
博士論文

Data-Driven Analysis of Dynamical Systems Based on
the Koopman Operator: A Machine Learning Perspective

（クープマン作用素に基づく力学系の
データによる解析：機械学習の視点から）

東京大学大学院 工学系研究科 航空宇宙工学専攻
武石 直也

平成 29年 12月 1日





Data-Driven Analysis of Dynamical
Systems Based on the Koopman Operator:

A Machine Learning Perspective

Author:

Naoya TAKEISHI

Supervisor:

Prof. Takehisa YAIRI

A dissertation submitted to

Department of Aeronautics and Astronautics

in partial fulfillment of the requirements

for the degree of Doctor of Engineering

at

The University of Tokyo

December 1, 2017





iii

Abstract

Time-series data are ubiquitous in the modern society, and analyzing dynam-
ical systems that generate them is an important branch of research for many
applications in science and engineering. In this dissertation, we focus on the
data-driven approach to the analysis of dynamical systems. In particular,
we study the modal decomposition technique based on the Koopman opera-
tor of a dynamical system, which provides powerful tools for understanding
intrinsic structures of nonlinear dynamical systems. A data-driven realiza-
tion of such modal decomposition is known as dynamic mode decomposi-
tion (DMD). DMD has been effectively utilized in several fields of science,
but its assumptions are sometimes too restrictive in other applications.

In this paper, we develop extensions of DMD and new methodologies
based on machine learning techniques for performing the data-driven modal
decomposition based on the Koopman operator. The proposed methods re-
lax the assumptions needed by DMD and enable us to apply the Koopman-
based analysis of dynamical systems to a broader range of scientific and en-
gineering domains that cannot be dealt with existing numerical methods.

In Chapter 2, we introduce the sparse nonnegative version of DMD, which
is motivated by the use in image and video processing. The proposed method
is based on a reformulation of DMD, and other types of regularizations and/or
constraints can be imposed based on the proposed reformulation.

In Chapter 3, we propose probabilistic and Bayesian DMDs, with which
uncertainty in data are explicitly treated. Hence, they are suited to experi-
mental datasets. Moreover, the proposed probabilistic formulation is a foun-
dation for further extensions of the model.

In Chapter 4, we address the challenge to perform the modal decompo-
sition based on the Koopman operator for systems where both observation
noise and process noise are present. To this end, we propose subspace DMD,
which is motivated by methods of the subspace system identification devel-
oped in the control theory.

In Chapter 5, we suggest a new framework to make DMD applicable to
various kinds of datasets. Since DMD has to be applied to data generated
from a set of observables that spans a Koopman invariant subspace, we de-
velop a method to learn such observables from data.
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Chapter 1

Introduction

1.1 Data-driven analysis of dynamical systems

Time-series data are ubiquitous in various disciplines of science and in opera-
tion of modern engineering systems because of the development of measure-
ment instruments. Nowadays, analysis and forecasting of time-series play
an indispensable role in making a scientific discovery and in achieving secu-
rity and efficiency in system operations. For example, operators of complex
engineering systems, such as manufacturing plants and artificial satellites,
survey readings of thousands of sensors everyday (possibly using some sup-
port tools) to maintain the operation. Methods for analyzing time-series1

have been subjected to study in statistics for years (Box et al., 2015) and are
still studied intensively in multiple research areas such as statistics, control,
and machine learning.

Analysis of time-series is strongly associated with the concept of dynami-
cal systems. A dynamical system is a mathematical system in which the tem-
poral evolution of a quantity is described with a function, and most of the
time-series data can be regarded as being generated from a kind of dynami-
cal systems. There exists a large body of mathematical analysis study on dy-
namical systems, whose results have been employed in diverse application
areas such as physics, chemistry, biology, astronomy, economics, and sociol-
ogy, where subjects of research are modeled in terms of dynamical systems.
In this dissertation, however, we focus on the data-driven approach to under-
standing the characteristics of dynamical systems, i.e., we pursue methods to
obtain knowledge about dynamical systems of interest from time-series data
generated by those systems.

1Or more generally, any types of sequence.
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A data-driven approach for analyzing subjects of scientific interest, often
termed data science, is increasingly recognized as a distinct paradigm of sci-
ence (Hey et al., 2009), in which methodologies developed in statistics and
machine learning have been intensively utilized. However, a simple applica-
tion of an arbitrary method of machine learning is inappropriate. For scien-
tific studies, it is highly desirable for those methodologies to be soundly build
on theoretical rationales2 and to be as simple as possible. A popular one of
such methods that has been utilized in analysis of dynamical systems would
be proper orthogonal decomposition (POD) (see e.g. Holmes et al. (2012)).3

POD decomposes the dynamics into orthogonal modes that optimally cap-
ture the energy of the dynamics, and it has been extensively applied in fluid
dynamics to understand the patterns that govern fluid fields (Bonnet et al.,
1994; Noack et al., 2003).

In the data-driven analysis of dynamical systems, the purpose of study
usually lies in identifying latent structures or laws behind data. For exam-
ple, in neuroscience, one would like to know the intrinsic state of a neural
system that may be captured in signals of an electroencephalogram, which
are often very noisy and high-dimensional. This kind of issues can be ad-
dressed using decomposition of dynamical systems / time-series like POD.
However, a possible drawback of POD is that the decomposition only based
on energy does not always reveal important patterns of time-series, which
led to the development of other methodologies including the one discussed
in this dissertation. In this dissertation, we focus on one of those decom-
position methods, namely dynamic mode decomposition (DMD) (Rowley et al.,
2009; Schmid, 2010; Kutz et al., 2016a).

The reason we focus on DMD is mainly twofold: 1) it is simple and com-
putationally feasible, and 2) it has a sound theoretical rationale based on
the notion of the Koopman operator of dynamical systems (Koopman, 1931;
Mezić, 2005). If certain assumptions are satisfied in a dataset, using DMD,
one can conduct a data-driven analysis of dynamical systems, which is the-
oretically interpretable and computationally efficient. The effectiveness of

2Of course, most data-analysis methods have their own theoretical background. Here, we
specifically expect that such theoretical background is (mathematically and/or physically)
appropriate for explaining aspects of research subjects to which the data-analysis methods
are applied.

3In machine learning and pattern recognition, a method equivalent to data-driven POD
is known as principal component analysis (PCA) and has been applied for modal decompo-
sition and dimensionality reduction of a wide variety of numerical datasets (Jolliffe, 2002).
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DMD has been confirmed in several scientific and engineering fields includ-
ing computational fluid dynamics, where data are usually clean and high-
dimensional. However, in many other fields of science and engineering,
DMD is not always appropriate, i.e., the necessary assumptions can hardly be
satisfied (even approximately). While many researchers have been working
on relaxing those assumptions by improving algorithms, we find several im-
portant aspects of practical data analyses, such as uncertainty in data, have
not been addressed enough yet. In this dissertation, we introduce improve-
ments, extensions, and new methodologies to the modal decomposition tech-
nique based on the Koopman operator.

The most of the proposed techniques in this dissertation are based on the
methods and concepts often utilized in machine learning researches, and we
believe that they open up a new pathway to data-driven analysis of dynam-
ical systems. Using the proposed techniques, scientists and engineers can
apply the data decomposition method based on the theory of Koopman op-
erator to datasets that could not be appropriately treated beforehand. For
instance, the method introduced in Chapter 4 enables us to use the decom-
position method for datasets with both observation noise and process noise,
which we were not necessarily able to treat correctly with the existing meth-
ods. Moreover, based on the machine learning perspective introduced in this
dissertation, one can easily consider further extensions of the method. For
example, the Bayesian treatment of the decomposition in Chapter 3 enables
us to transfer fruitful advances of Bayesian modeling to DMD, which will
lead to a foundation of more advanced modeling of time-series data.

In the remainder of this chapter, technical preliminaries regarding dy-
namical systems, the Koopman operator, and modal decomposition based
on it are provided. Note that, since our original motivation lies in data sci-
ence applications of those concepts, some expressions may seem informal
from a rigorous mathematical viewpoint for ease of discussion. For more
strict explanation in terms of mathematics, readers are recommended to con-
sult literatures, such as Hirsch et al. (2013), Lasota and Mackey (1994), Mezić
(2005), Budišić et al. (2012), and Mohr (2014).
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1.2 Koopman operator on dynamical systems

Firstly, we mention the notion of state space models, in which the evolution
of a state (quantity that holds all information to describe system’s status at
each time) is described by a function. The state space model is a universal
tool to describe subjects of interest in a wide disciplines of sciences, such
as applied mathematics, physics, chemistry, biology, astronomy, economics,
and sociology. Moreover, in many practices of machine learning and data
science, the state-space models have been utilized to analyze series data like
time-series. In both of these areas, the most simple form4 of the state-space
model is defined in terms of a differential equation (corresponding to the
continuous-time setting):

dx

dt
= f(x), (1.1)

or in terms of a difference equation (corresponding to the discrete-time set-
ting):

xt+1 = f(xt), (1.2)

where x ∈ M is the state of the system,M is a manifold referred to as state
space or phase space, and f : M → M is a function. In the remainder
of this dissertation, theories and algorithms are constructed sorely on the
state-space model as a difference equation, i.e., Eq. (1.2), because the discrete-
time setting is usually adopted in the practice of machine learning and data
science.5 In the discrete-time setting, time index t is often defined by t ∈ T =

{0} ∪ N, and we also adopt this definition.

The analysis using the state-space models becomes challenging when f
is highly nonlinear. While there have been great efforts on analyzing and
learning such nonlinear dynamics, we depart such perspective. That is, as
an alternative to the state-space representation, we take the operator-theoretic
approach to analysis of dynamical systems. This view depends on the Koop-
man (composition) operator (Koopman, 1931; Lasota and Mackey, 1994; Mezić
and Banaszuk, 2004; Mezić, 2005) or its adjoint, the Perron–Frobenius (Ruelle
or transfer) operator (Ruelle, 1968; Lasota and Mackey, 1994). The virtue of

4As the most simple form, the autonomous deterministic dynamical systems are presented
here. However, a non-autonomous system, a non-deterministic (random) system, and a
non-autonomous random system can also be considered. In fact, the motivation of the work
introduced in Chapter 4 is to adopt the analysis based on the Koopman operator to random
dynamical systems. Also, studies on Koopman-based analysis for non-autonomous systems
are introduced in Section 1.4.3.

5The continuous-time setting is favored in physics.
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FIGURE 1.1: Schematic diagram on lifting nonlinear dynamics to
a linear regime based on Koopman operator K.

this view lies in the linearity of those operators; we can leverage the machin-
ery of the linear operator theory for analyzing and learning those operators
and the nonlinear dynamics behind them. At the same time, however, the
compensation of the linearity must be paid: the infinite dimensionality of the
representation. This is because those operators are defined in a space of func-
tions or measures, which are infinite-dimensional in general. The idea can be
summarized conceptually as follows; by introducing those operators, we lift
nonlinear dynamical systems to a linear regime as depicted in Figure 1.1.

Let (M,ΣM, µM) be a probability space associated with phase space M
and f : M → M be a measurable function with respect to µM. Now con-
sider an observable (observation function) g : M → C in a function space G,
which is a vector space. The choice of the function space can be arbitrary, but
generally we consider G = L2(M, µM) for theoretical and computational con-
venience. Then, the Koopman operator on a discrete-time dynamical system
f is defined as follows.

Definition 1.1 (Koopman operator (Koopman, 1931; Mezić, 2005)). LetM be
a state space and f : M → M be a measurable function corresponding to
a discrete-time dynamical system. Moreover, consider a (possibly infinite-
dimensional) vector space of observables G. Koopman operator (composition
operator) K : G → G is a linear operator that describes evolution of an ob-
servable, i.e.,

Kg = g ◦ f , (1.3)

where ◦ denotes the composition of functions.

Remark 1.1. The same sort of definition can be considered also for a continuous-
time dynamical system (1.1). Instead of the Koopman operator, the Koopman
semigroup {Ktc}t∈R+ on this dynamical system is defined by

Ktcg(x) = g(φ(x, t)), (1.4)
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where φ(x, t) is the flow map that takes x as the initial state and returns the
state after a time interval of length t ∈ R. The infinitesimal generator, Kc, of
the Koopman semigroup is given as

Kc = lim
t→0

Ktcg − g
t

. (1.5)

The Koopman operator has been recently utilized for analysis of dynam-
ical systems by several researchers. For example, Lan and Mezić (2013) pro-
posed a linearization scheme of nonlinear systems on attractors, Mauroy
et al. (2013) and Sootla and Mauroy (2017) suggested the analysis of basins of
attractions using spectra of the Koopman operator, Mauroy et al. (2015) build
a theory on differential positivity of systems, and Mauroy and Mezić (2016)
proposed a method of global stability analysis using the Koopman operator.
Moreover, applications that utilize the modal decomposition based on the
Koopman operator are introduced in Section 1.3.1.

The adjoint of the Koopman operator is known as the Perron–Frobenius
operator (Ruelle, 1968; Lasota and Mackey, 1994). Now consider a distribu-
tion density of x, namely, x ∼ p ∈ L1(M, µM), where p is nonnegative for
almost everywhere and normalized to one. The Perron–Frobenius operator
P is defined as ∫

A
Pp dµM =

∫
f−1(A)

p dµM, (1.6)

where A ∈ ΣM. The Perron–Frobenius operator has been utilized for appli-
cations such as construction of observability Gramian (Vaidya, 2007), global
stability analysis (Vaidya and Mehta, 2008), and computation of basins of at-
traction (Wang and Vaidya, 2010). However, in this dissertation, we do not
focus on the methods based on the Perron–Frobenius operator.

1.3 Koopman mode decomposition (KMD)

Modal decomposition of observables based on eigenvalues of the Koopman
operator has been utilized in various applications, which is often termed as
Koopman mode decomposition (KMD) (Mezić and Banaszuk (2004); Mezić
(2005); Budišić et al. (2012)). In this section, we introduce the fundamental
idea, applications, and numerical approximation methods of KMD.
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Let λ ∈ C and ϕ : M → C respectively denote the eigenvalue and the
eigenfunction of the Koopman operator, i.e.,

Kϕi = λiϕi, (1.7)

where we use subscript i ∈ N for numbering eigenvalues, eigenfunctions,
and other corresponding quantities.

Definition 1.2 (Koopman modes). Let {ϕi | i = 1, . . . , N} (N may be infi-
nite) be a set of eigenfunctions of the Koopman operator. Koopman modes of
an observable g with regard to {ϕi} are the coefficients of projection of g to
span{ϕi}.

Here, assume that observable g is in the span of the (possibly infinite num-
ber of) eigenfunctions, i.e.,

g ∈ span{ϕi | i = 1, . . . , N}, N ∈ N or N =∞. (1.8)

Then, g can be exactly expressed in terms of the eigenfunctions and Koopman
modes {vi}:

g(x) =
N∑
i=1

ϕi(x)vi. (1.9)

Since ϕ is the eigenfunction of K, applying K to both sides of Eq. (1.9) yields

g(f(x)) =
N∑
i=1

λiϕi(x)vi. (1.10)

Similarly, starting at some initial condition x = x0, after t applications of K,

g(xt) =
N∑
i=1

λtiwi, wi = ϕi(x0)vi. (1.11)

Since snapshots of time-series data are multidimensional in general, instead
of a scalar-valued observable g, we often define KMD for a vector-valued
observable g :M→ Cn, i.e., concatenation of n observables

g =
[
g1 g2 · · · gn

]T
. (1.12)
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Analogously to Eq. (1.11), KMD for g is defined as

g(xt) =
N∑
i=1

λtiwi, wi = ϕi(x0)vi, (1.13)

where the Koopman modes are now defined with a n-dimensional vector v.

Expression (1.13) is a standard form referred to as KMD. In Eq. (1.13),
the value of observable at time t is transformed into the summation of N
coefficients w1, . . . ,wN , each of which is multiplied by λti. Since λ is a com-
plex value in general, the magnitude of λi represents the growth/decay rate
(along time) of wi, and the angular component of λi represents the (angular)
frequency of wi. In other words, the original observable is decomposed into
a set of vectors {wi} that evolve along time according to |λi| and ∠λi. Though
v should be called Koopman modes following the original definition, Defini-
tion 1.2, sometimes w is also called Koopman modes.

Note that, in the above discussion, KMD is defined relying on the premise
(1.8), which is not very trivial. Speaking from the viewpoint of spectral de-
composition of a linear operator, one can regard that this view ignores contin-
uous spectra of the Koopman operator, which may be too restrictive for com-
plex systems. See literatures such as Budišić et al. (2012) for decomposition
considering the continuous spectra. Moreover, computing KMD considering
continuous spectra of the Koopman operator is an active area of research;
see e.g., Korda et al. (2017). However, this direction is out of scope of this
dissertation.

1.3.1 Applications of KMD

Numerical methods that are connected to KMD are utilized in various ap-
plications. Especially, there is a vast amount of literature on applications of
KMD-like methods in fluid dynamics, partly because a popular numerical
approximation of KMD was first invented in the community of fluid dynam-
ics (Schmid and Sesterhenn, 2008; Rowley et al., 2009; Schmid, 2010). They
utilize the modal decomposition for reduced-order modeling of fluids and
for inspecting structures of a fluid field using the Koopman modes. We do
not provide a whole reference on those applications, but readers can consult
review articles such as Mezić (2013) and Rowley and Dawson (2017).
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The modal decomposition based on the Koopman operator is also uti-
lized in various areas other than fluid dynamics, which include analysis of
power systems (Susuki and Mezić, 2011, 2012, 2014; Barocio et al., 2015; Raak
et al., 2016), analysis of building systems (Eisenhower et al., 2010; Georgescu
et al., 2012), analysis of acoustic phenomena (Jourdain et al., 2013), simulation
of a medical procedure (Bourantas et al., 2014), analysis of meteorological
data (Giannakis et al., 2015), background separation of video streams (Kutz
et al., 2015; Erichson et al., 2016), computation of dynamic textures of video
streams (Surana, 2015), fusion of multiple datasets (Williams et al., 2015c),
epidemiology (Proctor and Eckhoff, 2015), robotics (Berger et al., 2015), neu-
roscience (Brunton et al., 2016a), financial trading (Mann and Kutz, 2016; Hua
et al., 2016), analysis of human locomotion (Boudali et al., 2017), analysis of
chaotic systems (Brunton et al., 2017), prediction of high-dimensional time-
series (Hua et al., 2017), edge detection from images (Bi et al., 2017), and
analysis of sport plays (Fujii et al., 2017). In those applications, they exam-
ine spatial distribution of the Koopman modes or profiles of eigenfunctions
of the Koopman operator, which can further be utilized for understanding
the mechanics of phenomena and for designing appropriate procedures to
manipulate them.

