝑁/𝑚, where the true residual stiffness is

8178𝑘𝑁/𝑚. Thus, the error is found 3%.

Moreover, the nonlinear response range also divided into different regions based on

the measured force-displacement relationship (Fig. 5-14). Under earthquake 2007 −

1213− 014− 1𝑀 , there are two different hysteresis curves corresponding to different

stiffness levels which represent the nonlinear response. For example, between 3.17−

5𝑠𝑒𝑐 the stiffness is 6954𝑘𝑁/𝑚 and between 5 − 10𝑠𝑒𝑐 the stiffness is 3829𝑘𝑁/𝑚.

In Fig. (5-15) the dotted orange and cyan lines represent the reference stiffness

values which were shown in (Fig. 5-14). The estimated stiffness is calculated as the

mean value of estimation at corresponding times and they are equal to 7553𝑘𝑁/𝑚

and 4841𝑘𝑁/𝑚, respectively. Thus, the error percentages based on the reference

stiffness values are 8% and 21%, respectively. Although the errors may be large,

again this difference may be attributed to the model assumption which is linear. Due

to increasing energy dissipation and complex reinforced-concrete damage patterns
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Figure 5-14: Reference stiffness values for various nonlinear response regions under
excitation 2007-1213-014-1M
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Figure 5-15: Estimated stiffness values for various nonlinear response regions under
excitation 2007-1213-014-1M

the reference stiffness value in the nonlinear range cannot be represented as a single

slope line. Consecutively, it can be concluded that even though the model is linear,

the proposed method is able to track stiffness change even in nonlinear range with

an acceptable performance. In the linear range, i.e. residual stiffness is identified
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successfully.

Identified residual stiffness values under two large excitations are summarized in

Table 5.3. Error percentage in identified stiffness values are both smaller than 8%

and thus considered accurate.

Table 5.3: Residual stiffness estimation under large earthquake excitation

True stiffness [kN/m] Estimated stiffness [kN/m] Error [%]
𝐼𝐷 : 2007− 1213− 014− 1𝑀 11181 12120 7.6
𝐼𝐷 : 2007− 1213− 014− 1𝑀 8179 8396 3

In conclusion, proposed parameter identification algorithm can successfully iden-

tify stiffness condition of bridge lateral resisting systems in the linear range under both

small and large seismic input. Furthermore, in nonlinear response range, although the

accuracy of the estimation is lower than the linear response range, the algorithm can

still track the change in stiffness in a robust manner. To have a complete understand-

ing of the nonlinear behavior and investigate the algorithm’s capabilities hysteresis

loop identification is necessary which will be presented in Chapter 6.

5.2 Full Scale Bridge In-Situ Seismic Response Mea-

surement

It is a well-known fact that spatially distributed structures, such as long-span bridges,

are prone to multi-support excitation (MSE). However, when short-span bridges sup-

ported by abutments backfilled with embankments they may also be subjected to

MSE. In the target bridge’s case, one side is supported by an abutment while the

other side is supported by a pier. This results in different input ground motion on

both sides. Although the recorded ground motions are considerably small when com-

pared to design level earthquake, it is useful to investigate the feasibility of stiffness

estimation on both sides separately for practical applications. For this purpose, first,

the capability of the algorithm to estimate different stiffness on pier and abutment
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side is investigated with simulations. After that, stiffness estimation of the bearings

is performed using acceleration measurements on the real bridge during earthquakes.

5.2.1 Bearing stiffness identification with MSE through simu-

lation

Based on the calculated displacement trajectories from measured acceleration re-

sponses during earthquakes the girder can be considered as a rigid body as explained

in Chapter 2.2.3. The bridge is modeled as a 3-DOF system where the lumped mass,

𝑚 = 180𝑡𝑜𝑛𝑠, is located at the center of the span and connected to the four supports

with rigid elements. The system scheme is presented in Fig. (5-16).

Figure 5-16: Girder and bearing system scheme and measurement locations on the
bridge

Abutment and pier side total bearing stiffness are assumed different from each

other to replicate a scenario in which bearings on one side are damaged. Thus,

the total stiffness of the two bearings on pier side is assumed 𝑘𝑝𝑖𝑒𝑟 = 5200𝑘𝑁/𝑚 +

5200𝑘𝑁/𝑚 = 10400𝑘𝑁/𝑚. The total stiffness of the two bearings on abutment side

is assumed 𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 = 6500𝑘𝑁/𝑚 + 6500/𝑚 = 13000𝑘𝑁/𝑚. The stiffness values of

the bearings in longitudinal (Y) and transverse (X) directions are assumed equal.
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𝜁 = 4% viscous damping was given in the design drawings. Corresponding damp-

ing factor 𝑐 is calculated based on mass and stiffness as 𝑐 = 𝜁2
√
𝑚𝑘.

The displacement and velocity obtained from acceleration measurements (Fig. 5-

17) on pier and abutment top at each support node both in longitudinal and transverse

directions, 8 in total, are considered as input to the system. Measured accelerations

at the support nodes are presented in Fig. (5-18). Observation vector is the displace-

ment and velocity in both directions at the corresponding girder locations which are

transformed to the center of the mass in measurement equation.

Figure 5-17: Sensor installation plan on the bridge

3DOF system excited at its base (pier top acceleration measurement) with ground

acceleration the governing equation of motion in absolute coordinates (EOM-abs)

becomes:

⎡⎢⎢⎢⎢⎣
𝑀 𝑥𝑥(𝑡) + 𝐶 𝑥𝑥(𝑡) +𝐾 𝑥𝑥(𝑡)− 𝑃𝑘𝑥 𝜃

𝑀 𝑥𝑦(𝑡) + 𝐶 𝑥𝑦(𝑡) +𝐾 𝑥𝑦(𝑡) + 𝑃𝑘𝑦 𝜃

𝐼𝜃(𝑡) + 𝐶𝜃𝜃(𝑡) +𝐾𝜃𝜃(𝑡)− 𝑃𝑘𝑥𝑥𝑥(𝑡) + 𝑃𝑘𝑦𝑥𝑦(𝑡)

⎤⎥⎥⎥⎥⎦ = 𝐾𝑠𝑔[𝑥𝑔] + 𝐶𝑠𝑔[𝑥𝑔]

(5.7)

where 𝑥(𝑡) and ˙𝑥(𝑡) are the absolute displacement and velocity response on the

girder above the bearing.

and 𝑥𝑔(𝑡) and 𝑥𝑔(𝑡) are the ground motion displacement and velocity vectors on
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Figure 5-18: Acceleration measurements on the abutment next to the bearings, Nodes
43-44

top of the pier cap at the bottom of the bearing. They are defined as follows.

𝑥𝑔(𝑡) =

⎡⎢⎢⎢⎢⎣
𝑥𝑔𝑥

𝑥𝑔𝑥

𝑥𝑔𝜃

⎤⎥⎥⎥⎥⎦ (5.8)

𝑥𝑔(𝑡) =

⎡⎢⎢⎢⎢⎣
˙𝑥𝑔𝑥

˙𝑥𝑔𝑥

˙𝑥𝑔𝜃

⎤⎥⎥⎥⎥⎦ (5.9)

The subscripts 𝑥 and 𝑦 denote the directions x and y (5-17).

In Equations 5.8 and 5.9, 𝑥𝑔𝜃 and ˙𝑥𝑔𝜃 are assumed to be equal to zero.

In Equation 5.7, 𝐾𝑠𝑔 and 𝐶𝑠𝑔 are defined as follows:

𝐾𝑠𝑔 =

⎡⎢⎢⎢⎢⎣
−𝑘𝑥1 −𝑘𝑥2 −𝑘𝑥3 −𝑘𝑥4 0 0 0 0 0

0 0 0 0 −𝑘𝑦1 −𝑘𝑦2 −𝑘𝑦3 −𝑘𝑦4 0

𝑘𝑥1 × 𝑏ℎ 𝑘𝑥2 × 𝑏ℎ −𝑘𝑥3× 𝑏ℎ −𝑘𝑥4 × 𝑏ℎ 𝑘𝑦1 × 𝐿2 −𝑘𝑦2 × 𝐿1 𝑘𝑦3 × 𝐿1 −𝑘𝑦4 × 𝐿2 0

⎤⎥⎥⎥⎥⎦
(5.10)
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𝐶𝑠𝑔 =

⎡⎢⎢⎢⎢⎣
−𝑐𝑥1 −𝑐𝑥2 −𝑐𝑥3 −𝑐𝑥4 0 0 0 0 0

0 0 0 0 −𝑐𝑦1 −𝑐𝑦2 −𝑐𝑦3 −𝑐𝑦4 0

−𝑐𝑥1 × 𝑏ℎ −𝑐𝑥2 × 𝑏ℎ 𝑐𝑥3 × 𝑏ℎ 𝑐𝑥4 × 𝑏ℎ −𝑐𝑦1 × 𝐿2 𝑐𝑦2 × 𝐿1 −𝑐𝑦3 × 𝐿1 𝑐𝑦4 × 𝐿2 0

⎤⎥⎥⎥⎥⎦
(5.11)

where 𝑏ℎ = 2.5𝑚 which is the half of the width of the bridge, 𝐿1 and 𝐿2 are

the distance of bearings 1 and 3, and 2 and 4 from the center of mass. In the

formulations the numbering of the bearings are as follows. 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 1 = 𝑁𝑜𝑑𝑒 35−37,

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 2 = 𝑁𝑜𝑑𝑒 41−43, 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 3 = 𝑁𝑜𝑑𝑒 38−36, and 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 4 = 𝑁𝑜𝑑𝑒 42−44.

For example, 𝑘𝑥1 is the stiffness of 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 1 in x direction where 𝑐𝑦4 is the damping

constant of 𝐵𝑒𝑎𝑟𝑖𝑛𝑔 4 in the y direction.

The stiffness and damping constant values of each bearing are assumed equal in

x and y directions. Thus, 𝑘𝑥𝑖 = 𝑘𝑦𝑖 = 𝑘𝑖

M is the total mass of the girder, I is the total moment of inertia along the vertical

axis of the girder. 𝐾𝜃 is the torsional stiffness and 𝐶𝜃 is the torsional damping. 𝑃𝑘𝑥

and 𝑃𝑘𝑦 are defined as:

𝑃𝑘𝑥 = 𝐾𝑒𝑦

𝑃𝑘𝑦 = 𝐾𝑒𝑥 (5.12)

where 𝑒𝑥 and 𝑒𝑦 are the eccentricity in both directions. The pier and abutment

bearings have different stiffness, thus only eccentricity in x direction (Fig. 5-17) exists.

Eccentricity in transverse direction 𝑒𝑥 = 0.

Eccentricity in longitudinal direction 𝑒𝑦 is defined as follows.

𝑒𝑦 = 𝐿/2− ((𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡) * 𝐿)/(𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 + 𝑘𝑝𝑖𝑒𝑟) (5.13)

Thus distance of the bearings from the center of mass becomes

𝐿1 = 𝐿/2 + 𝑒𝑦
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for bearings on abutment side

𝐿2 = 𝐿/2− 𝑒𝑦

for bearings on pier side

(5.14)

𝐾, 𝐶, 𝐾𝜃, 𝐶𝜃 are obtained as:

𝐾 =
4∑︁

𝑖=1

𝑘𝑖 = 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4

𝐶 =
4∑︁

𝑖=1

𝑐𝑖 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4

𝐾𝜃 =
4∑︁

𝑖=1

𝑘𝑖(𝑥
2
𝑏𝑖 + 𝑦2𝑏𝑖)

𝐶𝜃 =
4∑︁

𝑖=1

𝑐𝑖(𝑥
2
𝑏𝑖 + 𝑦2𝑏𝑖)

(5.15)

where 𝑥𝑏𝑖 and 𝑦𝑏𝑖 are the distance of each bearing from center of mass.

