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Abstract

Neural networks have been actively applied in the field of natural language processing in the recent
years. Most of the neural network models in this field try to learn representations of meanings of
words, phrases, sentences, and documents, using mathematical expressions. In existing neural net-
work models in natural language processing, the overall systems are pipelined; that is, the overall sys-
tems consist of several sub-processes such as pre-processing (e.g., word segmentation and syntactic
parsing). Moreover, each task is often handled separately, which leads to the absence of task-oriented
information in lower-layer tasks, and to error propagations throughout the overall systems. In this
dissertation, I propose joint learning methods to incorporate task-oriented information into represen-
tation learning for natural language processing. In experiments, I empirically show that learning task-
oriented word embeddings, learning task-oriented semantic compositionality of phrases, and learning
latent graph structures for sentences by a joint many-task model are all effective in improving accu-
racy on corresponding target tasks. I believe that the proposals in this dissertation have the promising
potential to break the limitations in the existing pipelined natural language processing tasks.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

Natural Language Processing (NLP) is a research area to make computers intelligently handle nat-
ural languages, such as Japanese and English. Recently statistical machine learning methods have
been actively studied for tackling a variety of NLP tasks, according to the rapid increase of compu-
tational powers and the exponentially increasing text data in the Web. In particular, neural networks
have become one of the most essential components in many NLP studies. Neural networks not only
improve state-of-the-art accuracy on various kinds of NLP tasks, but also drastically change existing
approaches. One typical example is Statistical Machine Translation (SMT); by neural networks, sep-
arately developed SMT components can be jointly modeled to train end-to-end single model which
translates one language to another [Sutskever et al., 2014; Bahdanau et al., 2015].

Most of the neural network models in NLP assume that each word is represented with a real valued
fixed-length vector, called word embedding [Bengio et al., 2003; Collobert et al., 2011; Mikolov et
al., 2013b]. Word embeddings allow one to define similarity metrics for word meanings. Moreover,
larger language units such as sentences and paragraphs can also be represented in a vector space. In
particular, such sentence representations have been actively studied, including simple element-wise
operations [Mitchell and Lapata, 2008], syntactic structure-based recursive neural networks [Socher
et al., 2011a; Socher et al., 2012; Tai et al., 2015], and chain structure-based recurrent neural net-
works [Hochreiter and Schmidhuber, 1997]. The word embeddings and their composition functions
to the compute sentence representations are parameterized in neural network models, and they are

1



1.2 Proposals Chapter 1 Introduction

learned in either supervised or unsupervised fashion. In supervised settings, human-annotated data is
used in a variety of NLP tasks, such as machine translation and sentiment analysis. In unsupervised
settings1, large text corpora are used to model co-occurrence statistics of words [Firth, 1957; Mikolov
et al., 2013b] and phrases [Hashimoto et al., 2014] for good feature extractors.

There are several assumptions in the above-mentioned representation learning methods. For ex-
ample, co-occurrence-based vector representations capture general word and phrase similarities, and
then they can be used in downstream tasks by fine-tuning the pre-trained parameters (or just by us-
ing the pre-trained parameters). Therefore, the pre-trained representations are not conditioned on any
specific tasks. Another examples is the use of syntactic structures. Syntactic parsing is one of the
most essential tasks in NLP and has been studied for a long time, and recently syntactic structures
have proven to be effective in various kinds of neural NLP models [Eriguchi et al., 2016b; Eriguchi
et al., 2017; Miwa and Bansal, 2016; Socher et al., 2011a; Socher et al., 2012; Tai et al., 2015]. The
syntactic neural models rely on existing syntactic parsers either at training or test time. However, such
syntactic parsers are trained by using human-annotated treebanks based on human-defined grammars,
and thus it is not clear that relying on the existing parsers is the best option to improve accuracy on
downstream NLP tasks. Moreover, the parsers would incorrectly parse input sentences in different
domains because the parsers are usually trained with human-annotated data in one specific domain,
such as news.

Such assumptions lead to constructing pipelined systems, where overall processes are split into
several phases. So far we have commonly used the pipelined systems, but we can go beyond the
pipelined systems by using recently developed sophisticated neural network models. For example,
neural networks allow one to jointly handle multiple NLP tasks in a single model [Collobert et al.,
2011] and moreover muti-modal data such as natural languages and images [Socher et al., 2014].
To improve upon the dominant pipelined approaches, I explore the ways to incorporate task-oriented
information into representation learning methods in joint learning manners.

1.2 Proposals

In this dissertation, I propose several joint learning methods to incorporate task-oriented information
into word and sentence representations. In particular, the applications are listed as follows:

1Human-written text is used as supervision, and in that sense, this can also be considered as supervised learning.

2



1.2 Proposals Chapter 1 Introduction

• learning task-oriented word embeddings,

• learning task-oriented semantic compositionality,

• learning a joint many-task model,

• learning task-oriented dependency graph structures.

Learning task-oriented word embeddings I propose a word embedding learning method which ex-
plicitly incorporates task-oriented features for relation extraction tasks. Standard word em-
beddings are learned with large text corpora by modeling word co-occurrence statistics. By
contrast, my proposal incorporates classical feature representations for relation extraction in
learning word embeddings to better capture task-oriented information from large text corpora.

Learning task-oriented semantic compositionality I propose a representation learning method for
phrases by jointly learning task-oriented semantic compositionality detection model. There ex-
ist semantically compositional and non-compositional phrases, but it is challenging to manually
define their compositionality levels. My proposal automatically detects the compositionality
level for each phrase to better represent the meaning of each phrase by using both compo-
sitional and non-compositional representations. The overall model is optimized according to
target tasks.

Learning a joint many-task model I propose a joint many-task model which handles five different
NLP tasks in a single hierarchical neural network model. The hierarchical model starts from
simple tasks and then gradually moves to more complex tasks, enabling interactions between
different levels of NLP tasks. This hierarchical model leads to my next proposal to break the
limitations of standard pipelined systems using syntactic structures.

Learning task-oriented dependency graph structures Finally, I propose a joint learning method
to learn task-oriented dependency graph structures. In standard pipelined systems, syntactic
structures are given by existing syntactic parsers. By contrast, my proposal allows one to learn
dependency parsers which are optimized according to a specific task. Therefore, the proposed
method can induce novel sentence structures which are different from human-defined grammars.

3



1.3 Contributions Chapter 1 Introduction

1.3 Contributions

The contributions of my proposals are summarized as follows:

Showing the importance of task-oriented pre-training Most of the existing approaches to pre-training
word embeddings are solely based on language modeling (i.e., co-occurrence statistics). By
showing the importance of incorporating task-specific information into the pre-training pro-
cesses with large text corpora, my proposal encourages researchers to tackle the challenging but
promising direction of more effectively using unannotated web-scale text data.

Showing the importance of semantic compositionality detection Existing approaches to represent-
ing meanings of words and phrases rely on pre-defined language units in pipelined manners. By
showing the importance of learning compositionality of phrases in a task-oriented manner, my
proposal encourages researchers to develop more effective methods than just compositionally
treating sequences (or structures) of tokens.

Showing the importance of jointly modeling different tasks in a single model Many NLP tasks are
related to each other, although most of the times they are separately handled in complex neural
network models. By showing the effective hierarchical deep structures for efficiently handling
multiple NLP tasks, my proposal encourages researchers to explore this research direction to
better handle multiple NLP tasks by allowing them to interact with each other in a single model.
Moreover, the proposed joint many-task model leads to my next proposal which has the poten-
tial to break the limitations in pipelined NLP systems.

Showing the possibility of breaking the limitations of pipelined systems The use of syntactic struc-
tures obtained by external syntactic parsers is a typical and crucial example in many pipelined
NLP systems. By showing the effectiveness of learning latent structures inherent in natural lan-
guage sentences in a task-oriented manner, my proposal encourages researchers to tackle the
long-term challenge in NLP to break the limitations existing in many pipelined NLP systems.

1.4 Structure of this Dissertation

The remaining part of this dissertation is structured as follows:

4



1.4 Structure of this Dissertation Chapter 1 Introduction

Chapter 2 First, I describe how neural networks are used in NLP, which leads to the proposals in this
dissertation.

Chapter 3 I present a method to learn task-oriented word embeddings specifically designed for rela-
tion extraction tasks.

Chapter 4 I present a method to automatically and softly determine which phrases are compositional
or non-compositional, by jointly learning a compositionality detection model in a task-oriented
manner.

Chapter 5 I present a method to learn task-oriented latent structures inherent in natural language
sentences, for machine translation.

Chapter 6 Finally, I summarize this dissertation and discuss future directions.

5
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Chapter 2

Neural Networks for
Natural Language Processing

This chapter briefly introduces basics of “neural networks for NLP” and how the proposals in this
dissertation are motivated by existing work. Several sample codes can be found at my public repos-
itories: https://github.com/hassyGo. Basics of neural networks are well summarized in
Goodfellow et al. (2016).

2.1 Word Embeddings

In the field of NLP, one of the most important units of language meanings is a word. Therefore
researchers have worked on how to effectively represent word meanings in computers. In recent work,
one dominant approach is embedding each word in a high-dimensional vector space [Bengio et al.,
2003; Collobert et al., 2011; Mikolov et al., 2013b; Pennington et al., 2014]; therefore, such vectors
representing the words are called word embeddings. For the word embeddings, a word embedding
matrix is parameterized as

We ∈ Rd×|V |, (2.1)

where d is the dimensionality of the embedding vectors, and V is a vocabulary including all the
words used in a neural network model. For the i-th word wi in the vocabulary, its word embedding

6
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v(wi) ∈ Rd is computed as follows:

v(wi) = We[0, 0, . . . , 0, 0, 1, 0, 0, . . . , 0], (2.2)

where the rightmost vector is so-called a one-hot vector for the i-th word. This computation is thus
very sparse, and in practice we can just lookup the i-th column vector in We when implementing the
word embeddings. The word embedding matrix is initialized with random values and then automati-
cally tuned by error backpropagation with respect to a loss function L for specific tasks:

∂L

∂We
, (2.3)

or we can also write this equation for each word embedding used in a parameter update step:

∂L

∂v(wi)
. (2.4)

For example, such tasks include word co-occurrence statistics modeling [Collobert et al., 2011; Mikolov
et al., 2013b; Pennington et al., 2014], syntactic parsing [Socher et al., 2013; Stenetorp, 2013], ma-
chine translation [Sutskever et al., 2014], and many other NLP tasks.