The KMD-like methods are also used in the context of control: nonlinear
system identification (Mauroy and Goncalves, 2016), construction of an ob-
server form and Kalman filter (Surana, 2016), model-based control of robots
(Abraham et al., 2017), investigation of controllability of network (de Badyn
et al., 2017), and analysis of self-organization in network (Caro-Ruiz et al.,
2017).

Note that, in those applications, Koopman operator or its spectral com-
ponents (eigenvalues, eigenfunctions, and modes) are approximated from
numerical data because computing Koopman operator exactly is impossible
unless one knows the exact form of underlying dynamical systems (and it is
often almost impossible even if one knows the exact form of dynamics). Such
approximation is executed by methods reviewed in Section 1.3.2.

1.3.2 Numerical approximation of KMD

There have been proposed several methodologies to approximate the spectra
and corresponding modes of the Koopman operator.
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If one has a sufficient amount of trajectories of observables generated by
the dynamical system of interest, Fourier/Laplace average (Budišić et al.,
2012; Mauroy and Mezić, 2012; Mauroy et al., 2013; Mohr, 2014), sometimes
termed generalized Laplace analysis (GLA), can be utilized. This method is
theoretically sound, but the usage is limited because computation must be
performed for every value of eigenvalue candidates.

Ulam’s method (see e.g., Bollt and Santitissadeekorn (2013); Froyland and
González-Tokman (2014); Froyland et al. (2014)), sometimes referred to as
Ulam–Galerkin projection, can also be used to approximate the Koopman
operator. Ulam’s method had been originally used as a method to approxi-
mate the Perron–Frobenius operator, but it can be used to approximate its ad-
joint as pointed out by researchers such as Froyland and González-Tokman
(2014) Williams et al. (2015a) and Klus et al. (2016). Ulam’s method utilizes
the partition of the state space into small spatial bins and thus is very intu-
itive. However, the computational load tends to be heavy if the state space is
high-dimensional.

There is another line of research by Berry et al. (2015); Giannakis et al.
(2015); Giannakis (2017); Giannakis et al. (2017), where they approximate
the spectra of the Koopman operator using a smooth orthonormal basis de-
termined by the diffusion map algorithm (Coifman and Lafon, 2006) with
the variable bandwidth diffusion kernel (Berry and Harlim, 2016). Also,
Shnitzer et al. (2017) utilizes diffusion map to construct a Kalman filter whose
state is defined by eigenfunctions of the backward Fokker-Planck operator of
Langevin dynamics, which is strongly related to the stochastic Koopman op-
erator.

We end this section by mentioning a method refereed to as dynamic mode
decomposition (DMD). DMD was first invented in the area of fluid mechan-
ics (Schmid and Sesterhenn, 2008), and its connection to KMD was pointed
out by Rowley et al. (2009). Since then, DMD has been utilized as a real-
ization of KMD in a vast amount of applications. Since DMD is the main
concern of this dissertation, its algorithmic details and theoretical connection
to KMD are explained in Section 1.4.
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1.4 Dynamic mode decomposition (DMD)

DMD was first introduced as a method to extract dynamically relevant struc-
tures of fluid flow from numerical data (Schmid and Sesterhenn, 2008; Schmid,
2010). Afterward, the connection to the Koopman operator theory was first
pointed out by Rowley et al. (2009). In this section, we firstly describe the
core functionality of the algorithm of DMD and then explain the connec-
tion between KMD and DMD. Afterward, several variants of DMD including
popular implementations often used in recent studies are introduced.

1.4.1 Algorithm of DMD

Suppose we have time-series (y0,y1, . . . ,ym) with m snapshots, where yt ∈
Cn denotes the t-th snapshot, and consider the following two matrices build
from them:

Y0 =
[
y0 · · · ym−1

]
∈ Cn×m and

Y1 =
[
y1 · · · ym

]
∈ Cn×m.

(1.14)

The fundamental functionality of DMD is just an eigendecomposition of the
coefficient matrix of a linear model on time-series as follows.6

Algorithm 1.1 (DMD (Rowley et al., 2009; Schmid, 2010; Tu et al., 2014b)).

1. Build a pair of data matrices (Y0,Y1) as in Eq. (1.14).

2. Compute eigenvalues λ, eigenvectors w and left-eigenvectors z of ma-
trixA = Y1Y

†
0 .

3. Normalizewi and zi so thatwH
i′zi = δi′i (δi′i is 1 if i′ = i and 0 otherwise),

for i, i′ = 1, . . . , n.

4. Return λi, wi, and zi, for i = 1, . . . , n, with regard to nonzero λi.

Remark 1.2. Note that matrix A is a least-squares estimator of a linear model
between Y0 and Y1, i.e.,

A = arg min
A′

‖Y1 −A′Y0‖2
2 = Y1Y

†
0 . (1.15)

6The original definition of DMD (Schmid and Sesterhenn, 2008; Rowley et al., 2009;
Schmid, 2010) is based on the projection of the coefficient matrix to Krylov subspace and
computation of empirical Ritz values/vectors to avoid explicit storing and eigendecomposi-
tion of a large matrix, but we introduced only the core functionality of DMD here.
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If the multiplicities of the nonzero eigenvalues of A are one (i.e., all the
nonzero eigenvalues are distinct), the original snapshots can be decomposed
as

yt =
n∑
i=1

wiϕi,t, (1.16)

and

yt+1 =
n∑
i=1

wiϕi,t+1 ≈
r∑
i=1

λiwiϕi,t, (1.17)

where ϕi,t = zHi yt, and the approximation (≈) is in the least-squares sense. In
this way, we can consider an approximation expression

yt ≈
n∑
i=1

λtiwiϕi,0, (1.18)

which resembles KMD, Eq. (1.13). Vector w is referred to as dynamic modes.

We derived the decomposition conducted by DMD as an approximation
form in Eqs. (1.17) and (1.18), but if Y0 and Y1 are linearly consistent (Tu et al.,
2014b), i.e., Ker(Y0) ∈ Ker(Y1), Eqs. (1.17) and (1.18) hold exactly. Note that
this condition of linear consistency is less restrictive than the linear system
condition, i.e., yt+1 = Ayt; in other words, time-series can be (exactly) de-
composed by DMD if sufficient data are provided even if it is not generated
by a linear system.

1.4.2 Connection between KMD and DMD

Actually, the output of DMD asymptotically coincides with the quantities
that appear in KMD under several conditions. While there would be multiple
ways to specify those conditions, we utilize the notion of Koopman invariant
subspaces.

Definition 1.3 (Koopman invariant subspace). Consider G such that G ⊂ G,
where G is the space of observables. G is called Koopman invariant subspace if

Kg ∈ G, ∀g ∈ G. (1.19)

Suppose that there exists a Koopman invariant subspace G for the dy-
namical system and the space of observables of interest. Let us consider the
restriction of K to G and denote it by K. If G is finite-dimensional, then K
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also becomes a finite-dimensional linear operator. Here, suppose that we
have a set of observables {g1, . . . , gn} (n <∞) that spans G, and let K be the
representation of K with regard to {g1, . . . , gn}, i.e.,[

Kg1 · · · Kgn

]T
= Kg, (1.20)

where g = [g1 · · · gn]T. Moreover, let ϕ be the eigenfunction of K corre-
sponding to an eigenvalue λ. Then, ϕ with regard to {g1, . . . , gn} is expressed
as

ϕ(x) = zHg(x), (1.21)

where z is the left-eigenvector ofK corresponding to eigenvalue λ, because

K
(
zHg(x)

)
= zHKg(x) = λzHg(x).

Let wi and zi respectively be the right- and the left-eigenvector of K cor-
responding to an eigenvalue λi for i = 1, . . . , n. In the sequel, without loss of
generality, we assume that w and z are normalized so that wH

i′zi = δi′i.

Assumption 1.1 (Distinct eigenvalues). All the nonzero eigenvalues of K are
distinct, i.e., their multiplicities are one.

Since we assumed that the eigenvalues of the Koopman operator are dis-
tinct (Assumption 1.1), decomposition of observables as in Eq. (1.13) is ob-
tained as follows. First, any values of g can be expressed by

g(x) =
n∑
i=1

wiz
H
i g(x) =

n∑
i=1

wiϕi(x), (1.22)

where ϕi is the eigenfunction of K corresponding to eigenvalue λi. Applying
K on both sides of Eq. (1.22) repeatedly starting at x = x0, we obtain the
modal decomposition of the values of the observables, i.e.,

g(xt) =
n∑
i=1

λtiwiϕi(x0). (1.23)

The convergence of Algorithm 1.1 in the large sample limit can be shown
with the assumption that the time-average asymptotically coincides with the
space-average of a measurable function on the state space (Assumption 1.2),
and also with the assumption that data generated from a Koopman invariant
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subspace (Assumption 1.3). Note that Assumption 1.2 can be originally char-
acterized by the notion of invariant measure of a measure-preserving system
or the notion of physical measure of a dissipative system. We omit their de-
tails here, but in the context of DMD, see e.g., Arbabi and Mezić (2017).

Assumption 1.2. The time average of a measurable function φ : M → C
converges to its space average, i.e.,

lim
m→∞

1

m

m−1∑
j=0

φ(xj) = EM[φ(x)] =

∫
M
φ(x)dµM,

for almost all x0 ∈M.

Assumption 1.3. The snapshots in time-series (y0, . . . ,ym) are generated with
a set of observables that spans a Koopman invariant subspace, i.e.,

yt =
[
g1(xt) · · · gn(xt)

]T
, for t = 0, . . . ,m, (1.24)

where {g1, . . . , gn} spans a Koopman invariant subspace G.

Theorem 1.1. Suppose Assumptions 1.1, 1.2, and 1.3 hold. If all the modes are suffi-
ciently excited in the data (i.e., rank(Y0) = dim(G)) and all the nonzero eigenvalues
ofA = Y1Y

†
0 are distinct, then the dynamic modes calculated by Algorithm 1.1 con-

verge to the eigenvectors of K corresponding to its nonzero eigenvalues in m→∞
with probability one.

Proof. Taking the inner product of both sides of Eq. (1.20) with g, we have

KG0 = G1, G0 = EM
[
ggH

]
, G1 = EM

[
(g ◦ f)gH

]
,

and thus the minimum-norm solution for K is given as K = G1G
†
0. In con-

trast, from the definition ofA,

A = Ĝ1Ĝ
†
0, Ĝ0 =

1

m
Y0Y

H
0 , Ĝ1 =

1

m
Y1Y

H
0 ,

and by Assumption 1.2, empirical matrices Ĝ0 and Ĝ1 converge to G0 and
G1, respectively, inm→∞with probability one. Moreover, because rank(Y0) =

dim(G), the rank of Ĝ0 is always dim(G) and thus Ĝ†0 converges toG†0 (Rakoče-
vić, 1997). Further, because Algorithm 1.1 returns the eigenvectors corre-
sponding to all the nonzero eigenvalues ofA, and because of Assumption 1.1,
the outputs of Algorithm 1.1 are continuous with respect to A. Therefore,
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the dynamic modes converge to the eigenvectors of K corresponding to its
nonzero eigenvalues with probability one.

Remark 1.3. We have shown the convergence utilizing the assumption of er-
godicity (Assumption 1.2). One can also prove the convergence (in probabil-
ity) using the law of large numbers if one assumes the snapshots in Y0 are
independently sampled from µM. In fact, an algorithm defined by Tu et al.
(2014b) does not require the sequential sampling as in Eq. (1.14) as long as the
corresponding columns of the data matrices are sampled with a fixed tempo-
ral interval. This definition of DMD must rely on the law of large numbers to
show the convergence.

Remark 1.4. The way of constructing a Koopman invariant subspace is not
discussed here. Several solutions for approximating it have been proposed,
which are introduced in Section 1.4.3. Also, note that the approximation of a
Koopman invariant subspace is one of the central issues of this dissertation
(Chapter 5).

We have shown the convergence of DMD to KMD using the assump-
tion of data generated from observables that span a Koopman invariant sub-
space. However, the connection between KMD and DMD can be shown from
slightly different perspectives. In fact, a theory by Tu et al. (2014b) depends
on the assumption that the observables in hand are in the space spanned
by eigenfunctions of the Koopman operator, which is similar to the assump-
tion mentioned earlier, Eq. (1.8). Also, Arbabi and Mezić (2017) showed the
convergence of DMD based on the Hankel matrix build with an observable
contained in (not spanning) a Koopman invariant subspace.

1.4.3 Variants of DMD

The concept of DMD was introduced in Section 1.4.1, but Algorithm 1.1 de-
scribes only the core functionality of DMD. In this section, we introduce a
popular working algorithm of DMD, referred to as exact DMD (Tu et al.,
2014b). Moreover, several variants and extensions of DMD are explained.



16 Chapter 1. Introduction

Exact DMD

When DMD was first discussed with that name in the community of fluid
dynamics (Schmid and Sesterhenn, 2008; Rowley et al., 2009), it was imple-
mented by Arnoldi algorithm (Arnoldi, 1951). There, DMD’s matrix, A in
Eq. (1.15), was projected to a data-driven Krylov space, and the eigendecom-
position was performed in that space. Afterward, Schmid (2010) suggested
that projectingA to the principal space of Y0 using its singular value decom-
position (SVD) was more computationally stable. These projections to a cer-
tain space (whose dimensionality is smaller than that of the original data) en-
able us to avoid computing eigendecomposition in a high-dimensional space.
However, Tu et al. (2014b) pointed out the back-projection of the output of
the eigendecomposition was not necessarily appropriate in those algorithms
and proposed a modified algorithm, which they termed exact DMD.

Algorithm 1.2 (Exact DMD (Tu et al., 2014b)).

1. Build a pair of data matrices (Y0,Y1) as in Eq. (1.14).

2. Compute the compact SVD as Y0 = UrSrV
H
r withUr ∈ Cn×r, Sr ∈ Cr×r

and Vr ∈ Cm×r, where r = rank(Y0).

3. Define matrix Ã = UH
r Y1VrS

−1
r .

4. Compute eigenvalues λ, eigenvectors w̃ and left-eigenvectors z̃ of Ã,
for λ 6= 0.

5. Compute wi = λ−1
i Y1VrS

−1
r w̃i and zi = UH

r z̃i, for i = 1, . . . , r.

6. Normalize {wi} and {zi} so that wH
i′zi = δi′i.

7. Return λi, wi, and zi, for i = 1, . . . , r.

For λ 6= 0, λ, w, and z coincide with the eigenvalue, eigenvector, and
left-eigenvector of matrix A = Y1Y

†
0 , respectively (Tu et al., 2014b). In the

remainder of this dissertation, we use this exact DMD as the standard imple-
mentation of DMD.

Extensions for approximating a Koopman invariant subspace

As stated in Section 1.4.2, the key point of DMD as a numerical realization of
KMD lies in preparing a set of observables that spans a subspace invariant
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to K. Several researchers have worked on this issue; Williams et al. (2015a)
proposed a method using a user-defined dictionary of observables to adopt
DMD to highly nonlinear systems, which is called extended DMD, and Klus
et al. (2016) and Korda and Mezić (2017) showed the convergence of extended
DMD to KMD. Moreover, Brunton et al. (2016b) utilized an identification
technique based on a sparse regression (Brunton et al., 2016c) to identify the
dynamic-specific observables to be used. In addition, Kawahara (2016) de-
fined the Koopman analysis for observables in reproducing kernel Hilbert
spaces to build a theory of DMD based on the reproducing kernels. DMD us-
ing kernel trick was also mentioned by Williams et al. (2015b), but they did
not manifest the theory based on the notion of reproducing kernel Hilbert
spaces.

Another option, especially for deterministic systems, is to use delay co-
ordinates, i.e., stacking observations at neighboring timestamps in each col-
umn of the data matrices. In general, a Krylov-like sequence of observables
{g,Kg,K2g, . . . } rapidly becomes almost linearly dependent, and thus can be
used to obtain a subspace that is approximately invariant to K. Based on the
delayed measurements, we obtain a data matrix as a Hankel matrix. The use
of delay coordinates for DMD was first discussed by Tu et al. (2014b), and
Brunton et al. (2017) mentioned DMD based on Hankel matrices, referring
to the well-known Taken’s theorem (Takens, 1981). Susuki and Mezić (2015)
and Raak et al. (2016) defined an approximation of the Koopman analysis
using Prony’s method, which also uses Hankel matrices. Arbabi and Mezić
(2017) showed the convergence of DMD on Hankel matrices build with an
observable contained in a Koopman invariant subspace. However, since de-
lay coordinates with a linear monomial cannot span a Koopman invariant
subspace of nonlinear systems exactly, one should use a combination of the
nonlinear observables and the delay coordinates.

Extensions for noisy data

When applying DMD to datasets obtained by experiments, one must be aware
of observation noise in the dataset. There are several styles to make DMD
adapted to noisy data. Chen et al. (2012) suggested to formulate DMD as an
optimization problem (optimized DMD) and solved it with a derivative-free
optimization method. Guéniat et al. (2015) extended the optimized DMD
to nonuniformly-sampled datasets. Moreover, there is a series of researches
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on low-rank approximation of DMD’s matrix (Wynn et al., 2013; Dicle et al.,
2016; Héas and Herzet, 2017), in which spurious dynamic modes due to ob-
servation noise can be automatically eliminated. Such methods put in a low-
rank regularization/constraint in their optimization problems. Jovanović
et al. (2014) suggested a slightly different approach, sparsity-promoting DMD,
where they ran a postprocessing to reduce the number of dynamic modes
based on lasso.

Now remember that the matrix whose eigendecomposition is computed
by original DMD, A in Eq. (1.15), is the result of (ordinary) least-squares
between Y0 and Y1. Hence, in this formulation, only noises in the depen-
dent variable, i.e., Y1, are considered, and noises in Y0 are not taken into ac-
count. This asymmetry causes a problem when dataset is contaminated with
observation noise. Dawson et al. (2016) and Hemati et al. (2017) proposed
total-least-squares DMD, in which noises in both Y0 and Y1 are considered
explicitly.

In addition, Duke et al. (2012) and Pan et al. (2015) conducted error anal-
yses of DMD algorithms with different implementations, which are helpful
to choose an implementation according to each dataset.

