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ABSTRACT 

 

Railway technology has developed in line with Japanese social and economic changes and has 
seen rising speeds, cost saving and safety, as well as falling environmental impact. However, 
local railway networks suffer from age-related deterioration and poor maintenance and also it 
might be unable to perform adequate monitoring. It is essential to improve the comfort level 
and service life of local railway lines. Track profile which directly influences the ride quality 
and safety of rail tracks need to be estimated for the maintenance purpose. Currently, Track 
Recording Vehicle (TRV) like Doctor Yellow, one high speed test train in Japan is utilized for 
the track condition monitoring. But the demerits of TRV are, that it is expensive and cannot be 
frequently used for local railway lines. It is used only once in a year for most of lines.  So, track 
profile estimation through vehicle response measurements potentially provides efficient and 
frequent measurement. However, the current onboard measurement system still stays on the 
qualitative inspection by repetitive tests. The main challenge to detect the vertical and lateral 
track profile and the other rail track irregularities is the unstable solution for the inverse 
analysis. A simpler, more robust and cost effective system for in-service train vehicle is 
desirable. Thus, data assimilation method is necessary for estimating the unknown inputs. For 
inverse analysis technique generally augmented Kalman Filter is being utilized. However, 
issue of un-observability need to be solved.  

From the above background study, the research objectives of this dissertation are as follows, 

• To propose extended Augmented State Kalman Filter (ASKF) technique to solve the 
Observability Rank Condition (ORC) for the state space model.  

• To estimate both vertical and lateral railway track profile using extension of ASKF data 
assimilation technique for a rigid body motion train model. 

• To perform Multi-Body Simulations (MBS) using SIMPACK to investigate the influence from 
different factors under various scenarios and to validate the proposed estimation algorithm.   

• To validate the proposed inverse analysis on experimental measurements obtained from in-
service local railway line. 

Firstly, while the measurement of track profile or vehicle’s absolute displacement on board is 
not practical, but the acceleration and angular velocity measurements are feasible. Prevalent 
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sensing devices such as smartphones have been potentially being utilized in vehicle body 
motion measurement. However, the applicability of inverse analysis for track profile 
estimation from such measurement is not clarified yet. Hence, from the perspective of 
observability, sensor installation location’s effect needs to be investigated. Observability is the 
method or a concept to explain whether the particular state of the dynamic system can be 
identified under a given subset of limited measurements. In this study, ORC analysis of 
various time invariant linear vehicle dynamic models with different measurement layout are 
carried out to obtain the appropriate sensor placement strategy. The analysis shows that the 
profile becomes unobservable under acceleration and angular velocity measurements. To 
overcome this issue, in this dissertation the second derivative of the profile is proposed to be 
augmented in the state vector as one of the additional state variable, and thus the track profile 
component can be obtained through double integration of it. The proposed approaches 
theoretically solved the issue of un-observability and also revealed a sensor type and 
placement strategy, which can be used as the guideline in the track profile estimation through 
train vehicle response measurement. 

Secondly, for numerical analysis purpose, vehicle body acceleration (vertical and lateral) and 
angular velocity measurements (pitching and yawing) are considered. In this dissertation, 
Kalman filter technique is employed for state space models termed as conventional ASKF and 
two extended approaches for the track profile estimation by augmenting the second derivative 
of profile directly or adopting the first derivative of the original state vector. The 
recommended estimation algorithm ASKF is robust and fast, which competently process the 
data collected from sensors through a simple linear rigid body train vehicle model. The 
verification study for simplified train models (4 DOF) and 6 DOF train models, accounting for 
both vertical and lateral track profile estimation are carried out and results are found to be in 
good agreement. In order to obtain the quantitative comparison of two waveforms, phase-shift 
correction is carried out using the misfit criteria through Hilbert transform. The statistical 
metrics are utilized for obtaining the single-valued misfit between two waveforms. Therefore, 
depending upon the sensors availability and feasible sensor placement locations, track profile 
can be reconstructed using extended ASKF algorithm with proposed method. 

Thirdly, to perform MBS using SIMPACK: Rail, to generate more realistic responses by 
considering the influence from different factors under various scenarios, namely straight track 
and splined track sections. The sensors are placed just above the rail tracks on both the sides 
and used to measure the acceleration and angular velocity responses from the car body and 
both bogie masses of running train model on simulated track sections with vertical and lateral 
excitations. These vehicle measurement responses are utilized to estimate the vertical and 
lateral track profile using the 6 DOF train model and it is validated using the proposed 
estimation algorithm. The suggested sensor placement strategy is compared with maximum 
sensor location case and found to perform well.  
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For straight track section (ideal case), it shows a good agreement for vertical track profile while 
it can estimate only above 8 m wavelength irregularity for lateral track profile. The statistical 
metrics are utilized for comparison between various cases and the proposed approach is 
verified. Also, MBS are carried out for understanding the influence of rolling motion of train 
vehicle. For curved track section, the results show good agreement for vertical track profile 
estimation, while it shows large variation for lateral profile estimation. This is due to hunting 
oscillation phenomenon. Exactly the splined section of the track cannot be evaluated, because 
of wheel-rail interaction problem.  

Lastly, to perform the rail track profile estimation from the in-service vehicle response 
measurement proposed extended ASKF method is employed. The smartphones (low cost 
sensors) are mounted on the train car body floor to collect the train vehicle dynamic responses. 
Inverse analysis is carried out to estimate both the vertical and lateral track irregularity by 
reconstructing the track profile waveform as well as converted 10 m chord versine waveform. 
The results are found with slight deviations due to simplified 4 DOF model and other 
phenomenon like hunting oscillation motion. This is due to practical limitations of sensor 
placement only on the car body. In future experimental measurements, the optimal sensor 
placement is recommended to mount sensors on car body and bogie masses. Thus, by utilizing 
6 DOF train model accounting for bogie pitching/yawing motion, rail track profile can be 
estimated more precisely.  

In summary, this dissertation proposes and realizes an inverse analysis scheme for the railway 
track profile estimation from in-service vehicle response measurements. The results obtained 
from this research exposed that the recommended, data assimilation ASKF method is efficient 
for condition assessment of local railway track lines with satisfactory correctness. 
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Chapter 1 INTRODUCTION 

 

 

1.1 Importance of Railway Infrastructure 

Japan is an extended and elongated archipelago on the Pacific Ocean at the edge of Asian 
continent. Around 73% of the total land area is hilly region, henceforth almost 127 million 
people population are living on the coastline or nearby rivers. So, the cities alongside the 
shoreline have dense population and are interconnected by railways. Railroad vehicles are 
among the most widely used transportation methods for moving passengers and goods. 
Trains have been used in commerce for more than a century since its commencement at 
England in 1825 and have been used for services in Japan for 143 years since 1872. Over the 
last 40 years or so, railways have seen some significant progress in rail transportation 
technology. To minimize costs and transportation time railway operational speeds have been 
increased substantially however safety and comfort remain to be of paramount importance. 
Track irregularities have been a problem troubling railway scientists and engineers ever since 
the initiation of railway networks. Nowadays, the prominence of infrastructure maintenance is 
highlighted, as Japan has constructed a lot of infrastructure facilities since 1960s which is 
considered as the ‘era of high economic growth’. They are deteriorating badly which should be 
preserved appropriately in order to provide good service and prevent dangerous accidents [1]. 
As a result of absolute length of the railway system, the assessment of infrastructure is 
challenging and costly process. Furthermore, the issue of identification and probable 
restoration of damaged segments are difficult due to extreme usage of these infrastructures by 
frequent and heavy traffic. Timely cautioning systems that diminish the interruption of the 
railway networks are required and beneficial.  

Many factors influence the cause of irregularities of a railway tracks. Features that influence 
irregularities can be grouped as railway vehicle and track engineering factors. The safe 
operation of a railway vehicle is dependent on the delicate interaction of dynamics of the 
railway vehicle and track infrastructures. Some significant vehicle engineering factors include 
but are not limited to the axle load, imbalance between the right and left static wheel load, 
spring stiffness of the suspension system, height of the vehicle, the location of the vehicles’ 
center-of gravity etc. The condition of the track (maintenance grading), minimum curve radius, 
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super-elevation, track twists, cross overs, switches, rail profile, type of sleepers, ballast, etc. are 
some of the factors which falls under track engineering. The term ‘real-world train dynamics’ 
refers to the dynamic behavior of rolling stock and in-service trains that can be found in local 
railway lines under operation. The vehicle dynamics of a train vehicle while in operation is a 
highly complex system. Furthermore, in real conditions various features of tracks are 
experienced such as straight tracks, tangent tracks, turnouts and curved tracks. It would be a 
difficult assignment to bring a concept of single mathematical model that might be 
comprehensively addressing all features of train-track interactions. 

According to [2], the study of the dynamic behavior of the rolling stock and train can be 
divided into two basic groups. Figure 1.1 illustrates the schematic diagram of rolling stock [2]. 
The dynamic response refers to the behavior of the system owing to dynamic inputs and the 
stability study aims at investigating the system under various functioning circumstances. The 
rail vehicle components consist of,  

(a) Wheel set bearing (axle box);  
(b) A bogie (wheeled wagon or trolley), framework carrying wheels, a subassembly of wheels 

and axles (Figure 1.2) [2];  
(c) Vehicle body, over the center of the bogie frame.  

 

 

Figure 1.1 Schematic diagram of rolling stock [2] 

 

The paper [4] explains about the overview of rail irregularities and its effect on the dynamic 
characteristics of the train vehicle. The vehicle responses directly effect in the ride comfort and 
safety of the passengers. Normally, track geometry (design shape or layout) and defects are 
classified under the category of long wavelength and short wavelength respectively. A wheel-
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rail contact surface relationship is a significant issue for a running train, which may cause 
instability and contact stress amongst wheel and rail, which correspondingly result in wear, 
fatigue cracks and higher noise. Figures 1.3 – 1.4 represent the types of rail degradation and 
classification of track irregularities respectively [2]. The types of track irregularity considered 
for local railway tracks are classified as short and long track irregularities in Figures 1.5 and 
1.6 respectively [4]. The schematic diagram for types of track geometry, namely vertical profile 
(elevation), lateral profile (alignment), gauge deformation, cant and twist are shown in Figure 
1.7 [4]. 

 

 
Figure 1.2 Bogie and its spare parts [2] 

 

 

Figure 1.3 Types of rail degradation [2] 
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Figure 1.4 Classification of track irregularities [2] 

 

 

              

(a) Corrugation                                        (b) Squat 

                     
(c) Insulated joints                                   (d) Thermite welding 

Figure 1.5 Short track irregularities [4] 

 

Type Long Track Irregularities Short Track Irregularities

Phenomenon
poor track alignments, 

switches, level crossings 
and bridges

squats, corrugation, thermite welds 
with poor finishing quality, insulated 
joints, blades and frogs of switches 

and crossings
Wavelength length > 3 meters length < 3 meters

Frequency 
Range low frequency vibrations

mid (40-400 Hz) and high (400-2000 
Hz or even more) frequency 

vibrations

Demerits discomfort to passengers 
and damages to cargo

large dynamic contact forces and 
wheel‐rail vibrations
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(a) Poor track alignments 

 

                    

           (b) Switches                                              (c) Level crossing 

Figure 1.6 Long track irregularities [4] 

 

To prevent a condition that would result in a derailment, the existing rails need to inspected 
and replaced if necessary. For track condition inspection, there are three main approaches 
available as shown in the Figure 1.8 [3], namely: 

(a) Portable driven device manually - which can be used to gain information of a 
comparatively low length of track 

(b) Movable device - which can be used for longer distances and is completely mechanically 
driven. These inspection vehicles which gives track status can be used during night time 
(i.e. when traffic is halted) 

(c) Axle-box acceleration method (ABA) - which is used to detect track irregularity conditions. 
It is fixed on an axle-box supporting the axle of at least one bogie of an ordinary 
functioning train vehicle.  
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(a) vertical irregularity 

 

(b) alignment irregularity 

 

(c) gauge deformation 

 
(d) Cant 

 

(e) twist 

Figure 1.7 Types of track geometry [4] 
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                (a) Portable device                  (b) Movable device  

 
 

(c) ABA method  

Figure 1.8 Existing railway track condition estimation method  [3] 

 

1.2 Literature Review: Track Profile Estimation  

A railway vehicle running on tracks is one of the most complex dynamical systems in 
engineering due to many nonlinear components in the system. To minimize costs and 
transportation time railway operational speed has increased however safety and comfort 
remain to be of paramount importance. The necessary inspections need to be performed for 
determining the track condition due to bigger demand on railway networks. Sensors are 
mounted on in-service vehicles for collecting the acceleration and other dynamic parameters 
which are suitable more for condition monitoring of railway tracks. Track irregularities have 
been a problem troubling railway scientists and engineers since railways initiation. The 
exhaustive list of researchers has worked in perspective of track profile estimation from 
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measurements obtained from in-service train vehicle. The following state-of-the-art literature 
review presents a view on the existing condition monitoring technology; some data processing 
techniques and how research has been evolving over the decade of time.  

 

1.2.1 Existing track condition monitoring methods  

Several efforts are carried out to improve systems for the assessment of track environment. 
The objective is to attain a measureable or qualitative evaluation of serviceability of track and 
comfort to passengers which plays a significant role for rail management [5-7]. According to 
[8], rail track inspection emphases on fault identification, finding the reasons for defects and 
predicting for major damages to occur. Safety of the track is conventionally guaranteed by 
towed track recording coach (TRC) or track recording vehicle (TRV). Conventionally, track 
geometry estimation is done using TRC/TRV which is used to traverse over rail tracks. 
Development of electronic robust sensor technology made conceivable track profile 
assessment systems that can be mounted on in-service railway vehicles. More innovative tools 
are established to comprehend the exhaustive track-train interaction and also to forecast the 
possible problems confronted. Maintenance of in-service system is further difficult as the 
measurements are expected to come to halt more often when comparing to TRV/TRC. Thus the 
loss of accuracy in the measured data is the drawback of the in-service system.  

Firstly, Federal Railroad Administration (FRA) – US, introduced condition monitoring system 
mounted on car-body and bogie of high-speed trains to measure vertical and lateral 
accelerations. It also used Global Positioning System (GPS) for locating the train within 60-90 
m of precise location. The results are reported using mobile technology and are found 
triggered by excess acceleration. This error is substantial and might be due to GPS position 
which seems to be on the side of bogie [9]. In [10], track monitoring of in-service London 
Underground vehicles using vertical and lateral accelerometers are discussed in a detailed 
manner. Drawback appears that the vehicle speed is not considered in the processing, thus the 
acceleration will upsurge with speed. In [11]，it discussed about online monitoring of Chinese 
railway vehicle distortion from accelerometers placed on bogie and car body of train. The 
paper [12] explained about measurement system employed on an Italian metro vehicle to 
identify corrugation problems using axle-box mounted accelerometers as well as track 
conditions using sensor mounted on car body and bogie. In order to attain location, few 
sensors are used in addition to detect curving as Global Navigation Satellite System is not 
possible to use for underground purpose.  

In [13], it described about the on-board measurement system of high-speed train in Italy with 
acceleration sensors placed on car body, bogie and axle-boxes to assess irregularities with 
wavelengths greater than 20 m on rail track. The data processing in frequency domain is 
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utilized with an effort to invert the train suspension dynamics considering the ambiguity in 
the suspension system parameters and also comprises problems associated to senor noise from 
accelerometers. The research in [14] illustrated the improvement of an unattended track 
geometry measurement system (UGMS) to monitor the frequently used lines devoid of 
disturbing the normal traffic. Apart from UGMS many track monitoring devices were 
developed and few were commercialized. Even though UGMS provide decent idea of what 
and how much data will be collected, it fails in providing filtering process required. 
Subsequently, due to in-service robustness issue, [15] explained about the accelerometers 
usage alone, on ICE 2 trains (second series of German high-speed trains) for improved track 
maintenance scheme on regularly scheduled high-speed trains. The results are found favorable 
to provide efficient information on track geometry maintenance.  

The interesting work in [16, 17] presented the monitoring system used on in-service vehicles to 
detect vertical and lateral track irregularity respectively. Sensors placed on an in-service train 
vehicle collects enormous amount of data since the vehicle covers the same track several times 
every day compared to TRVs which pass through only once every few weeks. Hence, these 
collected data need to be handled carefully such that there is no loss of data and at the same 
time proper data reduction should be adopted in order to handle appropriately by the server.  

The paper [18] investigated the condition monitoring prospects using vehicle mounted sensors. 
During inspection track geometry parameters like right and left vertical rail profile, lateral 
alignment, gauge, cross-level, dipped joints, corrugation is being collected. Specific track 
geometry requirements i.e., threshold defined for individual faults, are derived from the 
reports which were historically assured for safe running of vehicles on the track. Currently 
advanced tools are utilized in order to predict issues like wheel climb to understand train-
track interaction well. A bogie-mounted sensors system based on an inertial measurement unit 
(IMU) alone is used on the Southern network in UK to understand the dynamics of a third rail 
condition monitoring system [19]. Comparison of track condition monitoring results obtained 
from axle-box and bogie mounted accelerometers on in-service Korean high-speed vehicle is 
discussed in [20]. Also the same team used a simplified sensor set with mixed filtering 
approach and compared the results with UGMS attached to the same vehicle. The system can 
practically detect the irregularities but the difficulties exist in replicating the UGMS track 
geometry [21]. Many track features can be identified with an IMU in the car body of German 
in-service regional railway vehicle. The IMU detects train vibrations and other undesirable 
signals and the system is at its early stage development [22]. It has been found that at times a 
clarification to a specific problem is defined in the literature.  

In [23] it explained to detect corrugation and to monitor joints with the use of axle-box 
vertically sensing accelerometers. This describes that the sensors can be preferred for a specific 
application to focus on one characteristic of track geometry but mostly cannot be utilized for 
supplementary functions. Notable technical information on handling of the accelerometer data 
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to obtain versine (chord) type data has been reported in [24]. The in-service measurement 
system consists of bogie-mounted vertical accelerometer with additional vertical displacement 
sensor to measure vertical track geometry. In [25] developed low-cost TIMS (Train Intelligent 
Monitoring System) for monitoring railway track irregularities in local railways and also train 
position identification method using GPS sensor and train velocity where there is no 
connection with tachometer signal. The field measurements have been carried out using tri-
axial accelerometers on the train car body floor. The root mean square values for vertical and 
lateral accelerations are being considered as threshold for estimating vertical and lateral track 
geometry respectively. These values increase with increasing vehicle speed. In [26, 27], 
illustrated the notable research on Japanese in-service track geometry monitoring system. In 
order to detect the track geometry faults and vehicle faults, vertically and laterally sensing 
accelerometers are attached on car body and axle-boxes in addition with microphone and 
particularly no sensors on bogie frame.  

Mostly, a dynamic system model and its inverse can be represented either in non-parametric 
or parametric representation in frequency/time domain. Based on direct vehicle vibration 
measurements, possibility of reconstruction of track geometry is an example for inverse 
analysis problem. In the research carried out by [28], a parametric system identification and 
model inversion approach is suggested for real time application. The limitation of the 
proposed approach is that the model estimated for system identification is effective only about 
the velocity value as a result of which it was achieved. Later, the main objective is to use 
sensors only on the car body and also developed multi-resolution analysis of data processing 
using wavelet.  

In [29] it described about the Japanese in-service rail-vehicle system measuring vertical and 
lateral track geometry irregularities using accelerometers mounted on the car body floor. 
Dynamic modelling of primary and secondary suspension systems are the requirements for 
that approach. Also a microphone (an acoustic sensor) is utilized for detecting corrugation 
faults. Although the proposed system is found to be employed on high-speed lines, the newly 
developed N700 Shinkansen trains (network of high-speed railway lines in Japan) which have 
good suspension system, made no longer suitable to apply. A new system was made in 
response to this, ‘RAIDARSS-3’ with axle box-mounted, vertically sensing accelerometers, 
which employ doubly integrated and processed with a 10 m chord versine measurement 
procedure to obtain track geometry. Procedures are well-defined such as accelerations 
surpassing a threshold value or track irregularities exceeding assumed threshold levels. This 
distinctive system is exclusively for sensing trains passing, apparently as this causes 
substantial body accelerations that could else be detected as track irregularities. Nevertheless, 
the authors summarize that axle box-mounted accelerometers are challenging to maintain, so 
there is presently an improved work for reconstructing track geometry from car–body 
accelerations, using a Kalman filter and inverse modelling [30]. This system is still in a 
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developing stage The research carried out in [31], examined the connection between train 
dynamic characteristics, rail track irregularities, vehicle speed and irregularity wavelength. 

Axle-box mounted accelerometers are frequently believed as a promising method to detect the 
vertical track geometry. Nevertheless, the prerequisite double integration results rise to certain 
complications, and upholding the sensors on axle-boxes has shown challenging in practice. 
Hence, a precise method is to mount the sensors on the bogie, comprising the full UGMS with 
an IMU on the bogie and optical sensors observing the rails. 

The better robust solution is to utilize body-mounted sensors, however there are few 
difficulties triggered by the separation of the primary and secondary suspension systems. Also, 
there are certain common problems faced with track geometry monitoring systems namely, 
sensor inaccuracies and location problems. The faults in turnouts can be determined in terms 
of wavelength and Power Spectral Density functions. It can be utilized in more precise manner 
for locating geometric degradation and it is less time consuming which in turn helps in cutting 
down the maintenance cost [32]. This method is explicitly more attractive, because different 
maintenance approach can be utilized to maintain the different wavelength faults. In [33], the 
new parametric stochastic model is utilized to estimate the track geometry from the dynamics 
response of the in-service vehicle namely, vertical acceleration and the wheel load.  

In later years, [101] introduced the probe vehicle which vividly alter the concept of railway 
track monitoring and therefore contributes to the safety of railways system. Also introduced 
wavelet based multi-resolution analysis method for detecting rail defects by disintegrating the 
obtained data into a detailed component of high frequency and an approximation component 
of low frequency. In [102] used frequency domain technique through inertial methods to 
estimate vertical rail track profile. An overview on the modern intelligent systems available for 
the maintenance of train infrastructure is well presented in [103], by examining the benefits 
and limitations of the monitoring system.  

In [104], it proposed a different approach for estimating more realistic rail track geometry 
based on stochastic modelling and statistical properties of measured response. The interesting 
research on damage detection in railway infrastructure using wavelet transform on 
acceleration response obtained from the train vehicle is carried out by [105]. For Italian railway 
network, novel measurement methods for detecting rail corrugation and other track 
irregularities are discussed in detail by [106]. It also proposed a method for calculating the 
acoustic roughness spectrum for track maintenance.  In [107], a method was proposed for 
determination of the vertical track profile through dynamic response obtained from bogie 
using accelerometer and gyroscope. In order to determine the track profile, the cross-entropy 
optimization technique was applied to match the data with the measured dynamic response of 
a train bogie. [108, 109] explain about the development of a compact size onboard sensor 
system for monitoring tracks. The measured responses from developed onboard system 
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showed promising and effective results for evaluating the quality of existing railway tracks in 
robust manner.  

 

1.2.2 Literature Survey on Observability Theory 

Constructing mathematical model for dynamic system from observed input/output data and 
which also comprises the ideal design of experiments for competently creating instructive data 
suitable for such models is termed as system identification [34-36]. In recent years, much 
attention for optimal sensor placement strategies has been received because of the 
development of system identification and health monitoring methodologies. Henceforth, the 
assortment of optimal sensor arrangement for parameter approximation in structural 
dynamics is important [37]. The aim in an experimental design is to create actual choice of the 
optimum number and placement of sensors such that the subsequent measured data are 
helpful in revealing the condition of the structure [38]. In many structural dynamics problems, 
understanding the output unknown force acting on a dynamic system is the most important 
step. Nevertheless, measuring the external force directly with sensors is a tough job, whereas 
appropriately obtaining the vibration responses are reasonable. Thus, the importance of 
external force identification through inverse analysis from measured responses are frequently 
preferred comparing to direct measurement. Numerous force reconstruction approaches have 
been recommended through inverse analysis in recent years [39-41].  

With this background, once mathematical model is determined, it can be utilized to simulate 
the performance of the system influenced by numerous external forcing conditions. Thus, 
observability is the method or a concept to explain whether the particular state of the dynamic 
system can be identified under a given subset of limited measurements [42]. The observability 
of linear systems are vital structural properties which have close relationship with the state 
observers. In control system it is well-defined as the probability to infer the state of the system 
from observing its input-output behavior [43]. Particularly, observability can govern the 
stability of the Kalman filter [44]. Based on Lie algebra, Observability Rank Condition (ORC) 
method is developed for handling nonlinear systems which is an extension of concept of 
observability for linear system [45]. On the other hand, rank test can be utilized to obtain 
parameter identifiability which is a distinct case of the observability problem [46]. A detailed 
study on robust implementation of Observability Test by algebraic and geometric 
observability methods are presented in the work of [47, 48]. For a sensor setup to be effective, 
the important prerequisite is that interested states and parameters of the system should be 
observable. If the system is observable, the capability to exactly evaluate the state vector 
variables of an observable system is influenced by system noise [49]. Still, when the system is 
unobservable, an exact evaluation of the variable in state vector is not possible although the 
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noise level is insignificant [50]. This is agreed by many researchers who developed response-
based road and rail profile estimation methods [30, 51-54]. However, the prerequisite on the 
types and locations of sensors are not theoretically explained for various type of vehicle model. 

 

1.2.3 Literature Survey on Kalman Filtering Technique 

In structural dynamics, certain classic examples of stochasticity loading comprise spatial 
variability of road roughness and track geometry irregularities, which affect the dynamics of 
vehicles. Profile estimation is considered to be an essential input which affect vehicle 
dynamics and control systems design. Henceforth, widespread research is in progress to 
improve techniques and methods that are efficient for obtaining unknown dynamic input 
forces. The aim of this research is to establish a method to estimate profile by using state-space 
representation with observing acceleration and angular velocity measurements, whose 
accuracy is dependent on the sensor location and vehicle type. A number of research works 
have been carried out using vibration response of ordinary vehicles [57-62]. When only 
dynamic acceleration response is observed, the location of an accelerometer in the vehicle is 
critical. Similarly, when only angular velocity is measured, there are certain undetectable 
frequency ranges which exist due to the difference in vehicle wheel base length. Therefore, 
observing either acceleration or angular velocity is not enough to capture the exact dynamic 
response. Also in order to process acceleration and angular velocity measurements, transfer 
function method is not sufficient to describe the model since it is designed for single-input and 
single-output model. Instead, the state-space representation is essential to achieve multi-input 
model. The following paragraphs discuss about a detailed background study on existing 
Kalman filtering approach [63, 64], which supports recursive techniques that are well known 
in system identification theory. 

When the direct measurements of unknown forces on the structural dynamic systems are not 
feasible, it is essential to determine the excitation sources through inverse analysis. Thus, force 
identification method was utilized to obtain unknown input forces from the responses 
collected on the structure through system identification technique [65]. For the past three 
decades, input dynamic force reconstruction techniques were established using transfer 
function in frequency domain. Subsequently several other time domain methods were also 
established, which predominantly ensuing a deterministic approach [66, 67]. Instead, an 
approach based on sensitivity of system’s output is illustrated for identifying both the input 
excitation force and the physical parameters of a structure [68]. In early stages, [69], presented 
a notable work on force estimation from the response measured on the structural system by a 
data assimilation inverse algorithm through the application of Kalman filtering techniques. 
Later, improvement on combined deterministic-stochastic methods which is derived from 
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control engineering where the noise is modelled as stochastic processes and considered to be 
exist in both state variable and measurements [70, 71].  

In civil and mechanical engineering, structural modeling particularly considered in system 
identification approach, benefits both from displacement and acceleration responses. It is 
obtained through non-contact techniques/GPS based measurements and accelerometer sensors 
respectively. Hence it is recommended to study on the measured sensors information and 
fusion of collocated displacement and acceleration data such that, it result in precise motion 
data. However, the low-frequency noise amplification occurs during the integration of 
acceleration response and the high-frequency noise amplification take place during the 
differentiation of displacement response. Likewise, in contrast to displacement sensors which 
are inaccurate for higher frequencies and utilize low sampling rates, accelerometer sensors are 
further precise for higher sampling rates and higher frequencies. Thus the issue related to data 
sampled at dissimilar rates, can be dealt using multi-rate Kalman filtering technique along 
with new smoothing technique [72]. In this regard, further research was carried out for data 
fusion of acceleration and intermittent displacement response measurements in dynamic 
system for estimating autonomous dynamic displacement measurement [73]. In recent times, 
Kalman filter was utilized to obtain a precise estimate of the external dynamic loads from 
unmeasured responses of the structural system, using the state-space configuration where the 
state vector is derived by pseudo-inverse method [74]. On the other hand, the fusion of 
heterogeneous non-collocated data of measured acceleration and displacement responses 
using Kalman filtering data assimilation inverse analysis technique is being widely studied for 
linear and non-linear structural system identification problem predominantly with joint state-
parameter estimation procedures [75, 76].Herein, an Augmented State Kalman filter (ASKF) 
estimation method is recommended for dynamic force reconstruction, where joint input-state 
estimation can be attained by adding the unknown external dynamic forces variables in the 
state-vector and it can be determined using a standard Kalman filter [77].  