Based on the above given governing equation the augmented state vector becomes

𝑋𝑎 = [𝑥𝑥, 𝑥𝑦, 𝜃, 𝑥𝑥, 𝑥𝑦, 𝜃, 𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡, 𝑘𝑝𝑖𝑒𝑟]
𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]

𝑇 (5.16)

with states displecement and velocity in both directions, 𝜃 is the rotation about

the vertical axis and structural parameters [𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡, 𝑘𝑝𝑖𝑒𝑟] are to be estimated where

𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 = 𝑘1 + 𝑘3𝑘𝑝𝑖𝑒𝑟 = 𝑘2 + 𝑘4 (5.17)

Mass and damping are assumed as known in all following structural parameter

estimation cases.

Based on Eq. (5.7) the state space equation is formulated as:

𝑋̇𝑎 = 𝑓(𝑋𝑎(𝑡), 𝑢(𝑡)) (5.18)
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where

𝑓(Xa(𝑡),u(𝑡)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥4

𝑥5

𝑥6

−(𝑥7 + 𝑥8) 𝑥1/𝑀 − 𝐶 𝑥4/𝑀 +𝐾𝑠𝑔𝑥𝑔𝑖/𝑀 + 𝐶𝑠𝑔𝑥𝑔𝑖

−(𝑥7 + 𝑥8) 𝑥2/𝑀 − (𝑥7 𝐿1 + 𝑥8 𝐿2) 𝑥3/𝑀

−𝐶 𝑥5/𝑀 +𝐾𝑠𝑔𝑥𝑔𝑖/𝑀 + 𝐶𝑠𝑔𝑥𝑔𝑖

−(−𝑥7 * 𝐿1 + 𝑥8 * 𝐿2) 𝑥2/𝐼𝜃

−[𝑏ℎ2 (𝑥7 + 𝑥8) + (𝐿12 𝑥7) + (𝐿22 𝑥8)] 𝑥3/𝐼𝜃

−𝐶𝑡ℎ𝑒𝑡𝑎 𝑥6/𝐼𝜃 +𝐾𝑠𝑔𝑥𝑔𝑖/𝐼𝜃 + 𝐶𝑠𝑔𝑥𝑔𝑖/𝐼𝜃

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.19)

𝑒𝑦 = 𝐿/2− (𝑥7 * 𝐿)/(𝑥7 + 𝑥8) (5.20)

𝐿1 = 𝐿/2 + 𝑒𝑦

for bearings on abutment side

𝐿2 = 𝐿/2− 𝑒𝑦

for bearings on pier side

(5.21)

As we know that displacement and velocity starts from zero the corresponding

initial state vector values are assigned as zero. However, the current condition of

stiffness and damping is not known in practice, thus the selection of initial values is
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also an important aspect for a successful estimation. About a 20% difference from

the true value is chosen as model error. Initial state vector is shown below.

𝑋0 = [0, 0, 0, 0, 0, 0, 0.8 𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡, 0.8 𝑘𝑝𝑖𝑒𝑟]
𝑇 (5.22)

Initial error covariance, by definition, is set to

𝑃0 = 𝑑𝑖𝑎𝑔[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, (𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡)
2, (𝑘𝑝𝑖𝑒𝑟)

2] (5.23)

5% of the measurement RMS is assumed as measurement noise. Accordingly, R,

measurement noise covariance is set to 𝑅 = (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑅𝑀𝑆 * 0.05)2.

Using the system explained above and initial values, the system simulated with

and response obtained by Newmark integration method. Accordingly, parameter

estimation with UKF-RM algorithm has been performed. 𝛼𝑄 and 𝛼𝑅, ware both set

to 1/7 without any further consideration.

Initial process noise covariance matrix Q is set to:

𝑄 = 𝑑𝑖𝑎𝑔[1𝑒− 8, 1𝑒− 8, 1𝑒− 10, 1𝑒− 8, 1𝑒− 8, 1𝑒− 10, 1𝑒− 5, 1𝑒− 5] (5.24)

Figs. (5-19),(5-20) and (5-21) show estimated response comparisons with response

obtained by Newmark solutions. As it can be seen from the figures the UKF-RM

estimations matching well with the simulation results.

The parameter estimation results are given in Fig. (5-22). As it can be seen,

shortly after the start of the significant duration (first vertical red line) the algorithm

converges quickly and result in a very stable estimation. After 2 seconds from the

significant duration is accepted as the beginning of the correct estimation and the

resultant values are averaged over the period of significant duration (between the

vertical green lines). The results are summarized in Table (5.4).

By updating both observation and measurement noise covariance matrices the

simulation results confirmed that estimation of the stiffness values separately on the
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Figure 5-19: Girder response in transverse direction - simulation and estimation com-
parison
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Figure 5-20: Girder response in longitudinal direction - simulation and estimation
comparison

Table 5.4: Parameter estimation results

True stiffness [kN/m] Estimated stiffness [kN/m] Error [%]
𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 13000 12770 1.8
𝑘𝑝𝑖𝑒𝑟 10400 10460 0.6
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Figure 5-21: Girder response rotation about vertical axis - simulation and estimation
comparison

Figure 5-22: Estimated total pier and abutment stiffness
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pier and abutment sides is possible. Fig. (5-23) shows the results of the investigation

for the dependency of the stiffness estimation to damping value change. The assumed

design damping ratio which is 4% has been changed to different values and parameter

estimation algorithm has been performed. As shown in Fig. (5-23) changing damping

by about 25% does not result in any variation in the stiffness estimation, thus the

assumption that the damping is known is confirmed to be a viable approximation.

Figure 5-23: Sensitivity of stiffness estimation with respect to different assumed
damping ratios

As a result, the capability of the algorithm and validation of assumptions are

confirmed based on the above presented results for stiffness identification of rubber

bearings on different locations of the a bridge. Consequently, stiffness estimation

is performed using the acceleration response data on girders from the experiment

conducted in Kumamoto (Chapter 2.2).
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5.2.2 Bearing stiffness identification with MSE using measure-

ments

The base isolation system is formed of four elastomeric rubber bearings (Fig. 5-16).

Thus initial design value for each bearing is equal to each other, 𝑘𝑖 = 6500𝑘𝑁/𝑚, in

both longitudinal and transverse directions. 𝜁 = 4% viscous damping was given in

the design drawings. Corresponding damping factor 𝑐 is calculated based on mass

and stiffness as 𝑐 = 𝜁2
√
𝑚𝑘. 3DOF system description and governing equations are

same as presented before.

The displacement and velocity obtained from acceleration measurements (Fig.

5-17) on pier and abutment top at each support node using method explained in

Chapter 2. In total, 8 displacement and 8 velocity measurements (in two directions)

are considered as input to the system. Measured accelerations at the support nodes

are presented in Fig. (5-18). Observation vector is the displacement and velocity in

both directions at the corresponding girder locations which are transformed to the

center of the mass in measurement equation.

As we know that displacement and velocity starts from zero the corresponding

initial state vector values are assigned as zero. However, the current condition of

stiffness is not known hence the initial values is not known in practice. Here a 20%

difference from the true value is assumed as model error. Initial state vector is shown

below.

𝑋0 = [0, 0, 0, 0, 0, 0, 0.8𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡, 0.8𝑘𝑝𝑖𝑒𝑟]
𝑇 (5.25)

Initial error covariance, by definition, is set to

𝑃0 = 𝑑𝑖𝑎𝑔[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, (𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡)
2, (𝑘𝑝𝑖𝑒𝑟)

2] (5.26)

because in reality the initial condition of the states are known. Thus by setting

𝑃0 a practical large value model error at the initial stage is considered high.

3% of the measurement RMS is assumed as measurement noise. Accordingly, R,
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measurement noise covariance is set to 𝑅 = (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑅𝑀𝑆 * 0.03)2.

Initial process noise covariance matrix Q is set to:

𝑄 = 𝑑𝑖𝑎𝑔[1𝑒− 8, 1𝑒− 8, 1𝑒− 10, 1𝑒− 8, 1𝑒− 8, 1𝑒− 10, 1𝑒− 5, 1𝑒− 5] (5.27)

Using the same 3-DOF model with MSE (explained above) and initial values,

parameter estimation with UKF-RM algorithm has been performed. 𝛼𝑄 and 𝛼𝑅,

were both set to 1/7. By updating both observation and measurement noise covari-

ance matrices states and stiffness estimation for abutment and pier side bearings are

successfully obtained.

Table (5.5) summarizes some of the estimation results obtained by using seismic

response measurements which has 𝑃𝐺𝐴𝑔𝑒𝑞10𝑔𝑎𝑙 both at the ground node (bottom

of the pier - Node 49) both in transverse and longitudinal directions (Fig. 2-23).

Table 5.5: Parameter estimation results using Experiment data

𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 [kN/m] Error [%] 𝑘𝑝𝑖𝑒𝑟 [kN/m] Error [%]
EQ57 3923 -10 4290 -2
EQ9 4003 -8.5 4420 1.1
EQ58 3893 -11 4422 1.1
EQ21 4704 7.5 4390 0.3
EQ20 4924 12.5 4430 1.3
EQ25 4802 9.8 3830 -12.5
EQ26 4458 2 3861 -11.7
EQ47 4455 2 5028 13

By updating both process and measurement noise covariance matrices it was possi-

ble to estimate the stiffness parameters as shown. The stiffness estimations converged

to similar values during the significant durations of each earthquake with small varia-

tions. It is confirmed that separate stiffness identification is viable as the results from

different inputs of similar amplitudes resulted in similar estimations.

Some representatives for stiffness identification results from measurements during

EQ21, EQ20 and EQ58 are depicted in Figures (5-25), 5-24), and 5-26), respectively.
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Figure 5-24: Estimated stiffness time-history from on-site measurement - EQ20

0 2 4 6 8 10 12 14 16 18 20

5000

10000

15000

S
tif

fn
es

s 
[k

N
/m

]

Abutment side - Transverse Direction

0 2 4 6 8 10 12 14 16 18 20
Time [sec]

5000

10000

15000

S
tif

fn
es

s 
[k

N
/m

]

Pier side - Transverse Direction

Figure 5-25: Estimated stiffness time-history from on-site measurement - EQ21
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Figure 5-26: Estimated stiffness time-history from on-site measurement - EQ58

In the figures, the green vertical lines represent the beginning and end of the significant

duration for each earthquake.

Estimated stiffness values were compared using force-displacement data obtained

from tests conducted on the bearings by the manufacturer before installation on the

bridge. Bearings on abutment and pier side were both tested four times. Obtained

stiffness values were given in Table 5.6.

Table 5.6: Manufacturer’s bearing test results

Test no. 𝑘𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡 [kN/m] 𝑘𝑝𝑖𝑒𝑟 [kN/m]
1 4673 4816
2 4477 4625
3 4416 4537
4 4370 4503

Ultimately, final design value for the bearing stiffness was provided as 4375𝑘𝑁/𝑚

in the design drawings. Thus, the reference stiffness value is equal to 4375𝑘𝑁/𝑚 and

estimated stiffness values are compared to this value.
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Figure 5-27: Representative force-displacement relationship from the test on a bearing
on the abutment side
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Figure 5-28: Representative force-displacement relationship from the test on a bearing
on the pier side
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Chapter 6

Hysteresis Response Estimation

Structures exhibit hysteresis response when subjected to cyclic forces such as earth-

quake excitation. The force-displacement relationship provides important informa-

tion on quantity of energy dissipation on the element or structure. Thus, in order to

have a complete understanding of the structural nonlinear behavior not only residual

stiffness but also hysteresis response estimation is necessary.

Structures experience nonlinear response due to enery dissipation in elements such

as joints [21], mounted damping devices [24] and reinforced concrete columns [22, 23].

Nonlinear dynamic analysis requires an explicit mathematical expression to represent

nonlinear response of the structure. One of the well studied hysteresis models in

civil and mechanical engineering is Bouc-Wen model which has been proven to be

able to track various damage scenarios in structural dynamics such as hardening and

softening.

