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Abstract

Machine translation is one of the most difficult and complicated tasks in Natural Language Pro-
cessing (NLP) because it is required to let a computer represent semantics of each language and
convert the semantics from one language to another language so that humans can interpret the
translations. Representation learning based on neural networks treats every language data such as
word, phrase, and sentence as vectors. The vector representations allow us to easily compute the
objective information and to apply the learned representations to the other NLP tasks.

Neural machine translation (NMT) has been developed in the trends of representation learn-
ing. The NMT model is an end-to-end neural network-based model to directly learn translations
statistically from a large data set, and the NMT models have already achieved the state-of-the-art
performance in several European languages and Asian languages. In comparison to the conven-
tional statistical machine translation models, the NMT has the simpler architecture and powerful
performance when there is a lot of training data.

Most of the existing NMT models are modeled as a sequence-to-sequence learning which
learns the relations between the input sequences and the output sequences. They do not utilize any
syntactic information inherited the languages. It is, however ,well known that syntactic structure
helps to improve the machine translation models in a statistical machine translation areas when
treating the translation between Japanese and English which are syntactically different languages.
In this thesis, we focus on the syntactic structures inherited in languages and extended the existing
NMT model to incorporate the syntactic structures. We have studied phrase structures in a source
language and dependency tree structures in a target language.

Firstly, we employ the phrase structure in a source language and build a tree-based encoder to
explicitly construct a phrase vector following the phrase structure. We call our proposed model
“Tree-to-Sequence Neural Machine Translation model”. Our proposed model also has an attention
mechanism which softly aligns a target output with source word-based units as well as with source
phrase-based units. Experimenting on an English-to-Japanese translation task, we evaluated the
models by automatic evaluation metrics. We have confirmed that our proposed tree-to-sequence
neural machine translation achieved better accuracy than the existing sequence-to-sequence NMT
models and achieved the state-of-the-art performance in the RIBES score.

Secondly, we applied the character-based decoding method to the above described tree-to-
sequence neural machine translation model. Although most of the NMT models have been de-

veloped as a word-based model, the models have the vocabulary coverage problem because of



low-frequent words and unknown words in the corpus. We also explored the effectiveness to uti-
lize the phrase label category in the tree-based encoder. We conducted the experiments on the
English-to-Japanese translation tasks, and we report the different trends between the word-based
decoder model and the character-based decoder model.

Lastly, we have proposed a target-side syntax-based model called “Sequence-to-Tree Neural
Machine Translation”. We focus on the dependency relations between words in a target sentence
as syntactic structure. Our proposed model generates a translation while parsing the translated
sentence simultaneously. Experimenting on translation tasks for four language pairs, we have
confirmed that our proposed model improved the model performance better than the existing NMT

model in every four language pairs.
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Chapter 1

Introduction

1.1 Background

Natural language processing (NLP) is a research area to study the languages we use which are
called natural language in contraposition to computer language. As the technology of the comput-
ers and the development of the communication networks have progressed rapidly, the volume of
language data has increased and the NLP tasks became more complicated. The recent progresses
in NLP have been brought by the research results of machine learning area, a statistical approach
to train a mathematical model by using a large data. Neural networks is one of the machine learn-
ing methods and has achieved great successes in variety of research areas of text data [Mikolov et
al., 2013a; Chen and Manning, 2014; Wu et al., 2016; Andor et al., 2016], image data [Mikolov et
al., 2013a; Krizhevsky et al., 2012; Goodfellow et al., 2014; Shrivastava et al., 2017], and speech
data [Hannun et al., 2014; van den Oord et al., 2016].

Machine translation is to realize a translation system by using a computer task, and the ma-
chine translation task has been tackled for decades; example-based machine translation model [Na-
gao, 1984], statistical machine translation models [Brown et al., 1993; Koehn et al., 2003; Chiang,
2007]. The goal of the machine translation task is to generate a translated sentence of an input
sentence, which was modeled as a conditional language model. In the statistical machine transla-
tion approaches divided the model components and optimized each component so that the whole
model can achieve the better performance. The recent neural network-based approach called neu-
ral machine translation (NMT) model is directly modeled and trained as a one fully connected
network, and this neural network-based machine translation models have outperformed the statis-
tical machine translation models and achieved the state-of-the art performance in several language

translation tasks.
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The NMT models are based on the idea of the Encoder-Decoder model [Cho et al., 2014b;
Sutskever et al., 2014] which converts the input data into a vector space and generates the output
data from the vector space. Here, every word, phrase, and sentence are represented as a vec-
tor. There have been many studies in building a vector space for words [Mikolov et al., 2013a;
Mikolov et al., 2013c], phrases [Socher et al., 2010], sentences [Pennington et al., 2014; Socher
et al., 2013], and paragraphs [Dai et al., 2014]. In the NMT models, the sentences as input data
and output data are considered as a sequence of the word units. Recurrent neural network [El-
man, 1990] is a time-series neural network and is employed as Encoder and Decoder. Thus, the
early NMT models are based on sequence-to-sequence learning. Any syntactic information of the
language data were not utilized explicitly, while it is well known that syntactic information are
effective in statistical machine translation models [ Yamada and Knight, 2001; Liu et al., 2006].

A sentence has a structure inherited in a language, and a phrase structure builds the sentences
in a bottom-up fashion. The syntactic structure can be represented as a tree-structured data. Fol-
lowing the structured data, Socher et al. (2011) built a recursive neural network model which com-
putes the phrase vectors. The recursive neural network model has been reported to have strength
in long dependency relations in a sentence in comparison to the sequence-based recurrent neural
networks [Li et al., 2015]. Sennrich and Haddow (2016) have improved the NMT performance
by adding the syntactic labels as additional input features such as part-of-speech tags, dependency
labels, lemmatized tags and so on. There were no previous studies which incorporated the syn-
tactic structure of the language into the existing NMT models. Hence, this thesis aims to build
the novel NMT models which incorporates the syntactic structures, to experiment the proposed
model on the real data and verify the effectiveness of the proposed model, and to investigate the

improvement of employing the syntactic structures in a translation task.

1.2 Proposal of the Thesis

In this thesis, we have proposed novel methods to utilize syntactic information inherited in a
language and to develop the syntax-based neural machine translation models, where all of the
natural language processing data i.e. words and sentence are represented in a vector space. We
especially concentrate on two types of syntactic structures; 1) phrase structures and 2) universal
dependency tree structures. We have proposed the syntax-based model to incorporate the syntactic
structures into the NMT models.

Tree-to-sequence NMT model

We have proposed a tree-based encoder which computes not only the sequential vectors at
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each time step but also the phrase vectors following the phrase structures of an input sen-
tence. We employ an external parsing tool to estimate the phrase structures of each sentence
on the training corpora. Since all of the sentences can not always be parsed completely, we
model the tree-based encoder which incorporates the syntactic structures if any and other-
wise works as the original sequential encoder. Our proposed model is an expanded model
of the existing sequence-to-sequence NMT model. Moreover, we aim to let the model make
use of the phrase vectors in the source side and softly align a target word with source words
as well as source phrase by employing attention mechanism in our proposed model. We

also develop a speed up technique to reduce the computational cost of the NMT models.

Sequence-to-Tree NMT model
We have proposed a syntax-based decoder which generates a translated sentence and parse
the sentence simultaneously. Here, we focus on a dependency relations between words in
a target sentence and extract the syntactic structure by using a universal dependency parser.
Universal dependencies' is a framework for cross-linguistically consistent grammatical an-
notations over 60 languages”. The current NMT decoder is based on recurrent neural net-
work and lacks of long dependent relations when training. We aim to build a new NMT
model which jointly learn to translate and parse. At test time, we let our proposed model

translate a sentence and generate its parsed tree optionally.

1.3 Contribution of the Thesis
We state four main contributions of this thesis as follows:

Exploration of how to model syntactic structures in NMT
Early NMT models have been developed as a sequence-to-sequence model. Since there was
no previous work which utilized syntactic structures in a language, we can say that it is a
challenging task to explore the ways of modeling the syntactic structures. This thesis mainly
studies these two types of syntactic structures: 1) phrase structure in a source language and

2) dependency tree in a target language.

Confirmation of the effectiveness of using phrase structure in a source language
We extended the existing sequence-to-sequence NMT models to utilize the phrase structures

in a source language and confirmed that our proposed model achieved the higher accuracy

"http://universaldependencies.org/
2reported in 2017
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than the existing neural machine translation models. Our proposed method is the first baby
step of the syntactic neural machine translation approaches; therefore this research con-
tributes to boost the syntactic approaches in the neural machine translation research area.
Besides, the proposed ideas can be easily applied for the other natural language processing
tasks such as summarization. We also employed an efficient sampling-based method and

succeeded in saving the training time while keeping the model performance higher.

Examination of the character-based decoding in tree-to-sequence NMT model
We have proposed a tree-to-sequence model which employs source-side phrase structures,
while the model generates a translated sentence word by word. We applied a character-based
decoding method and reported the different trends and characteristics of the word-based

decoding method and the character-based decoding method.

Development of a jointly learning method to parse and translate
When we try to incorporate syntactic structures into the NMT models, the decoding process
is known to be the more different to control than the encoding process. It was considered
as a difficult task to let NMT model predict a translation and its parsed tree simultaneously.
Our proposed method is to jointly learn to parse and translate in one model. We focused on
dependency tree structure in the target side and trained the model by using the dependency-
parsed trees as the auxiliary information in addition to the translated sentences. Developing
the methods to simultaneously generate the translations and their parsed tree enables us to
select more grammatical sentences and to analyze the generated sentences. Our proposed
approach can be applied widely because it can handle the phrase structure or any other

similar structured data as a syntactic structure.

1.4 Composition and Contents of the Thesis
This thesis consists of seven main chapters as follows:

Chapter 2 Neural Networks
Neural network-based models have achieved many successes in variety of natural language
tasks such as parsing task and machine translation task. In this chapter, we explain the
fundamentals of neural networks and introduce the basic ideas when applying the neural

network-based models to the natural language processing tasks.

Chapter 3 Neural Machine Translation

Machine translation is to build a model to translate a sentence in a language into another
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language while keeping the semantics. There had been many studies on statistical machine
translation models for decades while the recent studies on the NMT models rapidly pro-
gressed and achieved the state-of-the-art performance in many language pairs. This chapter
introduces the basic ideas, the learning methods of NMT model. We also explain the auto-

matic evaluation metrics for machine translation models.

Chapter 4 Tree-to-Sequence Neural Machine Translation

In this chapter, we have proposed the syntax-based neural machine translation model which
utilize the syntactic structure in the source language. Most of the existing NMT models
focus on the conversion of sequential data and do not directly use syntactic information
in both of source and target sides. We propose a novel end-to-end syntactic NMT model,
extending a sequence-to-sequence model with the source-side phrase structure. Our model
has an attention mechanism that enables the decoder to generate a translated word while
softly aligning it with phrases as well as words of the source sentence. Experimental results
on the WAT’ 15 English-to-Japanese dataset demonstrate that our proposed model consid-
erably outperforms sequence-to-sequence attentional NMT models and compares favorably
with the state-of-the-art tree-to-string SMT system. We also proposed a sampling method
to reduce the high computational costs of learning a neural machine translation model.

Chapter 5 Character-based Decoding in Tree-to-Sequence Model
Most of the NMT models let the decoder generate a sentence word by word, while the
word-based decoder is known to have the problems of the low coverage of the vocabulary.
When building a character-based vocabulary from the training corpora, we resolve the vo-
cabulary coverage problems easily. We apply this character-based approach to our proposed
tree-to-sequence NMT model, and we report each trend of the word-based decoder and the

character-based decoder.