Following this research, a numerical study was presented for understanding the stability of 
ASKF when utilized for estimating joint input-state parameters and concluded that using 
acceleration measurement only can result in unpredictable outcomes. In an attempt to solve 
this difficulty, dummy displacement measurements are augmented to the observation state 
vector [78]. Later a notable research has recommended solving the problems associated with 
displacement estimates affected due to spurious low frequency components, by augmenting 
artificial white noise displacement measurements into the state vector for solving joint state-
parameter estimation problems [79]. It is worth to mention that a dual execution of the Kalman 
filtering technique was implemented for obtaining the unknown dynamic inputs and other 
states of a linear state-space configuration model by means of sparse noisy acceleration data 
measured on the dynamic structural system [80]. Also the same researchers discussed about 
the experimental justification of the dual Kalman filters for real-time state input estimation of 
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systems through sparse acceleration measurements [81]. In more recent years, research on a 
two-stage Kalman filter technique, which estimates dynamic displacement with high accuracy 
by augmenting high-sampling rate acceleration measurements with low-sampling rate 
displacement data was presented [82]. Also some researchers proposed method for an 
improved Kalman filter-unknown input estimation algorithm using data fusion of partial 
acceleration and displacement measurements [69, 83]. 

With this comprehensive background research, this chapter discusses the problem of 
reconstructing the dynamic states of a vibrating system, using limited output-only (response) 
vibration measurements. According to the research carried out by [52], linear ASKF technique 
has been used for effective road profile estimation purpose using quarter car (2-DOF) state-
space configuration model and also compared with experimental results gathered from 
laboratory test vehicle.  Also in [84], road profile estimation was carried out using Kalman 
filtering theory for responses obtained from vehicles and confirmed using true profile data got 
from profiler. Later by following the previous work, [51] concentrated on profile estimation of 
off-road terrain which is noticeably uneven than usual surfaced road. It discusses about 
estimating the off-road terrain profile using a full car model (7-DOF) by ASKF approach and 
was also compared with experimental study using all-terrain Prowler ATV vehicle.  

In railway infrastructure maintenance, track irregularity measurements are necessary to check 
for safe and comfortable transportation. Following this, ASKF technique for inverse analysis, 
has been utilized for estimating track geometry irregularities (input signal) from car-body 
acceleration measurements (output signal) through reduced model of 4-DOF train model 
(simplified vehicle model) [30] (Figures 1.9 and 1.10). This technique is normally employed for 
the force reconstruction of unknown input (track profile geometry) from a known output of 
measurement data (car-body responses). It is found that the estimated outcomes are in decent 
agreement with the track irregularity in vertical direction. But the drawback of this proposed 
method is that, the state space model considered in this research is a simplified train model (4 
DOF), which do not consider the bogie pitching motion. Also the measurement vector 
considered for inverse analysis consist of only car body acceleration and body pitch rate 
response data, which incidentally makes the system unobservable. Henceforth, the unknown 
input (track profile) reconstructed using cannot be considered for the further evaluation. In 
future, there is a scope for improving the present technique to make the system considered in 
the state-space representation to be observable and also utilize the correct vehicle model which 
included bogie pitching motion to replicate the real train vehicle. This system is still in a 
developing stage. The research carried out by [110, 111] also explained about the estimation of 
track profile from car-body responses only and the results are compared using statistical 
metrics.  



16 
 

          

Figure 1.9 Inverse analysis for input identification 

 
 

 
Figure 1.10 Online Monitoring Sensor System for detecting local railway-track profile 

 

1.2.4 Literature Survey on Multi-Body Simulation 

The Multi-Body Simulation (MBS) of train vehicles models is carried out to most likely to 
obtain the real time replica of the in-service train vehicle measurements. Since the field 
experiments generally involve lot of unpredicted incidences, it is advisable to carry out multi-
body system dynamics [132, 133]. Many research on dynamic response analyses of train – 
track interaction using simulation for local as well as high speed railway networks are studied 
[91] [134-138]. Commonly, finite element analysis (FEA) models are not well suitable for 
dealing with complex dynamic systems like coupled train-track interaction. FEA involves 
more number of degrees-of freedom (DOFs) and hence the simulation becomes 
computationally expensive and time consuming. In order to overcome this drawback, the MBS 
method can be utilized [129].  
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MBS are utilized as a vital tool for the new vehicle design and also for examining service 
complications with prevailing train vehicles [139-141]. The significant aim of this MBS is to 
construct all train vehicle parts and assemble along with track as rigid bodies and with the 
help of force and kinematic constraint elements to link each other together. The MBS tool 
utilized in this research study is SIMPACK: Rail, which aids in carrying out the simulation at 
short duration with high accuracy results for vehicle systems and dynamics [142, 143]. In 
recent research work carried by [144], illustrated the differences between simple and complex 
models in the MBS of long train dynamics. Thus, MBS has been proved to be an effective way 
to model and analyze rail dynamic tests. In [145], the estimation of vertical and lateral track 
irregularities based on the displacement signals obtained through double integration of 
acceleration measurements obtained from the car body and bogie mass using the MBS – 
SIMPACK software are discussed and results are analyzed in time-frequency domain. This 
system is still in a developing stage.  

 

1.3 Motivation for Research 

The Japanese railways have increased several trains for the service purpose in recent decades 
and the number is still accumulating. Such a trend of increase in service frequency continues 
to spread in the near future. Since much high speed railway systems are being currently in 
service, the commercial railway infrastructures are not maintained properly. Currently, Track 
Recording Vehicle (TRV) like Doctor Yellow – high speed test train is utilized for the track 
condition monitoring. But the demerits of TRV are, it is expensive and cannot be frequently 
used for local railway lines. It is used only once in a year.  Henceforth it is clear that the 
necessity for condition assessment and maintenance for the local railway network is of 
primary importance. So, track profile evaluation through vehicle response measurements 
potentially provides efficient solutions. It has been done by many researchers in past decades. 
However, there are still many problems which require further studies. A brief review of 
previous researchers on the track geometry estimation have been presented in this chapter. 
Apart from this method, recently few researchers work on obtaining the track geometry profile 
by placing the senor on the wheel-axle box. This approach is commonly used in high speed 
railway network around the world for the daily maintenance purpose. But this method of 
mounting sensor on the axle box is difficult in the local railway infrastructure. Thus, there is a 
need to solve this sensor placement so as to obtain the track profile.  

A simpler, more robust and cost effective system for in-service train vehicle is desirable. Thus, 
data assimilation method is necessary for estimating the unknown inputs. For inverse analysis 
technique generally augmented Kalman filter is being utilized. However, issue of un-
observability need to be solved. Only few researchers have implemented inverse analysis 
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technique and succeeded in track profile estimation. In [30] it utilized Kalman filter inverse 
analysis technique for reconstructing input force (track profile) from the car body 
measurements for the Japanese Shinkansen railway system. The numerical study suggested 
averaged simplified train model for carrying out inverse analysis while the issue of un-
observability is not solved yet. The experimental study does not clearly illustrate the sensor 
placement strategy and also reconstructed track profile is not clear for the track maintenance 
community. There are many drawbacks mentioned in that research and hence it need to be 
solved. The main challenge is to detect the vertical and lateral track profile and the existing rail 
track irregularities. Hence proper inverse analysis algorithm and sensor placement strategy 
need to be recommended for the precise track profile estimation for the commercial railway 
networks. The proposed estimation algorithm need to be validated for many cases using 
multi-body dynamics train simulation. 

 

1.4 Research Objective 

The objective of this present research work is to propose a precise and efficient response based 
track profile estimation methods by measuring multiple responses from sensors mounted on 
in-service train vehicles which are simulated by rigid body motion linear vehicle models. The 
objective of the research is in four-folds: 

1. To propose extended Augmented State Kalman Filter (ASKF) technique to solve the 
Observability Rank Condition (ORC) analysis for the state space model. It is 
conducted for determining the optimal observations. 

2. To estimate both vertical and lateral railway-track profile using extension of ASKF 
data assimilation technique for a rigid body motion train model. 

3. To gain an in-depth understanding, multi-body simulations are performed to replicate 
the true system with various conditions and track irregularities and validate the 
proposed estimation algorithm and optimal sensor placement. 

4. To validate proposed inverse analysis on experimental field measurements obtained 
from in-service local railway lines. 

The proposed methodology is tabulated in Table 1.1 which explains clearly that the low cost 
prevalent sensors like smartphones or any wireless sensors network can be mounted just 
above the front wheelset of the front bogie on the train car body floor and the bogie mass for 
obtaining the dynamic response from the in-service commercial train railway vehicle. Later, 
the proposed extended ASKF technique is used for estimating the railway track profile. 
Therefore, this study recommends a track condition monitoring practice by an in-service train 
vehicle for safety of railway infrastructure.  
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Table 1.1 Proposed Methodology 

Mechanism Method Sensor type 
Inverse 

Analysis 
Sensor 

Location 
Target 

Indirect 
(Response 

based) 

Sensors on 
in-service 

vehicle 

Low cost 
Accelerometers 

Gyroscopes 

Extension on 
ASKF 

Technique 

Car body 
and Bogie 

mass 

Vertical and 
Lateral 

Track Profile

 
 

1.5 Dissertation outline 

The following is the outline of the chapters and a short description of each, 

Chapter 1 - Introduction: A state-of-the-art-review of the research work on the track geometry 
estimation especially on the indirect mechanism- response based, including numerical analysis 
and measurement investigation, have been given in this chapter. The different types of track 
irregularities and rail degradations are explained. Thus the importance of the railway 
infrastructure is mentioned clearly by evaluating the existing track condition monitoring 
techniques. This chapter ends with the research motivation, objective and organization of this 
thesis. 

Chapter 2 – Observability theory and proposed approaches: The observability rank condition 
(ORC) analysis to theoretically obtain the appropriate sensor types and their placements for 
estimating vertical and lateral rail track profile is presented in this chapter. The measurement 
matrix consists of only acceleration and angular velocity responses collected from the dynamic 
characteristics of vehicle body. In order to estimate the profile through inverse analysis, the 
second derivative of the profile is included in the state vector as one of the additional state 
variable, and thus the non-static component can be obtained through double integration of it. 
Different types of vehicle models are considered with appropriate sensor types and their 
locations, for the numerical analyses and the results are presented. The two approaches to 
obtain the second derivative of profile as an observable state variable are examined. Approach 
(a) includes the second derivative of the profile in the state vector. Although the system is 
unobservable the augmented state variable is observable. Approach (b) alters state space 
model by taking the first derivative of the system equation. The second derivative component 
is observable. These analyses indicate that the profile can be estimated by an accelerometer 
and a gyro mounted on car body and bogie. At last some discussions about the sensor 
placement strategy and track profile estimation are presented in this chapter.  

Chapter 3 - Numerical study on extension of Augmented State Kalman Filter: The vertical and 
lateral track profile estimation from the in-service vehicle response measurement by 
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employing inverse analysis based on extended ASKF method is being studied in this chapter. 
Acceleration and angular velocities are assumed to be observed variables. The two approaches 
to obtain the second derivative of profile as an observable state variable are examined as 
explained in the previous chapter. The performances are compared numerically using linear 
half car train vehicle models namely simplified model (4 DOF) and 6 DOF model, accounting 
for both vertical and lateral track profile estimation and results are found to be in good 
agreement. In order to obtain the quantitative comparison of two waveforms, phase-shift 
correction is carried out using the misfit criteria through Hilbert transform. The statistical 
metrics are utilized for obtaining the single-valued misfit between two waveforms. 

Chapter 4 – Multi-Body Simulation for Track Profile Estimation from Vehicle Responses: The 
multi-body dynamics modeling of train vehicle is presented to replicate the real field test. The 
multi-body simulation is carried out both on straight track and splined track sections and 
results are verified. The sensors are placed just above the rail tracks on both the sides and used 
to measure the acceleration and angular velocity responses from the car body and both bogie 
masses of running train model on simulated track excitations. These vehicle measurement 
responses are utilized to estimate the vertical and lateral track profile using 6 DOF train 
models and it is validated for the proposed estimation algorithm. The suggested sensor 
placement strategy is verified with all possible sensor location results. For straight track 
section (ideal case), it shows a good agreement for vertical track profile while it can estimate 
only above 8 m wavelength irregularity for lateral track profile. Also, MBS are carried out for 
understanding the influence of rolling motion of train vehicle. For curved track section, the 
results show good agreement for vertical track profile estimation, while it shows large 
variation for lateral profile estimation. Exactly the splined section of the track cannot be 
evaluated, because of wheel-rail interaction problem.  

Chapter 5 - Railway Track Monitoring using In-Service Vehicle Responses: The rail track 
profile estimation from the in-service vehicle response measurement by employing inverse 
analysis based on extended augmented state Kalman filtering analyses is being studied in this 
chapter. Inverse analysis is carried out to estimate both the vertical and lateral track 
irregularity by reconstructing the track profile geometry for 10 m chord versine waveform. 
Thus, depending upon the sensors availability and feasible sensor placement locations in the 
real field measurement, rail track profile can be evaluated using proposed extended ASKF 
algorithm. The results are found with slight deviations due to simplified 4 DOF model and 
other phenomenon like hunting oscillation motion. This is due to practical limitations of 
sensor placement only on the car body. The optimal sensor placement is recommended to 
mount sensors on car body and bogie masses. Thus, by utilizing 6 DOF train model accounting 
for bogie pitching/yawing motion, rail track profile can be estimated more precisely.  

Chapter 6 – Conclusions and future research scope are presented. 
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Chapter 2 OBSERVABILITY THEORY AND 

PROPOSED APPROACHES  

 

 

2.1 Introduction 

Towards maintaining the railway infrastructure effectively, the rail track geometry need to be 
examined regularly. Estimating profile geometry from the in-service vehicle response 
measurements possibly offers effective results. Still, the appropriate profile estimation for 
different vehicle dynamic models with efficient sensor placement strategy is not clarified. 
Therefore, from the perspective of observability concept, effective sensor installation locations 
need to be investigated. Observability is the method or a concept to explain whether the 
particular state of the dynamic system can be identified under a given subset of limited 
measurements. In order to estimate the profile, the Observability Rank Condition (ORC) 
analysis of various time invariant linear vehicle dynamic models are carried out to obtain the 
appropriate sensor placement strategy. Since the practice of displacement sensors are costly 
and also obtaining the absolute displacement is impractical, accelerometers and gyros are 
utilized for the measurements. Hence, the profile becomes unobservable under this 
measurement matrix. Consequently, to estimate the profile through inverse analysis, the 
second derivative of the profile is included in the state vector as one of the additional state 
variable, and thus the non-static component can be obtained through double integration of it. 
The ORC analysis is carried out based on two proposed approaches in order to study whether 
the second derivative of profile is observable. Henceforth, ORC analysis theoretically exposed 
a sensor placement strategy and its type, which can be utilized as the recommendation for 
effective profile estimation through in-service vehicle response measurements. In this chapter, 
6 DOF vehicle model (train) and 7 DOF full car model are considered with appropriate 
effective sensor types, namely acceleration and gyro and their locations for profile estimation. 
Hence, its requirements are studied through the ORC analysis. 
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2.2  Observability 

2.2.1 Observability Rank Condition of Linear System 

For the continuous time-invariant system, the state space model is represented as, 

(ݐ)ሶݔ     = (ݐ)ݔܣ +  (2.1)     (ݐ)ݑܤ

(ݐ)ݕ     = (ݐ)ݔܥ +  (2.2)     (ݐ)ݑܦ

where x is the state vector, y is the output vector, u is the input vector, A is the transition/state 
matrix, B is the input matrix, C is the output/measurement matrix, and D is the feedback 
matrix. A system is observable if, for any probable arrangement of state vectors, the present 
state can be obtained in finite time using only the outputs [45]. If a system is unobservable, 
some of its state variables cannot be estimated through output measurements. A continuous 
time-invariant linear state-space model with N states is observable if and only if, the rank of 
the observability matrix (O) is equal to N, where, 

ܱ = ێێێۏ
ۍ ۑۑۑےேିଵܣܥ⋮ଶܣܥܣܥܥ

ې
     (2.3)  

 

2.2.2 Observability Rank Condition of Nonlinear System 

Generally, the analytic system can cover vast range of systems demonstrating nonlinearities 
that are encountered in structural engineering field. An analytic system is considered that of 
affine-input nonlinear system, which is represented as [45, 55]: 

ሶݔ     = (ݔ)݂ + ∑ ݃௝(ݔ) ௝ܷ௟௝ୀଵ     (2.4) 

௜ݕ     = ℎ௜(ݔ), ݅ = 1, … . . , ݊    (2.5) 

where x is the state vector of size m, ௝ܷ , j=1,…,l are inputs which are locally constant and also 
independent, h is the measurement matrix  expressing a measured value of ‘n’ observation 
equations.  

A basic tool used in this algorithm is the Lie derivative which evaluates the change of a tensor 
field, ܮ௩൫(ݔ)ݏ൯ of scalar function s (x) along the flow of a function of a space whose value at 
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each point is a vector quantity, (ݔ)ݒ = ଵݒ] … … ்[௩ݒ and Lie derivative of a vector, Ω ,ଵ(x)ݏ]= … ,  .௞(x)] beside the vector field v (x) is given in equation (2.6) and (2.7) respectivelyݏ

൯(ݔ)ݏ௩൫ܮ     = .ݏ∇  (2.6)     ݒ

௩(Ω)ܮ     = ݀Ω.  (2.7)     ݒ

The method can be explained in following steps: 

1. Initial, k=0; Ω଴ = [ℎଵ, ℎଶ, . . , ℎ௡], ∆Ω଴ = Ω଴ 

2. ∆Ω௞ାଵ = ,்(௙(∆Ω௞)ܮ)] ்(௚ଵ(∆Ω௞)ܮ) … . ,  ்[்(௚௟(∆Ω௞)ܮ)

3. Ω௞ାଵ = Ω௞ ∪ ∆Ω௞ାଵ 
4. Compute dΩ௞ାଵ then ݀Ω௞ାଵ = ݀Ω௞ ∪  ݀Ω௞ାଵ 

5. If rank (dΩ k+1) = rank (݀Ωk) or rank (݀Ω k+1) = m or k=m – 2 end; then k=k+1 and go to step 2. 

Hence, the rank condition is contended only if the final rank of dΩ k+1 is equal to dimension of x 
(i.e. m) at the final stage of the analysis. For any classic structural engineering problem, the 
displacement measurements make the system observable rather than the acceleration or 
velocity measurements at the similar point. The inference through these mathematical 
expressions is that observability theory results do not get affected by the influence of noise 
either in the measurements or in the process equations. 

 

2.2.3 Separating Observable Variables from an Unobservable 
System 

When the system is unobservable, the measurement vector variables do not allow identifying 
all the states in the state vector. Hence it is necessary from the observability perspective to 
search for at least the smaller subset of the state vector which is being considered as observable 
state variable [55]. It is feasible to differentiate observable and unobservable state variable only 
by considering a system with equations as rational, which in turn can be defined by the 
rational fraction. The observability algorithm for nonlinear system can directly separate the 
states into these classifications by excluding the ith column of the final matrix ݀Ωk, and the 
occurring matrix’s dΩ௞௜  rank is calculated. If the rank of dΩ௞௜  is reduced value than the rank of ݀Ωk, then the ith state is observable; otherwise it is not. Subsequently, it is viable to differentiate 
the states. Likewise, it can be adopted for linear system as well. Hence, the observable state 
variables alone can be separated from the unobservable system. It is desirable for the purpose 
of system identification to consider parameter ߠ  as known candidates, which result in 
observable for reduced system.  
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For example, consider any parameter ߠ௜ is known, and after ORC analysis is carried out for the 
reduced new system, ∑ఏ೔ᇱ , then if the rank for ∑ఏ೔ᇱ  is equal to the original system rank, ∑ then 

the considered known parameter is a good candidate. But the process includes iteration of 
whole ORC algorithm many times and therefore it is time consuming process. Hence, assumed 
parameter ߠ௜ is the jth state of x, the jth column of the final matrix ݀Ωఒ of ∑ can be excluded and 

the matrix dΩఒ௝ rank calculation can be done for the reduced system. Thus it can be explained 
in the following lines: 

(a) The new reduced system have state ݔ௥ separated from state x, likewise, the vectors f and ௜݃ 
can be separated as ݂ = [ ௥்݂ , 0]  and ݃ = [݃௜ೝ், 0] . Then, the ORC analysis is applied to 

estimate the rank of the reduced system. 
 

(b) After applying step 2 and 3, 

 Ω௞ାଵ = Ω௞ ∪ ,்(௙ೝ(∆Ω௞)ܮ)] ்(௚ଵೝ(∆Ω௞)ܮ) … . , and hence step 4 would lead to ݀Ω௞ାଵ ்[்(௚௟ೝ(∆Ω௞)ܮ) = [∇௫௥Ω(௞ାଵ)భ … ..  ∇௫௥Ω(௞ାଵ)೗]ᇱ, where Ω௞ାଵ has a size l. 

 

(c) ORC is applied for obtaining the rank of the original system ∑ and application of step 2 
and 3 would lead to: 

                    Ω௞ାଵ = Ω௞ ∪ ,்(௙(∆Ω௞)ܮ)] ்(௚భ(∆Ω௞)ܮ) … . ,  ்[்(௚೗(∆Ω௞)ܮ)

                       =  Ω௞ ∪ [(݀௫௥(∆Ω௞). ௥݂, ݀௫௥(∆Ω௞). ݃ଵೝ)் … . , (݀௫௥(∆Ω௞). ௟݃ೝ)்]் + {0} 
                       =  Ω௞ ∪ ,்(௙ೝ(∆Ω௞)ܮ)] ௚భೝܮ) (∆Ω௞))் … . , ௚೗ೝܮ) (∆Ω௞))்]்  
 

(d) Ω௞ାଵ is denoted same for both ∑ and ∑ఏ೔ᇱ . Consequently, following step 4: 

 ݀Ω௞ାଵ = ێێێۏ
௫௥Ω(௞ାଵ)భ∇ۍ பΩ(ೖశభ)భడఏ೔⋮ ⋮∇௫௥Ω(௞ାଵ)೗ பΩ(ೖశభ)೗డఏ೔ ۑۑۑے

ې
 

 

(e) Hence, if the column corresponding to the partial derivatives with respect to ߠ௜ is cut off 

from this matrix, the remaining part ݀Ω௞ାଵ௝  has the same structure as ݀Ω௞ାଵ  for ∑ఏ೔ᇱ , 

including for the final matrix where  ݇ + 1 =  .ߣ

 

2.3  Proposed Approaches for Profile Estimation 

For estimating the rail track profile using train vehicle, the location of sensors and their types 
are important. Although sensors to obtain displacement and rotational angle are expected to 
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provide the profile component, they are not practical to use in the measurement field. Only 
acceleration and angular velocity are easily measurable in the field. Installation locations also 
have practical limitations. For high speed trains, axle-box accelerometers are used to obtain the 
profile directly [56]. However, for the normal commercial trains, axle-box accelerometers are 
not feasible to install. Because mounting sensor externally at bogie masses is practical 
difficulty and risk as well.  Car body and bogies are preferred as sensor installation locations. 
Under these limitations, profile estimation is normally difficult as explained in this chapter. 
The second derivative of profile is first estimated through acceleration and angular velocity 
measurement and integrated twice with high pass filter to evaluate profile. Observability of 
the second derivative of the profile is studied herein.   

For the continuous time-invariant system, the state space model is denoted as, 

(ݐ)ሶݔ = (ݐ)ݔܣ + (ݐ)ݕ ;(ݐ)ݑܤ =  (2.8)  (ݐ)ݔܪ

where ݔ is the system state vector, ݑ is the input vector, ݕ is the measurement vector, ܣ is the 
state matrix, ܤ is the input matrix and ܪ is the measurement matrix. In this study the state 
vector is augmented with the input vector. Hence, the state matrix is given by including the 
input matrix to the original state matrix and thus the state matrix size increases.  

෤ݔ      = ቂݑݔቃ    (2.9) 

The measurement matrix is appended by a null matrix because inputs are assumed 
unmeasured.  

෩ܪ       = ܪ] 0]    (2.10)  

The two approaches for the estimation of profile as a part of the state vector are considered.  

 

2.3.1 Approach (a) 

It is to augment the state variables with the second derivative of the profile and estimate the 
second derivative. The motivation for proposing this approach is from the practical sensor 
types. Since, acceleration measurements are carried out, it is being expected that second 
derivative state variable component can be observable. The profile is estimated directly from 
the state vector as its double integration; however, it has a large low frequency estimation 
error. A high-pass filter is needed to be applied for accurate results.  
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2.3.2 Approach (b) 

The other is to alter state space model by adopting the first derivative of the state vector as 
new state vector. Thus, only the dynamic components are considered while the static 
components (i.e., displacement) are excluded from the state vector. The profile is estimated as 
the double integration of a state vector component. This process makes the second derivative 
of profile as an observable state even though the profile is not observable. The altered state 
space model is, 

෤ሷݔ (ݐ) = ෤ሶݔܣ ሶݕ  ; (ݐ) (ݐ) = ෤ሶݔ෩ܪ   (2.11)   (ݐ)

where ݔ෤ is augmented state vector and only the measurement matrix H, is modified while the 
transition matrix ܣ, is unaltered. 

 

2.4 Analysis of Vehicle Models 

In order to obtain theoretically the appropriate locations and types of sensors to estimate the 
profile as the ‘observable state’, the different linear rigid body vehicle models with varying 
degree-of-freedom (DOF) are considered for the analysis, namely: 

• 6 DOF model: vertical and lateral track profile estimation  

• Simplified 4 DOF averaged geometry vehicle model  

• 7 DOF full car model: for vertical profile (real car) 

Practical sensor types are accelerometers and gyros and their installation locations are car 
body and bogies. In these analyses the parameters of the vehicle models are considered known. 
The analyses are carried out using both the linear and non-linear observability check methods 
and are found to be consistent. The proposed approaches are investigated for all vehicle 
models. All possible combination of measurements at car body and bogies with accelerometers 
and gyros are analyzed in terms of ORC and all cases where the profile or its derivatives are 
observable are extracted for each vehicle model. Note that only minimum combination of 
measurements is listed in the following sections.  
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2.4.1 6 DOF train vehicle model considering vertical 
displacement 

The 6 DOF vehicle model depicts the linear train vehicle model with car body and two bogies 
in vertical direction as shown in Figure 2.1. In this model, ݖ௖  and ߠ௖  are the car body 
displacement and pitch angle, ݖ௧ଵ and ݖ௧ଶ are front and rear bogie displacement, ߠ௧ଵ and ߠ௧ଶ are 
front and rear bogie pitch angle. The inputs ݎଵ௔, ,ଵ௕ݎ ,ଶ௔ݎ   .ଶ௕ denote the track displacementݎ

 

Figure 2.1 A free-body diagram of 6 DOF train vehicle model: vertical displacement 

 

For deriving the dynamic equation of motion for 6 DOF model Lagrange function is utilized,  

ሷݖܯ     + ሶݖܥ + ݖܭ = ݎܦ + ሶݎܧ    (2.12) 
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where ݉௖ is the mass for the vehicle car body; ܫ௖ is the mass moment of inertia for the vehicle 
car body; ݉௧ଵ and ݉௧ଶ are the masses of the front/rear bogies respectively; ܫ௧ଵ and ܫ௧ଶ are the 
mass moment of inertia for the front/rear bogies respectively; ܿ௣  and ܿ௦   are the vertical 
damping coefficients of primary and secondary suspensions respectively; ݇௣ and ݇௦  are the 
vertical spring stiffness of primary and secondary suspensions respectively; 2݈௖ and  2݈௧ are 
car-body base and bogie-wheel base respectively (Figure 2.1).  

Consider x (t) be a vector containing state variables and r (t) be a profile vector containing 
inputs from four wheels. Sensors are presumed to be placed at the center of car body and 
bogies respectively. The state vector is as follows, 

௔ݔ =  (2.17)    ்[ሶଶ௕ݎ ሶଶ௔ݎ ሶଵ௕ݎ ሶଵ௔ݎ ଶ௕ݎ ଶ௔ݎ ଵ௕ݎ ଵ௔ݎ  ሶ௧ଶߠ ሶ௧ଶݖ ሶ௧ଵߠ ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ ௧ଶߠ ௧ଶݖ ௧ଵߠ ௧ଵݖ ௖ߠ ௖ݖ]

Then, the transition/state matrix of the system in the state-space representation takes the form:
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where, 
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. 