2.1.1 Learning with Co-Occurrence Statistics

One major approach to learning the word embeddings is the use of large text corpora for modeling
co-occurrence statistics of words, following the distributional hypothesis [Firth, 1957]. For example,
text extracted from Wikipedia is widely used to learn the word embeddings. By using such text
data, we can use millions or billions of sentences for training. There exist several ways to model the
co-occurrence statistics, and one of the most widely-used methods is called Skipgram [Mikolov et
al., 2013a; Mikolov et al., 2013b].1 The idea of Skipgram is defining a word prediction task where
context words are predicted for each word in a text corpus. In probabilistic language modeling, the
task is predicting words given their context words, and previous methods also followed the language
modeling ideas [Bengio et al., 2003; Collobert et al., 2011].

For each word w and its context word w, the task is maximizing the probability p(w|w), and the
loss function is defined as follows:

L(w,w) = − log p(w|w), (2.5)
1The Skipgram method is described just as an example here.
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and the negative log-likelihood is one of the most used loss functions. Using the word embedding
matrix We and another matrix W̃e of the same size, p(w|w) is computed as follows:

p(w|w) = exp (v(w) · ṽ(w))∑|V |
i=1 exp (v(w) · ṽ(wi))

, (2.6)

where the function is called softmax. That is, this is just a multi-class classification task with |V |
classes; however, obviously, the computational cost is very large when the vocabulary size is huge
(e.g., |V | = 100, 000). Assuming that what we need is not the precise probability value, but the
learned embedding matrix, Mikolov et al. (2013b) proposed a very simple and fast method by avoiding
the exact softmax computations by a negative sampling technique:

L(w,w) = − log σ(v(w) · ṽ(w))−
N∑
i=1

log σ(−v(w) · ṽ(wi)), (2.7)

where
σ(x) =

1

1 + exp(−x)
(2.8)

is the logistic sigmoid function, and N ≪ |V | is the number of negative samples for each observed
word. This loss function is similar to that of k-versus-rest multi-class classification.

The learned word embeddings capture general semantic or syntactic similarities between words,
based on their usage in the training corpora. That is, not only synonym pairs, but also antonym pairs
could be close to each other in the learned vector space. However, such word similarities should be
downstream task-dependent; for example, in sentiment analysis, we do not want “good” and “bad” to
be close to each other, but in the case of syntactic parsing, they can be close in terms of their syntactic
roles. It should be thus useful if we can incorporate more task-oriented information for specific target
tasks into the embedding learning process.

2.1.2 Learning with Human-Annotated Data

The co-occurrence-based word embeddings are widely used to initialize word embedding matrices
in neural network models for many other tasks. For example, Ramachandran et al. (2017) have
shown that pre-training model parameters by large scale language modeling is effective in improv-
ing sequence-to-sequence learning models. By the pre-training and fine-tuning techniques, we can
incorporate task-oriented information into the word embeddings. However, for almost all of the NLP
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tasks, the human-annotated data is limited and very expensive to construct. It is thus promising to
explore the ways to effectively incorporate task-oriented information at the pre-training step with the
large text data.

2.2 Phrase and Sentence Embeddings

Once we obtain the word representations, we also want to represent meanings of larger units, such as
phrases and sentences. Modeling paragraph or document representations is also crucial in NLP, but
here I focus on phrases and sentences.

2.2.1 Word Sequences

One recent dominant approach is to represent each phrase or sentence as a sequence of words, as typ-
ically and successfully used in sequence-to-sequence models [Sutskever et al., 2014]. Much smaller
units, such as characters or sub-words, can also be used [Sennrich et al., 2016; Luong and Manning,
2016]. Another approach is to treat some phrases as single tokens (just like words) and to directly
learn their embeddings [Mikolov et al., 2013b]. In any ways, the base units are pre-defined in pre-
processing steps, and thus the overall processes are pipelined. In the pipelined systems, there is no
reason why a specific pre-processing step is the best option for downstream tasks.

2.2.2 Syntactic Structures

Another line of learning phrase or sentence representations is using syntactic structures obtained by
external syntactic parsers [Socher et al., 2011a; Socher et al., 2012; Socher et al., 2014]. In my pre-
vious work, it has been shown that phrase embeddings as well as word embeddings can be leaned by
modeling “co-occurrence statistics of words and phrases” [Hashimoto et al., 2014]. In recently devel-
oped neural machine translation models which are mainly based on sequence-to-sequence learning, it
has been shown that incorporating syntactic structures, such as constituency or dependency trees, is
effective in improving translation accuracy [Eriguchi et al., 2016b; Eriguchi et al., 2017]. Like this, it
is still worth investigating how to effectively use structures inherent in natural language sentences, al-
though the sequence-to-sequence approaches are simpler and achieve state-of-the-art scores on many
benchmark datasets.
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However, again, the use of external parsers leads to constructing pipelined systems, where parsing
errors are propagated throughout the systems. The overall accuracy would depend on the accuracy of
the parsers, and it is not obvious that using the existing syntactic parsers trained with human-annotated
treebanks is the best option for the downstream tasks. Therefore, it is a promising direction to explore
the ways to learn task-oriented structures inherent in the sentences.
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Chapter 3

Task-Oriented Learning of
Word Embeddings

In this chapter, I describe a method for learning word embeddings where task-oriented feature repre-
sentations for relation extraction are incorporated, by using large text corpora. Most of the existing
word embedding learning methods use large text corpora to model co-occurrence statistics of words
(or phrases). By contrast, this chapter presents how to incorporate task-specific information into the
co-occurrence-based learning methods. This chapter corresponds to the following published paper:

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka. 2015. Task-Oriented
Learning of Word Embeddings for Semantic Relation Classification. In Proceedings of the
Nineteenth Conference on Computational Natural Language Learning, pp. 268–278.

Summary We present a novel learning method for word embeddings designed for relation clas-
sification. Our word embeddings are trained by predicting words between noun pairs using lexi-
cal relation-specific features on a large unlabeled corpus. This allows us to explicitly incorporate
relation-specific information into the word embeddings. The learned word embeddings are then used
to construct feature vectors for a relation classification model. On a well-established semantic relation
classification task, our method significantly outperforms a baseline based on a previously introduced
word embedding method, and compares favorably to previous state-of-the-art models that use syntac-
tic information or manually constructed external resources.
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Figure 3.1: The overview of our system (a) and the embedding learning method (b). In the example
sentence, each of are, caused, and by is treated as a target word to be predicted during training.

3.1 Introduction

Automatic classification of semantic relations has a variety of applications, such as information ex-
traction and the construction of semantic networks [Girju et al., 2007; Hendrickx et al., 2010]. A tradi-
tional approach to relation classification is to train classifiers using various kinds of features with class
labels annotated by humans. Carefully crafted features derived from lexical, syntactic, and semantic
resources play a significant role in achieving high accuracy for semantic relation classification [Rink
and Harabagiu, 2010].

In recent years there has been an increasing interest in using word embeddings as an alternative to
traditional hand-crafted features. Word embeddings are represented as real-valued vectors and capture
syntactic and semantic similarity between words. For example, word2vec1 [Mikolov et al., 2013b] is
a well-established tool for learning word embeddings. Although word2vec has successfully been used
to learn word embeddings, these kinds of word embeddings capture only co-occurrence relationships
between words [Levy and Goldberg, 2014a]. While simply adding word embeddings trained using
window-based contexts as additional features to existing systems has proven valuable [Turian et al.,
2010], more recent studies have focused on how to tune and enhance word embeddings for specific

1https://code.google.com/p/word2vec/.
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tasks [Bansal et al., 2014; Boros et al., 2014; Chen et al., 2014; Guo et al., 2014; Nguyen and Grish-
man, 2014] and we continue this line of research for the task of relation classification.

In this work we present a learning method for word embeddings specifically designed to be useful
for relation classification. The overview of our system and the embedding learning process are shown
in Figure 3.1. First we train word embeddings by predicting each of the words between noun pairs
using lexical relation-specific features on a large unlabeled corpus. We then use the word embeddings
to construct lexical feature vectors for relation classification. Lastly, the feature vectors are used to
train a relation classification model.

We evaluate our method on a well-established semantic relation classification task and compare it
to a baseline based on word2vec embeddings and previous state-of-the-art models that rely on either
manually crafted features, syntactic parses or external semantic resources. Our method significantly
outperforms the word2vec-based baseline, and compares favorably with previous state-of-the-art mod-
els, despite relying only on lexical level features and no external annotated resources. Furthermore,
our qualitative analysis of the learned embeddings shows that n-grams of our embeddings capture
salient syntactic patterns similar to semantic relation types.

3.2 Related Work

A traditional approach to relation classification is to train classifiers in a supervised fashion using
a variety of features. These features include lexical bag-of-words features and features based on
syntactic parse trees. For syntactic parse trees, the paths between the target entities on constituency
and dependency trees have been demonstrated to be useful [Bunescu and Mooney, 2005; Zhang et al.,
2006]. On the shared task introduced by Hendrickx et al. (2010), Rink and Harabagiu (2010) achieved
the best score using a variety of hand-crafted features which were then used to train a Support Vector
Machine (SVM).

Recently, word embeddings have become popular as an alternative to hand-crafted features [Col-
lobert et al., 2011]. However, one of the limitations is that word embeddings are usually learned by
predicting a target word in its context, leading to only local co-occurrence information being cap-
tured [Levy and Goldberg, 2014a]. Thus, several recent studies have focused on overcoming this
limitation. Le and Mikolov (2014) integrated paragraph information into a word2vec-based model,
which allowed them to capture paragraph-level information. For dependency parsing, Bansal et al.
(2014) and Chen et al. (2014) found ways to improve performance by integrating dependency-based
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context information into their embeddings. Bansal et al. (2014) trained embeddings by defining parent
and child nodes in dependency trees as contexts. Chen et al. (2014) introduced the concept of fea-
ture embeddings induced by parsing a large unannotated corpus and then learning embeddings for the
manually crafted features. For information extraction, Boros et al. (2014) trained word embeddings
relevant for event role extraction, and Nguyen and Grishman (2014) employed word embeddings for
domain adaptation of relation extraction. Another kind of task-specific word embeddings was pro-
posed by Tang et al. (2014), which used sentiment labels on tweets to adapt word embeddings for a
sentiment analysis tasks. However, such an approach is only feasible when a large amount of labeled
data is available.