The model was first proposed by Bouc in [25], and later generalized by Wen in

[26], thus the model name is known as Bouc-Wen. The generalized model is a non-

degrading hysteresis model and considered as the simplest one among the variety of

Bouc-Wen models. Modified types of Bouc-Wen model can account for either only

degradation of stiffness and strength which was proposed by [69], or both degradation

and pinching behavior which were proposed by [70] and [71]. Recent state-of-the-art

review on studies dealing with Bouc-Wen models, from both mathematical derivation

to identification of hysteresis parameters perspectives can be found in [72].
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Some previous research on Kalman Filter based identification of nonlinear response

considering Bouc-Wen model includes but not limited to the following. [73] proposed a

recursive least-square based algorithm considering a forgetting factor to adapt the gain

matrix using acceleration measurements as observation and presented applications

through various simulations. [74] presented identification of a SDOF nonlinear model

with Bouc-Wen element considering 𝑛 = 1. Through simulations EKF with weighted

global iteration showed satisfactory estimation results when measurement noise is

considered and consideration of modeling noise was suggested as an open area of

research. [75] identified soil characteristics under earthquake input using EKF with

weighted global iteration. A bore hole array is modeled as a 3DOF model considering

Bouc-Wen elements at each DOF. Using relative displacement, relative velocity and

shear stress as observations from each DOF, they identified the nonlinear response of

the soil using only the portions of data where full stress reversals exists.

Furthermore, recently some studies investigated application of data assimilation

methods on problems of practical significance. A scaled three-bent bridge was excited

by one-directional earthquake input on a shake-table in [17]. First an FEM model was

calibrated based on the experiment results which was later used in Extended Kalman

Filter as state transition matrix. Elemental residual stiffness values of each bent was

estimated using EKF. In another study using simulated response measurements [19]

structural parameters of a 3DOF system which consists of a Bouc-Wen element in the

first DOF were estimated using GPS displacement for the first DOF measurement and

acceleration measurements for the other two. Later in [27], systems including Bouc-

Wen elements were further investigated from the observability and identifiablity point

of view as Bouc-Wen element consists of many parameters. Recently, [28] proposed

a method for online Bayesian model assessment for UKF. However, process noise

parameters are assumed as known which is not a realistic condition when practical

structures are considered. Verification examples were presented through simulations

and then a laboratory experiment on a test apparatus which was designed to simulate

a 2DOF non-conservative dissipative joint element as presented in [29].

The main aim of this chapter is to verify parameter estimation algorithm con-

178



sidering a highly nonlinear hysteresis model with generalized Bouc-Wen model using

only acceleration measurements. First, a brief review of the selected hysteresis model

is presented. Then, based on the observability analysis model reduction assump-

tions are reviewed. Furthermore, the parameter estimation algorithm is first verified

through simulations using a SDOF system and performance of the algorithm is ex-

amined through investigation of sensitivity to change in filter parameters. Lastly, the

algorithm is validated using acceleration measurements from E-Defense shake-table

laboratory experiment in which hysteresis parameter estimation is performed on a

full-scale reinforced concrete bridge pier.

6.1 Observability Analysis and Model Reduction

In this section a SDOF model including a Bouc-Wen element is considered to represent

the hysteresis behavior of a nonlinear dynamic system. Considering the classical

Bouc-Wen model, the governing equation of motion for a SDOF system is

𝑚𝑥̈+ 𝑐𝑥̇+ 𝛼𝑘𝑥+ (1− 𝛼)𝑘𝑟 = −𝑚𝑥𝑔(𝑡) (6.1)

where 𝑟 is the Bouc-Wen hysteresis component with

𝑟̇ = 𝐴𝑥̇− 𝛽|𝑥̇||𝑟|𝑛−1 𝑟 − 𝛾𝑥̇|𝑟|𝑛 (6.2)

𝛽, 𝛾 and 𝐴 are the Bouc-Wen parameters which controls the shape of the hystere-

sis, 𝑛 is the Bouc-Wen parameter which controls the sharpness of yield and 𝛼 is the

ratio of the post-yield stiffness to elastic stiffness.

As it can be seen from Eqs. (6.1) and (6.2) the model is highly nonlinear when

the exponential term is 𝑛 > 1. Thus, the model is suitable for the performance

investigation of the proposed method using only acceleration measurements. For

instance, [76] showed through simulations that both EKF and UKF can estimate the

generalized Bouc-Wen hysteresis response when nonlinearity is limited in the model,

in other words when 𝑛 = 1. However, when 𝑛 is considered equal to two, then
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EKF estimations failed while conventional UKF continued to give satisfactory results

estimations.

With the above given governing equation the augmented state vector becomes

𝑋𝑎 = [𝑥, 𝑥̇, 𝑟, 𝑘, 𝑐, 𝛽, 𝑛, 𝛾, 𝛼,𝐴]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10]
𝑇 (6.3)

For any identification problem, if possible, it is important to limit the number

of unknown parameters. Thus, model reduction has been conducted based on the

assumptions explained below.

Bouc-Wen parameters are empirical and all of them does not need to be specificed

with precision in order to satisfy a good fit to an hysteresis loop. Although a given

set of parameters produces a unique hysteresis relationship, its contrary is not valid.

When redundant parameters are eliminated by transformations between the Bouc-

Wen parameters, [77] showed that same system response can be obtained from two

different set of parameters. One of the redundant parameters is 𝐴. Consider the

Bouc-Wen parameter vector is,

𝜈 = [𝑟, 𝛽, 𝑛, 𝛾, 𝛼,𝐴]𝑇 (6.4)

and Bouc-Wen hysteresis displacement is redefined as

𝑟𝐴 = 𝑥̇− 𝛽𝐴|𝑥̇||𝑟𝐴|𝑛−1 𝑟𝐴 − 𝛾𝐴𝑥̇|𝑟𝐴|𝑛 (6.5)

where

𝑟𝐴 = 𝑟/𝐴, 𝛽𝐴 = 𝛽|𝐴|𝑛−1𝐴 and 𝛾𝐴 = 𝛾𝐴|𝐴|𝑛

Equations (6.2) and (6.5) are essentially same. Because in this transformation 𝐴

can be set equal to 1 [77]. Similar parameter transformations can also be done on

other parameters also in modified Bouc-Wen models.

Next, the system is assumed purely nonlinear. Thus 𝛼, the ratio of the post-yield

stiffness to elastic stiffness is set to zero. The basis for this assumption is the fact that
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in linear response range structural elements usually dissipate limited amount of energy

when compared to nonlinear response range. The target is to achieve estimation of

the dissipated energy in the system in the nonlinear response range.

Consequently, the state vector becomes

𝑋𝑎 = [𝑥, 𝑥̇, 𝑟, 𝑘, 𝑐, 𝛽, 𝑛, 𝛾]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]
𝑇 (6.6)

and Bouc-Wen hysteretic displacement can be represented as follows.

𝑟̇ = 𝑥̇− 𝛽|𝑥̇||𝑟|𝑛−1 𝑟 − 𝛾𝑥̇|𝑟|𝑛 (6.7)

Using acceleration response measurements as observation and identifying the stiff-

ness condition and hysteretic force of a full-scale bridge lateral resisting system with

UKF-RM is one of the main targets of this chapter. In practice, location of sensors

in the measurement array holds great importance because an unknown state to be

estimated, output measurements must be adequate; not only in terms of quality but

also the provided sort of information. The ability of the output measurements of

letting unknown states to be estimated is measured by observability. In other words,

if a system’s states can be estimated by a given set of output measurements in a finite

time then the system is observable [27].

To check the algorithms ability to estimate the states given above using only

acceleration measurements, nonlinear observability analysis is performed, because

even without the presence of Bouc-Wen element, the system is nonlinear due to the

augmented state vector. The Observability Rank Condition (ORC) method was first

proposed by [78] and recently introduced to structural dynamics are by the work

of [27]. ORC method requires measurement and system matrices to be analytic.

However, a system which consists of Bouc-Wen element is not analytic because (Eq.

6.7) which is not differentiable due to absolute value functions’ presence. Thus ORC

method can be applied to the all four branches of Eq.(6.7), evolutionary parameter,

and observability condition is checked.

The four branches are given as follows :

181



⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑟̇ = 𝑥̇− 𝛽𝑥̇𝑟𝑛 − 𝛾𝑥̇𝑟𝑛, 𝑤ℎ𝑒𝑛𝑟 ≥ 0, 𝑥̇ ≥ 0

𝑟̇ = 𝑥̇+ 𝛽𝑥̇𝑟𝑛 − 𝛾𝑥̇𝑟𝑛, 𝑤ℎ𝑒𝑛𝑟 ≥ 0, 𝑥̇ < 0

𝑟̇ = 𝑥̇− 𝛽𝑥̇−𝑟𝑛 − 𝛾𝑥̇−𝑟𝑛, 𝑤ℎ𝑒𝑛𝑟 < 0, 𝑥̇ < 0

𝑟̇ = 𝑥̇+ 𝛽𝑥̇𝑟𝑛 − 𝛾𝑥̇𝑟𝑛, 𝑤ℎ𝑒𝑛𝑟 < 0, 𝑥̇ ≥ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.8)

Consequently, the system becomes unobservable as the state vector contains 8

unknown parameters and observability rank results in 7.

In order the system to become observable the state vector size should be reduced

to 7. This can be achieved by further model reduction based on the Bouc-Wen model

properties which are discussed below.

Table 6.1: BIBO stability conditions for Bouc-Wen model (modified from [3])

Case Condition Ω Upper bound on
⃒⃒
𝑟(𝑡)

⃒⃒
Class

𝐴 > 0
𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 ≥ 0 R max(⃒⃒ 𝑟(0)

⃒⃒
,𝑟0) I

𝛽 − 𝛾 < 0 and 𝛽 ≥ 0 [−𝑟1,𝑟1] max(⃒⃒ 𝑟(0)
⃒⃒
,𝑟0) II

𝐴 < 0
𝛽 − 𝛾 > 0 and 𝛽 + 𝛾 ≥ 0 R max(⃒⃒ 𝑟(0)

⃒⃒
,𝑟1) III

𝛽 + 𝛾 < 0 and 𝛽 ≥ 0 [−𝑟0,𝑟0] max(⃒⃒ 𝑟(0)
⃒⃒
,𝑟1) IV

𝐴 = 0 𝛽 + 𝛾 > 0 and 𝛽 − 𝛾 ≥ 0 R
⃒⃒
𝑟(0)

⃒⃒
V

𝐴 = 0 0

By separating the unobservable states, either 𝛾 or 𝛽 can be set to a constant

value. However, although parameters in Bouc-Wen model does not correspond to a

physical identity, the resultant hysteresis has to satisfy dynamic properties of Bouc-

Wen model to reproduce physical behavior in mechanical and structural systems

which are studied by [3]. First property is the Bouc-Wen model’s bounded input-

bounded output (BIBO) stability. Physical meaning behind this property is that the

mechanical and structural systems are stable in open loop, meaning without a control

feedback to the system. Thus, in order to ensure the output hysteresis is bounded for

any bounded input five classes of conditions are presented in Table (6.1). The table

shows that the output 𝑟(𝑡) is independent of input 𝑥(𝑡) for classes based on the initial

condition of the hysteresis
⃒⃒
𝑟(0)

⃒⃒
and parameters 𝛽 and 𝛾. Moreover, 𝑟(𝑡) = 0 for all
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𝑡 ≥ 0 in Class V, thus it corresponds to linear behavior. Furthermore, among the

classes I-IV, [3] showed that only Classes I-II are relevant to a physical description

of a system, thus the rest of the classes are not relevant from a practical stand point

of view. Lastly, only class I is passive which means when a suitable storage function

is assumed for the Bouc-Wen model, the system does not generate energy but only

dissipates. Furthermore, Class I is also the only one which satisfies the conditions

of thermodynamic admissibility for Bouc-Wen model which was investigated by [79].