The results of ORC analysis of 6 DOF vehicle model is shown in Table 2.1. The proposed two 
approaches are executed with the following state vectors.  In approach (a), the new state vector 
is, ݔ௔෪ =    ்[ሷଶ௕ݎ ሷଶ௔ݎ ሷଵ௕ݎ ሷଵ௔ݎ ሶଶ௕ݎሶଶ௔ݎ ሶଵ௕ݎ ሶଵ௔ݎ ଶ௕ݎ ଶ௔ݎ ଵ௕ݎ ଵ௔ݎ  ሶ௧ଶߠ ሶ௧ଶݖ ሶ௧ଵߠ ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ ௧ଶߠ ௧ଶݖ ௧ଵߠ ௧ଵݖ ௖ߠ ௖ݖ]

(2.19) 

In approach (b), the new state vector is, ݔሶ ௔ = ௖ሷݖ ሶ௧ଶߠ ሶ௧ଶݖ ሶ௧ଵߠ ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ] ௖ሷߠ   ்[ሷଶ௕ݎ ሷଶ௔ݎ ሷଵ௕ݎ ሷଵ௔ݎ ሶଶ௕ݎ ሶଶ௔ݎ ሶଵ௕ݎ ሶଵ௔ݎ   ሷ௧ଶߠ ሷ௧ଶݖ ሷ௧ଵߠ ሷ௧ଵݖ 

                                                                                                          (2.20) 

Table 2.2 shows the observable states for the two approaches. The acceleration and angular 
velocity of car body and bogie mass are the minimum combination of measurements, which 
results in observable profile derivatives. By implementing both the approaches, the second 
derivative component of the profile is observable. 

 

Table 2.1 ORC analysis results for 6 DOF train model (for vertical displacement) 

Measurements Observable states ݖ௖ሷ ሶ௧ଵߠ ሶ௖ߠ   ሶ௧ଶߠ ሶ௖ߠ ሶ௧ଵߠ ሶ௧ଵߠ  ሷ௧ଶݖ  ሷ௧ଵݖሶ௧ଶߠ ሶ௧ଶߠ ሶ௧ଵߠ ௖ሷݖሶ௧ଶߠ ሷ௧ଶݖ  ሷ௧ଵݖ  ሶ௖ߠ   ሶ௧ଵߠ ሶ௧ଶߠ ሶ௖ߠ ሶ௧ଵߠ ሶ௧ଶߠ
 

 

Table 2.2 ORC analysis for 6 DOF model (for vertical displacement) using proposed 
approaches 

Measurements Observable states 
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Approach (a) Approach (b) ݖ௖ሷ ሶ௧ଶ ሷ࢘ߠ ሶ௧ଵߠ ሶ௖ߠ ሶ௧ଶߠ ሶ௧ଵߠ ሶ௖ߠ   ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛ߠ ࢈ሶ௖ ሶ௧ଵߠ ሶ௧ଶߠ ሷ௧ଵݖ ሷ௧ଵߠ ሷ௧ଶ ሷ࢘ߠ ሷ௧ଶݖ ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛ݖ ࢈ሷ௧ଵ  ݖሷ௧ଶ  ߠሶ௧ଵ ߠሶ௧ଶ ߠሶ௧ଵ ߠሶ௧ଶ ሷ࢘ ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛ߠ ࢈ሶ௧ଵ ሶ௧ଶߠ ሷ௧ଵݖ ሷ௧ଵߠ ሷ௧ଶݖ ሷ௧ଶ ሷ࢘ߠ ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛ݖ ࢈௖ሷ ሶ௧ଶߠ ሶ௧ଵߠ  ሷ௧ଶݖ  ሷ௧ଵݖ  ሶ௖ߠ   ሶ௧ଶ ሷ࢘ߠ ሶ௧ଵߠ ሶ௖ߠ ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛ߠ ࢈ሶ௖ ሶ௧ଵߠ ሶ௧ଶߠ ሷ௧ଵݖ ሷ௧ଵߠ ሷ௧ଶ ሷ࢘ߠ ሷ௧ଶݖ ૚ࢇ ሷ࢘ ૚࢈ ሷ࢘ ૛ࢇ ሷ࢘ ૛࢈ 
 
 
 

2.4.2 4 DOF train vehicle model with averaged track geometry 
considering vertical displacement 

The equation of motion for a 6 DOF vehicle model with averaged track geometry is derived as 
described in the previous section. As given in Equation 2.12, for a numerical model, an input 
vector contains track profile at four axles and their first derivatives (eight elements). Only D 
and E matrix gets modified while other matrices remain the same.  

 

Figure 2.2 Simplified train model with averaged geometry: vertical displacement 

 

For inverse analysis, a reduced vehicle model is presented in Figure 2.2. The equation of 
motion,  

ሷݖܯ     + ሶݖܥ + ݖܭ = ݎܦ + ሶݎܧ    (2.21) 
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  (2.22) 

In order to improve the results, state vector need to be reduced. Thus an averaged geometry is 
obtained at vehicle body by transferring the averaged track profile input measured at front 

and rear axle, which is given as, ݎଵ = ௥భೌା௥భ್ଶ ଶݎ ;  = ௥మೌା௥మ್ଶ  do not comprise frequency 

components corresponding to the wavelength of bogie wheel base.  

Thus, input vector,            (ݐ)்ݎ = ,ଵݎ]  ଶ]    (2.23)ݎ

The state vector is as follows, 

௔ݔ    =  (2.24)  ்[ሶଶݎ ሶଵݎ ଶݎ ଵݎ  ሶ௧ଶߠ ሶ௧ଶݖ ሶ௧ଵߠ ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ ௧ଶߠ ௧ଶݖ ௧ଵߠ ௧ଵݖ ௖ߠ ௖ݖ]

However, the pitching motion of the bogie is not considered in this averaged 6 DOF model, 
thus it is a simplified model same as the half car model.  

Hence the state vector reduces to, 

௔ݔ =  (2.25)  ்[ሶଶݎ ሶଵݎ ଶݎ ଵݎ  ሶ௧ଶݖ  ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ  ௧ଶݖ  ௧ଵݖ ௖ߠ ௖ݖ]

Then, the transition/state matrix of the system in the state-space representation takes the form: 

   
4 4 4 4 6 6
1 1 *

4 4 4 4

2 2
4 4 4 6

2 2

0 0

0 0
0

x x x

a x x

x
x x

x

I
A M K M C a

I

− −

 
 
 

= − − 
 
 
  

    (2.26) 

where, ܽ∗ = ቎ ௞೛௠೟భ 0 0 00 0 ௞೛௠೟మ 0቏. 
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The results of ORC analysis of Simplified 4 DOF train vehicle model is shown in Table 2.3. The 
proposed two approaches are executed with the following state vectors.   

 

Table 2.3 ORC analysis results for 4 DOF train model (for vertical displacement) 

Measurements Observable states ݖሷ௖ ሶ௖ߠ ሷ௧ଵݖሶ௖ߠ ሷ௧ଶݖ Nil ݖሷ௖ ߠሶ௖ ݖሷ௧ଵ ሷ௧ଶݖ ሶ௖ߠ
 

In approach (a), the new state vector is, 

௔෪ݔ =  (2.27)    ்[ሷଶݎ  ሷଵݎ  ሶଶݎ ሶଵݎ ଶݎ ଵݎ  ሶ௧ଶݖ  ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ  ௧ଶݖ  ௧ଵݖ ௖ߠ ௖ݖ]

In approach (b), the new state vector is, 

ሶݔ  ௔ =  (2.28)      ்[ሷଶݎ  ሷଵݎ ሶଶݎ ሶଵݎ ሷ௧ଶݖ  ሷ௧ଵݖ ሷ௖ߠ ሷ௖ݖ  ሶ௧ଶݖ  ሶ௧ଵݖ ሶ௖ߠ  ሶ௖ݖ]

 

Table 2.4 shows the observable states for the two approaches. The acceleration and angular 
velocity of car body and un-sprung mass are the minimum combination of measurements, 
which results in observable profile derivatives. By implementing both the approaches, the 
second derivative component of the profile is observable. 

Table 2.4 ORC analysis for 4 DOF train model (for vertical displacement) using proposed 
approaches 

Measurements 
Observable states 

Approach (a) Approach (b) ݖሷ௖ ߠሶ௖ ߠሶ௖ ሷ࢘ ૚ ሷ࢘ ૛ ሶ௖ߠ ሷ௖ݖ ሷ௖ߠ ሷ௧ଵݖ ሷ௧ଶݖ ሷ࢘ ૚ ሷ࢘ ૛ ݖሷ௧ଵ  ݖሷ௧ଶ ሷ࢘ ૚ ሷ࢘ ૛ ሷ௖ݖ ሷ௖ߠ ሷ௧ଵݖ ሷ௧ଶݖ ሷ࢘ ૚ ሷ࢘ ૛ ݖሷ௖ ሶ௖ߠ ሷ௧ଶݖ  ሷ௧ଵݖ ሶ௖ߠ ሷ࢘ ૚ ሷ࢘ ૛ ሶ௖ߠ ሷ௖ݖ ሷ௖ߠ ሷ௧ଵݖ ሷ௧ଶݖ ሷ࢘ ૚ ሷ࢘ ૛ 
 

 

2.4.3 6 DOF train vehicle model considering lateral displacement 

The 6 DOF vehicle model depicts the linear train vehicle model with car body and two bogies 
in lateral direction as shown in Figure 2.3. In this model, ݕ௖ and ߮௖ are the car body lateral 
displacement and yaw angle, ݕ௕ଵ and ݕ௕ଶ are front and rear bogie lateral displacement, ߮௕ଵ 
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and ߮௕ଶ are front and rear bogie yaw angle. The inputs ݏଵ௔, ,ଵ௕ݏ ,ଶ௔ݏ ଶ௕ݏ  denote the lateral 
track displacement.  

 

Figure 2.3 A free-body diagram of 6 DOF train vehicle model: lateral displacement 

For deriving the dynamic equation of motion for 6 DOF model Lagrange function is utilized, 

ሷݕܯ + ሶݕܥ + ݕܭ = ݏܦ +  ሶ   (2.29)ݏܧ
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where ݉௖ is the mass for the vehicle car body; ܫ௖ is the mass moment of inertia for the vehicle 
car body; ݉௕ଵ and ݉௕ଶ are the masses of the front/rear bogies respectively; ܫ௕ଵ and ܫ௕ଶ are the 
mass moment of inertia for the front/rear bogies respectively; ܿ௣௛ and ܿ௦௛  are the horizontal 
damping coefficients of primary and secondary suspensions respectively; ݇௣௛ and ݇௦௛ are the 
horizontal spring stiffness of primary and secondary suspensions respectively; 2݈௕ and  2݈௥ are 
car-body base and bogie-wheel base respectively (Figure 2.5). Consider x(t) be a vector 
containing state variables and s(t) be a profile vector containing inputs from four wheels. 
Sensors are presumed to be placed at the center of car body and bogies respectively. The state 
vector is as follows, ݔ௔ = ሶ௖  ሶ߮ݕ ௕ଶ ߮௕ଶݕ ௕ଵ ߮௕ଵݕ ௖ ߮௖ݕ] ௖ ݕሶ௕ଵ ሶ߮ ௕ଵ ݕሶ௕ଶ ሶ߮ ௕ଶ  ݏଵ௔ ݏଵ௕ ݏଶ௔ ݏଶ௕ ݏሶଵ௔ ݏሶଵ௕ݏሶଶ௔ݏሶଶ௕]்    

(2.34) 

Then, the transition/state matrix of the system in the state-space representation takes the form: 
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where, 
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The results of ORC analysis of 6 DOF vehicle model is shown in Table 2.5.  

 

Table 2.5 ORC analysis results for 6 DOF train model (for lateral displacement) 

Measurements Observable states   ݕ௖ሷ   ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶݕሷ௕ଵ ݕሷ௕ଶ  ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶݕ௖ሷ   ሶ߮ ௖  ݕሷ௕ଵ ݕሷ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ
 

The proposed two approaches are executed with the following state vectors. In approach (a), 
the new state vector is, ݔ௔෪ = ሶ௖  ሶ߮ݕ ௕ଶ ߮௕ଶݕ ௕ଵ ߮௕ଵݕ ௖ ߮௖ݕ] ௖ ݕሶ௕ଵ ሶ߮ ௕ଵ ݕሶ௕ଶ ሶ߮ ௕ଶ  ݏଵ௔ ݏଵ௕ ݏଶ௔ ݏଶ௕ … ..  
                                                          … .  ሷଶ௕]்   (2.36)ݏ ሷଶ௔ݏ ሷଵ௕ݏ ሷଵ௔ݏ ሶଶ௕ݏ ሶଶ௔ݏ ሶଵ௕ݏ ሶଵ௔ݏ

 In approach (b), the new state vector is, ݔሶ ௔ = ሶ௖  ሶ߮ݕ] ௖ ݕሶ௕ଵ ሶ߮ ௕ଵ ݕሶ௕ଶ ሶ߮ ௕ଶ  ݕሷ௖ ሷ߮ ௖ ݕሷ௕ଵ ሷ߮ ௕ଵ ݕሷ௕ଶ ሷ߮ ௕ଶ  ݏሶଵ௔ ݏሶଵ௕ ݏሶଶ௔ ݏሶଶ௕ ݏሷଵ௔ ݏሷଵ௕ ݏሷଶ௔ ݏሷଶ௕]்  

(2.37) 

Table 2.6 shows the observable states for the two approaches. The acceleration and angular 
velocity of car body and bogie mass are the minimum combination of measurements, which 
results in observable profile derivatives. By implementing both the approaches, the second 
derivative component of the profile is observable. 

 

Table 2.6 ORC analysis for 6 DOF model (for lateral displacement) using proposed approaches 

Measurements Observable states 
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Approach (a) Approach (b) ݕ௖ሷ   ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௖  ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛࢈ 
ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ௖ݕ ሷ߮ ௖ ݕሷ௕ଵ ሷ߮ ௕ଵ ݕሷ௕ଶ ሷ߮ ௕ଶሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛ݕ ࢈ሷ௕ଵ ݕሷ௕ଶ  ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛࢈ 

ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ௖ݕ ሷ߮ ௖ ݕሷ௕ଵ ሷ߮ ௕ଵ ݕሷ௕ଶ ሷ߮ ௕ଶሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛ݕ ࢈௖ሷ   ሶ߮ ௖  ݕሷ௕ଵ ݕሷ௕ଶ  ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሶ߮ ௖  ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛࢈ 
ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ ሷ௖ݕ ሷ߮ ௖ ݕሷ௕ଵ ሷ߮ ௕ଵ ݕሷ௕ଶ ሷ߮ ௕ଶሷ࢙ ૚ࢇ ሷ࢙ ૚࢈ ሷ࢙ ૛ࢇ ሷ࢙ ૛࢈ 

 

2.4.4 4 DOF train vehicle model with averaged track geometry 
considering lateral displacement 

The equation of motion for a 6 DOF vehicle model with averaged track geometry is derived as 
described in the previous section. As given in Equation 2.29, for a numerical model, an input 
vector contains track profile at four axles and their first derivatives (eight elements). Only D 
and E matrix gets modified while other matrices remain the same. For inverse analysis, a 
reduced vehicle model is presented in Figure 2.4. The equation of motion,  

ሷݕܯ     + ሶݕܥ + ݕܭ = ݏܦ +  ሶ   (2.38)ݏܧ

0 0
0 0

2 0
0 0
0 2
0 0

ph

ph

c

c

D

 
 
 
 

=  
 
 
 
  

  

0 0
0 0

2 0
0 0
0 2
0 0

ph

ph

k

k

E

 
 
 
 

=  
 
 
 
  

 (2.39) 

 

Figure 2.4 Simplified train model with averaged geometry: lateral displacement 
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In order to improve the results, state vector need to be reduced. Thus an averaged geometry is 
obtained at vehicle body by transferring the averaged track profile input measured at front 

and rear axle, which is given as, ݏଵ = ௦భೌା௦భ್ଶ ଶݏ ;  = ௦మೌା௦మ್ଶ  do not comprise frequency 

components corresponding to the wavelength of bogie wheel base. 

Thus, input vector,     (ݐ)்ݏ = ,ଵݏ]  ଶ]    (2.40)ݏ

The state vector is as follows, 

௔ݔ = ሶ௖  ሶ߮ݕ ௕ଶ ߮௕ଶݕ ௕ଵ ߮௕ଵݕ ௖ ߮௖ݕ] ௖ ݕሶ௕ଵ ሶ߮ ௕ଵ ݕሶ௕ଶ ሶ߮ ௕ଶ  ݏଵ ݏଶ  ݏሶଵ ݏሶଶ]்  (2.41) 

However, the yawing motion of the bogie is not considered in this averaged 6 DOF model, 
thus it is a simplified model same as the half car model with 4 DOF. Hence the state vector 
reduces to, 

௔ݔ  = ሶ௖  ሶ߮ݕ  ௕ଶݕ  ௕ଵݕ ௖ ߮௖ݕ] ௖ ݕሶ௕ଵ ݕሶ௕ଶ ݏଵ ݏଶ  ݏሶଵ ݏሶଶ]்  (2.42) 

The results and inferences are same as explained for 4 DOF simplified train car model for 
vertical displacement (2.4.3). 

 

2.4.5 7 DOF - full car model 

A 7-DOF full car model, as presented in Figure 2.5, comprises heave (ݖ), roll (߮௥) and pitch (ߠ௣) 
of the sprung mass in addition to four un-sprung masses which demonstrate translation at 
respective corner of the vehicle (ݓ௜௝), where the subscripts i and j correspond to the side of the 
vehicle and axle respectively. The stiffness of spring, stiffness of tire and coefficient of 
damping are considered to be linear and in addition it is also presumed that the pitch and roll 
angles remain small. The four inputs (ݑ௜௝ ) to the system are the profile obtained from 
displacement at all vehicle corners. Even though model dynamics is free from derivatives of 
input, they are augmented in the input vector to support in the input estimation.  
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Figure 2.5 The free body diagram of 7-DOF full car model 

 

 The dynamic equation of motion for 7-DOF full car model is derived using Lagrange function.  

ሷݔܯ + ሶݔܥ + ݔܭ = ݑܦ + ሶݑܧ    (2.43) 

1

1

2

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

L

R

L

R

c

r

p

M

m
m

m
m

m
I

I

 
 
 
 
 
 =  
 
 
 
 
  

   (2.44) 

    

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

* * *
1 1 2 2 1

* * *
1 1 2 2 1

*
1 1 2 2 2 2

0 0 0 ( ) ( )

0 0 0 ( ) ( )

0 0 0 ( ) ( )

0 0 0 ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

tL L L L L

tR R R R R

tL L L L L

tR R R R R

L R L R

L R L R

L R L R

d a

d b

c a

K c b

d d c c

a a b b

k k k k k
k k k k k

k k k k k
k k k k k

k k k k a b c
k k k k b d e
k k k k c

+ − −

+ − − −

+ −

= + − −

− − − −

− −

− −
** fe

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

          (2.45) 



39 
 

ܽ∗ = ݇௅ଵ + ݇ோଵ + ݇௅ଶ + ݇ோଶ ܾ∗ = −݇௅ଵ(݀) + ݇ோଵ(݀) − ݇௅ଶ(ܿ) + ݇ோଶ(ܿ) ܿଵ∗ = ݇௅ଵ(ܽ) + ݇ோଵ(ܾ) − ݇௅ଶ(ܽ) − ݇ோଶ(ܾ) ܿଶ∗ = ݇௅ଵ(ܽ) + ݇ோଵ(ܽ) − ݇௅ଶ(ܽ) − ݇ோଶ(ܾ) ݀∗ = ݇௅ଵ(݀ଶ) + ݇ோଵ(݀ଶ) + ݇௅ଶ(ܿଶ) + ݇ோଶ(ܿଶ) ݁ଵ∗ = −݇௅ଵ(ܽ݀) + ݇ோଵ(ܾ݀) + ݇௅ଶ(ܽܿ) − ݇ோଶ(ܾܿ) ݁ଶ∗ = −݇௅ଵ(ܽ݀) + ݇ோଵ(ܽ݀) + ݇௅ଶ(ܾܿ) − ݇ோଶ(ܾܿ) ݂∗ = ݇௅ଵ(ܽଶ) + ݇ோଵ(ܾܽ) + ݇௅ଶ(ܾܽ) + ݇ோଶ(ܾଶ) 

where ݉௖ is the mass for the vehicle car body; ܫ௥ and ܫ௣ is the mass moment of inertia for the 
vehicle car body for rolling and pitching respectively; ݉௅ଵ, ݉ோଵ and ݉௅ଶ, ݉ோଶ are the masses of 
the left-right front and rear bogies respectively; ݇௅ଵ, ݇ோଵ and ݇௅ଶ, ݇ோଶ are the vertical spring 
stiffness of left-right  front and rear suspensions respectively; ݇௧௅ଵ, ݇௧ோଵ and ݇௧௅ଶ, ݇௧ோଶ are the 
stiffness of left-right front and rear tires respectively; a, b, c, d represents the distance from the 
center of gravity of the car body to front/rear suspension locations respectively as shown in 
Figure 2.5.  

The damping matrix [C] is identical in form to [K] given in equation (2.46) except that the 
corresponding term ‘k’ should be replaced by ‘c’.  
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The system state vector is given as, 

௔ݔ  = ሶݓ  ௣ߠ  ௥߮  ݖ  ோଶݓ  ௅ଶݓ  ோଵݓ  ௅ଵݓ] ௅ଵ  ݓሶ ோଵ  ݓሶ ௅ଶ  ݓሶ ோଶ  ݖሶ  ሶ߮ ௥  ߠሶ௣  ݑ௅ଵ  ݑோଵ  ݑ௅ଶ  ݑோଶ …   
     … . . ሶݑ ௅ଵ  ݑሶ ோଵ  ݑሶ ௅ଶ  ݑሶ ோଶ]்     (2.47) 

The results of ORC analysis of 7-DOF full suspension model is shown in Table 2.7. Because 
observation matrix depends on sensor location, the sensors are presumed to be placed at the 
center of car body and bogies respectively.   
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Table 2.7 ORC analysis results for 7-DOF full suspension model 

Measurements Observable states ݖሷ  ߮௥ሶ ௣ሶߠ  ሷݓ  ௅ଵ  ݓሷ ோଵ ሷݓ ௅ଶ ሷݓ ோଶ ሶ߮ ௥ ሶ௣ ߮௥ሶߠ ௣ሶߠ  ሷݓ  ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ ሷݓ ோଶ ሶ߮ ௥ ሷ   ߮௥ሶݖ ሶ௣ߠ ௣ሶߠ   ሶ߮ ௥ ሶ௣ ߮௥ሶߠ ௣ሶߠ   ሶ߮ ௥ ሷݓ   ሷݖ ሶ௣ߠ ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ ሷݓ ோଶ Nil ݓሷ ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ ሷݓ ோଶ Nil 

 

The proposed two approaches are executed with the following state vectors.  

 In approach (a), the new state vector is, ݔ௔෪ = ሶݓ  ௣ߠ  ௥߮  ݖ  ோଶݓ  ௅ଶݓ  ோଵݓ  ௅ଵݓ] ௅ଵ  ݓሶ ோଵ  ݓሶ ௅ଶ  ݓሶ ோଶ  ݖሶ  ሶ߮ ௥  ߠሶ௣  ݑ௅ଵ  ݑோଵ  ݑ௅ଶ  ݑோଶ …   . . ሶݑ ௅ଵ  ݑሶ ோଵ  ݑሶ ௅ଶ  ݑሶ ோଶ  ݑሷ ௅ଵ  ݑሷ ோଵ  ݑሷ ௅ଶ  ݑሷ ோଶ]்  (2.48)  

In approach (b), the new state vector is, ݔሶ ௔ = ሶݓ] ௅ଵ  ݓሶ ோଵ  ݓሶ ௅ଶ  ݓሶ ோଶ  ݖሶ  ሶ߮ ௥  ߠሶ௣ ݓሷ ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ  ݓሷ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣   ݑሶ ௅ଵ  ݑሶ ோଵ  ݑሶ ௅ଶ  ݑሶ ோଶ …  
ሷݑ …        ௅ଵ  ݑሷ ோଵ  ݑሷ ௅ଶ  ݑሷ ோଶ]்  (2.49) 

 
Table 2.8 shows the observable states for the two approaches. The acceleration and angular 
velocity of car body and bogie masses are the minimum combination of measurements, which 
results in observable profile derivatives. By implementing both the approaches, the second 
derivative component of the profile is observable.  

Table 2.8 ORC results for 7-DOF full suspension model using proposed approach 

Measurements 
Observable states 

Approach (a) Approach (b) ݖሷ   ߮௥ሶ ௣ሶߠ  ሷݓ  ௅ଵ  ݓሷ ோଵ ሷݓ ௅ଶ  ݓሷ ோଶ 
ሶ߮ ௥ ሶ௣ ሷ࢛ߠ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛ࡸ ሷ࢛  ૛ࡾ

ሶ߮ ௥ ሶ௣ߠ ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ  ݓሷ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛  ሷ࢛ࡸ ૛ ߮௥ሶࡾ ௣ሶߠ  ሷݓ  ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ  ݓሷ ோଶ 
ሶ߮ ௥ ሶ௣ ሷ࢛ߠ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛ࡸ ሷ࢛  ૛ࡾ

ሶ߮ ௥ ሶ௣ߠ ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ  ݓሷ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛  ሷ࢛ࡸ ሷ   ߮௥ሶݖ ૛ࡾ ௣ሶߠ   ሶ߮ ௥ ሶ௣ ሶ߮ߠ ௥ ሶ௣ߠ ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ  ݓሷ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ 



41 
 

߮௥ሶ ௣ሶߠ   ሶ߮ ௥ ሶ௣ ሶ߮ߠ ௥ ሶ௣ߠ ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ  ݓሷ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ 

ሷݓ   ሷݖ ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ ሷݓ  ோଶ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛ࡸ ሷ࢛  ૛ࡾ
ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ ሷݓ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛  ሷ࢛ࡸ ሷݓ ૛ࡾ ௅ଵ  ݓሷ ோଵ  ݓሷ ௅ଶ ሷݓ ோଶ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛ࡸ ሷ࢛  ૛ࡾ
ሷݓ ௅ଵ ሷݓ ோଵ ሷݓ ௅ଶ ሷݓ ோଶ  ݖሷ  ሷ߮ ௥  ߠሷ௣ ሷ࢛ ૚ࡸ ሷ࢛ ૚ࡾ ሷ࢛ ૛  ሷ࢛ࡸ  ૛ࡾ

 

 

2.5 Discussions and Summary 

The observability analysis to theoretically obtain the appropriate sensor types and their 
placements for estimating rail track profile are illustrated in this chapter. The measurement 
matrix consists of only acceleration and angular velocity responses collected from the dynamic 
characteristics of vehicle body. In order to estimate the profile through inverse analysis, the 
second derivative of the profile is included in the state vector as one of the additional state 
variable, and thus the non-static component can be obtained through double integration of it. 
Different types of vehicle models are considered with appropriate sensor types and their 
locations, for the numerical analyses and the results are presented. The two approaches to 
obtain the second derivative of profile as an observable state variable are examined. Approach 
(a) includes the second derivative of the profile in the state vector. Although the system is 
unobservable the augmented state variable is observable. Approach (b) alters state space 
model by taking the first derivative of the system equation. The second derivative component 
is observable. These analyses indicate that the profile can be estimated by an accelerometer 
and a gyro on car body or bogie. The profile is expected to be obtained by the double 
integration of the high pass-filtered second derivative.  
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Chapter 3 NUMERICAL STUDY ON EXTENSION 

OF AUGMENTED STATE KALMAN FILTER 

 

 

3.1 Introduction 

In order to maintain the railway infrastructure competently, the prerequisite is to monitor the 
vertical and lateral direction of profile regularly. While the measurement of profile or vehicle’s 
absolute displacement is not practical, but the acceleration and angular velocity measurements 
are feasible. Prevalent sensing devices such as smartphones have been potentially being 
utilized in vehicle body motion measurement. However, the applicability of such 
measurement for profile estimation is not clarified yet. In this chapter a numerical analysis for 
track profile estimation by various vehicle dynamics models are presented. In previous 
chapter, an observability analysis on the profile estimation through augmented state space 
model as well as two other extended formulations has been performed. For inverse analysis 
purpose, vehicle body acceleration and angular velocity measurements are considered in 
measurement matrix. In the two approaches, the second derivative of the profile is included in 
the state vector along with other state variables. While the profile itself is not observable in any 
formulation, the second derivative of profile was shown to be observable.  In this chapter, 
Kalman filter technique (data assimilation for inverse problem) is employed for three state 
space models mentioned above, termed as conventional Augmented State Kalman Filter 
(ASKF) and two extended approaches (a) and (b) for the profile estimation. Thus, a numerical 
study on extension of ASKF for input dynamic force reconstruction is presented. The 
performances are compared numerically using linear vehicle models, namely, simplified train 
model (4 DOF) and 6 DOF vehicle model (train).  

 

3.2 Mathematical Formulation 

The recommended method basically comprises of a standard linear Kalman filter data 
assimilation inverse analysis technique performed on an augmented state-space representation 
wherein the dynamic input forces are augmented to the unknown state vector [63, 64]. The 
augmented state-space model has been derived using the filter equations as presented below 
[77] [84]. 
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3.2.1 Augmented State-Space Model 

Consider a linear, classical discrete-time dynamical system represented in state-space 
configuration model with a state vector, ݔ௞. It consists of least amount of data that is adequate 
to exclusively define the unforced dynamical performance of the system which is required to 
forecast its upcoming performance; the subscript k represents discrete time.  