3.3 Relation Classification Using Word Embedding-based Features

We propose a novel method for learning word embeddings designed for relation classification. The
word embeddings are trained by predicting each word between noun pairs, given the corresponding
low-level features for relation classification. In general, to classify relations between pairs of nouns
the most important features come from the pairs themselves and the words between and around the
pairs [Hendrickx et al., 2010]. For example, in the sentence in Figure 3.1 (b) there is a cause-effect
relationship between the two nouns conflicts and players. To classify the relation, the most common
features are the noun pair (conflicts, players), the words between the noun pair (are, caused, by), the
words before the pair (the, external), and the words after the pair (playing, tiles, to, ...). As shown
by Rink and Harabagiu (2010), the words between the noun pairs are the most effective among these
features. Our main idea is to treat the most important features (the words between the noun pairs)
as the targets to be predicted and other lexical features (noun pairs, words outside them) as their
contexts. Due to this, we expect our embeddings to capture relevant features for relation classification
better than previous models which only use window-based contexts.

In this section we first describe the learning process for the word embeddings, focusing on lexical
features for relation classification (Figure 3.1 (b)). We then propose a simple and powerful technique
to construct features which serve as input for a softmax classifier. The overview of our proposed
system is shown in Figure 3.1 (a).
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3.3.1 Learning Word Embeddings

Assume that there is a noun pair n = (n1, n2) in a sentence with Min words between the pair and
Mout words before and after the pair:

• win = (win
1 , . . . , win

Min
) ,

• wbef = (wbef
1 , . . . , wbef

Mout
) , and

• waft = (waft
1 , . . . , waft

Mout
) .

Our method predicts each target word win
i ∈ win using three kinds of information: n, words around

win
i in win, and words in wbef and waft. Words are embedded in a d-dimensional vector space and

we refer to these vectors as word embeddings. To discriminate between words in n from those in win,
wbef , and waft, we have two sets of word embeddings: N ∈ Rd×|N| and W ∈ Rd×|W|. W is a
set of words and N is also a set of words but contains only nouns. Hence, the word cause has two
embeddings: one in N and another in W. In general cause is used as a noun and a verb, and thus we
expect the noun embeddings to capture the meanings focusing on their noun usage. This is inspired
by some recent work on word representations that explicitly assigns an independent representation for
each word usage according to its part-of-speech tag [Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011; Hashimoto et al., 2013; Hashimoto et al., 2014; Kartsaklis and Sadrzadeh, 2013].

A feature vector f ∈ R2d(2+c)×1 is constructed to predict win
i by concatenating word embeddings:

f = [N(n1);N(n2);W(win
i−1); . . . ;W(win

i−c);

W(win
i+1); . . . ;W(win

i+c);

1

Mout

Mout∑
j=1

W(wbef
j );

1

Mout

Mout∑
j=1

W(waft
j )] .

(3.1)

N(·) and W(·) ∈ Rd×1 corresponds to each word and c is the context size. A special NULL token is
used if i− j is smaller than 1 or i+ j is larger than Min for each j ∈ {1, 2, . . . , c}.

Our method then estimates a conditional probability p(w|f) that the target word is a word w given
the feature vector f , using a logistic regression model:

p(w|f) = σ(W̃(w) · f + b(w)) , (3.2)
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where W̃(w) ∈ R2d(2+c)×1 is a weight vector for w, b(w) ∈ R is a bias for w, and σ(x) = 1
1+e−x

is the logistic function. Each column vector in W̃ ∈ R2d(c+1)×|W| corresponds to a word. That is,
we assign a logistic regression model for each word, and we can train the embeddings using the one-
versus-rest approach to make p(win

i |f) larger than p(w′|f) for w′ ̸= win
i . However, naively optimizing

the parameters of those logistic regression models would lead to prohibitive computational cost since
it grows linearly with the size of the vocabulary.

When training we employ several procedures introduced by Mikolov et al. (2013b), namely, neg-
ative sampling, a modified unigram noise distribution and subsampling. For negative sampling the
model parameters N, W, W̃, and b are learned by maximizing the objective function Junlabeled:

∑
n

Min∑
i=1

log(p(win
i |f)) +

k∑
j=1

log(1− p(w′
j |f))

 , (3.3)

where w′
j is a word randomly drawn from the unigram noise distribution weighted by an exponent of

0.75. Maximizing Junlabeled means that our method can discriminate between each target word and
k noise words given the target word’s context. This approach is much less computationally expensive
than the one-versus-rest approach and has proven effective in learning word embeddings.

To reduce redundancy during training we use subsampling. A training sample, whose target word
is w, is discarded with the probability Pd(w) = 1 −

√
t

p(w) , where t is a threshold which is set to

10−5 and p(w) is a probability corresponding to the frequency of w in the training corpus. The more
frequent a target word is, the more likely it is to be discarded. To further emphasize infrequent words,
we apply the subsampling approach not only to target words, but also to noun pairs; concretely, by
drawing two random numbers r1 and r2, a training sample whose noun pair is (n1, n2) is discarded if
Pd(n1) is larger than r1 or Pd(n2) is larger than r2.

Since the feature vector f is constructed as defined in Eq. (3.1), at each training step, W̃(w) is
updated based on information about what pair of nouns surrounds w, what word n-grams appear in
a small window around w, and what words appear outside the noun pair. Hence, the weight vector
W̃(w) captures rich information regarding the target word w.

3.3.2 Constructing Feature Vectors

Once the word embeddings are trained, we can use them for relation classification. Given a noun pair
n = (n1, n2) with its context words win, wbef , and waft, we construct a feature vector to classify the
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relation between n1 and n2 by concatenating three kinds of feature vectors:

gn the word embeddings of the noun pair,

gin the averaged n-gram embeddings between the pair, and

gout the concatenation of the averaged word embeddings in wbef and waft.

The feature vector gn ∈ R2d×1 is the concatenation of N(n1) and N(n2):

gn = [N(n1);N(n2)] . (3.4)

Words between the noun pair contribute to classifying the relation, and one of the most common
ways to incorporate an arbitrary number of words is treating them as a bag of words. However, word
order information is lost for bag-of-words features such as averaged word embeddings. To incorporate
the word order information, we first define n-gram embeddings hi ∈ R4d(1+c)×1 between the noun
pair:

hi = [W(win
i−1); . . . ;W(win

i−c);

W(win
i+1); . . . ;W(win

i+c);W̃(win
i )] .

(3.5)

Note that W̃ can also be used and that the value used for n is (2c+1). As described in Section 3.3.1,
W̃ captures meaningful information about each word and after the first embedding learning step
we can treat the embeddings in W̃ as features for the words. Mnih and Kavukcuoglu (2013) have
demonstrated that using embeddings like those in W̃ is useful in representing the words. We then
compute the feature vector gin by averaging hi:

gin =
1

Min

Min∑
i=1

hi . (3.6)

We use the averaging approach since Min depends on each instance. The feature vector gin allows
us to represent word sequences of arbitrary lengths as fixed-length feature vectors using the simple
operations: concatenation and averaging.

The words before and after the noun pair are sometimes important in classifying the relation. For
example, in the phrase “pour n1 into n2”, the word pour should be helpful in classifying the relation.
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As with Eq. (3.1), we use the concatenation of the averaged word embeddings of words before and
after the noun pair to compute the feature vector gout ∈ R2d×1:

gout =
1

Mout
[

Mout∑
j=1

W(wbef
j );

Mout∑
j=1

W(waft
j )] . (3.7)

As described above, the overall feature vector e ∈ R4d(2+c)×1 is constructed by concatenating
gn, gin, and gout. We would like to emphasize that we only use simple operations: averaging and
concatenating the learned word embeddings. The feature vector e is then used as input for a softmax
classifier, without any complex transformation such as matrix multiplication with non-linear functions.

3.3.3 Supervised Learning

Given a relation classification task we train a softmax classifier using the feature vector e described in
Section 3.3.2. For each k-th training sample with a corresponding label lk among L predefined labels,
we compute a conditional probability given its feature vector ek:

p(lk|ek) =
exp(o(lk))∑L
i=1 exp(o(i))

, (3.8)

where o ∈ RL×1 is defined as o = Sek + s, and S ∈ RL×4d(2+c) and s ∈ RL×1 are the softmax
parameters. o(i) is the i-th element of o. We then define the objective function as:

Jlabeled =
K∑
k=1

log(p(lk|ek))−
λ

2
∥θ∥2 . (3.9)

K is the number of training samples and λ controls the L-2 regularization. θ = (N,W,W̃,S, s) is
the set of parameters and Jlabeled is maximized using AdaGrad [Duchi et al., 2011]. We have found
that dropout [Hinton et al., 2012a] is helpful in preventing our model from overfitting. Concretely,
elements in e are randomly omitted with a probability of 0.5 at each training step. Recently dropout
has been applied to deep neural network models for natural language processing tasks and proven
effective [Irsoy and Cardie, 2014; Paulus et al., 2014].

In what follows, we refer to the above method as RelEmb. While RelEmb uses only low-level
features, a variety of useful features have been proposed for relation classification. Among them,
we use dependency path features [Bunescu and Mooney, 2005] based on the untyped binary depen-
dencies of the Stanford parser to find the shortest path between target nouns. The dependency path
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features are computed by averaging word embeddings from W on the shortest path, and are then con-
catenated to the feature vector e. Furthermore, we directly incorporate semantic information using
word-level semantic features from Named Entity (NE) tags and WordNet hypernyms, as used in pre-
vious work [Rink and Harabagiu, 2010; Socher et al., 2012; Yu et al., 2014]. We refer to this extended
method as RelEmbFULL. Concretely, RelEmbFULL uses the same binary features as in Socher et al.
(2012). The features come from NE tags and WordNet hypernym tags of target nouns provided by a
sense tagger [Ciaramita and Altun, 2006].

3.4 Experimental Settings

3.4.1 Training Data

For pre-training we used a snapshot of the English Wikipedia2 from November 2013. First, we ex-
tracted 80 million sentences from the original Wikipedia file, and then used Enju3 [Miyao and Tsujii,
2008] to automatically assign part-of-speech (POS) tags. From the POS tags we used NN, NNS, NNP,
or NNPS to locate noun pairs in the corpus. We then collected training data by listing pairs of nouns
and the words between, before, and after the noun pairs. A noun pair was omitted if the number of
words between the pair was larger than 10 and we consequently collected 1.4 billion pairs of nouns
and their contexts 4. We used the 300,000 most frequent words and the 300,000 most frequent nouns
and treated out-of-vocabulary words as a special UNK token.

3.4.2 Initialization and Optimization

We initialized the embedding matrices N and W with zero-mean gaussian noise with a variance of 1
d .