Extensions for non-autonomous systems

Most of DMD-related algorithms premise that the system behind data is
autonomous, i.e., f is time-invariant and no external signal is concerned.
However, one may be interested in analyzing time-series generated by non-
autonomous systems including controlled systems. In fact, there have been
proposed DMD for controlled systems (Proctor et al., 2016; Annoni et al.,
2016). Moreover, Mezić and Surana (2016) proposed a computation method
for non-autonomous periodic system, and Maćešić et al. (2017) considered
switching or eigenvalue-changing systems. In addition, there is an attempt to
combine DMD with clustering of time-series (Narasingam and Kwon, 2017).

Extensions for efficient computation

For efficient computation of DMD on streaming data, Hemati et al. (2014)
proposed an online algorithm. For memory and processing efficiency, Brun-
ton et al. (2015) and Erichson et al. (2016) suggested a combination of DMD
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and compressed sensing. Also, Klus and Schütte (2016) proposed to use
the tensor-train decomposition for speeding up computation of the pseudo-
inverse. Moreover, there is a thread of studies on randomized DMD (Erich-
son and Donovan, 2016; Bistrian and Navon, 2017; Erichson et al., 2017). In
addition, Le Clainche and Vega (2017) mentioned higher-order DMD, and
Ohmichi (2017) proposed preconditioned DMD. Also, Kutz et al. (2015, 2016b)
proposed multi-resolution DMD (Kutz et al., 2015, 2016b), and Tu et al. (2014a)
suggested a method to compute dynamic modes even with sub-Nyquist rate
(Tu et al., 2014a).

Connection to other methods

The correspondences between DMD and other numerical methods, such as
time-lagged independent component analysis (TICA), variational approach
of conformation dynamics (VAC), and resolvent analysis, have been pointed
out by several researchers (Sharma et al., 2016; Klus et al., 2017; Towne et al.,
2017; Wu et al., 2017).

1.5 Summary of remaining chapters

Although there have been proposed many algorithmic variants of DMD as
introduced in Section 1.4.3, the assumptions they explicitly and implicitly
make are often too restrictive for applying them to practical time-series datasets.
For example, no existing method is appropriate for datasets that are gener-
ated from a random dynamical system and contaminated with observation
noise, resulting in incorrect approximation of the spectra of the Koopman
operator. The central motivation in this dissertation lies in broadening the
scope of dynamical systems / time-series data that can be analyzed based on
the theory of the Koopman operator. To this end, we developed several tech-
niques that are based on the methodologies often utilized in machine learn-
ing researches, such as nonnegative decomposition, Bayesian modeling, and
neural networks. In the remaining chapters of this dissertation, we introduce
four distinct topics, as summarized in the following.

In Chapter 2, we suggest to impose nonnegativity and sparsity on the
estimated dynamic modes. This is motivated by application of DMD to
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video streams, where signals are inherently nonnegative, and thus nonneg-
ative dynamic modes can be inspected more easily. We achieve such con-
strained/regularized DMD by reformulating it as an optimization problem.

In Chapter 3, we propose a probabilistic model corresponding to DMD
and develop a procedure for Bayesian posterior inference on dynamic modes,
values of eigenfunctions, and eigenvalues. This probabilistic/Bayesian for-
mulation enables us not only to conduct the posterior inference, but also to
consider DMD’s extension in the unified manner of Bayesian. We introduce
an example of such extension, in which a sparsity-promoting prior is put on
dynamic modes to determine the number of dynamic modes automatically
from data.

In Chapter 4, we expand the scope of time-series data which DMD can
deal with. In particular, we focus on datasets generated from a random dy-
namical system and contaminated with observation noise. Existence of either
of the process noise and the observation noise does not matter in existing
DMD algorithms. However, if both of the process and observation noises
are present, no existing method can correctly approximate the spectra of the
stochastic Koopman operator. We therefore propose a method that considers
process and observation noises explicitly.

In Chapter 5, we tackle the fundamental but most nontrivial assumption
of DMD, i.e., the data generated from a Koopman invariant subspace (As-
sumption 1.3). Our idea is to learn a set of observables that spans a Koopman
invariant subspace from data. We also show the implementation of this idea
using neural networks.

This dissertation is concluded in Chapter 6 with discussion on remaining
technical challenges to be elaborated.
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Chapter 2

Sparse nonnegative DMD

2.1 Introduction

Image and video processing is one of the most active areas of signal process-
ing research. DMD can be a useful tool for video processing because it can
extract a set of modes from time-series according to their dynamical charac-
teristics, i.e., temporal decay rates and frequencies. In fact, Kutz et al. (2015)
utilized DMD for background/foreground separation of video streams by
extracting static low-frequency dynamic modes as the background. In addi-
tion, Erichson et al. (2016) proposed the use of DMD with compressed sens-
ing for the fast background separation of video streams.

For video processing, DMD becomes more attractive if it can compute
dynamic modes that take nonnegative values because such modes can be eas-
ily inspected and understood due to the inherent nonnegativity of video
data. Moreover, obtaining sparse part-based dynamic modes is important for
a meaningful representation of video streams. While there have been pro-
posed many algorithmic variants of DMD that impose a low-rank constraint
or approximation (Chen et al., 2012; Wynn et al., 2013; Jovanović et al., 2014;
Dicle et al., 2016; Héas and Herzet, 2017), none of them can explicitly impose
other constraints and/or regularizations such as nonnegativity and sparsity
on the structures of the estimated dynamic modes.

In this chapter, we propose to reformulate DMD as a block-multiconvex
optimization problem so as to impose the nonnegativity constraint and the
sparsity regularization on dynamic modes. Using the proposed sparse non-
negative version of DMD, we can decompose a video stream into part-based
modes as shown in Section 2.4. This is analogous to the well-known results
of the part-based image decomposition by nonnegative matrix factorization
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(NMF) (Lee and Seung, 1999), but an important difference of DMD from
NMF is that DMD extracts modes related to the dynamics behind data.

The remainder of this chapter is organized as follows. In Sections 2.2 and
2.3, the details of the proposed method are described. In Section 2.4, the
experimental results with the proposed method are shown. A summary of
this chapter is provided in Section 2.5.

2.2 Reformulation as a block-multiconvex problem

We reformulate DMD as a block-multiconvex optimization problem, which
enables us to impose constraints and regularizations directly on the struc-
tures of the estimated dynamic modes. To this end, we use the polar-coordinate
expression for dynamic modes w ∈ Cn and eigenvalues λ ∈ C, i.e.,

[wi]d = qi,d exp(jθi,d), qi,d, θi,d ∈ R,

λi = ri exp(jφi), ri, φi ∈ R,
(2.1)

where j is the imaginary unit, and [wi]d denotes the d-th element of wi. Us-
ing the polar-coordinate expression, we can perform an optimization for real
numbers. Moreover, suppose that we prepare n′ dynamic modes for approx-
imating the original dataset. Then, in order to construct an optimization
problem corresponding to DMD, we use the following matrix-form repre-
sentation:

W = Q�Θ, [Q]i,d = qi,d, [Θ]i,d = exp(jθi,d),

Λv = R�Φ, [R]i,t = rti , [Φ]i,t = exp(jtφi),

for i = 1, . . . , n′, d = 1, . . . , n, t = 0, . . . ,m,

(2.2)

where � denotes the element-wise multiplication. Here,

W =
[
w1 · · · wn′

]
∈ Cn×n′ , and

Λv =


1 λ1 λ2

1 · · · λm1

1 λ2 λ2
2 · · · λm2

...
...

...
...

1 λn′ λ2
n′ · · · λmn′

 .

Note that Λv is called a Vandermonde matrix because of its structure.
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Now remember that the decomposition of DMD should take the form of
Eq. (1.18). Consequently, the objective function to be minimized here is

`(q, θ, r, φ;Y ) =
1

2
‖Y −WΛv‖2

F

=
1

2
tr
(
Y HY − Y HWΛv −ΛH

vW
HY + ΛH

vW
HWΛv

)
,

(2.3)

where Y is the full-data matrix defined as

Y =
[
y0 · · · ym

]
∈ Cn×(m+1). (2.4)

Since ` is a block-multiconvex function (Xu and Yin, 2013) with regard to
q, θ, r, and φ, its local minimum is easily obtained by a block coordinate
descent. The pseudocode is shown in Algorithm 2.1. The update of each
block (at Lines 3–6) can be performed with any solver, and we used the L-
BFGS method (Liu and Nocedal, 1989) with gradients of ` as follows:

∂h

∂qi,d
= −Re

[
DΛH

v

[
Θ̄
]
i,d

]
i,d
,

∂h

∂θi,d
= − Im

[
DΛH

v

[
Θ̄
]
i,d

]
i,d

[Q]i,d ,

∂h

∂ri
= −Re

[
tr
(
DTW̄

(
Oi � Φ̄

))]
,

∂h

∂φi
= − Im

[
tr
(
DTW̄

(
R�Mi � Φ̄

))]
,

whereD = Y −WΛv. Oi andMi are matrices whose elements except those
in the i-th rows are zero. That is,

Oi =



0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

0 1 2ri · · · mrm−1
i

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0


∈ Rn′×(m+1), (2.5)
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Algorithm 2.1: DMD as a block-multiconvex problem
Data: full-data matrix defined in Eq. (2.4) and the number of modes n′

Result: dynamic modes q, θ and eigenvalues r, φ
1 q0, θ0, r0, φ0 ← initialization using standard DMD;
2 for k = 1, 2, . . . do
3 qk ← arg minq `(q, θk−1, rk−1, φk−1;Y );
4 θk ← arg minθ `(qk, θ, rk−1, φk−1;Y );
5 rk ← arg minr `(qk, θk, r, φk−1;Y );
6 φk ← arg minφ `(qk, θk, rk, φ;Y );
7 if converge then return qk, θk, rk, φk;
8 end

and

Mi =



0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

0 j 2j · · · mj

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0


∈ Rn′×(m+1). (2.6)

2.3 Sparse nonnegative DMD

Based on the reformulation above, we can impose constraints and/or reg-
ularizations directly on variables q, θ, r, and φ. Our purpose is formulating
sparse nonnegative DMD (SN-DMD) by imposing the nonnegativity constraint
and the L1 regularization1 on the dynamic modes, i.e., q is constrained to be
nonnegative, θ is fixed to be zero, and a regularization term γ|q| is introduced
into the objective function. Formally, the new objective function ˆ̀is given as

ˆ̀(q, r, φ;Y ) = `(q, 0, r, φ;Y ) + γ

n′∑
i=1

n∑
d=1

|qi,d|+ Iq≥0(q), (2.7)

1It is known that the nonnegativity itself encourages the sparsity in the setting of NMF
(Lee and Seung, 1999), but in our case, we need the explicit L1 regularization because of the
presence of the imaginary part.
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Algorithm 2.2: Sparse nonnegative DMD
Data: full-data matrix defined in Eq. (2.4) and the number of modes n′

Result: dynamic modes q and eigenvalues r, φ
1 q0, θ0, r0, φ0 ← initialization using standard DMD;
2 θ0 ← 0;
3 for k = 1, 2, . . . do
4 qk ← arg minq ˆ̀(q, rk−1, φk−1;Y );
5 rk ← arg minr ˆ̀(qk, r, φk−1;Y );
6 φk ← arg minφ ˆ̀(qk, rk, φ;Y );
7 if converge then return qk, rk, φk;
8 end

where ` is defined in Eq. (2.3), γ is a regularization parameter, and Iq≥0(q) is
an indicator function such that

Iq≥0(q) =

0 (q ≥ 0)

+∞ (q < 0).

The pseudocode for SN-DMD using the block coordinate descent is shown
in Algorithm 2.2. To solve the update step at Line 4, we utilize the proxi-
mal Newton-type method with an L-BFGS Hessian approximation (Lee et al.,
2014). The updates of the other quantities (at Lines 5–6) are computed in the
same manner as in Algorithm 2.1.

Note that there is an interesting similarity between the formulation of SN-
DMD and that of the complex NMF (Kameoka et al., 2009) as follows. First,
let us rewrite the decomposition performed by DMD using the polar expres-
sion in Eq. (2.1), with the nonnegativity constraint on the dynamic modes
(q ≥ 0, θ = 0):

[yt]d =
n′∑
i=1

qi,dr
t
ie
jtφi , qi,d ≥ 0.

On other hand, the formulation of the complex NMF is like

[yt]d =
n′∑
i=1

hi,dut,ie
jϕd,t,i , hi,d ≥ 0, ut,i ≥ 0,

where h and u are some nonnegative bases. Comparing the above two formu-
lations, one could notice that the proposed method is regarded as a variant
of the complex NMF, with special structures ut,i = rti (while the nonnega-
tivity of u is lost) and ϕd,t,i = tφi. Because the nonnegativity of u is lost in
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SN-DMD, the explicit sparse regularization becomes more important than in
the complex NMF.

2.4 Experiments

In this section, we show the results of two experiments: one is with a syn-
thetic dataset and the other is with a real-world dataset.

2.4.1 Mode extraction from noisy data

To quantitatively investigate the performance of SN-DMD, we conducted an
experiment with synthetic data as follows. First, we generated a sequence of
noisy images {yt ∈ R64×64} by the following equations for t = 0, . . . , 15:

zt = 0.99tw1 + 0.9tw2, yt = zt + et,

where w1,w2 ∈ R64×64 were basis images shown in Figure 2.1f (w1 on the
left and w2 on the right), and {et} was a noise sequence whose element was
generated independently by a zero-mean Gaussian with variance 10−2. Obvi-
ously the dynamic modes of the noise-free sequence {zt} arew1 andw2 with
eigenvalues 0.99 and 0.9, respectively. However, it is not trivial how accurate
we can estimate these dynamic modes and eigenvalues from noisy sequence
{yt}.

We input the noisy sequence to standard DMD (Algorithm 1.2, referred
to as standard), total-least-squares DMD ((Dawson et al., 2016), referred
to as total-ls), DMD as the block-multiconvex problem (Algorithm 2.1,
referred to as optimization), and the proposed method (Algorithm 2.2)
with n′ = 2. The proposed method is applied with two settings: one with
only the nonnegativity (referred to as nonneg) and the other with both the
sparsity and the nonnegativity (referred to as sparse-nonneg). We set γ =

1 without any intensive search.

The estimation results are shown in Figure 2.1 and Table 2.2. The pro-
posed method, sparse-nonneg, gives the best estimation among the meth-
ods listed above, in the sense that the estimated dynamic modes (Figure 2.1e)
are not contaminated with much noise and the estimated eigenvalues are the
most accurate. Comparing the results of nonneg and those of sparse-nonneg,
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(a) standard (b) total-ls

(c) optimization (d) nonneg

(e) sparse-nonneg (f) ground truth

FIGURE 2.1: (a–e) Estimated and (f) true dynamic modes (best
viewed on a display). The left of each panel corresponds to w1

and the right corresponds to w2.

FIGURE 2.2: Estimated and true eigenvalues.

λ1 λ2

standard 0.967 0.805
total-ls 0.969 0.825
optimization 0.967 0.805
nonneg 0.977 0.770
sparse-nonneg 0.996 0.891

ground truth 0.990 0.900
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FIGURE 2.3: Values of the objective function (2.7) along the itera-
tions of the block coordinate descent.

we can suppose that the sparsity plays an important role for estimation ac-
curacy. Moreover, the values of the objective function (2.7) along the number
of iterations in Algorithm 2.2 are plotted in Figure 2.3. We can confirm that
the objective function rapidly decreased and converged within the first ∼10
iterations in the block coordinate descent.

2.4.2 Extraction of part-based dynamic modes

We conducted another experiment using a real-world video dataset. If we
apply DMD to a video stream, we can expect that it will be decomposed
into multiple modes with different temporal frequencies, wherein the “zero-
frequency” mode corresponds to the background and the other modes to the
foreground. The background/foreground separation has been studied inten-
sively so far. One of the popular solutions is the low-rank/sparse decompo-
sition such as robust PCA (RPCA) (Candés et al., 2011). Moreover, Kutz et
al. (Kutz et al., 2015) directly utilized DMD for this task. Here, note that the
advantage of DMD is that it can distinguish not only the background and
foreground, but also the components within the foreground according to their
temporal frequencies. We address the task of foreground decomposition by
SN-DMD.
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We used AVSS AB Hard dataset (IEEE International Conference on Ad-
vanced Video and Signal based Surveillance, 2007), which was a surveillance
video of a platform with moving people and trains. As a preprocessing, we
trimmed the first 251 frames of the original sequence that were showing a
title credit, resized each frame into 192 × 240 pixels and extracted the first
150 frames as a dataset. The example frames are shown in Figure 2.4. To this
dataset, we applied RPCA by fast principal component pursuit (Rodriguez
and Wohlberg, 2013), standard DMD (Algorithm 1.2), and SN-DMD (Algo-
rithm 2.2). The DMDs are computed with the specified number of modes
n′ = 7, and the regularization parameter was set γ = 1 without any intensive
search.

The results are shown in Figure 2.5. The time-averages of the low-rank
and sparse components extracted by RPCA are shown in Figure 2.5a, and the
dynamic modes and temporal frequencies2 extracted by DMDs are shown in
Figures 2.5b and 2.5c. From the viewpoint of background/foreground sep-
aration, the background was successfully extracted as the low-rank compo-
nent by RPCA and the zero-frequency dynamic modes by DMDs. In con-
trast, the other modes (the sparse component by RPCA and the nonzero-
frequency dynamic modes) correspond to non-static parts of the video, i.e.
the foreground. As can be seen, peaks (white regions) of the foreground
modes correspond to the regions where some moving objects passed. In Fig-
ure 2.5c, the nonzero-frequency dynamic modes by SN-DMD are part-based
in the sense that, for example, 0.094Hz-mode represents a standing person
whereas 0.283Hz-mode represents the train and some other people. On the
other hand, in Figure 2.5b, the nonzero-frequency dynamic modes by stan-
dard DMD have less distinctive spatial features; e.g., the region correspond-
ing to the train is activated both in 0.094Hz-mode and in 0.283Hz-mode.

2.5 Summary

In this chapter, we have reformulated DMD as an optimization problem and
proposed sparse nonnegative DMD (SN-DMD), which directly imposes the
sparsity regularization and the nonnegativity constraint on the structures of
the estimated dynamic modes. In particular, we exemplified that SN-DMD

2Frequency ˆ̀ [Hz] is calculated by f = Im(log λ)/(2π∆t) with (discrete-time) eigenvalue
λ and time interval ∆t [sec] between frames.
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could decompose a video with multiple moving objects into a set of part-based
dynamic modes, which is analogous to the well-known results of NMF (Lee
and Seung, 1999).