The following conditions are considered necessary and sufficient for Bouc-Wen model

to satisfy thermodynamic admissibility:

𝐴 > 0𝑎𝑛𝑑− 𝛽 ≤ 𝛾 ≤ 𝛽 (6.9)

However, in the limit case where 𝛼 is assumed equal to zero (which is the case in

this study), [3] states that the system may not always be BIBO stable.

In addition, [80] stated in some cases different 𝛽 and 𝛾 couples results in same

hysteresis response and it is considered as the reason why identification results may

result in different values than the real ones. In fact the real value is never known.

Considering the above suggestions, and redundancy of the Bouc-Wen model, 𝛽 and

𝛾 must satisfy Class I conditions in which 𝐴 > 1 in order to represent a physical system

in engineering applications. Thus, 𝛽 and 𝛾 are chosen as the candidate parameters

to set to a constant value. Observability rank is found 7 when either 𝛾 or 𝛽 are

assigned as known. Thus, for verification through simulations, 𝛾 is set known as

𝛾 = 3. This way, the size of the augmented state vector becomes 7, which is equal to

the observability rank, and the system becomes observable with only acceleration or

displacement measurement. Consecutively, the reduced augmented state vector is as

follows:

𝑋𝑎 = [𝑥, 𝑥̇, 𝑟, 𝑘, 𝑐, 𝛽, 𝑛]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]
𝑇 (6.10)

where mass and 𝛾 are assumed as known in all following structural parameter

estimations.
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6.2 Simulation

Mass, 𝑚 and initial design stiffness, 𝑘 of the reinforced concrete column that was

used in E-Defense experiment are selected as structural parameters. 𝜁 = 3% viscous

damping is assumed for the column and corresponding damping factor 𝑐 is calculated

based on mass and stiffness. SDOF system nonlinear response is simulated with the

above given structural parameters and using fourth order Runge-Kutta integration

method to solve the governing equation.

Based on Eq. (6.1) and (6.5) the state space equation is formulated as:

𝑋̇𝑎 = 𝑓(𝑋𝑎(𝑡), 𝑢(𝑡)) (6.11)

where

𝑓(Xa(𝑡),u(𝑡)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥2

(−𝑥4𝑥3 − 𝑥5𝑥2)/𝑚+ 𝑥𝑔

𝑥2 − 𝑥6|𝑥2||𝑥3|(𝑥7−1)𝑥3 − 𝛾𝑥2|𝑥3|(𝑥7)

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.12)

The input acceleration is five times the first 100% Takatori (Modified) excita-

tion. Simulated acceleration response at the column top location has been used to

obtain displacement by double-integration which then has been used as the obser-

vation in UKF-RM. The input acceleration, simulated displacement and calculated

displacement from simulated acceleration response is presented in (Fig. 6-1). Here,

from the displacement-time history at the bottom of the figure it can be seen that

the displacement which was obtained by double integration of the acceleration lack

the pseudo-static displacement due to the applied high-pass filter. The reason why

this displacement is used as observation in UKF-RM is actually straight-forward. In

a real-world measurement, often measuring velocity and especially displacement or

184



0 10 20 30 40 50 60
-40

-20

0

20

40

S
ha

ke
 T

ab
le

 (
m

/s
2
)

0 10 20 30 40 50 60
Time (sec)

-0.5

0

0.5

C
ol

um
n 

T
op

 (
m

)
Displacement Response

Simulated
Double Integration

Figure 6-1: Input acceleration at the column bottom and displacement response at
the column top

force is not possible during a seismic event. Even acceleration measurements are rare

as only a few important bridges have built-in sensor arrays. In addition, the quality

of the sensors are also an issue as parameter estimation methods are usually prone

to high measurement noise, especially when the dimension of the state vector is large

or high nonlinearity exists in the dynamic system. Thus, using only acceleration

measurement and obtaining the needed information, in this case displacement time

history, is a realistic target in the way of search for a parameter estimation algorithm

that can be applied in practice.

Thus, the observation equation becomes:

𝑦 =

[︂
𝑥1

]︂
(6.13)

Initial state vector is shown below which consists a realistic model error assump-

tion.

𝑋0 = [0, 0, 0, 0.5𝑘, 0.5𝑐, 0.6𝛽, 0.9𝑛]𝑇 (6.14)

Initial error covariance is set to:
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𝑃0 = 𝑑𝑖𝑎𝑔[0.01, 0.01, 0.1, (𝑘𝑡𝑟𝑢𝑒−𝑥0(3))
2, (𝑐𝑡𝑟𝑢𝑒−𝑥0(4))

2, (𝛽𝑡𝑟𝑢𝑒−𝑥0(5))
2, (𝑛−𝑥0(6))

2]

(6.15)

Initially it is assumed no measurement noise. However, R, measurement noise

covariance is set to 𝑅 = (0.05𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑟𝑚𝑠)2. Thus, UKF-RM starts with a

wrong R value.

𝛼𝑄 and 𝛼𝑅 values are both set to 1/7.

Using the SDOF system explained above and initial values, parameter estimation

with UKF-RM has been performed using the below initial Q matrix.

𝑄0 = 𝑑𝑖𝑎𝑔[1𝑒− 4, 1𝑒− 2, 1𝑒− 4, 1𝑒− 4, 1𝑒− 1, 1𝑒− 9, 1𝑒− 8] (6.16)

(Figures 6-2,6-3) show the state and structural parameter estimation results, re-

spectively. Both displacement and velocity and structural parameters; stiffness and

damping, are estimated with UKF-RM successfully.
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Figure 6-2: State estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7

Bouc-Wen parameters which form the hysteresis response are also successfully esti-

mated inside the significant duration with UKF-RM (Fig. 6-4). Bouc-Wen parameter
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Figure 6-3: Structural parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7

Table 6.2: Structural and Bouc-Wen parameter estimation summary with UKF-RM
- Simulation

Param. TRUE Estimation error(%)
stiffness (k) 22618 22524 0.4
damping (c) 143.4 151.6 5
beta (𝛽) 3 2.88 -4
(𝑛) 2 2.08 4

estimation convergence seems to be slower when compared to structural parameter

estimation. However both achieve convergence inside the significant duration. This

may be attributed to the fact that estimation of Bouc-wen parameters need full non-

linear response cycles to be identified where the structural parameters do not. Table

(6.2) summarizes the error percentage of the estimated mean parameter values be-

tween 2 sec after the start and end of the significant duration. All parameters are

estimated with an error less than 10% .

Fig. (6-5) shows the comparison between the resultant hysteresis response, force-

displacement relationship, between the simulation and UKF-RM estimation. The part

until the pseudo-static displacement occurs at about 13 seconds (Fig. 6-1) matches
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Figure 6-4: Bouc-Wen parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7

well with the simulated hysteresis response (Fig. 6-6).

As mentioned before, the displacement obtained from acceleration by double-

integration has been used as the observation (Fig. 6-1) and thus pseudo-static dis-

placement is missing information due to the applied high-pass filter. However, the

hysteresis response obtained with UKF-RM using double-integrated acceleration as

observation contains the cycles after significant duration (Fig. 6-7). The response

lacks only the permanent displacement component which corresponds to about 4%

of the total energy dissipation. Thus, the difference between the estimated and sim-

ulated energy dissipation is considered small.

Simulation with measurement noise

The simulation is repeated in the case of measurement noise which is equal to 5%

of the RMS of the observation. RMS of the displacement observation is equal to

0.0764𝑚. Using same 𝑋0, 𝑃0 and 𝑄0 in the above simulation, measurement noise is

added to the observation. However, initial measurement noise covariance 𝑅0 is set to

0.
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Figure 6-5: Hysteresis loops estimation from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
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Figure 6-6: Hysteresis loops estimation before residual displacement from UKF-RM
with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7

Figures (6-8) and (6-9) show the structural and Bouc-Wen parameter estima-

tion results, respectively. Structural parameters were successfully estimated. On

the other hand, while Bouc-Wen parameters could not be estimated, the hysteresis

displacement was successfully obtained with UKF-RM. Here, there are two marks
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Figure 6-7: Hysteresis loops estimation after residual displacement from UKF-RM
with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
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Figure 6-8: Parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7

which need to be addressed. First, even though there is high measurement noise in

the observation and the initial measurement noise covariance is set to zero, the al-

gorithm was able to estimate structural parameters, namely stiffness and damping.

Secondly, although Bouc-Wen parameters were not the real values assigned initially,
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Figure 6-9: Hysteresis parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7

the hysteresis displacement estimation was successful which may be attributed to the

redundant constitution of the Bouc-Wen model as summarized in the earlier sections

of this chapter.
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Figure 6-10: Hysteresis response estimation before residual displacement with 𝛼𝑄 =
1/7 and 𝛼𝑅 = 1/7 and 5% measurement noise
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Figure 6-11: Hysteresis response estimation after residual displacement with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7 and 5% measurement noise

Furthermore, Fig. (6-10) shows the comparison between the resultant hysteresis

response, force-displacement relationship, between the simulation and UKF-RM esti-

mation before residual displacement occurs and estimation results matches well with

the simulated hysteresis response. Fig. (6-11) shows the comparison between the

resultant hysteresis response after residual displacement occurs which matches well

with the measured force-displacement relationship.

6.3 Simulation Results for Sensitivity Investigation

with Nonlinear Model

In this section, sensitivity of UKF-RM to change in initial filter parameters are

repeated for nonlinear model in a similar way to Chapter 4. The nonlinear model

and initial filter parameters considered in this section is same as in Section 6.2 with

no added measurement noise in observation.

Upper and lower bounds for initial 𝑄0, 𝑅0 and 𝑃0, initial state vector, 𝑋0, and

RM parameters 𝛼𝑄 and 𝛼𝑅 are summarized. Judging criteria for the performance
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is that the filter must be able to achieve a successful estimate of states from the

beginning of the data, stiffness and damping from the beginning of the significant

duration and hysteretic force inside the significant duration. In this section, repre-

sentative results will be given only for the cases related to Bouc-Wen parameters,

because a detailed explanation on the sensitivity of the states to change in initial

filter parameters considering linear model was presented in Chapter 4.

6.3.1 Sensitivity to change in elements of 𝑄0

Table (6.3) summarizes the results of UKF-RM sensitivity to change in elements

of 𝑄0, initial process noise matrix, considering the nonlinear model. UKF-RM can

achieve successful estimation of states and parameters in a wide range of 𝑄0 values

within practical limits.

Table 6.3: Upper and lower bound suggestions based on the sensitivity analysis for
initial Q matrix

𝑄(𝑥) 𝑄(𝑥̇) 𝑄(𝑟) 𝑄(𝑘) 𝑄(𝑐) 𝑄(𝛽) 𝑄(𝑛)
Lower B. 10−20 10−20 10−20 10−20 10−20 10−20 10−20

Upper B. 109 104 101 107 109 105 10−1

Figures (6-12) and (6-13) present displacement, velocity, stiffness and damping

estimations when 𝑄0 element corresponding to hysteretic displacement 𝑟, 𝑄(𝑟), is set

to 101. Displacement and velocity estimations match well with simulated response

from the beginning of the data while stiffness and damping estimations converged to

true values from the beginning of the significant duration.

Figure (6-14) presents Bouc-Wen parameter estimations. 𝛽 and 𝑛 parameter es-

timations fluctuates around the true value during significant duration. However,

resultant hysteretic displacement, 𝑟, estimation matches well with the simulation re-

sult.