Chapter 6 Sequence-to-Tree Neural Machine Translation

There has been relatively little attention to incorporating linguistic prior to neural machine
translation. Much of the previous work was further constrained to considering linguistic
prior on the source side. In this chapter, we propose a hybrid model, called NMT+RNNG,
that learns to parse and translate by combining the recurrent neural network grammar into
the attention-based neural machine translation. Our approach encourages the neural ma-
chine translation model to incorporate linguistic prior during training, and lets it translate
on its own afterward. Extensive experiments with four language pairs show the effectiveness
of the proposed NMT+RNNG.
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Chapter 7 Conclusion

In this chapter, we state the conclusion of this thesis and mention future work in NMT area.
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Chapter 2

Neural Networks

This chapter introduces the fundamentals of neural networks and the basic ideas to apply the neural
networks to natural language tasks. We give a sentence Neural networks is one of the machine
learning algorithms, and there have been many studies so far. Here, we explain the fundamentals
of the neural networks by illustrating multi-layered perceptron and also introduce the application
to the NLP tasks such as a sentiment classification task.

2.1 Multi-layered perceptron

We explain a multi-layered perceptron by giving sentiment classification task as an example. Sen-
timent classification task is to classify the text data into two categories of “positivie” and “nega-
tive”, so this task is a binary classification task. Now, we have the training data which is composed
of the n pairs of a sentence and its sentiment label (¢, y*) € Dipain(i = 1,2,---, N)). Each
sentence has T; words defined as:

x' = (xf,2b, - ,xlTl) (2.1)

Each sentiment label is represented as:

; (j = positive)

v = 2.2)

1

0 (j = negative)
In this sentiment classification task, we train the multi-layered perceptron model as a model to
predict the correct label /° as an output when feeding the text * as an input. Figure 2.1 shows an

outline image of the sentiment classification task.
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Output: {positive, }

|

Model

|

Input: “This is a great movie !”

Figure 2.1: Sentiment classification task.

The multi-layered perceptron is an algorithm of supervised learning and basically compose of
three types of networks, that is to say, an input layer, n-layered hidden layer, and an output layer.
Each layer is defined as a vector. Assuming that we have 3-layered perceptron here (n = 1), the

input layer is defined as the dy-dimensional vector ¢ € R%*! as follows:

i:(UI,UQ)"' 7/Udv)' (23)
The input vector of 7 represents the prefixed dy -length vector as we convert the input data of a’

to the predefined features (e.g. 2-gram feature) beforehand. The other layers of the hidden layer

and the output layer are similarly represented as follows:

h:(h17h27"' 7hdH)7 (24)

02(017021"' >Odo)7 (25)

where h € R%*1 and 0 € R%*! are the dy -dimensional vector and the dp-dimensional vector,
respectively.

The vector in the hidden layer is calculated from the vector in the input layer as follows:
h = fh(Whi + bh), (2.6)

where W), € R %4 and b;, € R% *! are a weight matrix and a bias vector. The function fj, is
a non-linear function and applied to each element of the vectors. In a similar manner, the vector

in the output layer is computed from the vector in the hidden layer as follows:

0= fo(Woh + bo)v (2.7
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1/(1+exp(-x))

08 .

f(x)

04 E

02 .

Figure 2.2: The plot of the sigmoid function (Equation (2.8)).

where W), € R0 >4 and b, € R%*! are a weight matrix and a bias vector. The function f, is
a non-linear function.

One of the representative non-linear functions is the sigmoid function, which is computed as:

1

f@) = ol@) = ;-

(2.8)

Figure 2.2 shows the range of the output f(x) € (0,1) when we apply the sigmoid function to
the input z. The differentiated sigmoid function with respect to x is expressed with the sigmoid
of(x)

S = f@) (1~ f@)). 29

In the output layer, we predict a label in a classification task and compute the probability of

function itself as follows:

the sentiment label p(y§ |z*) by employing the softmax function defined as:

_ (2.10)
21 exp(2)
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where z; denotes the j-th label. The softmax function normalized Note that dp = 2 in the
sentiment classification task. Here, we assume each function in Equation (2.6) and Equation (2.7)

as follows:
fn =0(z), (2.11)
fo =softmax(x). (2.12)

Both of the functions are applied to every elements in the input vectors of . Consequently, the

3-layered networks defined above consists of these model parameters € such as:
0 =Wy, W,, by, b,). (2.13)

The purpose of supervised learning here is to learn the optimal model parameters 8 which
output the correct label of y; when feeding the input datum of z!. We define the loss of the model

with respect to i-th data pair of (%, ") by using the cross entropy loss function defined as:

C=- Zlog(softmax(zj))yj. (2.14)

J
Since we already assumed that there are N pairs of training data such as (2, ") € Dyrqin(i =
1,2,---, N), we define the objective function by averaging the cross entropy losses up with re-

spect to the ¢-th training datum.

N

1 A
0bj(0) = N g log(softmax(z;))y; (2.15)
i=1 j

When training the multi-layered perceptron in the sentiment classification task, we aim to obtain
the model parameters @ which minimize the objective function in Equation (2.15).

2.2 Stochastic Gradient Decent Method

When training the model, we optimize the parameters by updating so that we can minimize the
predefined objective function. We introduce the stochastic gradient descent method here, and the

algorithm of the stochastic gradient descent is described as follows:

1. Sample n data randomly from the training data.

2. Calculate the averaged of the loss function of the data

n

1
Obj(6) = — > 0bji(6) (2.16)

i=1

10
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3. Compute the derivatives of each model parameter

4. Update the parameter theta following the Equation (2.17).

800;(8)

0+—0—-—a——
— « 96 s

(2.17)
where « is a learning rate and a hyper parameter. When training the data, we generally do mini-

batch learning to update the model parameters by summing the predefined number of training data

up at once.

11
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Chapter 3

Neural Machine Translation

This chapter explain the basic elements of a machine translation task and neural machine trans-
lation (NMT) models. The machine translation task is to translate a sentence written in one lan-
guage into a sentence written in another language, and the machine translation model is trained on
training data called a parallel corpus. The NMT model has been proposed as an end-to-end neu-
ral network-based machine translation model which is based on the idea of an Encoder-Decoder
model. Moreover, the performance of the NMT models are improved by introducing the idea of
attention mechanism. The Encoder-Decoder model with attention mechanism has been recently

referred as a neural machine translation model.

3.1 Language model based on recurrent neural network

In natural language processing task, a sentence x in a language is often modeled as a language

model to predict the next word as follows:
px) = plzilw). 3.1)

Bengio et al. (2003) have proposed a neural network-based language model, and [Mikolov et al.,
2010] employed recurrent neural network (RNN) [Elman, 1990] for modeling a language model.
RNN is a type of neural network for time-series data which computes each time step vector. We
calculate the 4-th hidden unit h; € R?*! given the i-th input z; and the previous hidden unit
hi_1 € R¥1 as follows:

12
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A B C D E

Figure 3.1: An illustration of RNN-based language model.

where f is a non-linear function and V(i) is a word embedding vector of x;. Given the previous
predicted word x;—; and the ¢-th hidden unit of the recurrent neural network, the conditional

probability that the ¢-th word is generated by employing a softmax function:
p(zilr<;) = softmax(Wh;_1;Vy(xi—1)] +b), (3.3)

where W and b are a matrix and a bias vector. [h;_1; V(x;_1)] is a concatenation of both vectors.
Figure 3.1 shows an illustration of the RNN-based language model.

3.2 Encoder-Decoder Model as a Conditional Language Model

NMT is an end-to-end approach to data-driven machine translation [Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015]. In other words, the NMT models directly
estimate the conditional probability p(y|x) given a large collection of source and target sentence
pairs (z,y). An NMT model consists of an encoder process and a decoder process, and hence
they are often called Encoder-Decoder models.

In the Encoder-Decoder models, a sentence is treated as a sequence of words. In the encoder
process, the encoder embeds each of the source words = (1, z2, - - , ;) into a d-dimensional
vector space. The decoder then outputs a word sequence y = (y1,¥2," - ,Ym) in the target
language given the information on the source sentence provided by the encoder. Here, n and m
are the lengths of the source and target sentences, respectively. RNNs allow one to effectively
embed sequential data into the vector space. Figure 3.2 shows an illustration of the RNN-based
sequence-to-sequence learning model.

In the RNN encoder, the i-th hidden unit h; € R%*! is calculated given the i-th input z; and
the previous hidden unit h;_; € R%*1,

h; = fenc(Vx(l‘i)ahifl), (3.4)

13
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W X Y Z <(EOSy

A B C D E <EOS

Figure 3.2: An illustration of sequence-to-sequence model.

where fen. is a non-linear function, V,,(x;) returns the word embedding vector of x;, and the initial
hidden unit hg is usually set to zeros. The encoding function f,,, is recursively applied until the
n-th hidden unit h,, is obtained. The RNN Encoder-Decoder models assume that h,, represents a
vector of the meaning of the input sequence up to the n-th word.

After encoding the whole input sentence into the vector space, we decode it in a similar way.

The initial decoder unit s; € R?*! is initialized with the input sentence vector.
81 = hn (35)

Given the previous target word and the j-th hidden unit of the decoder, the conditional probability
that the j-th target word is generated is calculated as follows:

p(yj‘y<j7m) = g(sj)7 (3.6)

where g is a non-linear function. The j-th hidden unit of the decoder is calculated by using another

non-linear function fg.. as follows:

Sj = fdec(vy(yj—l)asj—l)v (37)

where V), returns the word embedding vector of y;_1.
We employ Long Short-Term Memory (LSTM) units [Hochreiter and Schmidhuber, 1997;
Gers et al., 2000] in place of vanilla RNN units. The ¢-th LSTM unit consists of several gates and

14
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two different types of states: a hidden unit h; € R%*! and a memory cell ¢; € R%¥1,
i = oWz + UDhy_1 + b)),
fi = oWWx, +UDR_; + b)),
o = o(WWz+ Uiy +b),
¢ = tanh(WOz + UOh,_; + ),
¢ = O+ fi ©c-,
h; = o;©tanh(c), (3.8)

where each of 4;, f;, o; and & € R*! denotes an input gate, a forget gate, an output gate,
and a state for updating the memory cell, respectively. W () € R4*d and U() e R¥*? are
weight matrices, b() € R%*! is a bias vector, and ; € R?*! is the word embedding of the ¢-th
input word. o(-) is the logistic function, and the operator ® denotes element-wise multiplication

between vectors.

3.3 Attentional Encoder-Decoder Model

The NMT models with an attention mechanism [Bahdanau et al., 2015; Luong et al., 2015a] have
been proposed to softly align each decoder state with the encoder states. The attention mechanism
allows the NMT models to explicitly quantify how much each encoder state contributes to the
word prediction at each time step.
In the attentional NMT model in Luong et al. (2015a), at the j-th step of the decoder process,
the attention score () between the i-th source hidden unit h; and the j-th target hidden unit s;
is calculated as follows:
ayli) = o PlhisS)
> k=1 exp(hi - )

where h; - s; is the inner product of h; and s;, which is used to directly calculate the similar-

(3.9)

ity score between h; and s;. The j-th context vector d; is calculated as the summation vector

weighted by a;(7):

dj = Y a;(ih (3.10)

15
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MM

X1 X2 XN Y1 Yj1

Figure 3.3: Attentional Encoder-Decoder model.

To incorporate the attention mechanism into the decoding process, the context vector is used for
the the j-th word prediction by putting an additional hidden layer s;:

§j = tanh(Wd[sj; dj] + bd), (3.11)

where [s;;d;] € R?¥*! is the concatenation of s; and d;, and W, € R%*?d and by € R¥*! are
a weight matrix and a bias vector, respectively. The model predicts the j-th word by using the

softmax function:
p(y;|y<;j, ) = softmax(W,5; + by), (3.12)

where W, € RIVI*? and b, € RIVI*! are a weight matrix and a bias vector, respectively. |V|
stands for the size of the vocabulary of the target language. Figure 3.3 shows an example of the

NMT model with the attention mechanism.
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3.4 Objective Function of NMT Models

The objective function to train the NMT models is the sum of the log-likelihoods of the translation

pairs in the training data:

1
J6) = — > logp(ylz), (3.13)

D)
(x,y)eD

where D denotes a set of parallel sentence pairs. The model parameters @ are learned through

Stochastic Gradient Descent described in Subsection 2.2.