There remain several points to be elaborated or improved. One is the
optimization procedure. We relied on the block coordinate descent whose
blocks use (proximal) L-BFGS in this work, but more efficient methods can
be applied according to the property of the loss function. Also, based on the
proposed formulation, it is possible to impose more complex regularizations
and constraints. For example, structured regularizations like fused-lasso and
group-lasso will be effective for highly-structured data.
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FIGURE 2.4: Summary of the first 180 frames (7.2 secs) of AVSS
AB Hard dataset (IEEE International Conference on Advanced
Video and Signal based Surveillance, 2007). Displayed every 15
frames, i.e., 0.6 secs.



34 Chapter 2. Sparse nonnegative DMD

low-rank sparse

(a) RPCA

0.000 [Hz] 0.094 [Hz]

0.283 [Hz] 0.534 [Hz]

(b) standard DMD

0.000 [Hz] 0.094 [Hz]

0.283 [Hz] 0.534 [Hz]

(c) SN-DMD

FIGURE 2.5: Modal decomposition of AVSS AB Hard dataset
video (IEEE International Conference on Advanced Video and
Signal based Surveillance, 2007). The upper panel of (a) and the
upper-left panel of (b,c) correspond to the static part (i.e., back-
ground) of the video. The other panels correspond to the moving
part (i.e., foreground).
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Chapter 3

Probabilistic and Bayesian DMD

3.1 Introduction

Dynamic mode decomposition (DMD) (Rowley et al., 2009; Schmid, 2010; Kutz
et al., 2016a) has been attracting attention in various fields of science and
engineering as an approach for the above purpose that works without ex-
plicit knowledge on the governing equations. DMD generates modes that
are directly related to the dynamics behind the data, and thus, these modes
are a useful tool for the diagnostics of complex dynamic phenomena. In-
sofar, several algorithmic variants of DMD have been utilized according to
given datasets or purposes. However, most of these variants are determin-
istic (i.e., lack corresponding probabilistic models), and thus it could be dif-
ficult to incorporate uncertainty in data into the analysis. Building a proba-
bilistic model for DMD enables us to treat the data statistically and consider
observation noises explicitly, as well as to enrich the DMD techniques sys-
tematically by modifying the involved probabilistic distributions.

In this chapter, we propose extensions of DMD, which provide a princi-
pled way to transfer the advantages of the probabilistic and Bayesian formu-
lations into DMD. To this end, we first develop a probabilistic model corre-
sponding to DMD (probabilistic DMD), whose maximum-likelihood estima-
tor coincides with the solution of DMD. Then, we provide the formulation of
Bayesian DMD and the corresponding Gibbs sampler for posterior inference.
Also, we can consider variants of DMD within the unified Bayesian frame-
work by modifying the priors of Bayesian DMD. In particular, we discuss the
case of using a sparsity-promoting prior for dynamic modes, which allows
us to automatically determine the number of modes in the light of data. Note
that the ideas of these extensions of DMD are similar to those of probabilistic
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PCA (Tipping and Bishop, 1999), Bayesian PCA (Bishop, 1999), and sparse
PCA (Guan and Dy, 2009) as extensions of PCA.

The remainder of this chapter is organized as follows. The probabilis-
tic model for DMD is described in Section 3.2, and based on that model,
Bayesian DMD is introduced in Section 3.3. In Section 3.4, several related
studies are briefly introduced. In Section 3.5, we show the experimental re-
sults with synthetic and real-world datasets. A summary of this chapter is
provided in Section 3.6.

3.2 Probabilistic DMD

We develop a probabilistic model motivated by DMD, i.e., Eqs. (1.16) and
(1.17). The maximum-likelihood estimator (MLE) of this model coincides
with the solution of DMD in the no-noise limit. As will be described in Sec-
tion 3.3, this probabilistic model forms the foundation for Bayesian DMD.

3.2.1 Generative model

Let y`,j ∈ Cn be the j-th column of Y` in Eq. (1.14) plus observation noise, for
` = 0, 1.1 Following the relations in Eqs. (1.16) and (1.17), the probabilistic
DMD model for such data can be given by

y0,j | ϕ1,j, . . . , ϕk,j ∼ CN

(
k∑
i=1

ϕi,jwi, σ
2I

)
,

y1,j | ϕ1,j, . . . , ϕk,j ∼ CN

(
k∑
i=1

λiϕi,jwi, σ
2I

)
,

(3.1)

where we assume that the observation noise is Gaussian, and CN (µ, σ2I)

is the complex Gaussian distribution (Goodman, 1963) whose density is de-
fined as

CN (µ, σ2I) =
1

πnσ2n
exp

(
− 1

σ2
(y − µ)H(y − µ)

)
. (3.2)

1The usage of letter y here may violate the original definition in Eq. (1.14), but we use
y`,j to denote the noise-contaminated snapshots. Also note that we use j instead of t for
indexing the snapshots.
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Here, w1:k, λ1:k, and σ2 are the parameters to be estimated (λ1:k denotes a set
{λ1, . . . , λk}), and k is the tunable hyperparameter that determines the num-
ber of modes (usually k ≤ n). In addition, we treat ϕi,j as a latent variable
with the standard Gaussian prior

ϕi,j ∼ CN (0, 1). (3.3)

3.2.2 Maximum-likelihood estimator

To derive the MLE of probabilistic DMD, let us rewrite likelihood (3.1) in a
matrix form, i.e.,

yj | ϕj ∼ CN
(
Bϕj, σ

2I
)
, (3.4)

where we use notations as follows:

yj =

[
y0,j

y1,j

]
, (3.5)

ϕj =
[
ϕ1,j . . . ϕk,j

]T
, (3.6)

B =

[
W

WΛ

]
, (3.7)

W =
[
w1 . . . wk

]
, (3.8)

Λ = diag(λ1, . . . , λk). (3.9)

Marginalizing out ϕwith prior (3.3), we have

yj ∼ CN
(
0, BBH + σ2I

)
. (3.10)

In the following, we describe the relationship between probabilistic model (3.10),
total-least-squares DMD (Dawson et al., 2016), which is a “noise-aware” vari-
ant of DMD, and standard DMD (Algorithm 1.1 or 1.2). In short, their esti-
mation results coincide in the no-noise limit.

Theorem 3.1. Suppose we have a dataset that is possibly contaminated by observa-
tion noises E:

Ŷ` = Ȳ` +E` =
[
y`,1 · · · y`,m

]
, for ` = 0, 1,
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and let Ŷ =
[
Ŷ T

0 Ŷ T
1

]T
and Σy = m−1Ŷ Ŷ H. In addition, let (σ2)?, W ? and

Λ? be the MLEs of Eq. (3.10) given Ŷ . If k = n, then the columns of W ? and the
elements of diag(Λ?) coincide with the dynamic modes and eigenvalues obtained by
total-least-squares DMD, respectively.

Proof. Following the derivations in Tipping and Bishop (1999), the MLEs for
probabilistic model (3.10) are given as

(σ2)? =
1

2n− k

2n∑
i=k+1

µi, (3.11)

B? =

[
W ?

W ?Λ?

]
= Uk(Mk − (σ2)?I)

1
2R, (3.12)

with Uk =
[
u1 . . . uk

]
and Mk = diag(µ1, . . . , µk), where µi is the i-th

largest eigenvalue of Σy with corresponding eigenvector ui, and R is an ar-
bitrary unitary matrix. If k = n, we have

W ?Λ?(W ?)−1 = U1,nU
−1
0,n, (3.13)

where U0,n comprises the first n rows and U1,n comprises the last n rows of
Un. Hence the columns of W ? and the elements of diag(Λ?) are obtained
by the eigendecomposition of U1,nU

−1
0,n , which is exactly the same procedure

with the one in total-least-squares DMD (Dawson et al., 2016).

Theorem 3.2. If Y0 and Y1 are linearly consistent (Tu et al., 2014b), and there is
no observation noise (i.e., E = 0), then the estimation results of total-least-squares
DMD coincides with those of standard DMD (Algorithm 1.1 or 1.2).

Proof. From the definition of the linear consistency (Tu et al., 2014b), when
there is no observation noise, rank(Σy) = n. Hence, m−

1
2 Ŷ = UnM

1
2
n V H

n (Vn
is comprising first n right singular vectors of m−

1
2 Ŷ ). Consequently,

Ŷ1Ŷ
†

0 = U1,nM
1
2
n V

H
n

(
VnM

− 1
2

n U−1
0,n

)
= U1,nU

−1
0,n, (3.14)

which shows the equivalence of the outputs of total-least-squares DMD and
standard DMD.
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FIGURE 3.1: Graphical model of Bayesian DMD.

3.3 Bayesian DMD

For the Bayesian treatment of DMD, we consider the following priors on the
parameters in probabilistic model (3.1). First, we put a Gaussian prior on
w1:k:

wi | v2
i,1:n ∼ CN

(
0, diag

(
v2
i,1, . . . , v

2
i,n

))
(3.15)

with an inverse gamma hyperprior on v2
i,d (d = 1, . . . , n):

v2
i,d ∼ InvGamma (αv, βv) , (3.16)

whose shape parameter is αv and rate parameter is βv. Moreover, we consider
priors on λ1:k and σ2 as

λi ∼ CN (0, 1) , (3.17)

σ2 ∼ InvGamma (ασ, βσ) . (3.18)

A graphical model of the resulting Bayesian DMD is shown in Figure 3.1.

3.3.1 Posterior inference by Gibbs sampling

The conditional probabilistic distribution on each latent variable in the above
model becomes a complex Gaussian or an inverse gamma distribution and
thus is easy to sample. Consequently, we can develop a Gibbs sampler for
inferring the latent variables. In the sequel, we use the following notations:

ξ−i,j = y0,j −
∑
i′ 6=i

ϕi′,jwi′ , (3.19)

η−i,j = y1,j −
∑
i′ 6=i

λi′ϕi′,jwi′ . (3.20)
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The sampling procedures of the Gibbs sampler are summarized in Algo-
rithm 3.1. In the following, λ̄ denotes the complex conjugate of λ, and [wi]d
denotes the d-th element of wi. In our implementation, the hyperparameters
α and β were set to 10−3.

Algorithm 3.1 (Gibbs sampling for Bayesian DMD).

(1) Sample w1:k from CN (mwi
,P−1

wi
) with

Pwi
= diag

(
v−2
i,1 , . . . , v

−2
i,n

)
+

(1 + |λi|2)
∑

j |ϕi,j|2

σ2
I,

mwi
= P−1

wi

1

σ2

∑
j

ϕ̄i,j
(
ξ−i,j + λ̄iη−i,j

)
.

(2) Sample v2
1:k,1:n from InvGamma

(
av2i,d , bv2i,d

)
with

av2i,d = αv + 1, bv2i,d = βv + | [wi]d |
2.

(3) Sample λ1:k from CN (mλi , p
−1
λi

) with

pλi = 1 +
wH
i wi

σ2

∑
j

|ϕi,j|2, mλi =
wH
i

pλiσ
2

∑
j

ϕ̄i,jη−i,j.

(4) Sample ϕ1:m from CN (mϕj
,P−1

ϕj
) with

Pϕj
= I +

1

σ2

(
W HW + Λ̄W HWΛ

)
,

mϕj
= P−1

ϕj

1

σ2

(
W Hy0,j + Λ̄W Hy1,j

)
.

(5) Sample σ2 from InvGamma(aσ2 , bσ2) with

aσ2 = ασ + 2mn,

bσ2 = βσ +
∑
j

(y0,j −Wϕj)
H (y0,j −Wϕj)

+
∑
j

(y1,j −WΛϕj)
H (y1,j −WΛϕj) .

(6) Repeat (1)–(5) for a sufficient number of iterations.
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3.3.2 Sparsity-promoting prior

One of the difficulties when applying DMD to noisy data in practice lies in
determination of the effective number of dynamic modes. Jovanović et al.
(2014) proposed sparsity-promoting DMD, in which the number of dynamic
modes are determined by a lasso-like post-processing. In this work, we de-
velop a Bayesian approach for automatic determination of the number of dy-
namic modes using a sparsity-promoting prior. Differently from the method
based on a lasso-like post-processing (Jovanović et al., 2014), this approach
works without manual tuning of hyperparameters through the empirical
Bayes technique.

Following the approach proposed by Park and Casella (2008), we incor-
porate the two-level Laplacian prior on dynamic modes w1:k. That is, we
replace prior (3.15) and hyperprior (3.16) respectively by

wi | v2
i,1:n ∼ CN

(
0, σ2 diag

(
v2
i,1, . . . , v

2
i,n

))
, and (3.21)

v2
i,d ∼ Exponential

(
γ2
i

2

)
(3.22)

with new hyperparameters γ1:k. They change the parameters of the condi-
tional distributions for w1:k and σ2 (at Steps (1) and (5) in Algorithm 3.1) as
follows:

Pwi
=

1

σ2
diag

(
v−2
i,1 , . . . , v

−2
i,n

)
+

(1 + |λi|2)
∑

j |ϕi,j|2

σ2
I, (3.23)

aσ2 = ασ + 2mn+
1

2
kn, (3.24)

bσ2 = βσ +
∑
j

(y0,j −Wϕj)
H (y0,j −Wϕj)

+
∑
j

(y1,j −WΛϕj)
H (y1,j −WΛϕj) +

∑
i,d

| [wi]d |2

2v2
i,d

. (3.25)

Further, the distribution for v2
1:k,1:n (at Step 2) becomes the generalized inverse
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Gaussian distribution (see e.g. Devroye (2014)) with the following parame-
ters:

av2i,d = γ2
i , (3.26)

bv2i,d =
| [wi]d |2

σ2
, (3.27)

pv2i,d =
1

2
. (3.28)

To draw a sample from the generalized inverse Gaussian distribution, we
used an efficient sampler proposed by Devroye (2014).

Empirical Bayes for hyperparameter The set of hyperparameters γ1:k needs
to be chosen appropriately for successful model selection. We determine it
by maximizing the marginal likelihood, since we empirically found that this
was more stable than using gamma distribution as a hyperprior for γ1:k. We
use a Monte Carlo EM algorithm (Casella, 2001), which comprises iterations
between the Gibbs sampling with the modified parameters (E-step) and the
maximization of the marginal likelihood (M-step) by

γ
(Q)
i =

√√√√2n

(∑
d

E
γ
(Q−1)
i

[
v2
i,d

])−1

,

where γ(Q)
i denotes the hyperparameter at the Q-th iteration of the EM, and

E
γ
(Q−1)
i

[·] denotes the expectation under the hyperparameter at the previous
iteration.

3.4 Related work

While no previous work incorporates the probabilistic and Bayesian point
of view to DMD, several studies elaborated on the effects of the observation
noise; Duke et al. (2012) and Pan et al. (2015) conducted error analyses on
the outputs of DMD, and there is a line of research on low-rank approxima-
tion of DMD (Chen et al., 2012; Wynn et al., 2013; Jovanović et al., 2014; Dicle
et al., 2016; Héas and Herzet, 2017), with which we can mitigate the noise by
ignoring insignificant components of data. In addition, Dawson et al. (2016)
proposed total-least-squares DMD, which explicitly considered the presence
of observation noise in datasets by formulating DMD as a total least-squares
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problem. Note that, in Theorem 3.1, we have shown that the MLE of prob-
abilistic DMD coincides with the solution of total-least-squares DMD. Also,
Bagheri (2014) investigated effects of process noise (rather than observation
noise) on the output of DMD.

3.5 Numerical examples

We conducted experiments to demonstrate the performance of Bayesian DMD
(termed BDMD in this section) regarding the tolerance to noise, the posterior
inference, and the automatic determination of the number of modes. In ad-
dition, we examined the applications of BDMD to dimensionality reduction
and time-series denoising tasks.

3.5.1 Estimation from noisy observations

We validated the performance of BDMD on two types of noisy datasets: one
was obtained from a limit cycle, and the other was generated from a system
with damping modes.

Limit cycle

We generated data from the discrete-time Stuart–Landau equation in polar-
coordinates:

rt+1 = rt + ∆t(µrt − r3
t ),

θt+1 = θt + ∆t(γ − βr2
t ),

(3.29)

and the noisy observable (i is the imaginary unit here):

yt =
[
e−2iθt e−iθt 1 eiθt e2iθt

]T
+ et, (3.30)

where each element of et was sampled independently from zero-mean Gaus-
sian with variance 10−4. The Stuart–Landau equation contains a limit cycle at
r =
√
µ. We set the parameters by µ = 1, γ = 1, β = 0, ∆t = 0.01, r0 =

√
µ,

and θ0 = 0, generated 10,000 snapshots, and fed them into standard DMD
(Algorithm 1.2), total-least-squares DMD (TLS-DMD) (Dawson et al., 2016),
and BDMD (with k = 5). The estimated eigenvalues are plotted in Figure 3.2
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FIGURE 3.2: Eigenvalues estimated for the Stuart–Landau equa-
tion. Following a convention, log(λ)/∆t is plotted. In this scale,
the true eigenvalues lie on the imaginary axis since the data are
periodic. The ellipse denotes the 95% credible interval of the sam-
ples generated from the Gibbs sampler of BDMD, for each eigen-
value.

wherein the ellipses denote the 95% credible interval of the samples gener-
ated from the Gibbs sampler of BDMD, for each eigenvalue. While there is
the bias on the estimation by standard DMD due to the observation noise,
the estimations by TLS-DMD and BDMD coincide, which agrees with The-
orem 3.1. Note that one of the advantages of BDMD is that it returns the
posterior distribution of the parameters, instead of the point estimation like
TLS-DMD.

Damping modes

We also investigated the performance for identifying damping modes, i.e.,
modes that decay rapidly over time. Generally, it is more difficult to identify
damping modes than to identify modes in a limit cycle. The dataset was
generated by

yt = λt1

[
2 2

]T
+ λt2

[
2 −2

]T
+ et, (3.31)

where et was zero-mean Gaussian noise with different variances σ2 (σ =

0, 0.05, 0.1, 0.15, 0.2, 0.25), and we set λ1 = 0.9 and λ2 = 0.8 as the eigen-
values. We compared the performances of standard DMD, TLS-DMD, and
BDMD (with k = 2). A typical instance of the results is depicted in Figure 3.3
wherein the box plots show the statistics of the samples generated from the
Gibbs sampler of BDMD. The sample medians of BDMD and the estimations
by TLS-DMD lie near, and both are more accurate than the estimations by
standard DMD. In addition, we ran 100 trials on the same type of datasets
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generated with different random seeds. In Table 3.1, the averages of the ab-
solute errors of estimated eigenvalues are listed. We can observe that the
point-estimate performance of BDMD is comparable to that of TLS-DMD.

