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Abstract

Cartesian grid methods are becoming popular as a way to reduce the computational cost

of grid generation for flow simulations. Cartesian grids can be generated automatically

and rapidly based on tree-structures. This is a favorable property for aerodynamic design

including shape-optimization problems. The wall boundary in the Cartesian grid is, how-

ever, represented as step-wise faces. Thus, an additional treatment for wall boundaries is

necessary.

In this study, a simulation methodology for high-Reynolds-number flow simulations on

a Cartesian grid is developed. The proposed framework aims to enable a more efficient

aerodynamic design of aircraft. Thus, we use the immersed boundary method (IBM) for

treating the wall boundary in a Cartesian grid because this method retains the simplicity

and robustness of the Cartesian grid. The IBM, however, has difficulty in resolving the

thin boundary layer in high-Reynolds-number flows. To solve this problem, we develop a

wall boundary condition using a turbulent wall function to alleviate the requirement for the

grid size on the wall in high-Reynolds number flows. Furthermore, uncertainty exists in the

evaluation of the aerodynamic force acting on the immersed body, and thus, a new method

is proposed to clarify this point.

Chapter 3: Wall Boundary Conditions for Turbulent Flows To develop the wall

boundary condition for turbulent flows, the boundary-layer approximation of the Reynolds-

averaged Navier–Stokes equations and the turbulence model are firstly analyzed. Then, the

wall boundary condition is developed based on this analysis. The near-wall velocity profile

is modified so that it is linear with respect to the wall distance to avoid numerical problems.

This is because the original velocity profile defined by the wall-function is nonlinear and

cannot be resolved on the grid. Simultaneously, the eddy-viscosity profile is modified by

changing the wall-damping function of the SA turbulence model to retain the balance of the

shear stress that is derived from the near-wall approximation of the RANS equations. This

modification requires a cut-off distance, and thus, the calculation methods for the cut-off

distance are also described.
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Chapter 4: Force Integration on Cartesian Grids For the force integration, a

polygon-based method and a flux-based method are compared. In the former method,

the force is integrated on the actual surface of the immersed body. The physical quantities

on the surface are extrapolated from the Cartesian grid. However, arbitrariness exists in the

extrapolation formula of this method, and additional numerical errors may be introduced

in the calculated force. Thus, a flux-based method is developed based on the balance of

the numerical fluxes. The force integration in this method is conducted on the step-wise

faces near the wall boundary. The calculated force directly reflects the accuracy of the flow

calculation because the same numerical flux as that used in the flow calculation is used to

calculate the aerodynamic force. Then, test problems are solved, and it is shown that the

method is more accurate in predicting the drag coefficient in inviscid flow than the polygon-

based method. The time history of the aerodynamic coefficient can also be reproduced by

the flux-based method in an unsteady problem without introducing a volume-integration

term.

Chapter 5: Test Cases for the Immersed Boundary Method The developed sim-

ulation framework is validated through simulations of simple 2D flows. The first validation

problem is the turbulent flat-plate boundary layer. When the near-wall cell boundary does

not coincide with the surface of the plate (i.e., the surface is immersed in the grid), the

baseline IBM cannot predict the skin friction accurately. In contrast, the modified IBM can

reproduce accurate distributions of the skin friction. The variable profile in the boundary

layer is then investigated. When the modified IBM is used, the shear stress near the wall

becomes constant with respect to the wall distance as implicated in the analysis of the

governing equation. Furthermore, the criterion for the grid setting is examined. To predict

the skin friction with less than 5% error, the cell size should be about one-fifties of the local

boundary layer thickness.

The second validation problem is simulations of turbulent flows over a 2D bump. In

this scenario, flows with a mild pressure gradient are simulated. The modified IBM again

shows an improvement over the original IBM in the prediction of skin friction although the

pressure gradient is neglected in the derivation of the modified IBM.

The last problem is the turbulent flow around a NACA 0012 airfoil. Here, the prediction

accuracy of the aerodynamic coefficients is investigated. When the grid size on the wall is

1/2000 of the chord length or smaller, the drag at an angle of attack of 0◦ is predicted

within 5% error. Simulation of a flow at a high angle of attack requires a smaller cell size

on the wall. Although the precise prediction of the separation point near the trailing edge
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is difficult, distribution of the skin friction in the other region is predicted accurately when

the grid size on the wall is smaller than 1/4000 of the chord length. It is also confirmed

that the modified IBM improves the prediction accuracy of the skin friction coefficient and

the drag coefficient at low angles of attack.

Chapter 6: Simulations of Turbulent Flows around Aircraft To demonstrate the

capability and efficiency of the proposed framework for more practical problems, 3D flows

around an aircraft are simulated. The first problem for this case is the prediction of the

transonic flows around the NASA Common Research Model. In this case, a medium grid

(approx. 62 million cells) is generated within 16 min using one core of Xeon E5–2643 v3. On

the medium grid, the y+ on the upper surface of the wing is less than 600, and more than a

thousand cells are located on the mean aerodynamic chord. Aerodynamic coefficients of each

component show a trend of grid convergence toward the values computed on a conventional

body-fitted grid, although the drag coefficient is slightly overestimated. Compared with the

grid converged value, the drag coefficient excluding the estimated induced drag differs by 19

drag counts (0.0019, 8.9% of the reference value) and 11 drag counts (5.1%) for the medium

and fine grids (approximately 117 million cells), respectively. At a high angle of attack, the

qualitative flow features including the flow separation behind the shock show fair agreement

with the computational results on the body-fitted grids. In addition, the nonlinearity of the

lift coefficient at high angles of attack observed in the wind-tunnel experiment is reproduced.

In the simulation of the JAXA standard high-lift model, the capability of the proposed

framework for the prediction of flows around complex geometries is demonstrated. The

computational grid (approximately 110 million cells) is generated within 38 min using one

core of Xeon E5–2643 v3. The surface features, including the small gaps between the wing

and flap, are well resolved in the generated grid. The result shows that lift coefficients at

α = 4.36◦–14.54◦ are predicted within a 2.7% range compared with the experimental data.

In addition, the surface pressure coefficient at low angles of attack shows good agreement

with the reference experimental data. In contrast, accurate prediction of the flow separation

and the maximum lift coefficient is difficult at the moment, and the use of finer grids and/or

a different turbulence model may improve the prediction accuracy.

Through the studies described above, the accuracy and applicability of the proposed

framework are confirmed. The proposed framework can be used to investigate the basic flow

features around a complex geometry within a short time. Thus, the time spent and manual

work for the simulation of one case can be reduced compared to the conventional simulation

on the body-fitted grids. Although the accuracy of CFD simulations on body-fitted grids
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may be better once a body-fitted well-tailored grid is prepared, the proposed framework can

also predict the flow with a certain degree of accuracy. Therefore, the proposed methodology

will be beneficial in terms of improvement in the efficiency of aerodynamic designs.
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Chapter 1

Introduction

Over the past decades, simulation methodology based on the computational fluid dynam-

ics (CFD) has been studied and improved as a tool that can be used to understand fluid

phenomena and to design aerodynamic shapes. Moreover, computational speeds are dra-

matically increasing due to massive parallelization, and very large-scale calculations are

becoming possible. For example, a direct numerical simulation (DNS) of decaying isotropic

turbulence using 122883 grid points was conducted in [1]. According to the CFD Vision

2030 [2] summarized by the National Aeronautics and Space Administration (NASA), sim-

ulations with 10 to 100 billion grid points will become commonplace in the 2030s. As the

speed of computation increases, the geometry of the target objects for simulations generally

becomes more complex. However, the time spent for the grid generation becomes a signifi-

cant problem when the geometry is very complicated. This is because the procedure for grid

generation includes manual tasks, and thus, parallelization of grid generation is difficult.

In addition, a conventional body-fitted structured grid (Fig. 1.1 (a)) around a complex

geometry often skews, which can degrade the accuracy and stability of flow computation.

This grid generation process can become a bottleneck in aerodynamic design, where many

cases with different shapes need to be tested.

To alleviate this bottleneck, unstructured grid methods [3–5] (Fig. 1.1 (b)) have been

developed and widely used recently. Automatic generation of unstructured grids has also

been attempted, for example in [4]. However, generating high-quality unstructured grids

still depends on personal skill, and fully automated grid generation is difficult. In addition,

a low-quality unstructured grid can have problems not only for its numerical accuracy but

also when it comes to the robustness of the computation.

To reduce the time spent for grid generation, Cartesian grid methods (Fig. 1.1 (c)) are

an attractive proposition. Specifically, the hierarchical Cartesian grid methods [6–12] has

become popular because they are more efficient than uniform Cartesian grids in capturing

the flow and surface features. Hierarchical Cartesian grids are generated based on block-

based refinement [6, 7, 13], tree-structure [8, 9, 11], or a combination of the two [10, 12].

When these strategies are adopted, the grid generation only involves the detection of cells
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2 Chapter 1. Introduction

intersecting the objects, and accordingly, the automation of the grid generation is easy. In

addition, the quality of the generated grid is high because the grid is orthogonal. Thus,

these methods have advantages in terms of efficiency and robustness of the flow computation.

These method are also used for solution-adaptive simulations [6–9,13].

However, Cartesian grids have one critical problem when it comes to the representation

of object surfaces. When the shape of an object is not aligned to the Cartesian coordinate,

the Cartesian grid expresses the object surface as sets of step-wise facets. Thus, some special

treatment for the wall boundary is required to reconstruct a smooth object surface.

(a) Structured grid (b) Unstructured grid (c) Cartesian grid

Figure 1.1: Classification of computational grids for CFD simulations.

1.1 Wall Boundary Conditions for Cartesian Grids

The treatments for the wall boundary can be classified into three main categories (Fig.

1.2):

• coupling with body-fitted layered grids (Fig. 1.2 (a) and (b));

• cut-cell methods (Fig. 1.2 (c));

• immersed boundary methods (IBMs) (Fig. 1.2 (d)) .

Here, the advantage and challenges of these three methods are briefly reviewed.

1.1.1 Coupling with Body-Fitted Layered Grids

Some flow simulations use Cartesian grids in conjunction with body-fitted layered grids, e.g.,

those using overset grids [10,14–17] or Cartesian-grid-based unstructured grids [18–21]. One

advantage of these methods is that the grid near the wall is fitted to the object surfaces,

and thus, the treatment for the wall boundary is easy. To resolve the boundary layer on

the object, thin-layered cells can also be used.
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(a) Coupling with layered cells (1):
overset grid

(b) Coupling with layered cells
(2): Cartesian-grid-based unstruc-
tured grid

(c) Cut-cell method (d) Immersed boundary method

Figure 1.2: Classification of the wall treatment for Cartesian grids.

However, the overset method can introduce additional interpolation errors, and the con-

servation law near the overlapping region is generally not strict. In addition, the multido-

main parallelization of the flow simulation becomes complicated because the communication

between the background Cartesian grid and the layered grids as well as that between each

domain is needed. [14–16]. The Cartesian-grid-based unstructured grid methods may gen-

erate skewed cells where the layered grids are connected to the background Cartesian grid.

Although such methods have advantages in terms of ease of boundary treatment, a question

arises when it comes to its robustness of automatic grid generation and flow simulation.

1.1.2 Cut-Cell Methods

Another type of wall treatment is called the cut-cell method [22–27]. Using this method,

the cells near the body are “cut” by the object to fit the cell boundary to the object surface.

The cell boundary is attached to the actual surface of the object, and thus, the conservation

law is strict. The cells off the wall are not deformed and the robustness of the computation

is retained.

The most significant problem of the cut-cell method is, however, the complexity of

cell-cutting. The cell-cutting procedure includes classification of the cells depending on

the condition of the cutting, and many cutting conditions must be considered. This adds

complexity to the grid generation, especially in 3D cases. Furthermore, the classification
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becomes more complicated when multiple planes cut the cell into several segments. Another

problem is the very small cells generated by the cell cutting (Fig. 1.2 (c)). To avoid

numerical stiffness of the flow simulation, the small cells must be merged with the ambient

cells [24], and this procedure can introduce additional complexity and arbitrariness. For

these reasons, a large effort is needed to use the cut-cell method in simulations of flows

around complicated 3D geometries.

1.1.3 Immersed Boundary Methods

IBMs [28–41] reproduce virtual smooth surfaces on Cartesian grids. When these methods

are used, there is no need to modify the background Cartesian grid. Thus, the object surface

is immersed in the grid, and some additional treatments for the intermediate cells (Fig. 1.2

(d)) must be implemented. IBMs can be classified into two categories: direct (continuous)

forcing methods [28,30,31,34,42] and discrete forcing methods [33,36–39,41].

Direct Forcing Methods The direct forcing or continuous forcing methods adds a body

force term to the governing equation to simulate the flow displacement induced by the

objects. The force acting on the immersed objects is calculated using Hooke’s law, which

imitates an elastic body, and the reaction is imposed on the surrounding fluid cells. These

methods are suitable for simulations of flows with elastic bodies, such as biological flows

[28,29]. Furthermore, these methods are also often employed for moving bodies [28,29,31] or

particle-laden flows [34] because no special treatment on the stencil near the wall boundary

is necessary.

However, the spring constant in Hooke’s law becomes infinity when a rigid body is

simulated, and the numerical stability and accuracy then deteriorate. Some methods to

mitigate these problems have been developed [30,42], but additional parameters related to

the rigidness of the object and the numerical stability must be introduced. In addition, the

area where the body force is imposed generally has a finite thickness, which can also cause

inaccuracies in the result.

Discrete Forcing Methods The discrete forcing methods determine the wall boundary

conditions for the discretized governing equation. A typical example of this type of methods

is the ghost-cell method [32, 37, 43, 44], which imposes the boundary conditions on the

embedded cell by extrapolating the physical quantities from the ambient fluid cells. Some

variants of this method that impose the boundary conditions on the cell interface [36,38,41]

have also been proposed. Another variant of the method [39] defines the wall boundary

condition at the point on the surface between the regular grid points, and the flow is then
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solved by the finite-difference method. This class of methods can represent wall boundary

sharply and rigidly.

One problem concerning the discrete-forcing IBMs is the determination of the physical

quantities on the boundary. The nodes or cell centers generally do not exist exactly on the

object surface, and thus, some interpolation/extrapolation procedure is needed to determine

the physical quantities on the boundary. This procedure can introduce numerical errors

into the flow calculation. Another problem with IBMs is the evaluation of the aerodynamic

force working on the immersed body. To calculate the force, a method to extrapolate or

interpolate the surface pressure and friction has been proposed [45]. However, this method

can introduce additional errors into the calculated aerodynamic force, and accordingly,

uncertainty exists about the actual force acting on the immersed body.

Although some challenges exist in the IBMs as described above, they are widely used

in inviscid and low-Reynolds-number viscous flows, including moving boundary problems.

One positive aspect of the IBMs is that these methods can retain the original benefit of

the Cartesian grids. This is because the cells around the wall boundary are not deformed,

and thus, the representation of the surface is simple. Furthermore, the flow simulation is

generally robust owing to the orthogonality of the grids.

1.2 Turbulent Flow Simulation around an Aircraft

In general, the Reynolds number, Re, of the flow around an aircraft is high enough for

the boundary layer to become turbulent. At the actual scale of a commercial aircraft, Re

based on the chord length is on the order of 107, and Re is approximately 106 to 107 for a

scale model in a large wind tunnel [46, 47]. In addition, modern aircraft have high-aspect-

ratio wings and long fuselages, which increase the surface area. Therefore, a DNS or a

large eddy simulation (LES) around an entire aircraft is still very expensive in terms of the

computational cost at the moment. For example, [48] reported that more than 108 cells

are required in the simulation of a wing whose aspect ratio is 4, even when a wall model

is used with the LES. Furthermore, unsteady turbulent vortices must be resolved in these

simulations, and thus, a time accurate simulation is necessary. The simulation requires

many time steps because the time scale of the vortex is several orders of magnitude smaller

than that of the mean flow.

For the reason described above, the Reynolds-averaged Navier–Stokes (RANS) simula-

tion is widely used for simulations of external flows around an aircraft. In the derivation
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of the RANS equation, the temporal fluctuation component and mean component are de-

composed. The computation is conducted only on the mean component, and accordingly,

a steady state solution can be obtained unless a strong instability (e.g., separated flows

behind a bluff body, or artificial oscillating motion) exists in the flow field.

Under the cruise condition for aircraft, the flow is mostly attached to the surface, and

thus, RANS simulations are known to be fairly accurate. For example, in the AIAA CFD

Drag Prediction Workshops (DPWs) [49], the capability of the RANS simulation for the

aerodynamic prediction of an aircraft was widely tested, and the results were extensively

validated on structured and unstructured grids [50–53]. The computational grids for RANS

simulations are generally designed to resolve the viscous sublayer of the turbulent boundary

layer, so high-aspect-ratio cells conforming to the surface are used.

However, Cartesian grids, especially ones that use IBMs for the wall treatment, are

not easily applicable to such high-Reynolds number flow simulations because the aspect

ratio of the cells near the wall is fixed to one when Cartesian grids and IBM are used.

To resolve the viscous sublayer, therefore, a large number of cells are required. In simple

2D problems, it has already been proved [38, 54] that turbulent boundary layers can be

reproduced when the viscous sublayer is correctly resolved. However, it is not realistic

to simulate 3D turbulent flows using such a fine grid. In particular, simulations of flows

around high-aspect-ratio wings are quite difficult to achieve because a uniform cell size is

also applied in the span-wise direction.

1.2.1 Wall Modeling

Modeling of the near-wall region of the boundary layer is one of the methods used to

mitigate the requirement for the cell size near the wall boundary. This idea was originally

developed to avoid the integration of the equation onto the wall when a high-Reynolds-

number turbulence model is used (e.g. the standard k–ϵ model [55]). For example, the

wall-function methods [56, 57] and the methods that use a diffusion equation [58–60] have

been presented. This class of methods is attractive because the variable profiles near the

wall are almost universal when they are appropriately non-dimensionalized. For example, a

log-law is universally satisfied near the wall where the effects of the growth of the boundary

layer and the pressure gradient are small [61].

On body-fitted grids, these methods have achieved results with acceptable accuracy, for

example, in [59]. The wall models have been also used for LESs to reduce the computational

cost to resolve small vortices near the wall [62–64]. These days, wall models are also used

in conjunction with Cartesian grids to alleviate the requirement for the cell size. IBMs has
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been used with wall models in [26,36,38,40,41,65,66] for RANS simulations. Some attempts

to perform wall modeled LESs using IBMs have also been presented [67, 68]. Furthermore,

other researchers have used the cut-cell methods with wall models [25–27].

However, previous research [26] has reported that the IBM with a wall function cannot

reproduce the distribution of the skin friction on a turbulent flat plate accurately when the

cell boundary does not coincide with the plate surface (Fig. 1.3). They concluded that

the conservation law near the wall may be the limiting factor; the IBM does not satisfy

the strict conservation requirements near the wall boundary. However, the mechanism of

the inaccuracy has not been investigated in detail. Other researchers [36, 38, 40, 41, 65, 66]

have obtained reasonable results in some cases, but neither an extensive grid convergence

study nor a detailed analysis of how the wall function works on the Cartesian grid has been

presented to date.

(a) Computational grids over a flat plate (coarsened for
visualization)

(b) Skin friction coefficient

Figure 1.3: Skin friction coefficient on a turbulent flat plate calculated by an IBM and
a cut-cell method using a turbulent wall function [26]. “CFL3D” in the figure shows the
reference data computed on a body-fitted structured grid using the same turbulence model.
When the IBM is used, the cell boundary does not coincide with the plate surface the except
for the 0◦ case.
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1.3 Purpose of this Research

This research aims to establish a methodology to simulate high-Reynolds-number flows using

hierarchical Cartesian grids. This framework is intended to be used in the aerodynamic

design of aircraft including shape-optimization problems. To achieve this goal, we adopt

an IBM as the wall boundary condition because this method can retain the simplicity and

robustness of the Cartesian grid. In addition, a RANS-based turbulence model is used to

enable rapid analyses of the turbulent flows.