W̃ and b were zero-initialized. The model parameters were optimized by maximizing the objective
function in Eq. (3.3) using stochastic gradient ascent. The learning rate was set to α and linearly
decreased to 0 during training, as described in Mikolov et al. (2013a). The hyperparameters are the
embedding dimensionality d, the context size c, the number of negative samples k, the initial learning

2http://dumps.wikimedia.org/enwiki/.
3Despite Enju being a syntactic parser we only use the POS tagger component. The accuracy of the POS tagger is about

97.2% on the WSJ corpus.
4The training data, the training code, and the learned model parameters used in this paper are publicly available at

http://www.logos.t.u-tokyo.ac.jp/˜hassy/publications/conll2015/
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rate α, and Mout, the number of words outside the noun pairs. For hyperparameter tuning, we first
fixed α to 0.025 and Mout to 5, and then set d to {50, 100, 300}, c to {1, 2, 3}, and k to {5, 15, 25}.

At the supervised learning step, we initialized S and s with zeros. The hyperparameters, the
learning rate for AdaGrad, λ, Mout, and the number of iterations, were determined via 10-fold cross
validation on the training set for each setting. Note that Mout can be tuned at the supervised learning
step, adapting to a specific dataset.

3.5 Evaluation

3.5.1 Evaluation Dataset

We evaluated our method on the SemEval 2010 Task 8 data set5 [Hendrickx et al., 2010], which
involves predicting the semantic relations between noun pairs in their contexts. The dataset, containing
8,000 training and 2,717 test samples, defines nine classes (Cause-Effect, Entity-Origin, etc.) for
ordered relations and one class (Other) for other relations. Thus, the task can be treated as a 19-class
classification task. Two examples from the training set are shown below.

(a) Financial [stress]E1 is one of the main causes of [divorce]E2

(b) The [burst]E1 has been caused by water hammer [pressure]E2

Training example (a) is classified as Cause-Effect(E1, E2) which denotes that E2 is an effect caused
by E1, while training example (b) is classified as Cause-Effect(E2, E1) which is the inverse of Cause-
Effect(E1, E2). We report the official macro-averaged F1 scores and accuracy.

3.5.2 Models

To empirically investigate the performance of our proposed method we compared it to several base-
lines and previously proposed models.

3.5.2.1 Random and word2vec Initialization

Rand-Init. The first baseline is RelEmb itself, but without applying the learning method on the
unlabeled corpus. In other words, we train the softmax classifier from Section 3.3.3 on the labeled

5http://docs.google.com/View?docid=dfvxd49s_36c28v9pmw.
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training data with randomly initialized model parameters.

W2V-Init. The second baseline is RelEmb using word embeddings learned by word2vec. More
specifically, we initialize the embedding matrices N and W with the word2vec embeddings. Related
to our method, word2vec has a set of weight vectors similar to W̃ when trained with negative sampling
and we use these weight vectors as a replacement for W̃. We trained the word2vec embeddings using
the CBOW model with subsampling on the full Wikipedia corpus. As with our experimental settings,
we fix the learning rate to 0.025, and investigate several hyperparameter settings. For hyperparameter
tuning we set the embedding dimensionality d to {50, 100, 300}, the context size c to {1, 3, 9}, and
the number of negative samples k to {5, 15, 25}.

3.5.2.2 SVM-Based Systems

A simple approach to the relation classification task is to use SVMs with standard binary bag-of-words
features. The bag-of-words features included the noun pairs and words between, before, and after the
pairs, and we used LIBLINEAR6 as our classifier.

3.5.2.3 Neural Network Models

Socher et al. (2012) used Recursive Neural Network (RNN) models to classify the relations. Subse-
quently, Ebrahimi and Dou (2015) and Hashimoto et al. (2013) proposed RNN models to better handle
the relations. These methods rely on syntactic parse trees.

Yu et al. (2014) introduced their novel Factor-based Compositional Model (FCM) and presented
results from several model variants, the best performing being FCMEMB and FCMFULL. The former
only uses word embedding information and the latter relies on dependency paths and NE features, in
addition to word embeddings.

Zeng et al. (2014) used a Convolutional Neural Network (CNN) with WordNet hypernyms. Note-
worthy in relation to the RNN-based methods, the CNN model does not rely on parse trees. More re-
cently, dos Santos et al. (2015) have introduced CR-CNN by extending the CNN model and achieved
the best result to date. The key point of CR-CNN is that it improves the classification score by omit-
ting the noisy class “Other” in the dataset described in Section 3.5.1. We call CR-CNN using the
“Other” class CR-CNNOther and CR-CNN omitting the class CR-CNNBest.

6http://www.csie.ntu.edu.tw/˜cjlin/liblinear/.
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Features for classifiers F1 / ACC (%)

RelEmbFULL embeddings, dependency paths, WordNet, NE 83.5 / 79.9
RelEmb embeddings 82.8 / 78.9
RelEmb (W2V-Init) embeddings 81.8 / 77.7
RelEmb (Rand-Init) embeddings 78.2 / 73.5
SVM bag of words 76.5 / 72.0
SVM bag of words, POS, dependency paths, WordNet,

82.2 / 77.9
[Rink and Harabagiu, 2010] paraphrases, TextRunner, Google n-grams, etc.
CR-CNNBest [dos Santos et al., 2015] embeddings, word position embeddings 84.1 / n/a
FCMFULL [Yu et al., 2014] embeddings, dependency paths, NE 83.0 / n/a
CR-CNNOther [dos Santos et al., 2015] embeddings, word position embeddings 82.7 / n/a
CRNN [Ebrahimi and Dou, 2015] embeddings, parse trees, WordNet, NE, POS 82.7 / n/a
CNN [Zeng et al., 2014] embeddings, WordNet 82.7 / n/a
MVRNN [Socher et al., 2012] embeddings, parse trees, WordNet, NE, POS 82.4 / n/a
FCMEMB [Yu et al., 2014] embeddings 80.6 / n/a
RNN [Hashimoto et al., 2013] embeddings, parse trees, phrase categories, etc. 79.4 / n/a

Table 3.1: Scores on the test set for SemEval 2010 Task 8.

3.5.3 Results and Discussion

The scores on the test set for SemEval 2010 Task 8 are shown in Table 3.1. RelEmb achieves 82.8%
of F1 which is better than those of almost all models compared and comparable to that of the previous
state of the art, except for CR-CNNBest. Note that RelEmb does not rely on external semantic features
and syntactic parse features7. Furthermore, RelEmbFULL achieves 83.5% of F1. We calculated a
confidence interval (82.0, 84.9) (p < 0.05) using bootstrap resampling [Noreen, 1989].

3.5.3.1 Comparison with the Baselines

RelEmb significantly outperforms not only the Rand-Init baseline, but also the W2V-Init baseline.
These results show that our task-specific word embeddings are more useful than those trained using
window-based contexts. A point that we would like to emphasize is that the baselines are unexpectedly

7While we use a POS tagger to locate noun pairs, RelEmb does not explicitly use POS features at the supervised learning
step.
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strong. As was noted by Wang and Manning (2012), we should carefully implement strong baselines
and see whether complex models can outperform these baselines.

3.5.3.2 Comparison with SVM-Based Systems

RelEmb performs much better than the bag-of-words-based SVM. This is not surprising given that
we use a large unannotated corpus and embeddings with a large number of parameters. RelEmb also
outperforms the SVM system of Rink and Harabagiu (2010), which demonstrates the effectiveness
of our task-specific word embeddings, despite our only requirement being a large unannotated corpus
and a POS tagger.

3.5.3.3 Comparison with Neural Network Models

RelEmb outperforms the RNN models. In our preliminary experiments, we have found some unde-
sirable parse trees when computing vector representations using RNN-based models and such parsing
errors might hamper the performance of the RNN models.

FCMFULL, which relies on dependency paths and NE features, achieves a better score than that of
RElEmb. Without such features, RelEmb outperforms FCMEMB by a large margin. By incorporating
external resources, RelEmbFULL outperforms FCMFULL.

RelEmb compares favorably to CR-CNNOther, despite our method being less computationally ex-
pensive than CR-CNNOther. When classifying an instance, the number of the floating number multi-
plications is 4d(2+c)L in our method since our method requires only one matrix-vector product for the
softmax classifier as described in Section 3.3.3. c is the window size, d is the word embedding dimen-
sionality, and L is the number of the classes. In CR-CNNOther, the number is (Dc(d+2d′)N +DL),
where D is the dimensionality of the convolution layer, d′ is the position embedding dimensionality,
and N is the average length of the input sentences. Here, we omit the cost of the hyperbolic tan-
gent function in CR-CNNOther for simplicity. Using the best hyperparameter settings, the number is
roughly 3.8× 104 in our method, and 1.6× 107 in CR-CNNOther assuming N is 10. dos Santos et al.
(2015) also boosted the score of CR-CNNOther by omitting the noisy class “Other” by a ranking-based
classifier, and achieved the best score (CR-CNNBest). Our results may also be improved by using the
same technique, but the technique is dataset-dependent, so we did not incorporate the technique.
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c d k = 5 k = 15 k = 25

1
50 80.5 81.0 80.9

100 80.9 81.3 81.2

2
50 80.9 81.3 81.3

100 81.3 81.6 81.7

3

50 81.0 81.0 81.5
100 81.3 81.9 82.2
300 - - 82.0

Table 3.2: Cross-validation results for RelEmb.

c d k = 5 k = 15 k = 25

1

50 80.5 80.7 80.9
100 81.1 81.2 81.0
300 81.2 81.3 81.2

3
50 80.4 80.7 80.8

100 81.0 81.0 80.9

9
50 80.0 79.8 80.2

100 80.3 80.4 80.1

Table 3.3: Cross-validation results for the W2V-Init.

3.5.4 Analysis on Training Settings

We perform analysis of the training procedure focusing on RelEmb.

3.5.4.1 Effects of Tuning Hyperparameters

In Tables 3.2 and 3.3, we show how tuning the hyperparameters of our method and word2vec affects
the classification results using 10-fold cross validation on the training set. The same split is used for
each setting, so all results are comparable to each other. The best settings for the cross validation are
used to produce the results reported in Table 3.1.

Table 3.2 shows F1 scores obtained by RelEmb. The results for d = 50, 100 show that RelEmb
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gn gin g′
in gn,gin gn,gin,gout

61.8 70.2 68.2 81.1 82.2

Table 3.4: Cross-validation results for ablation tests.