3.5.2 Automatic relevance determination

We conducted an experiment to investigate how well BDMD can determine
the number of modes automatically. We generated a dataset by

yt = A


0.9t

0.7t

0

0

+ et,

A =


0 −5 0 0

2 −4 0 0

3 −3 0 0

4 0 0 0

 ,
(3.32)

where et was zero-mean Gaussian noise with variance 10−4. For determining
the number of modes given noisy datasets, standard DMD (Algorithm 1.2)
may utilize the truncation of small singular values at the SVD step, but the
truncation threshold is not trivial in practice. Sparsity-promoting DMD (SP-
DMD) (Jovanović et al., 2014) uses a lasso-like post-processing for automatic
determination of the number of modes, but it still requires to tune the reg-
ularization parameter. However, BDMD with the sparsity-promoting prior
(termed BDMD-sp hereafter) can automatically determine the number of modes
and the hyperparameter in the light of data inherently, without any need for
manual tuning.

We applied standard DMD, SP-DMD (with γ = 10 tuned to give the best
results), and BDMD-sp (with k = 4) to the above-mentioned data. As for
BDMD-sp, we adopted the medians of the samples generated from the Gibbs
sampler as the point estimation values. A typical instance of the results is
depicted in Figure 3.4 wherein the structures of the true modes (matrix A)
and the estimated modes are shown. In this case, SP-DMD and BDMD-sp
successfully recover the structure of dynamic modes. Furthermore, we ran
100 trials with the same type of datasets generated with different random
seeds, varying the number of snapshots fed into the algorithms fromm = 4 to
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FIGURE 3.3: Estimated values of (left) λ1 and (right) λ2, for each
noise magnitude σ. The box plots show the statistics of the sam-
ples from the Gibbs sampler of BDMD (the red lines denote the
sample medians).

TABLE 3.1: Averages (and the standard deviations) of the abso-
lute errors of estimated (upper) λ1 and (lower) λ2 over 100 trials
for each noise magnitude σ. As for BDMD, the medians of the
samples from the Gibbs sampler were adopted as point estima-
tion values.

|∆λ1|
σ

.00 .05 .10 .15 .20 .25

DMD .00
(.00)

.01
(.01)

.03
(.01)

.04
(.01)

.05
(.01)

.06
(.02)

TLS-DMD .00
(.00)

.01
(.01)

.02
(.01)

.03
(.03)

.04
(.03)

.07
(.05)

BDMD .00
(.00)

.02
(.01)

.02
(.01)

.01
(.01)

.01
(.01)

.02
(.02)

|∆λ2|
σ

.00 .05 .10 .15 .20 .25

DMD .00
(.00)

.03
(.02)

.09
(.04)

.20
(.09)

.27
(.11)

.38
(.15)

TLS-DMD .00
(.00)

.02
(.01)

.03
(.02)

.05
(.03)

.06
(.03)

.06
(.05)

BDMD .00
(.00)

.04
(.02)

.04
(.02)

.04
(.02)

.03
(.02)

.07
(.10)



3.5. Numerical examples 47

1 2 3 4
(a) ground truth

1 2 3 4
(b) DMD

1 2 3 4
(c) SP-DMD

1 2 3 4
(d) BDMD

1 2 3 4
(e) BDMD-sp

FIGURE 3.4: True and estimated dynamic modes in each column.
The filled square denotes a positive value, and the empty denotes
a negative value. The size of the square corresponds to the abso-
lute value of each element.
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FIGURE 3.5: Averages of the RMSEs of estimated dynamic modes
over 100 trials for each number of snapshots.

9. We investigated root-mean-square errors (RMSEs) between the estimated
and the true modes, which were calculated after normalizing the maximum
absolute values and sorting the order of the modes. The results are summa-
rized in Figure 3.5 wherein the averages (and the standard deviations) of the
RMSEs are plotted. We can see that BDMD-sp achieves smaller errors than
SP-DMD does.

3.5.3 Applications

We show two examples of BDMD applications: the dimensionality reduction
and the time-series denoising.

Dimensionality reduction

BDMD-sp provides a way for dimensionality reduction of time-series data,
since it can concentrate their information on a small number of dynamic
modes. To demonstrate the performance, we address the task of data vi-
sualization using BDMD-sp on the motion capture data of human activities.2

We chose locomotion data of three subjects (Subjects #2, #16 and #35), for
which both “walk” and “run/jog” motions were recorded. We concatenated
the recordings of “walk” and “run/jog” of the three subjects and subsampled
them by 1/4, finally obtaining 62-dimensional 421 measurements.

2Downloaded from http://mocap.cs.cmu.edu/ (retrieved 20-Nov-2017).

http://mocap.cs.cmu.edu/
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The results of the dimensionality reduction by PCA, t-SNE (van der Maaten
and Hinton, 2008), and BDMD-sp (with k = 32) are plotted in Figure 3.6. As
for PCA, we plot only the first and the second principal scores, since the char-
acteristics of the first eight principal scores were all similar. As for BDMD-
sp, we focus on latent variable ϕ corresponding to the dynamic mode of the
largest magnitude and plot the medians of its samples generated from the
Gibbs sampler. Now let us elaborate on the features of the results in Fig-
ure 3.6. The distinction between “walk” and “run/jog” is clearly observed as
the different distributions of the trajectories in every plot of Figure 3.6. The
distinction between Subjects #2, #16 and #35 is less obvious, while the distri-
bution of the trajectories implies the difference of the locomotive behavior of
Subject #2 from those of the other two. On this point, BDMD-sp (Figure 3.6c)
shows the most consistent result wherein the trajectories of Subject #2 are
consistently distributed in the upper part of the plot. This difference would
stem from the different natures of the methods; BDMD-sp captures the infor-
mation related to dynamics behind the data, while PCA and t-SNE do not.

Furthermore, the modes estimated by the standard DMD and BDMD-sp
are shown in Figures 3.7a and 3.7b, respectively. We can confirm that the
sparsity-promoting prior works well also on a real-world dataset, in which
the magnitudes are concentrated on a few modes.

Univariate time-series denoising

We prepared a time-series dataset by extracting single series {x} from the
Lorenz attractor (Lorenz, 1963) (with ρ = 28, σ = 10 and β = 8/3) and con-
taminated them with zero-mean Gaussian noise of variance 16. The task was
recovering the original series from the noisy series. We applied BDMD (with
k = 1) on the noisy series and reconstructed them using samples generated
by the Gibbs sampler.

The original and the reconstructed series are plotted in Figure 3.8. The
RMSE decreased from 3.2 to 2.3 by the denoising. A simple moving average
as a baseline achieved RMSE 2.5 at the best, but note that we cannot neces-
sarily obtain such performance by moving average since it needs to tune the
window size.
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FIGURE 3.6: Results of dimensionality reduction (best viewed in
colors). The first and the second principal scores are plotted for
PCA, whereas the magnitudes and the angles of ϕ1 are plotted
for BDMD-sp. The distinction between “walk” and “run/jog” are
clearly observed in every plot. The trajectories of Subject #2 are
consistently distributed only in the upper part of (c).
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FIGURE 3.7: Absolute values of the modes estimated by (a) DMD
and (b) BDMD-sp on the motion capture data. For BDMD-sp, the
median of the posterior samples is shown. The size of the square
denotes the magnitude of the values.
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3.6 Summary

In this chapter, we have introduced the probabilistic model corresponding
to DMD and based on that model, proposed Bayesian DMD to conduct pos-
terior inference on the DMD parameters and to enrich the DMD techniques
systematically in the unified Bayesian framework. We have shown that the
MLE of the proposed probabilistic model coincides with the solution of the
standard DMD algorithm in the no-noise limit. Moreover, we have provided
the Gibbs sampler for the posterior inference in Bayesian DMD. We have also
discussed the case of using the sparsity-promoting prior for automatic deter-
mination of the effective number of dynamic modes. Finally, we have pre-
sented the results of the experiments with the synthetic and the real-world
datasets, which show the effectiveness of Bayesian DMD.

Based on the Bayesian framework proposed in this study, there would be
various possible extensions of DMD. One of the promising extensions would
be the use of structured priors on dynamic modes. For example, the dynamic
modes modeled with Markov random fields fit for images, and applications
in natural language processing are possible with discrete probability distri-
butions as prior. Then a challenge would be an efficient inference; we relied
on the simple Gibbs sampler in this study, but developing more fast and effi-
cient ways is of great importance.
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Chapter 4

Subspace DMD

4.1 Introduction

Dynamic mode decomposition (DMD) (Rowley et al., 2009; Schmid, 2010;
Kutz et al., 2016a) is a data-driven method that can be utilized for Koopman
spectral analysis. In practice, popular implementations of DMD (e.g., Schmid
(2010); Tu et al. (2014b)) suffer from observation noise. Several researchers have
addressed this issue; Duke et al. (2012) and Pan et al. (2015) conducted er-
ror analyses on the DMD algorithms, and Dawson et al. (2016) and Hemati
et al. (2017) proposed reformulating DMD as a total-least-squares problem to
treat the observation noise explicitly. Moreover, there is a line of research on
the low-rank approximation of dynamics, including optimized DMD (Chen
et al., 2012), optimal mode decomposition (Wynn et al., 2013), sparsity pro-
moting DMD (Jovanović et al., 2014), and the closed-form solution for a low-
rank constrained problem (Héas and Herzet, 2017). In addition, we proposed
a Bayesian formulation of DMD to incorporate uncertainties (Chapter 3).
Those studies provide clear perspectives on the treatment of the observation
noise. However, they focus on deterministic dynamical systems, i.e., they
do not explicitly deal with process noise, which limits their applicability to
situations where the underlying dynamics contain random effects.

In fact, the Koopman analysis can also be applied to dynamical systems
with process noise via the stochastic Koopman operator (Mezić, 2005). The spec-
tra of the stochastic Koopman operator may convey information on the pro-
cess noise; Bagheri (2014) investigated the effects of weak noise on the spec-
tra of the Koopman operator for oscillating flows. The DMD algorithms are
applicable even to stochastic systems (Williams et al., 2015a), unless observa-
tion noise is present. However, the existing variants of DMD do not explicitly
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consider both observation and process noise, and, in fact, most of them can-
not compute the spectra of the stochastic Koopman operator accurately from
noisy observations, which is partly demonstrated in Section 4.3 using numer-
ical examples.

In this chapter, we present an algorithm based on the stochastic Koopman
operator for decomposing nonlinear random dynamical systems from noisy
observations. The proposed algorithm is referred to as subspace DMD be-
cause it has a strong connection to the subspace system identification meth-
ods developed in control theory. Subspace DMD is aware of both the obser-
vation noise and process noise at the same time, and we show its validity
with numerical examples.

The remainder of this chapter is organized as follows. In Section 4.2, we
introduce the main results of this chapter, the algorithm of subspace DMD.
In Section 4.3, we provide numerical examples to show the empirical per-
formance of subspace DMD. A summary of this chapter is provided in Sec-
tion 4.4.

4.2 Stochastic Koopman analysis with noisy ob-

servations

Stochasticity often comprises an essential part of a variety of physical phe-
nomena and sensing. In this section, we introduce the notions of process
noise on dynamics and observation noise on observables, and discuss Koop-
man analysis and DMD for stochastic noisy systems.

4.2.1 Process noise on dynamics

Instead of deterministic dynamical system like Eq. (1.2), consider a discrete-
time random dynamical system (RDS) (Arnold, 1998)

xt+1 = fΩ(xt, ωt), x ∈M, ω ∈ Ω (4.1)

with a measure-preserving base flow ϑ : Ω → Ω, where (Ω,ΣΩ, µΩ) is a
probability space of process noise. We assume that ωt is independent from
x0, . . . ,xt. A one-step evolution of observables g with regard to the RDS can
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be characterized by stochastic Koopman operator KΩ (Mezić, 2005), defined as

KΩg(x) := EΩ [g(fΩ(x, ω))] , (4.2)

where EΩ[·] denotes expectation in sample space Ω. Note that deterministic
Koopman operator K can be regarded as a special case of KΩ. Now let KΩ

be the restriction of KΩ to its invariant subspace G, suppose that a set of

observables {g1, . . . , gn} spans G, and let g =
[
g1 . . . gn

]T
. In addition, let

KΩ ∈ Cn×n be the representation of KΩ with regard to the components of g.
Then, we have

g(xt+1) = KΩg(xt) + et, (4.3)

where
et := g(f(xt, ωt))− EΩ [g(f(xt, ωt))] . (4.4)

Given x0, the solution of (4.3) then becomes

g(xt) = Kt
Ωg(x0) +

t−1∑
k=0

Kt−k−1
Ω ek. (4.5)

The modal decomposition of g via KΩ can be obtained likewise, as shown
in Section 1.3. Regarding the characteristics of the spectra of the stochastic
Koopman operator, Bagheri (2014) elaborated on the effects of weak noise in
a limit cycle, and Williams et al. (2015a) applied a variant of DMD to the data
obtained from a stochastic differential equation.

The standard DMD (Algorithm 1.1 or 1.2) is also applicable to the RDS
and KΩ if there is no observation noise and the assumptions mentioned ear-
lier (Assumptions 1.1, 1.2, and 1.3), i.e. discrete eigenvalues, ergodicity, and
data from a Koopman invariant subspace, also hold for the RDS and the
dataset at hand. This can be shown in a manner similar to the one in The-
orem 1.1, except for the definition ofG0 andG1, as follows. Let Y0 and Y1 be
the data matrices generated from RDS fΩ and observable g as in Eqs. (1.14)
and (1.24), and let us assume the whiteness on process noise as follows:

Assumption 4.1. Process noise ω is independently and identically distributed
in time, i.e., for all t′, t ∈ T,

EΩ

[
et′e

H
t

]
= P δt′t (4.6)

for some P ∈ Cn×n.
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Then, from the law of large numbers and the assumption of ergodicity,
the empirical matrices

Ĝ0 =
1

m
Y0Y0 =

1

m

m−1∑
j=0

g(xj)g(xj)
H and

Ĝ1 =
1

m
Y1Y0 =

1

m

m−1∑
j=0

g(fΩ(xj, ωj))g(xj)
H

respectively converge to

G0 = EM
[
g(x)g(x)H

]
and

G1 = EM
[
EΩ [g(fΩ(x, ω))] g(x)H

]
=

∫
M×Ω

g(fΩ(x, ω))g(x)HdµMdµΩ

with probability one. One can use this convergence property to show the ap-
plicability of the standard DMD for the RDS, as in the proof of Theorem 1.1.

4.2.2 Observation noise on observables

In addition to the process noise, let us take the observation noise into account.
Consider a new (noisy) observable h :M× S → Cn:

h(xt, st) := g(xt) +w(st), x ∈M, s ∈ S, (4.7)

where w : S → Cn is a random variable on a probability space (S,ΣS, µS)

of the observation noise. Hereafter, we denote w(st) by wt for notational
simplicity. Now assume that s is independent from x and that w is a white
noise, i.e.,

Assumption 4.2. Observation noisew is zero-mean, has time-invariant finite
variance, and is temporally uncorrelated, i.e., for all t′, t ∈ T,

ES [wt] = 0, (4.8)

ES
[
wt′w

H
t

]
= Qδt′t, (4.9)

EΩ,S

[
et′w

H
t

]
= Rδt′t, (4.10)

for someQ,R ∈ Cn×n.
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Note that under the presence of observation noise, an output of the stan-
dard DMD no longer converges to the spectra of the Koopman operator. An
output of total-least-squares DMD (Dawson et al., 2016; Hemati et al., 2017) is
unbiased even for noisy observations as long as the dynamics are determin-
istic, but it is biased as a realization of KΩ for the RDS. These inconsistencies
in the existing methods are partly revealed in the numerical examples in Sec-
tion 4.3.

4.2.3 Statistics of noisy observables on RDS

We would like to develop a DMD algorithm for stochastic Koopman analysis
that is always aware of both the process noise and observation noise. To this
end, we summarize the statistics of noisy observable h on RDS fΩ.

First, assume that g is quasi-stationary (see Ljung (1999) for details), i.e.,

Assumption 4.3. For almost all x0 ∈M and all t′, t ∈ T,

EΩ [g(xt)] = mt, |mt| <∞, (4.11)

EΩ

[
g(xt′)g(xt)

H
]

= Gt′,t, ‖Gt′,t‖F <∞, (4.12)

EM [Gt,t] = G, (4.13)

for someG ∈ Cn×n.

Then, the second-order moment of g,Gt′,t, satisfies the following proper-
ties.

Lemma 4.1. If Assumption 4.1 holds, thenGt′,t is expressed as

Gt′,t =

Kt′−t
Ω Gt,t, t′ ≥ t,

Gt′,t′(K
t−t′
Ω )H, t′ < t.

(4.14)
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Proof. From Eq. (4.5), for the case of t′ > t, we have

Gt′,t = EΩ

(Kt′

Ωg(x0) +
t′−1∑
k=0

Kt′−k−1
Ω ek

)(
Kt

Ωg(x0) +
t−1∑
k=0

Kt−k−1
Ω ek

)H


= Kt′−t
Ω EΩ

[(
Kt

Ωg(x0) +
t−1∑
k=0

Kt−k−1
Ω ek +

t′−1∑
k=t

Kt−k−1
Ω ek

)
(
Kt

Ωg(x0) +
t−1∑
k=0

Kt−k−1
Ω ek

)H


= Kt′−t
Ω Gt,t

+Kt′−t
Ω EΩ

(t′−1∑
k=t

Kt−k−1
Ω ek

)(
Kt

Ωg(x0) +
t−1∑
k=0

Kt−k−1
Ω ek

)H


= Kt′−t
Ω Gt,t

+
t′−1∑
k=t

Kt′−k−1
Ω EΩ [ek] g(x0)H

(
Kt

Ω

)H
+

t−1∑
k=0

t′−1∑
k′=t

Kt′−k′−1
Ω EΩ

[
ek′e

H
k

] (
Kt−k−1

Ω

)H
= Kt′−t

Ω Gt,t,

where the last equality holds because e is zero-mean and because of Assump-
tion 4.1. For the case of t′ > t, from the definition of Gt′,t and the above
equation, we have

Gt′,t = GH
t,t′ = Gt′,t′

(
Kt−t′

Ω

)H
.

Corollary 4.1. Denote EM [Gt+τ,t] byGτ . If Assumption 4.3 holds, then

Gτ = Kτ
ΩG. (4.15)

Now let us define Ht′,t := EΩ,S

[
h(xt′)h(xt)

H
]
, where we have dropped

argument s of h for ease of notation. Then,Ht′,t satisfies the following prop-
erties.
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Lemma 4.2. If Assumption 4.2 holds, thenHt′,t is expressed as

Ht′,t =


Kt′−t−1

Ω (KΩGt,t +R) , t′ > t,

Gt,t +Q, t′ = t,

HH
t,t′ , t′ < t.