To perform accurate flow prediction using this framework, the following two topics are

investigated as the first step:

• wall boundary conditions with a wall function to reproduce a turbulent boundary

layer;

• a method to calculate the aerodynamic force acting on the immersed bodies.

For both subjects, the background issues are clarified from the viewpoints of the governing

equations and the numerical schemes. In addition, novel methods based on these analyses

are proposed to enhance the accuracy of the flow simulations.

Furthermore, the accuracy and applicability of the proposed framework are studied in

various situations. First, they are investigated using simple 2D validation problems such as

a turbulent flat plate and the flow around a NACA 0012 airfoil. Then, 3D turbulent flows

around aircraft are simulated to demonstrate the capability and efficiency of the proposed

framework. Finally, the benefits and current status of the proposed framework are discussed.

1.4 Outline of this Article

First, the numerical methods for the framework that simulate the turbulent flow around

aircraft are developed. Chapter 2 describes the baseline flow solver using Cartesian grids and

the IBM. Then, Chapter 3 describes the development of numerical methods for the turbulent

flow simulations. Next, Chapter 4 introduces a method to calculate the aerodynamic forces

acting on the immersed body.

To validate the framework described above, numerical studies are conducted. Chapter

5 provides the result of numerical tests on simple 2D problems, e.g., a turbulent flat-plate

boundary layer. Then, numerical simulations of turbulent flows around an aircraft are

conducted in Chapter 6. Finally, Chapter 7 provides the concluding remarks for this study.



Chapter 2

Baseline Cartesian-Grid-Based

Flow Solver

In this chapter, the specification of the baseline flow solver “UTCart” (the University of

Tokyo Cartesian-grid-based automatic flow solver) is described. UTCart consists of an

automatic Cartesian grid generator and a compressible flow solver. In the following sections,

the basic computational methods used in UTCart are explained.

2.1 Generation of Hierarchical Cartesian Grids

UTCart automatically generates computational grids using based on tree-structures; i.e.,

the quad-tree (2D) or oct-tree (3D). In the grid generation, the cells intersecting with or

including the input object are treated as “wall cells.” In addition, the cells inside and those

outside the object are classified as “body cells” and “fluid cells,” respectively (Fig. 2.1).

Fluid Cell

Wall Cell

Body Cell

Object

Surface

Figure 2.1: Classification of cells in UTCart.

The shapes of input objects are defined by sets of line segments in 2D, or by Standard

Triangulated Language (STL) files (i.e., sets of triangular facet segments) in 3D. For each

input geometry, a grid size and a boundary condition are specified. Then, binary-tree

structures and bounding boxes (Fig. 2.2) are constructed for each object to search the

nearest segments quickly. Furthermore, line and box sources for local grid refinement are

also specified.

9
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level 2

Bounding Box

level 1

Bounding Box

level 3

Bounding Box

Figure 2.2: Binary tree structure for input object.

The overview of the grid generation is as follows. First, the entire domain is named

“root cell,” and the intersection with the input objects is examined (Fig. 2.3 (a)). When the

objects exist inside the computational domain, the root cell is classified as a wall cell. Then,

the wall cells are successively divided into four (2D) or eight (3D) child cells until the cell size

becomes smaller than the value specified in the definition file (Fig. 2.3 (b)). Simultaneously,

the cells in the refinement sources are also refined. Next, the grid is smoothed to limit the

size ratio of the adjacent cell to two (Fig. 2.3 (c)). In this procedure, the number of cells

in each layer can be specified, as described in Fig. 2.4. Finally, the cells completely outside

the object are detected, and they are specified as fluid cells (Fig. 2.3 (d)). Through this

grid generation, a quad-tree or an oct-tree structure is constructed based on the successive

parent-children relationship (Fig. 2.5).

After the grid generation, the grid is modified by the following procedures to enhance

the robustness of the flow calculation. At a fluid cell surrounded by wall cells, stencils for

flow calculation become insufficient. If the two adjacent cells facing each other are wall

cells (e.g., cell A in Fig. 2.6), therefore, the fluid cell in between is converted to a wall cell.

Furthermore, hanging-nodes should not exist near the wall boundary. Here, the situation

illustrated in Fig. 2.7 is considered. One of the adjacent cells of the left large cell has child

cells, and (at least) one of the children is a wall. In this situation, numerical problems may

arise because the image point (introduced in Section 2.4) can exist in the large cell. To

avoid this, the large cell is split as shown in the figure.
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(a) Input geometries (b) Initial grid generation

(c) Smoothing (d) Specifying fluid cells

Figure 2.3: Generation of Cartesian grid.

wall layer: 2

smooth layer 1: 6

smooth layer 2: 6

smooth layer 3: 4

smooth layer 4: 4

Figure 2.4: Specification of smooth layers.
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Figure 2.5: Tree-structure of the generated Cartesian grid.

Figure 2.6: A fluid cell surrounded by wall cells.

Figure 2.7: A hanging-node near the wall.



Section 2.2. Governing Equations 13

2.2 Governing Equations

The flow simulation by UTCart is based on the compressible Navier–Stokes equations in

a conservation form. For high-Reynolds-number flows, RANS simulations are conducted

using a turbulence model to reduce the computational cost. The governing equations are

as follows.

2.2.1 Mean Flow

In turbulent flow simulations, the Favre-averaged Navier–Stokes equations are adopted as

the governing equations. The conservation form of the equations is

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.1)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) +

∂p

∂xi
=
∂τij
∂xj

, (2.2)

∂(ρE)

∂t
+

∂

∂xj
[(ρE + p)uj ] =

∂

∂xj
(uiτij − qj), (2.3)

where ρ is the density, ui are the components of the velocity vector, p is the pressure, and E is

the specific total energy. Here, the subscripts i, j and k are the indices for spatial dimensions

(from 1 to 3, summation is taken for these variables). Note that the variables in (2.1–2.3)

are ensemble-averaged quantities. In addition, the specific total energy is calculated based

on the assumption of the ideal gas:

E =
RT

γ − 1
+

1

2
uiui, (2.4)

where R is the gas constant, T = p/(ρR) is the temperature, and γ is the ratio of the

specific heat (= 1.4 for air).

The stress tensor is derived using the Boussinesq eddy-viscosity approximation as

τij = 2ρ(ν + νt)

[
Sij −

1

3
Skkδij

]
, Sij =

1

2

∂ui

∂xj
+
∂uj

∂xi

 , (2.5)

where ν and νt are the kinematic molecular viscosity and kinematic eddy-viscosity, respec-

tively. ν is a function of the temperature, which is calculated by Sutherland’s law [69]

as

µ = µ0
T0 + C

T + C

(
T

T0

)3/2

, (2.6)
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where the molecular viscosity µ = ρν. For air, the constants are

µ0 = 1.716× 10−5 [Pa · s], T0 = 273.15 [K], C = 110.5 [K]. (2.7)

In addition, the heat flux is approximated as

qj = −ρ
(
ν

Pr
+

νt
Prt

)
γ

γ − 1

∂(p/ρ)

∂xj
, (2.8)

with the laminar Prandtl number Pr = 0.72 and the turbulent Prandtl number Prt = 0.90.

When no turbulence model is used, νt is set to zero in the equations above. Furthermore,

ν = νt = 0 in an inviscid flow simulation.

2.2.2 Turbulence Model

For the closure of the RANS equations (2.1–2.3), turbulence models are necessary. In this

research, the Spalart–Allmaras (SA) turbulence model [70] is employed to calculate the

eddy-viscosity. The SA turbulence model solves one transport equation about a working

variable ν̃, which is related to the eddy-viscosity using a damping function fv1 as

νt = ν̃fv1, (2.9)

where

fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
, cv1 = 7.1. (2.10)

The transport equation for ν̃ is

∂ν̃

∂t
+ uj

∂ν̃

∂xj

= (Production)− (Destruction) +
1

σ

 ∂

∂xj

(ν + ν̃)
∂ν̃

∂xj

+ cb2
∂ν̃

∂xj

∂ν̃

∂xj

 . (2.11)

Here, the source terms are

(Production) = cb1S̃ν̃, (Destruction) = cw1fw

(
ν̃

d

)2

, (2.12)

where d is the distance to the nearest wall. Note that the trip term in the original equation

is omitted following [71]. In addition, the model functions in (2.12) are

S̃ = Ω+
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
,

fw = g

[
1 + c6w3
g6 + c6w3

]1/6
, g = r + cw2(r

6 − r),

r = min

[
ν̃

S̃κ2d2
, 10

]
, Ω =

√
2WijWij , Wij =

1

2

∂ui

∂xj
−
∂uj

∂xi

 ,

(2.13)
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where the model constants are

cb1 = 0.1355, σ = 2/3, cb2 = 0.622, κ = 0.41,

cw2 = 0.3, cw3 = 2, cw1 =
cb1
κ2

+
1 + cb2
σ

.
(2.14)

In Chapter 6, the SA turbulence model is used with minor modifications to improve

the prediction accuracy for some flows. The rotation correction [72, 73] reduces excessive

production of the eddy-viscosity in a vortex core by replacing Ω in the production term

with

Ω + Crotmin(0, S − Ω), (2.15)

where S =
√

2SijSij , and Crot is set to unity to avoid negative production following the

reference [73]. The formulation (2.15) eliminates production of the eddy-viscosity when

only a pure rotational motion exists. Another modification, the quadratic constitutive

relationship (QCR) [74], is a simple nonlinear eddy-viscosity model. This modification

improves the prediction accuracy of the secondary flow in the square duct [74], or flow

separation around the wing-body junction of aircraft [75]. In this model, the stress tensor

τij in (2.2) is replaced by

τij,QCR = τij − Ccr[Oikτjk +Ojkτik], (2.16)

where Ccr = 0.3, and

Oik = 2Wik/

√√√√∂uα

∂xβ

∂uα

∂xβ
, (2.17)

with α and β being indices for spatial dimensions (from 1 to 3, summation is taken for these

variables).

2.3 Spatial Discretization

2.3.1 Finite-Volume Method

The UTCart flow solver treats the generated grid as an unstructured grid, and a face-based

algorithm is adopted in the flow solver. This algorithm is simple even when multiple cells

are attached to a large cell in one direction. Here, the Navier–Stokes equation (2.1–2.3) is

spatially discretized by a cell-centered finite-volume method (FVM) as

∂Q

∂t

∣∣∣∣∣∣
l

+
1

Vl

∑
r∈l

(
F̃lr − G̃lr

)
slr = 0, (2.18)



16 Chapter 2. Baseline Cartesian-Grid-Based Flow Solver

where s is the area of the interface between two cells,

Q = [ρ, ρui, ρE]T (2.19)

is a vector of the conservative variables,

F̃ = [ρujn̂j , (ρuiuj + pδij)n̂j , (ρE + p)ujn̂j ]
T (2.20)

is the inviscid numerical flux,

G̃ = [0, τijn̂j , (uiτij − qj)n̂j ]
T (2.21)

is the viscous numerical flux with n̂j being the components of n̂, the normal vector of the

cell interface pointing outward. Furthermore, the subscripts l and r are the indices of the

target cell and the adjacent cells of cell l, respectively. The subscript lr denotes the quantity

on the face between cells l and r. Note that summation is not taken for these subscripts.

The transport equation of the SA turbulence model is similarly discretized by the FVM

as

∂ν̃

∂t

∣∣∣∣∣∣
l

+
uj,l
Vl

∑
r∈l

(ν̃n̂j)lrslr −
1

Vl

∑
r∈l

ν + ν̃

σ

∂ν̃

∂xj
n̂j


lr

slr = Sl, (2.22)

where the source term is

Sl =

(Production)l − (Destruction)l +
cb2
σ

 ∂ν̃

∂xj

∂ν̃

∂xj


l

 . (2.23)

The third term in the right-hand side of (2.23) is discretized further as follows:

cb2
σ

 ∂ν̃

∂xj

∂ν̃

∂xj


l

=
cb2
σ

 ∂

∂xj

(ν + ν̃)
∂ν̃

∂xj

− (ν + ν̃)
∂2ν̃

∂x2j


l

=
cb2
σVl

∑
r∈l

{(ν + ν̃)lr − (ν + ν̃)l}

 ∂ν̃

∂xj
n̂j


lr

 slr.
(2.24)

2.3.2 Gradient Estimation

At the beginning of each time step, the conservative variables Q are converted to the prim-

itive variables q = [ρ, ui, p]
T . Then, the gradients of the primitive variables are estimated

using the weighted least-squares method (WLSQ) [76,77]. The following gradient estimation

procedure is conducted also for ν̃.
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Using the WLSQ, the derivatives of the primitive variables are calculated as

∂q

∂xj

∣∣∣∣∣∣
l

=M−1
jk

∑
r∈l

wlr(qr − ql)(xk,r − xk,l), (2.25)

where wlr is the weight function, and the matrix Mjk is

Mjk =
∑
r∈l

wlr(xj,r − xj,l)(xk,r − xk,l). (2.26)

In UTCart, the weight function is defined using the face area and the distance between two

cells as

wlr = slr{(xi,r − xi,l)(xi,r − xi,l)}−
3
2 . (2.27)

The inverse matrixM−1
jk is independent of the flow solution. Thus, this matrix is calculated

at the beginning of the flow calculation and stored. Note that the boundary conditions are

not included in the stencils for the gradient estimation. Thus, the stencils for the gradient

estimation becomes one-sided, as shown in Fig. 2.8.

Figure 2.8: Stencils for the gradient estimation near the wall boundary.

2.3.3 Calculation of Inviscid Flux

The inviscid flux is computed by an upwind scheme. The upwind flux is written using the

face-left and the face-right quantities as

F̃lr = F̃lr(qL,qR, n̂lr), (2.28)

where the subscripts L and R denotes the face-left and right quantities, respectively. In

UTCart, a variant of the advection upstream splitting method (AUSM), the simple low-

dissipation AUSM (SLAU) [78] is used to calculate the inviscid flux. The numerical flux of

the SLAU is defined as follows:

F̃lr =
m̃+ |m̃|

2
ΦL +

m̃− |m̃|
2

ΦR + p̃Nlr, (2.29)
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where

Φ = [1, ui, (E + p/ρ)]T , N = [0, n̂i, 0]
T ,

m̃ =
1

2

[
(ρVn)L + (ρVn)R − |Vn|(ρR − ρL)

]
(1− ḡ)− ξ

2c̄
(pR − pL),

Vn = uin̂i, ξ = (1− M̂2),

M̂ = min

[
1.0,

1

c̄

√
(uiui)L + (uiui)R

2

]
,

|Vn| =
ρL|Vn,L|+ ρR|Vn,R|

ρL + ρR

ḡ = −max[min(ML, 0),−1]min[max(MR, 0), 1],

M =
Vn
c̄
, c̄ =

aL + aR
2

,

p̃ =
pL + pR

2
+
β+ + β−

2
(pL + pR) + (1− ξ)(β+ + β− − 1)

pL + pR
2

,

β+ =

{
1
4(2−ML)(ML + 1)2 for |ML| < 1
1
2 [1 + sign(ML)] otherwise

,

β− =

{
1
4(2 +MR)(MR − 1)2 for |MR| < 1
1
2 [1 + sign(−MR)] otherwise

,

with a = (γp/ρ)1/2 being the sound speed. For the SA equation, the advection term is also

calculated by an upwind scheme:

(ν̃n̂j)lr =

{
ν̃L(n̂j)lr (for V̂n ≥ 0)

ν̃R(n̂j)lr (for V̂n < 0)
, (2.30)

where

V̂n =
ui,l + ui,r

2
(n̂i)lr. (2.31)

Variable Extrapolation For a first order scheme, qL = ql and qR = qr. To construct a

scheme with second or higher-order spatial accuracy, the face-left and right quantities are

extrapolated using the estimated gradients (2.25). Here, the monotonic upwind scheme for

conservation laws (MUSCL) [79,80] is used for the extrapolation. The face-right quantities

are

qL = ql +
1

4

[
(1− κa)∆

−
l + (1 + κa)∆

+
l

]
,

∆−
l = 2

∂q

∂xi

∣∣∣∣∣∣
l

(xi,r − xi,l)− (qr − ql),

∆+
l = qr − ql,

(2.32)
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and the face-right quantities are

qR = qr −
1

4

[
(1− κa)∆

+
r + (1 + κa)∆

−
r

]
,

∆−
r = qr − ql,

∆+
r = 2

∂q

∂xi

∣∣∣∣∣∣
r

(xi,r − xi,l)− (qr − ql).

(2.33)

This extrapolation achieves third-order spatial accuracy with κa = 1/3. Note that the

formal spatial accuracy of this scheme is second-order even with the third-order extrapola-

tion in multi-dimensional nonlinear problems. This is because the spatial accuracy of the

integration of the numerical flux over the cell interface is second-order [81].

Where the grid size changes, the extrapolation formulae are slightly changed. At first,

two points l′ and r′ are set as shown in Fig. 2.9. The pairs of points l − r′ and r − l′ are

point-symmetry with respect to the center of the face, respectively. The primitive variables

at l′ and r′ are computed as

ql′ = ql +
∂q

∂xi

∣∣∣∣∣∣
l

(
xi,l′ − xi,l

)
,

qr′ = qr +
∂q

∂xi

∣∣∣∣∣∣
r

(
xi,r′ − xi,r

)
.

(2.34)

Then, the quantities (primitive variable and the coordinate) at r in (2.32) and l in (2.33)

are replaced by those at r′ and l′, respectively.

Figure 2.9: Description of the points used in the MUSCL extrapolation.

A higher-order scheme is also implemented in UTCart. This scheme can achieve a

fourth-order spatial accuracy in the uniform region and retains a second-order accuracy

near the interface where the cell size changes. For the description of this scheme, see [81].

Shock-Capturing When the flow includes discontinuities, the extrapolation formulae

(2.32) and (2.33) result in oscillatory solutions. Thus, a total-variation diminishing scheme
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is used instead. Here, the minmod limiter [82] is employed to limit the extrapolation; ∆+

and ∆− in (2.32) and (2.33) are replaced by

∆̄± = minmod(∆±, b∆∓), (2.35)

where b = (3− κa)/(1− κa), and the minmod function is

minmod(x, y) =


min(x, y) for x > 0 and y > 0

max(x, y) for x < 0 and y < 0

0 otherwise

. (2.36)

2.3.4 Calculation of Viscous Flux

To calculate the viscous flux, a central difference scheme is used. In this scheme, the

primitive variables on the face are calculated as

qlr =
∆xrql +∆xlqr
∆xl +∆xr

. (2.37)

For the calculation of the gradient on the face, a modification is included to avoid the

even-odd decoupling following [83, 84]. Here, the simple average of the gradient is firstly

taken:

∂q

∂xj

∣∣∣∣∣∣
temp

=
1

∆xl +∆xr

 ∂q

∂xj

∣∣∣∣∣∣
l

∆xr +
∂q

∂xj

∣∣∣∣∣∣
r

∆xl

 . (2.38)

Then, the modified gradient is calculated as

∂q

∂xj

∣∣∣∣∣∣
lr

=
∂q

∂xj

∣∣∣∣∣∣
temp

−

 ∂q

∂xi

∣∣∣∣∣∣
temp

rlri −
qr − ql
dlr

 rlrj , (2.39)

where rlrj are the components of the unit direction vector from cell l to r, and dlr is the

distance between the two cells. In addition, the diffusive part of the transport equation of

the SA turbulence model is also calculated by the same procedure.

2.4 Boundary Conditions

2.4.1 Wall Boundary Conditions

UTCart imposes the wall boundary condition at the center of the face between fluid and

wall cells (point FC in Fig. 2.10). To determine the boundary conditions, a discrete-forcing

IBM is used. Here, the baseline IBM for inviscid and low-Reynolds-number viscous flows
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are explained. Note that the method for high-Reynolds-number flow is presented in Chapter

3.