Method Score

RelEmb N 0.690
RelEmb W 0.599

W2V-Init 0.687

Table 3.5: Evaluation on the WordSim-353 dataset.

benefits from relatively large context sizes. The n-gram embeddings in RelEmb capture richer infor-
mation by setting c to 3 compared to setting c to 1. Relatively large numbers of negative samples also
slightly boost the scores. As opposed to these trends, the score does not improve using d = 300. We
use the best setting (c = 3, d = 100, k = 25) for the remaining analysis. We note that RelEmbFULL

achieves an F1-score of 82.5.
We also performed similar experiments for the W2V-Init baseline, and the results are shown in

Table 3.3. In this case, the number of negative samples does not affect the scores, and the best
score is achieved by c = 1. As discussed in Bansal et al. (2014), the small context size captures
the syntactic similarity between words rather than the topical similarity. This result indicates that
syntactic similarity is more important than topical similarity for this task. Compared to the word2vec
embeddings, our embeddings capture not only local context information using word order, but also
long-range co-occurrence information by being tailored for the specific task.

3.5.4.2 Ablation Tests

As described in Section 3.3.2, we concatenate three kinds of feature vectors, gn, gin, and gout, for
supervised learning. Table 3.4 shows classification scores for ablation tests using 10-fold cross val-
idation. We also provide a score using a simplified version of gin, where the feature vector g′

in is
computed by averaging the word embeddings [W(win

i );W̃(win
i )] of the words between the noun

pairs. This feature vector g′
in then serves as a bag-of-words feature.
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Cause-Effect(E1,E2) Content-Container(E1,E2) Message-Topic(E1,E2)
resulted poverty caused the inside was inside a discuss magazines relating to
caused stability caused the in was in a explaining to discuss aspects
generated coast resulted in hidden hidden in a discussing concerned about NULL
cause fire caused due was was inside the relating interview relates to
causes that resulted in stored was hidden in describing to discuss the

Cause-Effect(E2,E1) Content-Container(E2,E1) Message-Topic(E2,E1)
after caused by radiation full NULL full of subject were related in
from caused by infection included was full of related was related in
caused stomach caused by contains a full NULL discussed been discussed in
triggered caused by genetic contained a full and documented is related through
due anger caused by stored a full forty received the subject of

Table 3.6: Top five unigrams and trigrams with the highest scores for six classes.

Table 3.4 clearly shows that the averaged n-gram embeddings contribute the most to the seman-
tic relation classification performance. The difference between the scores of gin and g′

in shows the
effectiveness of our averaged n-gram embeddings.

3.5.4.3 Effects of Dropout

At the supervised learning step we use dropout to regularize our model. Without dropout, our perfor-
mance drops from 82.2% to 81.3% of F1 on the training set using 10-fold cross validation.

3.5.4.4 Performance on a Word Similarity Task

As described in Section 3.3.1, we have the noun-specific embeddings N as well as the standard word
embeddings W. We evaluated the learned embeddings using a word-level semantic evaluation task
called WordSim-353 [Finkelstein et al., 2001]. This dataset consists of 353 pairs of nouns and each
pair has an averaged human rating which corresponds to a semantic similarity score. Evaluation
is performed by measuring Spearman’s rank correlation between the human ratings and the cosine
similarity scores of the embeddings. Table 3.5 shows the evaluation results. We used the best settings
reported in Table 3.2 and 3.3 since our method is designed for relation classification and it is not clear
how to tune the hyperparameters for the word similarity task. As shown in the result table, the noun-
specific embeddings perform better than the standard embeddings in our method, which indicates
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the noun-specific embeddings capture more useful information in measuring the semantic similarity
between nouns. The performance of the noun-specific embeddings is roughly the same as that of the
word2vec embeddings.

3.5.5 Qualitative Analysis on the Embeddings

Using the n-gram embeddings hi in Eq. (3.5), we inspect which n-grams are relevant to each relation
class after the supervised learning step of RelEmb. When the context size c is 3, we can use at most
7-grams. The learned weight matrix S in Section 3.3.3 is used to detect the most relevant n-grams for
each class. More specifically, for each n-gram embedding (n = 1, 3) in the training set, we compute
the dot product between the n-gram embedding and the corresponding components in S. We then
select the pairs of n-grams and class labels with the highest scores. In Table 3.6 we show the top
five n-grams for six classes. These results clearly show that the n-gram embeddings capture salient
syntactic patterns which are useful for the relation classification task.

3.6 Conclusions and Future Work

We have presented a method for learning word embeddings specifically designed for relation classifi-
cation. The word embeddings are trained using large unlabeled corpora to capture lexical features for
relation classification. On a well-established semantic relation classification task our method signifi-
cantly outperforms the baseline based on word2vec. Our method also compares favorably to previous
state-of-the-art models that rely on syntactic parsers and external semantic resources, despite our
method requiring only access to an unannotated corpus and a POS tagger. For future work, we will
investigate how well our method performs on other domains and datasets and how relation labels can
help when learning embeddings in a semi-supervised learning setting.
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Chapter 4

Task-Oriented Learning of
Semantic Compositionality of Phrases

In this chapter, I describe a method for jointly learning phrase embeddings and their compositionality
in a task-oriented manner. Here I first present a phrase embedding learning method for transitive
verbs in a co-occurrence modeling task. Then I present how to automatically learn compositionality
levels of the phrases. Section 4.1 and Section 4.2 in this chapter correspond to the following published
papers, respectively.

Section 4.1 Kazuma Hashimoto and Yoshimasa Tsuruoka. 2015. Learning Embeddings for Transi-
tive Verb Disambiguation by Implicit Tensor Factorization. In Proceedings of the 3rd Workshop
on Continuous Vector Space Models and their Compositionality, pp. 1–11.

Section 4.2 Kazuma Hashimoto and Yoshimasa Tsuruoka. 2016. Adaptive Joint Learning of Com-
positional and Non-Compositional Phrase Embeddings. In Proceedings of the 54th Annual
Meeting of Association for Computational Linguistics, pp. 205–215.

4.1 Learning Meanings of Transitive Verb Phrases

Summary We present an implicit tensor factorization method for learning the embeddings of tran-
sitive verb phrases. Unlike the implicit matrix factorization methods recently proposed for learning
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word embeddings, our method directly models the interaction between predicates and their two argu-
ments, and learns verb phrase embeddings. By representing transitive verbs as matrices, our method
captures multiple meanings of transitive verbs and disambiguates them taking their arguments into ac-
count. We evaluate our method on a widely-used verb disambiguation task and three phrase similarity
tasks. On the disambiguation task, our method outperforms previous state-of-the-art methods. Our
experimental results also show that adjuncts provide useful information in learning the meanings of
verb phrases.

4.1.1 Introduction

There is a growing interest in learning vector-space representations of words and phrases using large
training corpora in the field of Natural Language Processing (NLP) [Mikolov et al., 2013b; Mitchell
and Lapata, 2010]. The phrase representations are usually computed by composition models that
combine the meanings of words into the meanings of phrases. While some studies focus on repre-
senting entire phrases or sentences using syntactic structures [Hermann and Blunsom, 2013; Socher
et al., 2011a], others focus on representing the meaning of transitive verb phrases [Grefenstette and
Sadrzadeh, 2011; Grefenstette et al., 2013; Kartsaklis et al., 2012].

In this paper, we investigate vector-space representations of transitive verb phrases. The meaning
of a transitive verb is often ambiguous and disambiguated by its arguments, i.e., subjects and objects.
Investigation of transitive verb phrases should therefore provide insights into how composition models
can capture such semantic interactions between words. Moreover, in practice, capturing the meanings
of transitive verb phrases should be useful in many real-world NLP applications such as semantic
retrieval [Miyao et al., 2006] and question answering (Who did What to Whom?) [Srihari and Li,
2000].

There are several approaches to representing transitive verb phrases in a vector space using large
unannotated corpora. One is based on tensor calculus [Grefenstette and Sadrzadeh, 2011; Kartsaklis
et al., 2012; Van de Cruys et al., 2013] and another is based on neural networks [Hashimoto et al.,
2014; Muraoka et al., 2014; Tsubaki et al., 2013]. In the tensor-based methods, transitive verbs
are represented as matrices, and they are constructed by using the pre-trained word embeddings of
their subjects and objects. One limitation of this approach is that the embeddings of subject-verb-
object phrases are computed statically, i.e., the composition process and the embedding (or matrix)
construction process are conducted separately. In the neural network-based methods, the embeddings
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of words and phrases can be learned jointly [Hashimoto et al., 2014]. However, the strong interaction
between verbs and their arguments is not fully captured in their method because it relies on shallow
neural networks using diagonal weight matrices which are designed to work on large training corpora.

To bridge the gap between the two approaches, we present an implicit tensor factorization method
for learning the embeddings of transitive verb phrases. We assume a three-mode tensor in which
the value of each element represents the level of plausibility of a tuple of a predicate and its two
arguments [Van de Cruys et al., 2013]. We then implicitly factorize the tensor into three latent factors,
namely one predicate tensor and two argument matrices. This is motivated by the recently proposed
implicit matrix factorization methods for learning word embeddings [Levy and Goldberg, 2014b;
Mikolov et al., 2013b]. Our method trains matrices representing predicates and embeddings of their
arguments so that they maximize the accuracy of predicting the plausibility of the predicate-argument
tuples in the training corpus. The transitive verb matrices and the embeddings of their subject and
object are thus jointly learned. Furthermore, this method allows us to exploit the role of prepositional
adjuncts when learning the meaning of verb phrases by modeling the relationship between prepositions
and verb phrases.

Our experimental results show that our method enables predicates and their arguments to strongly
interact with each other and that adjuncts are useful in learning the meaning of verb phrases. We
evaluate our method using a widely-used verb disambiguation task and three phrase similarity tasks.
On the disambiguation dataset provided by Grefenstette and Sadrzadeh (2011), we have achieved a
Spearman’s rank correlation score of 0.614, which is significantly higher than the state of the art
(0.456). This result demonstrates that the direct interaction between verbs and their arguments is im-
portant in tackling verb disambiguation tasks. Qualitative evaluation further shows that the meanings
of ambiguous verbs can be disambiguated according to their arguments and the learned verb matrices
capture multiple meanings of transitive verbs.

4.1.2 Method

To learn the embeddings of transitive verb phrases, we focus on the role of adjuncts, which optionally
complement the meaning of the verb phrases. For example, in the following sentence, the preposi-
tional phrase starting from the preposition “in” is an adjunct of the verb “make”:

An importer might be able to make payment in his own domestic currency.
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Predicate Argument 1 Argument 2

make an importer payment

in make payment his own domestic currency

Table 4.1: Example output from the Enju parser.