௞ାଵݔ = ௞ݔܣ + ௞ݑܤ +  ௞   (3.1)ݓ

௞ݕ = ௞ݔܪ + ௞ݑܦ +  ௞   (3.2)ݒ

where A and B represent transition matrix and input matrix respectively;  ݓ௞  denotes 
stochastic process noise vector, {ݓ௞ ∈ ܴ௡ೞ}௞ୀ଴ஶ , where ݊௦ mentions number of states, assumed 
to be additive, white, and Gaussian with zero mean; ݑ௞ denotes the dynamic input excitation 
vector with ߟ௞ a component of the stochastic process {ߟ௞ ∈ ܴ௡ೠ}௞ୀ଴ஶ  can be shown as, ݑ௞ାଵ ௞ݑ= +  is the measurement matrix; D is direct ܪ ;௞ is the measured data vector at time kݕ ;௞ߟ
transmission matrix; ݒ௞  is the measurement noise, {ݒ௞ ∈ ܴ௡೏}௞ୀ଴ஶ , assumed to be additive, 
white, and Gaussian with zero mean and it is uncorrelated with the process noise. By 
redefining the state vector by adding the unknown input vector, an augmented state equation 
is achieved with noise vector, ߝ௞ ∈ ܴ௡ೞା௡ೠ. 

௞௔ݔ = ቂݔ௞ݑ௞ቃ    (3.3) 

௞ାଵ௔ݔ = ቂܣ 0ܤ ܫ ቃ ௞௔ݔ + ቄݓ௞ߟ௞ ቅ   (3.4) 

௞ାଵ௔ݔ = ௞௔ݔ௔ܣ +  ௞   (3.5)ߝ

where, ܣ௔ ∈ ܴ(௡ೞା௡ೠ)௫(௡ೞା௡ೠ), is the system matrix. 

The measurement equation in augmented state-space model will have the following form: 

௞ݕ = ௞௔ݔ௔ܪ +   ௞    (3.6)ݒ

where, ܪ௔ is the new measurement matrix constructed from original output matrix and direct 
transmission matrix, represented as ܪ௔ = -Hence, the formulation for augmented state .[ܦ  ܪ]
space model defining state and observation equations are given in Equations (3.5) and (3.6) 
respectively.  
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3.2.2 Augmented State Kalman Filter for Input-state Estimation 

An alternative prevailing method for recursive joint state-input estimation is the Augmented 
State Kalman Filter (ASKF) data assimilation inverse analysis technique, which is considered 
to be optimal estimator in a minimum-variance unbiased sense, i.e. to ultimately infer 
parameters from indirect and uncertain measurements. Thus, the best estimate is obtained 
from noisy data by filtering out noise and by predicting those observations against the state 
estimate. The application of augmented state-space configuration is extensively utilized in 
automatic control field with the purpose of concurrently estimating the states and parameters 
of the dynamic system. In this background, the aforementioned objective to extract excitation 
data from measurement can be achieved by implementing Kalman filtering technique which 
conventionally follows recursive prediction-correction pattern. 

Let ݔො௞|௟௔  be the estimate of ݔ௞௔ given, {ݕ௡}௡ୀ଴௟ . Without observed data at time k = 0, the initial 

state estimate is given as, ݔො଴|ିଵ௔  and it is assumed to be random variable. A posterior state 

estimate is derived by combining the prior estimate ݔො௞௔ି (Prediction step) and the weighted 
difference between an actual measurement and a measurement prediction ܪ௔ݔො௞௔ି  (Update 
step) as illustrated below. 

ො௞௔ݔ = ො௞௔ିݔ + ௞ݕ)ܮ −  ො௞௔ି)   (3.7)ݔ௔ܪ

The difference (ݕ௞ − (ො௞௔ିݔ௔ܪ  is known as measurement residual which reveals the 
inconsistency between the predicted and the actual measurement. The matrix L is called the 
Kalman gain, an essential factor which minimizes the posterior error covariance. Henceforth, 
the error covariance matrix ௞ܲ|௟ ∈ ܴ(௡ೞା௡ೠ)௫(௡ೞା௡ೠ)  will have the following form with 
assumption that ଴ܲ|ିଵand ݔො଴|ିଵ௔ are known. 

௞ܲ|௟ = ௞௔ݔ)ൣܧ − ො௞|௟௔ݔ ௞௔ݔ)( − ො௞|௟௔ݔ )்൧    (3.8) 

The noise processes for state, excitation and measurement {ݓ௞},  are assumed to be {௞ݒ} and {௞ߟ}
known discrete vectors, which are mutually uncorrelated stochastic processes with zero mean 
and Gaussian white processes of covariance matrices Q, S and R represented by, 

௟்ݓ௞ݓ]ܧ ] = ௟்ߟ௞ߟ]ܧ ௞ି௟ߜܳ ] = ௟்ݒ௞ݒ]ܧ ௞ି௟ߜܵ ] =  ௞ି௟  (3.9)ߜܴ

where ߜ௞ି௟ is the Kronecker delta. The influence of process covariance matrix Q is based on the 
model of the system used and the observation noise covariance matrix R depends on the 
accuracy of sensors used for the measurements and however the obtained solution is less 
sensitive to these matrices when compared with the covariance matrix S which is considered 
as regularization matrix. The ASKF formulation for the discrete-time state-space model of a 
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physical system as mentioned in Equations (3.5) and (3.6) are presented in terms of time 
update and measurement update. 

Time update: 

ො௞ାଵ|௞௔ݔ = ො௞|௞௔ݔ௔ܣ     (3.10) 

௞ܲାଵ|௞ = ௔ܣ ௞ܲ|௞ܣ௔் + ܳ௔   (3.11) 

Measurement update: 

௞ାଵܮ = ௞ܲାଵ|௞ܪ௔் ௔ܪ) ௞ܲାଵ|௞ܪ௔் + ܴ)ିଵ  (3.12) 

ො௞ାଵ|௞ାଵ௔ݔ = ො௞ାଵ|௞௔ݔ + ௞ାଵݕ)௞ାଵܮ − ො௞ାଵ|௞௔ݔ௔ܪ ) (3.13) 

௞ܲାଵ|௞ାଵ = ௞ܲାଵ|௞ − ௔ܪ௞ାଵܮ ௞ܲାଵ|௞   (3.14) 

Considering the aforementioned expressions, if the observation noise covariance matrix R 
approaches zero, the Kalman gain L affects the residual severely, i.e. actual measurement is 
trusted more. Instead, if prior estimate error covariance matrix approaches zero, then the 
influence of gain matrix on residual is less, else the predicted measurement is trusted. In 
combination with the augmented noise vector ߝ௞ of Equation (3.5), the augmented covariance 

matrix ܳ௔ ∈ ܴ(௡ೞା௡ೠ)௫(௡ೞା௡ೠ) is given as,  ܳ௔ = ቂܳ 00 ܵቃ.  
The augmented state-space model and its utilization in Kalman filtering techniques are 
developed and formulated in detailed manner by using the filter equations and it is briefly 
illustrated in Table 3.1. The proposed ASKF method by [77], for unknown input force 
reconstruction in structural dynamic system have determined that the ASKF is likely to have 
numerical instabilities owing to problems of the augmented state-space model. In order to 
overcome this issue of un-observability, two approaches are proposed as an extension of 
augmented state-space model. The two approaches for the estimation of profile as a part of the 
state vector are considered. One is to augment the state variables with the second derivative of 
the profile and estimate the second derivative. The profile is estimated directly from the state 
vector as its double integration; however, it has a large low frequency estimation error. A 
high-pass filter is needed to be applied for accurate results.  
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Table 3.1 A general scheme of augmented state Kalman filter-based joint input-state estimation 
algorithm [63, 64] [77] 

Augmented state-space model ݔ௞ାଵ௔ = ௞௔ݔ௔ܣ + ௞ݕ௞ߝ = ௞௔ݔ௔ܪ + ௞ݒ
where ߝ௞  and ݒ௞  are independent, zero-mean, Gaussian noise processes of 
covariance matrices ܳ௔ and R, respectively. 

Initialization:  

               For k = 0, set                      ݔො଴௔ =  [଴௔ݔ]ܧ
଴ܲ = ଴௔ݔ)]ܧ − ଴௔ݔ)([଴௔ݔ]ܧ − [்([଴௔ݔ]ܧ

Computation: 

               For k = 1, 2, ……., compute 

      State estimate propagation ݔො௞ାଵ|௞௔ = ො௞|௞௔ݔ௔ܣ
      Error covariance propagation 

௞ܲାଵ|௞ = ௔ܣ ௞ܲ|௞ܣ௔் + ܳ௔
      Kalman gain matrix ܮ௞ାଵ = ௞ܲାଵ|௞ܪ௔் ௔ܪ) ௞ܲାଵ|௞ܪ௔் + ܴ)ିଵ
      State estimate update ݔො௞ାଵ|௞ାଵ௔ = ො௞ାଵ|௞௔ݔ + ௞ାଵݕ)௞ାଵܮ − ො௞ାଵ|௞௔ݔ௔ܪ )
      Error covariance update 

௞ܲାଵ|௞ାଵ = ௞ܲାଵ|௞ − ௔ܪ௞ାଵܮ ௞ܲାଵ|௞
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The other is to alter state space model by adopting the first derivative of the state vector as 
new state vector. Thus, only the dynamic components are considered while the static 
components (i.e., displacement) are excluded from the state vector. The profile is estimated as 
the double integration of a state vector component. This process makes the second derivative 
of profile as an observable state even though the profile is not observable. The altered state 
space model is, 

ሷ௞௔ݔ     = ሶ௞ݕ  ;ሶ௞௔ݔ௔ܣ = ௔෪ܪ  ሶ௞௔   (3.15)ݔ

where ݔ௞௔ is augmented state vector and only the measurement matrix ܪ௔, is modified while 
the transition matrix ܣ௔, is unaltered.  

 

3.3 Proposed Implementation of Estimation Algorithm 

In this chapter, an inverse analysis algorithm is utilized to reconstruct the dynamic input force 
excitation (profile information) from the multiple observables on a vehicle model. This specific 
problem of force extraction from the response collected on a multi-body dynamic system 
through the Kalman filtering technique is a data assimilation inverse problem categorized in a 
stochastic basis. In order to obtain theoretically the appropriate locations and types of sensors 
to estimate the profile as the ‘observable state’, the different vehicle models are considered for 
the observability analysis as explained in the previous chapter. Practical sensor types are 
accelerometers and gyros and their installation locations are car body and bogies. In these 
analyses the parameters of the vehicle models are considered known. The analyses are carried 
out using both the linear and non-linear observability check methods and are found to be 
consistent. The proposed approaches are investigated for all vehicle models. All possible 
combination of measurements at car body and bogies with accelerometers and gyros are 
analyzed in terms of ORC and all cases where the profile or its derivatives are observable are 
extracted for each vehicle model. The subsequent sections give a brief overview of generating 
profiles according to available standards and utilizing it for the inverse problem by 
implementing on various vehicle models which includes simplified 4 DOF model and 6 DOF 
vehicle model respectively. The simulation results from proposed approach of extension on 
ASKF method is compared with the results obtained from conventional ASKF and it is found 
to perform well. The application of the ASKF profile estimation algorithm explicitly 
recommended in this chapter is explained in Figure 3.1.  

 



48 
 

 

Figure 3.1 Profile estimation algorithms to reconstruct from measurement responses 

 

3.3.1 Quantification through various Statistical Metrics 

To validate the estimation algorithm, the following metrics have been used to quantify the 
signature variations. In this framework, estimated profile and true profile are utilized in 
simulating the responses from the same dynamic vehicle model and consequently, an indirect 
criterion is evaluated, based on a damage estimation value obtained from the vehicle 
measurement to the true profile. The assessment of these criteria help in understanding the 
consequence of potential errors have on the estimated profile from responses collected from 
vehicle.  

3.3.1.1 Root Mean Square Error 

The Root-Mean-Square Error (RMSE) is a commonly used statistical metrics to measure the 
residuals (prediction errors), which serves to aggregate error into a single measure of 
predictive power [85]. The RMSE expressed below is a dimensional error estimation value, 

(݉݉)ܧܵܯܴ = ට∑൫௫೔బି௫೔భ൯మே     (3.16) 

where ݔ௜଴,  ௜ଵ  are the ith value of reference series and compared series respectively and N is theݔ
number of data samples.   

3.3.1.2 Root Mean Square Deviation 

The Root-Mean-Square Deviation (RMSD) is a commonly used statistical metrics to measure 
the residuals (prediction errors), which signifies the sample standard deviation of the 
differences between estimated values and true values [85]. The RMSD expressed below is a 
normalized value which is a non-dimensional metrics. 

Select Vehicle 
modelResponses (Acceleration and angular velocity) 

Observability 
Check

Vertical and Lateral Track Profile Estimation using Extended ASKF technique

Extended Augmented State Kalman Filter on selected model

In-service vehicle measurements Numerical simulation
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(%)ܦܵܯܴ = ඨ∑൫௫೔బି௫೔భ൯మ∑൫௫೔బ൯మ x 100    (3.17) 

where ݔ௜଴,    .௜ଵ  are the ith value of reference series and compared series respectivelyݔ

3.3.1.3 Correlation Coefficient 

Correlation identifies similarity and dependency amongst two waveforms. An exact 
resemblance indicates that the Correlation Coefficient (CC) is unity (or -1). Two randomly 
generated time series will be hardly correlated amid each other, to the extent that the sum of 
the factored pairs will tend towards zero. CC is calculated for a subset of the total block of data 
with overlapped pairs [86]. Therefore, CC is obtained by the computational implementation as 
the mean of the products of the standard scores and it is beneficial in predictive damage 
assessment.  

ܥܥ = ଵ௡ିଵ ∑ ቀ௑೔ି௑ത௦೉ ቁ௡௜ୀଵ ቀ௒೔ି௒ത௦ೊ ቁ   (3.18) 

തܺ = ଵ௡ ∑ ௜ܺ௡௜ୀଵ ௑ݏ ;  = ට ଵ௡ିଵ ∑ (ܺ௜ − തܺ)ଶ௡௜ୀଵ   (3.19) 

Based on the sample of the paired data ( ௜ܺ, ௜ܻ), the CC is derived by the Equation (3.18), where 
sample mean and sample standard deviation are specified in Equations (3.19) respectively.  

 

3.3.2 Estimation of Track Profile from Vehicle Responses 

In the current research work, the estimation algorithm employed is based on an augmented 
Kalman filtering theory, which is capable of solving the inverse analysis in a stochastic context. 
Track profile estimation from vehicle measurement responses is feasible with the usage of a 
priori information on possible modelling deficits and dynamic input excitation. The aim of the 
mathematical simulations is to understand the vibration generated by vehicles due to the 
dynamic interaction amongst train vehicle and track profile surface. For practical application 
of the approach, two things must be completely defined for the execution of estimation 
algorithm, namely vehicle model and the analogous measurement system, i.e. matrices A, B, C, 
D along with covariance matrices Q, S and R, which are found to be tuning parameters. 
Perhaps, it is not an optimum solution but it is very pragmatic. However, this issue is rarely 
discussed in literature and no solution can be derived from severe mathematical reflection. 
Certainly, tuning parameters utilized in this estimation algorithm should consider the 
actuality of the measurement arrangement with all feasible errors and model restrictions, and 
thus it marks the usage of empirical parameter inevitable. Generally, the results obtained in 
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the subsequent sections prove that the recommended data assimilation inverse analysis 
algorithm is an appreciable method for the vertical and lateral track profile estimation. 
Accordingly, these results approve the rationality of carefully chosen tuning parameter. 

With the background of an inverse analysis, the quality of evaluation of measured responses 
through direct problem, influence extremely the reliability of the estimated excitation. 
Henceforth, Kalman filter technique is employed for three state space models mentioned 
above, termed as conventional ASKF and two extended approaches (a) and (b) for the track 
profile estimation. The further studies on different vehicle models are being conducted for the 
effective track profile estimation using practical sensors and its installation locations. Thus, 
robustness and competence of the proposed approaches will be broadly assessed by 
conducting numerical analyses of train vehicle models.  

 

3.4 Simulated Railway Track Profile 

Track irregularity record obtained from real field measurement is essential to detect the 
influence of irregularities, however attaining such record is inappropriate. Alternative solution 
is to use simulation result of the track geometry [4]. Thus, track irregularities can be given as 
random functions with reference to the longitudinal coordinate axis ‘x’. Numerous 
measurements have shown that the track irregularities may be frequently described by a one-
sided PSD function of the track geometry [87]. PSD functions utilized in this study are 
expressed in Equations (3.20) and (3.21) for elevation, alignment and cross irregularities 
respectively.  

( )
2

, 2 2 2 2
ΩΩ

(Ω Ω )(Ω Ω )
v c

v a
r c

AS =
+ +

   (3.20) 

( )
2 2 2

2 2 2 2 2 2
Ω Ω / lΩ

(Ω Ω )(Ω Ω )(Ω Ω )
v c a

c
r c s

AS =
+ + +

  (3.21) 

where ܵ௩,௔ is PSD function for the elevation and alignment irregularity; ܵ௖ is PSD function for 
the cross level irregularity; Ω = 1 ⁄௥ܮ  represents the spatial frequency (Hz) and ܮ௥ is the length 
of the irregularity (m). Table 3.2 illustrates the coefficients value representing the above 
equations given by the Federal Railroad Administration (FRA) for Classes 4, 5 and 6 of tracks, 
with Class 6 representing the best and Class 4 the worst [87-90]. However, the track 
irregularity represented by PSD method cannot be applied in the simulation directly, since the 
record in time domain is needed in the analysis. The sample of rail irregularities can be 
produced by inverse Fourier transform method and so on. 
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Table 3.2 Track PSD model parameter [92] 

Quality (FRA)  Very poor (4) Poor (5) Moderate (6) ࢜࡭ (m) 2.39 × 10−5 9.35 × 10−6 1.50 × 10−6 ષ࢙ (rad/m) 1.130 0.821 0.438 ષ࢘(rad/m) 2.06 × 10−2 2.06 × 10−2 2.06 × 10−2 ષࢉ (rad/m) 0.825 0.825 0.825 
 

In this study the spectral representation method [93] is applied to obtain the profiles for the 
deviation in the elevation, alignment and cross level, i.e., ݎ௩(ݔ), ݎ௛(ݔ) and ݎ௖(ݔ), of the twin rail 
system can be established. 
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0
2 cos(Ω α )

N

v n n n
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r x A x
−

=

= +   (3.22)  
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=

= +   (3.23) 
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1

0
2 cos(Ω γ )

N

c n n n
n

r x C x
−

=

= +   (3.24) 

where N represents the total number of discrete spatial frequencies considered, and the 
independent random phase angles ߙ௡, ߚ௡, ߛ௡ (n = 1, 2, . . . , N −1) are random phase angle 
uniformly distributed from 0 to 2ߨ. 

 Ω௡ is the nth discrete frequency, which is computed as Equation (3.25), 

(Ω Ω )Ω Ω u l
n

nn
N
−= Δ =    (3.25) 

where n = 1, 2, . . . , N – 1; Ω௨ and Ω௟ denote the upper bound and lower bound of the circle 
frequencies considered respectively. Coefficients, ܣ௡, ܤ௡ and ܥ௡ in Equations (3.22 – 3.24) can 
be defined as in Equations (3.26 - 3.29). 

0 0 0 0A B C= = =          (3.26) 
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          (3.27) 
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  (3.29) 

 

Note that the results of ݎ௩(ݔ), ݎ௛(ݔ) and ݎ௖(ݔ) generated by above method may not satisfy the 
control standard of the track. The normalization process to the maximum tolerable deviations 
of the track is necessary according to the different track quality. From Equations (3.33 – 3.35), 
the vertical and alignment profile irregularities for the right and left rails can be calculated 
respectively. 

( ) ( ) 1
( )

2vr v cr x r x r x= −    (3.30) 

  ( ) ( ) 1
( )

2vl v cr x r x r x= +    (3.31)  

  ( ) ( ) ( )hr hl hr x r x r x= =    (3.32) 

For numerical simulation, the subsequent parameters are considered as, Ω௟ = 0.0209 rad/m, Ω௨ = 
12.566 rad/m, N = 4000 and length of the track profile is 1000 m. The profiles of the two rails 
used for rail track in the simulation are plotted in Figure 3.2. The corresponding wavelength is 
0.5 m to 300 m, which covers whole length of track irregularities (both short and long 
wavelength). 
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(b)  

Figure 3.2 Rail Track profile: (a) generated from FRA Class 4; (b) PSD plot 

 

3.4.1 4 DOF train vehicle model with averaged track geometry  

3.4.1.1 A Simplified train vehicle model for estimating vertical track 
geometry 

Local railways suffer from age-related deterioration and poor maintenance, which is unable to 
perform adequate monitoring. It is necessary to enhance the comfort level and service life of 
railway transportation. Track profile estimation from response measurements possibly offers 
effective results. A simpler, more robust and cost effective system for use on in-service vehicle 
is desirable. For railway track vertical profile estimation, numerical simulation using ASKF 
method for 4 DOF vehicle model with averaged track geometry (Figure 2.4) (a simplified 
vehicle model as explained in the previous chapter) is carried out in detailed manner. The 
accelerometer and rate gyro sensors are considered to be mounted on the car body floor just 
above the front bogie mass of the 6 DOF train model for the data assimilation inverse analyses. 
The car body vertical acceleration and pitch rate measurement responses are collected from 6 
DOF train model (Figure 2.3) and utilized as the input response for simplified train model 
with 4 DOF where ASKF technique in implemented as inverse analysis. Based on three 
formulations, railway track profile estimation is numerically studied employing ASKF data 
assimilation inverse analysis technique on the artificial profile generated using FRA standards. 
The reference vehicle parameters for train vehicle model are obtained from [94, 95] 
representing local railway network parameters as shown in Table 3.3. Furthermore, the vehicle 
is supposed to retain a constant velocity of 90 km/h with simulated distance of 1000 m and 
sampling frequency of 100 Hz.  
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Table 3.3 Train vehicle model parameters 

Parameter Value             

Car body mass (݉ୡ) 11571.5 kg 

Front bogie mass (݉୲ଵ) 2042.5 kg 

Rear bogie mass (݉୲ଶ) 2042.5 kg 

Car body mass moment of inertia (ܫ௖) 416574 kgm2 

Front bogie mass moment of inertia (ܫ୲ଵ) 1211 kgm2 

Rear bogie mass moment of inertia (ܫ୲ଶ) 1211 kgm2 

Primary vertical suspension stiffness (݇୮) 1150 kN/m 

Secondary vertical suspension stiffness (݇ୱ) 290 kN/m 

Primary vertical suspension damping (ܿ୮) 115 kN.s/m 

Secondary vertical suspension damping (ܿୱ) 29 kN.s/m 

Primary horizontal suspension stiffness (݇୮୦) 3840 kN/m 

Secondary horizontal suspension stiffness (݇ୱ୦) 176 kN/m 

Primary horizontal suspension damping (ܿ୮୦) 384 kN.s/m 

Secondary horizontal suspension damping (ܿୱ୦) 17.6 kN.s/m 

Half of car-body base (݈ୡ) 7.2 m 

Half of bogie-wheel base (݈୲) 1.125 m 

 

Numerical simulation is incorporated with vehicle model errors and various measurement 
noise levels determined by Gaussian white noise which is produced as a random walk model 
and also initial condition error in the stochastic framework iteration so as to approximately 
estimate the exact profile. The noisy response is simulated by adding noise components to the 
unpolluted vehicle responses as, 

௡௢௜௦௘ݔ      = ݔ +∈%  (3.33)    (ݔ)ߪ௡௢௜௦௘ߛ

where ∈% is the percentage noise level, ߛ௡௢௜௦௘ is a noise with a standard normal distribution, (ݔ)ߪ is the standard deviation of the “measured” response.  

A typical case of simulated profile after using band pass filter with cut off frequency of 0.0166 
– 0.166 cycle/m, by incorporating noise level of 5% (standard deviation of measured response 
and random error). Noise is augmented to estimated data based on the features of practical 
sensors used to obtain the measurement response signals. To remove the integration error, a 
0.15 Hz high-pass filter is employed. The vehicle model parameters are estimated based on the 
real vehicle. The filter considered in this simulation helps to evaluate wavelengths ranging 
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between 6 m – 60 m, which covers ranges comprising from short to long wavelength 
irregularities as mentioned in [96]. Table 3.4 gives the natural frequency estimation of 
simplified train model (4 DOF) accounting for vertical displacement.  

 

Table 3.4 Natural frequency estimation of 4 DOF train model: for vertical displacement 

 
Natural 

frequency  

1st 
(car body vertical 

translation) 

2nd 
(car body 
pitching) 

3rd 
(front bogie vertical 

translation) 

4th 
(rear bogie vertical 

translation) 
Value (Hz) 1.0594 1.2699 5.6804 5.6804 

 

For the simulation purpose, the estimation algorithm makes use of the available practical 
sensors and its installation locations. Henceforth, acceleration and angular velocity 
measurements at train car body are considered. The conventional Kalman filtering technique 
causes numerical instabilities in augmented state-space model as the system itself is 
unobservable. In order to solve observability issue, two proposed approaches are utilized and 
results are presented. Figure 3.3 represents the numerical study results on reconstructing 
vertical track irregularity, using a Kalman filter and inverse modelling. Exactly assessing the 
track profile in the spatial domain is not as significant as precisely evaluating it in the spatial 
frequency domain. In order to relate the estimated and simulated true profile, PSD plots in 
frequency domain, considered by means of Welch’s method need to be utilized. The statistical 
metrics of RMSD, RMSE and CC are calculated and illustrated in Table 3.5 which indicates that 
the performance of the proposed Approach (a) is better than the conventional ASKF and 
Approach (b). Since estimated track profile differs with the simulated FRA Class 4 profile, it 
must be illustrious that certain error is being occurred due to the simplified model. If pitching 
motion at bogie is considered, this issue can be rectified. Thus, 6 DOF train model need to be 
incorporated which includes bogie pitching motion. 

 

  

(a) Vertical track irregularity from from simplified 4DOF train vehicle model  
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(b) PSD plot 

 

(c) Comparison of estimation error (for track length, 50 – 950 m) 

Figure 3.3 Estimation results for vertical track irregularity  

 

Table 3.5 Comparison of statistical metrics for estimation algorithms on 4 DOF train vehicle 
model for vertical track irregularity (for track length, 50 – 950 m) 

Description 
Statistical 

Metrics 
Conventional 

ASKF 
Approach 

(a) 
Approach 

(b) 
Vertical acceleration and 
pitch rate measurements 

at train car body 

RMSD (%) 109.5 33.38 121.1 

CC 0.88 0.94 0.86 

Comparison of estimation 
error 

RMSE (mm) 4.34 1.32 4.74 
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3.4.1.2 A Simplified train vehicle model for estimating lateral track geometry 

The condition monitoring of the lateral track alignment irregularity is extremely significant for 
the safe passage of railway vehicle. The lateral track profile can be estimated using the 
accelerometer and yaw rate gyro sensors mounted on to the in-service train vehicle. The lateral 
acceleration measurement and yaw angular velocity provides consistent estimate of the lateral 
track irregularity. For railway track profile estimation, numerical simulation using ASKF 
method for 4 DOF vehicle model with averaged track geometry (Figure 2.6) (a simplified 
vehicle model as explained in the previous chapter) is carried out in detailed manner. The 
accelerometer and rate gyro sensors are considered to be mounted on the car body floor just 
above the front bogie mass of the 6 DOF train model for the data assimilation inverse analyses. 
The car body lateral acceleration and yaw rate measurement responses are collected from 6 
DOF train model (Figure 2.3) and utilized as the input response for simplified train model 
with 4 DOF where augmented Kalman filtering technique in implemented as inverse analysis.  

Based on three formulations, railway track alignment profile estimation is numerically studied 
employing augmented Kalman filtering technique on the artificial profile generated using FRA 
standards. The reference vehicle parameters for train vehicle model are obtained from [94, 95] 
representing local railway network parameters as shown in Table 3.3. Furthermore, the vehicle 
is assumed to maintain a constant velocity of 90 km/h with simulated distance of 1000 m and 
sampling frequency of 100 Hz. Numerical simulation is incorporated with measurement noise 
levels generated as a random walk driven by Gaussian white noise and also initial condition 
error in the Kalman filter iteration in order to approximately obtain the exact profile. A typical 
case of simulated profile after using band pass filter with cut off spatial frequency of 0.0166 – 
0.166 cycle/m, by incorporating noise level of 5 % (standard deviation of measured response 
and random error). Noise is added to simulated data based on the characteristics of practical 
sensors used to measure the respective signals. The parameters of the model are approximated 
based on the real vehicle. The filter considered in this simulation helps to evaluate 
wavelengths ranging between 6 m – 60 m, which covers ranges comprising from short to long 
wavelength irregularities as mentioned in [96]. Table 3.6 gives the natural frequency 
estimation of simplified train model (4 DOF) (for accounting lateral displacement). By using 
conventional Kalman filtering technique, the system becomes unobservable for the 
acceleration and angular velocity measurements at train car body. This causes numerical 
instabilities in augmented state-space model. In order to solve observability, issue two 
proposed approaches are utilized and results are presented.  
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Table 3.6 Natural frequency estimation of 4 DOF train model: for lateral displacement 

 
Natural 

frequency  

1st 
(car body lateral 

translation) 

2nd 
(car body 
yawing) 

3rd 
(front bogie lateral 

translation) 

4th 
(rear bogie lateral 

translation) 
Value (Hz) 0.8678 1.0414 9.8714 9.8718 

 
 
Figure 3.4 represents the numerical study results on lateral track irregularity by reconstructing 
track geometry, using a Kalman filter and inverse modelling. Exactly assessing the track 
profile in the spatial domain is not as significant as precisely evaluating it in the spatial 
frequency domain. In order to relate the estimated and simulated true profile, PSD plots in 
frequency domain, considered by means of Welch’s method need to be utilized. The statistical 
metrics of RMSD, RMSE and CC are calculated and illustrated in Table 3.7 which indicates that 
the performance of the proposed approach (a) and (b) are better than the conventional ASKF. 
This is due to the un-observability system in conventional ASKF method. 