To determine the physical quantities at FC, an image point (IP) is set on the wall-normal

line through FC, and one-dimensional variable profiles between the IP and wall is assumed.

dIP , the distance between the IP and wall, is related to the size of the ambient cells ∆x as

dIP = rIP∆x, (2.40)

where rIP is the ratio of the IP distance to the cell size on the wall and is set to a constant

value. The minimum value for rIP is
√
2 in 2D and

√
3 in 3D to assure the IPs to be located

in the fluid cells. Note that the dependency on the rIP value will be discussed in Chapter

5. An exception may occur where two walls locate close to each other. At this condition,

the IP sometimes locates inside the wall. To avoid a numerical problem, the wall boundary

is considered as a step-wise face, and the value at FC is determined using the fluid cell

including FC.

The formulae to determine the boundary condition are as follows. In the explanation

below, the quantities at the IP and FC are represented with subscripts IP and FC, respec-

tively. First, the primitive variables at the IP is linearly interpolated as

qIP = qP +
∂q

∂xj

∣∣∣∣∣∣
P

(xj,IP − xj,P ), (2.41)

where the subscript P denotes the value at the center of the cell including the IP. Then,

the primitive variables at FC are calculated using the quantities at the IP. For example, the

density and pressure are assumed to satisfy the zero gradient condition on the wall. Thus,

the density and pressure at FC are

ρFC = ρIP , pFC = pIP . (2.42)

The wall-normal velocity must satisfy the non-penetration condition, i.e., the normal veloc-

ity is zero on the wall. Thus, a linear profile between the IP and wall is assumed, and the

normal velocity at FC is

un,FC = un,IP
dFC
dIP

, (2.43)

where un is the normal velocity and dFC is the distance between FC and wall.

The boundary condition for the tangential velocity ut depends on whether the wall is

slip or non-slip. For the slip wall,

ut,FC = ut,IP , (2.44)
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to satisfy the zero-gradient condition of the tangential velocity on the wall. For the non-slip

wall, the tangential velocity is zero on the wall; thus,

ut,FC = ut,IP
dFC
dIP

, (2.45)

and the velocity gradient on the wall is

∂ut

∂n
=
ut,IP
dIP

. (2.46)

Furthermore, the boundary condition for ν̃ is

ν̃FC = ν̃IP (2.47)

for the slip wall, and

ν̃FC = ν̃IP
dFC
dIP

(2.48)

for the non-slip wall.

The primitive variables at FC calculated by (2.42–2.45) are used to calculate the numer-

ical flux at FC. For the inviscid flux, an upwind scheme is used to stabilize the computation:

F̃ = F̃(qL,qFC , n̂). (2.49)

Here, qL are the primitive variables extrapolated from cell F, the cell including FC, as

qL = qF +
∂q

∂xj

∣∣∣∣∣∣
F

(xj,FC − xj,F ), (2.50)

where the subscript F denotes the value at the center of cell F. The viscous flux is calculated

using only the quantities at FC. Using the velocity gradient (2.46), the velocity gradient

tensor is

τij = ρFC(ν + νt)FC
∂ut

∂n

∣∣∣∣∣∣
FC

(nitj + njti), (2.51)

where tj are the components of a unit vector in the flow direction. Furthermore, the heat

flux qj is assumed to be zero for an adiabatic wall. Consequently, the viscous flux (2.21) is

calculated using the stress tensor (2.51) and the primitive variables at FC.

2.4.2 Far-Field Boundary Conditions

At the far-field face, the flux is calculated by an upwind scheme as

F̃lf = F̃(ql,qf , n̂lf ), (2.52)

where the subscript f denotes the far-field quantities. In UTCart, the following boundary

conditions are implemented following [85]:
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Figure 2.10: Schematic of the wall boundary condition for the immersed surface.

1. free-stream (Riemann) condition;

2. symmetry condition;

3. subsonic inflow condition with constant total pressure and total temperature ;

4. subsonic outflow condition with constant static pressure condition.

Free-Stream (Riemann) Condition This condition is used to simulate external flows.

If the flow in the direction normal to the face is supersonic, the boundary conditions are

qf = q∞, (2.53)

for inflow, and

qf = ql, (2.54)

for outflow, where the subscript ∞ denotes the free-stream quantities. For subsonic flows,

the characteristic waves through the far-field face are considered. The three Riemann in-

variants are

w1 =
p

ργ
,

w2 = un +
2a

γ − 1
,

w3 = un −
2a

γ − 1
,

(2.55)

where un = uin̂i is the face-normal velocity, and the face normal n̂i is pointing outside the

domain. The characteristic speeds for these invariants are un, un+c and un−c, respectively.
From (2.55), the normal velocity and the sound speed are

un =
w2 + w3

2
,

a =
γ − 1

4
(w2 − w3).

(2.56)
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When the flow is subsonic, w2 is determined by the value in the domain, while w3 is coming

from the outside. Thus, the face-normal velocity and sound speed at the boundary are

computed as

un,f =
w2,l + w3,∞

2
,

af =
γ − 1

4
(w2,l − w3,∞).

(2.57)

Here, the face-tangential component of the velocity is depending on the direction of the

flow. Thus, the velocity at the far-field boundary is

ui,f =

{
un,f n̂i + [ui,l − (uj,ln̂j)n̂i] (un,f ≥ 0)

un,f n̂i + [ui,∞ − (uj,∞n̂j)n̂i] (un,f < 0)
. (2.58)

In addition, the other invariant w1 also depends on the sign of the face-normal speed:

w1,f =
pf
ργf

=

{
pl/ρ

γ
l (un,f ≥ 0)

p∞/ρ
γ
∞ (un,f < 0)

, (2.59)

and the boundary values for the density and pressure are

ρf =

(
a2f

γw1,f

) 1
γ−1

, pf =
ρfa

2
f

γ
. (2.60)

Symmetry Condition When a half-span model is simulated, a symmetry boundary con-

dition is required. For this condition, only the sign of the face-normal velocity is reversed:

ρf = ρl, ui,f = ui,l − 2uj,ln̂jn̂i, pf = pl. (2.61)

Subsonic Inflow Condition with Constant Total Pressure and Total Temper-

ature This condition is used as the inflow condition for internal flows. Here, the total

pressure ptotal,set and the total temperature Ttotal,set are subscribed. The total enthalpy Ht

is preserved at the boundary, and thus,

Ht =
γ

γ − 1

pl
ρl

+
1

2
ui,lui,l

=
a2f
γ − 1

+
1

2
ui,fui,f .

(2.62)

Furthermore, one of the Riemann invariants, w2, is constant between the boundary face

and the cell center:

w2 = ui,ln̂i +
2al
γ − 1

= un,f +
2af
γ − 1

.

(2.63)
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From (2.62) and (2.63), the following second-order quadratic equation about af is achieved:

Aa2f −Baf + C = 0,

A = 1 +
2

γ − 1
, B = −2w2, C =

γ − 1

2
(w2

2 − 2Ht).
(2.64)

The solution of (2.64) is

af =
−B +

√
B2 − 4AC

2A
, (2.65)

and the Mach number on the face is calculated as

Mf =
2af + (γ − 1)w2

(γ − 1)af
, (2.66)

where w2 is calculated by the quantities at l. Finally, the boundary conditions are computed

as follows:

pf = pt

[
1 +

γ − 1

2
Mf

]− γ
γ−1

,

Tf = Tt

[
1 +

γ − 1

2
Mf

]−1

, ρf =
pf
RTf

,

ui,f = un,f n̂i.

(2.67)

Subsonic Outflow Condition with Constant Static Pressure This condition is used

as the outflow condition for internal flows. Here, the boundary value of the static pressure

pset is subscribed. The boundary values are computed as

pf = pset, ui,f = ui,l, ρf =
ρlpf
pl

. (2.68)

Boundary Condition for the SA Equation The far-field boundary condition ν̃ is as

follows. For the symmetry condition, always ν̃f = ν̃l. For the other boundary conditions, ν̃

is depending on the face-normal velocity:

ν̃ =

{
ν̃l (un,f ≥ 0)

ν̃∞ (un,f < 0)
, (2.69)

where the far-field value ν̃∞ is set to 3ν∞.

2.5 Temporal Discretization

2.5.1 Implicit Time Integration

The time is advanced by the Matrix-Free Gauss–Seidel (MFGS) [86]. This method is de-

rived from the spatially discretized governing equations (2.18) as follows. Here, the time is
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discretized by the Euler implicit method as

∆Qn
l

∆t
= − 1

Vl

∑
r∈l

(
F̃n+1
lr − G̃n+1

lr

)
slr, (2.70)

where the superscripts n and n+ 1 denotes the values at those time steps, and

∆Qn
l = (Qn+1

l −Qn
l ). (2.71)

The fluxes can be linearized as

F̃n+1 = F̃n +
∂F̃

∂Q

∣∣∣∣∣∣
n

∆Qn,

G̃n+1 = G̃n +
∂G̃

∂Q

∣∣∣∣∣∣
n

∆Qn,

(2.72)

Then, the Jacobian matrix

A =

 ∂F̃

∂Q
−
∂G̃

∂Q

 (2.73)

is split into the upwind and downwind components:

A = A+ +A−, (2.74)

where the superscripts + and − denote the upwind and downwind components, respectively.

These components are identical with the Jacobian matrix which consists of only the positive

or negative eigenvalues. The Jacobian should be evaluated by a first-order upwind method to

assure numerical stability. Thus, the upwind component of the Jacobian matrix is calculated

by the physical quantities of cell l, and the downwind component by those of cell r. Using

this Jacobian splitting, the fluxes at the n+ 1 step in (2.70) become

F̃n+1
lr + G̃n+1

lr = F̃nlr + G̃n
lr +A+,n

l ∆Qn
l +A−,n

r ∆Qn
r . (2.75)

Substituting (2.75) into (2.70) yields[
Vl
∆t

+
∑
r∈l

A+,n
l slr

]
∆Qn

l +
∑
r∈l

A−,n
r slr∆Qn

r

=
∑
r∈l

(
F̃nlr − G̃n

lr

)
slr.

(2.76)

In the explanation below, the superscript n is omitted, and the right-hand side of (2.76) is

just written as (R.H.S.) for brevity. Here, the Jacobian matrix is approximated as follows:

A± =
A± σAI

2
, (2.77)
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where σA is called “spectral radius” which is the maximum eigenvalue of A, and I is the

identity matrix. The spectral radius for the RANS equation is

σA = |un|+ a+
2(ν + νt)

∆x
, (2.78)

where un is the normal velocity to the face between cells l and r. Substituting (2.77) into

(2.76) yields[
Vl
∆t

+
1

2

∑
r∈l

σA,lslr

]
∆Ql +

1

2

∑
r∈l

(Arl − σA,rI) slr∆Qr = (R.H.S.), (2.79)

because ∑
r∈l

Alrslr = 0. (2.80)

In addition, Arl∆Qr in the second term of the left-hand side of (2.79) is approximated as∑
r∈l

Arl∆Qrslr ≃
∑
r∈l

[
F̃(Qr +∆Qr)− F̃(Qr)

]
slr

≃
∑
r∈l

[
F̃(Ql +∆Qr)− F̃(Ql)

]
slr

≃
∑
r∈l

F̃(Ql +∆Qr)slr.

(2.81)

Here, F̃(Qr) ≃ F̃(Ql) is assumed to reduce the computational cost [86]. Finally, the time

evolution of Q is achieved as follows:

∆Ql =[
Vl
∆t

+
1

2

∑
r∈l

σA,lslr

]−1 [
−1

2

∑
r∈l

(
F̃(Ql +∆Qr)− σA,r∆Qr

)
slr + (R.H.S.)

]
.

(2.82)

(2.82) is solved by a Gauss–Seidel method because the right hand side of the equation

includes ∆Qr. In UTCart, four Gauss–Seidel iterations are conducted for each time step.

Although the derivation described above includes many approximations, a steady-state

solution is obtained as ∆Q → 0. Thus, the steady-state solution is

(R.H.S.) = 0, (2.83)

which is same as the solution of the original discretized equation (2.18).

For the SA turbulence model, the governing equation includes source term S. The

source terms at the next time step are evaluated by a similar linearization as (2.72):

Sn+1 = Sn +
∂S
∂ν̃

∣∣∣∣∣∣
n

∆ν̃n, (2.84)
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where the Jacobian for the source term is

∂S
∂ν̃

=
∂(Production)

∂ν̃
−
∂(Destruction)

∂ν̃
,

∂(Production)

∂ν̃
= cb1

ν̃ ∂S̃
∂ν̃

+ S̃

 ,

∂(Destruction)

∂ν̃
= cw1

fw 2ν̃
d2

+
∂fw

∂ν̃

ν̃2

d2

 ,

∂S̃

∂ν̃
=

1

κ2d2

fv2 + ν̃
∂fv2

∂ν̃

 ,
∂fw

∂ν̃
≃
∂g

∂ν̃
=
∂r

∂ν̃

{
cw2(6r

5 − 1) + 1
}
,

∂fv2

∂ν̃
=

1

ν

χ2
∂fv1

∂χ
− 1

(1 + χfv1)2
,
∂fv1

∂χ
=

3c3v1χ
2

(χ3 + c3v1)
2
,
∂r

∂ν̃
=

1

S̃κ2d2

1− ν̃

S̃

∂S̃

∂ν̃

 .

(2.85)

To accelerate the convergence, the source term is treated explicitly when the production

term exceeds the destruction term [87]. Thus, the Jacobian for the source term is modified

as

J =
1

2

∂S
∂ν̃

−

∣∣∣∣∣∣∂S∂ν̃
∣∣∣∣∣∣
 . (2.86)

Consequently, the equation for the Gauss–Seidel iterations (corresponding to (2.82)) is

obtained as

∆ν̃l =

[
Vl
∆t

+
1

2

∑
r∈l

σN,lslr − JlVl

]−1

[
−1

2

∑
r∈l

(∆ν̃run − σN,r∆ν̃r) slr + (R.H.S.)

]
,

(2.87)

where spectral radius for the transport equation of the SA turbulence model is

σN = un +
ν + ν̃

σ∆x
. (2.88)

2.5.2 Local Time-Stepping

All the computations in this research are steady, and thus, a local time-stepping method is

introduced to accelerate convergence. In this method, the time increment ∆t is related to

the local cell size by the Courant number Cn as

∆tl = Cn
∆xl

al +
√
ui,lui,l

. (2.89)
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Convergence to the steady state is accelerated because the time increment is large in the

cells away from the wall boundary.

2.6 Parallelization of the Flow Computation

For large scale simulations, the flow computation part in UTCart is parallelized by the

Message Passing Interface (MPI). The generated Cartesian grid is partitioned using the

METIS library [88] for the parallel computation. In each divided domain of the grid,

sleeve cells for communication with other domains are specified. In addition, the physical

quantities at the IP must be available to determine the boundary condition. Therefore,

the cell including the IP is added to the list of sleeve cells if the cell belongs to a different

domain from where the boundary condition is imposed. Note that the parallelization of

UTCart is also described in [89].





Chapter 3

Wall Boundary Conditions for

Turbulent Flows

In this chapter, wall boundary conditions for UTCart to simulate turbulent flows are pre-

sented. First, the approximation of the RANS equations in near-wall region of a turbulent

boundary layer is analyzed in Section 3.1. Then, in Section 3.2, the wall boundary conditions

are developed based on this approximation. Finally, Section 3.3 describes the calculation

method for the cutoff-distance required in the proposed boundary condition.

3.1 Boundary Layer Approximation of the Governing Equa-

tions

In the near-wall region (inner-layer) of a turbulent boundary layer, the flow is quasi-one-

dimensional, i.e., the wall normal component of the velocity is much smaller than the wall

tangential component. This inner layer is also assumed to be quasi-steady when a RANS

simulation is considered. In addition, the influence of the pressure gradient is generally

smaller than that of the viscosity in the inner layer, as discussed in [61]. Here, a flat-plate

turbulent boundary layer in the x − y plane is considered. The x- and y-axes are set to

the wall tangential and normal directions, respectively. In the following subsections, the

approximations of the governing equations in this situation are examined.

3.1.1 Momentum Equation

Under the assumption in the inner layer of the boundary layer, the momentum equation

(2.2) is reduced to an ordinary differential equation about y:

1

ρ

dτxy

dy
=

d

dy

(ν + νt)
du

dy

 = 0. (3.1)

Integrating (3.1) about y from the wall yields

(ν + νt)
du

dy
=
τw
ρ
, (3.2)

31
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where τw is the magnitude of the shear stress on the wall. (3.2) indicates that the shear

stress is constant with respect to y. Note that the shear stress increases or decreases in an

actual boundary layer as y increases, due to the advection or pressure gradient neglected in

(3.1). Here, (3.2) is non-dimensionalized as follows:

(1 + ν+)
du+

dy+
= 1, (3.3)

where the non-dimensional velocity, length and eddy-viscosity are

u+ =
u

uτ
, y+ =

yuτ
ν
, ν+ =

νt
ν
, (3.4)

with the friction velocity uτ =
√
τw/ρ.

3.1.2 SA Turbulence Model

The SA turbulence model is also reduced to an ordinary differential equation under the

assumption in the inner layer of the boundary layer as

0 = (Production)− (Destruction) + (Diffusion),

(Production) = cb1

du

dy
+

ν̃

(κy)2
fv2

 ν̃,

(Destruction) = cw1fw

(
ν̃

y

)2

,

(Diffusion) =
1

σ

 d

dy

(ν + ν̃)
dν̃

dy
+ cb2

dν̃

dy

2 .
(3.5)

Note that the wall boundary exist at y = 0, and thus, d = y. Here, (3.5) is non-

dimensionalized with dividing each term by u2τ :

0 = (Production′)− (Destruction′) + (Diffusion′)

(Production′) = cb1

du+

dy+
+

χ

(κy+)2
fv2

χ

(Destruction′) = cw1fw

(
χ

y+

)

(Diffusion′) =
1

σ

 d

dy+

(1 + χ)
dχ

dy+
+ cb2

 dχ

dy+

2 .
(3.6)

The solution of (3.6) is linear with respect to y+:

χ = κy+. (3.7)
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With a dimensional form, the solution is

ν̃ = κuτy. (3.8)

When this solution is satisfied, the production term becomes

(Production′) = cb1

χdu
+

dy+
+

(
1− χ

1 + χfv1

) . (3.9)

In addition, the following equation is derived from (3.3):

1

1 + χfv1
=

du+

dy+
. (3.10)

Substituting (3.10) into (3.9) yields

(Production′) = cb1. (3.11)

Furthermore, r in the definition of fw is 1 when the solution (3.7) is satisfied. Thus, the

other terms in (3.6) become

(Destruction′) = cw1κ
2,

(Diffusion′) =
1 + cb2
σ

κ2.
(3.12)

As shown above, all the three terms in (3.6) are constant when the near-wall solutions

of the velocity and ν̃ are satisfied. Note that the actual solution deviates from this near-

wall solution when y increases because the advection term or the derivative of ν̃ in the

x-direction becomes not negligible.

3.1.3 Wall Function

The solution for the velocity under the inner-layer approximation is called “wall function”.

In the inner layer except for the region very close to the wall, ν̃ is much larger than ν, and

thus, fv1 ≃ 1. Therefore, substituting ν+ ≃ χ = κy+ into (3.3) and integrating it about y+

from the wall yields

du+

dy+
≃ 1

κy+
. (3.13)

When this equation is integrated about y+, the following equation is obtained:

u+ ≃ 1

κ
log y+ + C, (3.14)
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where C is an integration constant. The relationship (3.14) is generally called “log-law.”

This is a universal law for the velocity profile in the inner layer of a turbulent boundary

layer.

In the region very close to the wall, the eddy-viscosity is relatively small compared to

the molecular viscosity. The derivation above does not include the effect of the molecular

viscosity, and thus, (3.14) is not applicable to this region. To include the effect of the

neglected molecular viscosity and construct a universal law for the wall, the SA wall model

is developed in [90]. First, the near-wall solution χ = κy+ is substituted to (3.10):

du+

dy+
=

c3v1 + (κy+)3

c3v1 + (κy+)3 + (κy+)4
. (3.15)

Then, integrating (3.15) about y+ yields a near-wall asymptotic solution of the SA turbu-

lence model:

u+ = fSA(y
+)

= B̄ + c1 log ((y
+ + a1)

2 + b21) + c2 log ((y
+ + a2)

2 + b22)

− c3Arctan[y
+ + a1, b1]− c4Arctan[y

+ + a2, b2],

(3.16)

where

B̄ = 5.03339088, a1 = 8.1482158, a2 = −6.92870938,

b1 = 7.46008761, b2 = 7.46814579,

c1 = 2.54967735, c2 = 1.33016516,

c3 = 3.59945911, c4 = 3.63975319.