3.5 Evaluation Metrics

It is also important how to evaluate a machine translation system we construct. There are two
types of evaluation manners; 1) Human evaluation and 2) Automatic evaluation. In the former
case, the people who are familiar to both of languages evaluate the translations obtained by the
machine translation systems. Human evaluation is well known as a highly reliable evaluation
method and actually employed at several machine translation conference or workshops such as
the first conference on Machine Translation’16 !, it however takes much time and costs high to
check the qualities of the translation by human. In the latter case, we automatically compute the
translation quality based on the predefined indicator, but the automatic evaluation metrics lacks of
reliability in comparison to human evaluation. There are still open research questions of how to
handle semantics of the sentences and how to evaluate them objectively.

There are several automatic evaluation metics proposed already such as BLEU[Papineni et al.,
2002], RIBES[Isozaki et al., 2010], and TER[Snover et al., 2006]. Given golden translation called
reference and translation obtained by a machine translation system, we calculate the BLEU score
based on the n-gram word precisions between both of the corpus. The BLEU score is calculated
as follows:

1 g
Hp% x min(exp(l — M
n=l Zs:l ’e§|

where e? are the translations obtained by a machine translation system and {{r’}2 }5 | (R < 1)

),1) (3.14)

are the references. We calculate the geometry mean of the precision of n-gram (1 < n < 4), and

Py, denotes the precision of n-gram words.

"http://www.statmt.org/wmt16/
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Chapter 4

Tree-to-Sequence Neural Machine

Translation

This chapter has proposed the first syntax-based neural machine translation. We focus on phrase
structures inherited in a source sentence and incorporate the phrase structure into the existing
neural machine translation model This chapter was already published as a conference paper as

follows:

Chapter 4 Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. Tree-to-Sequence
Attentional Neural Machine Translation. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 823-833, Berlin,
Germany, August 2016.

4.1 Introduction

Machine Translation has traditionally been one of the most complex language processing prob-
lems, but recent advances of Neural Machine Translation (NMT) make it possible to perform
translation using a simple end-to-end architecture. In the Encoder-Decoder model [Cho et al.,
2014b; Sutskever et al., 2014], a Recurrent Neural Network (RNN) called the encoder reads the
whole sequence of source words to produce a fixed-length vector, and then another RNN called
the decoder generates the target words from the vector. The Encoder-Decoder model has been
extended with an attention mechanism [Bahdanau et al., 2015; Luong et al., 2015a], which allows
the model to jointly learn the soft alignment between the source language and the target language.

NMT models have achieved state-of-the-art results in English-to-French and English-to-German

18
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Figure 4.1: Alignment between an English phrase and a Japanese word.

translation tasks [Luong et al., 2015b; Luong et al., 2015a]. However, it is yet to be seen whether
NMT is competitive with traditional Statistical Machine Translation (SMT) approaches in trans-
lation tasks for structurally distant language pairs such as English-to-Japanese.

Figure 4.1 shows a pair of parallel sentences in English and Japanese. English and Japanese are
linguistically distant in many respects; they have different syntactic constructions, and words and
phrases are defined in different lexical units. In this example, the Japanese word “f%7%” is aligned
with the English words “green” and “tea”, and the English word sequence “a cup of” is aligned
with a special symbol “null”, which is not explicitly translated into any Japanese words. One
way to solve this mismatch problem is to consider the phrase structure of the English sentence
and align the phrase “a cup of green tea” with “f%Z%”. In SMT, it is known that incorporating
syntactic constituents of the source language into the models improves word alignment [ Yamada
and Knight, 2001] and translation accuracy [Liu et al., 2006; Neubig and Duh, 2014]. However,
the existing NMT models do not allow us to perform this kind of alignment.

In this chapter, we propose a novel attention-based NMT model to take advantage of syn-
tactic information. Following the phrase structure of a source sentence, we encode the sentence
recursively in a bottom-up fashion to produce a vector representation of the sentence and decode
it while aligning the input phrases and words with the output. Our experimental results on the
WAT’ 15 English-to-Japanese translation task show that our proposed model achieves state-of-the-

art translation accuracy.
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Figure 4.2: Proposed model: Tree-to-sequence attention-based NMT model.

4.2 Attention-based Tree-to-Sequence Model

4.2.1 Tree-based Encoder + Sequential Encoder

The exsiting NMT models treat a sentence as a sequence of words and neglect the structure of a
sentence inherent in language. We propose a novel tree-based encoder in order to explicitly take
the syntactic structure into consideration in the NMT model. We focus on the phrase structure of a
sentence and construct a sentence vector from phrase vectors in a bottom-up fashion. The sentence
vector in the tree-based encoder is therefore composed of the structural information rather than the
sequential data. Figure 4.2 shows our proposed model, which we call a tree-to-sequence attention-
based NMT model.

In Head-driven Phrase Structure Grammar (HPSG) [Sag et al., 2003], a sentence is composed
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s
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| | | | | | ! !
My mother arrived in New York from Tokyo

Figure 4.3: An example of phrase structure of the sentence “My mother arrived in New York from
Tokyo”.

of multiple phrase units and represented as a binary tree as shown in Figure 4.4. Here, the leaf
nodes show the words in a sentence and the part-of-speech tags corresponding to the words and the
non-leaf nodes denote the phrase nodes with the corresponding phrase category labels. Following
the structure of the sentence, we construct a tree-based encoder on top of the standard sequential
encoder. The k-th parent hidden unit h;p ") for the k-th phrase is calculated using the left and
right child hidden units k! and h, as follows:

AP = fee(hh BT, 4.1)

where fic. is a non-linear function.

We construct a tree-based encoder with LSTM units, where each node in the binary tree is
represented with an LSTM unit. When initializing the leaf units of the tree-based encoder, we
employ the sequential LSTM units described in Section 3.2. Each non-leaf node is also represented
with an LSTM unit, and we employ Tree-LSTM [Tai et al., 2015] to calculate the LSTM unit of
the parent node which has two child LSTM units. The hidden unit h,(cp ") & R4¥1 and the memory
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u(My mother arrived in New York from Tokyo)

N

u(arrived in New York from Tokyo)

/

u(arrived in New York)

u(in New York)

u(My mother) New York) u(from Tokyo)
v(My) v(mother) v(arrived) v v(New) v(York) v(from) v(Tokyo)

Figure 4.4: An illustration of the way to calculate a phrase vector u in each node from the word
vectors v in the sentence “My mother arrived in New York from Tokyo”.

(Phr)  RAX1 for the k-th parent node are calculated as follows:

cell ¢;
i = U(Ul(i)hf,C +UDhy 4+ b)),
fi = U(Ul(fl)hl + U,Ef”hz + b)),
I = o(UYhL + UIRE + b)),
or = o(Uh +UOn; + b)),
cr, = tanh(Ul(E)hf,€ +UOR; +b9),

(phr)

o = i oa+ fiod+ flod,
hg)h” = othanh(céphr)), 4.2)

where 7, f,i, fi. 04, ¢ € R4*1 are an input gate, the forget gates for left and right child units,
an output gate, and a state for updating the memory cell, respectively. cf€ and c;, are the memory
cells for the left and right child units, respectively. U() € R%*? denotes a weight matrix, and

b() € R?*! represents a bias vector.
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Our proposed tree-based encoder is a natural extension of the conventional sequential encoder,
since Tree-LSTM is a generalization of chain-structured LSTM [Tai et al., 2015]. Our encoder
differs from the original Tree-LSTM in the calculation of the LSTM units for the leaf nodes. The
motivation is to construct the phrase nodes in a context-sensitive way, which, for example, allows
the model to compute different representations for multiple occurrences of the same word in a
sentence because the sequential LSTM units are calculated in the context of the previous units.
This ability contrasts with the original Tree-LSTM, in which the leaves are composed only of the

word embeddings without any contextual information.

4.2.2 Initial Decoder Setting

We now have two different sentence vectors: one is from the sequence encoder and the other from

the tree-based encoder. As shown in Figure 4.2, we provide another Tree-LSTM unit which has

(phr

mot)) as two child units

the final sequential encoder unit (h,) and the tree-based encoder unit (h

and set it as the initial decoder s as follows:
h
81 = gtree(hna h%oz)), 4.3)

where giree 1S the same function as fi... with another set of Tree-LSTM parameters. This ini-
tialization allows the decoder to capture information from both the sequential data and phrase
structures. Zoph and Knight (2016) proposed a similar method using a Tree-LSTM for initializing
the decoder, with which they translate multiple source languages to one target language. When

the syntactic parser fails to output a parse tree for a sentence, we encode the sentence with the

(phr)

sequential encoder by setting h,

= 0. Our proposed tree-based encoder therefore works with

any sentences.

4.2.3 Attention Mechanism in Qur Model

We adopt the attention mechanism into our tree-to-sequence model in a novel way. Our model
gives attention not only to sequential hidden units but also to phrase hidden units. This attention
mechanism tells us which words or phrases in the source sentence are important when the model
decodes a target word. The j-th context vector d; is composed of the sequential and phrase vectors

weighted by the attention score o;(i):

n 2n—1
. . hr
dj = E aj(z)hﬁ— E Oéj(’L)hZ(-p ) “4.4)
i=1 1=n+1

Note that a binary tree has n — 1 phrase nodes if the tree has n leaves. We set a final decoder s;

in the same way as Equation (3.11).
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In addition, we adopt the input-feeding method [Luong et al., 2015a] in our model, which is a
method for feeding s;_1, the previous unit to predict the word y;_1, into the current target hidden

unit Sj,
Sj = faec(Yj—1,[8j-1; §j-1]), (4.5)

where [sj_1; §;_1]is the concatenation of s;_1 and §;_;. The input-feeding approach contributes
to the enrichment in the calculation of the decoder, because s; 1 is an informative unit which can
be used to predict the output word as well as to be compacted with attentional context vectors.
Luong et al. (2015a) showed that the input-feeding approach improves BLEU scores. We also

observed the same improvement in our preliminary experiments.

4.2.4 Sampling-Based Approximation to the NMT Models

The biggest computational bottleneck of training the NMT models is in the calculation of the
softmax layer described in Equation (3.12), because its computational cost increases linearly with
the size of the vocabulary. The speedup technique with GPUs has proven useful for sequence-
based NMT models [Sutskever et al., 2014; Luong et al., 2015a] but it is not easily applicable
when dealing with tree-structured data. In order to reduce the training cost of the NMT models at
the softmax layer, we employ BlackOut [Ji et al., 2016], a sampling-based approximation method.
BlackOut has been shown to be effective in RNN language models and allows a model to run
reasonably fast even with a million word vocabulary with CPUs.

At each word prediction step in the training, BlackOut estimates the conditional probability in
Equation (??) for the target word and K negative samples using a weighted softmax function. The
negative samples are drawn from the unigram distribution raised to the power 3 € [0, 1] [Mikolov
et al., 2013b]. The unigram distribution is estimated using the training data and /3 is a hyperparam-
eter. BlackOut is closely related to Noise Contrastive Estimation (NCE) [Gutmann and Hyvirinen,
2012] and achieves better perplexity than the original softmax and NCE in RNN language mod-
els. The advantages of Blackout over the other methods are discussed in Ji et al. (2016). Note that

BlackOut can be used as the original softmax once the training is finished.
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Sentences Parsed successfully

Train 1,346,946 1,346,946
Development 1,790 1,789
Test 1,812 1,811

Table 4.1: Dataset in ASPEC corpus.

4.3 Experiments

4.3.1 Training Data

We applied the proposed model to the English-to-Japanese translation dataset of the ASPEC cor-
pus given in WAT’15.! Following Zhu (2015), we extracted the first 1.5 million translation pairs
from the training data. To obtain the phrase structures of the source sentences, i.e., English, we
used the probabilistic HPSG parser Enju [Miyao and Tsujii, 2008]. We used Enju only to obtain
a binary phrase structure for each sentence and did not use any HPSG specific information. For
the target language, i.e., Japanese, we used KyTea [Neubig et al., 2011], a Japanese segmentation
tool, and performed the pre-processing steps recommended in WAT’15.? We then filtered out the
translation pairs whose sentence lengths are longer than 50 and whose source sentences are not
parsed successfully. Table 5.2 shows the details of the datasets used in our experiments.