 
(a) Lateral track irregularity from simplified 4DOF train vehicle model  

 

(b) PSD plot 
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(c) Comparison of estimation error (for track length, 50 – 950 m) 

Figure 3.4 Estimation results for lateral track irregularity  

Since estimated track profile differs with the simulated FRA Class 4 vertical profile, it must be 
illustrious that certain error is being occurred due to the simplified model. If yawing motion at 
bogie is considered, this issue can be rectified. Thus, 6 DOF train model need to be 
incorporated which includes bogie yawing motion. 

Table 3.7 Comparison of statistical metrics for estimation algorithms on 4 DOF train vehicle 
model for lateral track irregularity (for track length, 50 – 950 m) 

Description 
Statistical 

Metrics 
Conventional 

ASKF 
Approach 

(a) 
Approach 

(b) 

Lateral acceleration and yaw 
rate measurements at train 

car body 

RMSD (%) 99.37 11.1 109.0 
CC 0.93 0.99 0.84 

Comparison of estimation 
error 

RMSE (mm) 3.65 0.41 4.37 
 

 

3.4.2 Misfits Criteria for the Phase-Shift-Modified Signals 

Quantitative assessment of time signals is frequently essential in many problems. There are 
many time-frequency misfit and goodness-of-fit criteria in the past [91-92]. Comparison of two 
measured signals considerably benefits in the analysis and interpretation of the process under 
investigation.  A single-valued integral quantity is more is more appropriate if a set of signals 
is to be compared with the another set of signals. Finally, it is not clear whether they are able 
to accurately measure the difference. Therefore, there is necessity to use time-frequency 
envelope and phase misfit criteria to properly quantify and characterize a difference between 
two signals.  
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In this research, the profile obtained from Approach (a) using ASKF technique is performing 
better than the conventional method. But it is clear that some phase modification of the signal 
can be more understandable in the distance domain. This modification is carried out using the 
time-frequency misfit criteria using Hilbert transform technique. It returns a complex helical 
sequence, sometimes called the analytic signal, from a real data sequence.  The discrete-time 
analytic signal comprises of real part, which is the original data, and an imaginary part, which 
contains the Hilbert transform. The imaginary part is a version of the original real sequence 
with a 90° phase shift. Sines are therefore transformed to cosines and conversely. The Hilbert 
transformed series has the same amplitude and frequency content as the original sequence and 
includes phase information that depends on the phase of the original. The Hilbert transform is 
useful in calculating instantaneous attributes of a time series, especially the amplitude and 
frequency. The instantaneous amplitude is the amplitude of the complex Hilbert transform; 
the instantaneous frequency is the time rate of change of the instantaneous phase angle. For a 
pure sinusoid, the instantaneous amplitude and frequency are constant. The instantaneous 
phase, however, is a saw-tooth, reflecting how the local phase angle varies linearly over a 
single cycle. For mixtures of sinusoids, the attributes are short term, or local, averages 
spanning no more than two or three points.  

The Hilbert transform is applied to true signal and analytic signal is obtained is as shown 
below, 

௧௥௨௘ݔ     =  (3.34)  (௧௥௨௘_௥௘௔௟ݔ) ݉ݎ݋݂ݏ݊ܽݎܶ ݐݎܾ݈݁݅ܪ

Discrete-time analytic signal,    ݔ௧௥௨௘ = ௥௘௔௟ݔ + ݅ ∗  ௜௠௚    (3.35)ݔ

The phase of the true signal is obtained using the four-quadrant inverse tangent, which must 
be real, 

௧௥௨௘ߠ     = ଵି݊ܽݐ ቀ௫೔೘೒௫ೝ೐ೌ೗ቁ    (3.36)  

Similarly, HT is applied to the estimated signal and the phase of the estimated signal is 
modified with the phase of the true signal obtained in Eq. (3.36), 

௘௦௧௜௠௔௧௘ௗݔ     =  (3.37) (௘௦௧_௥௘௔௟ݔ) ݉ݎ݋݂ݏ݊ܽݎܶ ݐݎܾ݈݁݅ܪ

௘௦௧௜௠௔௧௘ௗݔ     = ௘_௥௘௔௟ݔ + ݅ ∗  ௘_௜௠௚   (3.38)ݔ

௨௣ௗ௔௧௘ௗݔ     = (௘௦௧௜௠௔௧௘ௗݔ) ݁ݐݑ݈݋ݏܾܽ ∗ ݁௜ఏ೟ೝೠ೐  (3.39) 

௨௣ௗ௔௧௘ௗ_௥௘௔௟ݔ     =  (3.40)   (௨௣ௗ௔௧௘ௗݔ) ݈ܽ݁ݎ

Phase Correction,   ݔ௘௦௧_௥௘௔௟  ݔ௨௣ௗ௔௧௘ௗ_௥௘௔௟    (3.41) 
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Estimated signal is updated with the phase angle of the true signal, thus, ݔ௧௥௨௘_௥௘௔௟  and ݔ௨௣ௗ௔௧௘ௗ_௥௘௔௟ can be compared.  

The profile obtained from Approach (a) method in both vertical and lateral track irregularity 
(as shown in Figures 3.3 and 3.4), need to be modified for phase shift error. By applying the 
proposed misfit criteria, the phase shift correction is carried out as shown in the Figure 3.5. 
Now the statistical metrics is evaluated for both old and updated waveform obtained from 
Approach (a) method and it is tabulated in the Table 3.8. After misfit criteria, the single-valued 
metrics show good improvement comparing to the old values. This phase modification 
criterion is utilized throughout the thesis to improve the profile obtained from Approach (a) 
method for both vertical and lateral profiles estimation.  

 

 
(a) Vertical profile 

 
(b) Estimation error for vertical profile 

 
(c) Lateral profile 
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(d) Estimation error for lateral profile 

Figure 3.5 Phase Correction for quantitative comparison of two waveforms 
 

Table 3.8 Comparison of statistical metrics for misfit criteria (for track length, 50 – 950 m) 

Description 
Statistical 

Metrics 

Vertical track profile Lateral track profile 

App (a) 
App (a)-
updated 

App (a) 
App (a)-
updated 

Phase correction for 
quantitative comparison 

of two waveforms 
 

RMSD (%) 33.38 21.1 11.1 10.4 

CC 0.94 0.99 0.99 0.99 

RMSE (mm) 1.32 0.83 0.41 0.38 

 

 

3.4.3 Train vehicle: 6 DOF model for vertical displacement 

In order to assess the behavior of proposed ASKF estimation algorithm for railway track 
profile estimation, 6 DOF train vehicle model for vertical displacement with senor placement 
(Figure 3.6) is considered for numerical simulation which represents the real train where 
pitching motion in bogie mass is included. The estimated profile is the front wheel of the front 
bogie mass as shown in the Figure 3.6. Based on three formulations, railway track profile 
estimation is numerically studied employing ASKF technique on the artificial profile 
generated using FRA standards: Class 4 (very poor). The reference vehicle parameters for 6 
DOF train model are shown in Table 3.3. Furthermore, numerical simulation is incorporated 
with the same assumptions as mentioned in the previous section (3.4.1.1). Table 3.9 gives the 
natural frequency estimation of 6 DOF train vehicle model accounting for vertical 
displacement.  
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Figure 3.6 6 DOF train vehicle model (for vertical displacement) with sensor placement  

 

Table 3.9 Natural frequency of 6 DOF train model: for vertical displacement 

Natural frequency of Vehicle Value (Hz) 
1st (car body vertical translation) 1.0666 

2nd (car body pitching) 1.2788 
3rd (front bogie vertical translation ) 5.9874 

4th (front bogie pitching) 5.9925 
5th (rear bogie vertical translation ) 7.8031 

6th (rear bogie pitching ) 7.8031 
 

Before carrying out the inverse analysis for vertical track profile estimation using 6 DOF, the 
vehicle model verification is done by implementing Kalman filtering technique with zero 
model error and zero noise. The measurement vector consists of six variables namely, 
displacements and thetas measured at train car body, front and rear bogies. From Figure 3.7, it 
can have observed that the estimated vertical and lateral track profile are in good agreement 
with the simulated rail track profile (FRA Class 4: very poor). The statistical metrics value for 
RMSD error are 3 % and 4 % for vertical and lateral profile respectively, which is negligible. 
For CC, it is 0.999 and 0.989 for vertical and lateral profile respectively, which shows it is well 
correlated.  
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(a) 

 
(b) 

Figure 3.7 6 DOF train vehicle model for vertical and lateral displacement: (a) Comparison of 
estimated track profile with simulated FRA profile; (b) PSD plot 

 

3.4.3.1 Measurement set up 

For the simulation purpose, the following types of measurements are considered for the 6 DOF 
train vehicle model as per the ORC analysis results as discussed in the previous Chapter 2. 

• M1: Vertical acceleration and pitching angular velocity measurements at car body only. 
• M2: Vertical acceleration and pitching angular velocity measurements at car body, 

front and rear bogie masses. 
• M3: Vertical acceleration and pitching angular velocity measurements at car body and 

front bogie masses. 
• M4: Vertical acceleration measurement at car body and pitching angular velocity 

measurement at car body, front and rear bogie masses. 
• M5: Vertical acceleration measurement at car body and pitching angular velocity 

measurement at car body and front bogie masses. 
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• M6: Vertical acceleration and pitching angular velocity measurements at front and 
rear bogie masses. 

• T: Vertical acceleration and pitching angular velocity measurements at car body only 
in simplified 4 DOF train model for vertical displacement. 

The measurement set: M1 do not satisfy observability condition. Even the second derivative of 
the profile remains unobservable. Still, it is considered in the numerical simulation for 
comparing with measurement set: T. Figures 3.8 - 3.13 are the rail track profile estimation 
results obtained from ASKF estimation algorithm for the simulated FRA Class - 4 vertical track 
profile, from the vehicle response measurement set-up as mentioned above (M1 – M6) and also 
measurement set: T. From the Figures 3.8 - 3.13, Approach (a) is performing better when 
comparing to conventional ASKF and Approach (b). Also measurement: M6 is performing 
poor when comparing to other measurement sets. The statistical metrics of RMSD and CC are 
calculated as per Equations (3.16) and (3.17) are tabulated in Table 3.10, which also indicate 
that the performance of the proposed Approach (a) is better than the conventional ASKF and 
Approach (b).  

 
(a) 

 
(b) 

Figure 3.8 Comparison of estimated and simulated FRA - Class 4 track profile: (a) From 
measurement-M1 (ݖ௖ሷ  ሶ௖);  (b) PSD plotߠ 
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(a) 

 
(b) 

Figure 3.9 Comparison of estimated and simulated FRA - Class 4 vertical track profile: (a) 
From measurement-M2 (ݖሷ௖ ߠሶ௖ ݖሷ௧ଵ ݖሷ௧ଶ ߠሶ௧ଵ ߠሶ௧ଶ); (b) PSD plot 

 
Exactly assessing the track profile in the spatial domain is not as significant as precisely 
evaluating it in the spatial frequency domain. In order to relate the estimated and simulated 
true profile, PSD plots in frequency domain, considered by means of Welch’s method need to 
be utilized. Henceforth, the rail track profile estimated using proposed algorithm Approach (a), 
is considered for all measurement sets and a comparison PSD plot is shown in Figure 3.14. The 
inference obtained from Figure 3.14 (b) confirms that the measurement: M1 is performing poor 
when comparing to all other measurement sets, which resulted in second derivative of profile 
unobservable. It explains that even though M2 to M6 is performing relatively in similar 
manner, PSD plot clearly illustrates the difference among them. The measurement- M2 (ݖሷܿ ߠሶ௖ ሶߠ ሷ௧2ݖ ሷ௧ଵݖ  ሶߠ 1ݐ 2ݐ ) is the maximum possibility for the sensor placement which in turn must 
produce the good results in ASKF inverse analysis technique. On the other hand, since the 
front wheel profile of front bogie mass is utilized for estimation, the measurement-M3 (ݖ௖ሷ  ሶ௧ଵ) is sufficient for estimating the vertical track profile geometry. It is evident from theߠ ሷ௧ଵݖ ሶ௖ߠ 
comparison of statistical metrics (Table 3.10) and PSD plot (Figure 3.14 (b)). 
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(a) 

 
(b) 

Figure 3.10 Comparison of estimated and simulated FRA - Class 4 track vertical profile: (a) 
From measurement-M3 (ݖሷ௖ ߠሶ௖ ݖሷ௧ଵ ߠሶ௧ଵ ); (b) PSD plot 

Also, the estimated track profile using conventional method (T) considered in [30] is 
performing poor and hence it is comparatively improved by the proposed ASKF method: 
Approach (a). Thus, by utilizing 6 DOF train model which considers bogie pitching motion, 
vertical rail track profile can be estimated accurately using proposed ASKF method. 
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(b) 

Figure 3.11 Comparison of estimated and simulated FRA - Class 4 track vertical profile: (a) 
From measurement-M4 (ݖሷ௖ ߠሶ௖ ߠሶ௧ଵ ߠሶ௧ଶ); (b) PSD plot 

 

 

(a) 

 

(b) 

Figure 3.12 Comparison of estimated and simulated FRA - Class 4 track vertical profile: (a) 
From measurement-M5 (ݖሷ௖ ߠሶ௖ ߠሶ௧ଵ); (b) PSD plot 
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(a) 

 

(b) 

Figure 3.13 Comparison of estimated and simulated FRA - Class 4 track vertical profile: (a) 
From measurement-M6 (ݖሷ௧ଵ ݖሷ௧ଶ ߠሶ௧ଵ ߠሶ௧ଶ);  (b) PSD plot 

 

Figure 3.14 (c) gives the comparison of estimation error for M2 and M3 which has value less 
than ± 1.5 mm. Also second part of the Table 3.10 shows that the comparison of statistical 
metrics after applying misfit criteria and it can be concluded that the measurement set M3 is 
performing close to M2. Therefore, depending upon the sensors availability and feasible 
sensor placement locations in the real field measurement, vertical rail track geometry can be 
reconstructed using inverse modelling and extended ASKF algorithm with proposed 
Approach (a) method. For the optimal sensor placement, the measurement set M3 (ݖሷܿ ሶߠ ሷ௧ଵݖ ሶ௖ߠ   can be utilized for mounting on in-service railway vehicle for robust track condition (1ݐ
monitoring using proposed data assimilation inverse analysis ASKF technique. 
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(a) 

 

(b) 

 

(c)  

Figure 3.14 Profile obtained from Approach (a): (a) Comparison of estimated profile with 
simulated FRA - Class 4 vertical track profile; (b) PSD plot; (c) Estimation error after misfit 

criteria (for track length of 50-950 m) 
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Table 3.10 Comparison of estimation algorithms on 6 DOF train vehicle model using statistical 
metrics for FRA - Class: 4 vertical track profile 

Measurements 
Statistical 

Metrics 
Conventional 

ASKF 
Approach 

(a) 
Approach 

(b) 

M1 
 

RMSD (%) 146.9 133.9 192.7 

CC 0.43 0.53 0.48 

M2 
RMSD (%) 135.9 50.1 118.2 

CC 0.26 0.89 0.78 

M3 
RMSD (%) 157.6 53.2 68.1 

CC 0.28 0.89 0.87 

M4 
RMSD (%) 154.9 45.8 52.3 

CC 0.30 0.89 0.89 

M5 
RMSD (%) 162.8 45.9 52.1 

CC 0.32 0.89 0.89 

M6 
RMSD (%) 203.1 61.8 90.7 

CC 0.30 0.85 0.82 
Comparison of Estimation error after misfit criteria (length of 50-950 m): 

 
M2 

 

RMSD (%) 105.5 28.9 87.4 
CC 0.68 0.97 0.84 

RMSE (mm) 4.27 1.17 3.87 

M3 
RMSD (%) 154.1 34.2 58.7 

CC 0.55 0.94 0.89 
RMSE (mm) 6.23 1.38 4.22 

 
 
 

3.4.4 Train vehicle: 6 DOF model for lateral displacement 

In order to assess the behavior of proposed ASKF estimation algorithm for lateral track profile 
estimation, 6 DOF train vehicle model for lateral displacement (Figure 3.15) is considered for 
numerical simulation which represents the real train where yawing in bogie is included. The 
estimated profile is the front wheel of the front bogie mass (ݏଵ௔). Based on three formulations, 
lateral track profile estimation is numerically studied employing ASKF technique on the 
simulated profile generated using FRA standards. The reference vehicle parameters for 6 DOF 
train model are shown in Table 3.3. Furthermore, numerical simulation is incorporated with 
the same assumptions as mentioned in the previous section (3.4.1.2). Table 3.11 gives the 
natural frequency estimation of 6 DOF train vehicle model accounting for lateral displacement.  
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Figure 3.15 6 DOF train vehicle model (for lateral displacement) with sensor placement  

 
Table 3.11 Natural frequency estimation of 6 DOF train model: for lateral displacement 

Natural frequency of Vehicle Value (Hz) 
1st (car body lateral translation) 0.8681 

2nd (car body yawing) 1.0416 
3rd (front bogie lateral translation ) 9.9813 

4th (front bogie yawing) 9.9817 
5th (rear bogie lateral translation ) 14.2587 

6th (rear bogie yawing ) 14.2587 
 

3.4.4.1 Measurement set up 

• A1: Lateral acceleration and yawing angular velocity measurements at car body only. 
• A2: Lateral acceleration and yawing angular velocity measurements at car body, front 

and rear bogie masses. 
• A3: Lateral acceleration and yawing angular velocity measurements at car body and 

front bogie masses. 
• A4: Lateral acceleration measurement at car body and yawing angular velocity 

measurement at car body, front and rear bogie masses. 
• A5: Lateral acceleration measurement at car body and yawing angular velocity 

measurements at car body and front bogie masses. 
• A6: Lateral acceleration and yawing angular velocity measurements at front and rear 

bogie masses. 



73 
 

• S: Lateral acceleration and yawing angular velocity measured at car body in simplified 
4 DOF train model with averaged track geometry (Figure 2.6) 

Figures 3.16 - 3.21 are the rail track profile estimation results obtained from ASKF estimation 
algorithm for the simulated FRA Class - 4 vertical track profile, from the vehicle response 
measurement set-up as mentioned above (A1 – A6) and also measurement set (S). From the 
Figures 3.16 - 3.21, Approach (a) is performing better when comparing to conventional ASKF 
and Approach (b). The statistical metrics of RMSD and CC are tabulated in Table 3.12, which 
also indicate that the performance of the proposed Approach (a) is better than the 
conventional ASKF and Approach (b). In order to relate the estimated and simulated true 
profile, PSD plots in frequency domain, considered by means of Welch’s method need to be 
utilized. Henceforth, the rail track alignment profile estimated using proposed algorithm 
Approach (a), is considered for all measurement sets and a comparison PSD plot is shown in 
Figure 3.22 (b). It explains that even though A2 to A5 is performing relatively in similar 
manner, PSD plot clearly illustrates the difference among them.  

 

 
(a) 

 
(b) 

Figure 3.16 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A1 (ݕ௖ሷ  ሶ߮ ௖);  (b) PSD plot 
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(a) 

 
(b) 

Figure 3.17 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A2 (ݕ௖ሷ  ሶ߮ ௖ ݕሷ௕ଵ ݕሷ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶ); (b) PSD plot 

 

The inference obtained from Figure 3.22 confirms that the measurement: A1 is performing 
slightly poor when comparing to other measurement sets, which is in turn the unobservable 
system. The measurement A2 (ݕሷ௖ ሶ߮ ௖ ሷ௕ଶ ሶ߮ݕ ሷ௕ଵݕ  ௕ଵ ሶ߮ ௕ଶ) with the maximum number of sensor 
placement should produce good results in ASKF inverse analysis technique as mentioned in 
the Table 3.11. Also, the estimated profile using simplified 4 DOF model (S) is poor when 
comparing with A2 and A3 cases. 
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(b) 

Figure 3.18 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A3 (ݕ௖ሷ  ሶ߮ ௖ ݕሷ௕ଵ ሶ߮ ௕ଵ); (b) PSD plot 

 
(a) 

 
(b) 

Figure 3.19 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A4 (ݕ௖ሷ  ሶ߮ ௖ ሶ߮ ௕ଵ ሶ߮ ௕ଶ); (b) PSD plot 

 
On the other hand, since the front wheel profile of front bogie mass is utilized for estimation in 
the numerical simulation using ASKF techniques, the measurement-A3 (ݕሷ௖ ሶ߮ ௖ ሷ௕ଵ ሶ߮ݕ  ௕ଵ ) is 
sufficient for estimating the lateral track profile geometry. It is evident from the comparison of 
statistical metrics (Table 3.12) and PSD plot (Figure 3.22 (b)). From Figure 3.22 (c), the 
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comparison of estimation error for A2 and A3 is less than ± 2 mm. Also second part of the 
Table 3.12 shows that the comparison of statistical metrics after applying misfit criteria and it 
can be concluded that the measurement set A3 is performing close to A2.  

 

 
(a) 

 
(b) 

Figure 3.20 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A5 (ݕ௖ሷ  ሶ߮ ௖ ሶ߮ ௕ଵ ); (b) PSD plot 
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(b) 

Figure 3.21 Comparison of estimated and simulated FRA - Class 4 alignment track profile: (a) 
From measurement-A6 (ݕሷ௕ଵ ݕሷ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶ); (b) PSD plot 
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(c) 
Figure 3.22 Profile obtained from Approach (a): (a) Comparison of estimated profile with 

simulated FRA - Class 4 alignment profile; (b) PSD plot; (c) Estimation error after misfit criteria 
(for track length of 50-950 m) 

 

Table 3.12 Comparison of estimation algorithms on 6 DOF train vehicle model  

Measurements 
Statistical 

Metrics 
Conventional 

ASKF 
Approach 

(a) 
Approach 

(b) 

A1 
 

RMSD (%) 98.1 56.7 75.1 
CC 0.69 0.84 0.76 

A2 
RMSD (%) 219.1 56.1 97.3 

CC 0.19 0.88 0.73 

A3 
RMSD (%) 278.8 52.6 92.3 

CC 0.29 0.88 0.76 

A4 
RMSD (%) 268.4 52.3 65.7 

CC 0.29 0.88 0.83 

A5 
RMSD (%) 263.1 52.2 65.6 

CC 0.32 0.88 0.83 

A6 
RMSD (%) 225.4 176.7 156.4 

CC 0.11 0.26 0.27 
Comparison of Estimation error after misfit criteria (length of 50-950 m):  

A2 
RMSD (%) 155.5 16.3 72.1 

CC 0.67 0.99 0.76 
RMSE (mm) 5.87 0.61 2.72 

A3 
RMSD (%) 142.2 18.1 39.8 

CC 0.79 0.99 0.91 
RMSE (mm) 2.39 0.68 1.88 
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Therefore, depending upon the sensors availability and feasible sensor placement locations in 
the real field measurement, alignment track geometry can be reconstructed using inverse 
modelling and extended ASKF algorithm with proposed Approach (a) method.  

 
 

3.5 Discussions and Summary 

The track profile estimation from the in-service vehicle response measurement by employing 
inverse analysis based on extended augmented state Kalman filtering analyses is being studied 
in this chapter. The measurement matrix consists of only acceleration and angular velocity 
responses. In inverse analysis, the second derivative of the profile is included in the state 
vector as one of the additional state variable, and thus the profile can be obtained through 
double integration of it. Different types of vehicle models are considered with appropriate 
sensor types and their locations, for the numerical analyses and the results are presented. The 
two approaches to obtain the second derivative of profile as an observable state variable are 
examined. These analyses indicate that the profile can be estimated by an accelerometer and a 
gyro on car body and bogie. The profile is expected to be obtained by the double integration of 
the high pass-filtered second derivative. Thus, a numerical study on extension of ASKF for 
input dynamic force reconstruction is presented. The performances are compared numerically 
using linear vehicle models, namely, simplified train model (4 DOF) and 6 DOF vehicle model 
(train). The further studies are being conducted for the effective track profile estimation using 
practical sensors and its installation locations on in-service train vehicle.  
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Chapter 4 MULTI-BODY SIMULATION FOR 

TRACK PROFILE ESTIMATION FROM VEHICLE 

RESPONSES 

 

 

4.1 Introduction 

The multibody system approach, with the development of computer technology, is clearly an 
added value in the analysis and design of mechanical and mechatronic systems. In vehicle 
system dynamics, the Multi-Body Simulation (MBS) software tool helps to integrate the 
simulation, analysis and optimization of the non-linear dynamic performance of the vehicle 
and it components [2, 128-131]. In this chapter, multi-body dynamics modelling of train 
vehicle is presented and the measurement responses from the car body and bogie mass are 
obtained while running on the track from MBS – SIMPACK: Rail software. The measured 
responses are utilized in the data assimilation inverse analysis problem to estimate the vertical 
and lateral track geometry profile. The proposed estimation algorithm based on extension of 
Augmented State Kalman Filter (ASKF) technique is being validated using the simulation 
results. All the obtained simulation results are reported in the following sections of this 
chapter.  

 

4.2 Workflow for modelling MBS train vehicle 

The following paragraphs describes about the significance of the modelling elements that need 
to be utilized for multi-body dynamics modelling of train vehicle using SIMPACK: Rail [128-
131]. 

The SIMPACK: Pre View Set is the main pre-processor used for creating and editing models 
and starting online or offline Solvers. Bodies are the basic modelling elements and introduce 
mass and inertia properties. Rigid Bodies, which do not change their geometry or mass 
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properties during the simulation. They may be rigid or flexible. All components of the train - 
vehicle dynamics model are considered as rigid. Bodies are connected to other Bodies or 
Reference Systems by means of Joints, forming a kinematic tree.  

Each Body has a Body Reference Frame (BRF) that represents the main coordinate system and 
follows its movement during the simulation. Most parts of a rail vehicle model in SIMPACK 
are made of standard Modelling Elements. Only the contact between the rails and wheels and 
the track require specialized Modelling Elements. Wheelsets relate one left-hand and one right-
hand Rail-Wheel Pair to each other. They additionally contain the necessary information for the 
contact quasilinearization. Rails are passive modelling elements that hold all information about 
the rail profile and the built-in geometry.  

In rail vehicle models, Rails are mandatory because they are referenced by Rail-Wheel Pairs. It 
contains all settings needed to bring one rail and one wheel into contact. They control the 
associated Force Element, Markers and Primitives. The modelling element Rail-Wheel Contacts 
define how the tangential forces and the tangential torque for the rail-wheel contact patches 
are calculated. It is referenced by a Rail-Wheel Pair. It provides the functionality for the 
tangential forces and torque in contact patches when the equivalent elastic rail-wheel contact is 
used.  

The discrete elastic contact always uses a method that is derived from Rail-Wheel Contact 
FASTSIM (A Fast Algorithm for the Simplified Non-Linear Theory of Contact) according to 
[147]. It is well-accepted and the most common method in multibody simulation for 
determining the tangential rail-to-wheel contact forces in vehicle dynamics calculations. The 
method assumes that the contact patch is elliptical and provides rail-to-wheel tangential forces. 
The method is quasi static its validity is generally accepted for excitation frequencies up to 
about 20 Hz (i.e. excitations from track irregularities). Excitation for creating Track irregularity 
signals in distance domain is from Input Functions. It also ensures a reasonable spline 
interpolation and derivative handling. Track or rail related irregularities (Track Excitation) to be 
used in time domain simulations are defined in the Track element. They apply to the rail 
profile reference Markers of all Rail-Wheel Pairs automatically, including the appropriate time 
delay according to the position of the respective wheel along the track.  

The modelling element ‘Sensors’ provide an easy way to measure distances and angles 
including the related velocities and accelerations. Sensors do not influence the model topology, 
states or behaviour. As a consequence, only the Measurements solver needs to be re-run when 
Sensors are added, modified or removed and the solver splits its calculation in the actual 
solution run and an additional Measurements run, e.g. Time Integration, Kinematics or 
Equilibrium. Sensors are mounted between two Markers, namely the From Marker and the To 
Marker, and perform their measurements between these Markers. For absolute measurements, 
use the Isys Marker as From Marker. 