Resultant hysteretic force and displacement relationship is depicted in Figure (6-

15). The part until the pseudo-static displacement, which occurs at about 13 seconds,

(Fig. 6-1) matches well with the simulated hysteresis response (Fig. 6-16). As men-

tioned before, the displacement obtained from acceleration by double-integration has
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Figure 6-12: Estimated states with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝑟) = 101
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Figure 6-13: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝑟) = 101
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Figure 6-14: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝑟) = 101
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Figure 6-15: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑄(𝑟) = 101
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Figure 6-16: Estimated hsyteresis before residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝑟) = 101

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Displacement[m]

-6000

-4000

-2000

0

2000

4000

6000

H
ys

te
re

tic
 fo

rc
e[

kN
]

Estimated
Simulated

Figure 6-17: Estimated hsyteresis after residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝑟) = 101
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been used as the observation and thus, pseudo-static displacement is missing informa-

tion due to application of high-pass filter. However, the hysteresis response obtained

with UKF-RM using double-integrated acceleration as observation also contains the

cycles after significant duration (Fig. 6-17). The response lacks only the permanent

displacement component which corresponds to about 4% of the total energy dissipa-

tion. Thus, the difference between the estimated and simulated energy dissipation is

considered small.
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Figure 6-18: Estimated hsyteresis in various time duration with 𝛼𝑄 = 1/7 and 𝛼𝑅 =
1/7 and 𝑄(𝑟) = 101

Figure (6-18) depicts hysteresis force estimations during various time duration

which show good agreement with the simulated force-displacement relationships. Fur-

thermore, to compare the energy dissipation of the system during largest response

times, the area inside the selected force-displacement loops are calculated and com-

pared with simulations (Fig. 6-19). The difference between the estimated and simu-
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Figure 6-19: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝑟) = 101

lated energy dissipation between 9-12 sec is about 4.8%.
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Figure 6-20: Estimated states with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝛽) = 105

Figures (6-20 to 6-27) show estimation results when 𝑄0 element corresponding to
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Figure 6-21: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝛽) = 105
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Figure 6-22: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝛽) = 105
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Figure 6-23: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑄(𝛽) = 105
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Figure 6-24: Estimated hsyteresis before residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝛽) = 105
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Figure 6-25: Estimated hsyteresis after residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝛽) = 105

Bouc-Wen parameter 𝛽, 𝑄(𝛽), is set to 105. Figures (6-28 to 6-35) shows estimation

results when 𝑄0 element corresponding to Bouc-Wen parameter 𝑛, 𝑄(𝑛), is set to

10−1. Similar conclusions which are presented above can be drawn for these two

cases, too.

6.3.2 Sensitivity to change in elements of 𝑅0 and measurement

noise

In this section, four cases are considered to investigate the sensitivity of estimation

algorithm to change in initial R-value,𝑅0 when various levels of measurement noise

present in the observation. R, measurement noise covariance matrix is a scalar since

there is only one observation, namely; displacement. Considered cases are summarized

in Table (6.4) as follows:

Representative results from Case 4b are presented below. Figure (6-36) and (6-

37) depicts structural and Bouc-Wen parameters, respectively. While stiffness and

damping estimations are achieved successfully, Bouc-Wen parameter 𝛽 seems to be

sensitive to high measurement noise. Although 𝛽 cannot converge to its true value,
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Figure 6-26: Estimated hsyteresis in various time duration with 𝛼𝑄 = 1/7 and 𝛼𝑅 =
1/7 and 𝑄(𝛽) = 105
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Figure 6-27: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝛽) = 105

0 10 20 30 40 50 60
-0.5

0

0.5

di
sp

la
ce

m
en

t[
m

]

EDEF - State Estimations - Q(n)=10-1

Double-Integrated
Estimated

0 10 20 30 40 50 60
-4

-2

0

2

4

ve
lo

ci
ty

[m
/s

]

Figure 6-28: Estimated states with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝑛) = 10−1
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Figure 6-29: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝑛) = 10−1
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Figure 6-30: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑄(𝑛) = 10−1
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Figure 6-31: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑄(𝑛) = 10−1
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Figure 6-32: Estimated hsyteresis before residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝑛) = 10−1
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Figure 6-33: Estimated hsyteresis after residual displacement with 𝛼𝑄 = 1/7 and
𝛼𝑅 = 1/7 and 𝑄(𝑛) = 10−1

Table 6.4: Cases considered for sensitivity analysis for initial Q matrix

Case Measurement Noise 𝑅0 Result
1 0 20% UKF-RM:OK
2 1% 20% UKF-RM:OK
3a 5% 1% UKF-RM:OK
3b 5% 10% UKF-RM:OK
4a 10% 1% UKF-RM:OK
4b 10% 20% UKF-RM:OK

𝑛 and 𝑟 shows satisfactory agreement when compared to simulation results.

Resultant hysteretic force and displacement relationship is depicted in Figure (6-

38). Due to high measurement noise, 10% addition to the observation, the estimations

become noisy, too. However, when hysteresis force estimations during various time

duration (Fig. 6-18) examined, good agreement with the simulated force-displacement

relationships can be observed.

Furthermore, to compare the energy dissipation of the system during largest re-

sponse times, the area inside the selected force-displacement loops are calculated and

compared with simulations (Fig. 6-19). The difference between the estimated and

simulated energy dissipation between 9-12 sec is considered small.
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Figure 6-34: Estimated hsyteresis in various time duration with 𝛼𝑄 = 1/7 and 𝛼𝑅 =
1/7 and 𝑄(𝑛) = 10−1
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Figure 6-35: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑄(𝑛) = 10−1
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Figure 6-36: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑅0 = 20% with 10% measurement noise
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Figure 6-37: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑅0 = 20% with 10% measurement noise
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Figure 6-38: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑅0 = 20% with 10% measurement noise
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Figure 6-39: Estimated hsyteresis in various time duration with 𝛼𝑄 = 1/7 and 𝛼𝑅 =
1/7 and 𝑅0 = 20% with 10% measurement noise
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Figure 6-40: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑅0 = 20% with
10% measurement noise

6.3.3 Sensitivity to change in elements of 𝑃0

Considered cases are summarized in Table (6.5). In the table, 𝑃00 is equal to Eq.

6.15.

Table 6.5: Cases considered for sensitivity analysis for initial P matrix, 𝑃0

Case 𝑃0 Stiffness Damping Hysteresis
1 10−2 * 𝑃00 UKF-RM:OK OK OK
2 1 * 𝑃00 UKF-RM:OK OK OK

Representative results from Case 1 are given below.

Representative results from Case 1 are presented below. Figure (6-41) depicts

stiffness and damping estimation results which were obtained successfully. However,

although Bouc-Wen parameter 𝛽 estimation was not successful (Fig. 6-42) the 𝑛 and

𝑟 shows good agreement with the simulation results.

When hysteresis force estimations during various time duration (Fig. 6-18) ex-
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Figure 6-41: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑃0 = 10−2 * 𝑃00
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Figure 6-42: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑃0 = 10−2 * 𝑃00
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Figure 6-43: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑃0 = 10−2 * 𝑃00
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Figure 6-44: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑃0 = 10−2 * 𝑃00
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amined, good agreement with the simulated force-displacement relationships can be

observed. Furthermore, to compare the energy dissipation of the system during largest

response times, the area inside the selected force-displacement loops are calculated

and compared with simulations (Fig. 6-44). The difference between the estimated

and simulated energy dissipation between 9-12 sec is about 10%.

6.3.4 Sensitivity to change in initial state vector 𝑋0

Considered cases are summarized in Table (6.6). 𝑋00 is equal to

𝑋00 = [0, 0, 0, 𝑘, 𝑐, 𝛽]𝑇 (6.17)

which is an initial state vector but without 𝑋0(𝑛).

Table 6.6: Cases considered for sensitivity analysis for initial state matrix, 𝑋00

Case 𝑋0 Stiffness Damping Hysteresis
1 0.2 *𝑋00 UKF-RM:OK OK OK
2 0.5 *𝑋00 UKF-RM:OK OK OK
3 0.8 *𝑋00 UKF-RM:OK OK OK
4 1.2 *𝑋00 UKF-RM:OK OK OK
5 1.5 *𝑋00 UKF-RM:OK OK OK
6 1.8 *𝑋00 UKF-RM:OK OK OK

The lower and upper bounds for 𝑋0(𝑛) is found equal to [0.9𝑛, 1.3𝑛]. To obtain

the results presented in the Table 6.6 𝑋0(𝑛) can be set to either its lower or upper

bound value.

Representative results with the initial state vector below are summarized as fol-

lows.

𝑋0 = [0, 0, 0, 0.2𝑘, 0.2𝑐, 0.2𝛽, 1.3𝑛]𝑇 (6.18)

Both stiffness and damping (Fig. 6-45) and Bouc-Wen parameters ((Fig. 6-46))

estimated successfully although initial state vector was assigned far away from the true

values. 𝑛, Bouc-Wen parameter is the most sensitive state among all states because
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Figure 6-45: Estimated structural parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑋0=Eq. (6.18)
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Figure 6-46: Estimated Bouc-Wen parameters with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and
𝑋0=Eq. (6.18)
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it represent the exponential term in the nonlinear hysteretic displacement equation.

Considering this fact the upper and lower bound of 𝑛 is also in practical limits. Thus,

UKF-RM algorithm may be considered as robust against initial condition errors.
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Figure 6-47: Estimated force-displacement relationship with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
and 𝑋0=Eq. (6.18)

Furthermore, when hysteresis force estimations during various time duration (Fig.

6-47) examined, good agreement with the simulated force-displacement relationships

can be observed. Furthermore, to compare the energy dissipation of the system

during largest response times, the area inside the selected force-displacement loops

are calculated and compared with simulations (Fig. 6-48). The difference between

the estimated and simulated energy dissipation between 9-12 sec is about 1.2%.

6.3.5 Sensitivity to change in 𝛼𝑄 and 𝛼𝑅

In UKF-RM, estimates of the noise covariance Q and R using Robbins-Monro stochas-

tic approximation scheme can be formulated as follows [62],[61],[44].

𝑄𝑘 = (1− 𝛼𝑄) * (𝑄𝑘−1) + 𝛼𝑄 * (𝐾𝑘) * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 * (𝐾𝑇

𝑘 ) (6.19)
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Figure 6-48: Dissipated energy with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7 and 𝑋0=Eq. (6.18)

𝑅𝑘 = (1− 𝛼𝑅) * (𝑅𝑘−1) + 𝛼𝑅 * (𝑧𝑘 − 𝑧−𝑘 ) * (𝑧𝑘 − 𝑧−𝑘 )
𝑇 (6.20)

where 𝛼: a small positive number, which is usually chosen at the order of 10−2.

Both 𝛼𝑄 and 𝛼𝑅 controls the adaptability of the filter. It can be considered as a

forgetting factor, which tells to the filter how quickly it should forget the previous

data and learn more from the new information as it becomes available. In this section,

the sensitivity of the filter to the selection of 𝛼𝑄 and 𝛼𝑅 is be investigated considering

a nonlinear model.

Sensitivity to change in 𝛼𝑄

First, let’s consider the case where 𝛼𝑄 is assigned a variety of values and 𝛼𝑅 is kept

constant. As mentioned before, the convergence rate depends on 𝑄 value and thus

𝛼𝑄 is important in this manner. Figure (6-49) shows parameter estimation results for

a variety of 𝛼𝑄 values when 𝛼𝑅 = 1/7. Stiffness parameter estimation is successfully
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Figure 6-49: Parameter estimations with UKF-RM (Nonlinear model) - Sensitivity
to 𝛼𝑄 (𝛼𝑅 = 1/7)
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achieved inside significant duration for all 𝛼𝑄 values. However, when 𝛼𝑄 ≤ 0.01 the

convergence rate is slower.

Damping parameter estimation is successfully achieved inside significant duration

for all 𝛼𝑄 ≥ 0.001 values. When 𝛼𝑄 = 0.001 the the convergence rate of the filter slows

down and estimation can be achieved at around the end of the significant duration.