We carried out two experiments on a small training dataset to investigate the effectiveness of
our proposed model and on a large training dataset to compare our proposed methods with the
other systems.

The vocabulary consists of words observed in the training data more than or equal to N times.
We set NV = 2 for the small training dataset and N = 5 for the large training dataset. The out-of-
vocabulary words are mapped to the special token “unk”. We added another special symbol “eos”
for both languages and inserted it at the end of all the sentences. Table 4.2 shows the details of

each training dataset and its corresponding vocabulary size.

4.3.2 Training Details

The biases, softmax weights, and BlackOut weights are initialized with zeros. The hyperparameter
5 of BlackOut is set to 0.4 as recommended by Ji et al. (2016). Following J6zefowicz et al. (2015),

"http://orchid.kuee.kyoto-u.ac. jp/WAT/WAT2015/index.html
http://orchid.kuee.kyoto-u.ac.jp/WAT/WAT2015/baseline/dataPreparationJE.
html
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Train (small) Train (large)

sentence pairs 100,000 1,346,946
|V'| in English 25,478 87,796
|V| in Japanese 23,532 65,680

Table 4.2: Training dataset and the vocabulary sizes.

we initialize the forget gate biases of LSTM and Tree-LSTM with 1.0. The remaining model
parameters in the NMT models in our experiments are uniformly initialized in [—0.1,0.1]. The
model parameters are optimized by plain stochastic gradient descent with the mini-batch size of
128. The initial learning rate of stochastic gradient descent is 1.0. We halve the learning rate
when the development loss becomes worse. Gradient norms are clipped to 3.0 to avoid exploding

gradient problems [Pascanu et al., 2012].

Small Training Dataset We conduct experiments with our proposed model and the sequential
attention-based NMT model with the input-feeding approach. Each model has 256-dimensional
hidden units and word embeddings. The number of negative samples K of BlackOut is set to 500
or 2000.

Large Training Dataset Our proposed model has 512-dimensional word embeddings and d-
dimensional hidden units (d € {512, 768,1024}). K is set to 2500.

Our code? is implemented in C++ using the Eigen library,* a template library for linear algebra,
and we run all of the experiments on multi-core CPUs.” It takes about a week to train a model on

the large training dataset with d = 512.

4.3.3 Decoding process

We use beam search to decode a target sentence for an input sentence x and calculate the sum of

the log-likelihoods of the target sentence y = (y1,- - , Ym ) as the beam score:
m
score(z,y) = Y _log p(y;ly<;, ). (4.6)
j=1

‘https://github.com/tempra28/tree2seq
‘http://eigen.tuxfamily.org/index.php
316 threads on Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
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Decoding in the NMT models is a generative process and depends on the target language model
given a source sentence. The score becomes smaller as the target sentence becomes longer, and
thus the simple beam search does not work well when decoding a long sentence [Cho et al.,
2014a; Pouget-Abadie et al., 2014]. In our preliminary experiments, the beam search with the
length normalization in Cho et al. (2014a) was not effective in English-to-Japanese translation.
The method in Pouget-Abadie et al. (2014) needs to estimate the conditional probability p(x|y)
using another NMT model and thus is not suitable for our work.

In this paper, we use statistics on sentence lengths in beam search. Assuming that the length
of a target sentence correlates with the length of a source sentence, we redefine the score of each

candidate as follows:

SCOT€($, y) = Lw,y + Z;n:l logp(y]|y<]> 33), (47)

Lyy = logp(len(y)|len(x)), (4.8)

where L, is the penalty for the conditional probability of the target sentence length len(y)
given the source sentence length len(x). It allows the model to decode a sentence by considering
the length of the target sentence. In our experiments, we computed the conditional probability
p(len(y)|len(x)) in advance following the statistics collected in the first one million pairs of the

training dataset. We allow the decoder to generate up to 100 words.

4.3.4 Evaluation

We evaluated the models by two automatic evaluation metrics, RIBES [Isozaki et al., 2010] and
BLEU [Papineni et al., 2002] following WAT’15. We used the KyTea-based evaluation script for
the translation results.® The RIBES score is a metric based on rank correlation coefficients with
word precision, and the BLEU score is based on n-gram word precision and a Brevity Penalty (BP)
for outputs shorter than the references. RIBES is known to have stronger correlation with human
judgements than BLEU in translation between English and Japanese as discussed in Isozaki et al.
(2010).

®http://lotus.kuee.kyoto-u.ac. jp/WAT/evaluation/automatic_evaluation_

systems/automaticEvaluationJA.html
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4.4 Results and Discussion

4.4.1 Small Training Dataset

Table 4.3 shows the perplexity, BLEU, RIBES, and the training time on the development data with
the attention-based NMT models trained on the small dataset. We conducted the experiments with
our proposed method using BlackOut and softmax. We decoded a translation by our proposed
beam search with a beam size of 20.

As shown in Table 4.3, the results of our proposed model with BlackOut improve as the num-
ber of negative samples K increases. Although the result of softmax is better than those of Black-
Out (K = 500 and 2000), the training time of softmax per epoch is about three times longer than
that of BlackOut even with the small dataset.

As to the results of the attention-based NMT model, reversing the word order in the input
sentence decreases the scores in English-to-Japanese translation, which contrasts with the results
of other language pairs reported in previous work [Sutskever et al., 2014; Luong et al., 2015a]. By
taking syntactic information into consideration, our proposed model improves the scores, com-
pared to the sequential attention-based approach.

We found that better perplexity does not always lead to better translation scores with BlackOut
as shown in Table 4.3. One of the possible reasons is that BlackOut distorts the target word
distribution by the modified unigram-based negative sampling where frequent words can be treated

as the negative samples multiple times at each training step.
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4.4Results and Discussion
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Beamsize RIBES BLEU Brevity Penalty

|
Simple Beam Search
|

6 72.3 20.0 0.901
20 72.3 19.5 0.851
Proposed Beam Search 20 72.6 20.5 0.917

Table 4.4: Effects of the Beam Search on the development data.

| RIBES  BLEU
Without sequential LSTM units | 69.4 19.5
With sequential LSTM units 72.3 20.0

Table 4.5: Effects of the sequential LSTM units in our proposed tree-based encoder on the devel-

opment data.

Effects of the proposed beam search Table 4.4 shows the results on the development data of
proposed method with BlackOut (K = 2000) by the simple beam search and our proposed beam
search. The beam size is set to 6 or 20 in the simple beam search, and to 20 in our proposed
search. We can see that our proposed search outperforms the simple beam search in both scores.
Unlike RIBES, the BLEU score is sensitive to the beam size and becomes lower as the beam size
increases. We found that the BP had a relatively large impact on the BLEU score in the simple
beam search as the beam size increased. Our search method works better than the simple beam

search by keeping long sentences in the candidates with a large beam size.

Effects of the sequential LSTM units We also investigated the effects of the sequential LSTM
units at the leaf nodes in our proposed tree-based encoder. Table 4.5 shows the result on the
development data of our proposed encoder and that of an attentional tree-based encoder with-
out sequential LSTM units with BlackOut (K = 2000).” The results show that our proposed
encoder considerably outperforms the encoder without sequential LSTM units, suggesting that
the sequential LSTM units at the leaf nodes contribute to the context-aware construction of the
phrase representations in the tree. Figure 4.5 shows an illustration of the proposed model without
sequential LSTM units.

"For this evaluation, we used the 1,789 sentences that were successfully parsed by Enju because the encoder without

sequential LSTM units always requires a parse tree.
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Figure 4.5: Proposed tree-to-sequence model without sequential LSTM units.

4.4.2 Large Training Dataset

Table 4.6 shows the experimental results of RIBES and BLEU scores achieved by the trained
models on the large dataset. We decoded the target sentences by our proposed beam search with
the beam size of 20.8 The results of the other systems are the ones reported in Nakazawa et al.
(2015).

All of our proposed models show similar performance regardless of the value of d. Our en-
semble model is composed of the three models with d = 512, 768, and 1024, and it shows the best

8We found two sentences which ends without eos with d = 512, and then we decoded it again with the beam size
of 1000 following Zhu (2015).
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RIBES score among all systems.’

As for the time required for training, our implementation needs about one day to perform one
epoch on the large training dataset with d = 512. It would take about 11 days without using the
BlackOut sampling.

Comparison with the NMT models The model of Zhu (2015) is an attention-based NMT
model [Bahdanau et al., 2015] with a bi-directional LSTM encoder, and uses 1024-dimensional
hidden units and 1000-dimensional word embeddings. The model of Lee et al. (2015) is also
an attention-based NMT model with a bi-directional Gated Recurrent Unit (GRU) encoder, and
uses 1000-dimensional hidden units and 200-dimensional word embeddings. Both models are
sequential attention-based NMT models. Our single proposed model with d = 512 outperforms
the best result of Zhu (2015)’s end-to-end NMT model with ensemble and unknown replacement
by +1.19 RIBES and by +0.17 BLEU scores. Our ensemble model shows better performance,
in both RIBES and BLEU scores, than that of Zhu (2015)’s best system which is a hybrid of the
attention-based NMT and SMT models by +1.54 RIBES and by +0.74 BLEU scores and Lee et
al. (2015)’s attention-based NMT system with special character-based decoding by +1.30 RIBES
and +1.20 BLEU scores.

Comparison with the SMT models PB, HPB and T2S are the baseline SMT systems in WAT’15:
a phrase-based model, a hierarchical phrase-based model, and a tree-to-string model, respec-
tively [Nakazawa et al., 2015]. The best model in WAT’15 is Neubig et al. (2015)’s tree-to-string
SMT model enhanced with reranking by attention-based NMT using a bi-directional LSTM en-
coder. Our proposed end-to-end NMT model compares favorably with Neubig et al. (2015).

4.4.3 Qualitative Analysis

We illustrate the translations of test data by our model with d = 512 and several attentional
relations when decoding a sentence. In Figures 4.6 and 4.7, an English sentence represented as a
binary tree is translated into Japanese, and several attentional relations between English words or
phrases and Japanese word are shown with the highest attention score «. The additional attentional
relations are also illustrated for comparison. We can see the target words softly aligned with source
words and phrases.

H s

In Figure 4.6, the Japanese word “J##” means “liquid crystal”, and it has a high attention

score (o = 0.41) with the English phrase “liquid crystal for active matrix”. This is because the j-

°Our ensemble model yields a METEOR [Denkowski and Lavie, 2014] score of 53.6 with language option “-1

other”.
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| RIBES  BLEU
Neural Machine Translation model ‘
Proposed model (d = 512) 8146  34.36
Proposed model (d = 768) 81.89  34.78
Proposed model (d = 1024) 81.58  34.87
Ensemble of the above three models 8245 36.95
Attention-based NMT with LSTM units [Zhu, 2015] 79.70  32.19
+ Ensemble, unk replacement 80.27  34.19
+ System combination,3 pre-reordered ensembles 8091  36.21
Attention-based NMT with GRUs [Lee et al., 2015] 81.15 35.75
+ character-based decoding, Begin/Inside representation ' ‘
Statistical Machine Translation model
Phrase-based SMT baseline 69.19 29.80
Hierarchical Phrase-based STM baseline 7470  32.56
Tree-to-string SMT baseline 75.80 33.44
Tree-to-string SMT model [Neubig and Duh, 2014] 79.65 36.58
+ Attention-based NMT Rerank [Neubig et al., 2015] 81.38  38.17

Table 4.6: Evaluation results on the test data.

th target hidden unit s; has the contextual information about the previous words Yy ; including “V&
M < MY w2 A D7 (“for active matrix” in English). The Japanese word “*zJL” is softly aligned
with the phrase “the cells” with the highest attention score (o« = 0.35). In Japanese, there is no
definite article like “the” in English, and it is usually aligned with null described as Section 4.1.
In Figure 4.7, in the case of the Japanese word “7~” (“showed” in English), the attention score
with the English phrase “showed excellent performance” (o« = 0.25) is higher than that with the
English word “showed” (o« = 0.01). The Japanese word “®” (“of” in English) is softly aligned
with the phrase “of Si dot MOS capacitor” with the highest attention score (o« = 0.30). It is
because our attention mechanism takes each previous context of the Japanese phrases “#&31 7= P
£ (“excellent performance” in English) and “S i Kv s MO S 2> 5 > ¥ (“Si dot MOS
capacitor” in English) into account and softly aligned the target words with the whole phrase

when translating the English verb “showed” and the preposition “of”. Our proposed model can
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[Reference]
VI & 79747 NIy OX BR&E &2 EA L k£,
[Translation]
AEVRYYIR O BB ZE €L A IR EAL o EOS
(@077 e lam041) " Fi(a=031)
(=0.07) . o

) (a =o.24:2,..-’ i . (@=0.35)

Thelliquid crystal for active |mat}|x||was||_'injected|into fthe cells| EOS

Figure 4.6: Translation example of a short sentence and the attentional relations by our proposed
model.

thus flexibly learn the attentional relations between English and Japanese.