(4.16)

Proof. From Eqs. (4.5) and (4.7), for the case of t′ > t, we have

Ht′,t = EΩ,S

[
(g(xt′) +wt′) (g(xt) +wt)

H
]

= EΩ,S

[
g(xt′)g(xt)

H + g(xt′)w
H
t +wt′g(xt)

H +wt′w
H
t

]
= Kt′−t

Ω Gt,t +
t′−1∑
k=0

Kt′−k−1
Ω EΩ,S

[
ekw

H
t

]
+

(
t−1∑
k=0

Kt−k−1
Ω EΩ,S

[
ekw

H
t′

])H

= Kt′−t
Ω Gt,t +Kt′−t−1

Ω R

= Kt′−t−1
Ω (KΩGt,t +R) ,

where the third and the fourth equalities are from Assumption 4.2. When
t′ = t, from Assumption 4.2, we have

Ht,t = EΩ,S

[
(g(xt) +wt) (g(xt) +wt)

H
]

= Gt,t +Q.

Corollary 4.2. Denote EM [Ht+τ,t] byHτ . If Assumption 4.3 holds, then

Hτ =

Kτ−1
Ω (KΩG+R) , τ > 0,

G+Q, τ = 0.
(4.17)

4.2.4 Subspace DMD

Finally, we introduce a numerical method to compute an instance of the
stochastic Koopman operator given noisy observations, namely, subspace DMD.
Analogously to Eq. (1.14), let us define the data matrix as a concatenation of
m observations starting at time t, i.e.,

Yt =
[
h(xt) · · · h(xt+m−1)

]
∈ Cn×m. (4.18)
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Then, using a data quadruple (Y0,Y1,Y2,Y3), we can obtain a calculation for
KΩ using the following theorem.

Theorem 4.1. Define Y0, Y1, Y2, and Y3 by Eq. (4.18), and let Yp,Yf ∈ C2n×m be

Yp =

[
Y0

Y1

]
, and

Yf =

[
Y2

Y3

]
.

(4.19)

Moreover, let O = YfPY H
p
∈ C2n×m be the orthogonal projection of rows of Yf onto

the row space of Yp. Here, consider a compact SVD

O = UqSqV
H
q (4.20)

with Uq ∈ C2n×q, Sq ∈ Cq×q, and Vq ∈ Cm×q, where q = rank(O). Moreover,
let Uq1 be the first n rows and Uq2 be the last n rows of Uq. Suppose that As-
sumptions 1.1 and 1.2 hold for dynamics of interest fΩ and corresponding stochastic
Koopman operatorKΩ, and that noiseless observables g in Eq. (4.7) span a Koopman
invariant subspace like those in Assumption 1.3. Also, suppose Assumptions 4.1,
4.2, and 4.3 hold. If rank(Yp) = 2n, and rank(KΩG+R) = n, then in m→∞,

Uq2U
†
q1 →KΩ (4.21)

with probability one.

Proof. Let Ĥ be the empirical matrix such that

Ĥt+τ,t =
1

m
Yt+τY

H
t .

In m→∞, Ĥt+τ,t converges to Hτ with probability one for all t ∈ T and τ ≥
0, because, from the law of large numbers and the assumption of ergodicity,

1

m
Yt+τY

H
t =

1

m

t+m−1∑
j=t

h(xj+τ )h(xj)
H

→
∫
M×Ω×S

h(xt+τ )h(xt)
HdµMdµΩdµS

= Hτ .
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Because we have assumed rank(Yp) = 2n, in m→∞,

O = YfY
H
p

(
YpY

H
p

)−1
Yp

=

[
Ĥ2,0 Ĥ2,1

Ĥ3,0 Ĥ3,1

][
Ĥ0,0 Ĥ0,1

Ĥ1,0 Ĥ1,1

]−1

Yp

→

[
H2 H1

H3 H2

][
H0 HH

1

H1 H0

]−1

Yp

=

[
I

KΩ

] [
KΩD D

] [G+Q DH

D G+Q

]−1

Yp

= O1O2

(4.22)

with probability one, whereD = KΩG+R ∈ Cn×n and

O1 =

[
I

KΩ

]
,

O2 = DT

[
KΩ

I

]T [
G+Q DH

D G+Q

]−1

Yp.

Because we have assumed rank(D) = n, the rank of both O1 and O2 is n.
Hence, in m→∞, q also becomes n. Remember that by compact SVD (4.20),
we have the decomposition ofO into two rank-n matrices, i.e.,

O =
(
UqS

1/2
q

) (
S1/2
q V H

q

)
.

Therefore, from Eq. (4.22), in m→∞, we have

UqS
1/2
q → O1T =

[
T

KΩT

]

with probability one, where T ∈ Cn×n is an arbitrary unitary matrix. Conse-
quently, Uq1 and Uq2 become T and KΩT respectively, and Eq. (4.21) holds.

Based on Theorem 4.1, we present a subspace DMD algorithm as follows.

Algorithm 4.1 (Subspace DMD).

1. Build matrices Yp and Yf by Eq. (4.19).

2. Compute orthogonal projectionO = YfPY H
p

.



64 Chapter 4. Subspace DMD

3. Compute compact SVD O = UqSqV
H
q and define Uq1 and Uq2 by the

first and the last n rows of Uq, respectively.

4. Compute compact SVD Uq1 = USV H and define Ã = UHUq2V S
−1.

5. Compute the eigenvalues λ and eigenvectors w̃ of Ã.

6. Return dynamic modes w = λ−1Uq2V S
−1w̃ and corresponding eigen-

values λ.

Remark 4.1. With subspace DMD, we can naturally conduct a low-rank ap-
proximation of dynamics by replacing the compact SVD in Step 3 with a
truncated SVD. In contrast, in the standard DMD (Algorithm 1.2) and total-
least-squares DMD (Dawson et al., 2016; Hemati et al., 2017), the low-rank
approximation is achieved via the truncated proper orthogonal decomposi-
tion (POD). Note that there is also a line of research on the low-rank approxi-
mation of DMD, such as (Chen et al., 2012; Wynn et al., 2013; Jovanović et al.,
2014; Héas and Herzet, 2017).

4.2.5 Relation to subspace system identification and exten-

sion to controlled systems

Subspace DMD has a strong connection to the methods called subspace system
identification (see, e.g., Van Overschee and De Moor (1996); Katayama (2005))
in their computational methodology. Subspace system identification is a se-
ries of methods mainly for the identification of linear time-invariant systems,
whereas in this chapter, we present a similar methodology for nonlinear dy-
namical systems involving the observables and the stochastic Koopman op-
erator.

Subspace system identification has been studied from the viewpoint of
control theory and admits the presence of input signals distinguished from
the process noise. Therefore, an extension of subspace DMD to controlled
dynamical systems would be straightforward following the methodologies
developed in the research of subspace system identification. Also, one may
take a closed-loop controlled system into consideration. In the context of
DMD, Proctor et al. (2016) have discussed a variant of DMD for data obtained
from the controlled systems.
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4.3 Numerical examples

We present numerical examples for the application of subspace DMD to sev-
eral types of dynamical systems to show its empirical performance. When
describing target dynamical systems in the following examples, we denote
Gaussian white process noise by e and Gaussian white observation noise by
w. The standard deviation of the process noise is referred to as σp and that of
the observation noise as σo. Moreover, we denote the number of snapshots
fed into algorithms by m and the dimensionality of the data by n.

4.3.1 Oscillation perturbed by noise

The stochastic Stuart–Landau equation on a complex-valued function z(t) =

r(t) exp(iθ(t)) is defined as

dz

dt
= (µ+ iγ)z − (1 + iβ)|z|2z + σpe(t), (4.23)

where e(t) is Gaussian white noise with unit variance, and i denotes the
imaginary unit. The solution of this equation evolves on a limit cycle at
|z| =

√
µ in the absence of process noise (i.e., σp = 0). Bagheri (2014) has

analyzed the effects of weak process noise on the Koopman eigenvalues of
the limit cycle of the Stuart–Landau equation, which can be summarized as
follows; the continuous-time eigenvalues lie on the imaginary axis if pro-
cess noise is absent because the data are completely periodic, but in contrast,
when perturbation (phase diffusion, as shown in Figure 4.1a) is present ow-
ing to the process noise, a line of the eigenvalues is “bent” as shown in Fig-
ure 4.1c. Hence, by investigating the distribution of the eigenvalues, one can
anticipate the presence and magnitude of the phase diffusion. To this end,
we must eliminate the effects of observation noise if any, which produces an
extra bias on the eigenvalues, leaving the effects of process noise.

Following the scheme in Dawson et al. (2016), we generated data using
the following discretized Stuart–Landau equation in polar-coordinates with
process noise: [

rt+1

θt+1

]
=

[
rt + (µrt − r3

t ) ∆t

θt + (γ − βr2
t ) ∆t

]
+

[
∆t 0

0 ∆t/rt

]
et, (4.24)
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FIGURE 4.1: (a) Data generated by the noise-free/noisy Stuart–
Landau equation and trigonometric observables, which show the
phase diffusion when σp > 0 (the solid red line). (b–c) The es-
timated continuous-time eigenvalues, with (b) σp = 0 and (c)
σp = 0.5. Subspace DMD eliminates the effects of the observa-
tion noise, keeping the effects of the process noise.



4.3. Numerical examples 67

and a set of noisy trigonometric observables:

yt =
[
e−10iθt e−9iθt · · · e9iθt e10iθt

]
+wt, (4.25)

where the magnitude of the observation noise was fixed to σo = 0.05. We esti-
mated the continuous-time eigenvalues using subspace DMD (Algorithm 4.1),
standard DMD (Algorithm 1.2), total-least-squares DMD (tls-DMD) (Dawson
et al., 2016; Hemati et al., 2017), and noise-corrected DMD (nc-DMD) (Daw-
son et al., 2016).

Figure 4.1b shows the eigenvalues without any process noise (i.e., σp = 0),
and Figure 4.1c shows the ones with process noise of σp = 0.5. In both plots,
we also show the “clean” eigenvalues computed with the data without the
observation noise. When the process noise is present (in Figure 4.1c), while
the eigenvalues estimated by tls-DMD differ from the clean ones (as reported
in Dawson et al. (2016)), subspace DMD successfully estimates them. Note
that the estimation by nc-DMD also coincides with the clean eigenvalues,
but nc-DMD needs a precise estimation of magnitude of observation noise,
which is often difficult to obtain. Subspace DMD can eliminate the effects
of observation noise without such information while keeping the effects of the
process noise.

4.3.2 Noisy damping modes

Let us consider the stochastic Burger’s equation

∂tu(x, t) + u∂xu = k∂2
xu+ σpe(x, t) (4.26)

with k > 0 and Gaussian space-time white noise e(x, t). In fact, the eigenval-
ues of the Koopman operator on Burger’s equation (without process noise,
i.e., σp = 0) can be analytically obtained via the Cole–Hopf transformation
and they correspond to the decaying modes of the solution (Budišić et al.,
2012; Kutz et al., 2016c). When process noise is present (σp > 0), the solution
of Burger’s equation becomes “rough,” but its global appearance remains
similar to the case of no process noise, as shown in Figure 4.2a.

We approximated the solution of the stochastic Burger’s equation with
k = 0.01 and σp = 0.01 using Crank–Nicolson–Maruyama method (see, e.g.,
Hausenblas (2003)) with initial condition u(x, 0) = sin(2πx) and Dirichlet
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FIGURE 4.2: (a) Data generated by the stochastic Burger’s equa-
tion with observation noise and (b) the estimated continuous-
time eigenvalues. The eigenvalues estimated by subspace DMD
agree well with the ones computed with the clean data.
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boundary condition u(0, t) = u(1, t) = 0, setting the ranges by x ∈ [0, 1] and
t ∈ [0, 1] and the discretization step sizes by ∆x = 1×10−2 and ∆t = 5×10−5.
Based on the approximated solution, we finally generated data with obser-
vation noise

yt =
[
u(0, t) u(∆x, t) u(2∆x, t) . . . u(1, t)

]T
+wt, (4.27)

where the magnitude of the observation noise was set σo = 0.001. The es-
timated eigenvalues are plotted in Figure 4.2b. While the eigenvalues ob-
tained by tls-DMD lie approximately on the imaginary axis, the estimation
by subspace DMD agrees well with the eigenvalues computed with data that
contain no observation noise. Again note that, though the estimation by nc-
DMD also aligns with the clean eigenvalues, it requires a precise estimation
of observation noise magnitude.

4.3.3 Quantitative investigation of effects of noises

Let us investigate the performance of subspace DMD quantitatively using a
simple linear system. We generated data using a linear time-invariant system

xt =

[
λ 0

0 λ̄

]
xt−1 + et, λ = ri, (4.28)

whose Koopman eigenvalues obviously contain λ and λ̄. Moreover, we used
the identity observable with observation noise

yt = xt +wt. (4.29)

We fixed the standard deviation of the process noise to σp = 0.1, the eigen-

value to λ = riwith r = 1.0 or 0.9, and the initial state tox0 =
[
1 1

]T
. Hence,

this system exhibits oscillation perpetuated by the process noise when r = 1.0

and is damped while being excited by the process noise when r = 0.9. We
applied subspace DMD, standard DMD, tls-DMD, and optimized DMD (opt-
DMD) (Chen et al., 2012) to multiple datasets generated with different ran-
dom seeds. In those experiments, we have found that opt-DMD is unsta-
ble when r = 1.0 and it does not output much reasonable results because
it needs to compute exponentials of eigenvalues. Hence, the results of opt-
DMD when r = 1.0 are not plotted in Figures 4.3, 4.4, and 4.5.
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FIGURE 4.3: The 95% confidence intervals and averages of the
eigenvalues estimated by subspace DMD, standard DMD, tls-
DMD, and opt-DMD on the linear systems, (a) r = 1.0 and (b)
r = 0.9, with process and observation noises for 1,000 random tri-
als. When r = 0.9, only subspace DMD shows consistent results.
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FIGURE 4.4: Relative errors of the eigenvalues estimated by sub-
space DMD, standard DMD, tls-DMD, and opt-DMD on the lin-
ear systems, (a) r = 1.0 and (b) r = 0.9, with process and obser-
vation noises against different magnitudes of observation noise
σo. When r = 0.9, subspace DMD produces much smaller errors
compared to the other two methods.
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FIGURE 4.5: Relative errors of the eigenvalues estimated by sub-
space DMD, standard DMD, tls-DMD, and opt-DMD on the lin-
ear systems, (a) r = 1.0 and (b) r = 0.9, with process and obser-
vation noises against different numbers of snapshots m fed into
the algorithms. When r = 0.9, only the output of subspace DMD
converges to the true value.
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In Figure 4.3, we show the 95% confidence intervals of the estimated
eigenvalues for 1,000 random trials with observation noise of magnitude
σo = 0.1 andm = 1,000 snapshots. When r = 1.0, the estimations by subspace
DMD, standard DMD, and tls-DMD scatter around the true value, while the
results of standard DMD deviate a little more than the others. When r = 0.9,
the estimations by standard DMD, tls-DMD, and opt-DMD deviate from the
true value; only the outputs of subspace DMD distribute around the true
value.

In Figure 4.4, the relative errors ε = |λ̃− λ|/|λ| of estimated eigenvalues λ̃
are plotted against different magnitudes of the observation noise σo, with the
number of snapshots fed into the algorithms being fixed bym = 1,000. When
r = 1.0, subspace DMD, standard DMD, and tls-DMD work almost equally
well. When r = 0.9, while the errors of standard DMD and opt-DMD rapidly
grow and tls-DMD generates a regular bias, subspace DMD produces almost
no bias and is tolerant to the observation noise.

In Figure 4.5, relative errors ε are plotted against different m with fixed
σo = 0.1. When r = 1.0, subspace DMD, standard DMD, and tls-DMD con-
verge when m becomes large. When r = 0.9, only subspace DMD converges,
which is expected from Theorem 4.1.

4.3.4 Low-rank high-dimensional data

We have shown the convergence of subspace DMD in the large sample limit
in Theorem 4.1, but in practice, DMD is often applied in a high-dimensional
setting, where the number of snapshots m is much less than dimensionality
of data n. To simulate such circumstances, we generated 500-dimensional
data using a linear time-invariant system:

xt = L

[
i 0

0 −i

]
LTxt−1 + et, (4.30)

yt = xt +wt, (4.31)

where L ∈ R500×2 satisfies LTL = I , with σp = 0.1 and σo = 0.1. We pre-
pared two datasets with different sizes, m = 50 and m = 200, and applied
the following DMD variants: subspace DMD, standard DMD, tls-DMD, op-
timal low-rank DMD (lr-DMD) (Héas and Herzet, 2017), and optimal mode
decomposition (OMD) (Wynn et al., 2013). For each method, we introduced
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FIGURE 4.6: The 95% confidence intervals and averages of the
eigenvalues estimated by subspace DMD, standard DMD, tls-
DMD, lr-DMD, and OMD on the high-dimensional (n = 500)
low-rank (r = 2) system for 1,000 random trials. The sample sizes
are (a) m = 50 and (b) m = 200. In both cases, the outputs of
subspace DMD distribute around the true values denoted by the
black filled circle.
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FIGURE 4.7: (a) Example snapshot of the vorticity field in the
limit-cycle characterized by the Kármán vortex street. (b) Time
variation of the vorticity at locations A and B. Best viewed in
color.

the way to obtain a low-rank solution; only the first two POD modes were
used in the standard DMD and tls-DMD, the rank parameter was set to two
in lr-DMD and OMD, and only the first two columns of Uq were used in
subspace DMD.