The shape of this function is shown in Fig. 3.1. The region with y+ < 5 is called “viscous

sublayer”, where work of the molecular viscosity dominates. In contrast, the effect of the

molecular viscosity is negligible and the log-law of the velocity is satisfied for y+ > 30. This

region is called “inertial sublayer”. In addition, the region in between these two layers is

the buffer layer, where the velocity gradient rapidly changes.

3.2 Boundary Conditions using a Turbulent Wall Function

For turbulent flow simulations, the IBM described in Section 2.4 is combined with the

turbulent wall function. First, the skin friction on the wall is determined using the turbulent

wall function. The tangential velocity at the IP must satisfy the velocity profile defined by

the SA wall model:

ut,IP = uτfSA(y
+
IP ), (3.17)
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Figure 3.1: The SA wall model developed in [90].

where fSA(y
+) is the SA wall model defined by (3.16). y+ in (3.17) includes uτ in its

definition, and thus, iterations are needed to determine uτ . Then, the friction velocity is

calculated by Newton iterations as

unewτ = uτ −
uτfSA(y

+
IP )− ut,IP

fSA(y
+
IP ) + uτ

dfSA

duτ

, (3.18)

where unewτ is the friction velocity at the next iteration cycle, and

dfSA

duτ
=
y+

uτ

dfSA

dy+
. (3.19)

The first derivative of the SA wall model is calculated by (3.15). The iteration starts from

the converged value at the previous time step of flow calculation. Convergence of uτ is

generally obtained with less than ten iteration steps, and the required number of iterations

decreases as the flow converges to a steady state.

After uτ is calculated, the physical quantities at FC are determined. In the original

IBM proposed by [38], the tangential velocity at FC is calculated as

ut,FC = uτfSA(y
+
FC). (3.20)

The boundary conditions for the normal velocity and pressure are the same as that for the

non-slip walls described in Section 2.4. Furthermore, the temperature at FC is calculated

by the Crocco–Busemann relationship [69] as

TFC = TIP +
Pr1/3

2cp
(u2t,IP − u2t,FC), (3.21)
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where cp is the specific heat at constant pressure (= γR/(γ − 1)). Then, the density at FC

is calculated:

ρFC =
pFC
RTFC

. (3.22)

In addition, the boundary condition for ν̃ is calculated by the near-wall solution of the SA

turbulence model:

ν̃FC = κuτdFC . (3.23)

The inviscid flux at FC is calculated by the same method as that used for the slip/non-

slip walls. In addition, the viscous flux is calculated using the calculated uτ . Here, the

stress tensor at FC (see (2.51) for the non-slip wall boundary condition) is

τij = ρu2τ (nitj + njti). (3.24)

Note that the velocity is zero at the separation point, and uτ = 0 accordingly. Under this

condition, both velocity and viscous flux at FC are zero.

However, the method described above cannot reproduce turbulent boundary layers ac-

curately when the cell boundary is not attached to the actual object surface, as reported

in the previous study [26]. Modifications for this method are therefore presented in the

following subsections.

3.2.1 Modification for the Near-Wall Velocity Profile

The velocity profile defined by the wall function is a nonlinear function. However, a spatial

scheme with second-order spatial accuracy can reconstruct only a linear (first-order poly-

nomial) profile within a cell. As a result, the velocity profile assumed by the wall function

cannot be reproduced correctly on the grid. This seems to be the origin of the inaccuracy

observed in the results obtained by the previous method.

To overcome this problem, the velocity profile should be modified so that it is linear.

This idea originates in [36]. The profile of the tangential velocity is modified using the first

derivative of the SA wall model (3.15):

u+(y+) = u+IP −
dfSA

dy+

∣∣∣∣∣∣
IP

(y+IP − y+). (3.25)

u+ at FC is calculated with y+ = y+FC in (3.25). In this velocity profile (Fig. 3.2), the

tangential velocity at y = 0 is nonzero, and thus, a virtual slip velocity is imposed on the

wall.
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Figure 3.2: Modification of the velocity profile.

3.2.2 Modification of the Eddy-Viscosity Profile

Although [36] proposed the modification for the velocity profile, the near-wall eddy-viscosity

profile has not been discussed in detail. The key issue here is that the balance of the shear

stress (see (3.2)) must be maintained. Thus, a modification is required on the eddy-viscosity

profile corresponding to the modification for the velocity profile.

In the modified velocity profile (3.25), the velocity gradient (du/dy) is constant. Accord-

ingly, νt must be constant in the region between the IP and wall to maintain the constant

shear stress implied by (3.2). Here, the near-wall solution of ν̃ is retained, and only the

wall-damping function fv1 in (2.10) is modified to avoid additional complexity. To realize

the constant profile of the eddy-viscosity, the wall-damping function must be

fv1 ∼
1

d
, (3.26)

because the near-wall solution of ν̃ is proportional to the wall distance d.

For the implementation, the profile of fv1 must be continuous. Thus, the wall-damping

function is redefined as

fv1 =

{
fv1,original (d ≥ dcutoff )

fv1,near−wall (d < dcutoff )
, (3.27)

where dcutoff is a cutoff distance that equals to the distance between the IP and wall.

fv1,original is the original damping function:

fv1,original =
χ3

χ3 + c3v1
, (3.28)

and fv1,near−wall is a modified damping function near the wall defined as

fv1,near−wall = rd
(χrd)

3

(χrd)3 + c3v1
, (3.29)
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where rd = dcutoff/d. Note that fv1,near−wall is a product of rd and the original fv1 at

d = dcutoff . When the IP is located in the log-layer of the turbulent boundary layer,

fv1,near−wall is approximately equal to rd. This function depends on the relative position

of the IP in the boundary layer. For example, the shape of the function with y+IP = 50 is

shown in Fig. 3.3.

(a) Wall damping function (b) Eddy viscosity

Figure 3.3: Modification for the eddy-viscosity profile

The modified eddy-viscosity profile has a kink at the cutoff point. Thus, the following

technique is adopted to calculate when the viscous fluxes on the faces are calculated. Here,

face lr, the face between cell l and r is considered. To calculate the viscous flux on face l, r,

νt,lr, the eddy-viscosity on the face is needed. However, the simple average of νt,l and νt,r is

different from the true value on the profile if the kink exists between cell l and r, and thus,

numerical errors may be caused.

Thus, the following procedure is adopted to eliminate the effect of the kink. The averages

of ν̃, ν and d are firstly calculated:

ν̃lr = rlrν̃l + (1− rlr)ν̃r,

νlr = rlrνl + (1− rlr)νr,

dlr = rlrdl + (1− rlr)dr,

(3.30)

where rlr is the ratio of cell sizes:

rlr =
∆xr

∆xl +∆xr
. (3.31)
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Then, the eddy-viscosity is calculated by those quantities:

νt|lr = ν̃lrfv1(χlr, dlr), (3.32)

where χlr = ν̃lr/νlr. The profile of ν̃ is nearly linear in near the wall, and the numerical

error becomes smaller than taking the simple average of νt.

3.2.3 Thermal Boundary Condition

In the original method, the temperature on the wall is calculated based on the Crocco–

Busemann relationship. Corresponding to the modification for the velocity and eddy-

viscosity profiles, the thermal boundary condition is now reconsidered. Differentiating the

Crocco–Busemann relationship (3.21) yields

dT

dy
= −Pr

1
3

cp
ut

dut

dy
. (3.33)

In the modified velocity profile (3.25), the normal gradient of the tangent velocity is constant

below the IP. Here, ut is also assumed to be nearly constant because the velocity gradient

in the log-layer is small.

Thus, the temperature gradient is nearly constant below the IP, and the temperature

profile becomes a linear profile (Fig. 3.4) as

TFC = TIP −
dT

dy IP
(yIP − yFC), (3.34)

where the temperature gradient at IP is calculated by (3.33) as

dT

dy

∣∣∣∣∣∣
IP

= −Pr
1
3

cp
ut,IP

dut

dy

∣∣∣∣∣∣
IP

. (3.35)

In addition, the velocity gradient is calculated using the first derivative of the SA wall model

(3.15) as

dut

dy

∣∣∣∣∣∣
IP

=
u2τ
ν

dfSA

dy+

∣∣∣∣∣∣
IP

. (3.36)

Finally, the heat flux at FC is calculated using the temperature gradient (3.35) directly:

qj,FC = −ρFCcp
(
ν

Pr
+

νt
Prt

)
FC

dT

dy

∣∣∣∣∣∣
IP

nj . (3.37)

This heat flux is added as a part of the boundary viscous flux at FC.
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Figure 3.4: Modification for the temperature profile.

3.2.4 Influence on the Near-Wall Solution of the SA Turbulence Model

Here, it is confirmed that the modifications for the velocity and eddy-viscosity profiles do

not change the near-wall solution of the SA turbulence model (3.8). As examined in (3.11),

the production term is constant when the near-wall solution of the SA turbulence model

and the balance of the shear stress (3.2) are maintained. This is independent of the choice

of fv1. In addition, S̃ = uτ/(κy) is independent of fv1 or the velocity gradient. Thus, the

destruction and diffusion terms are not influenced by the changes in the near-wall profiles.

Consequently, the near wall solution ν̃ = κuτy is still a solution of the approximated SA

equation (3.5) even when the near-wall profiles are modified.

3.3 Calculation of Wall and Cutoff Distances

The SA turbulence model requires information of the distance to the nearest wall. If the

nearest wall is directly searched, the computational cost rapidly increases as the grid become

finer. This is because the cost is proportional to the product of the number of cells and

the number of the line (or facet) segments composing the object surface. Thus, the level-

set method [91] is used to reduce the computational cost. The transport equation for the

distance function ϕ = ϕ(xi, τ) is

∂ϕ

∂τ
= 1−

√√√√ ∂ϕ

∂xi

∂ϕ

∂xi
, (3.38)

where τ is the pseudo time. The distance d is obtained as the solution of (3.38) as τ → ∞.

In addition, a cutoff distance is required to calculate the modified damping function

(3.27). This cutoff distance is equal to the value of the IP distance dIP assigned to the

nearest wall from the cell. When multiple objects (or parts) with different assigned cell

sizes exist in the computational domain, all the cells in the domain need to know which
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object is the nearest. To avoid the direct searching, a method to detect the nearest wall

using an advection equation is developed. The cutoff distance is convected from the wall in

the wall normal direction because the value must be constant in that direction. Thus, the

equation for the cutoff distance function ψ is defined as

∂ψ

∂t
+ ni

∂ψ

∂xi
= 0, (3.39)

where ni are the components of the wall normal vector n. The cutoff distance is obtained

as the solution as τ → ∞ Furthermore, the components of the wall normal vector are

calculated by differentiating the distance function ϕ as

ni =
∂ϕ

∂xi
. (3.40)

In the solver, the WLSQ [77] is used to approximate this differentiation.

Here, (3.39) is discretized by the FVM:

∂ψl

∂τ
= − 1

Vl

∑
r∈l

H̃lrslr, (3.41)

where H̃ is an numerical flux, and the subscripts are identical with those used in (2.18).

The wall boundary condition is imposed at FC as ψFC = rIP∆xF with ∆xF being the size

of the fluid cell that includes FC. In addition, a zero-gradient condition is imposed at the

far-field.

To stabilize the computation, an upwind scheme is used to determine the numerical flux.

The upwind numerical flux is calculated by the face-left and right values as

H̃lr =


ψlαl (αl > 0)

ψl+ψr

2 αl (αl ≥ 0 and αr < 0)

ψrαl (αl ≤ 0 and αr ≤ 0)

, (3.42)

where the advection speed α is the inner product of n and the face normal ñ. Note that

the upwind flux (3.42) is that seeing from cell l, and the flux seeing from cell r is different

(i.e., H̃lr ̸= H̃rl). This upwinding suppresses the numerical oscillation when informations

from two different walls collide.

The wall and cutoff distances are time-invariant if the surface of the object is fixed to

the space. Thus, they are calculated at the beginning of the flow calculation and used

throughout the whole simulation. The calculation is similarly parallelized using the MPI

library, as described in Section 2.6.
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Figure 3.5 shows an example of the result of the cut-off distance calculation. The cell

sizes assigned on the lower and upper airfoils are 0.02 and 0.04, respectively. In addition,

a local refinement with ∆x = 0.01 is specified near the leading edge of the lower airfoil.

Here, the computational domain is divided into three domains, depending on the cell size

assigned to the nearest wall. Furthermore, the calculated cutoff distance is almost equal to

the intended value.
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Figure 3.5: Calculation example of the cut-off distance.
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3.4 Summary of Chapter 3

In this chapter, the wall boundary conditions for UTCart to simulate turbulent flows were

presented. First, the near-wall behavior of the RANS equation and the SA turbulence model

was examined in Section 3.1. From on the near-wall approximation of the RANS equation,

the shear stress is implied to be nearly constant in the wall normal direction. Under this

condition, the SA turbulence model has a linear solution with respect to the wall distance.

Then, the IBM for turbulent flow simulations was developed in Section 3.2. The tur-

bulent wall function is used to determine the friction velocity on the wall, and the viscous

flux at the boundary is directly calculated by this friction velocity. In addition, physical

quantities at the boundary are determined to calculate the convective flux at the boundary.

To avoid numerical problems, the profile of the wall tangential velocity was modified so

that it is linear. This is because the original velocity profile defined by the wall function is

nonlinear, and it cannot be resolved on the grid when a second-order spatial scheme is used.

The eddy viscosity profile was also modified to maintain the balance of the shear stress that

is discussed in Section 3.1. Furthermore, the thermal boundary condition was reconsidered

corresponding to the modification for these profiles.

The developed boundary condition requires the cutoff distance, which is equal to the IP

distance on the nearest wall. In Section 3.3, the calculation method for this cutoff distance

was developed. The method is based on an advection equation, which can eliminate the

direct searching of the nearest wall.

In the verification problems shown later, the baseline method described in Section 3.2

and the method with the modifications described in Sections 3.2.1–3.2.3 are referred to as

the “original IBM” and “modified IBM,” respectively. The specification of these methods

is tabulated in Table 3.1.

Table 3.1: Specification of the original and modified IBMs.

Original IBM Modified IBM

Velocity profile following the wall function (3.20) linear (3.25)

fv1 original definition in the SA (2.10) modified (3.27)

Temperature profile Crocco–Busemann relationship (3.21) linear (3.34)





Chapter 4

Force Integration on Cartesian

Grids

In this chapter, methods to calculate the aerodynamic force acting on immersed bodies are

investigated. To compute the aerodynamic force, a method based on the integration over

the input CAD surface, which is called “polygon-based method” in [45], is often used. In

this method, the physical quantities (e.g., pressure) on the Cartesian grid is extrapolated

onto the CAD surface and then integrated. This method is the same as the force integration

method on conventional body-fitted grids except for the extrapolation. However, arbitrari-

ness exists in the extrapolation formula, and thus, the computed force contains additional

numerical errors caused by the extrapolation. In addition, the accuracy of the integration

depends on the resolution of the CAD surface. For these reasons, the relation between the

flow solution and the actual force acting on the immersed body is unclear.

To clarify this point, a new force integration method is developed based on the balance of

the numerical flux. This idea is similar to the far-field methods [92,93], but the integration

surface is the step-wise cell boundary near the wall boundary. Unlike the far-field method,

the pressure and viscous component of the force can be calculated using this method be-

cause the integration surface is near the object surface. The force can also be decomposed

into that acting on each object when multiple objects exist in the computational domain.

Furthermore, an unsteady force can be evaluated without a volume integration.

The structure of this chapter is as follows. In Section 4.1, the formulation of the force

integration over the CAD surface is described. The method based on the balance of the

numerical flux is then developed in Section 4.2. The force integration methods are then

implemented in UTCart, and test problems are conducted in Section 4.3 to check the validity

and accuracy of the proposed methods.

In the explanation below, an immersed body ΓS in Cartesian grids, as shown in Fig.

4.1, is considered. The step-wise cell boundary near the wall and the far-field boundary are

named ΓG and ΓF , respectively. Note that the normal vectors of ΓG and ΓF are pointing

outside the computational domain. Furthermore, the domains between ΓG and ΓF , and

45
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that between ΓG and ΓS are named V1 and V2, respectively.

ΓS ΓG

n

ΓF

V1 V2

n

n

Figure 4.1: Description of the computational domain and the boundaries.

4.1 Force Integration on a CAD Surface

In this method, the aerodynamic force is integrated over the object surface ΓS . First, a

body force term is added to the momentum equation (2.2):

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) +

∂p

∂xi
=
∂τij
∂xj

+ fi, (4.1)

where fi represents the body force. The object is considered as the source of the body force

in the fluid. Then, the momentum equation (4.1) is integrated within the object as∫
VB

∂(ρui)
∂t

+
∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂τij
∂xj

− fi

 dV = 0, (4.2)

where VB denotes the volume inside the object. Here, the aerodynamic force acting on the

object Fi is the reaction of the body force in (4.2):

Fi = −
∫
VB

fidV. (4.3)

The flow velocity inside the object is zero, and thus,

Fi =

∫
VB

[
− ∂p

∂xi
+
∂τij
∂xj

]
dV. (4.4)

Finally, applying the divergence theorem to (4.4) yields

Fi =

∫
ΓS

(−(p− p∞)δij + τij)njdS, (4.5)
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where p∞ is the free-stream pressure, and nj are the components of the wall normal vector

n. The integral of p∞δijnj works as a compensation for a non-closed surface (e.g., a half-

cut model with a symmetry plane) and is zero if the integration surface is closed. For the

implementation, (4.5) is discretized for each surface element (i.e., line segment or triangular

facet) composing ΓS .

This method is similar to the integration method on the conventional body-fitted grids,

and the pressure and viscous components of the force can be divided by integrating the

equation term by term. However, the pressure and stress tensor on ΓS is not available on

the Cartesian grid, and extrapolation of the physical quantities is necessary. To determine

the pressure and stress tensor on each surface element, two reference points I1 and I2 are

set on the wall normal line through the gravity center of each element (see Fig. 4.2). Here,

d1 and d2, the distances from the wall to I1 and I2 are 1.5 and 3 times the size of the

nearest cell, respectively. Note that d2 is modified so that it is rIP times the cell size when

rIP in (2.40) is greater than 3. This is because at least one of the probes should be located

outside the region where the velocity profile is modified (see Section 3.2).

In the explanation below, the physical quantities at I1 and I2 are represented with sub-

scripts 1 and 2, respectively. The physical quantities at I1 and I2 are linearly interpolated

using the gradient at the cell-center including these probes. Here, the stress tensor on the

surface is

τij =

µ∂ut
∂n

nitj , (4.6)

where tj are the components of the unit vector in the flow direction. For a slip wall, the

stress the velocity gradient on the wall is zero:

∂ut

∂n
= 0. (4.7)

When the non-slip condition is imposed on the surface, the velocity gradient is calculated

by a quadratic polynomial with the velocity being zero on the wall:

∂ut

∂n
=
ut,1d

2
2 − ut,2d

2
1

d1d2(d2 − d1)
. (4.8)

For the turbulent boundary condition described in Chapter 3, the wall shear stress is cal-

culated by the wall function. Here, the matching of the wall function is calculated at I2

similarly as (3.17–3.18). Then, using the calculated uτ , the wall shear stress is estimated as

τij = ρu2τnitj . (4.9)
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For the surface pressure ps, arbitrariness exists in the extrapolation formula; for example,

ps = p1. (4.10)

This formula employs a P0 polynomial (constant value) for the extrapolation of the surface

pressure. Another method is possible when a P1 (linear) polynomial is used:

ps = p1 −
d1

d2 − d1
(p2 − p1). (4.11)

If the pressure gradient in the wall normal direction is assumed to be zero, a P2 (quadratic)

polynomial can also be applied:

ps = p1 −
d21

d22 − d21
(p2 − p1). (4.12)

The extrapolation formulae (4.10–4.12), the methods are named polygon-based (P0), polygon-

based (P1) and polygon-based (P2) methods, respectively. As shown above, this method

has arbitrariness in the determination of the surface pressure. This process can introduce

additional numerical error independent of the actual accuracy of the flow computation.