Predicate Argument 1 Argument 2

make importer payment

in importer make payment currency

Table 4.2: Modified examples.

The transitive verb “make” is inherently ambiguous, but this sentence tells us that the action expressed
by the verb phrase “make payment” is carried out by means of a currency. If we further observe the
verb phrase “pay money” with a similar adjunct in another sentence, those two sentences tell us
that the two phrases “make payment” and “pay money” are semantically similar to each other. We
therefore expect such prepositional adjuncts to be useful in learning the meaning of verb phrases. In
the disambiguation processes, strong interactions between transitive verbs and their arguments are
desirable as with the method in Tsubaki et al. (2013). More specifically, the meaning of “make”
changes according to its object “payment” and the meaning of “pay” changes according to its object
“money”.

We use the probabilistic HPSG parser Enju1 [Miyao and Tsujii, 2008] to identify transitive verbs
with their subjects and objects, and as adjuncts, we also extract prepositional phrases with transitive
verbs. In the grammar of the Enju parser, each word in a sentence is a predicate with zero or more
arguments, i.e., prepositions, too, are treated as predicates.

In the example sentence shown above, the transitive verb “make” and the preposition “in” are
predicates which take two arguments. Table 4.1 shows the output from the Enju parser. In this exam-
ple, the transitive verb “make” takes two arguments: the first argument (the subject) is the noun phrase
“an importer” and the second argument (the object) is the noun “payment”. The preposition “in” also
takes two arguments: the first argument is the verb phrase “make payment” and the second argument

1http://kmcs.nii.ac.jp/enju/.
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is the noun phrase “his own domestic currency”. For simplicity we use only the head word of each
noun phrase, so the subjects and objects of the transitive verbs are nouns and the second arguments
of the prepositions are also nouns. We further modify the output by incorporating the subject for each
verb phrase which is the first argument of prepositions when the subject exists 2. Therefore, the words
used in this paper are verbs, nouns, and prepositions. Table 4.2 shows the modified output of the
examples in Table 4.1.

To model the co-occurrence statistics of predicate-argument structures, we follow Van de Cruys et
al. (2013) and assume a three-mode tensor, which is just a three-dimensional array, T ∈ R|P|×|A1|×|A2|

in which plausibility scores are stored as real values. P is the set of predicates of a particular category
in the training corpus, A1 is the set of the first argument of the predicates in P, and A2 is the set
of the second argument. When treating transitive verbs as predicates, A1 is the set of their subjects
and A2 is the set of their objects. Table 4.1 shows an example, where “make”, “an importer”, and
“payment” are a member of P, A1, and A2, respectively. The plausibility score T (i, j, k) corresponds
to the tuple of the i-th (1 ≤ i ≤ |P|) predicate having the j-th (1 ≤ j ≤ |A1|) first-argument and
the k-th (1 ≤ k ≤ |A2|) second-argument. The larger the value of T (i, j, k) is, the more plausible
the tuple (i, j, k) is. In the above example, if the tuple (i, j, k) corresponds to “make”, “an importer”,
and “payment” and i′ corresponds to “eat”, the value of T (i, j, k) is expected to be larger than that of
T (i′, j, k).

As with Van de Cruys et al. (2013), we factorize the large three-mode tensor T into three factors:

• three-mode tensor P ∈ R|P|×d×d,

• matrix A1 ∈ Rd×|A1|, and

• matrix A2 ∈ Rd×|A2|.

The dimensionality d is a hyperparameter that determines the size of the latent factors. Using these
factors, we can compute a plausibility score:

T (i, j, k) = a1(j)
TP(i)a2(k) (4.1)

where a1(j) ∈ Rd×1 and a2(k) ∈ Rd×1 are the j-th and k-th column vectors of A1 and A2, respec-
tively, and P(i) ∈ Rd×d is the i-th slice, which is just a matrix, of P . a1(j)T is the transpose of a1(j).

2Subjects can be absent. For example, in the sentence “Learning word embedings is interesting” the subject of the
transitive verb “learn” is absent.
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By this tensor factorization, each predicate in P is represented with a matrix, which we call a predi-
cate matrix, and each argument in A1 and A2 is represented with a vector, which we call an argument
embedding. As with Hashimoto et al. (2014), arguments are not restricted to words in our method,
and thus we compute argument embeddings using a composition function when the arguments consist
of more than two words.

To learn the predicate matrices and argument embeddings, we define a plausibility judgment task
by using a cost function for each predicate-argument tuple observed in the training corpus. For each
predicate-argument tuple (i, j, k), the cost function E(i, j, k) is defined as follows:

− log σ(T (i, j, k))− log(1− σ(T (i′, j, k)))

− log(1− σ(T (i, j′, k)))

− log(1− σ(T (i, j, k′)))

(4.2)

where i′ ∈ P is a randomly drawn predicate, and j′ ∈ A1 and k′ ∈ A2 are randomly drawn arguments.
σ(x) is the logistic function, so the cost function E(i, j, k) in Eq. (4.2) measures whether we can
discriminate between the plausible tuple and other three implausible tuples by means of logistic re-
gressions. We follow Mikolov et al. (2013b) to draw the random predicates and arguments according
to their frequencies weighted by an exponent of 0.75 and ensure that each of the randomly generated
tuples is not observed in the corpus. The overall objective function is defined as the sum of the cost
functions for all observed predicate-argument tuples and minimized by AdaGrad [Duchi et al., 2011]
in a mini-batch setting.

The partial derivative ∂E(i,j,k)
∂P(i) for updating the model parameters is computed as follows:

∂E(i, j, k)

∂P(i)
= (σ(T (i, j, k))− 1)a1(j)⊗ a2(k)+

σ(T (i, j′, k))a1(j′)⊗ a2(k)+

σ(T (i, j, k′))a1(j)⊗ a2(k
′)

(4.3)

where ⊗ denotes the outer-product of two vectors. Similarly, the partial derivatives ∂E(i,j,k)
∂a1(j)

and
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∂E(i,j,k)
∂a2(k)

are computed as follows:

∂E(i, j, k)

∂a1(j)
= (σ(T (i, j, k))− 1)P(i)a2(k)+

σ(T (i′, j, k))P(i′)a2(k)+

σ(T (i, j, k′))P(i)a2(k
′)

(4.4)

∂E(i, j, k)

∂a2(k)
= (σ(T (i, j, k))− 1)P(i)Ta1(j)+

σ(T (i′, j, k))P(i′)Ta1(j)+

σ(T (i, j′, k))P(i)Ta1(j
′)

(4.5)

which can be used to learn the composition function using the backpropagation algorithm if the argu-
ments are not words. When the arguments are words, we then use the partial derivatives to directly
update the argument embeddings. P(i′), a1(j′), and a2(k

′) are also updated but for the sake of brevity
the partial derivatives for them are not shown here. Equation (4.3) shows that a predicate matrix is
updated to capture the information about which argument pairs are or are not relevant to the predicate.
Argument embeddings are learned to capture similar information.

4.1.2.1 Transitive Verb Phrases with Adjuncts

While our method is applicable to any categories of predicates which take two arguments, in this
paper, we focus on learning the embeddings of transitive verb phrases by treating transitive verbs
and prepositions as predicates. Thus, we factorize two tensors Tv and Tp for transitive verbs and
prepositions, respectively. Tv is factorized into a verb tensor V (corresponding to P), a subject matrix
S (corresponding to A1), and an object matrix O (corresponding to A2). To compute argument
embeddings composed by subject-verb-object tuples, we use the copy-subject function in Kartsaklis
et al. (2012):

s(m)⊙ (V(l)o(n)) (4.6)

where V(l) is a verb matrix, s(m) is a subject embedding, and o(n) is an object embedding. ⊙
denotes the element-wise multiplication of two vectors. The composed verb phrase embeddings are
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taken as the first arguments of the prepositions. The copy-subject function is also used to compute
verb-object phrase embeddings by omitting the subject embedding in Eq. (4.6):

V(l)o(n) (4.7)

Compared with other composition functions defined in Kartsaklis et al. (2012), such as the copy-object
function, the copy-subject function allows us to compute embeddings for both of subject-verb-object
and verb-object phrases.

In the case of the copy-subject function, assuming that Eq. (4.4) is defined as δ1, the subject
embedding in Eq. (4.6) is updated using the following partial derivative:

∂E(i, j, k)

∂s(m)
= δ1 ⊙ (V(l)o(n)) (4.8)

We then define δ2 as follows:
δ2 = δ1 ⊙ s(m) (4.9)

and update the verb matrix and object embedding using δ2:

∂E(i, j, k)

∂V(l)
= δ2o(n)

T (4.10)

∂E(i, j, k)

∂o(n)
= V(l)Tδ2 (4.11)

The model parameters used in the composition function are shared across the overall proposed method.
That is, the verb matrices and subject/object embeddings are used for computing the composed em-
beddings and the plausibility scores in Eq. (4.1).

4.1.2.2 Relationship to Previous Work

Representing transitive verbs with matrices and computing transitive verb phrase embeddings have
been proposed by Grefenstette and Sadrzadeh (2011) and others [Kartsaklis et al., 2012; Milajevs
et al., 2014; Polajnar et al., 2014]. All of them first construct word embeddings by using existing
methods and then compute or learn transitive verb matrices. This kind of approach requires one to
figure out which word embeddings are suitable for each method or task [Milajevs et al., 2014]. By
contrast, our method does not require any other word embedding methods and instead jointly learns
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word embeddings and matrices from scratch, which saves us from the time-consuming process to test
which word representations learned by existing methods are suitable for which composition models.
Moreover, our method learns the embeddings of transitive verb phrases by using adjuncts rather than
statically computing them using learned word embeddings and matrices as done in the previous work.

The information stored in the verb matrices learned by Eq. (4.3) is similar to that in Grefenstette
and Sadrzadeh (2011). In Grefenstette and Sadrzadeh (2011), a verb matrix is computed by the sum of
the outer-products of the embeddings of its subject-object pairs observed in the corpus. By using such
matrices, Kartsaklis et al. (2012) proposed the copy-subject function which has proven effective in
representing transitive verb phrases. Using the copy-subject function is therefore a reasonable choice
for our composition function.

The use of adjuncts constructed by prepositional phrases for learning verb phrase embeddings has
been presented in Hashimoto et al. (2014). However, they used a variety of categories of predicates
simultaneously, and thus it is not clear how adjuncts are useful in improving the embeddings of transi-
tive verb phrases. In this paper, we use only transitive verbs and prepositions and clarify the effects of
adjuncts. Moreover, the interactions between predicates and their arguments are weak in their method
because their method relies on shallow neural networks using diagonal weight matrices. In contrast,
our method allows the predicates to directly interact with their arguments.