In Figure 4.6a, we show the 95% confidence intervals and averages of the
estimated eigenvalues for 1,000 random trials with m = 50. While the es-
timations by standard DMD and tls-DMD deviate far from the true value
because of the process noise (and observation noise), the estimations by sub-
space DMD, lr-DMD, and OMD distribute around the true value. In partic-
ular, the variance of the estimation by subspace DMD is smaller than that of
lr-DMD and OMD. Figure 4.6b shows the results with m = 200; in this case,
the distributions of the estimations by subspace DMD, lr-DMD, and OMD
almost coincide.
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FIGURE 4.8: (a) Continuous-time eigenvalues estimated on the
noise-free and noisy datasets, which are numbered from one to
seven according to their frequency (i.e., imaginary part). (b) Dy-
namic modes computed on the noise-free dataset by standard
DMD. (c–e) Dynamic modes computed on the noisy dataset by
(c) subspace DMD, (d) standard DMD, and (e) tls-DMD. The up-
per row corresponds to eigenvalue 1 (∼ 10i) and the lower row
corresponds to eigenvalue 4 (∼ 40i). No adversarial effects are
present in the results of subspace DMD, even without the process
noise. In (b–e), the magnitude of the dynamic modes are normal-
ized to a common color scheme. Best viewed in color.
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4.3.5 Application: Cylinder wake

As an example of an application, we applied subspace DMD to a two dimen-
sional flow past a circular cylinder with Reynolds number Re = 100. We
generated data using a solver based on the fast immersed boundary method
with the multi-domain technique (Taira and Colonius, 2007; Colonius and
Taira, 2008) with four nested grids, each of which contains 450 × 200 points.
The diameter of the cylinder corresponds to 50 points in the finest grid. The
solver uses the third-order Runge–Kutta method with time-step ∆t = 0.02.
We collected 400 snapshots of the vorticity fields with intervals of size 10∆t

from the limit cycle characterized by the Kármán vortex street. An example
of the snapshots (without observation noise) and the time-variation of vortic-
ity at two locations (A and B) are shown in Figure 4.7. We applied subspace
DMD, standard DMD, and tls-DMD to the data contaminated with observa-
tion noise of σo = 0.1. Every method was run with a low-rank approximation
of r = 15 because the first 15 POD modes contained about 99.9% of the energy
of the original data.

In Figure 4.8a, the eigenvalues estimated with the noisy dataset and the
noise-free dataset are plotted; subspace DMD and tls-DMD generate smaller
biases than standard DMD does. The eigenvalues are numbered from one to
seven in Figure 4.8a, according to their frequency (the magnitude of the imag-
inary part). In the remainder of Figure 4.8, we show the dynamic modes cor-
responding to eigenvalue 1 (∼ 10i) in the upper row and eigenvalue 4 (∼ 40i)
in the lower row. We confirm that no adversarial effect is present in the dy-
namic modes computed by subspace DMD. Note that, in this cylinder wake
experiment, no process noise (except for small errors due to the numerical
integration) is involved. Subspace DMD is also applicable to classical (but
frequent) situations of data analysis like this, where almost no process noise
is present.

4.4 Summary

In this work, we developed subspace DMD, an algorithm for stochastic Koop-
man analysis with noisy observations. We have shown that the output of
the proposed algorithm converges to the spectra of the stochastic Koopman
operator in the large sample limit even if both process noise and observation
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noise are present. Moreover, we have shown its empirical performance with
the numerical examples on different types of random dynamical systems.
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Chapter 5

Learning Koopman invariant
subspaces for DMD

5.1 Introduction

One of the most popular algorithms for modal decomposition based on the
Koopman operator is dynamic mode decomposition (DMD) (Rowley et al.,
2009; Schmid, 2010; Kutz et al., 2016a). An important premise of DMD is that
the target dataset is generated from a set of observables that spans a function
space invariant to the Koopman operator (referred to as Koopman invariant
subspace), as stated in Section 1.4.2.

Here, an important problem in the practice of DMD arises, i.e., we often
have no access to a set observables that spans a Koopman invariant sub-
space. In this case, for nonlinear dynamics, we must manually prepare ade-
quate observables according to the underlying dynamics. Several researchers
have addressed this issue; Williams et al. (2015a) leveraged a dictionary of
predefined basis functions to transform original data, and Kawahara (2016)
defined Koopman spectral analysis in a reproducing kernel Hilbert space.
Brunton et al. (2016b) proposed the use of observables selected in a data-
driven manner (Brunton et al., 2016c) from a function dictionary. Note that,
for these methods, we must select an appropriate function dictionary or ker-
nel function according to the target dynamics. However, if we have no a
priori knowledge about them, which is often the case, such existing methods
do not have to be applied successfully to nonlinear dynamics.

In this chapter, we propose a fully data-driven method for modal decom-
position via the Koopman operator based on the principle of learning Koop-
man invariant subspaces (LKIS) from scratch using observed data. To this end,
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we estimate a set of parametric functions by minimizing the residual sum
of squares (RSS) of linear least-squares regression, so that the estimated set
of functions transforms the original data into a form in which the linear re-
gression fits well. In addition to the principle of LKIS, an implementation
using neural networks is described. Moreover, we introduce empirical per-
formance of DMD based on the LKIS framework with several nonlinear dy-
namical systems and applications, which proves the feasibility of LKIS-based
DMD as a fully data-driven method for modal decomposition via the Koop-
man operator.

The remaining part of this chapter is organized as follows. In Section 5.2,
the main concept, learning Koopman invariant subspaces is formulated. Af-
terward, we review some related work in Section 5.3. Section 5.4 is a prelim-
inary part to present setups of the experiments in the subsequent sections.
In Section 5.5, numerical examples are provided to show the feasibility of
the proposed framework. In Section 5.6, simple applications are shown. A
summary of this chapter is provided in Section 5.7.

5.2 Learning Koopman invariant subspaces

5.2.1 Minimizing residual sum of squares of linear least-squares

regression

In this chapter, we propose a method to learn a set of observables {g1, . . . , gn}
that spans a Koopman invariant subspace G, given a sequence of measure-
ments as the dataset. In the following, we summarize desirable properties
for such observables, upon which the proposed method is constructed.

Theorem 5.1. Consider a set of square-integrable observables {g1, . . . , gn}, and de-

fine a vector-valued observable g =
[
g1 · · · gn

]T
. In addition, define a linear

operator U whose matrix form is given as U =
(∫
M(g ◦ f)gHdµ

) (∫
M gg

Hdµ
)†.

Then, ∀x ∈ M, g(f(x)) = Ug(x) if and only if {g1, . . . , gn} spans a Koopman
invariant subspace.

Proof. If ∀x ∈M, g(f(x)) = Ug(x), then for any ĝ =
∑n

i=1 aigi ∈ span{g1, . . . , gn},

Kĝ =
n∑
i=1

aigi(f(x)) =
n∑
j=1

(
n∑
i=1

ai[U ]i,j

)
gj(x) ∈ span{g1, . . . , gn},
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where [U ]i,j denotes the (i, j)-element of U ; thus, span{g1, . . . , gn} is a Koop-
man invariant subspace. On the other hand, if {g1, . . . , gn} spans a Koop-
man invariant subspace, there exists a linear operator K such that ∀x ∈
M, g(f(x)) = Kg(x); thus,

∫
M(g ◦ f)gHdµ =

∫
MKggHdµ. Therefore, an

instance of the matrix form of K is obtained in the form of U .

According to Theorem 5.1, we should obtain g that makes g ◦ f − Ug

zero. However, such problems cannot be solved with finite data because g
is a function. Thus, we give the corresponding empirical risk minimization
problem based on the assumption of ergodicity of f and the convergence
property of the empirical matrix as follows.

Theorem 5.2. Define Y0 and Y1 as in Eq. (1.14) whose snapshots are generated with
dynamics f that suffice the ergodicity (Assumption 1.2). If all modes are sufficiently
excited in the data (i.e., rank(Y0) = n), then matrix A = Y1Y

†
0 almost surely

converges to the matrix form of linear operator U in m→∞.

Proof. From Assumption 1.2, 1
m
Y1Y

H
0 and 1

m
Y0Y

H
0 respectively converge to∫

M(g ◦ f)gHdµ and
∫
M gg

Hdµ for almost all x0 ∈ M. In addition, since the
rank of Y0Y

H
0 is always n, ( 1

m
Y0Y

H
0 )† converges to (

∫
M gg

Hdµ)† in m → ∞
(Rakočević, 1997). Consequently, in m → ∞, A =

(
1
m
Y1Y

H
0

) (
1
m
Y0Y

H
0

)†
almost surely converges to U , which is the matrix form of linear operator
U .

Remark 5.1. Note that, differently from previous chapters, observables g that
generate data matrices Y0 and Y1 do not have to span a Koopman invari-
ant subspace here. Instead, our purpose is to learn g that spans a Koopman
invariant subspace.

SinceA = Y1Y
†

0 is the minimum-norm solution of the linear least-squares
regression from the columns of Y0 to those of Y1, we constitute the learning
problem to estimate a set of function that transforms the original data into
a form in which the linear least-squares regression fits well. In particular,
we minimize RSS, which measures the discrepancy between the data and the
estimated regression model (i.e., linear least-squares in this case). We define
the RSS loss as follows:

LRSS(g; (x0, . . . ,xm)) =
∥∥∥Y1 − (Y1Y

†
0 )Y0

∥∥∥2

F
, (5.1)
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which becomes zero when g spans a Koopman invariant subspace. If we
implement a smooth parametric model on g, the local minima of LRSS can be
found using gradient descent. We adopt g that achieves a local minimum of
LRSS as a set of observables that spans (approximately) a Koopman invariant
subspace.

5.2.2 Linear delay embedder for state space reconstruction

In the previous subsection, we have presented an important part of the prin-
ciple of LKIS, i.e., minimization of the RSS of linear least-squares regression.
Note that, to define RSS loss (5.1), we need access to a sequence of the orig-
inal states, i.e., (x0, . . . ,xm) ∈ Mm+1, as a dataset. In practice, however, we
cannot necessarily observe full states x due to limited memory and sensor
capabilities. In this case, only transformed (and possibly degenerated) mea-
surements are available, which we denote y = ψ(x) with a measurement
function ψ :M→ Rr. To define RSS loss (5.1) given only degenerated mea-
surements, we must reconstruct the original states x from the actual obser-
vations y. 1

Here, we utilize delay-coordinate embedding, which has been widely
used for state space reconstruction in the analysis of nonlinear dynamics.
Consider a univariate time-series (. . . , yt−1, yt, yt+1, . . . ), which is a sequence
of degenerated measurements yt = ψ(xt). According to the well-known
Taken’s theorem (Takens, 1981; Sauer et al., 1991), a faithful representation
of xt that preserves the structure of the state space can be obtained by

x̃t =
[
yt yt−τ · · · yt−(d−1)τ

]T
(5.2)

with some lag parameter τ and embedding dimension d if d is greater than
2 dim(x). For a multivariate time-series, embedding with non-uniform lags
provides better reconstruction (Garcia and Almeida, 2005). For example,
when we have a two-dimensional time-series

yt =

[
y1,t

y2,t

]
, (5.3)

1Please be careful to not confuse observables g (in terms of Koopman analysis) and mea-
surement functions ψ (in terms of transformed and degenerated measurements).
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an embedding with non-uniform lags is similar to

x̃t =
[
y1,t y1,t−τ11 · · · y1,t−τ1d1 y2,t y2,t−τ21 · · · y2,t−τ2d2

]T
(5.4)

with each value of τ and d. Several methods have been proposed for selec-
tion of τ and d (Garcia and Almeida, 2005; Hirata et al., 2006; Vlachos and
Kugiumtzis, 2010); however, appropriate values may depend on the given
application (attractor inspection, prediction, etc.).

We propose to surrogate the parameter selection of the delay-coordinate
embedding by learning a linear delay embedder from data. Formally, we learn
embedder φ such that

x̃t = φ(y
(k)
t ) = Wφ

[
yT
t yT

t−1 · · · yT
t−k+1

]T
, Wφ ∈ Rp×kr, (5.5)

where p = dim(x̃), r = dim(y), and k is a hyperparameter of maximum
lag. We estimate weight Wφ as well as the parameters of g by minimizing
RSS loss (5.1), which is now defined using x̃ instead of x. Learning φ from
data yields an embedding that is suitable for learning a Koopman invariant
subspace. Moreover, we can impose L1 regularization on weightWφ to make
it highly interpretable if necessary according to the given application.

5.2.3 Reconstruction of original measurements

Simple minimization of LRSS may yield trivial g, such as constant values. We
should impose some constraints to prevent such trivial solutions. In the pro-
posed framework, modal decomposition is first obtained in terms of learned
observables g; thus, the values of gmust be back-projected to the space of the
original measurements y to obtain a physically meaningful representation of
the dynamic modes. Therefore, we modify the loss function by employing an
additional term such that the original measurements y can be reconstructed
from the values of g by a reconstructor h, i.e., y ≈ h(g(x̃)). Such term is given
as follows:

Lrec(h, g; (x̃0, . . . , x̃m)) =
m∑
j=0

‖yj − h(g(x̃j))‖2 , (5.6)
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FIGURE 5.1: An instance of LKIS framework, in which g and h
are implemented by MLPs.

and, if h is a smooth parametric model, this term can also be reduced using
gradient descent. Finally, the objective function to be minimized becomes

L(φ, g,h; (y0, . . . ,ym))

= LRSS(g,φ; (x̃k−1, . . . , x̃m)) + αLrec(h, g; (x̃k−1, . . . , x̃m)),
(5.7)

where α is a parameter that controls the balance between LRSS and Lrec. We
empirically found that the quality of obtained observables was not so sensi-
tive to the value of α.

5.2.4 Implementation using neural networks

In Sections 5.2.1–5.2.3, we introduced the main concepts for the LKIS frame-
work, i.e., RSS loss minimization, learning the linear delay embedder, and
reconstruction of the original measurements. Here, we demonstrate an im-
plementation of the LKIS framework using neural networks.

Figure 5.1 shows a schematic diagram of the implementation of the frame-
work. We model g and h using multi-layer perceptrons (MLPs) with a para-
metric ReLU activation function (He et al., 2015). Here, the sizes of the hid-
den layer of MLPs are defined by the arithmetic means of the sizes of the
input and output layers of the MLPs. Thus, the remaining tunable hyperpa-
rameters are k (maximum delay of φ), p (dimensionality of x̃), and n (dimen-
sionality of g). To obtain g with dimensionality much greater than that of the
original measurements, we found that it was useful to set k > 1 even when
full-state measurements (e.g., y = x) were available. Empirically, we found
that setting n� p often resulted in unstable optimization.

After estimating the parameters of φ, g, and h, DMD can be performed
normally by using the values of the learned g, defining the data matrices
analogously to Eq. (1.14) (with values of g), and computing the eigendecom-
position ofA = Y1Y

†
0 ; the dynamic modes are obtained byw, and the values
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of the eigenfunctions are obtained by ϕ = zHg, where w and z are the right-
and left-eigenvectors ofA.

In the numerical experiments described in Sections 5.5 and 5.6, we per-
formed optimization using first-order gradient descent. To stabilize opti-
mization, batch normalization (Ioffe and Szegedy, 2015) was imposed on the
inputs of hidden layers. Note that, since RSS loss function (5.1) is not de-
composable with regard to data points, convergence of stochastic gradient
descent (SGD) cannot be shown straightforwardly. However, we empirically
found that the non-decomposable RSS loss was often reduced successfully,
even with mini-batch SGD. Let us show an example; the full-batch RSS loss
(denoted L?RSS) under the updates of the mini-batch SGD are plotted in Fig-
ure 5.4e. Here, L?RSS decreases rapidly and remains small. For SGD on non-
decomposable losses, Kar et al. (2014) provided guarantees for some cases;
however, examining the behavior of more general non-decomposable losses
under mini-batch updates remains an open problem.

5.3 Related work

The proposed framework is motivated by the operator-theoretic view of non-
linear dynamical systems. In contrast, learning a generative (state-space)
model for nonlinear dynamical systems directly has been actively studied in
machine learning and optimal control communities, on which we mention a
few examples. A classical but popular method for learning nonlinear dynam-
ical systems is using an expectation-maximization algorithm with Bayesian
filtering/smoothing (see, e.g., (Ghahramani and Roweis, 1999)). Recently, us-
ing approximate Bayesian inference with the variational autoencoder (VAE)
technique (Kingma and Welling, 2014) to learn generative dynamical mod-
els has been actively researched. Chung et al. (2015) proposed a recurrent
neural network with random latent variables, Gao et al. (2016) utilized VAE-
based inference for neural population models, and Johnson et al. (2016) and
Krishnan et al. (2017) developed inference methods for structured models
based on inference with a VAE. In addition, Karl et al. (2017) proposed a
method to obtain a more consistent estimation of nonlinear state space mod-
els. Moreover, Watter et al. (2015) proposed a similar approach in the context
of optimal control. Since generative models are intrinsically aware of pro-
cess and observation noises, incorporating methodologies developed in such
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studies to the operator-theoretic perspective is an important open challenge
to explicitly deal with uncertainty.

We would like to mention some studies closely related to our method.
After the first submission of the manuscript of this chapter (in May 2017),
several similar approaches to learning data transform for Koopman analysis
have been proposed Li et al. (2017); Yeung et al. (2017); Mardt et al. (2017);
Otto and Rowley (2017); Lusch et al. (2017). The relationships and relative
advantages of these methods should be elaborated in the future.

5.4 Setup of numerical examples and applications

In this section, the experiment configurations engaged in the numerical ex-
amples (Section 5.5) and applications (Section 5.6) are described.

Hyperparameters

In each experiment, parameter αwas fixed at 0.01. Note that the quality of the
results was not sensitive to the values of α. We modeled g and hwith multi-
layer perceptrons by setting the number of hidden nodes (denoted nh) as the
arithmetic means of the input and output sizes, i.e., nh = round((p + n)/2)

for g and nh = round((n + r)/2) for h, where r = dim(y), p = dim(x̃), and
n = dim(g). Therefore, the remaining hyperparameters to be tuned were k
(maximum lag), p, and n. However, unless otherwise noted, we fixed p by
p = kr. Consequently, the independent hyperparameters were k and n.

Preprocessing

One must not subtract the mean from the original data because subtracting
something from the data may change the spectra of the underlying dynam-
ical systems (see, e.g., Chen et al. (2012)). If the absolute values of the data
were too large, we simply divided the data by the maximum absolute value
for each series.



5.5. Numerical examples 87

Optimization

In optimization, we found that the adaptive learning rate by SMORMS3 (Funk,
2015) achieved fast convergence compared to a fixed learning rate and other
adaptation techniques. The maximum learning rate of SMORMS3 was se-
lected from 10−3 to 10−2 in each experiment according to the amount of data.
In some cases, optimization was performed in two stages: the parameters
of φ, g, and h were updated in the first stage, and, in the second stage, the
parameters of φ and g were fixed and only h was updated. This two-stage
optimization was particularly useful for the application of prediction, where
a precise reconstruction of the original measurements was necessary. More-
over, when the original states x of the dynamical system were available and
used without delay (i.e., k = 1 and p = r), parameter Wφ of the linear em-
bedder was fixed to be an identity matrix (i.e., no embedder was used). Also,
we set the mini-batch size from 100 to 500 because smaller mini-batches often
led to an unstable computation of pseudo-inverse.