Δx

I2

I1

Figure 4.2: Probes for the polygon-based method.

4.2 Force Integration based on the Balance of Numerical

Fluxes

Here, a new method to calculate the aerodynamic force based on the balance of the numerical

flux is developed. This method is derived from the governing equation as follows.

4.2.1 Far-Field Flux-Based Method

The force integration over the far-field boundary is firstly described for comparison. The

aerodynamic force is obtained by integrating the momentum equation with the body force
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term (4.1) at the far-field ΓF . Integrating the momentum equation over the volumes V1 and

V2 yields,

∫
V1+V2

∂(ρui)

∂t
dt+

∫
ΓF

(ρuiuj + pδij − τij)njdS = −Fi + ṀU∞,i, (4.13)

where U∞,i are the components of the free-stream velocity, and Ṁ is the mass source in the

computational domain. Although there is no mass source in the original governing equation,

this term is added in (4.13) because the IBM does not assure strict mass conservation near

the wall boundary. Here, the sourced mass is assumed to recover the free-stream velocity

at the far-field. The mass source exists only in V2, and thus, it can be calculated by the

integration of the continuity equation over V2 as

Ṁ =

∫
ΓG

ρujnjdS. (4.14)

Therefore, the aerodynamic force Fi is

Fi = −
∫
V1+V2

∂(ρui)

∂t
dt−

∫
ΓF

(ρuiuj + pδij − τij)njdS +

∫
ΓG

ρujU∞,injdS. (4.15)

If the flow is unsteady, the first term in the left-hand side is nonzero. Thus, the volume

integration of time derivative of density is essential. When multiple objects exist in the

computational domain, the force acting on one of the objects cannot be calculated. In ad-

dition, this method cannot divide the viscous and pressure components of the aerodynamic

force.

4.2.2 Near-Field Flux-Based Method

To enable component-wise integration of the aerodynamic force, the integral over ΓF is

replaced by that over ΓG. First, the momentum equation is integrated over domain V1

assuming neither mass source nor body force exists in the domain:

∫
V1

∂(ρui)

∂t
dV +

∫
ΓF

(ρuiuj + pδij − τij)njdS +

∫
ΓG

(ρuiuj + pδij − τij)njdS = 0. (4.16)

Then, subtracting (4.16) from (4.13) yields

∫
V2

∂ρui

∂t
dV −

∫
ΓG

(ρuiuj + pδij − τij)njdS = −Fi + ṀU∞,i. (4.17)

Here, the volume integral over V2 is neglected because the volume V2 is small (becomes zero

on extremely fine grid), and the flow near the wall is assumed to be nearly steady. Thus,
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substituting (4.14) into (4.17) yields the near-field integration formula for the aerodynamic

force:

Fi =

∫
ΓG

{(ρ(ui − U∞,i)uj + (p− p∞)δij − τij}njdS. (4.18)

For the implementation, eq. (4.18) is discretized on the faces that compose ΓG:

Fi =
∑

face∈ΓG

[{⟨(ρuiuj + pδij)n̂j⟩ − ⟨ρujn̂j⟩U∞,i − p∞δij − ⟨τijn̂j⟩}]face , (4.19)

where ⟨(ρuiuj + pδij)n̂j⟩ are the momentum components of the inviscid flux, ⟨ρujn̂j⟩ is the
mass component of inviscid flux, and ⟨τijn̂j⟩ are the momentum components of the viscous

flux. Here, the integral of only the viscous flux is considered as the viscous component

of the aerodynamic force, and the remainder is considered as pressure component. The

aerodynamic forces acting on each part of the immersed body (or each object) can also be

decomposed when the faces are classified with respect to the nearest part or object.

The important point for this method is to use the same inviscid and viscous numerical

fluxes as those used in the flow calculation for the flux components in (4.19). The evaluated

force therefore directly reflects the accuracy of the flux used in the flow calculation, and no

additional numerical error is produced.

4.3 Test Problems

To compare the accuracy of the polygon-based and flux-based methods, the following flows

are simulated:

• inviscid flow around a NACA 0012 airfoil;

• steady and unsteady viscous flow around a circular cylinder;

• inviscid flow around a 3D rectangular wing.

In the following explanation, the near-field flux-based method is referred to as “flux-based

method”.

4.3.1 Inviscid Flow around a NACA 0012 Airfoil

Settings The first problem is an inviscid flow around a NACA 0012 airfoil. The free-

stream Mach number is 0.2, and the angle of attack is fixed to 3◦. The original NACA 0012

airfoil has a blunt trailing edge. However, the trailing edge should be sharp in inviscid flow

simulations where no flow separation will occur. Thus, the definition of the airfoil is slightly

modified to

y = ±0.594689181[0.298222773
√
x− 0.127125232x

−0.357907906x2 + 0.291984971x3 − 0.105174606x4].
(4.20)
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This modified definition is presented in [94] for the verification study of the turbulence

models.

Five grids with different grid resolution (see table 4.1) are used to check the trend

of grid convergence. The size of the computational domain is 655×655, and the far-field

boundary condition is imposed on the far-field boundaries. For the wall boundary, the slip

wall condition is used. Figure 4.3 (a) shows the near field of grid 1. The input definition of

the NACA 0012 airfoil consists of 10,093 line segments, and the size of each line segment

is small enough compared to the minimum cell size of grid 5. In addition, computation by

Japan Aerospace Exploration Agency (JAXA)’s unstructured flow solver “FaSTAR” [95]

on a body-fitted grid (16,697 cells) is conducted to obtain the reference solution.
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x

y

-0.2 0 0.2 0.4 0.6 0.8 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b) Grid for FaSTAR

Figure 4.3: Computational grid around the NACA 0012 airfoil. Only the near-field is shown.

Table 4.1: Setting of computational grids around the NACA 0012 airfoil.

Minimum grid size Total cell number

Grid 1 0.02 2,510

Grid 2 0.01 4,710

Grid 3 0.005 8,598

Grid 4 0.0025 15,372

Grid 5 0.00125 33,096

Results Figure 4.4 shows grid convergences of the drag and lift coefficients. The ideal value

for the drag coefficient is zero because this case is a 2D inviscid flow simulation without

shock waves. The flux-based method on grid 3 calculates the drag coefficient with 1 drag
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count (= 10−4) error, whereas the polygon-based methods calculate it with more than 50

drag counts error. Even though the result of the flow computation is the same, the drag

coefficient varies by more than 40 drag counts depending on the extrapolation methods for

the surface pressure when the polygon-based methods are used. This implies that there is

an additional numerical error unrelated to the accuracy of the flow computation.

Figure 4.5 shows the surface pressure coefficient Cp = p/(ρu2∞/2) on the airfoil for the

grid 3. This surface pressure is used in the polygon-based methods to calculate the pressure

component of the force. The areas confined by the line in x/c − Cp plot and in Cp − y/c

plot represent the magnitudes of the vertical and horizontal forces, respectively. Depending

on the extrapolation formula of the surface pressure, the distribution near the leading edge

varies. For example, the P1 extrapolation results in a strong suction peak, and thus, the

vertical force is overestimated. In addition, the surface pressure near the leading edge in

all the results is higher than the FaSTAR result, and this seems to be the cause of the

overestimation of the drag coefficient computed by the polygon-based methods.
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Figure 4.4: Grid convergence of aerodynamic coefficients of the NACA 0012 airfoil.

4.3.2 Inviscid Flow around a 3D Rectangular Wing

Settings To investigate the accuracy of the force integration methods in 3D flows, an

inviscid flow around a rectangular wing is simulated. The section of the wing is defined

by the modified NACA 0012 airfoil (4.20), and the aspect ratio AR = 4. The symmetry

boundary condition is imposed on the y = 0 plane, and a half-cut model is employed. The
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Figure 4.5: Surface pressure on the NACA 0012 airfoil (Grid 3).

surface mesh of the wing is shown in Fig. 4.7. The free-stream Mach number is 0.2, and the

angles of attack are 0, 3, 6, 9, and 12◦. Figure 4.6 shows the overview of the computational

grid. For the wall boundary, the slip wall condition is used. The size of the computational

domain is 6403, and the Riemann boundary condition is imposed on the far-field boundaries

except for the y = 0 plane. Two grids with different resolutions are prepared to check the

trend of grid convergence.

Figure 4.6: Computational grid around the rectangular wing.

Results Figure 4.8 shows the calculated drag coefficient versus the lift coefficient. Note

that the “Theory” curve in the figure is calculated by the theoretical relationship used in
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Table 4.2: Setting of computational grid around rectangular wing.

Minimum grid size Total cell number

Grid 1 0.0048 1,004,218

Grid 2 0.0024 3,770,743

Figure 4.7: Surface polygon mesh of the rectangular wing.

the conceptual design of aircraft:

CD =
C2
L

eπAR
, (4.21)

where the Oswald span efficiency factor is calculated using a statistical relationship [96] as

e = 1.78(1− 0.045AR0.68)− 0.64

= 0.934.
(4.22)

On both computational grids, the curve calculated by the flux-based method has less than

1 drag count error at CL = 0. The curves calculated by the polygon-based methods, on the

other hand, have more than 40 drag counts error compared with the ideal curve, and the

magnitude of the error increases at the higher angles of attack. Furthermore, the curve by

the flux-based method shows closer agreement with the ideal curve on grid 2. This indicates

that the trend of the grid convergence is correct.

4.3.3 Steady Viscous Flow past a Circular Cylinder

Settings To investigate the accuracy of the force calculation methods in a viscous flow,

the flow past a circular cylinder with the diameter D = 1 is simulated. Here, the surface of

the circular cylinder is a non-slip wall. The Reynolds number based on the diameter and the

free-stream velocity is 20. In addition, the free-stream Mach number and the free-stream
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Figure 4.8: Drag-lift polar curves of the rectangular wing.

temperature is 0.2 and 293.15 K, respectively. Four resolutions of grids (Table 4.3) are

prepared to investigate the trend of grid convergence. The size of the computational domain

is 262×262 and the Riemann boundary condition is imposed on the far-field boundaries.

Figure 4.9 (a) shows the near field of grid 1. As shown in the figure, a box source for grid

refinement is placed in the wake. The grid size in the box source is four times the grid size

on the wall. The input definition of the cylinder consists of 3,600 line segments, and the

length of each line segment is small enough compared to the minimum cell size of grid 4.

Table 4.3: Setting of computational grid around a circular cylinder.

Minimum grid size Total cell number

Grid 1 0.016 4,830

Grid 2 0.008 11,418

Grid 3 0.004 34,004

Grid 4 0.002 113,744

Results Figure 4.10 shows the calculated drag coefficients on each grid. Note that the

three polygon-based methods have no difference in the calculation of the viscous force, and

thus, only polygon-based method (P1) is shown in Fig. 4.10 (b). The converged value of

the total drag coefficient is expected to be around 2.05, and it is identical in all the force

calculation methods presented here. The reported values for the total drag coefficient in
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Figure 4.9: Computational grid around a circular cylinder.

the previous studies [11, 97, 98] are within the range from 2.043 to 2.053, and those are

consistent with the present values. The pressure drag coefficient on the coarse grid tends

to be overestimated regardless of the force calculation method. Furthermore, being similar

to the flow around the NACA 0012 airfoil, the pressure drag varies by the choice of the

extrapolation formula. The viscous drag is overestimated by the polygon-based methods

and underestimated by the flux-based method. A typical laminar boundary layer profile

is represented by the Blasius solution [69], in which the velocity gradient becomes small

where the distance from the wall increases. When the IP is located farther from the wall,

the velocity gradient uIP /dIP is expected to become smaller. Thus, it is natural that the

viscous drag is underestimated on the coarse grid. However, the polygon-based method

overestimates the viscous drag, and only the flux-based method follows the trend stated

above.

In addition, the drag related to the mass source is shown in Fig. 4.11. The magnitude is

smaller than that in the inviscid calculations. This is because the flow near the wall is slow

due to the presence of the boundary layer. Consequently, the mass flux through the cell

boundary becomes small, and the drag related to the mass source is small in this problem.



Section 4.3. Test Problems 57

∆x
min

C
d

,p

0 0.005 0.01 0.015 0.02
1.2

1.25

1.3

1.35

1.4 Polygon (P0)

Polygon (P1)

Polygon (P2)

Flux

(a) Pressure drag coefficient

∆x
min

C
d

,v

0 0.005 0.01 0.015 0.02
0.7

0.75

0.8

0.85

0.9

Polygon (P1)

Flux

(b) Viscous drag coefficient

∆x
min

C
d

,t
o

ta
l

0 0.005 0.01 0.015 0.02
2

2.1

2.2

2.3
Polygon (P0)

Polygon (P1)

Polygon (P2)

Flux

(c) Total drag coefficient

Figure 4.10: Grid convergence of aerodynamic coefficients of a circular cylinder.
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4.3.4 Unsteady Viscous Flow past a Circular Cylinder

Settings The Reynolds number for the diameter of the cylinder is here enhanced to 200.

This problem is conducted to confirm the capability of the near-field flux-based method for

tracking time history of the aerodynamic force in unsteady problems. The computational

grid is identical with grid 4 in the previous problem. Here, the polygon-based method

(P1), the far-field flux-based method and the near-field flux-based method are compared.

Note that the volume integration of the unsteady term in the far-field flux-based method is

omitted.

Results Figure 4.12 shows the convergence history of the drag coefficient. The value

calculated by the far-field flux-based method does not follow the other two convergence his-

tories. This is because the unsteady term in (4.15) is omitted. In addition, the aerodynamic

force caused by the cylinder delays and attenuates before reaching the far-field. Therefore,

the far-field flux-based method cannot be applied to unsteady problems without includ-

ing the volume integration over the entire domain. In contrast, the convergence histories

by the polygon-based method and the near-field flux-based method show close agreement.

Although the unsteady term in (4.17) is omitted in the integration, there is almost no de-

lay between the polygon-based method and the near-field flux-based method. Thus, it is

confirmed that the near-field flux-based method can be applied also to unsteady problems.
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4.4 Summary of Chapter 4

In this chapter, the methods to calculate aerodynamic forces acting on the immersed bodies

were investigated. The calculation is not as straightforward as that on the body-fitted

grid because no physical quantities exist on the immersed body. For the force calculation

methods, the polygon-based method and the flux-based method were compared.

In the polygon-based method, the quantities on the immersed body are extrapolated

from the computational grids. For the interpolation, probes are set in the fluid cells. The

integration of the force is the same as the near-field method on the body-fitted grid, but

additional numerical error and arbitrariness are introduced by the interpolation.

On the other hand, the flux-based method calculates the aerodynamic force by integrat-

ing the numerical flux through the step-wise cell boundary. This method is similar to the

far-field integration, but it can be applied also to unsteady problems without introducing

a volume-integration term. The calculated aerodynamic force can be decomposed into the

pressure and viscous components. In addition, the force acting on one of the objects can be

calculated when multiple objects exist in the computational domain. The accuracy of this

method is consistent with the accuracy of the flow computation because the same numerical

flux as that employed in the flow computation is used.

Then, inviscid and viscous test problems were solved to investigate the accuracy of the

force calculation methods. The pressure component of the force varies by the extrapolation

formula of the surface pressure when the polygon-based method is used. In contrast, the

flux-based method could calculate the pressure drag more accurately than the polygon-

based methods. The oscillating flow past a circular cylinder was also simulated. The time

history of the aerodynamic coefficient could be reproduced by the flux-based method.



Chapter 5

Test Cases for the Immersed

Boundary Method

To investigate the accuracy and validity of the proposed simulation methodology for turbu-

lent flows, studies on simple 2D flows defined at the NASA turbulence modeling resource

(TMR) [94] are conducted. The test cases include the simulations of the following flows:

• turbulent flat-plate boundary layers;

• subsonic flows over a bump;

• subsonic flows around the NACA 0012 airfoil.

In this chapter, the original and modified IBMs (see Section 3.4) are implemented in UT-

Cart, and these two methods are compared. For every problem, multiple grids with differ-

ent grid resolution are prepared to check the trends of grid convergence. The test cases in

this section are conducted to confirm that UTCart can produce similar results to those ob-

tained on the conventional body-fitted grids. Thus, the computational results are compared

with the reference results provided in the TMR. These reference results are computed by a

structured-grid-based flow solver CFL3D [99] on body-fitted structured grids using the same

turbulence model. In the TMR, the grid convergence of the results has been strictly veri-

fied, and therefore the results are here considered as the “correct” solutions of the governing

equations.

5.1 Turbulent Flat-Plate Boundary Layer on Aligned Grids

As the simplest validation study for the proposed IBM, turbulent flows over a flat plate are

simulated at first. The definition of the problem is following the benchmark problem pre-

sented in the TMR. The Reynolds number based on the unit length L = 1, the free-stream

Mach number and the free-stream temperature are 5.0 × 106, 0.2 and 300K, respectively.

The reference solution for this problem is provided in the TMR, which is computed by

CFL3D on the 545×385 structured grid.

The computational grid and the boundary conditions for this case are shown in Fig. 5.1.

61
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Note that the computational grid is coarsened for visualization. This setting is a special

case for the IBM because the boundary of the cell coincides with the plate surface. Thus,

this grid can be classified as a body-fitted grid. Here, the original and modified IBMs (see

Section 3.4) are compared on five different grids, as tabulated in Table 5.1. The y+IP values

in the table are estimated using uτ at x/L = 0.97 of the reference result. For all the cases,

the ratio of the IP distance to the cell size on the wall, rIP (see (2.40)), is fixed to 3.
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Figure 5.1: The computational grid over the flat plate (aligned grid).

5.1.1 Computational Results

Figure 5.2 compares the distributions of the skin friction coefficient on the flat plate calcu-

lated by the original and modified IBMs. The skin friction coefficient cf is defined as

cf = τw/q∞, (5.1)
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Table 5.1: Setting of computational grid over the flat plate (aligned grid).

Grid Minimum grid size Cell number y+IP at x/L = 0.97 (estimated)

1 1.14× 10−3 18,224 628

2 5.70× 10−4 41,264 314

3 2.85× 10−4 89,648 157

4 1.42× 10−4 191,624 78.6

5 7.12× 10−5 398,384 39.3

where q∞ = (ρ∞u
2
∞)/2 is the dynamic pressure of the free-stream. The results by both

IBMs show good agreement with the reference result by CFL3D, except for the region very

close the leading edge. This discrepancy occurs because the boundary layer in this region is

very thin, and thus, the IP is not located in the inner layer of the boundary layer correctly.

Figure 5.3 visualizes the profiles of the wall tangential velocity at x/L = 0.97 and 1.90.

In addition, Fig. 5.4 shows the profiles of the non-dimensional eddy-viscosity ν+ = νt/ν

at the same location. The profiles above the IP shows good agreement with the CFL3D

result, and the difference between the two IBMs are small. In the modified IBM result,

the tangential velocity below the IP becomes larger than the actual profile in the viscous

sublayer. Furthermore, the eddy-viscosity profile between the IP and wall is nearly constant.

These results confirm that the profile modifications work as intended.
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Figure 5.2: Skin friction coefficient on the flat plate (aligned grid).
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Figure 5.3: Profiles of the tangential velocity in the boundary layer (aligned grid).

5.1.2 Discussion

Both original and modified IBMs can reproduce the growth of the turbulent boundary layer

accurately on this grid. This is assumed to be because the cell boundary is attached to

the plate. Here, the mechanisms for the wall function to reproduce the turbulent boundary

layer on this grid is analyzed in detail.