We observed that our model translated the word “active” into “J%4:”, a synonym of the refer-
ence word “7 2 7 1 7. We also found similar examples in other sentences, where our model
outputs synonyms of the reference words, e.g. “#C” and “2CME” (“female” in English) and “NASA”
and “fif1Z2FH 5 (“National Aeronautics and Space Administration” in English). These transla-
tions are penalized in terms of BLEU scores, but they do not necessarily mean that the translations
were wrong. This point may be supported by the fact that the NMT models were highly evaluated
in WAT’ 15 by crowd sourcing [Nakazawa et al., 2015].
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4.5 Related Work

Kalchbrenner and Blunsom (2013) were the first to propose an end-to-end NMT model using Con-
volutional Neural Networks (CNNs) as the source encoder and using RNNs as the target decoder.
The Encoder-Decoder model can be seen as an extension of their model, and it replaces the CNN's
with RNNs using GRUs [Cho et al., 2014b] or LSTM units [Sutskever et al., 2014].

Sutskever et al. (2014) have shown that making the input sequences reversed is effective in
a French-to-English translation task, and the technique has also proven effective in translation
tasks between other European language pairs [Luong et al., 2015a]. All of the NMT models
mentioned above are based on sequential encoders. To incorporate structural information into
the NMT models, Cho et al. (2014a) proposed to jointly learn structures inherent in source-side
languages but did not report improvement of translation performance. These studies motivated us
to investigate the role of syntactic structures explicitly given by existing syntactic parsers in the
NMT models.

The attention mechanism [Bahdanau et al., 2015] has promoted NMT onto the next stage.
It enables the NMT models to translate while aligning the target with the source. Luong et al.
(2015a) refined the attention model so that it can dynamically focus on local windows rather
than the entire sentence. They also proposed a more effective attentional path in the calculation
of attention-based NMT models. Subsequently, several attention-based NMT models have been
proposed [Cheng et al., 2016; Cohn et al., 2016]; however, each model is based on the existing
sequential attention-based models and does not focus on a syntactic structure of languages.

4.6 Conclusion

In this paper, we propose a novel syntactic approach that extends attention-based NMT models.
We focus on the phrase structure of the input sentence and build a tree-based encoder following
the parsed tree. Our proposed tree-based encoder is a natural extension of the sequential encoder
model, where the leaf units of the tree-LSTM in the encoder can work together with the original
sequential LSTM encoder. Moreover, the attention mechanism allows the tree-based encoder to
align not only the input words but also input phrases with the output words. Experimental re-
sults on the WAT’ 15 English-to-Japanese translation dataset demonstrate that our proposed model

achieves the best RIBES score and outperforms the sequential attention-based NMT model.
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Chapter 5

Character-based Decoding in
Tree-to-Sequence Model

This chapter applied the character-based decoding method in the tree-to-sequence attention-based
neural machine translation model. We also explored the effectiveness of the phrase category label
information into tree-based encoder. This chapter was already published as a workshop paper as

follows:

Chapter 5 Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. Character-based De-
coding in Tree-to-Sequence Attention-based Neural Machine Translation. In Proceedings of
the 3rd Workshop on Asian Translation (WAT2016), pp. 175-183, Osaka, Japan, December
2016..

5.1 Introduction

End-to-end Neural Machine Translation (NMT) models have recently achieved state-of-the-art
results in several translation tasks [Luong et al., 2015a; Luong et al., 2015b]. Those NMT models
are based on the idea of sequence-to-sequence learning [Sutskever et al., 2014], where both of the
source and the target sentences are considered as a sequence of symbols (e.g. words or characters)
and they are directly converted via a vector space. The sequence of symbols on the source side is
input into a vector space, and the sequence of symbols on the target side is output from the vector
space. In the end-to-end NMT models, the above architectures are embodied by a single neural

network.
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The optimal unit for NMT is an important research question discussed in the community.
Early NMT models employ a word as a unit of the sequence [Cho et al., 2014b; Sutskever et
al., 2014]. Sennrich et al. (2016) have used a Byte-Pair Encoding (BPE) method to create a
sub-word level vocabulary according to the frequencies of sub-word appearance in the corpus.
They successfully replaced a large word vocabulary in German and Russian with a much smaller
sub-word vocabulary. They have also shown that their sub-word-based NMT model gives better
translations than the word-based NMT models.

The smallest unit of a sequence of text data is a character. The character-based approach has
attracted much attention in the field of NMT, because it enables an NMT model to handle all of
the tokens in the corpus [Costa-jussa and Fonollosa, 2016; Chung et al., 2016]. A hybrid model
of the word-based and the character-based model has also been proposed by Luong and Manning
(2016). These studies reported the success and effectiveness in translating the out-of-vocabulary
words.

In this chapter, we apply character-based decoding to a tree-based NMT model [Eriguchi et al.,
2016]. The existing character-based models focus only on the sequence-based NMT models. The
objective of this study is to analyze the results of the character-based decoding in the tree-based
NMT model. We also enrich the tree-based encoder with syntactic features. Figure 5.1 shows
an overview of the tree-to-sequence attention-based NMT model. We conducted the English-
to-Japanese translation task on the WAT 16 dataset. The results of our character-based decoder
model show that its translation accuracy is lower than that of the word-based decoder model by
1.34 BLEU scores, but the character-based decoder model needed much less time to generate a

sentence.

5.2 Neural Machine Translation

End-to-end NMT models have recently outperformed phrase-based statistical machine translation
(SMT) models in several languages [Luong et al., 2015a; Eriguchi et al., 2016]. Those NMT mod-
els are basically composed of two processes called an encoder and a decoder. We feed a sequence
of words @ = (x1,x9,- - ,xy) in the source language into the encoder, and the encoder converts
the input data into a vector space until the last n-th word in the sentence is input. Recurrent Neural
Networks (RNNs) are used to obtain the vectors of the sequence of data in the recent NMT mod-
els. The i-th hidden state h; € R%*! in the RNN holds a vector computed by the current input z;
and the previous hidden state h;_; € Rax1.

h,z' = RNNencodeT(Embed(:Bi),hi_l), (51)
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Figure 5.1: Our proposed model: tree-to-character attention-based Neural Machine Translation

model.

where Embed(z;) is the word embedding vector of the i-th source word z;. hg is set to 0.
Another RNN is used as the decoder to obtain the vectors for predicting the words on the target
side. The j-th hidden state s; € R¥*1 of the RNN is computed from the previous hidden state

Sj1 € R*! and the previous output word y;—1 as follows:
Sj = RNNdecoder (Embed(yj_l), Sj_l), (5.2)

where Embed(y;—1) is the word embedding vector of the (j — 1)-th target word y;_1. The first
decoder s is initialized with the last hidden state of the encoder h,,.

The NMT models that simply connect the above two types of RNNs cannot capture strong
relations between the encoder units and the decoder unit, and they often fail to translate a long sen-
tence. An attention mechanism has been introduced to solve the problem by creating an attention
path so that the hidden states of the decoder can access each hidden state of the encoder [Bahdanau
et al., 2015]. Luong et al. (2015a) have refined the calculation of the attention mechanism. In the
decoder process, the attention score c;() is computed by the j-th hidden state of the decoder s;

and each hidden state of the encoder h; as follows:

N exp(h; - s5)
a;(i) = ST oxp(hn - 5, (5.3)

where - represents the inner product, and its value of h; - s; is the similarity score between h; and

s;. The j-th context vector d; € R4*1 are computed as the summation of the hidden states:

dj = > aj(ihi, (5.4)
=1
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where each of the hidden states is weighted by a;(i). We compute the j-th final decoder §; €

R*1 a5 follows:
.§j = tanh(Wd[sj; dj] + bd), (5.5

where [s;; d;] € R2¥! denotes the concatenation of s; and d;. W, € R4 is a weight matrix.
by € R is a bias vector. The conditional probability of predicting an output is defined as

follows:
p(yjl®,y<;) = softmax(Wy5; + by), (5.6)

where W, € R%* is a matrix and by € R%*! is a bias.
The objective function to train the NMT models is defined as the sum of the log-likelihoods
of the translation pairs in the training data:

1
10) = > logp(yle), (5.7)

(z,y)eD
where D denotes the set of parallel sentence pairs. When training the model, the parameters 6 are

updated by stochastic gradient descent.

5.3 Tree-to-character attention-based NMT model

Our proposed model is mostly based on the tree-to-sequence attention-based NMT model de-
scribed in Eriguchi et al. (2016) which has a tree-based encoder and a sequence-based decoder.
They employed Long Short-Term Memory (LSTM) as the units of RNNs [Hochreiter and Schmid-
huber, 1997; Gers et al., 2000]. In their proposed tree-based encoder, the phrase vectors are com-
puted from their child states by using Tree-LSTM units [Tai et al., 2015], following the phrase
structure of a sentence. We incorporate syntactic features into the tree-based encoder, and the k-th
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phrase vector h,,(f ") e R in our proposed model is computed as follows:

ir= oUhL + UV R + WOz, 4 b)),

fl= o(URL + U B + Wz, + b)),

= o(UUIRL 4 USIRy + W) 5 4 b)),
o= o(U R + U R, + W)z, +50),
& = tanh(UOhl + UORT + WOz, 4+ b@),
cp = ik ©E+ fL O+ ff O cf,
h,(cphr) = o © tanh(cy), (5.8)

where each of 1y, oy, ¢, ¢, C;« ci f,é, and f] € R%*1 denotes an input gate, an output gate,
a state for updating the memory cell, a memory cell, the memory cells of the left child node
and the right child node, the forget gates for the left child and for the right child, respectively.
W) e Rixdand UL) € RY™ are weight matrices, and b() € R%*! is a bias vector. zj, € R™*!
is an embedding vector of the phrase category label of the k-th node. o(-) denotes the logistic
function. The operator ® is element-wise multiplication.

The decoder outputs characters one by one. Note that the number of characters in a language is
far smaller than the vocabulary size of the words in the language. The character-based approaches
thus enable us to significantly speed up the softmax computation for generating a symbol, and
we can train the NMT model and generate translations much faster. Moreover, all of the raw text
data are directly covered by the character units, and therefore the decoder in our proposed model
requires few preprocessing steps such as segmentation and tokenization.

We also use the input-feeding technique [Luong et al., 2015a] to improve translation accuracy.