Damping is more sensitive than stiffness estimation inside and outside of the sig-

nificant duration which is a similar general conclusion drawn before. When damping

parameter inside the significant duration is of interest then selecting an 𝛼𝑄 value at

about the order of 0.01 or larger is suggested.
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Figure 6-50: Bouc-Wen parameter estimations with UKF-RM (Nonlinear model) -
Sensitivity to 𝛼𝑄 (𝛼𝑅 = 1/7)

Bouc-Wen parameter estimation results are depicted in Figure (6-50) for a variety

of 𝛼𝑄 values when 𝛼𝑅 = 1/7. Both 𝛽 and 𝑛 parameters are successfully estimated

when 𝛼𝑄𝑔𝑒𝑞0.1. Thus, it can be concluded that the nonlinear model which includes
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Bouc-Wen parameters is more sensitive to the selection of 𝛼𝑄. To achieve successful

parameter estimations, the adaptation of the filter should be fast which can be satis-

fied with a selection of 𝛼𝑔𝑒𝑞0.1. Especially when 𝛼 = 0.001, 𝛽 parameter update slows

down and 𝑛 parameter estimation cannot be updated because the adaptive ability of

the filter reduces. On the other hand, due to the redundancy of Bouc-Wen element,

hysteretic displacement is successfully estimated with all 𝛼 values even though the

Bouc-Wen parameters cannot be achieved.
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Figure 6-51: Hysteresis loop estimations with UKF-RM (Nonlinear model) - Sensi-
tivity to 𝛼𝑄 (𝛼𝑅 = 1/7)

Figure 6-51 shows the estimated hysteresis loops for different times of the response.

For all 𝛼𝑄 value, hysteretic force - displacement relationships are constructed success-

fully. Thus, hysteresis loop estimations can be considered as insensitive to changes in

𝛼𝑄 value.

Figure 6-52 shows the estimated dissipated energy for the largest hysteresis loops.
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Figure 6-52: Dissipated energy estimations with UKF-RM (Nonlinear model) - Sen-
sitivity to 𝛼𝑄 (𝛼𝑅 = 1/7)
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Calculated energy dissipation errors are 2%, 7%, 1% and 3% when 𝛼𝑄 = 1, 𝛼𝑄 = 0.1,

𝛼𝑄 = 0.01, and 𝛼𝑄 = 0.001, respectively.

Sensitivity to change in 𝛼𝑅

Finally, the performance of UKF-RM based on its sensitivity to 𝛼𝑅, assuming 5%

measurement noise, 𝑅0 = 1% is investigated.
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Figure 6-53: Parameter estimations with UKF-RM (Nonlinear model) - Sensitivity
to 𝛼𝑅 (𝛼𝑄 = 1/7 and 5% measurement noise)

Figure (6-53) shows parameter estimation results for a variety of 𝛼𝑅 values when

𝛼𝑄 = 1/7 and 5% measurement noise is added to the observation. Both stiffness and

damping parameter estimations are successfully achieved inside significant duration

for all 𝛼𝑅 values when 5% is present in observation. Calculated parameter estimation

errors are less than 1%. Thus, structural parameters can be considered as insensitive

to changes in 𝛼𝑅 value assignments.
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Figure 6-54: Bouc-Wen parameter estimations with UKF-RM (Nonlinear model) -
Sensitivity to 𝛼𝑅 (𝛼𝑄 = 1/7 and 5% measurement noise)
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Bouc-Wen parameter estimation results are depicted in Figure (6-54) for a variety

of 𝛼𝑅 values when 𝛼𝑄 = 1/7 and 5% measurement noise is added to the observation.

Both Bouc-Wen parameters 𝛽 and 𝑛, and hysteretic displacement, 𝑟 are successfully

estimated with an error percentage less than 1% regardless of the assigned 𝛼𝑅 value.
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Figure 6-55: Hysteresis loop estimations with UKF-RM (Nonlinear model) - Sensi-
tivity to 𝛼𝑅 (𝛼𝑄 = 1/7 and 5% measurement noise)

Figure 6-55 shows the estimated hysteresis loops for different times of the response.

For all 𝛼𝑅 value, hysteretic force - displacement relationships are constructed success-

fully. Thus, hysteresis loop estimations can be considered as insensitive to changes in

𝛼𝑅 value.

Figure 6-56 shows the estimated dissipated energy for the largest hysteresis loops.

Calculated energy dissipation errors are 5%, 8%, 1% and 8% when 𝛼𝑅 = 1, 𝛼𝑅 = 0.1,

𝛼𝑅 = 0.01, and 𝛼𝑅 = 0.001, respectively.

In conclusion, considering a variety of 𝛼𝑄 and 𝛼𝑅 (including measurement noise)
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Figure 6-56: Dissipated energy estimations with UKF-RM (Nonlinear model) - Sen-
sitivity to 𝛼𝑅 (𝛼𝑄 = 1/7 and 5% measurement noise)
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values the sensitivity of the estimations results to change in 𝛼 values in investigated.

In all cases UKF-RM is proven to be robust to achieve successful estimations. When

𝛼𝑄 and 𝛼𝑅 are selected in a reasonable range, the estimations can be obtained success-

fully and consistently. Thus estimations can be considered as insensitive to change in

𝛼 values. Consequently, UKF-RM is proven to be advantageous in practical applica-

tions which eases the interpretation of the obtained parameter due to its consistency

in estimations.

6.4 Experiment

In this section, identification of hysteresis response will be validated with the proposed

method using large earthquake response measurements from E-Defense experiment.

Based on the explanations given in Chapter 6.1, the reduced augmented state vector

is as follows:

𝑋𝑎 = [𝑥, 𝑥̇, 𝑟, 𝑘, 𝑐, 𝛽, 𝑛]𝑇 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]
𝑇 (6.21)

where only mass, 𝑚 and Bouc-Wen parameter 𝛾 is assumed as known in all fol-

lowing structural parameter estimations.

Mass is obtained from the E-Defense C1-1 experiment report [1]. The reaction

force in vertical direction measured by the load cells located on the pier cap is given

equal to 2080𝑘𝑁 (Table 2.1) from dead load of the girder and added mass on top of

the girder. In addition, weight of the pier is given as 794.5𝑘𝑁 . Consequently, the

modal mass is calculated as

𝑚 = (2080 + 794.5/2)/𝑔 = 252.5𝑡𝑜𝑛 (6.22)

where 𝑔 = 9.81𝑚/𝑠2 is the acceleration of gravity. Thus, it is assumed that half

of the pier weight also contributes to the structure mass.

𝛾 is assumed as 0.5. In the following sections, sensitivity of the results to change

in 𝛾 will also be presented. Furthermore, here it should be noted that the estimated
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𝛽 values should satisfy the Class I conditions presented in Table 6.1.

Based on Eq. (6.1) and (6.5) the state space equation is formulated as:

𝑋̇𝑎 = 𝑓(𝑋𝑎(𝑡), 𝑢(𝑡)) (6.23)

where

𝑓(Xa(𝑡),u(𝑡)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥2

(−𝑥4𝑥3 − 𝑥5𝑥2)/𝑚+ 𝑥𝑔

𝑥2 − 𝑥6|𝑥2||𝑥3|(𝑥7−1)𝑥3 − 𝛾𝑥2|𝑥3|(𝑥7)

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.24)

Observation is double-integrated measured acceleration on top of the pier cap,

thus observation equation becomes:

𝑦 =

[︂
𝑥1

]︂
(6.25)

Initial state vector is shown below.

𝑋0 = [0, 0, 0, 1.5𝑘, 0.5𝑐, 0.6𝛽, 0.9𝑛]𝑇 (6.26)

Here, 𝑘 is equal to the given design value, 32506𝑘𝑁/𝑚, in the experiment report

[1]. 𝜁 = 3% viscous damping is assumed for the column and corresponding damping

factor 𝑐 is calculated based on mass and stiffness. 𝛽 and 𝑛 are set to one and two,

respectively.

Initial error covariance is set to

𝑃0 = 𝑑𝑖𝑎𝑔[0.01, 0.01, 0.01, 𝑘2, 𝑐2, 𝛽2, 0.1] (6.27)

instead of
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𝑃0 = 𝑑𝑖𝑎𝑔[0.01, 0.01, 0.01, (𝑘𝑡𝑟𝑢𝑒−𝑥0(3))
2, (𝑐𝑡𝑟𝑢𝑒−𝑥0(4))

2, (𝛽𝑡𝑟𝑢𝑒−𝑥0(5))
2, (𝑛−𝑥0(6))

2]

(6.28)

Because in practice, true values and initial values of the states are unknown. Thus,

initial error covariance is set in a way such that the given design values are squared.

Meaning, the initial state vector is actually zero and the error is equal to the state’s

design value itself.

Initial measurement noise covariance is set to 𝑅0 = (0.05𝑅𝑀𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)
2.

𝛼𝑄 and 𝛼𝑅 values are both set to 1/7.

Using the SDOF system explained above and initial values, parameter estimation

with UKF-RM has been performed using the below initial Q matrix.

𝑄0 = 𝑑𝑖𝑎𝑔[10−4, 10−2, 10−4, 10−4, 10−1, 101, 10−8] (6.29)

Among the available dataset, two input and response measurements (Tab. 6.7)

are selected for experimental validation of the proposed hysteresis curve estimation

algorithm. As mentioned before ground motion presented in the table appear in the

same chronological order as they were input to the system. Before input 2007−1213−

004−1𝑀 , there were no damage occurs on the pier. Input 2007−1213−014−1𝑀 was

exerted to the system after the pier was damaged due to input 2007−1213−004−1𝑀 .

Table 6.7: Selected data sets from the excitations used in C1-1 experiment

ID Excitation type Excitation level
2007-1213-004-1M Takatori(Modified) 100%
2007-1213-014-1M Takatori(Modified) 100%
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6.4.1 Hysteresis force identification results for input 2007 −

1213− 004− 1𝑀

Input acceleration measured on the shake table is depicted on top of Fig. (6-57).

Peak ground acceleration is about 5𝑚/𝑠2. In addition, first 7 seconds of the data

is disregarded because there is not information during this initial part. The bottom

figure shows comparison between the displacement response estimation from accel-

eration response measurement and measured displacement during the experiment.

Maximum displacement response is about 0.13𝑚. Except the residual displacement,

measured and estimated displacements show satisfactory match. Using the estimated

displacement with double-integration of acceleration as observation UKF-RM results

are obtained and summarized in this section.
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Figure 6-57: Input acceleration and displacement response estimation from accelera-
tion response measurement under excitation 2007-1213-004-1M

Displacement and velocity estimations match well with the measured response

which are depicted in Fig (6-58).

To check the accuracy of the stiffness estimation, measured force-displacement re-

lationship is drawn (Figure 6-59). Based on the hysteresis curves, the total duration

of response is divided into three regions, namely; initial, nonlinear and residual re-
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Figure 6-58: State estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
(2007-1213-004-1M)
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Figure 6-59: Measured force-displacement relationship during experiment (2007-1213-
004-1M)

sponses. The legend on the displacement response time history given in Figure (6-60)

shows the corresponding response regions and their duration. Two horizontal dotted

lines on the stiffness estimation figure represent the measured initial and residual

stiffness which are calculated as the slope of the linear fit to the measured hysteresis
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Figure 6-60: Stiffness estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
(2007-1213-004-1M)

curves. Estimated residual stiffness is calculated as the mean value over 10𝑠𝑒𝑐. dura-

tion starting from the end of significant duration, which is equal to 11074𝑘𝑁/𝑚. The

true value of the residual stiffness is 11181𝑘𝑁/𝑚, hence the estimation error is equal

to 1%.
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Figure 6-61: Measured force-displacement relationship in nonlinear response region
(3.17𝑠𝑒𝑐− 10𝑠𝑒𝑐) (2007-1213-004-1M)
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Figure 6-62: Nonlinear response region (zoomed): Stiffness estimation results from
UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7

During nonlinear response, there are several hysteresis curves which have various

slopes, thus a single value for stiffness cannot be given. For instance, when the

response between (𝑡 = 3.17−5𝑠𝑒𝑐) is examined (Figure 6-61), the nonlinearity can be

considered as small because because force-displacement relationship generates very

thin hysteresis curve, meaning energy dissipation in the system is small. When we

zoom in to the nonlinear response region of stiffness estimation results in fact just

before 𝑡 = 5𝑠𝑒𝑐 stiffness becomes very stable at about 14360𝑘𝑁/𝑚 (Figure 6-62).