5.5 Numerical examples

In this section, we provide numerical examples of DMD based on the LKIS
framework (LKIS-DMD) implemented using neural networks. We conducted
experiments on three typical nonlinear dynamical systems: a fixed-point at-
tractor, a limit-cycle attractor, and a system with multiple basins of attraction.
We show the results of comparisons with other recent DMD algorithms, i.e.,
Hankel DMD (Arbabi and Mezić, 2017; Susuki and Mezić, 2015), extended
DMD (Williams et al., 2015a), and DMD with reproducing kernels (Kawa-
hara, 2016).

Fixed-point attractor

Consider a two-dimensional nonlinear map on xt =
[
x1,t x2,t

]T
:

x1,t+1 = λx1,t,

x2,t+1 = µx2,t + (λ2 − µ)x2
1,t,

(5.8)

which has a stable equilibrium at the origin if λ, µ < 1. The Koopman eigen-
values of system (5.8) include λ and µ, and the corresponding eigenfunctions
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FIGURE 5.2: (left) Data generated from system (5.8) and (right) the
estimated Koopman eigenvalues. While linear Hankel DMD pro-
duces an inconsistent eigenvalue, LKIS-DMD successfully identi-
fies λ, µ, λ2, and λ0µ0 = 1.
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Gaussian observation noise and (right) the estimated Koopman
eigenvalues. LKIS-DMD successfully identifies the eigenvalues
even with the observation noise.
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are ϕλ(x) = x1 and ϕµ(x) = x2 − x2
1, respectively. λiµj is also an eigenvalue

with corresponding eigenfunction ϕiλϕ
j
µ. A minimal Koopman invariant sub-

space of system (5.8) is span{x1, x2, x
2
1}, and the eigenvalues of the Koopman

operator restricted to such subspace include λ, µ and λ2.

We generated a dataset using system (5.8) with λ = 0.9 and µ = 0.5

and applied LKIS-DMD (n = 4), linear Hankel DMD (Arbabi and Mezić,
2017; Susuki and Mezić, 2015) (delay 2), and DMD with basis expansion
by {x1, x2, x

2
1}, which corresponds to extended DMD (Williams et al., 2015a)

with a right and minimal observable dictionary. The estimated Koopman
eigenvalues are shown in Figure 5.2, wherein LKIS-DMD successfully iden-
tifies the eigenvalues of the target invariant subspace. In Figure 5.3, we show
eigenvalues estimated using data contaminated with white Gaussian obser-
vation noise (σ = 0.1). The eigenvalues estimated by LKIS-DMD coincide
with the true values even with the observation noise, whereas the results of
DMD with basis expansion (i.e., extended DMD) are directly affected by the
observation noise.

The more detailed setup in this experiment is as follows. The data were
generated with four initial values: [5 5]T, [−5 5]T, [5 − 5]T, and [−5 5]T, with
the length of each episode being 30. In the case of noisy dataset, the standard
deviation of the observation noise was set to 0.1. In both experiments (with
and without observation noise), we set k = 2 and n = 4 to cover the minimal
three-dimensional Koopman invariant subspace.

Limit-cycle attractor

We generated data from the limit cycle of the FitzHugh–Nagumo equation

ẋ1 = x3
1/3 + x1 − x2 + I,

ẋ2 = c(x1 − bx2 + a),
(5.9)

where a = 0.7, b = 0.8, c = 0.08, and I = 0.8. Since trajectories in a limit-cycle
are periodic, the (discrete-time) Koopman eigenvalues should lie near the
unit circle. Figures 5.4a, 5.4b, 5.4c, and 5.4d show the eigenvalues estimated
by LKIS-DMD (n = 16), linear Hankel DMD (Arbabi and Mezić, 2017; Susuki
and Mezić, 2015) (delay 8), and DMDs with reproducing kernels (Kawahara,
2016) (polynomial kernel of degree 4 and RBF kernel of width 1), respectively.
The eigenvalues produced by LKIS-DMD agree well with those produced by
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kernel DMDs, whereas linear Hankel DMD produces eigenvalues that would
correspond to rapidly decaying modes.

The more detailed setup in this experiment is as follows. The data were
generated using MATLAB’s ode45 function (Shampine and Reichelt, 1997),
which was run with time-step ∆t = 0.1 and initial value x0 = [1 1.6]T for
2,000 steps. The hyperparameters of LKIS-DMD, linear Hankel DMD, and
kernel DMDs were set such that they produced 16 eigenvalues, i.e., k = 8

and n = 16 for LKIS-DMD, and POD modes whose singular value was less
than ε were disposed in kernel DMDs (ε = 0.0001 for the polynomial kernel
and ε = 0.05 for the RBF kernel).

Multiple basins of attraction

Consider the unforced Duffing equation

ẍ = −δẋ− x(β + αx2), x =
[
x ẋ

]T
, (5.10)

where α = 1, β = −1, and δ = 0.5. States x following (5.10) evolve toward[
1 0

]T
or
[
−1 0

]T
depending on which basin of attraction the initial value

belongs to unless the initial state is on the stable manifold of the saddle. Gen-
erally, a Koopman eigenfunction whose continuous-time eigenvalue is zero
takes a constant value in each basin of attraction (Williams et al., 2015a); thus,
the contour plot of such an eigenfunction shows the boundary of the basins
of attraction.

We generated 1,000 episodes of time-series starting at different initial val-
ues uniformly sampled from [−2, 2]2. The top plot in Figure 5.5 shows the
continuous-time Koopman eigenvalues estimated by LKIS-DMD (n = 100),
all of which correspond to decaying modes (i.e., negative real parts) and
agree with the property of the data. The middle plot in Figure 5.5 shows
the true basins of attraction of (5.10), and the bottom plot shows the esti-
mated values of the eigenfunction corresponding to the eigenvalue of the
smallest magnitude. The surface of the estimated eigenfunction agrees qual-
itatively with the true boundary of the basins of attractions, which indicates
that LKIS-DMD successfully identifies the Koopman eigenfunction.

The more detailed setup in this experiment is as follows. The data were
generated using the settings provided in the literature (Williams et al., 2015a);
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timated by LKIS-DMD on the Duffing equation. (middle) The true
basins of attraction of the Duffing equation, wherein points in
the blue region evolve toward (1, 0) and points in the red region
evolve toward (−1, 0). Note that the stable manifold of the saddle
point is not drawn precisely. (bottom) The values of the Koopman
eigenfunction with a nearly zero eigenvalue computed by LKIS-
DMD, whose level sets should correspond to the basins of attrac-
tion. There is rough agreement between the true boundary of the
basins of attraction and the numerically computed boundary. The
bottom two plots are best viewed in color.
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1,000 initial values were drawn from the uniform distribution on [−2, 2] ×
[−2, 2] and each initial value was proceeded in time for 11 steps with ∆t =

0.25. We used MATLAB’s ode45 function for numerical integration. For
LKIS-DMD, we set k = 1 and n = 100. Note that the values of the es-
timated eigenfunction were evaluated and plotted in consideration of each
data point.

5.6 Applications

The numerical experiments in the previous section demonstrated the feasi-
bility of the proposed method as a fully data-driven method for Koopman
spectral analysis. Here, we introduce practical applications of LKIS-DMD.

Chaotic time-series prediction

Prediction of a chaotic time-series has received significant interest in non-
linear physics. We would like to perform the prediction of a chaotic time-
series using DMD, since DMD can be naturally utilized for prediction as
follows. Since g(xt) is decomposed as

∑n
i=1 ϕi(xt)ci and ϕ is obtained by

ϕi(xt) = zHi g(xt) where zi is a left-eigenvalue of K, the next step of g can be
described in terms of the current step, i.e., g(xt+1) =

∑n
i=1 λi(z

H
i g(xt))ci. In

addition, in the case of LKIS-DMD, the values of g must be back-projected to
y using the learned h.

We generated two types of univariate time-series by extracting the {x} se-
ries of the Lorenz attractor (Lorenz, 1963) and the Rossler attractor (Rössler,
1976). We simulated 25,000 steps for each attractor and used the first 10,000
steps for training, the next 5,000 steps for validation, and the last 10,000
steps for testing prediction accuracy. We examined the prediction accuracy of
LKIS-DMD, a simple LSTM network, and linear Hankel DMD (Arbabi and
Mezić, 2017; Susuki and Mezić, 2015), all of whose hyperparameters were
tuned using the validation set.2 The prediction accuracy of every method and
an example of the predicted series on the test set by LKIS-DMD are shown
in Figure 5.6. As can be seen, the proposed LKIS-DMD achieves the smallest
root-mean-square (RMS) errors in the 30-step prediction.

2LSTM was applied because it had been utilized for various nonlinear time-series, and
Hankel DMD was used because it had been successfully utilized for analysis of chaotic sys-
tems (Brunton et al., 2017).
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The more detailed setup in this experiment is as follows. The data were
generated from the Lorenz attractor (Lorenz, 1963) (parameters β = 8/3, σ =

10, and ρ = 28) and the Rossler attractor (Rössler, 1976) (parameters a = 0.2,
b = 0.2, and c = 5.7). We generated 25,000 steps for each attractor and di-
vided them into training, validation, and test sets. For all methods, the delay
dimension was fixed at 7, i.e., k = 7 for LKIS-DMD and linear Hankel DMD,
and backpropagation was truncated to length 7 to learn the LSTM network.
We tuned n of LKIS-DMD and the dimensionality of LSTM’s hidden state
(denoted nh) according to the 30-step prediction accuracies obtained using
the validation set. Here, we obtained n = 5 and nh = 5 for the Lorenz data
and n = 6 and nh = 3 for the Rossler data.

Unstable phenomena detection

One of the most popular applications of DMD is the investigation of the
global characteristics of dynamics by inspecting the spatial distribution of
the dynamic modes. In addition to the spatial distribution, we can investi-
gate the temporal profiles of mode activations by examining the values of
corresponding eigenfunctions. For example, assume there is an eigenfunc-
tion ϕλ�1 that corresponds to a discrete-time eigenvalue λ whose magnitude
is considerably smaller than one. Such a small eigenvalue indicates a rapidly
decaying (i.e., unstable) mode; thus, we can detect occurrences of unstable
phenomena by observing the values of ϕλ�1.

We applied LKIS-DMD (n = 10) to a time-series generated by a far-infrared
laser, which was obtained from the Santa Fe Time Series Competition Data
(Weigend and Gershenfeld, 1993). We investigated the values of eigenfunc-
tion ϕλ�1 corresponding to the eigenvalue of the smallest magnitude. The
original time-series and values of ϕλ�1 obtained by LKIS-DMD are shown
in Figure 5.7. As can be seen, the activations of ϕλ�1 coincide with sud-
den decays of the pulsation amplitudes. For comparison, we applied the
novelty/change-point detection technique using one-class support vector ma-
chine (OC-SVM) (Canu and Smola, 2006) and direct density-ratio estima-
tion by relative unconstrained least-squares importance fitting (RuLSIF) (Liu
et al., 2013).3 We computed AUC, defining the sudden decays of the am-
plitudes as the points to be detected, which were 0.924, 0.799, and 0.803 for

3OC-SVM was applied because it was a kind of de facto standard for novelty/change-
point detection, and RuLSIF was used because it had achieved the best performance among
methods based on density-ratio estimation (Liu et al., 2013).
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LKIS, OC-SVM, and RuLSIF, respectively.

The more detailed setup of this experiment is as follows. The dataset
was obtained from the Santa Fe Time Series Competition Data (Weigend and
Gershenfeld, 1993). Note that the author’s (Weigend and Gershenfeld, 1993)
original web page was not available in May 2017 (the date of the submission
of the original paper of this chapter); however, the dataset itself was still
available online. The length of delay (or sliding window) was fixed to 10 for
all methods applied in this experiment. In addition, no intensive tuning of
the other hyperparameters was conduct because the purpose was qualitative.
The default settings of libsvm (Chang and Lin, 2011) were used for the one-
class SVM (except for ν = 0.05). For the density-ratio estimation by RuLSIF,
the default values of the implementation by the authors of (Liu et al., 2013)
were used.

5.7 Summary

In this chapter, we have proposed a framework for learning Koopman invari-
ant subspaces, which is a fully data-driven numerical algorithm for Koop-
man spectral analysis. In contrast to existing approaches, the proposed method
learns (approximately) a Koopman invariant subspace entirely from the avail-
able data based on the minimization of RSS loss. We have shown empirical
results for several typical nonlinear dynamics and application examples.

We have also introduced an implementation using multi-layer percep-
trons; however, one possible drawback of such an implementation is the lo-
cal optima of the objective function, which makes it difficult to assess the
adequacy of the obtained results. Rather than using neural networks, the ob-
servables to be learned could be modeled by a sparse combination of basis
functions as in Brunton et al. (2016c) but still utilizing optimization based on
RSS loss. Another possible future research direction could be incorporating
approximate Bayesian inference methods, such as VAE (Kingma and Welling,
2014). The proposed framework is based on a discriminative viewpoint, but
inference methodologies for generative models could be used to modify the
proposed framework to explicitly consider uncertainty in data.
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FIGURE 5.7: The top plot shows the raw time-series obtained by
a far-infrared laser (Weigend and Gershenfeld, 1993). The other
plots show the results of unstable phenomena detection, wherein
the peaks should correspond to the occurrences of unstable phe-
nomena.





99

Chapter 6

Conclusion

6.1 Summary of contributions

In this dissertation, we have introduced numerical methods based on dy-
namic mode decomposition (DMD) (Rowley et al., 2009; Schmid, 2010) for
data-driven analysis of nonlinear dynamical systems. DMD has a strong con-
nection to the operator-theoretic approach to analyzing dynamical systems,
which depends on the Koopman operator of dynamics (Mezić, 2005), and it
works as an approximation of the modal decomposition based on the Koop-
man operator under certain conditions. However, such conditions are often
much restrictive and a simple implementation of DMD may not be appropri-
ate for many practices of analysis. We therefore developed new techniques
to conduct the analysis based on the Koopman operator even for dynamical
systems / time-series data that could not be treated by the standard DMD
and existing variants. These techniques were proposed from a perspective of
machine learning. After describing the technical preliminaries in Chapter 1,
we have introduced four distinct topics with regard to the proposed methods
for Koopman analysis, which are summarized as follows.

In Chapter 2, we have introduced sparse nonnegative DMD, in which the
nonnegative constraint and the sparsity regularization were imposed to the
estimated dynamic modes. Imposing constraints and/or regularizations was
enabled by the reformulation of DMD as an optimization problem wherein
the dynamic modes and eigenvalues were reparameterized with polar coor-
dinates. The objective function of the optimization problem is block multi-
convex and thus can be solved using a block coordinate descent. Imposing
such constraints/regularization is advantageous for processing video streams
because of their inherent nonnegativity. Moreover, we can consider other
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types of constraints and regularization based on the proposed reformulation
framework.

In Chapter 3, we have introduced Bayesian DMD, with which a posterior
inference on DMD-related quantities can be conducted. Bayesian DMD is
based on the probabilistic formulation of DMD, which we termed probabilis-
tic DMD. We have shown that the maximum-likelihood estimator of prob-
abilistic DMD coincides with the solution of the classical DMD in the no-
noise limit. The posterior inference on the dynamic modes and correspond-
ing eigenvalues are useful when one would like to consider the uncertainty
in dataset. Moreover, using Bayesian DMD, extensions of DMD can be de-
veloped in a unified framework of Bayesian modeling. As an example of
such extensions, we have introduced the use of sparsity-promoting prior on
dynamic modes, with which the effective number of dynamic modes can be
automatically determined.

In Chapter 4, we have introduced subspace DMD, whose methodology
has a strong connection to the techniques of subspace system identification.
Subspace DMD was developed to perform Koopman spectral analysis even
for noisy data generated from random dynamical systems. In other words,
subspace DMD is a variant of DMD that can consider both observation and
process noise. Since effects of process noise in dynamics are often of interest,
only the observation noise should be eliminated. To this end, we have pro-
posed to conduct an orthogonal projection of future snapshots to the space
spanned by past snapshots and compute so-called total-least-squares DMD
on those projected snapshots. With this procedure, we can compute the spec-
tra of the stochastic Koopman operator that keeps the effects of process noise.

In Chapter 5, we have introduced the framework to learn Koopman invari-
ant subspaces from data to conduct DMD in an appropriate space of observ-
ables. In the proposed framework, a set of observables that spans a Koop-
man invariant subspace is learned by minimizing residual sum of squares of
linear least-square regression between adjacent transformed snapshots. We
have introduced an implementation using neural networks to model such
set of observables and have shown the effectiveness of the proposed method
through several numerical examples.
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6.2 Remaining challenges

In this dissertation, we have broadened the scope of dynamical systems /
time-series data with which a data-driven Koopman spectral analysis can be
conducted, by proposing several new techniques from a machine learning
perspective. However, there remain several technical challenges that are not
enough addressed in this dissertation or in other related researches yet.

Continuous spectra In most of the methods to approximate the spectra of
the Koopman operator, the continuous component of the spectra is just ig-
nored. However, we may have to consider the continuous spectra when an-
alyzing highly complex dynamical systems. While there have been a few re-
searches that discuss the continuous spectra of the Koopman operator, such
as Korda et al. (2017), it is still challenging to approximate them for a general
dynamical system.

Non-autonomous systems Except in a few research such as Mezić and Surana
(2016) and Maćešić et al. (2017), the underlying dynamical system is assumed
to be autonomous, i.e., time-invariant. However, many kinds of time-series
data are generated from non-autonomous systems. One of the challenges
to deal with non-autonomous systems is how to specify the form of “non-
autonomousness,” and this problem may be tackled utilizing the ideas in
machine learning researches.

Multi-modal data If data contain sufficient information, two datasets gen-
erated from a common dynamical system will yield the same spectral com-
ponents (eigenvalues and eigenfunctions) of the Koopman operator. How-
ever, data are not sufficient in practice, and thus a common dynamical sys-
tem cannot necessarily be detected from multi-modal datasets. Therefore,
a technique to incorporate prior knowledge that the dynamics are the same
between different datasets is of great interest.

Application to machine learning In this dissertation, we have discussed
the extension of DMD from the perspective of machine learning, i.e., consid-
ered utilizing machine learning for Koopman analysis. Then, how about utilizing
the Koopman analysis for machine learning? DMD has been utilized in many
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data science contexts, but application to tasks that are commonly addressed
in machine learning researches is still limited and will raise interesting utili-
ties and challenges.
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