The j-th hidden state of the decoder is computed in our proposed model as follows:
8j = RN Nyecoder (Embed(y;-1),[8j-1; 8j-1]), (5.9)

where [s;_1; §j_1] € R24x1 denotes the concatenation of sj—1and 5;_1.
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5.4 Experiment in WAT’16 task

5.4.1 Experimental Setting

We conducted experiments for our proposed model using the 3rd Workshop of Asian Translation
2016 (WAT’16)! English-to-Japanese translation task [Nakazawa et al., 2016a]. The data set is
the Asian Scientific Paper Excerpt Corpus (ASPEC) [Nakazawa et al., 2016b]. The data setting
followed the ones in Zhu (2015) and Eriguchi et al. (2016). We collected 1.5 million pairs of
training sentences from train-1.txt and the first half of train-2.txt. We removed the sentences
whose lengths are greater than 50 words. In the tree-based encoder, binary trees of the source
sentences were obtained by Enju [Miyao and Tsujii, 2008], which is a probabilistic HPSG parser.
We used phrase category labels as the syntactic features in the proposed tree-based encoder. There
are 19 types of phrase category labels given by Enju. Table 5.1In the word-based decoder model,
we employed KyTea [Neubig et al., 2011] as the segmentation tool for the Japanese sentences.
We performed the preprocessing steps of the data as recommended in WAT’16.% Table 5.2 and
Table 5.3 show the details of the final dataset and the vocabulary sizes in our experiments. Each
vocabulary includes the words and the characters whose frequencies exceed five or two in the
training data, respectively. The out-of-vocabulary words are mapped into a special token i.e.
“UNK”. As a result, the vocabulary size of the characters in Japanese is about 22 times smaller
than that of the words.

NMT models are often trained on a limited vocabulary, because the high computational cost
of the softmax layer for target word generation is usually the bottleneck when training an NMT
model. In the word-based models, we use the BlackOut sampling method [Ji et al., 2016] to
approximately compute the softmax layer. The parameter setting of BlackOut follows Eriguchi et
al. (2016). In the character-based models, we use the original softmax in the softmax layer. All
of the models are trained on CPUs.? We employed multi-threading programming to update the
parameters in a mini-batch in parallel. The training times of the single word-based model and the
single character-based model were about 11 days and 7 days, respectively.

We set the dimension size of the hidden states to 512 in both of the LSTMs and the Tree
LSTMs. The dimension size of embedding vectors is set to 512 for the words and to 256 for the
characters. In our proposed tree-based encoder, we use 64 and 128 for the dimension size of the
phrase label embedding. The model parameters are uniformly initialized in [-0.1, 0.1], except that

the forget biases are filled with 1.0 as recommended in J6zefowicz et al. (2015). Biases, softmax

"http://lotus kuee kyoto-u.ac jp/WAT/
Zhttp://lotus kuee.kyoto-u.ac.jp/WAT/baseline/dataPreparationJE.html
316 threads on Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz
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Phrase category labels | Description of the label

ADIJX Adjective unsaturated constituent

CcX Complementizer unsaturated constituent
SCX Subordination conjunction unsaturated constituent
PX Prepositional unsaturated constituent
PN Punctuation

DP Determiner phrase

SCP Subordination conjunction phrase

S Sentence

ADVX Adverb unsaturated constituent

PP Prepositional phrase

NP Noun phrase

NX Noun unsaturated constituent

VP Verb phrase

ADVP Adverb phrase

CONJP Coordination conjunction phrase

COOD Part of coordination

ADJP Adjective phrase

Cp Complementizer phrase

VX Verb unsaturated constituent

Table 5.1: The details of phrase category labels.

weights and BlackOut weights are filled with 0. We shuffle the training data randomly per each
epoch. All of the parameters are updated by the plain stochastic gradient descent algorithm with
a mini-batch size of 128. The learning rate of stochastic gradient descent is set to 1.0, and we
halve it when the perplexity of development data becomes worse. The value of gradient norm
clipping [Pascanu et al., 2012] is set to 3.0.

We use a beam search in order to obtain a proper translation sentence with the size of 20 and
5 in the word-based decoder and the character-based decoder, respectively. The maximum length
of a generated sentence is set to 100 in the word-based decoder and to 300 in the character-based
decoder. Cho et al. (2014a) reported that an RNN-based decoder generates a shorter sentence
when using the original beam search. We used the beam search method proposed in Eriguchi et

al. (2016) in order to output longer translations. We evaluated the models by the BLEU score [Pa-
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Sentences Parsed sentences

Training dataset 1,346,946 1,346,946
Development dataset 1,790 1,789
Test dataset 1,812 1,811

Table 5.2: The details of dataset in the ASPEC corpus.

Vocabulary size

|Viwora| in English 87,796
|Viord| in Japanese 65,680
|Veharacter| in Japanese 3,004

Table 5.3: Vocabulary sizes in the training models.

pineni et al., 2002] and the RIBES score [Isozaki et al., 2010] employed as the official evaluation
metrics in WAT’ 16.

5.4.2 Experimental Results

Table 5.4 shows the experimental results of the character-based models, the word-based models
and the baseline SMT systems. BP denotes the brevity penalty in the BLEU score. First, we
can see small improvements in the RIBES score of the single tree-to-sequence attention-based
NMT models with the character-based decoder using syntactic features, compared to our proposed
baseline model. The translations are output by the ensemble of the three models, and we used
a simple beam search to confirm how much it effects the BLEU scores in the character-based
models. We showed the results of our proposed character-based decoder models by using the beam
search method proposed in Eriguchi et al. (2016). We collects the statistics of the relation between
the source sentence length (L) and the target sentence length (L;) from training dataset and
adds its log probability (log p(L¢|Ls)) as the penalty of the beam score when the model predicts
“EOS”. The BLEU score is sensitive to the value of BP, and we observe the same trend in that the
character-based approaches generate a shorter sentence by the original beam search. As a result,
each of the character-based models can generate longer translation by +0.09 BP scores at least
than tree-to-sequence attention-based NMT model using the original beam search.

The word-based tree-to-sequece decoder model shows slightly better performance than the
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word-based sequence-to-sequence attention-based NMT model [Luong et al., 2015a] in both of
the scores. The results of the baseline systems are the ones reported in Nakazawa et al. (2015).
Compared to these SMT baselines, each of the character-based models clearly outperforms the
phrase-based system in both of the BLEU and RIBES scores. Although the hierarchical phrase-
based SMT system and the tree-to-string SMT system outperforms the single character-based
model without phrase label inputs by +1.04 and by +1.92 BLEU scores, respectively, our best
ensemble of character-based models shows better performance (+5.65 RIBES scores) than the

tree-to-string SMT system.
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Time (msec / sentence)

Word-based decoder 363.7
Character-based decoder 8.8

Table 5.5: Comparison of the times when outputting a sentence.

5.5 Discussion

Table 5.5 shows a comparison of the speeds to predict the next word between the word-based
decoder and the character-based decoder when generating a sentence by a beam size of 1. The
character-based decoder is about 41 times faster than the word-based decoder. It is because the
time to output a word by using a softmax layer is roughly proportional to the vocabulary sizes of
the decoders. In addition to the low cost of predicting the outputs in the character-based model, the
character-based decoder requires the smaller size of beam search than the word-based model. The
word-based decoder requires a beam size of 20 when decoding, but a beam size of 5 is enough for
the character-based decoder. It requires smaller beam size for the character-based decoder to find
the best hypothesis. We therefore conclude that the character-based model works more efficiently
as a translation model than the word-based model in terms of the cost of the outputs.

Some translation examples of our tree-to-sequence attention-based NMT models are shown
in Table 5.6. There are two types of source sentences, the ground truth target sentences, and the
translated sentences by the word-based model, by the character-based model, and the character-
based model using the syntactic features embedded with a dimension size of 64. The words in the
same color semantically correspond to each other.

In sentence A, we can see that the character-based models correctly translated the source word
“micro” with the characters “~ - 27 17, while the word-based decoder requires the unknown
replacement [Luong et al., 2015b; Jean et al., 2015]. When the word-based model outputs the
target word “UNK?”, the source phrase “micro watt” has the highest attention score (o = 0.78)
and the source word “micro” has the second highest attention score (o = 0.16). The word-based
decoder model is successful in outputting the original number (“3 8 07) in the source side to
the target side, and both of the character-based decoder model has also succeeded in predicting a
correct sequence of characters “ 37, “87”, and “ 0 one by one. The training dataset includes the
translation of the word “380” into the characters“ 3 8 0, so the character-based model can be
trained without copy mechanism [Ling et al., 2016; Gu et al., 2016] in this case.

In sentence B, the character-based models successfully translate “low-loss forsterite porcelain”
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into “{EfHL 7 ANV AT T A Migas”. The word-based decoder model generates two “UNK”’s. The
source word “forsterite” (“7 # )L A7 7 A 1 in Japanese) has the highest attention score (o =
0.23) to the first “UNK”, and the phrase “forsterite porcelain” has the second highest attention
score (v = 0.21). The second “UNK” is softly alined to the source word “porcelain” (“f&#s"
in Japanese) with the highest attention score (o« = 0.26) and to the source phrase “forsterite

porcelain” with the second highest attention score (o« = 0.16).
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5.6 Related Work

There are many NMT architectures: a convolutional network-based encoder [Kalchbrenner and
Blunsom, 2013], sequence-to-sequence models [Cho et al., 2014b; Sutskever et al., 2014] and a
tree-based encoder [Eriguchi et al., 2016]. The objective of these research efforts focused on how
to encode the data in a language into a vector space and to decode the data in another language
from the vector space. Sennrich and Haddow (2016) improved the vector space of NMT models
by adding linguistic features. The text data is basically considered as the sequence of words.

The word-based NMT models cannot usually cover the whole vocabulary in the corpus. Rare
words are mapped into “unknown” words when the NMT models are trained. Luong et al. (2015b)
proposed an ex post facto replacement technique for such unknown words, and Jean et al. (2015)
replace the unknown word with the source word which has the highest attention score to the
unknown word. Sennrich et al. (2016) adopted a sub-word as a unit of the vocabulary for the
NMT models and created the sub-word-based vocabulary by the BPE method. The vocabulary
based on the sub-words can cover much more words in German and Russian, compared to the
vocabulary based on the words. The NMT models trained with the sub-word-based vocabulary
performed better than the ones trained on the word-based vocabulary.

Since the smallest units of text data are characters, character-based approaches have been
introduced into the fields of NMT. Costa-jussa and Fonollosa (2016) have shown that the character-
based encoding by using convolutional networks and the highway network as shown in Kim et al.
(2016). Chung et al. (2016) applied the character-based decoding to the NMT models, whose
encoder is based on the BPE units. Luong and Manning (2016) have proposed a hybrid NMT
model flexibly switching from the word-based to the character-based model. Each character-
based NMT model shows better performance than the word-based NMT models. All of theses
models are, however, applied to sequence-based NMT models, and there are no results of the
character-based decoding applied to tree-based NMT models yet.

5.7 Conclusion

In this chapter, we applied the word-based decoding and the character-based decoding to the tree-
to-sequence attention-based neural machine translation model. We also explored the effectiveness
by adding the phrase category labels into the tree-based encoder as the previous work focused
on the syntactic structures and did not use any syntactic labels in the encoder. The experimental
results on English-to-Japanese translation shows that the character-based decoder does not outper-

form the word-based decoder but exhibits two promising properties: 1) It takes much less time to
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compute the softmax layer; and 2) It can translate any word in a sentence.
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Chapter 6

Sequence-to-Tree Neural Machine

Translation

This chapter has proposed a hybridized model which jointly learn to parse and translate. Our
proposed model is trained on the parallel corpus and the parsed tree sentence in the target lan-
guage, and we let the model to generate only translations and the translations with their parsed

tree optionally. This chapter was already published as a conference paper as follows:

Chapter 6 Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. Learning to Parse and
Translate in Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 72—78, Vancouver,
Canada, August 2017.