When it is compared to the slope of the linear fit of the corresponding measured

force-displacement curve (14807𝑘𝑁/𝑚) the error is about 3%.

However, when damage occurs to structural components, stiffness cannot be ob-

tained as a single value due to complex cyclic reversals and hence energy dissipation

of the system should be known. The area under the force-displacement curves gives

an estimate of the energy dissipation of the system. However, hysteresis force can-

not directly be estimated using system identification. By estimating nonlinear model

parameters, such as Bouc-Wen model, the hysteresis force can be calculated. Fig-

ure (6-63) depicts the estimation results for Bouc-Wen parameters. Although all

Bouc-Wen parameters converge to a value, the accuracy of the estimation cannot be
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Figure 6-63: Bouc-Wen parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7 (2007-1213-004-1M)

validated because true values of the parameters are not known. Thus, a two step

check procedure is adopted in this thesis which is discussed below.

First check is that the Class I conditions given in Table 6.1 for 𝛽 and 𝛾 must

be satisfied. 𝛾 was assumed 0.5 and estimated 𝛽 changes between 20 to 35 after

𝑡 = 5𝑠𝑒𝑐 based on the response reversals. Thus, Class I conditions are satisfied and

hence thermodynamic admissibility conditions are met by the identified Bouc-Wen

parameters. Consequently, the identified Bouc-Wen model is considered BIBO stable.

Second check is the comparison of estimated and measured force-displacement

relationships which are depicted in Figures (6-64) and (6-65) for initial, nonlinear

and residual response ranges. Hysteretic force is calculated as follows.

𝐻𝑠𝑦𝑡𝑒𝑟𝑒𝑡𝑖𝑐𝑓𝑜𝑟𝑐𝑒 = 𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑟(𝑡) + 𝑐𝑑𝑒𝑠𝑖𝑔𝑛𝑥̇(𝑡) (6.30)

where 𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the estimated residual stiffness, 𝑟(𝑡) is the estimated hysteretic

displacement, 𝑥̇(𝑡) is the estimated velocity in which (𝑡) stands for time step. True

damping value is now known, so the estimated damping cannot be validated. Thus,

design damping assumption is adopted to calculate the hysteretic force.
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Figure 6-64: Estimated and measured force-displacement curves during initial and
nonlinear response ranges (2007-1213-004-1M)

Figure 6-65: Estimated and measured force-displacement curves during residual re-
sponse ranges (2007-1213-004-1M)

Between 𝑡 = 0−5𝑠𝑒𝑐 and 𝑡 = 9−25𝑠𝑒𝑐 response, in other words, energy dissipation

of the system is considered small. During 𝑡 = 5 − 7𝑠𝑒𝑐 and 𝑡 = 7 − 9𝑠𝑒𝑐 RC pier

dissipates more energy which is exerted by earthquake excitation. Damage pattern

was also recorded during experiment and can be found in the [1]. According to the

experiment report [1], around 𝑡 = 4𝑠𝑒𝑐 hair cracks, around 𝑡 = 6𝑠𝑒𝑐 vertical cracks
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Figure 6-66: Damage to RC pier after 1st 100% Takatori excitation [1] (2007-1213-
004-1M)

due to compressive forces and around 𝑡 = 7𝑠𝑒𝑐 concrete cover spalling occur at the

bottom of the pier (Figure 6-66).

Consequently, dissipated energy due to occurred damage at the pier bottom loca-

tion is calculated as the enclosed area by the hysteresis curves for 𝑡 = 5 − 7𝑠𝑒𝑐 and

𝑡 = 7 − 9𝑠𝑒𝑐 (Figure 6-67) from estimated and measured response. Total dissipated

energy (area inside the hysteresis curves) is 329𝑘𝑁𝑚 and 320𝑘𝑁𝑚 from estimated

and measured responses, respectively. Thus, the error of estimation is about 3%.

Sensitivity of parameter identification to change in 𝛾 for input 2007−1213−

004− 1𝑀

In this section, sensitivity of parameter identification to change in 𝛾 is investigated.

Based on the information in Chapter 6.1, in Chapter 6.4.1 𝛾 was set to 0.5. By

assigning 𝛾 = 10 and keeping all other initial filter parameters same as in 6.4.1,

UKF-RM estimation has been performed.

Displacement and velocity estimations match well with the measured response

235



-0.1 0 0.1

-1000

0

1000

H
ys

te
re

tic
 fo

rc
e[

kN
]

5-7sec:Estimated

Area = 149

-0.1 0 0.1

-1000

0

1000

Measured

Area = 177

-0.1 0 0.1
Displacement[m]

-1000

0

1000

H
ys

te
re

tic
 fo

rc
e[

kN
]

7-9sec:Estimated

Area = 180

-0.1 0 0.1
Displacement[m]

-1000

0

1000

Measured

Area = 143

Figure 6-67: Dissipated energy from estimated and measured response at 𝑡 = 5−7𝑠𝑒𝑐
and 𝑡 = 7− 9𝑠𝑒𝑐 for excitation (2007-1213-004-1M)
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Figure 6-68: State estimation results from UKF-RM with 𝛼𝑄 = 1/7, 𝛼𝑅 = 1/7 and
𝛾 = 10(2007-1213-004-1M)
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which are depicted in Fig (6-68).
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Figure 6-69: Stiffness estimation results from UKF-RM with 𝛼𝑄 = 1/7, 𝛼𝑅 = 1/7
and 𝛾 = 10 (2007-1213-004-1M)

Stiffness estimation result is depicted in Figure (6-69). Estimated residual stiffness

is calculated as the mean value over 10𝑠𝑒𝑐. period starting from the end of significant

duration, which is equal to 11352𝑘𝑁/𝑚. The true value of the residual stiffness is

11181𝑘𝑁/𝑚, hence the estimation error is equal to 2%.

Figure (6-63) depicts the estimation results for Bouc-Wen parameters. Similar

to the previous estimation results, although all Bouc-Wen parameters converge to a

value, the accuracy of the estimation cannot be validated because true values of the

parameters are not known. Two step check procedure is adopted.

First check is that the Class I conditions given in Table 6.1 for 𝛽 and 𝛾 must

be satisfied. 𝛾 was assumed 10 and estimated 𝛽 changes between 16 to 33 after

𝑡 = 5𝑠𝑒𝑐 based on the response reversals. Thus, Class I conditions are satisfied and

hence thermodynamic admissibility conditions are met by the identified Bouc-Wen

parameters. Consequently, the identified Bouc-Wen model is considered BIBO stable.

Second check is the comparison of estimated and measured force-displacement

relationships which are depicted in Figures (6-71) and (6-72) for initial, nonlinear

and residual response ranges. During 𝑡 = 5− 7𝑠𝑒𝑐 and 𝑡 = 7− 9𝑠𝑒𝑐 RC pier response
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Figure 6-70: Bouc-Wen parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7,
𝛼𝑅 = 1/7 and 𝛾 = 10 (2007-1213-004-1M)

-0.1 0 0.1

-1000

0

1000

H
ys

te
re

tic
 fo

rc
e[

kN
]

Time = 0~2.67sec.

-0.1 0 0.1

-1000

0

1000

Time =2.67~5sec.

-0.1 0 0.1
Displacement[m]

-1000

0

1000

H
ys

te
re

tic
 fo

rc
e[

kN
]

Time =5~7sec.

-0.1 0 0.1
Displacement[m]

-1000

0

1000

Time =7~9sec.

Figure 6-71: Estimated and measured force-displacement curves during initial and
nonlinear response ranges with 𝛾 = 10 (2007-1213-004-1M)
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Figure 6-72: Estimated and measured force-displacement curves during residual re-
sponse ranges with 𝛾 = 10 (2007-1213-004-1M)

is large when compared to other time periods such as in initial and residual response

ranges. In addition, estimated and measured force-displacement curves agree well

with each other.
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Figure 6-73: Dissipated energy from estimated and measured response at 𝑡 = 5−7𝑠𝑒𝑐
and 𝑡 = 7− 9𝑠𝑒𝑐 for excitation (2007-1213-004-1M)

Consequently, dissipated energy due to occurred damage at the pier bottom loca-

tion is calculated as the enclosed area by the hysteresis curves for 𝑡 = 5 − 7𝑠𝑒𝑐 and
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𝑡 = 7 − 9𝑠𝑒𝑐 (Figure 6-73) from estimated and measured response. Total dissipated

energy (area inside the hysteresis curves) is 322𝑘𝑁𝑚 and 320𝑘𝑁𝑚 from estimated

and measured responses, respectively. Thus, the error of estimation is about 1%.

Thus, it can be concluded that for the considered structural system parameter iden-

tification methodology sensitivity of the results are small to change in 𝛾 in terms of

both parameter and hysteretic force. Hence, application of the procedure to practical

problems is possible.

6.4.2 Hysteresis force identification results for input 2007 −

1213− 014− 1𝑀

Lastly, the proposed parameter and hysteretic force identification procedure has been

validated through a second input and measured response couple. Input acceleration

measured on the shake table is depicted on top of Figure (6-74) which is same as input

2007−1213−004−1𝑀 . However, this earthquake input was exerted to the RC pier af-

ter it experienced the damage (Figure 6-66) due to input 2007−1213−004−1𝑀 . Thus,

the response of the system is different when compared to undamaged state response.

The bottom figure (6-74) shows comparison between the displacement response esti-

mation from acceleration response measurement and measured displacement during

the experiment. Maximum displacement response is about 0.20𝑚. Except the residual

displacement, measured and estimated displacements show satisfactory match. Us-

ing the estimated displacement with double-integration of acceleration as observation

UKF-RM results are obtained under input 2007− 1213− 014− 1𝑀 and summarized

in this section.

Displacement and velocity estimations match well with the measured response

which are depicted in Fig (6-75).

To check the accuracy of the stiffness estimation, measured force-displacement re-

lationship is drawn (Figure 6-76). Based on the hysteresis curves, the total duration

of response is divided into three regions, namely; initial, nonlinear and residual re-

sponses. The legend on the displacement response time history given in Figure (6-77)
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Figure 6-74: Input acceleration and displacement response estimation from accelera-
tion response measurement under excitation 2007-1213-014-1M

0 5 10 15 20 25 30 35 40 45 50
-0.2

-0.1

0

0.1

0.2

di
sp

la
ce

m
en

t[
m

]

EDEF - Column State Estimations

Double-Integrated
Estimated

0 5 10 15 20 25 30 35 40 45 50
-1

-0.5

0

0.5

1

ve
lo

ci
ty

[m
/s

]

Figure 6-75: State estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
(2007-1213-014-1M)

shows the corresponding response regions and their duration. Two horizontal dotted

lines on the stiffness estimation figure represent the measured initial and residual

stiffness which are calculated as the slope of the linear fit to the measured hystere-

sis curves. Estimated residual stiffness is calculated as the mean value over 10𝑠𝑒𝑐.
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Figure 6-76: Measured force-displacement relationship during experiment (2007-1213-
014-1M)
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Figure 6-77: Stiffness estimation results from UKF-RM with 𝛼𝑄 = 1/7 and 𝛼𝑅 = 1/7
(2007-1213-014-1M)

duration starting from the end of significant duration, which is equal to 8432𝑘𝑁/𝑚.