A control volume from the wall to the upper edge of the boundary layer is considered

(Fig. 5.5). The x- and y-axes are set in the wall tangential and normal directions, respec-

tively. The pressure gradient in this control volume and the shear stress at the upper edge

are zero. Thus, the balance of the x-direction momentum flux is

τwlx =

∫ δ

0

{
(ρu2)in − (ρu2)out

}
dy, (5.2)

where τw is the shear stress determined by the wall function, lx is the width of the control
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Figure 5.4: Profiles of the eddy-viscosity in the boundary layer (aligned grid).

volume, and δ is the boundary layer thickness. The right-hand side of (5.2) represents the

development of the boundary layer, and this term is equated with the wall shear stress. In

addition, the advection flux through the lower edge of the control volume is zero when a

body-fitted grid is used. Therefore, the balance of the momentum flux (5.2) is automatically

satisfied, and thus, the development of the boundary layer is correctly reproduced when the

wall shear stress is correct.

The cell-wise balance of the momentum flux is also examined. In the first cell from the

wall, the advection term is small compared to the viscous term because the cell is assumed

to be in the inner layer of the boundary layer. Thus, only the viscous fluxes through the

upper and lower edges remain. The time evolution of the wall tangential velocity u becomes

unew − uold

∆t
=

1

ρ

τN − τw
∆y

, (5.3)

where τN denotes the shear stress on the upper face. If τw is greater than τN , u decreases
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and the velocity gradient at the upper edge increases. Consequently, τN increases, and it

balances with τw at the converged state. Under this converged state, the near-wall velocity

profile is not resolved correctly. However, the balance of the x-direction momentum is

automatically maintained, and the shear stress imposed on the wall is correctly conveyed

to the outer layer of the boundary layer. As a result, even the original IBM can reproduce

the boundary layer accurately on the body-fitted grid.

Figure 5.5: Balance of the x-direction momentum in the boundary layer (left: the entire

boundary layer, right: the first cell to the wall).

5.2 Turbulent Flat-Plate Boundary Layer on Inclined Grids

The same problem as that in the previous section is solved on inclined grids visualized in

Fig. 5.6. This case is more general for the IBM than the previous problem because the

plate surface does not coincide with the cell boundary. For this problem, nine different grids

described in Table 5.2 are prepared. Here, the following two topics are examined:

• dependency on the rIP value;

• effect of the profile modifications presented in Section 3.2.

The former topic is examined on grid 1–9 to check the grid convergence toward a very fine

grid where the IP locates in the viscous sublayer. For the latter topic, the computations

are conducted on grid 1–5, where the IP is expected to be within the log-layer.
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Figure 5.6: Computational grid over the flat plate (inclined grid).

Table 5.2: Setting of computational grid over the flat plate (inclined grid).

Grid Minimum cell size Cell number y+IP at x/L = 0.97 (estimated)
rIP = 2 rIP = 3 rIP = 4.5

1 1.14×10−3 28,878 419 628 943

2 5.70×10−4 74,047 209 314 471

3 2.85×10−4 164,449 105 157 236

4 1.42×10−4 345,279 52.4 78.6 118

5 7.12×10−5 707,083 26.2 39.3 58.9

6 3.56×10−5 1,430,643 13.1 19.6 29.5

7 1.78×10−5 2,877,773 6.55 9.82 14.7

8 8.90×10−6 5,772,169 3.27 4.91 7.37

9 4.45×10−6 11,561,019 1.64 2.46 3.68
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5.2.1 Dependency on the IP Setting

Figure 5.7 shows the distributions of the skin friction coefficient cf on each grid. The

reference result by CFL3D is also represented in the figure. The skin friction tends to be

overestimated on the coarse grid. When rIP is 3 or 4.5, the distribution is generally well

predicted, although there is a few exception. With rIP = 2, the scatter of cf for different

grids is larger than the other cases.

Figure 5.8 shows the grid convergence of the skin friction coefficients at x/L = 0.97 and

1.90. For cf at x/L = 0.97, the grid 3–9 cases with rIP = 3 predict the value within the

5% range from the CFL3D result. In addition, with rIP = 4.5, the grid 4–9 cases except

for grid 7 case also predict the value within this range. The accuracy is better for cf at

x/L = 1.90; the calculated values on grid 2 with rIP = 3 and grid 3 with rIP = 4.5 exist

within the 5% range from the CFL3D result. On grid 7 with rIP = 3, the skin friction is

slightly underestimated. Furthermore, cf on grid 7 with rIP = 4.5 is approximately 15%

larger than the CFL3D result. These phenomena seem to occur when the IP is located in

the buffer layer of the boundary layer (5 < y+IP < 30) where the nonlinearity of the velocity

profile is strong. In contrast, cf is accurately calculated being independent of the rIP value

when the IP is located in the viscous sublayer of the boundary layer.
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(c) rIP = 3 (grid 1–5)
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(e) rIP = 4.5 (grid 1–5)
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Figure 5.7: Distribution of the skin friction coefficient on the plate.

Furthermore, Figs. 5.9–5.11 show the profiles of the tangential velocity, eddy-viscosity

and shear stress τxy in each grid 4 case. Note that uτ used in the non-dimensionalization



70 Chapter 5. Test Cases for the Immersed Boundary Method

y
+

IP

c f 
a
t 

x/
L

 =
 0

.9
7

10
0

10
1

10
2

10
3

0.001

0.0015

0.002

0.0025

0.003

0.0035

r
IP

 = 2

r
IP

 = 3

r
IP

 = 4.5

CFL3D: 0.002705

± 5%

y
+

IP
 = 157

(a) x/L = 0.97

y
+

IP

c f 
a
t 

x/
L

 =
 1

.9
0

10
0

10
1

10
2

10
3

0.001

0.0015

0.002

0.0025

0.003

0.0035

r
IP

 = 2

r
IP

 = 3

r
IP

 = 4.5

CFL3D: 0.002467

± 5%

y
+

IP
 = 300

(b) x/L = 1.90

Figure 5.8: Grid convergence of the skin friction coefficient.

is calculated by the computed value of cf in each result. In addition, the shear stress

is calculated at each cell using the cell-centered values of the kinematic viscosity, eddy-

viscosity, and velocity gradient. With rIP = 2, the velocity deviates from the log-law, and

the eddy-viscosity becomes larger than that in the other cases. The ideal solution of the

shear stress τxy/(ρu
2
τ ) near the wall is unity, as indicated in (3.3). However, the shear stress

above the IP becomes larger than unity in the rIP = 2 cases. This phenomenon is also

observed in the rIP = 3 cases, although the magnitude of the deviation is smaller.

One possible cause for this difference is the numerical inaccuracy in the reconstruction

in the cell around the IP. Here, assume that a cell center (point P) is located in the log-layer,

and the cells have a uniform size ∆x. The y-axis is set to the wall normal direction, and

y = 0 on the wall. The velocity distribution within the cell is represented by the Taylor

expansion around point P as

u(y) =
du

dy

∣∣∣∣∣∣
P

(y − yP ) +
d2u

dy2

∣∣∣∣∣∣
P

(y − yP )
2 +O(∆x3). (5.4)

The first derivative of the velocity (see Section 3.1) is derived by differentiating the log-law

profile:

du

dy

∣∣∣∣∣∣
P

=
uτ
κyP

. (5.5)
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The second derivative is

d2u

dy2

∣∣∣∣∣∣
P

=
−uτ
κy2P

. (5.6)

Substituting (5.5) and (5.6) into (5.4) yields

u(y) =
uτ
κyP

(y − yP )−
uτ
κy2P

(y − yP )
2 +O(∆x3), (5.7)

The second and higher-order terms in the right-hand side of (5.7) become the truncation

error when a linear reconstruction scheme (i.e., a second-order scheme) is used. Here, the

approximate magnitude of the first order term is

uτ
κyP

(y − yP ) ∼
(
∆x

yP

)
, (5.8)

because the reconstruction within a cell is considered (i.e., y − yP ∼ ∆x). Similarly, the

magnitude of the second order term is approximated as

− uτ
κy2P

(y − yP )
2 ∼

(
∆x

yP

)2

. (5.9)

Thus, the effect of the truncation error is depending on (∆x/yP ).

When the modified IBM is used, the profiles below the IP is modified so that it is linear.

Thus, the cell just above the IP is considered, where (∆x/yP ) is approximately equal to

(1/rIP ). Therefore, the truncation error becomes more critical when the rIP value is small.

This is assumed to be the reason the result with rIP = 2 is less accurate than the other

results. This error does not converge even when ∆x is set to a smaller value because yP

is proportional to ∆x. The high-order terms in (5.4) have a similar relationship, and thus,

this problem cannot be solved by a higher-order scheme. Furthermore, the truncation error

becomes large in the buffer layer of the boundary layer because the second derivative is

large.

The examination above can be reconsidered following the discussion on the cause of

the log-layer mismatch in the wall-modeled LES [64]. In the log-layer, velocity gradient is

proportional to y−1. Thus, the averaged length scale is proportional to y:

l =
|du/dy|
|d2u/dy2|

∼ y, (5.10)

because the scale of the vortex is limited by the existence of the wall. This length scale

must be resolved by the grid, and thus, l/∆x is required to be larger than a certain value.

Namely, the requirement for the grid is

y

∆x
> C, (5.11)
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where C is the minimum value of the wavelength that can be resolved by the grid.

The length scale takes a minimum value at the cell just above the cutoff region. When

rIP = 2, C must be smaller than two. It is difficult to satisfy this requirement because of

the limitation of the Nyquist frequency. With rIP = 3, the boundary layer is reproduced

with a certain degree of accuracy although C ∼ 3 seems to be a severe requirement. In

a RANS simulation, only the averaged profile is computed. This is different from an LES

where each vortex must be resolved, and thus, the requirement for the grid size may be

milder. Note that the relationship (5.10) is not applicable in the viscous sublayer where

the length scale is determined by the kinematic viscosity. This is the reason grid 9 can

reproduce the boundary layer accurately being independent of the rIP value.
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Figure 5.9: Profiles of the tangential velocity in the boundary layer (grid 4).
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Figure 5.10: Profiles of ν̃ in the boundary layer (grid 4).



74 Chapter 5. Test Cases for the Immersed Boundary Method

y
+

τ x
y/

(ρ
u

τ2
)

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

x/L = 0.97

x/L = 1.90

(a) rIP = 2

y
+

τ x
y/

(ρ
u

τ2
)

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

x/L = 0.97

x/L = 1.90

(b) rIP = 3

y
+

τ x
y/

(ρ
u

τ2
)

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

x/L = 0.97

x/L = 1.90

(c) rIP = 4.5

Figure 5.11: Profiles of the shear stress in the boundary layer (grid 4).

5.2.2 Effect of Profile Modifications

The modified IBM employs the modifications for both velocity and eddy-viscosity profiles.

Here, the effects of the two profile modifications are examined. In addition to the original

and modified IBMs, the IBM only with the modified velocity profile (3.25) is tested. In this

IBM, the velocity profile is modified so that it is linear, but the balance of the shear stress

(see Section 3.2.2) is not considered. Note that rIP is fixed to 3 in this simulation.

The distributions of the skin friction calculated by the two IBMs are visualized in Fig.

5.12. In contrast to the results on the aligned grid, the original IBM cannot predict the

skin friction accurately, especially on the fine grids. The IBM only with the modified

velocity profile also cannot reproduce accurate distribution. Furthermore, the profiles of

the tangential velocity, eddy-viscosity, and shear stress are shown in Figs. 5.13, and 5.14.
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In the original IBM result, the shear stress has an unphysical peak near the IP (Fig. 5.13

(c)). In the results of the IBM only with the modified velocity profile, the shear stress stays

at a low level compared with the ideal solution τxy/(ρu
2
τ ) = 1. The distributions of the

tangential velocity and the eddy-viscosity are also different from the ideal solution.

The difference between the results on the aligned grid and the inclined grid can be

discussed as follows. In the inclined grid, the cell boundary does not coincide with the

plate surface, and the conservation law at the wall is not strict. Therefore, the balance of

the fluxes fails when the velocity profile is not resolved. This results in the fluctuation of

the shear stress in the inner layer. The modified IBM avoids this problem by changing the

velocity profile below the IP, and thus, the method can reproduce accurate results.

The results here also confirm that the modifications for both the velocity and eddy-

viscosity profiles are essential. The modified eddy-viscosity profile retains the balance of

the shear stress as discussed in Section 3.2. Once the balance is lost, the shear stress

given by the viscous flux at cell boundary near the wall is not correctly conveyed into the

computational domain, as indicated in Fig. 5.14.
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Figure 5.12: Distribution of the skin friction coefficient on the plate (original IBM).

5.2.3 Criterion for the Grid Setting

The criterion for grid setting for flows with different Reynolds numbers is considered. If

the wall function is not used, y+ at the first point off the wall (or the IP) is required to be
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Figure 5.13: Variable profiles in the boundary layer (original IBM, grid 4, rIP = 3).

smaller than a certain value C1. This is the case with a RANS simulation or a wall-resolved

LES on body-fitted grids. Under this condition, the requirement for the minimum cell size

on the wall ∆y is
uτ∆y

ν
< C1. (5.12)

For the turbulent flat plate, the skin friction coefficient is estimated [69] as

cf ∼ 0.026Re−1/7
x , (5.13)

where Rex = u∞x/ν and x is the distance from the leading edge of the plate. Thus, the

friction velocity is

uτ
u∞

=
1

u∞

√
cfu2∞
2

∼ 0.11Re−1/14
x . (5.14)

Substituting (5.14) into (5.12) yields the requirement for the grid size as

∆x

x
< 8.77C1Re

−13/14
x . (5.15)
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Figure 5.14: Variable profiles in the boundary layer (IBM only with the modified velocity
profile, grid 4, rIP = 3).

In contrast, the wall function method just requires the IP to be located in the region

where the log-law is satisfied. As shown in Fig. 5.9, the log-layer extends to higher y+

when the Reynolds number is higher. In addition, the velocity profiles in the outer layer of

the turbulent boundary layer is generally a function of only y/δ as noted in [61], where δ

is the boundary layer thickness. Thus, the upper limit of the log-layer is also defined by a

function of y/δ.

To determine a universal criterion for the grid setting, the requirement for the grid size

on the wall should be related to y/δ. Namely, the requirement is defined using a constant

C2 as
∆x

δ
< C2. (5.16)
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The boundary layer thickness is assumed by the empirical relationship [69] as

δ

x
≃ 0.37Re−1/5

x . (5.17)

Using (5.16) and (5.17), the requirement for the grid size is estimated:

∆x

x
< 0.37C2Re

−1/5
x . (5.18)

This requirement is milder than (5.15), and accordingly, the cell number can be less.

With rIP = 3, the skin friction coefficient at x/L = 0.97 can be predicted within the 5%

range on grid 3 (∆x = 2.85× 10−4) and the finer grids. For the skin friction coefficient at

x/L = 1.90, grid 2 (∆x = 5.70 × 10−4) and the finer grids can predict with this accuracy.

In addition, the boundary layer thicknesses δ/L at x/L = 0.97 and 1.90 are 0.0164 and

0.0282, respectively. For each case, this thickness is approximately 50 times the grid size

required for the prediction within the 5% range. Thus, the following criterion is derived:

the grid size on the wall should be smaller than one-fiftieth of the boundary layer thickness.

Furthermore, the IP should be located at y+ > 30 to avoid the numerical problem in the

buffer layer. Note that the grid of the wall is coarsened in the region off the wall, and the

actual number of cells in the boundary layer is approximately 20, as shown in Fig. 5.15.

Figure 5.15: Computational grid and the distribution of the tangential velocity in the
boundary layer (grid 3, rIP = 3).
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5.3 Subsonic Flow past a 2D Bump

The second test case is the subsonic flow past a 2D bump. In (3.1), the baseline approx-

imated governing equation for the proposed IBM, the effect of the stream-wise pressure

gradient is assumed to be small compared with that of viscous force and neglected. This

assumption is valid except for the location close to a separation point, as discussed in [61].

In this problem, the validity of the proposed IBM in a flow with mild pressure gradient is

therefore investigated.

This problem is also defined in the TMR [94]. The shape of the bump is defined as

y

L
=

{
0.05 ∗

{
sin
(
πx
0.9L − π

3

)}4
for 0.3 < x/L < 1.2

0 for x/L ≤ 0.3 and x/L ≥ 1.2
, (5.19)

where L = 1 is the reference length. The Reynolds number for L, the free-stream Mach

number, and the free-stream temperature are 3× 106, 0.2 and 300 K, respectively.

The overview of the grid and the boundary conditions are illustrated in Fig. 5.16. Five

grids with different grid resolutions are prepared to check the trend of grid convergence as

tabulated in Table 5.3. In addition, rIP is fixed to 3 in this problem.

For this problem, the reference computational result is computed by CFL3D on the

1409×641 grid. This reference computational results are also provided in the TMR. The

y+IP values in Table 5.3 is estimated by cf of this reference result.

Table 5.3: Setting of computational grids over the 2D bump.

Grid Minimum grid size Cell number y+IP at x/L = 0.75 (estimated)

1 1.57× 10−3 21,762 784

2 7.86× 10−4 43,246 392

3 3.93× 10−4 82,978 196

4 1.96× 10−4 164,638 98.0

5 9.82× 10−5 325,698 49.0

5.3.1 Computational Results

The distributions of the pressure and skin friction coefficient on the bump are shown in Figs.

5.17 and 5.18, respectively. The reference result by CFL3D is also shown in the figures.

On one hand, large oscillation is observed on the pressure coefficient in the original IBM

results, and the skin friction deviates from the reference result. This trend is especially

obvious in the fine grids; the result on grid 5 predict the peak of cf at a different location,
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Figure 5.16: Computational grid over the bump.

and the magnitude of cf is approximately 30% smaller than the reference result. As a result,

no trend of grid convergence is observed in the original IBM results. On the other hand,

the modified IBM reproduces the distribution of cf more accurately. The oscillation on

the pressure coefficient is smaller than the original IBM result, and the magnitude of Cp is

also more accurate. In addition, the skin friction on the finer grids shows better agreement

with the reference result, and thus, a correct trend of grid convergence toward the reference

result is confirmed.

Figures 5.19 and 5.20 compares the profiles of the tangential velocity and the eddy-

viscosity at x/L = 0.75 and 1.20. Note that the original and modified IBM results are those

on grid 4. For the peak value of the eddy-viscosity, the modified IBM results show better

agreement with the reference CFL3D result than the original IBM result. Furthermore, the

velocity profile in the outer layer of the boundary layer is more accurately predicted in the

modified IBM result.
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Figure 5.17: Distribution of the pressure coefficient on the bump.
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Figure 5.18: Distribution of the skin friction coefficient on the bump.

The modified IBM is developed on the assumption that the effect of the pressure gradient

is negligible, and that the log-layer appears. Here, the results show that the velocity profile

in the inner layer still satisfies the log-law mostly, although a mild pressure gradient exists.

Therefore, the modified IBM can reproduce this flow with a certain degree of accuracy.
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Figure 5.19: Profiles of the tangential velocity.
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Figure 5.20: Profiles of the eddy-viscosity.
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5.4 Subsonic Flow around a NACA 0012 Airfoil

To check the present IBM in terms of prediction accuracy of aerodynamic forces acting on

an airfoil, subsonic flows around a NACA 0012 airfoil are simulated. Following the definition

in the TMR [94], the Reynolds number for the airfoil chord c, the free-stream Mach number,

and the free-stream temperature are set to 6×106, 0.15, and 300 K, respectively. The angles

of attack simulated here are 0, 5, 10, and 15◦. For the 0, 10 and 15 degrees, the reference

results by CFL3D on 897×257 grid provided in the TMR are available.

The airfoil used in this problem is defined by (4.20), which has a sharp trailing edge.

The size of the far-field boundary is 524× 524. For the far-field boundary, the free-stream

condition is imposed. Note that rIP is fixed to 3 in all the calculation in this section. An ex-

ample of the computational grid is shown in Fig. 5.21, and the settings of the computational

grid are tabulated in Table 5.4.