The way of factorizing the three-mode tensors is based on Van de Cruys et al. (2013). The main
difference between our method and theirs is that our method can treat phrases as the arguments. Their
method is based on co-occurrence count statistics, and thus it is not straightforward to modify their
method to treat phrases as well as words.

Our implicit tensor factorization method is motivated by Levy and Goldberg (2014b). They in-
troduced a way to interpret the recently developed word embedding learning method [Mikolov et al.,
2013b] by using matrix factorization. While their method only produces embeddings of single to-
kens, our method jointly learns word and phrase embeddings by focusing on the relationship between
predicates and their two arguments.

4.1.3 Experimental Settings

4.1.3.1 Training Corpora

We separately used two corpora as our training corpora. The first one is the British National Corpus
(BNC), from which we extracted 6 million sentences. The second one is a snapshot of the English
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Wikipedia3 (enWiki) from November 2013. We extracted 80 million sentences from the original
Wikipedia file. We then used the Enju parser [Miyao and Tsujii, 2008] to parse all the extracted
sentences.

Using the parsing results, we constructed the vocabulary for each training corpus. To be more
specific, we used the 100,000 most frequent base-form words paired with their corresponding part-
of-speech tags in each corpus. Using verbs, nouns, and prepositions in the vocabulary, we extracted
predicate-argument tuples whose predicate categories are verb arg12 or prep arg12 defined in the
Enju parser. We then pre-processed the output as shown in Table 4.2. Consequently, BNC consists
of about 1.38 million instances (1.23 million types) for the verb data and about 0.93 million instances
(0.88 million types) for the preposition data, and enWiki consists of about 23.6 million instances
(15.8 million types) for the verb data and about 17.3 million instances (13.5 million types) for the
preposition data. We call the verb data SVO and the combination of the two data SVOPN 4.

For each corpus, we randomly split the data into the training data (80%), the development data
(10%), and the test data (10%). We used the development data for tuning hyperparameters to be used
in downstream NLP tasks. When splitting the data, we ensured that each type of predicate-argument
tuples appeared in only one of the three parts. Hence, for example, instances in the test data do not
appear in either of the training or the development data.

To evaluate our method on the plausibility judgment task, for each predicate-argument tuple type
in the development and the test data, we randomly sampled implausible tuples N times in the same
way as defining the cost function in Eq. (4.2). That is, we prepared N sets of the development and the
test data. For each set of the development and the test data, we calculated the accuracy of the plau-
sibility judgment task; concretely, for each type of predicate-argument tuples (i, j, k), we evaluated
whether T (i, j, k) is larger than all of T (i′, j, k), T (i, j′, k), and T (i, j, k′) and then calculated the
ratio of the number of types counted as correct to the total number of the types in the development or
the test data. Finally, we calculated the average accuracy of the N set. For BNC, we set N to 50 and
for enWiki we set N to 10.

3http://dumps.wikimedia.org/enwiki/
4The training data, the training code, and the learned model parameters used in this paper are publicly available at

http://www.logos.t.u-tokyo.ac.jp/˜hassy/publications/cvsc2015/

37



4.1 Learning Meanings of Transitive Verb Phrases
Chapter 4 Task-Oriented Learning of
Semantic Compositionality of Phrases

4.1.3.2 Initialization and Hyperparameters

We initialized the noun embeddings, the verb matrices, and the preposition matrices with zero-mean
gaussian noise with a variance of 1

d , 1
d2

, and 1
d2

, respectively. The hyperparameters for training the em-
beddings and the matrices are the embedding dimensionality d, the learning rate α for AdaGrad [Duchi
et al., 2011], the mini-batch size, and the number of iterations n over the training data. In our pre-
liminary experiments, we have found that varying the mini-batch size is not so influential in our
experimental results. We thus fixed the mini-batch size to 100. For other hyperparameters, we set d
to {25, 50, 100}, α to {0.01, 0.02, 0.04, 0.06, 0.08, 0.1}, and the maximum number of n to 20. We
selected the values of the hyperparameters so that the accuracy of the plausibility task was maximized
on the development data described in Section 4.1.3.1.

4.1.3.3 Baseline Method

We mainly compared our method with the method called PAS-CLBLM in Hashimoto et al. (2014)
since PAS-CLBLM is designed to learn composed representations as well as word embeddings using a
variety of predicate-argument structures. PAS-CLBLM is modeled as a word predication model using
predicate-argument structures, which means that, as with our method, the training relies on the co-
occurrence statistics of predicate-argument structures. PAS-CLBLM achieved state-of-the-art results
on transitive verb phrase similarity tasks. To train PAS-CLBLM, we used the same data described in
Section 4.1.3.1. We selected the Waddnl function in PAS-CLBLM to compute the embedding of each
subject-verb-object tuple (i, j, k):

tanh(ws ⊙ s(j) +wv ⊙ v(i) +wo ⊙ o(k)) (4.12)

where ws,wv,wo ∈ Rd×1 are the weight vectors (or the diagonal weight matrices) for composition
and s(j),v(i),o(k) ∈ Rd×1 are the embeddings of the subjects, verbs, and objects, respectively.
PAS-CLBLM has the same hyperparameters as our method described in Section 4.1.3.2. We used
the development data for tuning the hyperparameters and added d = 200 to the candidate values
for d since PAS-CLBLM is computationally less expensive than our method. We thus evaluated PAS-
CLBLM also on the plausibility judgment task. Concretely, for each type of predicate-argument tuples
(i, j, k) in the development data, the tuple is counted as correct when the predication scores for i, j,
and k are larger than those for i′, j′, and k′, respectively.
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BNC enWiki
d Acc. (%) Acc. (%)

Our method
25 57.44 (0.11) 64.77 (0.03)
50 57.80 (0.11) 66.98 (0.03)

100 57.48 (0.10) 68.18 (0.03)

PAS-CLBLM

25 54.44 (0.14) 60.40 (0.03)
50 55.69 (0.13) 63.42 (0.02)

100 55.66 (0.12) 64.81 (0.02)
200 55.48 (0.15) 65.20 (0.03)

Table 4.3: Evaluation results on the plausibility judgment task on the SVO development data.

4.1.4 Results and Discussion

We first tuned the hyperparameters in both our method and the baseline method using the plausibility
judgment task. Table 4.3 shows the average accuracy with the standard deviation for each dimension-
ality on the SVO development data5. As shown in the table, our method outperforms PAS-CLBLM on
both BNC and enWiki. The number of the model parameters in PAS-CLBLM (d = 200) is larger than
that of the model parameters in our method (d = 50). This result demonstrates that the model archi-
tecture itself is more important than the number of the model parameters. The results on the SVO test
data were 57.76% (our method, d = 50) and 55.66% (PAS-CLBLM, d = 50) for BNC. For enWiki,
the results were 68.18% (our method, d = 100) and 65.19% (PAS-CLBLM, d = 200). We observed a
similar trend on the SVOPN data and in the next section, for each embedding dimensionality, we used
the model parameters which performed best on the plausibility task.

4.1.4.1 Evaluation on Transitive Verb Tasks

5Van de Cruys (2014) reported much higher accuracy in a similar evaluation setting with a neural network model, but
as discussed in Chambers and Jurafsky (2010), this is because using the uniform distribution over words for producing
implausible tuples leads to optimistic results.

6We replicated the results reported in their paper using the model parameters publicly provided at http://www.
logos.t.u-tokyo.ac.jp/˜hassy/publications/emnlp2014/.
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Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.410 0.511 0.392 0.440
50 0.374 0.550 0.164 0.290

Our 100 0.373 0.474 0.312 0.418
method

SVOPN
25 0.574 0.543 0.439 0.432
50 0.535 0.586 0.403 0.397
100 0.508 0.545 0.487 0.517

SVO

25 0.270 0.601 0.592 0.722
50 0.412 0.581 0.523 0.721
100 0.390 0.463 0.465 0.699

PAS- 200 0.369 0.458 0.434 0.602
CLBLM

SVOPN

25 0.241 0.562 0.550 0.715
50 0.281 0.605 0.590 0.760
100 0.337 0.593 0.585 0.758
200 0.342 0.561 0.549 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014)6 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 4.4: Results for the transitive verb tasks using the BNC data.

We evaluated the learned embeddings of transitive verbs using a transitive verb disambiguation task
and three tasks for measuring the semantic similarity between transitive verb phrases. Each phrase
pair in the four datasets is paired with multiple human ratings: the higher the rating is, the more
semantically similar the phrases are. To evaluate the learned verb phrase embeddings on each dataset,
we used the Spearman’s rank correlation between the human ratings and the cosine similarity between
the phrase embeddings. We calculated the correlation scores using averaged human ratings. Each
phrase pair in the datasets was annotated by more than two annotators and we took the average of the
multiple human ratings for each phrase pair.
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Dis. Phrase similarity
Data d GS’11 ML’10 KS’13 KS’14

SVO
25 0.438 0.403 0.255 0.406
50 0.480 0.416 0.359 0.481

Our 100 0.433 0.392 0.239 0.409
method

SVOPN
25 0.576 0.435 0.372 0.555
50 0.614 0.495 0.422 0.566
100 0.576 0.558 0.420 0.548

SVO

25 0.342 0.500 0.407 0.624
50 0.313 0.527 0.502 0.710
100 0.358 0.534 0.470 0.655

PAS- 200 0.361 0.535 0.459 0.653
CLBLM

SVOPN

25 0.171 0.571 0.583 0.697
50 0.320 0.501 0.518 0.729
100 0.321 0.606 0.540 0.742
200 0.374 0.588 0.515 0.744

Milajevs et al. (2014) 0.456 n/a n/a 0.732
Hashimoto et al. (2014) 0.422 0.669 0.612 0.770
Polajnar et al. (2014) 0.35 n/a 0.58 n/a

Table 4.5: Results for the transitive verb tasks using the enWiki data.
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Transitive verb disambiguation. The first dataset GS’11 is provided by Grefenstette and Sadrzadeh
(2011). GS’11 consists of pairs of transitive verbs and each verb pair takes the same subject and object.
As discussed in previous work [Kartsaklis and Sadrzadeh, 2013; Milajevs et al., 2014; Polajnar et al.,
2014], GS’11 has an aspect of a verb sense disambiguation task. For example, the transitive verb
“run” is known as a polysemous word and this task requires one to identify the meanings of “run”
and “operate” are similar to each other when taking “people” as their subject and “company” as their
object. In the same setting, however, the meanings of “run” and “move” are not similar to each other.
The task is suitable for evaluating our method since our method allows verbs and their subjects and
objects to multiplicatively interact with each other.