6.1 Introduction

Neural Machine Translation (NMT) has enjoyed impressive success without relying on much, if
any, prior linguistic knowledge. Some of the most recent studies have for instance demonstrated
that NMT systems work comparably to other systems even when the source and target sentences
are given simply as flat sequences of characters [Lee et al., 2016; Chung et al., 2016] or statis-
tically, not linguistically, motivated subword units [Sennrich et al., 2016; Wu et al., 2016]. [Shi
et al., 2016] recently made an observation that the encoder of NMT captures syntactic properties
of a source sentence automatically, indirectly suggesting that explicit linguistic prior may not be

necessary.
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On the other hand, there have only been a couple of recent studies showing the potential bene-
fit of explicitly encoding the linguistic prior into NMT. [Sennrich and Haddow, 2016] for instance
proposed to augment each source word with its corresponding part-of-speech tag, lemmatized
form and dependency label. [Eriguchi et al., 2016] instead replaced the sequential encoder with a
tree-based encoder which computes the representation of the source sentence following its parse
tree. [Stahlberg et al., 2016] let the lattice from a hierarchical phrase-based system guide the de-
coding process of neural machine translation, which results in two separate models rather than a
single end-to-end one. Despite the promising improvements, these explicit approaches are limited
in that the trained translation model strictly requires the availability of external tools during in-
ference time. More recently, researchers have proposed methods to incorporate target-side syntax
into NMT models. [Alvarez-Melis and Jaakkola, 2017] have proposed a doubly-recurrent neural
network that can generate a tree-structured sentence, but its effectiveness in a full scale NMT task
is yet to be shown. [Aharoni and Goldberg, 2017] introduced a method to serialize a parsed tree
and to train the serialized parsed sentences.

We propose to implicitly incorporate linguistic prior based on the idea of multi-task learning
[Caruana, 1998; Collobert et al., 2011]. More specifically, we design a hybrid decoder for NMT,
called NMT+RNNG!, that combines a usual conditional language model and a recently proposed
recurrent neural network grammars [Dyer et al., 2016]. This is done by plugging in the con-
ventional language model decoder in the place of the buffer in RNNG, while sharing a subset of
parameters, such as word vectors, between the language model and RNNG. We train this hybrid
model to maximize both the log-probability of a target sentence and the log-probability of a parse
action sequence. We use an external parser [Andor et al., 2016] to generate target parse actions,
but unlike the previous explicit approaches, we do not need it during test time.

We evaluate the proposed NMT+RNNG on four language pairs ({Jp, Cs, De, Ru}-En). We
observe significant improvements in terms of BLEU scores on three out of four language pairs and

RIBES scores on all the language pairs.

6.2 Neural Machine Translation

Neural machine translation is a recently proposed framework for building a machine translation
system based purely on neural networks. It is often built as an attention-based encoder-decoder
network [Cho et al., 2015] with two recurrent networks—encoder and decoder—and an attention
model. The encoder, which is often implemented as a bidirectional recurrent network with long

short-term memory units [Hochreiter and Schmidhuber, 1997] or gated recurrent units [Cho et al.,

'Our code is available at https: //github.com/tempra28/nmt rong.
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2014b], first reads a source sentence represented as a sequence of words * = (x1,x2,...,ZN).
The encoder returns a sequence of hidden states H = (hi, hg,...,hy). Each hidden state
h; € R2?¥vxl ig a concatenation of those from the forward and backward recurrent network:

%
hi = |:hz, %z:| . where

TZi :7enc(ﬁi—la Ve(zi)), (6.1)
%i :?BHC(%FFla Vx(xz)) (62)

Vp(x;) € RI*! refers to the word vector of the i-th source word. ?enc and ?enc denote a
recurrent activation function, such as LSTM or GRU, respectively.
The decoder is implemented as a conditional recurrent language model which models the

target sentence, or translation, as

logp(yl®) =Y log p(y;ly<j, ), (6.3)
J
where y = (y1,...,yn ). Each of the conditional probabilities in the r.h.s is computed by
p(y; = yly<j, x) = softma:c(WyTéj), (6.4)
5; = tanh(W_,[s;; ¢j]), (6.5)
8j = faec(8j—1, [Vy(yi-1); 8j-1]), (6.6)

where fgec is a recurrent activation function, such as LSTM or GRU, and W, is the output word
vector of the word y.

c; is a time-dependent context vector that is computed by the attention model using the se-
quence h of hidden states from the encoder. The attention model first compares the current hidden
state s; against each of the hidden states and assigns a scalar score [Luong et al., 2015a] calculated
as follows:

Bi; = exp(h] Wys;), 6.7)

where W is a conversion matrix. These scores are then normalized across the hidden states to
sum to 1, that is:

Bi.;
>iBig

The time-dependent context vector is then a weighted-sum of the hidden states with these attention

(6.8)

@ =

weights computed as:

Cj = Z Oti7jhi. (69)
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6.3 Recurrent Neural Network Grammars

6.3.1 Stack LSTM

The stack LSTM units [Dyer et al., 2015] have been proposed to compute the tree-structured
LSTM network by using the stack structures. Now we consider recurrent neural networks applied
with LSTM units. The current hidden unit h; is computed by using the previous hidden unit ks
and the current unit h; as follows:

hy = f(hi—1,v), (6.10)

where hy, hy—1 € R4 *1 and v, € R%*! are the dj7-dimensional vectors and a dy -dimensional
input vector, respectively. f is an LSTM function.

The stack LSTM unit is a type of the LSTM units. Unlike the LSTM units in recurrent neural
networks described above, the stack LSTM units are stored in the stack structure and computed

by using the top of the unit in the stack (hrop € R *1) as follows:

hi = g(hrop,vt), (6.11)

where by, hrop € R *1 and v, € R *1 are the dj;-dimensional vectors and a dy -dimensional
input vector, respectively. g is a stack LSTM function, which is equal to the LSTM function. There
are two kinds of the operations of “POP” and “PUSH” in the stack LSTM units.

POP
Move the TOP to the previous stack LSTM unit.

PUSH
Compute the next stack LSTM unit by using the the stack LSTM unit specified with the
TOP.

Figure 6.1 shows how the two types of the operations work in the stack LSTM units. We illustrate
the top of the units in the stack by making the unit with an arrow named with “TOP” in Figure 6.1.

6.3.2 Recurrent Neural Network Grammars

A recurrent neural network grammar [Dyer et al., 2016] is a probabilistic syntax-based language
model. Unlike a usual recurrent language model [Mikolov et al., 2010], an RNNG simultaneously
models both tokens and their tree-based composition. This is done by having a (output) buffer,
stack and action history, each of which is implemented as a stack LSTM (sLSTM) [Dyer et al.,
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v v v v
L % Top I rop €2

b B

(PUSH) (POP)

Figure 6.1: Two types of the operations in the stack LSTM units.

2015]. At each time step, the action stack LSTM predicts the next action based on the (current)
hidden states of the buffer, stack and action SLSTM. That is,

T . buffer g, stack g, action
plas = alacy) oc exp®WVa Juion (TR, (6.12)

where W, is the vector of the action a. If the selected action is shift, the word at the beginning of
the buffer is moved to the stack. When the reduce action is selected, the top-two words in the stack
are reduced to build a partial tree. Figure 6.2 shows the building process of the syntactic vectors.
Each action corresponds to the predefined sequence of two operations of POP and PUSH. Here,
p(whitedog) denotes a dependency phrase vectors of “white dog”. Additionally, the action may
be one of many possible non-terminal symbols, in which case the predicted non-terminal symbol
is pushed to the stack.
The hidden states of the buffer, stack and action SLSTM are correspondingly updated by

hYUTer = StackLSTM(AL™r V, (y,1)), (6.13)

RSk — StackLSTM(hS2k ),

top

hgction _ StackLSTM(haCtion Ve (Clt— 1 ) ) )

top

where V,, and V, are functions returning the target word and action vectors. The input vector r; of

the SLSTM is computed recursively by
ry = tanh(W,.[r%; 7P; V, (as)]),

where r¢ and 7P are the corresponding vectors of the parent and dependent phrases, respec-
tively [Dyer et al., 2015]. This process is iterated until a complete parse tree is built. Note that the
original paper of RNNG [Dyer et al., 2016] uses constituency trees, but we employ dependency
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The  white The white dog The white  dog
ToP ToP

- -

(Shift) (Reduce Left)

p(white dog)
Top

Figure 6.2: How to compute the syntactic structured sentence vectors by using Stack LSTM units

in a dependency parsed sentence.

trees in this study. Figure 6.3 is an example of a universal dependency tree. Both types of trees
are represented as a sequence of the three types of actions in a transition-based parsing model.
When the complete sentence is provided, the buffer simply summarizes the shifted words.
When the RNNG is used as a generator, the buffer further generates the next word when the
selected action is shift. The latter can be done by replacing the buffer with a recurrent language

model, which is the idea on which our proposal is based.

6.4 Learning to Parse and Translate

6.4.1 NMT+RNNG

Our main proposal in this study is to hybridize the decoder of the neural machine translation and
the RNNG. We continue from the earlier observation that we can replace the buffer of RNNG to a
recurrent language model that simultaneously summarizes the shifted words as well as generates
future words. We replace the RNNG’s buffer with the neural translation model’s decoder in two

steps. Figure 6.4 shows the outline of our proposed model.
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ROOT
root punct
det nsubj pobj
amod aux prep det

The white dog is sleeping on the sofa

Figure 6.3: An example of universal dependency tree structure of a sentence “The white dog is

sleeping on the sofa.”.
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Construction First, we replace the hidden state of the buffer h®" (in Eq. (6.13)) with the
hidden state of the decoder of the attention-based neural machine translation from Eq. (6.6). As
is clear from those two equations, both the buffer SLSTM and the translation decoder take as
input the previous hidden state (h?ggfef and s;_1, respectively) and the previously decoded word
(or the previously shifted word in the case of the RNNG’s buffer), and returns its summary state.
The only difference is that the translation decoder additionally considers the state s;_;. Once
the buffer of the RNNG is replaced with the NMT decoder in our proposed model, the NMT
decoder is also under control of the actions provided by the RNNG.? Second, we let the next word
prediction of the translation decoder as a generator of RNNG. In other words, the generator of
RNNG will output a word, when asked by the shift action, according to the conditional distribution
defined by the translation decoder in Eq. (6.4). Once the buffer SLSTM is replaced with the neural
translation decoder, the action sSLSTM naturally takes as input the translation decoder’s hidden
state when computing the action conditional distribution in Eq. (6.12). We call this hybrid model

NMT+RNNG.

Learning and Inference After this integration, our hybrid NMT+RNNG models the condi-
tional distribution over all possible pairs of translation and its parse given a source sentence, i.e.,
p(y, alx). Assuming the availability of parse annotation in the target-side of a parallel corpus,
we train the whole model jointly to maximize E(z,  ¢)~data [108 P(¥, alx)]. In doing so, we notice
that there are two separate paths through which the neural translation decoder receives error signal.
First, the decoder is updated in order to maximize the conditional probability of the correct next
word, which has already existed in the original neural machine translation. Second, the decoder
is updated also to maximize the conditional probability of the correct parsing action, which is a
novel learning signal introduced by the proposed hybridization. Furthermore, the second learning
signal affects the encoder as well, encouraging the whole neural translation model to be aware of
the syntactic structure of the target language. Later in the experiments, we show that this addi-
tional learning signal is useful for translation, even though we discard the RNNG (the stack and

action sLSTM units) in the inference time.

6.4.2 Knowledge Distillation for Parsing

A major challenge in training the proposed hybrid model is that there is not a parallel corpus
augmented with gold-standard target-side parse, and vice versa. In other words, we must either

’The j-th hidden state in Eq. (6.6) is calculated only when the action (shiff) is predicted by the RNNG. This is why

our proposed model can handle the sequences of words and actions which have different lengths.
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Traininig Development  Test Voccabulary (src, tgt, act)

Cs-En | 134,453 2,656 2,999 (33,867, 27,347, 82)
De-En | 166,313 2,169 2,999 (33,820, 30,684, 80)
Ru-En | 131,492 2,818 2,998 (32,442, 27,979, 82)
Jp-En 100,000 1,790 1,812 (23,509, 28,591, 80)

Table 6.1: Statistics of parallel corpora.

parse the target-side sentences of an existing parallel corpus or translate sentences with existing
gold-standard parses. As the target task of the proposed model is translation, we start with a
parallel corpus and annotate the target-side sentences. It is however costly to manually annotate
any corpus of reasonable size [Alonso et al., 2016].