The calculation cases are set as follows. At first, flows at all the angle of attack written

above are computed using the modified IBM on all the grids. Then, the original and

modified IBMs are compared at α = 0◦ on all the grids. In addition, the flows at all the

four angles are simulated on grid 4 using the two IBMs.

Table 5.4: Setting of the computational grids around the NACA 0012 airfoil.

Grid Minimum grid size Cell number

1 1.00× 10−3 22,516

2 5.00× 10−4 55,140

3 2.50× 10−4 118,136

4 1.25× 10−4 244,906

5 6.25× 10−5 496,550

5.4.1 Alpha-Sweep

Figure 5.22 shows the calculated aerodynamic coefficients. The experimental data [100] are

also shown in the figure for reference. Here, the flux-based method is used to calculate

the aerodynamic force acting on the airfoil. On grid 1, the lift coefficient at α = 15◦

is approximately 30% lower than the reference result, and the pitching moment shows a

different trend. On the finer grids, the lift coefficient at α = 15◦ becomes larger, while the

drag coefficient becomes smaller. This trend seems to be depending on the magnitude of

flow separation near the trailing-edge (Fig. 5.23).
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Figure 5.21: Computational grid around the NACA 0012 airfoil.

To analyze the flow at α = 15◦ in more detail, the surface pressure and friction coeffi-

cients are shown in Fig. 5.24. Note that the friction coefficient shown in the figure is the

magnitude of the friction coefficient multiplied by the sign of its x-component. The separa-

tion point moves downstream when the grid is refined. The separated region is too large in

the coarse grid, and it causes the underprediction of the lift coefficient the overprediction of

the drag coefficient. Furthermore, the distribution of the skin friction except for the region

close to the separation point is accurately predicted in the results on grid 4 and 5.

5.4.2 Comparison between the Original and Modified IBMs

Figure 5.25 shows the distribution of the skin friction coefficient at α = 0◦. On one hand, the

original IBM results overestimate the skin friction near the leading edge and underestimate

near the trailing edge. This means the growth of the boundary layer is not correctly

reproduced. These trends are more obvious in the fine grid, and thus, the trend of the

grid convergence is incorrect.

On the other hand, the modified IBM can predict the skin friction more accurately. In

particular, the skin friction near the trailing edge shows good agreement with the reference

result. One discrepancy is observed near the leading edge; the skin friction in this region is

slightly overestimated. This is because the boundary layer is very thin in this region due

to the favorable pressure gradient. Furthermore, the results on the finer grid show better

agreement with the reference result.

Figure 5.26 compares the aerodynamic coefficients by the original and modified IBMs

on grid 4. The original IBM overestimates the drag coefficient at the low angles of attack.

Furthermore, the lift coefficient at 15◦, and the drag is lower. This is because the trailing

edge separation does not appear in the original IBM result. Compared with this original

IBM result, the modified IBM predicts the aerodynamic force more accurately.
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Figure 5.22: Calculated aerodynamic coefficients of the NACA 0012 airfoil.
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Figure 5.23: Streamlines around the trailing edge (grid 5, α = 15◦).
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Figure 5.24: Distributions of the surface pressure and skin friction coefficients on the NACA
0012 airfoil at α = 15◦.
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Figure 5.25: Skin friction coefficient on the NACA 0012 airfoil (α = 0◦).
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Figure 5.26: Comparison of the aerodynamic coefficient of the NACA 0012 airfoil (grid 4).
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5.4.3 Discussion

Here, the criterion of grid setting for this case is discussed. The error of the calculated

aerodynamic coefficients in the modified IBM result is tabulated in Table 5.5. The CFL3D

result is regarded as the reference value of this problem, and the relative error compared to

the CFL3D result is indicated in the table.

For Cd at α = 0◦, grid 2 and the finer grids can predict the value with less than 5%

error. The Cl is also relatively easy to be predicted, except for the α = 15◦ case where

the flow separation occurs. Furthermore, the scatter of Cd and Cl at α = 5◦ is small as

shown in Fig. 5.22. In contrast, accurate prediction of Cd at α = 10◦ and 15◦ requires finer

resolution of grids.

Figure 5.27 shows the distribution of the estimated boundary layer thickness relative

to the minimum cell size δ/∆x. Note that y+IP in this figure is calculated using the cf

value in the reference result with rIP = 3. Furthermore, δ is calculated by the formula

for the turbulent flat plate (5.17), and thus, this value may be therefore different from the

actual boundary layer thickness on the airfoil. Following the discussion in Section 5.2.3, the

grid size should be smaller than one-fiftieth of the local boundary layer thickness. In this

simulation, grid 3 satisfy this requirement at the trailing edge. In contrast, grid 1 and 2 do

not satisfy it over the entire airfoil, and this may be the reason the skin friction (Fig. 5.25)

is slightly overestimated in these two cases.

The criterion for the grid setting is concluded as follows. If no flow separation occurs,

grid density similar to grid 3 is recommended; the cell size is smaller than one-fiftieth of the

boundary layer thickness at the trailing edge. Under this condition, the calculated lift and

drag coefficients are expected to have less than 5% error. For the simulation of only the

flow at the low angle of attack, lower grid density is acceptable. This may be also related

to the shape representation of the airfoil; grid 1 (1000 cells per chord) seems to be the

acceptable value. Furthermore, for the simulation of flows with a smooth body separation,

the quantitative feature can be reproduced if grid size is sufficiently small; in this case, at

least grid density of grid 3 is recommended. Note that this criterion will not be the case

with the flows with fixed separation point (e.g., flow around a sharp-edge).
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Table 5.5: Percentage of the relative error of the modified IBM results. The reference value
is taken from the CFL3D results.

Modified IBM Original IBM

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 4

Cd (α = 0◦) % 5.934 4.786 4.151 3.321 2.943 33.00

Cd (α = 10◦) % 42.32 16.52 5.621 1.357 0.3006 12.85

Cl (α = 10◦) % 5.110 1.484 0.1799 0.2002 0.4024 1.819

Cd (α = 15◦) % 270.0 72.80 22.53 7.010 0.7721 1.629

Cl (α = 15◦) % 29.42 7.667 1.656 0.2418 1.028 3.309
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Figure 5.27: Estimated distribution of the relative boundary layer thickness to the minimum
cell size on the NACA 0012 airfoil.
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5.5 Summary of Chapter 5

In this chapter, the developed IBM was tested in simple 2D turbulent flow simulations

defined in the TMR. For all the problems, the simulation was conducted on multiple grid

resolutions to check the trend of the grid convergence. The IBM with the profile modifica-

tions (modified IBM) and without them (original IBM) were also compared.

The first problem was a turbulent flat plate boundary layer. The simulation was con-

ducted on aligned (body-fitted) and inclined (non-body-fitted) series of grids. On the aligned

grid, the original and modified IBMs similarly produce relatively accurate results. In con-

trast, only the modified IBM can predict accurate skin friction on the inclined grid. The

variable profiles in the boundary layer were also investigated; When the modified IBM is

used, the shear stress near the wall becomes constant with respect to the wall distance

as implicated in the analysis of the governing equation. The setting of the grid size and

the distance of the IP was also investigated. The distribution of the skin friction can be

accurately reproduced when rIP , the ratio of the IP distance to the cell size at the wall,

is larger than 3. When the grid size on the wall is smaller than one-fiftieth of the local

boundary layer thickness, the skin friction is predicted with less than 5% error.

The second problem was the turbulent flow past a 2D bump. In this problem, flows

with a mild pressure gradient was simulated. The modified IBM again shows improvement

from the original IBM in the prediction of the skin friction although the pressure gradient

is neglected in the derivation of the modified IBM.

The last problem was the turbulent flows around a NACA 0012 airfoil. In the α-sweep,

a correct trend of the grid convergence is observed. In addition, the modified IBM predicts

the drag coefficient and the skin friction on the airfoil more accurately than the original

IBM. Finally, the criterion for the grid settings of aerodynamic prediction of the airfoil was

discussed. When the cell size is smaller than one-fiftieth of the estimated boundary layer

thickness at the trailing edge, the lift and drag coefficients are predicted with less than 5%

error. Furthermore, the cell size can be larger if only the flows at low angles of attack are

simulated.



Chapter 6

Simulations of Turbulent Flows

around Aircraft

In this chapter, the capability and efficiency of the proposed framework for turbulent sim-

ulations around an aircraft are demonstrated. The benchmark problems are as follows:

• transonic flows around the NASA Common Research Model (CRM) [101];

• subsonic flows around the JAXA standard high-lift model (JSM) [102].

For those problems, the modified IBM is used for the wall boundary condition in UTCart.

In addition, the aerodynamic force is evaluated by the flux-based method.

6.1 Transonic Flows around the NASA Common Research

Model

To investigate the capability of the proposed framework for the aerodynamic prediction

on a civil transport aircraft, transonic flows around the NASA Common Research Model

(CRM) [101] are simulated. The NASA CRM was developed as a benchmark problem in the

Drag Prediction Workshops (DPWs) [49]. This geometry is widely tested in wind tunnel

experiments [103,104] and numerical simulations [50–53,75,105,106].

Recently, a domestic workshop in Japan, the Aerodynamic Prediction Challenge [107]

workshop, was held to investigate the accuracy of the aerodynamic prediction of the NASA

CRM using CFD simulations. The geometry tested in this workshop consists of a fuse-

lage, main wings, and horizontal tails with the incident angle of attack of iH = 0◦. The

calculation setting in this section is adjusted to the condition of the experiment [104] in

JAXA’s transonic wind tunnel, in which a 2.16% scale model (the mean aerodynamic chord

cref =151.31 mm) was used. The free-stream Mach number is 0.847, the free-stream temper-

ature is 284K, and the Reynolds number based on the mean aerodynamic chord is 2.26×106.

The angles of attack are from -1.79 to 5.72◦.

In the wind tunnel experiment, the wing is deformed by the aerodynamic force acting on

the wing. In the sixth DPW, it is reported that prediction accuracy of the surface pressure

93
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and the aerodynamic coefficient improves by considering the aerodynamic deformation of

the wing [106]. The deformation (twist and bend) of the wing was measured [104], and the

data is provided in [107]. The geometry used in this simulation is also deformed based on

the experimental data, as shown in Fig. 6.1.

6.1.1 Simulation Settings

UTCart uses oct-tree-based Cartesian grids (see Fig. 6.2). Here, a symmetry boundary

condition is assigned on the y = 0 plane, and a half-span model is simulated. To reduce

the computational cost, two different cell sizes are specified on the wall. The wing upper

surface and the tail are covered by the finest level of the cell because the flow features in

those regions are expected to be critical to simulate the aerodynamic force accurately. The

other parts, the fuselage and wing lower surface, are covered with the second finest level of

the cell to save computational cost. The ratio of the IP distance to the cell size, rIP , is set

to three.

To check grid sensitivity, coarse, medium and fine grids are prepared. In addition, a

“medium-b” grid is created by changing the number of cells in the smooth layer, as shown

in Fig. 6.3. Table 6.1 describes the specification of these grids. The lengths represented in

the table is based on the actual scale of the NASA CRM (cref = 275.8 inches). The cell

number slightly changes when the wing is deformed, and the numbers shown in the table

are those at α = 2.94◦. The grids are generated on a workstation (Xeon E5–2643 v3 at

3.4GHz) with one core. The time spent for generation of the medium grid is 16 minutes

excluding the time for file I/O and setting the boundary conditions.

The computational cases by UTCart are as follows. First, grid sensitivity is examined at

α = 2.94◦ on the coarse, medium, medium-b, and fine grids. Then, the flows at α = -1.79,

0.62, 2.47, 2.94, 3.55, 4.65, and 5.72◦ are simulated on the medium grid. Furthermore, ref-

erence calculations are conducted by FaSTAR [95] on body-fitted grids. The computational

grids are provided in the APC workshop, whose overview is shown in Fig. 6.4. Note that

the grid is originally created for a structured-grid-based flow solver, but they are treated

as an unstructured grid in FaSTAR. Using FaSTAR, the flows at α = -0.62, 2.94, 4.65 and

5.72◦ are simulated on the provided medium grid (9,006,808 hexahedral cells), and the flow

at α =2.94◦ is simulated also on the fine grid (30,397,977 hexahedral cells).

The computational methods for each solver are summarized in Table 6.2. The “Hishida”

limiter is a slope limiter for unstructured grids, which has a similar functional shape as van

Albada’s limiter [108]. For the turbulence model, the rotational correction and the QCR

(see Section 2.2) are used in conjunction with the SA turbulence model to improve the
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prediction accuracy of the side-body separation, following [75]. The flow computation is

conducted on the Reedbush-U supercomputer of the University of Tokyo (Xeon E5–2697

v4 at 2.1 GHz) [109] using 144 cores.

Figure 6.1: Aerodynamic deformation of the wing.

Table 6.1: Settings of computational grid around the NASA CRM for UTCart.

Coarse Medium Medium-b Fine

Total cell number 31,055,490 61,988,288 54,335,363 117,882,932

Domain size inch 4.80× 104 3.60× 104 5.40× 104

Grid size inch 0.732 0.549 0.412
(wing upper surface/tail)

Grid size inch 0.366 0.274 0.206
(wing lower surface/fuselage)

Wall layer 3

Smooth layer (near field) 3 6 3 8

Smooth layer (far field) 3

cref/Grid size 753 1,004 1,339
(wing upper surface)
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Table 6.2: Numerical methods for UTCart and FaSTAR.

Solver UTCart FaSTAR

Inviscid flux SLAU

Numerical scheme MUSCL
(advection term)

Limiter minmod Hishida [110]

Numerical scheme Second-order central difference
(viscous term)

Gradient reconstruction WLSQ GLSQ [77]

Time integration MFGS Lower-Upper Symmetric Gauss–Seidel [111]

Time Stepping Local

Courant number 200 50
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(a) Overview of the computational grid (very coarse grid
only for visualization)

(b) Main wing tip (c) Main wing root

(d) Tail wing root (e) Symmetry plane around the nose

Figure 6.2: Computational grid for UTCart (medium grid except for the overview).
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(a) Medium grid (b) Medium-b grid

Figure 6.3: Cross sectional view of the computational grid.

Figure 6.4: Computational grid for FaSTAR (medium grid, provided in [107]).
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6.1.2 Grid Sensitivity Study

Figure 6.5 shows the time-step convergence of the drag coefficient on the medium grid at

α = 2.94◦. The magnitude of the oscillation during the final 1000 time-step iterations is

smaller than 0.1 drag count (10−5). The time spent for the 8000 time-step iterations was

5.9 hours.

Figure 6.6 compares the distributions of the pressure coefficient on the surface by the

two flow solvers. The qualitative features (e.g., the position of the shock on the wing upper

surface) show good agreement with each other. The distributions of the surface pressure

coefficient on the section of the wing are then shown in Fig. 6.7. The definition of the

sections is following the APC workshop, as shown in Fig. 6.8. These sections are identical

with the positions of the pressure taps for the experiment. At the inboard sections, the

surface pressure coefficient in the UTCart result shows good agreement with the FaSTAR

result and the experimental data. The pressure distributions at the outboard sections are

slightly different from the FaSTAR result. In the UTCart grid, the grid size on the upper

surface of the wing is uniform, and accordingly, the number of cells within the local chord

is smaller in the outboard sections. This means the grid resolution relative to the local

chord length is low in the outboard sections and is assumed to be one of the causes of the

inaccuracy there. Furthermore, the shock at section I in the UTCart result is thinner than

that in the FaSTAR result. This seems to be because the computational grid for UTCart

has higher grid resolution in the chord-wise direction than the grid for FaSTAR.

The distributions of the skin friction coefficient on the section of the wing are shown

in Fig. 6.9. The difference of the skin friction coefficient is more obvious than that of the

pressure coefficient. Note that the peak of the friction in the FaSTAR result may be due

to the skewness of the cell around the trailing edge, and thus, it is not considered here.

On the upper surface, the distribution of the skin friction has a local minimum, where the

skin friction decreases due to the adverse pressure gradient caused by the shock. In the

UTCart results, this phenomenon is well reproduced at the inboard sections, especially on

the fine grid. At the outboard sections, the friction is also less accurate because of the low

grid resolution relative to the local chord length. In addition, the skin friction on the lower

surface tends to be overestimated, which may be because the coarser level of the grid is

assigned to this region.

Figure 6.10 shows the component-wise aerodynamic coefficients. The pressure drag

computed by UTCart tends to be overestimated, especially on the coarse grid. The pressure

drag in the medium-b grid result is 3 drag count larger than the value of the medium

grid result. This indicates the pressure drag is dependent on the grid resolution in the
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region off the wall, and a proper grid refinement required. Furthermore, the viscous drag is

overestimated by 7 drag counts even on the fine grid. The main cause of this prediction is

the wing and body, which seems to be related to the overprediction of the skin friction on the

wing lower surface. Simultaneously, the lift coefficient in the UTCart result is overestimated

compared with FaSTAR result, while the pitching moment coefficient is underestimated. For

these two coefficients, the trend of grid convergence is observed toward the FaSTAR result.

The main cause of these discrepancies is the main wing. They may be due to the grid

resolutions to capture the curvature of the leading edge and the thickness of the trailing

edges.

The grid convergence behavior of the drag coefficient is then examined. In this simula-

tion, CL is not fixed. Therefore, the estimated induced drag C2
L/(πAR) is subtracted from

the total drag coefficient to reduce the error caused by comparing different lift conditions.

Figure 6.11 shows the grid convergence of CD −C2
L/(πAR), where the drag coefficients are

plotted versus the cell number N to the power of −2/3. If the grid is refined uniformly and

the spatial order of accuracy is two, the plot becomes straight. Following the Richardson

extrapolation process in [105], the converged value is estimated as the y-intercept of the

extrapolated line:

Y0 =
X2Y1 −X1Y2

X2 −X1
, (6.1)

where X = N−2/3 and Y = CD −C2
L/(πAR). In addition, the subscripts 0, 1, 2 denote the

converged value, the value on grid 1, and that on grid 2, respectively. The converged value

is calculated using each grid pair is tabulated in Table 6.3. Compared with the converged

value of the FaSTAR results, UTCart overestimates the drag coefficient by 29 (13%), 19

(8.9%), and 11 (5.1%) drag counts on the coarse, medium, and fine grids, respectively. In

contrast, the extrapolated values of the UTCart results have less than 2% difference from

the converged value of the FaSTAR results.

Finally, Fig. 6.12 visualizes the distribution of y+IP on the surface. The value is low

on the wing upper surface and tail because smaller ∆x is assigned there. On the wing top

surface, the maximum value is 533. Note that the values on the coarse and fine grids are

approximately 33% larger and 25% smaller than the medium grid value, respectively.

6.1.3 Alpha-Sweep

Figure 6.13 shows the computed and measured aerodynamic coefficients at each angle of

attack. The basic trend of each coefficient shows fair agreement between the UTCart and

FaSTAR results, and between the UTCart results and the experimental data. In the compu-

tational results, however, the lift slope and pitching moment coefficient are underestimated
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Figure 6.5: Time-step convergence of the drag coefficient (α = 2.94◦, medium grid).

(a) UTCart (medium grid) (b) FaSTAR (fine grid)

Figure 6.6: Surface pressure coefficient on the wing (α = 2.94◦).

Table 6.3: Richardson extrapolation of the drag coefficient excluding the estimated induced
drag.

Solver Grid pair Extrapolated value

UTCart Coarse–Medium 0.02154
Medium–Fine 0.02091

FaSTAR Medium–Fine 0.02130

compared with the experimental data, whereas the drag coefficient is overestimated. The

UTCart and FaSTAR results share these discrepancies, and thus, they may be due to the
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Figure 6.7: Surface pressure coefficient on the wing sections (α = 2.94◦).

difference in the configuration between the experiment and the computation (e.g., the sup-

port sting).

Figures 6.14 and 6.15 show the surface pressure coefficient and skin friction coefficient

at α = 4.65◦, respectively. The difference of the pressure on the upper surface between the

UTCart result and the experimental data is more visible than that in the α = 2.94◦ case.