82 
 

The Equilibrium solvers try to bring a model into a static (or quasi-static) equilibrium. They do 
this by modifying the Joint and Body position and/or velocity states, which define the 
kinematic state of the model, and the dynamic states of Force or Control Elements. The Static 
Equilibrium solvers fully consider all non-linearities in the model. Non-linear models may have 
more than one equilibrium state. In these cases, it strongly depends on the initial model state 
and their parameters which equilibrium state will actually be found. The Preload solver tries to 
bring the model into an equilibrium by calculating the necessary preloads (nominal forces) in 
Force Elements and some Control Elements. These elements provide the possibility to define a 
constant nominal or preload force or torque, which is added to the force or torque from the 
actual characteristics.  

The simplest case is a pre-loaded linear spring where, F = c⋅ x + Fpreload. Preloads are most often 
used to resemble a pre-stressing of a spring due to the gravity. It calculates the preloads 
automatically so that the model is in an equilibrium, i.e. the residual accelerations become zero 
or at least very small. The automatic solution is helpful or even indispensable for complex 
models with many preloads in different directions where a manual calculation is difficult or 
impossible. 

The Time Integration solver calculates the complete behaviour of the multibody model in time 
domain. There is both an online and an offline Time Integration solver. The online solver 
animates the motion in the 3D Page as the solver runs, the offline solver outputs the results to 
file. It determines the complete behaviour of the fully non-linear model in time, by solving the 
full set of non-linear equations of motion over the time. The Measurements solver must be used 
to generate the full set of results. SODASRT 2 is SIMPACK’s default integrator. This integrator 
is accurate, very fast and very robust, i.e. it can start from extreme non-equilibrium situations. 
It is a BDF integrator (backward differentiation formula, an implicit multistep integration 
scheme), that make highly efficient multibody simulation possible. SIMPACK Post is required 
for visualizing results generated by the other SIMPACK modules. 

 

4.3 Multi-body Dynamics Modelling of Train 

As the literature review in Chapter 1, there were various models of train vehicle systems in the 
previous research. The model used in this research study is introduced in this section. Multi-
body system simulation or multi-body dynamics is used to predict and optimize the behaviour 
of any type of multibody system by solving the equations of motion. The bodies of a 
multibody system are linked by means of joints and kinematic constraints, which allow certain 
relative motions and restrict others. The bodies themselves can be rigid or flexible. The DOFs 
are represented by a number of independent state variables that define the motion of the body 
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(displacement, deformation). The movements within these DOFs are influenced by arbitrary 
forces and torques provided by according elements. The system is finished by input excitation 
and sensors for measuring the preferred outputs. In describing the kinematic behaviour, the 
motion or the position of the multi- body system is studied with respect to the kinematic joints 
[146]. The SIMPACK solvers convert the Modelling Elements and model structure into a set of 
non-linear ordinary differential equations. The complete set of equations is then called 
differential-algebraic equations. SIMPACK models can built up from multiple so-called sub-
models. Different components of the complete model can be defined in separate SIMPACK 
models. These individual sub-models can then be loaded into parent models to provide a 
modular construction of the entire system. The sub-modelling approach, via the Modelling 
Element Substructures, allows varying complexity for different analyses; the respective sub-
models need only to be switched in the Substructure. Substructures themselves can also 
contain Substructures; these Substructures are called nested Substructures. There is no limit to 
the number of nesting levels. In this present research, for MBS train vehicle is modeled as a 42 
DOFs multi-body system, which considers the dynamic features of the suspension systems 
and the longitudinal motion of the vehicle components. It includes seven rigid components 
namely, a car body, two bogie masses and four wheelsets. Individually all module of the train 
car has six DOFs: X (longitudinal displacement), Y (lateral displacement), Z (vertical 
displacement), ߠ (pitch angle), ߰ (roll angle) and ߮ (yaw angle). The complete train vehicle 
model is built as the prototype of the commercial train, which contains all seven components 
along with the defined track. The multi-body model of train is constructed as shown in the 
topology diagram in Figure 4.1.  

 

 
Figure 4.1 Schematic model topology of a train vehicle (2D block diagram) [128] 
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After assembling various components of vehicle along with primary and secondary 
suspension system, the complete 3D train model can be obtained as shown in Figure 4.2.  

 

 

(a) Wheel set 

 

(b) Bogie mass 

 

 (c) Train car 

 

Figure 4.2 Multi-body model of a train vehicle with track (3D model) 
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4.4 Modelling assumptions and implementation 

For MBS: train vehicle model, the assemblage of various rigid components like wheelsets, 
bogie mass and car body are considered. A Track element defines the three-dimensional run of 
a route, the track line, in space. Tracks are usually intended for providing a virtual guideway 
for train vehicles with wheelsets remain in contact with the track and never derail. Here, 
straight track is considered for the simulation. A standard ERRI S1002 Wheel Profile and UIC 60 
Rail Profile are used along with rail inclination of 1:40 (cant) in the MBS according to [148]. 
There was no kind of untrueness considered in wheel. Also rails are mounted on Inertia-Fixed 
track. The method for locating the contact patches between rail and wheel is Equivalent elastic 
method which converts the actual contact patch shape into an equivalent ellipse. The normal 
force method recommended is Hertzian. The combined Young’s modulus of the rail and wheel 
material, E = 2.1x1011 N/m2 used for the Hertzian normal force and the tangential forces. The 
common Poisson number, ν of the rail and wheel material is 0.28. The physical parameters of 
the MBS train vehicle model considered for present study are two sets as illustrated in the 
Table 4.1  [94, 95, 143]. The vertical and lateral track profile excitation for left and right rail are 
shown in the Figure 4.3. The accelerometers and gyros are placed on car body and two bogie 
mass above the rail on both sides for estimating the left and right rail track profile.  

 

 

(a) Vertical True track profile 

 

(b) Lateral True track profile 

Figure 4.3 Rail track profile irregularities 
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Table 4.1 Properties of train vehicle model system [94, 95, 143] 

Parameter SET I SET II 

Car body mass (݉ୡ) 23143 kg 20000 kg 

Car body mass moment of inertia about x axis (ܫ௖௫) 33326 kgm2 29998 kgm2 

Car body mass moment of inertia about y axis (ܫ௖௬) 833148 kgm2 1229932 kgm2 

Car body mass moment of inertia about z axis (ܫ௖௭) 833148 kgm2 1229932 kgm2 

Bogie mass (݉ୠ) 3925 kg 2615 kg 

Bogie mass moment of inertia about x axis (ܫୠ୶) 1105 kgm2 1722 kgm2 

Bogie mass moment of inertia about y axis (ܫୠ୷) 2177 kgm2 1476 kgm2 

Bogie mass moment of inertia about z axis (ܫୠ୸) 2422 kgm2 3076 kgm2 

Wheelset mass (݉୵) 1645 kg 1200 kg 

Wheelset mass moment of inertia about x axis (ܫ୵୶) 633 kgm2 740 kgm2 

Wheelset mass moment of inertia about y axis (ܫ୵୷) 103 kgm2 74 kgm2 

Wheelset mass moment of inertia about z axis (ܫ୵୸) 633 kgm2 740 kgm2 

Primary vertical suspension stiffness (݇୮) 1150 kN/m 1220 kN/m 

Secondary vertical suspension stiffness (݇ୱ) 290 kN/m 430 kN/m 

Primary vertical suspension damping (ܿ୮) 115 kN.s/m 122 kN.s/m 

Secondary vertical suspension damping (ܿୱ) 29 kN.s/m 25 kN.s/m 

Primary horizontal suspension stiffness (݇୮୦) 3840 kN/m 3884 kN/m 

Secondary horizontal suspension stiffness (݇ୱ୦) 176 kN/m 160 kN/m 

Primary horizontal suspension damping (ܿ୮୦) 384 kN.s/m 388.4 kN.s/m 

Secondary horizontal suspension damping (ܿୱ୦) 17.6 kN.s/m 16 kN.s/m 

Half of car-body base (݈ୡ) 7.2 m 9.5 m 

Half of bogie-wheel base (݈୲) 1.125 m 1.28 m 

Track gauge 1.067 m 1.435 m 

Nominal wheel radius 0.405 m 0.46 m 

Lateral Wheel distance 0.55 m 0.75 m 

Friction coefficient (µ) 0.4 0.4 
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4.5 Track geometry estimation from measurement 
responses obtained from MBS  

In order to assess the behavior of proposed extended Augmented State Kalman filter (ASKF): 
Approach (a) estimation algorithm for railway track profile estimation, 6 DOF train vehicle 
model for vertical and lateral displacement with senor placements (Figures 3.6 and 3.15) are 
considered for inverse analysis which represents the real train where pitching and yawing 
motion in bogie mass included. The estimated profile is the front wheel of the front bogie mass 
as shown in the Figures 3.6 and 3.15. The reference vehicle parameters for 6 DOF train model 
are considered from the Table 4.1 accordingly. Inverse analysis is incorporated with various 
measurement noise levels generated as a random walk driven by Gaussian white noise and 
also initial condition error in the Kalman filter iteration in order to approximately obtain the 
exact profile. For true track profile, left rail - vertical track irregularity, is considered for 
comparison with the estimated track profile (Figure 4.3).  Furthermore, for MBS the vehicle is 
supposed to retain a constant velocity of 90 km/h with simulated distance of 1000 m and 
sampling frequency of 100 Hz. A typical case of track profile after using band pass filter with 
cut off spatial frequency of 0.0166 – 0.166 cycle/m, by incorporating noise level of 10 % 
(standard deviation of measured response and random error). The filter considered in this 
simulation helps to evaluate wavelengths ranging between 6 m – 60 m, which covers ranges 
comprising from short to long wavelength irregularities as mentioned in [96].  

 

4.5.1 Measurement set up 

In this section implementation details of numerical simulation are introduced. The vehicle 
parameters Set- I is considered for MBS (Table 4.1).  

The measurement set up for estimating vertical track profile, 

• M1: Vertical acceleration and pitching angular velocity measurements at car body only. 
• M2: Vertical acceleration and pitching angular velocity measurements at car body, 

front and rear bogie masses. 
• M3: Vertical acceleration and pitching angular velocity measurements at car body and 

front bogie mass. 
• M4: Vertical acceleration measurement at car body and pitching angular velocity 

measurement at car body and front bogie masses. 

The measurement set up for estimating lateral track profile, 
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• A1: Lateral acceleration and yawing angular velocity measurements at car body only. 
• A2: Lateral acceleration and yawing angular velocity measurements at car body, front 

and rear bogie masses. 
• A3: Lateral acceleration and yawing angular velocity measurements at car body and 

front bogie mass. 
• A4: Lateral acceleration measurement at car body and yawing angular velocity 

measurements at car body and front bogie masses. 

 

4.5.1.1 Different Track Excitation 

This section explains the estimation of both vertical and lateral track profile when different 
track excitations are given for left and right track respectively. And also reveals how varying 
train speed affect during the inverse analysis using 6 DOF. The results are shown below and 
inferences are provided. The train speed considered in this MBS study corresponds to low 
speed (30 km/h), average speed (90 km/h) and high speed (160 km/h). 

For all train speed cases, the set M1 (ݖሷܿ ߠሶ௖) has an issue of un-observability. Also, M4 (ݖሷܿ ߠሶ௖ ߠሶ௧ଵ) 
is performing poor comparing with M2 (ݖሷܿ ߠሶ௖ ݖሷ௧ଵ ߠሶ ሶߠ ሷ௧ଶݖ 1ݐ ሶߠ ሷ௧ଵݖ ሶ௖ߠ ሷܿݖ) and M3  (2ݐ  Similar .(1ݐ
conclusion is arrived for the lateral measurement set up. The estimation results for vertical and 
lateral left track profile under different excitations for low, average and high train speeds are 
shown in the Figures 4.4 to 4.9 respectively. The statistical metrics results are given in Table 4.2. 
Since the front wheel profile of front bogie mass is utilized for estimation, the measurement-
M3 ( ௖ሷݖ ሶ௖ߠ  ሶ௧ଵߠ ሷ௧ଵݖ  ) is sufficient for estimating the vertical track profile geometry. The 
measurement set M3 (ݖሷܿ ߠሶ௖ ሶߠ ሷ௧ଵݖ  ሶ௖ߠ ሷܿݖ) is performing close to M2 (1ݐ ሶߠ ሷ௧ଵݖ  ሶߠ ሷ௧ଶݖ 1ݐ  Similar .(2ݐ
conclusion is arrived for estimating lateral track profile. The measurement set A3 (ݕ௖ሷ  ሶ߮ ௖ ݕሷ௕ଵ ሶ߮ ௕ଵ) is performing close to A2 (ݕ௖ሷ  ሶ߮ ௖ ݕሷ௕ଵ ݕሷ௕ଶ ሶ߮ ௕ଵ ሶ߮ ௕ଶ).  

Figures 4.4 (c) to 4.9 (c) give the comparison of estimation error among measurement set for 
both vertical and lateral profile respectively. It has error value less than ± 1 mm for vertical 
and lateral track profile geometry. Hence, the optimal sensor placement can be at car body and 
front bogie mass (measurement set: M3 and A3). The illustrated PSD plot for lateral profile 
estimation has certain variation in spatial frequency above 0.12 cycle/m. Hence it could not 
detect track irregularity wavelength below 8 m for lateral profile. This phenomenon may occur 
due to the simplified model used for inverse analysis. Also considered rigid body model do 
not account for rolling motion of train vehicle. It could not replicate the vehicle dynamic 
characteristics exactly, similar to hunting oscillation phenomenon.  
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(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.4 Estimation of vertical track irregularity for low train speed (30 km/h) 

 
(a) Comparison plot 
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(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.5 Estimation of lateral track irregularity for low train speed (30 km/h) 

 

From the Table 4.3, the metrics are calculated after applying misfit criteria and it shows that 
the vertical and lateral track profile estimated for low train speed (30 km/h as shown in 
Figures 4.6 and 4.7) is performing slightly poor comparing to other verified train speed. This is 
due to the high pass filter utilized. In the inverse analysis, after force reconstruction in Kalman 
filtering, the high pass filter of 0.15 Hz is introduced to avoid offset drifts during double 
integration. The relationship between the wavelength (λ), velocity (v) and frequency (f) is, λ = 
v/f. Hence, for v = 30 km/h, and f = 0.15 Hz, the calculated spatial frequency (1/λ), is 0.018 
cycle/m. But the band pass filter used is 0.0166 -0.16 cycle/m (for wavelength 6 m to 60 m). 
Since the value is greater than the band pass filter (0.018 cycle/m > 0.0166 cycle/m), it is 
performing slightly poor comparing to higher train speed. Hence for high pass filter of 0.15 Hz, 
if train speed is above 35 km/h, the performance will be good (i.e., 1/λ will be < 0.0166 cycle/m). 
Thus, by utilizing 6 DOF train model which considers bogie pitching/yawing motion, rail track 
profile can be estimated accurately using proposed ASKF method: Approach (a). Therefore, 
depending upon the sensors availability and feasible sensor placement locations in the real 
field measurement, track geometry can be reconstructed. For the optimal sensor placement, 
the measurement set M3 (ݖሷܿ ߠሶ௖ ݖሷ௧ଵ ߠሶ ሷ௖ ሶ߮ݕ) and A3 (1ݐ ௖ ݕሷ௕ଵ ሶ߮ ௕ଵ) can be utilized for mounting on 
in-service railway vehicle for robust vertical and lateral track profile estimation respectively. 
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(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.6 Estimation of vertical track irregularity for average train speed (90 km/h) 

 
(a) Comparison plot 
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(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.7 Estimation of lateral track irregularity for average train speed (90 km/h) 

 
(a) Comparison plot 

 
(b) PSD plot 
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(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.8 Estimation of lateral track irregularity for high train speed (160 km/h) 

 
(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure 4.9 Estimation of lateral track irregularity for high train speed (160 km/h) 
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Table 4.2 Comparison of left track profile under different excitation using statistical metrics for 
varying train speed  

Train 
speed 

Track 
profile 

Approach 
(a) 

Statistical Metrics 
RMSD (%) CC RMSE (mm) 

 
Low 

(30 km/h)

Vertical 
M2 25.3 0.97 0.30 
M3 22.3 0.98 0.27 

Lateral 
A2 39.2 0.93 0.32 
A3 37.8 0.93 0.31 

 
Average 

(90 km/h)

Vertical 
M2 15.8 0.99 0.19 
M3 15.1 0.99 0.18 

Lateral 
A2 33.9 0.95 0.28 
A3 31.7 0.95 0.26 

 
High 

(160 km/h) 

Vertical 
M2 18.9 0.98 0.23 
M3 19.4 0.98 0.23 

Lateral 
A2 38.7 0.93 0.31 
A3 39.2 0.93 0.32 

 
 
In Appendix: A, the estimation results for vehicle parameter SET-I (Table 4.1) are shown in the 
Figure A.1 and A.2 for vertical and lateral right track profile under different excitations (Figure 
5.3) for the average train speed (90 km/h) respectively. The statistical metrics are evaluated 
after applying misfit criteria and results are given in Table A.1.  

 

4.5.2 Curved track section 

Rail vehicles are steered by their rails, that follow the Track. Cartographic Track is considered 
as the Track kind. The Track Line is assembled from various segments in the three directions 
horizontal, superelevation and vertical that are stringed together (Figure 4.10). Horizontal 
Cartographic Track segment types consist of Straight track (STR), Circular arc (CIR), Clothoid 
transition (CLO) - the curvature increases or decreases linearly from 1/R1 to 1/R2. The splined 
discretization for the curved track length of 3500 m can be defined as, 700 m STR → 500 m (R2) 
CLO → 1000 m CIR → 500 m (R1) CLO → 800 m STR. It is illustrated in the Figure 4.12 (a) and 
the curvature of the splined track is shown in Figure 4.10 (b). For MBS under curved track 
section is carried out in this section at the average train speed of 90 km/h. The vertical and 
lateral excitations of the track section are shown in the Figure 4.11. By utilizing 6 DOF train 
model which considers bogie pitching/yawing motion, rail track profile can be estimated using 
proposed ASKF method: Approach (a). 
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(a) Curved track section 

 

(b) Curvature of splined track 

Figure 4.10 Rail track profile irregularities for curved section 

 

The estimation results for straight track section (3.5 km) for vehicle parameter SET-I (Table 4.1) 
are shown in the Figures 4.12 and 4.13 for vertical and lateral left track profile respectively. 
These results are illustrated for comparing with the results obtained from the splined track 
section. The estimation results for curved track section are shown in the Figures 4.14 and 4.15 
for vertical and lateral left track profile respectively. The statistical metrics results are given in 
Table 4.4. Comparing the statistical metrics RMSD and CC, with the estimated results obtained 
for straight track, it is clear that influence of splined section has affected the track profile 
estimation. Figures 4.12 (c) - 4.15 (c) give the comparison of estimation error among 
measurement set after applying misfit criteria for both vertical and lateral profile respectively. 
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The statistical metrics are evaluated after applying the misfit criteria and results are given in 
Table 4.3. Comparing the statistical metrics RMSD and CC, with the estimated results obtained 
for straight track, it is clear that influence of splined section has affected the track profile 
estimation. The RMSE value shows that splined track section has high error comparing to the 
straight track. Still, the illustrated PSD plots (Figures 4.14 (b) and 4.15 (b)) have certain 
variation for wavelength less than 7 m. This phenomenon may occur due to the simplified 
model used for inverse analysis. It could not replicate the vehicle dynamic characteristics 
exactly. Also, the estimation results of curved track section, performs slightly poor comparing 
to straight track section., which can be clearly illustrated from Table 4.3.  

 

 
(A) Vertical profile 

 
(B) PSD plot 

(a) Vertical true track profile 

 
(A) Alignment profile 
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(B) PSD plot 

(b) Lateral true track profile 

Figure 4.11 Rail track profile (True) irregularities for 3.5 km  

 
(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.12 Estimation of vertical track irregularity for straight track section (90 km/h) 
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(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.13 Estimation of lateral track irregularity for straight track section (90 km/h) 
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(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.14 Estimation of vertical track irregularity for splined track section (90 km/h) 

 
(a) Comparison plot 

 
(b) PSD plot 
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(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.15 Estimation of vertical track irregularity for splined track section (90 km/h) 

Table 4.3 Comparison of straight vs splined track profile (left) under different excitation (for 90 
km/h) using statistical metrics  (for track length, 100-3400 m) 

Track profile 
Measurement: 
Approach (a)

Statistical Metrics 
RMSD (%) CC RMSE (mm) 

Straight track section (3.5 km) 

Vertical 
M2 16.5 0.99 0.20 
M3 19.4 0.98 0.23 

Lateral 
A2 39.3 0.93 0.22 
A3 43.9 0.92 0.27 

Splined track section (3.5 km)  

Vertical 
M2 25.3 0.97 0.31 
M3 30.9 0.95 0.37 

Lateral 
A2 59.6 0.83 0.49 

A3 60.7 0.82 0.50 

 

4.5.2.1 Same Track Excitation for Splined section 

This study reveals whether the rolling motion is affected much during the inverse analysis 
using 6 DOF. The results are shown below and inferences are provided.  

In order to study the influence of rolling motion of train vehicle, same track excitation is 
applied for left and right rail. Hence the MBS results are influenced much by pitching and 
yawing motion rather than rolling motion. For similar track excitation with train traversing at 
average speed of 90 km/h, the results are given in Figure 4.16 and 4.17 for vertical and lateral 
track profile respectively. The statistical metrics results are given in Table 4.4. Figures 4.16 (c) 
and 4.17 (c) give the comparison of estimation error among measurement set after applying 
misfit criteria, for both vertical and lateral profile respectively. Comparing the statistical 
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metrics RMSD and CC, with the estimated results obtained for different excitations, it is clear 
that influence of rolling motion is avoided. Still, the illustrated PSD plots (Figures 4.18 (b) and 
4.19 (b)) have certain variation as seen for the different excitation case. This phenomenon may 
occur due to the simplified model used for inverse analysis. It could not replicate the vehicle 
dynamic characteristics exactly.  

 

 
(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.16 Estimation of vertical track irregularity for splined section with same track 
excitation (90 km/h) 
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(a) Comparison plot 

 
(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length, 100-3400 m) 

Figure 4.17 Estimation of lateral track irregularity for splined section with same track 
excitation (90 km/h) 

Table 4.4 Comparison of left track profile under same excitation for splined track section using 
statistical metrics (for track length, 100-3400 m) 

Track profile 
Measurement: 
Approach (a)

Statistical Metrics 
RMSD (%) CC RMSE (mm) 

Vertical M2 22.6 0.98 0.27 
M3 28.9 0.96 0.35 

Lateral A2 57.6 0.85 0.47 
A3 57.9 0.84 0.48 
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4.6 Discussion and Summary 

Currently, the significance of the MBS for solving the train vehicle dynamics is frequently 
utilized. The MBS software is progressively accepted for obtaining the rail dynamics solutions 
and it has been established as a conceivable means to decrease the number of on-track 
investigations and amount of costs. The simulations are carried out for varying train speed: 
low (30 km/h), average (90 km/h) and high (160 km/h). The sensors are placed just above the 
rail tracks on both the sides and used to measure the acceleration and angular velocity 
responses from the car body and both bogie masses of running train model on simulated track 
excitations. These vehicle measurement responses are utilized to estimate the vertical and 
lateral track profile using the 6 DOF train model and it is validated for the proposed 
estimation algorithm. The suggested sensor placement strategy is verified with all possible 
sensor location results. For straight track section (ideal case), it shows a good agreement for 
vertical track profile while it can estimate only above 8 m wavelength irregularity for lateral 
track profile. The statistical metrics are utilized for comparison between various cases and the 
proposed approach is verified. Also, MBS are carried out for understanding the influence of 
rolling motion of train vehicle. So, similar track excitations are given for both left and right rail 
and MBS is carried out. For curved track section, the results show good agreement for vertical 
track profile estimation, while it shows large variation for lateral profile estimation. This is due 
to hunting oscillation phenomenon. Exactly the splined section of the track cannot be 
evaluated, because of wheel-rail interaction problem. Henceforth it can be summarized that 
MBS – SIMPACK: Rail can be significantly utilized for the usage of track maintenance as one 
of its several practices.  
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Chapter 5 RAILWAY TRACK MONITORING 

USING IN-SERVICE VEHICLE RESPONSES 

 

 

5.1 Introduction 

For confirming the safety of railway infrastructure, monitoring of rail track is necessary [26, 97, 
98]. Equipping sensitive sensors like optical displacement transducers are difficult in operating 
railway system. Collecting measurement data from in-service train has become common 
practice for track condition assessment [10]. In last decade, mounting miniaturized track 
recording vehicle equipment on traversing train vehicle for track geometry estimation has 
been utilized. Another possibility is to attach practical sensors namely accelerometers and rate 
gyroscopes on bogie mass and axle-boxes of an in-service train vehicle for monitoring ride 
quality. The drawback of this method is that, the track data obtained is inadequate. In 
pioneering work carried out by Japanese railway researchers, vertically sensing axle-box 
accelerometers to observe rail track corrugation, from in-service vehicles have been 
investigated [99]. Later, [100] introduced an economical way for track maintenance planning 
which utilized online digital data processing, viz. inertia method and inverse filtering method. 
Thus by taking into account both vehicle dynamics and human sensitivity; control over track 
can be achieved.  

In the field of railways, obtaining real time vehicle vibration from simple sensors system 
equipped on in-service train vehicle is the promising future research for maintenance purpose. 
Hence it is aiming towards the development of conventional railways by monitoring 
effectively. Eccentricities from the real case can effect in poor ride quality caused due to 
undesirable characteristics of vehicle dynamics. The objective of this chapter is to carry out the 
rail track monitoring concept using in-service vehicle responses for local railway system using 
prevalent sensing device like smartphone and other low cost sensors. Also implementing the 
proposed data assimilation inverse analysis approach on the measurement response collected 
from the in-service vehicle. Correspondingly, track recording vehicle (TRV) is utilized to 
obtain the existing condition of the conventional railway line considered for the research study. 
All the obtained results are reported in the following sections of this chapter.  
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5.2 Conventional Railway Track Condition Monitoring  

5.2.1 Detection of railway track conditions from TRV 

A TRV is utilized to obtain the existing track condition and its irregularities by measuring the 
linear and gradient curves of each rail using an optical displacement sensor system. 
Conversely, TRV’s are very costly and displacement transducers are very sensitive to dirt 
found in the rail tracks. Therefore, repetitive upkeep of the railway track is not feasible and 
also the track recording car may cause hindrance to the regular traffic flow of train vehicle. In 
order to overcome this issue, there is a necessity to record the rail track profile using the 
equipment attached to the in-service vehicle. The following content explains about the various 
parameters measured using the TRV for the inspection purpose. The railways track chosen for 
the inspection was under one railway operator, which is about 80 km in distance. Table 5.1 
illustrates the distance chart between each station (S) for the traversing train vehicle.  

 

Table 5.1 Distance chart between stations 

Station 1 to 2 3.53 km 

Station 2 to 3 9 km 

Station 3 to 4 18.1 km 

Station 4 to 5 31.97 km 

Station 5 to 6 17.4 km 

 

 
Some of the geometric parameters of the rail track generally measured using TRV inspection 
car to test the rail condition are position, gauge, curvature and alignment of the track, twist, 
unevenness and the cross-level of the two rails. Track geometry includes the track layouts with 
related measurements used in design, construction and maintenance of rail tracks. The TRV 
cars use a variety of optical and inertial sensors, other measuring systems, and data 
management systems to reproduce the rail track profile being inspected. The velocity profile of 
the TRV car run over the selected rail track is shown in the Figure 5.1. The station numbers are 
illustrated in the following figures respectively. 
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Figure 5.1 Velocity profile of the TRV inspection car 

 

5.2.1.1 Gauge  

It is the distance between the interior of left and right load bearing rails that makes up the 
single railway track line as presented in the Figure 5.2. In this railway operator, the track 
gauge is maintained at 1067 mm (narrow gauge).  In the curved part, gauge distance is 
represented with “plus” for enlargement and with “minus” for the shrinkage. 

 

 

Figure 5.2 Track gauge distance 

 

5.2.1.2 Cross-level  

It refers to the difference in height amongst top surface of the left and right rails at any point of 
the rail track as shown in the Figure 5.3. Meanwhile the rail can marginally move up and 
down and henceforth the measurement should be done under loaded condition. On the 
curved tracks, the rate of change of elevation is measured in terms of ‘cant’ or ‘super elevation’, 
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which is maintained such that it assists traversing vehicle to direct round the curve such that 
the wheel flanges are intact with the rails by reducing the wear and friction. 

 

 

Figure 5.3 Rail Cross-level 

 

5.2.1.3 Twist 

Conversely, rolling stock can engage wide variation of the cross-levels as they are very 
sensitive to it. Track twist can be well-defined as the change in cross-levels over a certain 
length of rail track, which is shown in the Figure 5.4. In Japan, the track twist is measured on 
the loaded track, by obtaining the variation of cross-level over an interval of 5 m since the 
maximum axis distance of the conventional railway vehicle is 4.6 m. Generally, twist measured 
on the right side is represented as ‘plus’ and the case measured on left side is represented as 
‘minus’. 