We instead resort to noisy, but automated annotation using an existing parser. This approach of
automated annotation can be considered along the line of recently proposed techniques of knowl-
edge distillation [Hinton et al., 2015] and distant supervision [Mintz et al., 2009]. In knowledge
distillation, a teacher network is trained purely on a training set with ground-truth annotations, and
the annotations predicted by this teacher are used to train a student network, which is similar to
our approach where the external parser could be thought of as a teacher and the proposed hybrid
network’s RNNG as a student. On the other hand, what we propose here is a special case of dis-
tant supervision in that the external parser provides noisy annotations to otherwise an unlabeled
training set.

Specifically, we use SyntaxNet, released by [Andor et al., 2016], on a target sentence.’ We con-
vert a parse tree into a sequence of one of three transition actions (SHIFT, REDUCE-L, REDUCE-
R). We label each REDUCE action with a corresponding dependency label and treat it as a more
fine-grained action. Figure 6.5 shows an example of the conversion of a dependency parsed tree

to a sequence of three types of actions. The words within the brackets represent terminal words.
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ROOT

~ ST

| see a girl with a telescope

)

Shift (I), Shift (see), Reduce Left, Shift (a), Shift (girl), Reduce Left,
Shift (with), Shift (a), Shift (telescope), Reduce Left, Reduce Right,
Reduce Right, Reduce Right, Shift (.), Reduce Left, Shift (ROOT), Reduce Left

Figure 6.5: An example of converting a dependency parsed tree to a sequence of actions.

6.5 Experiments

6.5.1 Language Pairs and Corpora

We compare the proposed NMT+RNNG against the baseline model on four different language
pairs—Jp-En, Cs-En, De-En and Ru-En. The basic statistics of the training data are presented in
Table 6.1. We mapped all the low-frequency words to the unique symbol “UNK” and inserted a

special symbol “EOS” at the end of both source and target sentences.

Jp

We use the ASPEC corpus (“trainl.txt”) from the WAT 16 Jp-En translation task. We tokenize
each Japanese sentence with KyTea [Neubig et al., 2011] and preprocess according to the recom-
mendations from WAT’16 [WAT, 2016]. We use the first 100K sentence pairs of length shorter
than 50 for training. The vocabulary is constructed with all the unique tokens that appear at least
twice in the training corpus. We use “dev.txt” and “test.txt” provided by WAT’ 16 respectively as
development and test sets.

3When the target sentence is parsed as data preprocessing, we use all the vocabularies in a corpus and do not cut off

any words. We use the plain SyntaxNet and do not train it furthermore.
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Cs, De and Ru

We use News Commentary v8. We removed noisy metacharacters and used the tokenizer from
Moses [Koehn et al., 2007] to build a vocabulary of each language using unique tokens that appear
at least 6, 6 and 5 times respectively for Cs, Ru and De. The target-side (English) vocabulary was
constructed with all the unique tokens appearing more than three times in each corpus. We also
excluded the sentence pairs which include empty lines in either a source sentence or a target
sentence. We only use sentence pairs of length 50 or less for training. We use “newstest2015” and
“newstest2016” as development and test sets respectively.

6.5.2 Models, Learning and Inference

In all our experiments, each recurrent network has a single layer of LSTM units of 256 dimensions,
and the word vectors and the action vectors are of 256 and 128 dimensions, respectively. To reduce
computational overhead, we use BlackOut [Ji et al., 2016] with 2000 negative samples and o =
0.4. When employing BlackOut, we shared the negative samples of each target word in a sentence
in training time [Hashimoto and Tsuruoka, 2017], which is similar to the previous work [Zoph et
al., 2016]. For the proposed NMT+RNNG, we share the target word vectors between the decoder
(buffer) and the stack SLSTM.

Each weight is initialized from the uniform distribution [—0.1,0.1]. The bias vectors and the
weights of the softmax and BlackOut are initialized to be zero. The forget gate biases of LSTM
units and Stack-LSTM units are initialized to 1 as recommended in [Jozefowicz et al., 2015]. We
use stochastic gradient descent with minibatches of 128 examples. The learning rate starts from
1.0, and is halved each time the perplexity on the development set increases. We clip the norm
of the gradient [Pascanu et al., 2012] with the threshold set to 3.0 (2.0 for the baseline models on
Ru-En and Cs-En to avoid NaN and Inf). When the perplexity of development data increased in
training time, we halved the learning rate of stochastic gradient descent and reloaded the previous
model. The RNNG’s stack computes the vector of a dependency parse tree which consists of
the generated target words by the buffer. Since the complete parse tree has a “ROOT” node, the
special token of the end of a sentence (“EOS”) is considered as the ROOT. We use beam search in
the inference time, with the beam width selected based on the development set performance.

It took about 15 minutes per epoch and about 20 minutes respectively for the baseline and the

proposed model to train a full JP-EN parallel corpus in our implementation.*

“We run all the experiments on multi-core CPUs (10 threads on Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz)
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‘De—En Ru-En Cs-En  Jp-En

BLEU
NMT 16.61 12.03 1122 17.88
NMT+RNNG | 16.41 12467 12.06" 18.84%

Table 6.2: BLEU scores by the baseline and proposed models on the test set.

‘De—En Ru-En Cs-En  Jp-En

RIBES
NMT 7375  69.56 69.59 71.27
NMT+RNNG | 75.03"  71.047 70.397 72.25%

Table 6.3: RIBES scores by the baseline and proposed models on the test set.

6.5.3 Results and Analysis

We use the bootstrap resampling method from [Koehn, 2004] to compute the statistical signifi-
cance. We use t to mark those significant cases with p < 0.005. In Table 6.5.3 and Table 6.5.3,
we report the translation qualities of the tested models on all the four language pairs. We report
both BLEU [Papineni et al., 2002] and RIBES [Isozaki et al., 2010]. Except for De-En, measured
in BLEU, we observe the statistically significant improvement by the proposed NMT+RNNG
over the baseline model. It is worthwhile to note that these significant improvements have been

achieved without any additional parameters nor computational overhead in the inference time.

Ablation Since each component in RNNG may be omitted, we ablate each component in the
proposed NMT+RNNG to verify their necessity.’ As shown in Table 6.4, we see that the best
performance could only be achieved when all the three components were present. Removing the
stack had the most adverse effect, which was found to be the case for parsing as well by [Kuncoro
etal., 2017].

SSince the buffer is the decoder, it is not possible to completely remove it. Instead we simply remove the dependency

of the action distribution on it.
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Jp-En (Dev) BLEU

NMT+RNNG | 18.60
w/o Buffer 18.02
w/o Action 17.94
w/o Stack 17.58
NMT 17.75

Table 6.4: Effect of each component in RNNG.

Source: B BE H 120 KUERFREER I h T WK W,
Reference: A transition temperature hasn’t been realized over 120K .

The transition temperature has not been realized over 120 K. EOS
(ROQT)

Figure 6.6: An example of translation and its dependency relations obtained by our proposed

model.

Generated Sentences with Parsed Actions The decoder part of our proposed model consists
of two components: the NMT decoder to generate a translated sentence and the RNNG decoder to
predict its parsing actions. The proposed model can therefore output a dependency structure along
with a translated sentence. Figure 6.6, 6.7 and 6.8 show the examples of Jp-En translation in the
development dataset and its dependency parse tree obtained by the proposed model. The special
symbol (“EOS”) is treated as the root node (“ROOT”) of the parsed tree. The translated sentence
was generated by using beam search, which is the same setting of NMT+RNNG shown in Table
6.4. The parsing actions were obtained by greedy search. The resulting dependency structure is
mostly correct but contains a few errors; for example, dependency relation between “The” and “

transition” should not be “pobj” in Figure 6.6.
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6.6 Conclusion

We propose a hybrid model, to which we refer as NMT+RNNG, that combines the decoder of an
attention-based neural translation model with the RNNG. This model learns to parse and translate
simultaneously, and training it encourages both the encoder and decoder to better incorporate
linguistic priors. Our experiments confirmed its effectiveness on four language pairs ({Jp, Cs,
De, Ru}-En). The RNNG can in principle be trained without ground-truth parses, and this would
eliminate the need of external parsers completely. We leave the investigation into this possibility

for future research.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we focus on the syntactic structure inherited in a language. We have proposed two
types of the syntax-based neural machine translation models which incorporate syntactic structures
into the sequence-to-sequence neural machine translation models.

We focus on phrase structure in a source language. Phrase structures build a phrase compo-
nent in a bottom-up fashion. We have proposed a tree-based encoder to compute phrase vectors
from the existing sequential encoder. Following the binary tree of the phrase structures obtained
by the external parser tools, we build a tree-based encoder. Experimental results have shown that
our proposed tree-to-sequence NMT model improves translation accuracy better than the existing
sequence-to-sequence NMT model. We also confirmed the proposed model succeeded in flexibly
aligning a target word with a source word or a source phrase in the English-to-Japanese transla-
tion task, where it is well known that the syntactic information improves the machine translation
models.

The character-based decoding is well known to easily solve the vocabulary coverage problem
in the NMT models because any types of words can be represented as a sequence of words. We
applied the character-based decoding approach in the tree-to-sequence NMT model. We found that
the character-based decoding approach require the NMT model generate a longer sentence because
the NMT decoder favors a shorter sentence at test time, while the character-based decoding solves
the vocabulary coverage problem the word-based decoding approach has.

We also focus on universal dependency tree structure to capture the dependency relations
between the words in a sentence. The dependency relations capture the different information

from phrase structures. We have proposed the multi-task model of the NMT model and recurrent
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neural network grammars model which jointly learn to parse and translate. Experimental results
on four language translation tasks have shown that the proposed method improved the translation
accuracy in every language pairs. We also confirmed that our proposed model optionally generates
a translation and a translation with its parsed tree.

7.2 Future of Neural Machine Translation

This thesis has focused on the syntactic structures inherited in languages and developed the syntax-

based NMT models. We itemize the future work of neural machine translation.

To build a document-level translation model
The current machine translation models have been developed as a sentence-level translation
systems. The learning algorithm assumes a training corpus which consists of sentence-level
translation pairs, hence the current machine translation model have no mechanism to learn
the meaning of a word from the context beyond the sentence. The contextual information
has been studied in the area of discourse parsing [Li et al., 2014]. We have already shown
the NMT models which uses a syntactic structured data and will extend the approach into

the document-level training corpus.

To utilize the contextual information
The NMT models are mostly trained on a parallel corpus as a training data set, and the model
parameters are learned from the text corpus. There are many studies which succeeded in
generating a sentence from an image in a image caption task [Xu et al., 2015]. The recent
multi-task model which composed of eight tasks suggests that the image generation task
improves the parsing task in spite of no direct relations observed between two tasks [Kaiser
et al., 2017]. The image data can be useful for building a common semantic space without
multi-lingual parallel corpus [Nakayama and Nishida, 2017]. It suggests that even when
increasing the textual training data, the model still lacks the contextual information as the
world knowledge. The different types of the data such as image and sounds indirectly

improve the model performance and multi-task learning is useful for the purpose.

To transfer the learned multilingual representations to other NLP tasks
Johnson et al. (2017) have reported that multi-lingual NMT model learns the interlingual
information from the training corpus. There are a few studies [Hill et al., 2015; Schwenk
et al., 2017] which reported the different trends of the word embedding vectors learned
in a single language-based model such as word2vec [Mikolov et al., 2013a] and Glove

70



vectors [Pennington et al., 2014] and the conditional language-based model such as the
NMT models. McCann et al. (2017) employed the representations learned from the NMT
model as the input features in the other natural language tasks and succeeded in improving
the model performance in several text classification tasks. These previous studies transfer
the English representations to the tasks in English, and it is not clear that we apply the
same method in the multilingual set up. There is also still an open question to the reason
why these multilingual representation or the representations learned in natural language
inference task [Conneau et al., 2017] are useful for the other NLP tasks.
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