The true value of the residual stiffness is 8178𝑘𝑁/𝑚, hence the estimation error is

equal to 3%. The initial and residual stiffness values are very close and due to pre-

vious damage, the pier starts nonlinear response immediately when the significant
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Figure 6-78: Measured force-displacement relationship in nonlinear response region
(0𝑠𝑒𝑐− 10𝑠𝑒𝑐) (2007-1213-014-1M)

duration starts (Figure6-78) at about 𝑡 = 2𝑠𝑒𝑐. Displacement response at about

𝑡 = 3𝑠𝑒𝑐 reaches −0.14𝑚 which is larger than the maximum displacement response

0.13𝑚 under the 1st 100% excitation (Figure 6-57).
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Figure 6-79: Bouc-Wen parameter estimation results from UKF-RM with 𝛼𝑄 = 1/7
and 𝛼𝑅 = 1/7 (2007-1213-014-1M)
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Figure (6-79) depicts the estimation results for Bouc-Wen parameters. The accu-

racy of the Bouc-Wen parameter estimations is again checked based on the two step

procedure discussed earlier in section chapter 6.4.1.

First check is that the Class I conditions given in Table 6.1 for 𝛽 and 𝛾 must

be satisfied. 𝛾 was assumed 0.5 and estimated 𝛽 changes between 1 to 49 after

𝑡 = 5𝑠𝑒𝑐 based on the response reversals. Thus, Class I conditions are satisfied and

hence thermodynamic admissibility conditions are met by the identified Bouc-Wen

parameters. Consequently, the identified Bouc-Wen model is considered BIBO stable.
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Figure 6-80: Estimated and measured force-displacement curves during initial and
nonlinear response ranges (2007-1213-014-1M)

Second check is the comparison of estimated and measured force-displacement

relationships which are depicted in Figures (6-80) and (6-81) for initial, nonlinear and

residual response ranges. As mentioned earlier due to the damaged initial state of the

pier, nonlinear response immediately when the significant duration starts (Figure6-

78) at about 𝑡 = 2𝑠𝑒𝑐. Thus, the time duration for the initial response range is

actually nonlinear and damage to pier continues to grow.
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Figure 6-81: Estimated and measured force-displacement curves during residual re-
sponse ranges (2007-1213-014-1M)

Figure 6-82: Damage to RC pier after 2nd 100% Takatori excitation [1] (2007-1213-
014-1M)

After 𝑡 = 9𝑠𝑒𝑐 energy dissipation of the system is considered small and response

is linear. During 𝑡 = 5−7𝑠𝑒𝑐 and 𝑡 = 7−9𝑠𝑒𝑐 the estimated and measured hysteretic

force matches well. According to the experiment report [1], damage continued to

grow until around 𝑡 = 7.5𝑠𝑒𝑐 and then concrete core crushed, lateral ties lost their

effectiveness and lastly buckling of reinforcing bars were observed (Figure 6-82). How-

ever, although estimated maximum force and displacement were matching with the
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Figure 6-83: Dissipated energy from estimated and measured response at 𝑡 = 0 −
3.67𝑠𝑒𝑐 and 𝑡 = 3.67− 5𝑠𝑒𝑐 for excitation (2007-1213-014-1M)

measurements hysteresis loop identification was not successful for the response during

𝑡 = 0− 5𝑠𝑒𝑐. The error between the estimated and measured total energy dissipation

between 𝑡 = 0𝑠𝑒𝑐 and 𝑡 = 5𝑠𝑒𝑐 is about 37%. This may be due to the limitation

of non-degrading model assumption in generalized Bouc-Wen model which cannot

represent (or track) specific damage patterns especially in the case of reinforced con-

crete. Selecting a hysteresis model which consists of stiffness and strength degradation

and/or pinching effects may improve the identification results in the initial response

range.

Dissipated energy due to occurred damage at the pier bottom location is calculated

as the enclosed area by the hysteresis curves for 𝑡 = 5−7𝑠𝑒𝑐 and 𝑡 = 7−9𝑠𝑒𝑐 (Figure

6-84) from estimated and measured response. Total dissipated energy (area inside the

hysteresis curves) is 374𝑘𝑁𝑚 and 404𝑘𝑁𝑚 from estimated and measured responses,

respectively. Thus, the error of estimation is about 8%.
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Chapter 7

Conclusions and Recommendations

The research presented in this thesis has achieved practical application of parameter

estimation on full-scale bridge components under seismic excitation. The parameter

estimation scheme has been verified via not only numerical simulations but series

of laboratory and field measurements, resulting in the first application of Unscented

Kalman Filter (UKF) on a problem of practical significance considering seismic re-

sponse in structural dynamics. The proposed method has essential abilities such as,

fast convergence rate, improved traceability and stability. In addition, due to its

adaptive nature it is more robust against unknown process and measurement noise

covariance, initial error covariance, model errors and high measurement noise in ob-

servations when compared to its non-adaptive counterparts.

In the introduction section, background for this research was first provided. Con-

dition assessment of real structures under seismic excitation is the main interest of

this study. With the advent of wireless sensor technology, gathering seismic response

data from bridges has been made possible as they allow dense, and medium term

monitoring with relatively long battery life. Such measurements pave the way for ap-

plication of system identification methods to practice. System identification methods

enables assessment of the condition of structures by detecting changes in the struc-

tural parameters. However, either in frequency or time domain, current methods

require empirical knowledge at certain levels of the identification steps which makes

applications of system identification algorithms to practical problems difficult. Fre-
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quency domain methods deal only with linear systems and cannot directly estimate

physical parameters. In addition conversion of identified parameters from modal to

physical domain is often difficult. Thus, methods which are capable of identifying

physical structure parameters considering nonlinear response is preferable. Examples

of such methods are Extended Kalman Filter (EKF) and Unscented Kalman Filter

(UKF). However, common problem in both methods is that they require initial filter

parameters to be known a-priori, which are usually not available in real world ap-

plications. Thus, an adaptive system identification method which is also capable of

dealing with highly nonlinear systems is necessary. [44, 63] suggested using Robbins-

Monro stochastic approximation scheme with UKF and EKF, respectively, to adapt

unknown process and measurement noise covariance during parameter estimation as a

promising approach that can improve robustness of data assimilation methods which

in return increase applicability of condition assessment on real structures. Verification

and validation studies of this algorithm was explained in the subsequent chapters.

The availability of seismic response data is essential for realization of direct struc-

tural parameter estimation on civil infrastructure. Although, admittedly expensive,

open-source large scale shake-table tests on structures allow researchers verify and val-

idate the developed algorithms and their performance comparatively. The input and

response measurements from a 1:1 scale reinforced-concrete (RC) bridge pier shake

table experiment were obtained from NIED. The gathered data is versatile, consisting

small-to-large earthquake response which were applied to test structure in a chrono-

logical manner and open to researchers upon request. The test conditions, design of

the pier and applied earthquake inputs were explained in Chapter 2. In addition, uti-

lized displacement estimation algorithm was also verified by comparing the measured

displacement during test and the obtained displacement. Secondly, a field experiment

on a full-scale single span bridge which was conducted by the author was detailed.

Especially in the case of earthquakes taking advantage of nature with the help of

developing sensors provide a unique test opportunity for real structures. The mea-

surement plan, site conditions and collected seismic response data from aftershocks of

a big earthquake were presented in detail. Considering the fact that real-world seis-
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mic response measurements had been mostly limited to long-span bridges, gathered

quality data is unique. Data from both measurements holds great importance as they

allow full-fledged investigation studies for verification of the considered algorithm.

Furthermore, there is large uncertainty involved in the system definition as often

the initial condition for structural parameters, e.g. stiffness of the pier or bearing, are

not known a-priori. In fact, this is the purpose of the problem at hand. In addition,

the stochastic disturbance involved in the system is practically cannot be analytically

determined since they arise from a variety of interacting sources, especially in the

case of process. Thus, condition assessment of civil infrastructures is often nontrivial.

Thus, algorithms that can handle such uncertainties in the initial assumptions of

structural parameters and unknowns in the noise parameters are needed for practical

applications. For this purpose, in Chapter 3, a conventional nonlinear estimation

algorithm UKF is summarized and then the UKF-RM methodology is introduced

as its robust counterpart. The difference between two algorithms arise from their

treatment to noise covariance matrices. In UKF, the initial Q and R matrices are

kept constant as it is initially assigned value during the estimation. However, in reality

they are not known a-priori and finding the correct values by trial and error method

is impractical, especially when nonlinearity and size of the state vector increases in

the system. Furthermore, when earthquake response is considered both process and

measurement are time-variant and not stationary, thus not constant. On the other

hand, UKF-RM estimates Q and R matrices by employing a stochastic approximation

scheme and updates them at each time-step based on the latest information from the

auto correlation of innovation, which is the difference between measurement and the

estimation. Later in chapter 3, considering a SDOF system which results in nonlinear

response under the given excitation, it has been verified that UKF-RM results in more

robust and stable parameter estimations than UKF when a wide range of initial Q

and R is considered. Furthermore, performance of UKF-RM in terms of accurate

and stable estimation capability was found superior than its counterpart based on

its lower sensitivity to changes in model error, error covariance, high measurement

noise. RM parameters, namely 𝛼, for Q and R updates were also found robust. In
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addition, since UKF-RM adapts noise covariance during estimation, its convergence

rate is faster and traceability of the nonlinear response during significant duration is

superior over the conventional UKF.

In Chapter 4, experimental validation of the proposed algorithm is presented us-

ing measurements from shake-table laboratory test in linear and nonlinear response

levels. In both cases, UKF-RM proved to be faster in convergence and thus capable of

better traceability inside the significant duration period where most of the nonlinear

response occurs on the structure. This application is the first example of a stiffness

condition identification of a 1:1 scale bridge lateral resisting system component, an

RC pier, using UKF-RM. Later, using data gathered from the in-situ measurement,

experimental validation of the stiffness identification using a 3DOF and multi-support

excitation system was performed. First, through simulation the ability of the algo-

rithm to identify bearing stiffness on both sides of the girder separately was verified.

After that, using measured response data stiffness of the rubber bearings were iden-

tified successfully. This application is the first example of a structural parameters

estimation using Unscented Kalman Filter

Finally, hysteresis response identification with UKF-RM was verified and vali-

dated through numerical simulations and shake-table test measurements using only

acceleration response measurements as observations. Considering a conventional non-

degrading Bouc-Wen model first observability analysis was performed. Consequently,

based on the observability analysis model reduction has been done to reduce the size

of the state matrix and make the system observable in the case where only one obser-

vation is available. Then, the algorithm performance considering the nonlinear model

was investigated. It has been verified that UKF-RM results in more robust and stable

parameter estimations than UKF when a wide range of initial Q and R is considered.

Furthermore, performance of UKF-RM in terms of accurate and stable estimation

capability was found superior than its counterpart based on its lower sensitivity to

changes in model error, error covariance, high measurement noise. RM parameters,

namely 𝛼, for Q and R updates were also found robust. In numerical simulation, the

effect of neglecting residual displacement is investigated by employing an input large
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enough that results in 1.3%. The resulting neglected energy dissipation due to resid-

ual displacement was found about 4% which was considered small as compared to

total energy dissipation. Except the energy dissipated by the residual displacement,

the hysteresis response obtained with UKF-RM using double-integrated acceleration

as observation contains the cycles before and after inside the significant duration

where most of the energy from the input excitation is dissipated by the RC pier. Fi-

nally, hysteresis response identification with Bouc-Wen model using only acceleration

measurements with UKF-RM algorithm was validated using measurement from the

shake table test. Except the first cycle in which the hysteresis response starts, the

following two consecutive cycles in which most of the damage and hence energy dissi-

pation occurs were identified with errors 2% and 10% from the acceleration response

measurements recorded during 100% Takatori Station input.

This research achieved the first direct physical parameter estimation of lateral

resisting systems of real bridge components using only acceleration measurements.

The algorithm has good robustness against unknown model and measurement errors

which are common to practical applications.
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