 

 

Figure 5.4 5 m - Twist of track 
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5.2.1.4 Unevenness  

In order to measure the unevenness of the rail joint for the loaded track, the relative vertical 
depression value with respect to line joining two points at a distance of 5 m is to be estimated 
on either side of the rail joint. Track irregularities occur in rails due to the effect caused by the 
deterioration of rail track as a result of repeated traffic. The track irregularity measurement is 
based on 10 m chord versine method which comes under the category of mid chord based 
measuring system [24, 112-114]. But the measured waveform through this method is different 
from its original profile corresponding to the true track irregularity on real condition. 
Normally, 10 m chord versine method shows the precise frequency characteristic with 
magnitude and phase. Hence its transfer function has different magnitude gains for each 
wavelength component of a track irregularity, which in turn affect the characteristics of 
running vehicle. From Figure 5.5 (a), the gain in wavelength (ࣅ) of 5 m is zero, which is 
inappropriate for the assessment of the track irregularity. Also gain is two for the wavelength 
of 10 m, which has a good correlation with the running safety of the train vehicle. Hence the 
desired wavelength band for the 10 m chord versine is, 6 ≤ ࣅ (m) ≤ 60 (which covers ranges 
comprising from short to long wavelength irregularities), where the gain exceeds 0.2. For a 
given base length of a rail, unevenness is defined as the vertical depression at the center, 
which is obtained for each loaded rail track separately for a base length of 10 m as shown in 
Figure 5.5 (b - c) for left and right rail respectively. This measurement is spontaneously 
obtained from TRV and also from flexi-meters. The left track irregularity is utilized in inverse 
analysis as shown in Figure 5.5 (d). 

 

 
 

(a) Transfer function of 10 m chord method 
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(b) For left rail 

 

(c) For right rail 

 

(d) 10 m chord versine: Left track irregularity (zoomed response: Station 1-2) 

Figure 5.5 10 m - Unevenness of track 

 

5.2.1.5 Alignment of track  

For measuring the horizontal alignment (lateral) of the track, a chord of 10 m length is selected 
along each rail track and versine is measured at the center of the stretched chord. In Figure 5.6 
(a-b), illustrates the alignment of the left and right rail respectively. Both the linear and 
gradient tracks have their separate tolerance value and it can be measured either in unloaded 
or loaded tracks. Thus, alignment is utilized to define the straightness of the track. 
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(a) For left rail 

 

(b) For right rail 

 

(c) 10 m chord versine: Left track irregularity (zoomed response: Station 1-2) 

Figure 5.6 10 m - Alignment of track 

 

5.2.1.6 Restoration of true track irregularity 

In the 10 m chord versine measured data, an extra component due to curvature of the true 
track geometry (horizontal or vertical curves) is included which is not a track irregularity.  
Hence this component needs to be removed. Thus, restoration is an estimate of a true track 
irregularity waveform from the measured 10 m chord versine data. This is carried out using 
the digital inverse filter as explained by [115]. In the inverse filtering method, a complete 
restoration is not feasible in theory and hence only a partial filtering is done with limited 
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frequency band. Thus, even if the restored waveform is band limited, it is significant and 
valuable in practice when vehicle vibrations are taken into consideration. In this particular 
case, a restoration wavelength band is considered between 6 ≤ ࣅ (m) ≤ 60.  The restored 
waveform for both vertical and lateral track profile (left and right rails) are provided in 
Figures 5.7 (A) and 5.7 (B) respectively. 

 

 
(a) Restored waveform- for left rail 

 
(b) Restored waveform- for right rail 

 
(c) Restored left rail waveform: vertical track (Station 1-2) 

(A) Restored True Vertical Track irregularity 
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(a) Restored waveform- for left rail 

 
(b) Restored waveform- for right rail 

 
(c) Restored left rail waveform: lateral track (Station 1-2) 

(B) Restored True Lateral Track irregularity 

Figure 5.7 Restoration of  True Track irregularity 
 

5.2.1.7 Spiral easement  

A rail track curve should have progressive increase in radius over time instead of becoming 
straight all together. An easement curve, also known as a transition curve, a spiral easement, is 
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a gradual curve starting from infinite radius (straight) where it meets the adjacent straight 
(‘tangent’) track and decreasing in radius until it matches the desired curve radius (as shown 
in Figure 5.8 (a)). This reduces the sideways force applied to a train entering or leaving a curve, 
which in turn reduces wear on prototype wheels and track and for both prototype and model, 
reduces the potential for derailments. If such easement is not provided, then the lateral 
acceleration of the train will change abruptly at the tangent point where the straight section 
meets the curved track. The minimum curve radius must be provided in order to satisfy the 
allowable design radius and also maintain the operation cost. Cant is defined as the difference 
in elevation of two rails, which is also known as super elevation, as shown in Figure 5.8 (b). It 
helps train to traverse on a curved section with wheel flanges in contact with the rails, with 
less wear and friction. Taking into account, the easement curve and super elevation, the 
maximum safe speed of a curve can be determined. The maximum cant value provided for the 
standard gauge railway track under measurement is about 105 mm (from Figure 5.8 (b)). A 
vertical easement, also known as a grade transition, and it takes a longer linear distance to 
climb a hill of a given height using a maximum grade.  

 

 

(a)  

 

(b)  

Figure 5.8 Track transition curve 
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5.2.1.8 Ruling Gradient  

It is defined as the steepest climb between two points on the railway track (Figure 5.9). A train 
can haul only half or even less weight on 1 % gradient (1 in 100) when compared to that on 
plane section. Thus providing decent ruling gradient generally helps in limiting the load that 
train can pull, which includes the weight of the train vehicle also. The gradient on sharp 
curves is effectively steeper when comparing to the same gradient on straight tracks. In order 
to compensate this issue, the ruling gradient provided must be reduced marginally on the 
sharp curves to maintain the ruling grade constant all over. Gradients (slope) can be expressed 
as per mille, ‰ (in each thousand). Figure 5.9 shows the recorded ruing gradient of the 
measured railway track using TRV, which has drastic variation from constant section to 
curved section beyond station 3.  
 

 

Figure 5.9 Ruling gradient of track 

The measured vertical and lateral responses on the car body and axle-box mounted 
accelerometers are plotted along with the RMS plots in the Appendix: B for all stations. 

 

5.2.2 Track profile estimation from commercial train vehicle  

Railway infrastructure maintenance of train vehicles and tracks, are important for 
guaranteeing the safety of the system. Track irregularity is the key factor of external excitation 
for a train system. An advantage of using in-service railway vehicle for track maintenance is a 
simple and robust method. Lately, numerous track geometry estimation methods using 
inertial sensors by acceleration data are proposed. [116] developed low-cost Train Intelligent 
Monitoring System (TIMS) for monitoring railway track irregularities in local railways and 
also train position identification method using GPS sensor and train velocity where there is no 
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connection with tachometer signal. The RMS of vertical and lateral acceleration values are 
being considered as threshold for vertical and lateral track geometry respectively.  

A number of research works have been carried out using vibration response of ordinary 
vehicles [57, 58, 62, 117]. When only dynamic acceleration response is observed, the location of 
an accelerometer in the vehicle is critical. Similarly, when only angular velocity is measured, 
there are certain undetectable frequency ranges which exist due to the difference in vehicle 
wheel base length. Therefore, observing either acceleration or angular velocity is not enough to 
capture the exact dynamic response [118-121]. Also in order to process both acceleration and 
angular velocity, transfer function method is not sufficient to describe the model since it is 
designed for single-input and single-output model. Instead, the state-space representation 
needs to be utilized in order to achieve multi-input model. 

The acceleration data measured at car-body floor level is extremely reliant on the primary and 
secondary suspensions, and thus the consequence of the track irregularities are challenging to 
extract from such data. The significant aim of this present research is to recommend an 
approach for track monitoring by simple acceleration and angular velocity measurements by 
utilizing a small number of prevalent sensors attached to car body and bogie mass of in-
service vehicles. In this section, an experimental study is carried out in local Japanese in-
service railway network to identify track profile from acceleration and angular velocity 
measurements on train car body. Prevalent sensing devices such as smartphones are 
potentially utilized in train body motion measurement. However, the applicability of such 
measurement for track profile estimation is not clarified yet. To evaluate track profile from 
measurements obtained from car-body responses, a data assimilation inverse analysis based 
augmented state Kalman filter (ASKF) is utilized to solve the problem using 4 DOF simplified 
train model. The efficiency of the proposed approach is also validated.  

 

5.2.2.1 Onboard sensing system 

The sensor considered for the measurement purpose is of smartphone based iPod touch which 
utilize the Dynamic Response Intelligent Monitoring System (iDRIMS) quantitatively obtained 
from dynamic response of a driving vehicle [119, 121]. Yet, the earlier mechanism of iDRIMS 
has limitations. Generally, iDRIMS have two significant points: (a) a modest and low cost 
arrangement which can be easily attached on to any locations of the body of a commercial 
vehicle devoid of the requirement of vehicle adjustment and (b) an application which can 
estimate road condition from measured data on the vehicle body with the capability to 
compensate for the difference in the vehicle’s dynamic features and drive speeds. Apple's 
iPhone and iPod touch [122] are employed as measurement devices with an iOS application 
named iDRIMS measurement application. The application is established with the 
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requirements of precise sampling timing and simple handling operation assuming commercial 
vehicle drivers as the operator. iDRIMS can measure acceleration, angular velocity, and GPS 
signals simultaneously. The application can also capture photo and movie data. The vehicle 
responses are obtained at a sampling frequency of 100Hz and GPS signal is obtained with a 
sampling frequency of 1Hz. In order to precisely obtain the measurement data from vehicle 
and also to avoid coordinate transformation, the smartphone was mounted on a plane surface, 
such as train car body floor. The dynamic response data for in-service commercial train vehicle 
(as shown in Figure 5.10) are collected from two types of sensors: namely, (a) RTRI sensor: 
developed by Railway Technical Research Institute (RTRI), Tokyo, Japan and (b) smartphone 
based iPod touch with iDRIMS application (Figure 5.11 (b)). The sensors are placed on the 
floor of the driver room, which is approximately directly above the front bogie. The two 
different iPod touch of 5th generation was used for the measurement purpose (black and blue 
colored) which is firmly attached on the top and side surface of the RTRI sensor box (Figure 
5.11 (a)). The black and blue iPod touches are referred as iPod touch-1 and iPod touch-2 
respectively, in the following sections. The sensor directions are illustrated in Figure 5.12.  

 

 

Figure 5.10 Local railway line and train car 

  

(a) Sensor setup and Onboard data management system in driver cabin 

Train moving direction 



117 
 

 

(b) Smartphone Application: iDRIMS 

Figure 5.11 Sensor placements on in-service vehicle car body 

 

                       
(a) RTRI sensor               (b) iPod touch (smartphone sensor) 

Figure 5.12 Sensor direction 

The RTRI sensor can only measure acceleration and yaw angle while smartphone based sensor 
can measure acceleration and pitch rate. Table 5.2 illustrates the RTRI sensor configuration 
properties. The RTRI sensor is used to cross check the measured dynamic response from iPod 
touch. The signal acquired from RTRI sensor is with 5000 Hz sampling frequency. The vertical 
car body acceleration collected from all sensors are plotted as shown in the Figure 5.13 (a-b) for 
the up train (station 1 to 6) and down train (station 6 to 1) respectively. The plots show that, 
the vertical acceleration data collected from both iPod touches are in good agreement with the 
RTRI sensor attached on car body floor. Figures 5.13 (c-d), show the comparison results for 
yaw angular velocity for the up train both is time and frequency domain and it shows clearly 
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from Power spectral density (PSD) plots that blue iPod touch is closely having good 
correlation with RTRI sensor.  

 

Table 5.2 RTRI Sensor configuration properties 

Channel Signal Range for 
data recorder

Sensitivity Range of sensor 

1 Acceleration x 5V 0.5G/V -2G ~ 2G 
2 Acceleration y 5V 0.5G/V -2G ~ 2G 
3 Acceleration z 5V 0.5G/V -2G ~ 2G 
4 Sound 5V 97dB/V 57 ~ 111 db 
5 Yaw angular velocity 5V 4deg/sec/V -6deg/sec ~ 6deg/sec 

 

 
(a) Comparison of Vertical car body acceleration: Up train data 

 
(b) Comparison of Vertical car body acceleration: Down train data 
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(c) Comparison of Lateral car body acceleration: Up train data 

 

(d) Yaw angular velocity comparison 

 

(e) PSD plots 

Figure 5.13 Comparison of sensors for validation 
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The velocity profile obtained from two iPod touches are compared with each other for up train 
side of the running train as shown in the Figure 5.14. The vertical and lateral car body 
acceleration measurements obtained from both iPod touches are compared and plotted in the 
Figures 5.15 and 5.16 for the up train side of the traversing vehicle respectively. In order to 
consider the comfort level of the car body, a low pass filter of 8 Hz is applied with the 
transition band of stopping frequency at 10 Hz to the measured acceleration data (Figure 5.15 
(d-f)). Both the responses are compared in the frequency domain by utilizing PSD approach 
and also compared in time domain using RMS method.  

 
Figure 5.14 Velocity profile comparison between two iPod touches: Up train side 

 

 
(a) Up train side 

 
(b) RMS plot 
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(c) PSD plot 

 

 
(d) A low pass filter of 8 Hz is applied with the transition band of stopping frequency at 

10 Hz 
 

 

(e) PSD plot (filtered waveform with the gain dropped at 8 Hz to 10 Hz) 
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(f) For station 1-2 (filtered waveform with the gain dropped at 8 Hz to 10 Hz)  

Figure 5.15 Car body vertical acceleration measurement: Up train side 

 
(a) Lateral car body acceleration 

 
(b) For station 1-2 (zoomed response) 

 
(c) RMS plot  
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(d) PSD plot 

Figure 5.16 Car body lateral acceleration measurement: Up train side 

The car body pitch rate measurement and yaw rate measurement obtained from both iPod 
touches are compared and plotted in the Figures 5.17 and 5.18 for the up train side of the 
traversing vehicle respectively. Both the responses are compared in the time domain (RMS 
plot) and frequency domain (PSD) and it is found to have slight deviation with each other. The 
measurement responses obtained from smartphones mounted on car body floor for down 
train traversing vehicle are illustrated in Appendix: C. 

 

 
(a) Car body pitching angular velocity: Up train side 

 
(b) RMS plot 
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(c) PSD plot 

 
(d) For station 1-2 (zoomed response) 

Figure 5.17 Car body pitch rate response and its RMS and PSD plots: Up train 

 
(a) Car body yawing angular velocity: Up train side 

 
(b) Zoomed responses for Station 1-2 
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(c) RMS plot  

 
(d) PSD plot 

Figure 5.18 Car body yawing angular velocity measurement: Up train side 

 

5.2.2.2 Distance sampling method for on-board measured data 

In order to make the track condition monitoring simple and easy, a technique is required to 
convert the on-board measured data to the distance sampling data. The track irregularity 
measured data obtained from TRV and the in-service vehicle measurement responses do not 
correlate well. Henceforth, it is required to correlate well with the on-board measured data. In 
[123], explains a methodology to extract the true distance sampling data by comparing the 
yaw angular velocity measured on car body of the in-service train and the transition curve 
data of the respective track section. By manually correlating these two responses, it is feasible 
to extract the more precise distance sampling data which can be further utilized in the inverse 
analysis problem in order to compare with the estimated results from Kalman filtering 
techniques. Figure 5.19 illustrates the comparison of the yaw rate angle measured by iPod 
touch-2 (blue) mounted on car body floor of in-service train and the easement curve (desired 
curve radius) of the track section measured using TRV.  The low pass filter is applied to the 
iPod data in order to the cross correlation function is utilized for the comparison and lag 
difference is maintained to be zero in all cases. It shows high correlation among the plots and 
the distance sampling data is extracted and utilized later for the comparison purpose. 
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(a) Station 1-2 

 

(b) Station 2-3 

 

(c) Station 3-4 

 

(d) Station 4-5 
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(e) Station 5-6 

Figure 5.19 Comparison of yaw angular velocity and transition curve data for all stations 
 
 

5.3 Converting true profile to 10 m chord versine 
waveform 

As per [115], a relationship between a true track irregularity and its measured one by 10 m - 
chord versine method can be mathematically expressed as, 

(ݔ)݌ = (ݔ)ݍ − ௤(௫ାହ)ା௤(௫ିହ)ଶ    (5.1) 

where (ݔ)݌ represents the 10 m – chord versine and (ݔ)ݍ represents the true track geometry. In 
the above equation (5.1), an independent variable ‘x’ is the distance measured along the actual 
track and not an originally defined one. In order to validate this indirect theory for converting 
the original track profile to 10 m chord versine waveform, a restored true track profile is 
utilized and the above equation (5.1) is used to convert it. Figure 5.20 shows the comparison 
plot for the true and estimated 10 m chord versine for the track profile. In the Figure 5.20 (b), it 
shows clear deviation with the true measured versine waveform. Thus, in frequency domain, 
PSD plots show the variation because the measured 10 m chord versine is for the bandwidth of 
the 6 - 60 m wavelength. Hence, by incorporating the band pass filter with cut off spatial 
frequency of 0.0166 – 0.166 cycle/m is considered and the results are illustrated in Figure 5.21. 
Thus, the estimated and true 10 m chord versine waveforms are in good agreement.   
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(a)  

 
(b) Zoomed response (10 -20 km) 

 

(c) PSD plot 

Figure 5.20 Comparison result for true and estimated 10 m chord versine for left rail 
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(a) After band pass filter (spatial frequency: 0.0166 – 0.166 cycle/m) 

 
(b) Zoomed response (10 – 20 km) 

 
(c) PSD plot 

Figure 5.21 Comparison results for 10 m chord versine for left rail: after filter  
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5.4 Vehicle modelling and inverse analysis for 
estimating vertical track irregularity 

In order to analysis the measured responses, the appropriate vehicle model need to be 
considered for implementing an inverse analysis using augmented state Kalman filtering 
(ASKF) technique. Since the measurement is carried out only on the car body of the train, the 
simplified train model with averaged track geometry is considered for inverse analysis, as 
shown in the Figure 5.22.  It represents the sensor placement on the car body floor just above 
the front bogie mass. The measured responses are car body vertical acceleration and pitching 
angular velocity. Inverse analysis is incorporated with various measurement noise levels 
generated as a random walk driven by Gaussian white noise and also initial condition error in 
the Kalman filter iteration in order to approximately obtain the exact profile. For true track 
profile, restored waveform from 10 m chord measuring system for left rail - vertical track 
irregularity, is considered for comparison with the estimated track profile (Figure 5.7).  A 
typical case of track profile after using band pass filter with cut off spatial frequency of 0.0166 
– 0.166 cycle/m, by incorporating noise level of 5 % (standard deviation of measured response 
and random error). The vehicle parameter model given in Table 3.3 is considered for the 
inverse analysis [94, 95]. The parameters of the model are approximated based on the real 
vehicle. The filter considered in this simulation helps to evaluate wavelengths ranging 
between 6 m – 60 m, which covers ranges comprising from short to long wavelength 
irregularities as mentioned in [96].  

 

 

Figure 5.22 Simplified train model with averaged geometry: for vertical displacement 
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The inverse analysis is carried out using the proposed approaches for the measurement 
responses obtained while the train is traversing from station 1 to 6 (up train) which is about 80 
km distance. In order to show the better performance among the smartphone sensors, the 
measured responses are compared with RTRI sensor with higher sampling frequency and 
found that iPod touch-2 (blue) is comparatively performing better compared to iPod touch-1 
(black). This is due to the car body pitch rate response measured by iPod touch-1 (black) is 
found deviating slightly compared to that of the iPod touch-2. This may cause the variation in 
the track profile estimation.  

 

 

5.4.1 Restored track irregularity waveform for vertical 
irregularity 

The left track profile irregularity (Figure 5.7 (A)) is considered as the true track profile for the 
comparison purpose with the estimated results obtained from Kalman filter inverse analysis 
technique. Figures 5.23 (a-b) represent the results on reconstructing track geometry profile for 
station 1-2, using a Kalman filter and inverse modelling for iPod touch-2 (blue) sensor. The 
plot shows the comparison of the track profile obtained from extended ASKF methods with 
true profile obtained from TRV after carrying out the distance sampling method (as discussed 
in Figure 5.19). In order to compare the frequency content of estimated and true profile, PSD 
results, calculated using Welch’s method are obtained and shown in Figure 5.23 (c). In 
Appendix: D, Figures D.1 - D.4, show the estimated responses and also zoomed-responses of 
track geometry profile for station 2-6, using a Kalman filter and inverse modelling for iPod 
touch-2 (blue) sensor. Also PSD plots are shown for the comparison in frequency domain. The 
Federal Railroad Administration (FRA) Class 4 (very poor) track profile is compared with the 
inverse analyses results in PSD plots to convey the current status of the existing the track 
profile section. Figure 5.23 (d) gives the comparison of estimation error for Approach (a) and 
(b) which has value less than ± 5 mm. The statistical metrics like Root Mean Square Deviation 
(RMSD) is utilized to quantify the error among the estimated profile with true one. The 
extended ASKF techniques are performed for all stations from 1 to 6 and the statistical metric, 
RMSD is calculated to obtain the quantitative difference between both approaches as 
illustrated in Table 5.3. Also, Approach (a) performs better than Approach (b). The results are 
influenced much by the spiral easement curve, cant, ruling gradient and also by integration 
error accumulations. These parameters influence the train dynamics and thus, measured 
acceleration and pitch rate at car body floor is highly affected. These influences need to be 
further investigated in future research. In future, the upgraded model which considers bogie 
pitching motion can be utilized to improve the estimated results. 
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(a) For station 1-2 

 
(b) Zoomed responses (0.5 – 1.5 km) 

 
(c) PSD plot  

 
(d) Estimation error after misfit criteria (100 m to 3400 m) 

Figure 5.23 Estimation results for restored left vertical track profile for station 1-2 
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Table 5.3 Comparison of statistical metrics for estimation results on 4 DOF simplified train 
vehicle model: restored waveform for vertical irregularity 

Station 
Distance 

(km) 

Approach (a) Approach (b) 
RMSD 

(%) 
CC 

RMSE 
(mm) 

RMSD 
(%) 

CC 
RMSE 
(mm) 

1-2 3.5 61.4 0.84 1.97 77.1 0.81 2.46 
2-3 9 80.2 0.86 3.08 94.7 0.83 3.65 
3-4 18.1 108.3 0.82 3.67 115.9 0.79 3.94 
4-5 31.8 118.7 0.80 4.21 120.5 0.78 4.28 
5-6 17.4 120.3 0.74 3.91 123.2 0.74 4.01 

 
 

 

5.4.2 10 m chord versine waveform for vertical irregularity 

Figure 5.24 represents the results on reconstructing 10 m chord versine waveform for station 1-
2, using a Kalman filter and inverse modelling for iPod touch-2 (blue) sensor. The plot shows 
the comparison of track profile obtained from extended ASKF methods with true versine 
obtained from TRV. In order to compare the frequency content of estimated and true profile, 
PSD results, calculated using Welch’s method are obtained and shown in Figure 5.24 (c). In 
Appendix: D, Figures D.5 - D.8, show the estimated responses and also zoomed-responses of 
10 m chord versine waveform of track geometry for station 2-6, using a Kalman filter and 
inverse modelling for iPod touch-2 (blue) sensor. Also PSD plots are shown for the comparison 
in frequency domain. Figure 5.24 (d) gives the comparison of estimation error for Approach (a) 
and (b) which has value less than ± 5 mm. The statistical metrics like RMSD is utilized to 
quantify the error among the estimated profile with true one as illustrated in Table 5.4. Also, 
Approach (a) performs better than Approach (b). As discussed early, the results might be 
influenced by the spiral easement curve, cant, ruling gradient and also by integration error 
accumulations. These influences need to be further investigated in future research. In future, 
the upgraded model which considers bogie pitching motion can be utilized to improve the 
estimated results. 
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(a) For station 1-2  

 
(b) Zoomed responses (0.5 – 1.5 km) 

 
(c) PSD plot  

 
(d)  Estimation error after misfit criteria (100 m to 3400 m) 

Figure 5.24 Estimation results for 10 m chord versine: left vertical track profile for station 1-2 
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Table 5.4 Comparison of statistical metrics for estimation results on 4 DOF simplified train 
vehicle model: 10 m chord versine waveform for vertical irregularity 

Station 
Distance 

(km) 

Approach (a) Approach (b) 
RMSD 

(%) 
CC 

RMSE 
(mm) 

RMSD 
(%) 

CC 
RMSE 
(mm) 

1-2 3.5 67.8 0.74 1.37 77.9 0.72 1,81 
2-3 9 77.2 0.79 2.25 78.4 0.76 2.28 
3-4 18.1 95.47 0.73 2.30 101.8 0.70 2.45 
4-5 31.8 104.4 0.71 2.47 108.8 0.70 2.57 
5-6 17.4 93.5 0.74 2.94 121.3 0.72 3.81 

 

 

From Table 5.3 and 5.4, the inferences can be drawn as below, 

• The relative error is comparatively lesser for Approach (a) than Approach (b). 
• For Approach (a) in both the cases, it is found that relative error is slightly higher for 

true track profile waveform comparing than 10 m chord versine. Because the restored 
waveform does not include an extra component due to curvature effect. In order to 
overcome this effect, the 10 m chord versine is more general and flexible method. 

• PSD plot obtained using the proposed algorithm aids to approximately evaluate under 
which category of irregularity the measured rail track profile section falls. This is 
achieved by comparing the PSD results with the track irregularity power spectrum 
obtained from FRA- Classes.  

• By employing the obtained track irregularity PSD, the track maintenance team can 
ensure the safety and comfort of railway transportation system. 

• The RMSD error can be attributed to following reasons. The real train vehicle primary 
suspension and secondary suspension systems usually has nonlinearity especially at 
high drive speed or large track input due to irregularities on the rail. However, this 
nonlinearity cannot be reproduced in by a linear 4 DOF simplified train vehicle model 
implemented in this study. Though large modelling error can be compensated by 
increasing the system noise covariance, the track profile estimation accuracy may be 
sacrificed. 

• The RMSE value gives the dimensional metric error for overall rail track. According to 
track irregularity tolerance limit, maintenance of track can be done.  

• Secondly, the simplified half car model cannot represent the bogie pitching motion of 
a real train vehicle which often occurs to be significant under different conditions.   
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5.5 Vehicle modelling and inverse analysis for 
estimating lateral track irregularity 

The lateral / alignment irregularity is the significant factor affecting the wheel-rail contact 
geometry relationship. Poor maintenance of horizontal track geometry can effect in unwanted 
vehicle dynamic responses leading to poor ride quality, distorted flange contact and 
deterioration during climb [124, 125]. At rail joints, there is an influence of the disturbances of 
shocks/ vibrations and also at crossings or turnouts transient vehicle vibration occurs. These 
forces effect in causing different level of track degradation due to variation in the frequencies 
corresponding to the vehicle Eigen frequencies. Henceforth, beyond certain level of track 
irregularity, the traversing of train vehicles will be risky and it might cause lateral track shift 
or derailment. In order to arrive at the conclusion that the obtained 10 m chord versine 
alignment is following the track geometry it can be compared to the measured cross levels of 
the measured track sections. Curvature effect is also incorporated in the alignment signal as 
this is a chord offset signal [126]. Figure 5.25 illustrates the comparison plot between the 10 m 
chord versine left alignment waveform with the cross level waveform of the measured track 
sections and it shows good correlation with each other. 

 

 

(a) Station 1-2 

 

(b) Station 2-3 
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(c) Station 3-4 

 

Station 4-5 

 

Station 5-6 

Figure 5.25 Correlation plot between 10 m chord versine left alignment waveform and the 
track section cross levels for all stations 

 

In order to analysis the measured responses, the appropriate vehicle model need to be 
considered for implementing an inverse analysis using ASKF technique. Since the 
measurement is carried out only on the car body of the train, the simplified train model with 
averaged geometry is considered for inverse analysis, as shown in the Figure 5.26.  It 
represents the sensor placement on the car body floor just above the front bogie mass. The 
measured responses are car body lateral acceleration and yawing angular velocity. Inverse 
analysis is incorporated with various measurement noise levels generated as a random walk 

14 16 18 20 22 24 26 28 30
-150

-100

-50

0

50

100

150

Am
pl

itu
de

Distance (km)

 

 

10 m chord versine alignment Cross level

35 40 45 50 55 60
-150

-100

-50

0

50

100

150

Am
pl

itu
de

Distance (km)

 

 

10 m chord versine alignment Cross level

64 66 68 70 72 74 76 78 80
-150

-100

-50

0

50

100

150

Am
pl

itu
de

Distance (km)

 

 

10 m chord versine alignment Cross level



138 
 

driven by Gaussian white noise and also initial condition error in the Kalman filter iteration in 
order to approximately obtain the exact profile. For true track profile, alignment waveform 
obtained from 10 m chord measuring system for left rail track irregularity, is considered for 
comparison with the estimated track profile (Figure 5.7 (a)).  A typical case of track profile 
after using band pass filter with cut off spatial frequency of 0.0166 – 0.166 cycle/m, by 
incorporating noise level of 5 % (standard deviation of measured response and random error). 
The vehicle parameter model given in Table 3.3 is considered for the inverse analysis [94, 95]. 
The parameters of the model are approximated based on the real vehicle. The filter considered 
in this simulation helps to evaluate wavelengths ranging between 6 m – 60 m, which covers 
ranges comprising from short to long wavelength irregularities as mentioned in [96].  