This is because flow separation occurs near the wing-body junction and behind the shock.
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Figure 6.8: Definition of the wing sections of the NASA CRM.

The surface streamlines and distribution of the x-component of the skin friction coef-

ficient, cf,x, are shown in Fig. 6.16. The area with cf,x < 0 (shown in blue in the figure)

represents the region where flow separation occurs. The value in the region near the wing

tip is higher in the FaSTAR result. This is because the grid resolution relative to the local

chord length is small at the wing tip as stated in the grid sensitivity study. Although both

flow solvers reproduce a similar pattern of the flow separation, the shape and area of the

separated regions are different. The separated region at the mid-span in the UTCart result

is slightly smaller than that in the FaSTAR result. In addition, the absolute value of the

friction in the separated region is small in the UTCart result. This is because the wall

function is used even in the separated region, and the boundary condition assumes the tur-

bulent boundary layer attaches in the negative direction of the x-axis. Note that prediction

of this flow separation is a continuing concern in the aerodynamic prediction of the NASA

CRM [50–53,75,106] even on body-fitted grids. Thus, dependency on the turbulence models

should also be examined in the future.

6.1.4 Discussion on the Accuracy and Applicability

Here, the results on the medium grid are discussed. The boundary layer thickness at

the trailing edge is estimated to be 5.47 inches using the formula (5.17) with the mean

aerodynamic chord (275.8 inches) and the Reynolds number for this length. Thus, the grid

size on the upper surface of the wing is approximately one-twentieth of the boundary layer

thickness at the trailing edge. This resolution is similar to the that of grid 1 for the study on

the NACA 0012 in Section 5.4, and thus, there seems to be still room for grid convergence.

As shown in Fig. 6.9, the distributions of the skin friction at the inboard sections shows
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Figure 6.9: Skin friction coefficient on the wing sections (α = 2.94◦). The distribution on
the upper surface can be recognized by its local minimum at the mid-chord.

better agreement with the reference result than those at the sections near the wing tip. At

the wing root and tip, the local chord lengths are 465 and 108 inches, respectively. Thus,

the estimated boundary layer thickness is 8.31 inches at the root trailing edge and is 2.58

inches at the tip trailing edge. As indicated in these values, the grid resolution is relatively

low on the outer part of the wing, and the error seems to become large accordingly. For

more accurate simulations, the grid size on the outer part of the wing should be smaller.

Even though the grid resolution should be higher to predict the skin friction more
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(a) Pressure drag coefficient CD,p (b) Viscous drag coefficient CD,v

(c) Lift coefficient CL (d) Pitching moment coefficient CM

Figure 6.10: Comparison of the aerodynamic coefficients of the NASA CRM (α = 2.94◦).

accurately, the drag and lift coefficient could be predicted with 19 drag counts (8.9%)

error from the FaSTAR result. The extrapolated value using the Coarse–Medium grid pair

has 2.3 drag counts (1.1%) difference from the FaSTAR result, which is smaller than the

standard deviation of the drag coefficient reported in the DPW-4 workshop (8.1 drag counts)

[105]. Furthermore, the nonlinearity of the lift and pitching-moment coefficient could be

predicted on the medium grid. For the simulation of the NASA CRM, the conventional

CFD simulation on body-fitted grids has achieved good accuracy [106]. However, there

is a premise that once a body-fitted well-tailored grid has been prepared. One case of

the simulation by the proposed framework including the grid generation can be performed

within a half days using 144 cores at the moment. It is shown that the proposed framework

can also predict the flow with a certain accuracy, and thus, the time spent and manual work

for a simulation of one case is reduced compared with the conventional simulation on the

body-fitted grids.



106 Chapter 6. Simulations of Turbulent Flows around Aircraft

Figure 6.11: Grid convergence of the total drag coefficient excluding the estimated induced
drag.

Figure 6.12: Distribution of y+IP on the surface (α = 2.94◦, medium grid).
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Figure 6.13: Aerodynamic coefficients of the NASA CRM at each angle of attack.
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Figure 6.14: Surface pressure coefficient on the wing sections (α = 4.65◦).
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Figure 6.15: Skin friction coefficient on the wing sections (α = 4.65◦).
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(a) UTCart (medium grid) (b) FaSTAR (medium grid)

Figure 6.16: Surface streamlines and x-direction friction coefficienton the wing (α = 4.65◦).
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6.2 Subsonic Flows around the JAXA Standard High-Lift

Model

To demonstrate the capability of the proposed framework for flows simulations around

a more complex geometry, flows around the JAXA standard high-lift model (JSM) are

simulated. This geometry has been studied by wind-tunnel experiments [112] and CFD

simulations [102, 113, 114]. CFD simulation of this flow is also adopted as a benchmark

problem in 3rd AIAA CFD High Lift Prediction Workshop [115]. The geometry used in

this computation consists of a fuselage, wings, slats and single-slotted flaps with a deflection

angle of IF = 30◦. In addition, support brackets of the slats and flaps are also included.

The mean aerodynamic chord cref and the half span are 529.9 and 2300 mm, respectively.

The setting of the computation is adjusted to the experiment in JAXA’s 6.5m×5.5m low-

speed wind tunnel facility. The Reynolds number for cref is 1.93×106; the free-stream Mach

number is 0.172; the free-stream temperature is 306.55K. The simulated angles of attack

are 4.36, 10.47, 14.54, 18.58, 20.59 and 21.57◦. In the simulation, a symmetry boundary

condition is specified on the y = 0 plane, and a half-span model is used. The calculated

results are compared with the experimental data provided in the workshop.

6.2.1 Computational Grid and Methods

To reduce the computational cost while retaining acceptable computational accuracy, vari-

able cell sizes are specified on the wall as shown in Fig. 6.17. The outboard part of the

wing upper surface is covered with the finest level of the cells (∆x = 0.25 mm) because flow

separation is expected to occur over the wing upper surface. The inboard part of the wing

is covered by the second finest level of the cells (∆x = 0.5 mm). Consequently, the cell sizes

on the wing upper surface are smaller than one-thousandth of the local chord. The slat and

flap are also covered with the second finest level of the cells. The other part is covered by

coarser levels of the grid to reduce the total number of the cells. Furthermore, local grid

refinement with the finest level of the cells is specified at the gap between the flap and the

main wing to resolve it. The number of the wall layer of the grid is set to two to reduce the

total cell number. To assure the IPs are located within the wall layer, rIP is set to two. The

number of near-field and the far-field smooth layers are set to eight and three, respectively.

The grids are generated using a workstation (Xeon E5–2643 v3 at 3.4GHz) using one

core. The time spent for the generation of the grid (114,466,104 cells) is approximately 38

minutes excluding the time for file I/O and setting the boundary conditions. The overview

of the generated computational grid is shown in Fig. 6.18. The definition of the A–A section
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is as shown in Fig. 6.19. As shown in the figure, the small gap between the flap and wing is

resolved by multiple cells. Figure 6.20 shows the calculated cut-off distance on slices around

the E–E and N–N sections. The cut-off distance is calculated as intended, depending on

the cell size assigned to the nearest wall.

For the turbulence model, the Rotational correction is used with the SA turbulence

model. Furthermore, a high-order scheme [81] is used for the inviscid term to reduce nu-

merical viscosity. Note that no limiter or shock-capturing method is employed in this

simulation. The flow computation is conducted on the Reedbush-U supercomputer using

144 cores.

(a) Upper surface (b) Lower surface

Figure 6.17: Setting of the minimum grid sizes on the JSM.
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(a) Symmetry plane

(b) Slat support (c) Flap outer edge

(d) A–A section

Figure 6.18: Computational grids around the JSM.
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Figure 6.19: Definition of the sections on the wing of the JSM [115].

(a) Around E–E section (b) Around N–N section

Figure 6.20: Calculated cut-off distance around the JSM.
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6.2.2 Alpha-Sweep

Figure 6.21 shows the time-history of the lift coefficient at α = 14.54◦. Although oscillation

remains, the lift coefficient has reached a quasi-steady solution. Thus, the aerodynamic

forces are calculated by averaging the result during the last 2000 iterations. In addition,

the root-mean-square values of the aerodynamic coefficients during the 2000 iterations are

summarized in Table 6.4. The unsteadiness of the aerodynamic coefficient mostly increases

as the angle of attack increases. The standard deviation of CL is 0.34% of the averaged

value of CL at maximum. The following discussion is based on the assumption that this

fluctuation remains.
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Figure 6.21: Convergence history of the lift coefficient at α = 14.54◦.

Table 6.4: Variation of the aerodynamic coefficients.

α CD,rms CL,rms CM,rms

4.36 0.00014 0.00072 0.00043

10.47 0.00018 0.00076 0.00035

14.54 0.00043 0.00090 0.00075

18.58 0.00117 0.00522 0.00333

20.59 0.00116 0.00399 0.00167

21.57 0.00201 0.00778 0.00306

Figure 6.22 shows the calculated aerodynamic coefficients. At the low angles of attack,

the lift and pitching moment coefficients show good agreement with the experimental data.
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In contrast, CD is overestimated even at the low angles of attack, for which other compu-

tational results [102,113,114] show the similar trend. This discrepancy seems to be related

to the wall interference of the wind tunnel as discussed in [102] or due to insufficient grid

resolution.

The lift coefficient saturated at α = 18.58◦ and decreases at the higher angles of attack.

Accordingly, the maximum CL is approximately 10% lower than the experimental data.

To see the flow more closely, the distributions of the surface pressure coefficient over the

sections at α = 14.54◦ and α = 18.58◦ are compared in Figs. 6.23 and 6.24. At α = 14.54◦,

the pressure distributions show a basically good agreement with the experimental data,

although the suction peaks at the D–D, E–E, and G–G sections are underpredicted. This

discrepancy may be depending on the lack of the grid resolution relative to the size of the

flap. At α = 18.58◦, the distributions in the inboard sections are still predicted accurately.

In contrast, the suction peak of the main wing is lost at the outboard sections. From

the surface restricted streamline shown in Fig. 6.25, flow separation is observed in the

downstream of the slat support. Figure 6.26 shows the surface flow pattern visualized by

the oil-flow method in the experiment (the images are provided in [115]). A similar pattern

of flow separation as that in the computation is observed near the outer-most slat support

bracket at α = 18.58◦, and it is more obvious at α = 21.57◦. In the computation, the

flow separation occurs also in the downstream of the inboard two support brackets, and

consequently, the lift is underestimated at high angles of attack.
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Figure 6.22: Aerodynamic coefficients of the JSM at each angle of attack.
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Figure 6.23: Surface pressure coefficient on the JSM at α = 14.54◦.
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Figure 6.24: Surface pressure coefficient on the JSM at α = 18.58◦.

6.2.3 Sensitivity to the Grid and Spatial Accuracy

To detect the underlying problem in the simulation at the high angles of attack, sensitivities

of the result to the grid and spatial accuracy of the inviscid term are investigated. Here, the

flow at α = 18.58◦ is simulated on the same grid using the second-order accurate scheme

for the inviscid term. In addition, the same flow is also simulated on a grid that has a

10% smaller minimum grid size (140,540,721 cells). Here, cases 1–3 denote the baseline
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(a) α = 14.54◦ (b) α = 18.58◦

Figure 6.25: Comparison of surface restricted streamlines and x-direction skin friction co-
efficient on the JSM.

(a) α = 18.58◦ (b) α = 21.57◦

Figure 6.26: Surface flow pattern on the JSM in the wind-tunnel experiment [115].

calculation, the calculation using the second-order accurate scheme, and the calculation on

the finer grid, respectively (Table 6.5).

The calculated values of CL are 2.482, 2.411 and 2.518 in cases 1–3, respectively. The

differences between the results are larger than the root-mean-square values represented in

Table 6.4, and thus, they are not negligible. Furthermore, the surface pressure coefficient

is compared in Fig. 6.27. As indicated at G–G and H–H section, the suction peak at the

leading edge of the wing is weaker in case 2 and stronger in case 3. Figure 6.28 shows the

surface streamlines. The area of the separated region is larger in case 2 and smaller in case

3. This flow separation leads to the loss of the suction peak and seems to be one of the

causes of the difference in CL.
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Table 6.5: Specification of the cases for the grid sensitivity study.

Case 1 (baseline) Case 2 Case 3

Spatial accuracy (inviscid term) fourth second fourth

Cell number 114,466,104 140,540,721
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Figure 6.27: Comparison of the surface pressure coefficient on the JSM at α = 18.58◦ in
case 1–3.
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(a) Case 2 (b) Case 3

Figure 6.28: Surface streamlines and the x-direction skin friction coefficient on the JSM at
α = 18.58◦.

6.2.4 Discussion

In this simulation, the flow-fields at α = 4.36◦–14.54◦ were predicted within 2.7% error,

and capability of the proposed framework for a complex flow was demonstrated. The time

spent for the grid generation for this case is shorter than that for the flow calculation,

although some pre-processing work is required to seek a proper grid setting (e.g., detecting

a small gap and designating local refinement there). In addition, once the grid specification

is determined, the simulation of similar geometries can be automatic. At these angles,

therefore some further application may be possible; e.g., investigation on the drag increment

by the nacelle, or optimization of the flap relative location to the wing.

In contrast, the prediction of the maximum CL and the stall angle is difficult at the

moment. As discussed in Section 5.4, prediction of the separation is sensitive to the grid

resolution. The grid size on the upper surface is approximately one-thousandth of the

local chord. This grid resolution is similar to that of grid 1 in the NACA 0012 cases.

In the NACA 0012 cases, the flow separation is overestimated in a coarse grid case, and

the prediction accuracy improves using the finer grids. Thus, prediction of the stall may

improve also in this simulation if the cell size is set to a smaller value. This trend is also

indicated in the study on the sensitivity to the grid the grid and spatial accuracy. The use

of the fourth-order accurate scheme virtually enhances the grid resolution by reducing the

numerical dissipation compared with the second-order accurate scheme. The results of case

2 and 3 indicate the grid resolution is not sufficient at the high angles of attack, and the

prediction accuracy may improve by using a finer grid. Note that prediction of the flow
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separation is also depending on the turbulence model itself, and the improvement of the

turbulence model should be attempted in a different context.

6.3 Summary of Chapter 6

In this chapter, the capability and efficiency of the proposed framework for 3D flow sim-

ulations around aircraft were demonstrated. In the simulation of transonic flows around

the NASA CRM, the medium grid (approximately 62 million cells) was generated within

16 minutes using one core of Xeon E5–2643 v3. On the medium grid, y+ on the wing

upper surface is less than 600, and more than a thousand cells are located within the mean

aerodynamic chord. First, grid sensitivity at α = 2.94◦ was investigated. The trend of each

component-wise aerodynamic coefficient shows a correct trend of grid convergence toward

the values computed on a conventional body-fitted grid, although the drag coefficient was

slightly overestimated. Compared with the grid converged value, the drag coefficient ex-

cluding the estimated induced drag differs by 19 drag counts (8.9%) and 11 drag counts

(5.1%) for the medium and the fine grids (approximately 117 million cells), respectively. The

Richardson extrapolation of the drag coefficient using the coarse-medium grid pair predicts

the drag coefficient with 2.3 counts (1.1%) error. Then, the flows at 7 different angles of

attack from -1.79 to 5.72◦ were simulated. At the high angle of attack, the qualitative flow

features including flow separation behind the shock show fair agreement with the compu-

tational results on the body-fitted grids. In addition, the nonlinearity of the lift coefficient

at high angles of attack observed in the wind-tunnel experiment can be reproduced.

In the simulation of the JSM, the capability of the proposed framework for predicting

flows around complex geometries was demonstrated. The grid (approximately 110 million

cells) was generated within 38 minutes using one core of Xeon E5–2643 v3. The surface

features, including the small gaps between the wing and the flap, are well resolved in

the generated grid. In the result, the lift coefficients at α = 4.36◦–14.54◦ are predicted

within 2.7% range compared with the experimental data. In addition, the surface pressure

coefficient at low angles of attack shows a good agreement with the reference experimental

data. In contrast, accurate prediction of the flow separation and maximum CL is difficult

at the moment, which may require more cells and/or a different turbulence model.





Chapter 7

Concluding Remarks

In this study, we explored simulation methodology for high-Reynolds-number flow simula-

tions using hierarchical Cartesian grids and an IBM. In the development of the method, we

obtained the following conclusions:

Wall Boundary Conditions for Turbulent Flows (Chapter 3) To reduce the com-

putational cost, the wall function, i.e., the model of the near-wall part of the turbulent

boundary layer, was combined with the IBM. In the implementation of the wall function,

the velocity profile must be modified so that it is linear to avoid numerical problems. We

also showed that the modification for the eddy-viscosity is essential because the balance of

the shear stress near the wall must be retained.

Evaluation of Aerodynamic Force Acting on Immersed Bodies (Chapter 4) The

object surface is immersed in the Cartesian grid, and thus, uncertainty existed in the eval-

uation of the aerodynamic force acting on the object. We clarified the relation between the

aerodynamic force and the numerical flux used in the flow calculation. The test problems

showed that this method is more accurate than the conventional calculation method based

on extrapolation onto the input CAD surface.

Subsequently, we gained the following knowledge from the validation study of the pro-

posed methods:

Accuracy and Applicability of the Proposed IBM (Chapter 5) In the 2D validation

problems, the IBM using the proposed profile modifications always achieved better accuracy

than the baseline IBM in predicting the skin friction and aerodynamic coefficients. This is

because the balance of the shear stress near the wall is correctly retained in the modified

IBM. In these studies, the criterion for the grid setting was also considered. Based on the

collected data, when the cell size is smaller than one-fiftieth of the local boundary layer

thickness, the error of the skin friction on the airfoil is expected to be less than 5% of the

correct value.

125
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Capability of the Methods in Aerodynamic Prediction of Aircraft (Chapter 6)

In the flow simulations around an aircraft presented in this study, the total number of cells

used varied between 30 and 110 million. The computational grid with this grid resolution

was generated automatically and rapidly, and complex features such as a small gap could

be reproduced on the grid. For the cruise condition of a transonic aircraft such as the

NASA CRM, the prediction accuracy of the drag coefficient could be within 10% using

computational grids with 60 million cells. Using the Richardson extrapolation with a grid

pair, the accuracy can be further improved. For a more complex geometry (e.g., a high-lift

device), basic flow features, including the surface pressure and aerodynamic coefficients at

low angles of attack, can be predicted within a short time using the proposed framework.

The proposed framework can therefore be used to estimate the basic flow feature around a

complex geometry within a short time.

Although the accuracy of the conventional CFD simulation may be better once a well-

tailored body-fitted grid is prepared, the proposed framework can also predict the flow with

a certain degree of accuracy. The grid generation is fully automatic, and thus, the total

workload for the flow simulations is reduced compared to the conventional simulation on

body-fitted grids. In addition, shape optimization problems can be conducted without any

manual procedure during the sequence of calculations. Therefore, the proposed framework

will be beneficial as a tool for aerodynamic design.

To conclude, the possible future research options to extend this study are stated.

Simulation using Different Turbulence Models At the moment, the proposed wall

boundary conditions are formulated only for the SA turbulence model. For other turbulence

models that use the Boussinesq approximation of eddy viscosity, a similar formulation is

possible by introducing an additional model function to modify the eddy viscosity so that it

is constant near a wall boundary. However, some turbulence variables (e.g., ω in the k − ω

turbulence model [87]) diverge at the wall, and thus, additional treatments for the variable

are necessary. This topic remains as a future research option. In addition, wall modeled

LESs can be reconsidered following a similar story.

Improvement in the Wall Model Another possibility for future study is improvement

in the wall model. The wall model used in this study neglects the effect of non-equilibrium

(i.e., the pressure gradient or the advection in the boundary layer). As reported in [27],

considering the effect of non-equilibrium improves the prediction accuracy in some cases

such as flows with separation. To include this effect, however, the balance of shear stress

must be reconsidered, which is not straightforward. The qualitative features of flows with
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separation have already been successfully predicted in some cases of this study using the

current method. Improvement of the wall model may enhance the prediction accuracy as

well as the applicability of this framework to more complex flows.
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