 

 
Figure 5.26 Simplified train model with averaged geometry: for lateral displacement 

 
 

5.5.1 Restored track irregularity waveform for lateral irregularity 

The left track profile irregularity (Figure 5.7 (B)) is considered as the true track profile for the 
comparison purpose with the estimated results obtained from Kalman filter inverse analysis 
technique. Figures 5.27 (a-b) represent the results on reconstructing track geometry profile for 
station 1-2, using a Kalman filter and inverse modelling for iPod touch-2 (blue) sensor. The 
plot shows the comparison of the track profile obtained from extended ASKF methods with 
true profile. In Appendix: D, Figures D.9 - D.12, show the estimated responses and also 
zoomed-responses of track geometry profile for station 2-6, using a Kalman filter and inverse 
modelling for iPod touch-2 (blue) sensor. Also PSD plots are shown for the comparison in 
frequency domain. The Federal Railroad Administration (FRA) Class 4 (very poor) track 
profile is compared with the inverse analyses results in PSD plots to convey the current status 
of the existing the track profile section. 
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(a) For station 1-2 

 
(b) Zoomed responses (0.5 – 1.5 km) 

 
(c) PSD plot  

 
(d) Estimation error after misfit criteria (100 m to 3400 m) 

Figure 5.27 Estimation for restored left alignment profile for station 1-2 
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Figure 5.27 (d) gives the comparison of estimation error for Approach (a) and (b) which has 
value less than ± 7 mm. The statistical metrics like Root Mean Square Deviation (RMSD) is 
utilized to quantify the error among the estimated profile with true one. The extended ASKF 
techniques are performed for all stations from 1 to 6 and the statistical metric, RMSD is 
calculated to obtain the quantitative difference between both approaches as illustrated in Table 
5.5. Also, Approach (a) performs better than Approach (b). The results are influenced much by 
the wheel – rail flange contact, gauge, cross level, spiral easement curve, transition gradient 
and also by integration error accumulations. These parameters influence the train dynamics 
and thus, measured acceleration and pitch rate at car body floor is highly affected. These 
influences need to be further investigated in future research.  

 
Table 5.5 Comparison for restored waveform for lateral irregularity 

Station 
Distance 

(km) 

Approach (a) Approach (b) 
RMSD 

(%) 
CC 

RMSE 
(mm) 

RMSD 
(%) 

CC 
RMSE 
(mm) 

1-2 3.5 106.3 0.66 3.82 112.3 0.65 4.03 
2-3 9 91.1 0.81 2.36 134.5 0.81 3.49 
3-4 18.1 89.1 0.62 4.79 91.5 0.61 4.92 
4-5 31.8 106.4 0.80 3.99 128.8 0.75 4.84 
5-6 17.4 0.80 0.66 2.31 103.6 0.66 2.32 

 

 

5.5.2 10 m chord versine alignment waveform for accounting 
lateral irregularity 

Figure 5.28 represents the results on reconstructing 10 m chord versine left alignment 
waveform for station 1-2, using a Kalman filter and inverse modelling for iPod touch-2 (blue) 
sensor. The plot shows the comparison of track profile obtained from extended ASKF methods 
with true versine obtained from TRV. Also PSD plots are shown for the comparison in 
frequency domain. Figure 5.28 (d) gives the comparison of estimation error for Approach (a) 
and (b) which has value less than ± 3 mm. The statistical metrics like RMSD is utilized to 
quantify the error among the estimated profile with true one as illustrated in Table 5.10. Also, 
Approach (a) performs better than Approach (b). The results might be influenced by various 
factors as discussed in Section 5.5.1. In Appendix: D, Figures D.9 – D.12, show the estimated 
responses and also zoomed-responses of 10 m chord versine alignment waveform of track 
geometry for station 2-6, using a Kalman filter and inverse modelling for iPod touch-2 sensor 
(blue). 
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(a) For station 1-2 

 
(b) Zoomed responses (0.5 – 1.5 km) 

 
(c) PSD plot  

 
(d) Estimation error after misfit criteria (100 m to 3400 m) 

Figure 5.28 Estimation for 10 m chord versine left alignment profile for station 1-2 
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Table 5.6 Comparison for 10 m chord versine waveform for lateral irregularity 

Station 
Distance 

(km) 

Approach (a) Approach (b) 
RMSD 

(%) 
CC 

RMSE 
(mm) 

RMSD 
(%) 

CC 
RMSE 
(mm) 

1-2 3.5 96.3 0.69 1.59 103.2 0.67 1.76 
2-3 9 101.5 0.74 1.56 106.8 0.70 1.64 
3-4 18.1 95.7 0.68 1.77 107.1 0.63 1.98 
4-5 31.8 117.5 0.73 2.01 117.8 0.71 2.02 
5-6 17.4 104.2 0.70 1.84 114.7 0.66 2.01 

 

 
From Tables 5.5 and 5.6, the inferences can be drawn as below, 

• The relative error is comparatively lesser for Approach (a) than Approach (b). 
• PSD plot obtained using the proposed algorithm aids to approximately evaluate under 

which category of irregularity the measured rail track profile section falls. This is 
achieved by comparing the PSD results with the track irregularity power spectrum 
obtained from FRA- Classes.  

• By employing the obtained track irregularity PSD, the track maintenance team can 
ensure the safety and comfort of railway transportation system. 

• The RMSD error can be attributed to two reasons. First, the real train vehicle primary 
suspension and secondary suspension systems usually has nonlinearity especially at 
high drive speed or large track input due to irregularities on the rail. However, this 
nonlinearity cannot be reproduced in by a linear 4 DOF simplified train vehicle model 
implemented in this study. Though large modelling error can be compensated by 
increasing the system noise covariance, the track profile estimation accuracy may be 
sacrificed. 

• According to RMSE value and track irregularity tolerance limit, maintenance of track 
can be done.  

• Secondly, the simplified half car model cannot represent the bogie yawing motion of a 
real train vehicle which often occurs to be significant under different conditions.   

• From the PSD plots, it is found that lateral profile is affected by hunting motion 
phenomenon at the wavelength of around 35 – 45 m (0.0285 – 0.0222 cycle/m). (refer 
section 5.5.3) 

• Also the lateral track profile is affected from the angle of attack – the tangential angle 
on the contact point between wheels and rails. This is one of the prevailing limitations 
that define the curving performance of train and it predominantly affects lateral force.  
The vehicle can make different lateral deflections depending on angles of attacks. 
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• These influences need to be further investigated in future research. In future, the 
upgraded model which considers bogie yawing motion can be utilized to improve the 
estimated results. 
 

5.5.3 Hunting oscillation 

The hunting phenomenon often occurs when train vehicle runs at high speed, and presents a 
coupled oscillation of the wheelset in its lateral displacement and yaw angle. This kind of 
motion is caused by wheel conicity and the flange clearance between the wheel and the rail. 
When the train runs on the straight line, once the centerline of the wheelset has an offset, the 
difference of the travel distance between the two wheels will cause the turning of the moving 
direction of the wheelset [90]. Thus the two wheels will rotate around one instantaneous center, 
shown as Figure 5.29 (a). The path of the hunting motion is shown in Figure 5.29 (b) and it is 
approximated by a sine wave of wavelength. The sine path due to the hunting motion can be 
calculated by equation (5.8) [127],  

(ݔ)ݖ     = ௛ܣ sin ቀଶగ௩௧ܮℎ + ߮௛௜௝௟ቁ   (5.8) 

Where v is the speed of the train, ܮ௛ is the wavelength of the hunting motion with bogie, and ߮௛௜௝௟ is the random initial angle of the wheel. The wavelength is calculated by equation (4.9), 

௛ܮ     = ට௕௥ఒߨ2 ൤1 + ቀௌబଶ௕ቁଶ൨    (5.9) 

 
where r is the rolling radius at the center of the wheel tread, 2b is the distance between the two 
contact points of the wheel treads with rails, ܵ଴ is the distance between the two axels of the 
bogie, ߣ is the contact angle between the wheel tread and the rail surface as shown in Figure 
5.29 (b). Substituting the data of local in-service train, ܵ଴ = 2.25 m; 2b = 1.067 m; 2r = 0.81 m; ߣ = 
1/40 into equation (5.9), one can obtain the wavelength of the hunting motion ܮ௛ is 43 meters.  

 

 

(a) Instantaneous center of hunting motion 
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(b) Wheel path during self-oscillation 

Figure 5.29 Phenomenon of Hunting Oscillation 

 

 

5.6 Discussions and Summary 

The rail track profile estimation from the in-service vehicle response measurement by 
employing inverse analysis based on extended ASKF method is being studied. The 
smartphones are mounted on the train car body to collect the vehicle dynamic responses. 
Inverse analysis is carried out to estimate both the vertical and lateral track irregularity by 
reconstructing the track profile geometry for restored true track profile as well as converted 10 
m chord versine waveform. The further studies are being conducted for the effective track 
profile estimation using practical sensors and its installation locations on in-service train 
vehicle. Thus, depending upon the sensors availability and feasible sensor placement locations 
in the real field measurement, rail track geometry can be reconstructed using inverse analysis 
modelling and extended ASKF estimation algorithm with proposed approaches. Also, the 
estimated vertical track profile irregularity using simplified train model (4 DOF) is performing 
poor because bogie pitching motion is not considered. Thus, in future research, by utilizing 6 
DOF train model accounting for vertical displacement which considers bogie pitching motion, 
rail track profile can be estimated accurately using proposed ASKF method.  Similarly, the 
estimated lateral track profile irregularity using 4 DOF simplified train model can be 
improved by considering the yawing angular velocity in the bogie mass by utilizing 6 DOF 
train model for accounting lateral displacement, by using proposed ASKF method. 
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Chapter 6 CONCLUSIONS  

 

 

6.1 Conclusions 

The research detailed in this dissertation has developed a robust inverse analysis scheme for 
the track geometry estimation from local in-service train responses. The proposed algorithm is 
tested by measurement and verified by the numerical simulation to be effective, resulting in 
the realization of the dynamic characteristics of vehicles and track irregularity estimation. 

Chapter 1, provides the importance of railway infrastructure in Japan and the wide 
background of this present research study. The railways track maintenance problem has a long 
history, ever since 1920. A good deal of literature about the past and existing track 
maintenance technologies and current methodologies can be found in detail. In most of those 
studies or technologies, the track geometry car has been used, which is cost effective and time 
consuming. A state-of-the-art-review of the research work on the track geometry estimation 
especially on the indirect mechanism- response based, including numerical analyses and 
measurement investigations, have been discussed in that chapter. Recently researchers have 
focused on reconstructing track geometry from the in-service vehicle responses.  

To obtain the theoretical and mathematical proof of state space representation model for 
implementing the Kalman filter based inverse analysis technique, Observability Rank 
Condition method is carried out in Chapter 2. The observability analyses have been presented, 
which helps to theoretically obtain the appropriate sensor types and their placements for 
estimating vertical and lateral track profiles. Accelerations and angular velocities are assumed 
to be observed variables. The second derivative of the track profile is set as the variable to be 
identified, so that non-static components of the profile is obtained as its double integral. This 
chapter provides the basic knowledge on the vehicle dynamics. The vehicle is modelled by 
assuming to have a rigid body motion. Different types of vehicle models are considered with 
appropriate sensor types and their locations, for the numerical analyses and the results have 
been presented. The two approaches to obtain the second derivative of profile as an observable 
state variable are examined. Approach (a) includes the second derivative of the profile in the 
state vector. Although the system is unobservable the augmented state variable is observable. 
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Approach (b) alters state space model by taking the first derivative of the system equation. The 
second derivative component is observable. These analyses indicate that the track profile can 
be estimated by placing practical sensors on car body floor and bogie masses.  

To investigate the proposed approach, a numerical study on extension of Augmented State 
Kalman Filter is carried out for track profile estimation from the in-service vehicle response 
measurements and are well described in Chapter 3. Measurements like acceleration and 
angular velocities are assumed to be observed variables. The two approaches to obtain the 
second derivative of profile as an observable state variable are examined as explained in the 
Chapter 2. The performances are compared numerically for simplified train models (4 DOF) 
and 6 DOF train model, accounting for both vertical and lateral displacements and found to be 
in good agreement. In order to obtain the quantitative comparison of two waveforms, phase-
shift correction is carried out using the misfit criteria through Hilbert transform. The statistical 
metrics like RMSE, RMSD, CC are utilized for obtaining the single-valued misfit between two 
waveforms. 

In Chapter 4, the Multi-Body Simulations (MBS) using SIMPACK: Rail, are carried out to 
replicate the real field test. MBS are performed to investigate the influence from different 
factors under various scenarios, namely straight track and splined track sections. The sensors 
are placed just above the rail tracks on both the sides and used to measure the acceleration and 
angular velocity responses from the car body and both bogie masses of running train model on 
simulated track excitations. These vehicle measurement responses are utilized to estimate the 
vertical and lateral track profile using the 6 DOF train model and it is validated for the 
proposed estimation algorithm. The suggested sensor placement strategy is verified with all 
possible sensor location results. For straight track section (ideal case), it shows a good 
agreement for vertical track profile while it can estimate only above 8 m wavelength 
irregularity for lateral track profile. The statistical metrics are utilized for comparison between 
various cases and the proposed approach is verified. Also, MBS are carried out for 
understanding the influence of rolling motion of train vehicle. So, similar track excitations are 
given for both left and right rail and MBS is carried out.  

For curved track section, the results show good agreement for vertical track profile estimation, 
while it shows large variation for lateral profile estimation. This is due to hunting oscillation 
phenomenon. Exactly the splined section of the track cannot be evaluated, because of wheel-
rail interaction problem. In the track curvature part, the wheel – rail contact point moves 
inward and outward accordingly for left and right rail. The lateral track excitation is not 
influencing the vehicle dynamics of the train model. So, this phenomenon could not replicate 
in the collected vehicle responses. This need to be further investigated. 

In Chapter 5, the railway track geometry estimation from in-service local train vehicle 
responses are demonstrated in detailed manner. The rail track profile is reconstructed from 
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vehicle response measurements by employing inverse analysis based on extended ASKF 
analyses as described in Chapter 3. Inverse analysis is carried out to estimate both the vertical 
and lateral track irregularity by reconstructing the track profile geometry for restored true 
track profile as well as converted 10 m chord versine waveform. The results are found with 
slight deviations due to simplified 4 DOF model and other phenomenon like hunting 
oscillation motion. This is due to practical limitations of sensor placement only on the car body. 
In future experimental measurements, the optimal sensor placement is recommended to 
mount sensors on car body and bogie masses. Thus, by utilizing 6 DOF train model accounting 
for bogie pitching/yawing motion, rail track profile can be estimated more precisely. It is also 
verified using the proposed estimation algorithm by performing numerical simulations in 
previous chapters.  

In summary, this dissertation proposes and realizes an inverse analysis scheme for the railway 
track profile estimation from in-service vehicle response measurements. The results obtained 
from numerical analyses and real field experiments exposed that the recommended data 
assimilation method, ASKF: Approach (a) is efficient for condition assessment of local railway 
track lines with satisfactory correctness. Successful completion of this research indicates this 
approach is expected to provide not only an accurate inverse analysis technique, but also 
useful information for the safety and maintenance of railway infrastructure.  

 

6.2 Future research 

Application of proposed inverse analysis technique adopted in this present research study for 
efficient track geometry estimation from the in-service vehicle response measurements have 
proved the merit of the proposed methodology. Using the estimation algorithm scheme, this 
study shows that it is possible to capture the track irregularities successfully even for the local 
commercial railway networks. The advantages and effectiveness of numerical schemes 
addressed in this study might lead to a promising future application of numerical simulations 
for train vehicle dynamic analysis. In this study, however, several assumptions have been 
employed such as simple linear vehicle train model for the inverse analysis method under 
state space representation. These certainly simplify the inverse problem but the drawbacks yet 
remain to be solved in future. It will be interesting to investigate how the regularized 
estimation algorithm based on Augmented State Kalman Filter (ASKF) technique will perform 
for higher degree of freedom (DOF) train vehicle models. Not only had more detailed model 
with additional DOF to describe, but also robust model to investigate both vertical and lateral 
irregularities for condition monitoring of railway tracks need to be studied in future. Therefore, 
advanced suspension train vehicle models are need to be utilized for incorporating the non-
linearity effects. Future research can be the introduction of nonlinear vehicle rigid body 
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motion models. Improving robustness in railway track geometry estimation even under the 
circumstance of non-linearity using proper data assimilation technique is another possible 
direction. 

In the multi-body simulation, more works should be devoted for refining numerical analysis 
and modelling of the train-track system to capture more detailed behavior of wheel-rail 
interaction such that the measured responses from car body and bogie mass can be utilized for 
reconstructing the track geometry estimation using the proposed inverse analysis technique. 
These would be very helpful to understand the vehicle structure dynamics further. In the 
framework of railway infrastructure safety management, dynamic characteristic behavior of 
in-service train vehicle can be viewed as an initial step. Hence, development of a robust online 
monitoring system using the above methodology schemes would be the next logical direction 
of this research study.    

The Kalman filter address the optimum linear filtering problem in a straightforward manner 
to obtain the optimal a priori and a posteriori states estimates. Optimal smoothing is a method 
to improve the estimating accuracy using not only the previous measurement data but also the 
later information as well. A fixed-interval smoothing algorithm, Rauch-Tung-Striebel (RTS) 
smoothing technique is considered as a high computationally efficient method, which can be 
introduced to improve the state estimation. Still, the technique need to be improved and with 
further investigations can be successfully implemented.   
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APPENDIX: A        ESTIMATED TRACK PROFILE 

FROM MULTI-BODY SIMULATION APPROACH 

 

 

A.1 Track profile estimation from Multi-Body 
Simulation approach 

In this section, the estimation results from Multi-Body Simulation (MBS) approach, for vehicle 
parameter SET-I (as illustrated in Table 4.1) are shown in the Figure A.1 and A.2 for vertical 
and lateral right track profile under different excitations (Figure 4.3) for the average train 
speed (90 km/h) respectively. Similar conclusions are obtained as left track profile estimation 
as discussed in the section 4.5.1.1. The measurement set M3 (ݖሷܿ ߠሶ௖ ݖሷ௧ଵ ߠሶ  is performing close (1ݐ
to M2 (ݖሷܿ ሶ௖ߠ  ሶߠ ሷ௧ଵݖ  1ݐ ሶߠ ሷ௧ଶݖ  2ݐ ). Correspondingly, the measurement set A3 (ݕ௖ሷ  ሶ߮ ௖ ሷ௕ଵ ሶ߮ݕ  ௕ଵ) is 
performing close to A2 (ݕ௖ሷ  ሶ߮ ௖ ሷ௕ଶ ሶ߮ݕ ሷ௕ଵݕ  ௕ଵ ሶ߮ ௕ଶ ). The statistical metrics are evaluated after 
applying misfit criteria and results are given in Table A.1. It has error value less than ± 0.5 mm 
for vertical and lateral track profile geometry. Hence, the optimal sensor placement can be at 
car body and front bogie mass (measurement set: M3 and A3).  
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(b) PSD plot 

 
(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure A.1 Estimation of vertical right track irregularity (for SET-I) 

 

 
(a) Comparison plot 

 
(b) PSD plot 
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(c) Estimation error after misfit criteria (for track length 50m to 950m) 

Figure A.2 Estimation of lateral right track irregularity (for SET-I) 

 

Table A.1 Comparison of right track profile using statistical metrics under different excitation 
(for vehicle parameter SET-I) 

Track profile 
Measurement: 
Approach (a)

Statistical Metrics 
RMSD (%) CC RMSE (mm) 

Vertical 
M2 15.1 0.99 0.18 
M3 21.4 0.98 0.25 

Lateral 
A2 32.9 0.96 0.27 
A3 32.7 0.96 0.25 
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APPENDIX: B        TRACK RECORDING VEHICLE: 

MEASURED RESPONSES  

 

 

B.1 Car-body accelerometers 

In order to estimate the riding comfort for existing track displacements, the car body vibration 
response can be utilized for maintaining the track geometry. The accelerometers and 
gyroscopes attached to the Track Recording Vehicle (TRV) car body just above the rear bogie 
are examined and the collected vibration data responses are shown for the existing track 
conditions. The car body vibration measurements vary with track irregularities due to various 
reasons such as vehicle parameter properties, train speed and varying load conditions. Still, 
the track condition can be approximately assessed using the root mean square (RMS) metrics 
from the acceleration data measured on the car body. The measurements are obtained when 
train running from Station 6 to Station 1. The vertical acceleration response of car body and its 
calculated RMS value plot are shown in the Figure B.1. The lateral acceleration response of car 
body and its calculated RMS value plot are shown in the Figure B.2. 

 

 

(a) Vertical acceleration of car body 
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(b) RMS of vertical acceleration of car body 

Figure B.1 Car body vertical acceleration response and its RMS plot 

 

 

(a) Lateral acceleration of car body 

 

(b) RMS of lateral acceleration of car body 

Figure B.2 Car body lateral acceleration response and its RMS plot 
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B.2 Axle-Box-Mounted accelerometers 

One reasonable alternate to evaluate the track geometry, is to mount the inertial sensor type 
like accelerometers on to the axle-box or the bogie mass of an in-service train vehicle. 
Tentatively, the displacement information (track profile) can be basically obtained through 
double integration approach which typically results in impractical data due to an offset drift. 
The important reasons for such drifts are low-frequency error or direct current (DC) offsets 
caused by electrical or mechanical hysteresis in the sensor/cables and non-zero initial 
condition of the data. For the current study, the vibration data collected from axle-box 
mounted sensor is from the front axle in the rear bogie. The distance between the two wheels 
of the same bogie is 2.25 m. The vertical acceleration response from axle-box-mounted 
accelerometers and its calculated RMS value plot are shown in the Figures B.3 and B.4 
respectively for left and right rails. The lateral axle-box-mounted acceleration response and 
its calculated RMS value plot are shown in the Figure B.5. 

 

 
(a) For left rail 

 
(b) RMS plot 

Figure B.3 Vertical axle-box mounted accelerometer response for left rail  

0 10 20 30 40 50 60 70 80
-500

0

500

Ve
rti

ca
l a

xl
e-

bo
x 

ac
ce

le
ra

tio
n 

-
 le

ft 
ra

il 
(m

/s
2 )

Distance (km)

0 1 2 3 4 5 6 7 8
x 104

0

50

100

150

200

250

Distance (m)

R
M

S 
of

 v
er

tic
al

 a
xl

e 
bo

x 
 

ac
ce

le
ra

tio
n 

- l
ef

t (
m

/s
2 )

S6 S5 S4 S3 S2 



155 
 

 
(a) For right rail 

 
(b) RMS plot 

Figure B.4 Vertical axle-box mounted accelerometer response for right rail  

 
(a) Lateral acceleration of axle-box 

 
(b) RMS of lateral acceleration of axle-box 

Figure B.5 Axle-box lateral acceleration response and its RMS plot 
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APPENDIX: C         IN- SERVICE TRAIN VEHICLE 

RESPONSES 

 

 

C.1 Smartphone Responses from Car-body: Down-Train 
side 

The velocity profile obtained from two iPod touches (black: iPod touch-1 and blue: iPod touch-
2) are compared with each other for down train side of running train as shown in the Figure 
C.1. The vertical car body acceleration measurement and pitch rate car body measurement 
obtained from both iPod touches are compared and plotted in the Figures C.2 and C.3 
respectively. 

 

 

(a) Down train side (*S – extra station for halt) 

Figure C.1 Velocity profile comparison between two iPod touches  

 

*S S5 S4 S3 S2 S6 
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(a) Down train side 

 

 

(b) RMS plot 

 

 

(c) PSD plot 

Figure C.2 Car body vertical acceleration measurement: Down train side 
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(a) Down train side 

 

 

(b) RMS plot 

 

 

(c) PSD plot 

Figure C.3 Car body pitch rate response and its RMS and PSD plots: Down train side 
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APPENDIX: D        ESTIMATED TRACK PROFILE 

FROM SMARTPHONE RESPONSES 

 

 

D.1 Track irregularity waveform for vertical and lateral 
profile 

In this section, the left track irregularity waveform for vertical as well as lateral profile is 
shown in the following below figures. Figures D.1 – D.4, show the estimated responses and 
also zoomed-responses of restored waveform of vertical track geometry for station 2-6, using a 
Kalman filter and inverse modelling for iPod touch-2 (blue) sensor. Similarly, Figures D.5 – 
D.8, show the estimated responses and also zoomed-responses of 10 m chord versine 
waveform of vertical track geometry for station 2-6. In Figures D.9 – D. 12, show the estimated 
responses and also zoomed-responses of 10 m chord versine waveform of lateral track 
geometry for station 2-6 respectively. From Figure D.10 for Station 3-4, it can be seen that the 
restored true profile from the TRV has some spike around 14 - 15 km along the track section. 
This might be due to rail crossing which is verified from the location. 
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(a) For station 2-3 

 
(b) Zoomed responses (2 – 4 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 8900 m) 

Figure D.1 Estimation results for restored left vertical track profile for station 2-3 
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(a) For station 3-4 

 
(b) Zoomed response (4-6 km) 

 
 (c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 17.9 km) 

Figure D.2 Estimation results for restored left vertical track profile for station 3-4 
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(a) For station 4-5 

 
(b) Zoomed responses (4-6 km) 

 
 (c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 31 km) 

Figure D.3 Estimation results for restored left vertical track profile for station 4-5  
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(a) For station (5-6) 

 
(b) Zoomed response (4-6 km) 

 
 (c) PSD plot  

 
(d) Estimation error after misfit criteria (150 m to 17.1 km) 

Figure D.4 Estimation results for restored left vertical track profile for station 5-6  
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(a) For station 2-3  

 
(b) Zoomed responses (4 – 6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 8900 m) 

Figure D.5 Estimation results for 10 m chord versine: left vertical track profile for station 2-3 
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(a) For station 3-4  

 
(b) Zoomed response (4 -6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 17.9 km) 

Figure D.6 Estimation results for 10 m chord versine: left vertical track profile for station 3-4 
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(a) For station 4-5  

 
(b) Zoomed response (4 -6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 31 km) 

Figure D.7 Estimation results for 10 m chord versine: left vertical track profile for station 4-5 
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(a) For station 5-6  

 
(b) Zoomed response (4 -6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 17.1 km) 

Figure D.8 Estimation results for 10 m chord versine: left vertical track profile for station 5-6 
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(a) For station 2-3 

 
(b) Zoomed responses (1-3 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 8900 m) 

Figure D.9 Estimation results for restored waveform: left alignment profile for station 2-3 
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(a) For station 3-4 

 
(b) Zoomed response (4 -6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 17.9 km) 

Figure D.10 Estimation results for restored waveform: left alignment profile for station 3-4 

Tr
ac

k 
Pr

of
ile

 [m
m

]
Tr

ac
k 

Pr
of

ile
 [m

m
]

PS
D

 (m
m

2 /(c
yc

le
/m

))

Es
tim

at
io

n 
er

ro
r [

m
m

]



170 
 

 
(a) For station 4-5 

 
(b) Zoomed responses (2-4 km) 

 
 (c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 31 km) 

Figure D.11 Estimation results for restored waveform: left alignment profile for station 4-5 
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(a) For station 5-6 

 
(b) Zoomed response (4-6 km) 

 
 (c) PSD plot  

 
(d) Estimation error after misfit criteria (150 m to 17.1 km) 

Figure D.12 Estimation results for restored waveform: left alignment profile for station 5-6 
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(a) For station 2-3 

 
(b) Zoomed responses (1-3 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 8900 m) 

Figure D.13 Estimation for 10 m chord versine left alignment profile for station 2-3 
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(a) For station 3-4 

 
(b) Zoomed response (4 -6 km) 

 
(c) PSD plot 

 
(d) Estimation error after misfit criteria (150 m to 17.9 km) 

Figure D.14 Estimation for 10 m chord versine left alignment profile for station 3-4 
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(a) For station 4-5 

 
(b) Zoomed responses (2-4 km) 

 
 (c) PSD plot 

 
(d) Estimation error after misfit criteria (m to m) 

Figure D.15 Estimation for 10 m chord versine left alignment profile for station 4-5 
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(a) For station 5-6 

 
(b) Zoomed response (1-3 km) 

 
 (c) PSD plot  

 
(d) Estimation error after misfit criteria (150 m to 17.1 km) 

Figure D.16 Estimation for 10 m chord versine left alignment profile for station 5-6 
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