Transitive verb phrase similarity. The other datasets are ML’10 provided by Mitchell and Lapata
(2010), KS’13 provided by Kartsaklis and Sadrzadeh (2013), and KS’14 provided by Kartsaklis and
Sadrzadeh (2014). ML’10 consists of pairs of verb-object phrases and KS’13 complements ML’10 by
incorporating an appropriate subject for each verb-object phrase. KS’14 is the re-annotated version of
KS’13 using a cloud sourcing service. Unlike GS’11, these three datasets require one to capture the
topical similarity rather than the disambiguation aspect [Polajnar et al., 2014].

4.1.4.2 Result Overview

Table 4.4 and 4.5 show the evaluation results using BNC and enWiki, respectively. The results are
shown for each method, data type, and embedding dimensionality. These tables also show the results
from other work [Hashimoto et al., 2014; Milajevs et al., 2014; Polajnar et al., 2014] on the same
tasks while the training settings, such as the corpus and information used in the training, are different
from those in this work. However, the evaluation settings are the same with those in the previous
work. That is, in the previous work, averaged human ratings were used to evaluate the Spearman’s
rank correlation scores, similarity scores between subject-verb-object phrases were used for GS’11,
KS’13, and KS’14, and similarity scores between verb-object phrases were used for ML’10.

Effects of using adjuncts. Except for the results for GS’11 using PAS-CLBLM, the correlation
scores consistently improve when using the SVOPN data compared with using the SVO data, which
shows using adjuncts is helpful in learning the meanings of verb phrases. Using the SVO data alone,
verb phrase embeddings themselves are not directly learned but computed separately. By contrast, the
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Our method PAS-CLBLM
SVO SVOPN SVOPN

make dollar make saving make cash earn billion make cash make penny
make make pay use money make dollar earn million make dollar make baht
money make profit make cent make profit make gamble make yen make salary

make cash do business earn baht make pound make pay make profit
earn profit sell coin earn pound earn earning make fund make rupee
make repayment make expenditure make loan pay reimbursement make loan make cost

make make loan pay subsidy make repayment pay remuneration make repayment make receipt
payment pay amount pay deposit pay fine make raise make compensation make guarantee

make offer make transaction pay amount pay cost make expense make rebate
pay compensation pay donor pay surcharge pay fee make debt make purchase
use material use approach use number use one make usage make sort

make use type use method use concept use element make placement make size
use use concept use technique use approach use set make kind make utilization

use form use instrument use method use system make quality make redundancy
use one use system use model use type make alternative make handling

Table 4.6: Nearest neighbor verb-object phrases.

SVOPN data provides the opportunity for learning verb phrase embeddings.

Effects of the training corpora. In previous work on learning and evaluating word embeddings, it
is generally observed that increasing the training data results in better results. However, as opposed to
our expectation, Table 4.4 and 4.5 show that using enWiki does not necessarily lead to better results. A
possible explanation is that the nature of the training corpus matters the most. The usage of each word
depends on the training corpora, and at least for these verb sense tasks, the size of BNC is sufficient
and the nature of BNC fits these tasks.

4.1.4.3 Disambiguation Task

Our method outperforms both the baseline and the previous state of the art for GS’11, which demon-
strates that our method better handles the disambiguation of transitive verbs. This result is somewhat
expected since our method provides stronger interaction between predicates and their arguments than
the baseline method.

Table 4.6 shows some examples7 of verb-object phrases with their nearest neighbor ones in the

7The verb-object phrase “make use” is the part of the idiomatic expression “make use of”.

43



4.1 Learning Meanings of Transitive Verb Phrases
Chapter 4 Task-Oriented Learning of
Semantic Compositionality of Phrases

embedding space according to the cosine similarity. For our method, we show the results of using the
SVO and SVOPN data, and for PAS-CLBLM, we show the results of using the SVOPN data. In each
setting, we used the enWiki data with d = 50.

Table 4.6 clearly shows the difference between our method and the baseline method. In our
method, the meaning of “make” becomes close to those of “earn”, “pay”, and “use” when taking
“money”, “payment”, and “use”, respectively, as its object. By contrast, PAS-CLBLM simply em-
phasizes the head word “make”. In previous work, it is also reported that the weighed addition com-
position functions put more weight on head words [Hashimoto et al., 2014; Muraoka et al., 2014;
Socher et al., 2013]. As opposed to these previous methods, our method has the ability of selecting
the meaning of transitive verbs according to their objects.

Table 4.6 also shows that the phrase embeddings in our method are influenced by using the adjunct
data (i.e., the SVOPN data). For example, in the example of “make money”, the results for using the
SVO data include “use money” as the nearest neighbors. When using the SVOPN data, the focus
seems to shift to the true meaning of “make money”.

4.1.4.4 Phrase Similarity Task

In the phrase similarity tasks, our method compares favorably to PAS-CLBLM for ML’10, but PAS-
CLBLM outperforms our method for KS’13 and KS’14. These results are consistent with those in
previous work. In Milajevs et al. (2014) and Polajnar et al. (2014), using the simplest composition
function (the element-wise vector addition) achieves much better correlation scores than other tensor-
based complex composition functions. These results indicate that our method is suitable for capturing
the disambiguation rather than capturing the topical similarity between phrases.

4.1.4.5 Qualitative Evaluation on Verb Matrices

Finally, we inspect the learned verb matrices using the SVO data of enWiki with d = 50. Compared
with the word embeddings, the verb matrices have two-dimensional structure. According to Eq. (4.3),
each row vector and each column vector in a verb matrix are updated to capture the information about
what subject-object pairs are relevant (or irrelevant) to the verb.

Table 4.7 shows the nearest neighbor verbs using the cosine similarity between row (or column)
vectors in the verb matrices. For reference, we also show the results using the vectorized representa-
tion of the verb matrices (denoted as “all” in the table). While the entire matrices capture the general
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Verb Nearest neighbors

run

27th operate, execute, insert, hold, grid,
col. produce, add, assume, manage, render
34th release, operate, create, override, govern,
row oversee, distribute, host, organize

all
operate, start, manage, own, launch,
continue, establish, open, maintain

encode

28th denature, transfect, phosphorylate,
row polymerize, subtend, acid
39th format, store, decode, embed,
row concatenate, encrypt, memorize

all
concatenate, permute, phosphorylate,
quantize, composite, transfect, transduce

Table 4.7: Nearest neighbor verbs.

similarity between verbs as with word embeddings, some specific rows (or columns) capture the mul-
tiple meanings of usages of the verbs.

4.1.5 Related Work

Based on the distributional hypothesis [Firth, 1957], various methods for word embeddings have been
actively studied [Levy and Goldberg, 2014b; Mikolov et al., 2013b]. Recent studies also investi-
gate how to learn phrase and/or sentence embeddings using syntactic structures and word embed-
dings [Socher et al., 2011b]. Along the same line of research, there is a growing body of work
on representing transitive verb phrases using word embeddings [Grefenstette and Sadrzadeh, 2011;
Hashimoto et al., 2014; Kartsaklis et al., 2012; Tsubaki et al., 2013]. Those studies can be split into
two approaches: one is based on tensor calculus and the other is based on neural networks.

In contrast to the recent studies on word embeddings, the tensor-based methods represent words
with tensors which are not limited to vectors. That is, higher order tensors such as matrices and
three-mode tensors are also used. In the case of representing transitive verb phrases, for example,
each transitive verb is represented as a matrix and each noun is represented as a vector in Grefenstette
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and Sadrzadeh (2011). Based on Coecke et al. (2010), Grefenstette and Sadrzadeh (2011) presented a
method for calculating a verb matrix using word embeddings of its observed subjects and objects. The
word embeddings were constructed by the method in Mitchell and Lapata (2008). Grefenstette and
Sadrzadeh (2011) then introduced composition functions using the verb matrices and the noun em-
beddings. Their approach has been followed by some recent studies [Kartsaklis et al., 2012; Milajevs
et al., 2014; Polajnar et al., 2014; Van de Cruys et al., 2013].

In the neural network-based methods each word is usually represented with a vector. Tsubaki et al.
(2013) presented a neural network language model focusing on the binary relationship between verbs
and their objects. Their co-compositionality method enables verb embeddings to be multiplicatively
influenced by the objects, and vice versa. Subsequently, Hashimoto et al. (2014) introduced a method
which jointly learns word and phrase embeddings by using a variety of predicate-argument structures.
While their method achieves state-of-the-art results on phrase similarity tasks, the interaction between
predicates and their arguments is weak.

4.1.6 Conclusion and Future Work

We have presented an implicit matrix factorization method for learning the embeddings of transitive
verb phrases. The verb matrices learned by our method capture the multiple meanings of transitive
verbs and we have shown that adjuncts play an important role in learning the meanings of transitive
verb phrases. In our experiments, our method outperforms the previous state of the art on a transitive
verb disambiguation task. In future work, we will investigate how the learned phrase embeddings
improve real-world NLP applications.
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4.2 Learning Compositionality of Phrases

Summary We present a novel method for jointly learning compositional and non-compositional
phrase embeddings by adaptively weighting both types of embeddings using a compositionality scor-
ing function. The scoring function is used to quantify the level of compositionality of each phrase,
and the parameters of the function are jointly optimized with the objective for learning phrase embed-
dings. In experiments, we apply the adaptive joint learning method to the task of learning embeddings
of transitive verb phrases, and show that the compositionality scores have strong correlation with hu-
man ratings for verb-object compositionality, substantially outperforming the previous state of the art.
Moreover, our embeddings improve upon the previous best model on a transitive verb disambiguation
task. We also show that a simple ensemble technique further improves the results for both tasks.

4.2.1 Introduction

Representing words and phrases in a vector space has proven effective in a variety of language process-
ing tasks [Pham et al., 2015; Sutskever et al., 2014]. In most of the previous work, phrase embeddings
are computed from word embeddings by using various kinds of composition functions. Such com-
posed embeddings are called compositional embeddings. An alternative way of computing phrase
embeddings is to treat phrases as single units and assigning a unique embedding to each candidate
phrase [Mikolov et al., 2013b; Yazdani et al., 2015]. Such embeddings are called non-compositional
embeddings.

Relying solely on non-compositional embeddings has the obvious problem of data sparsity (i.e.
rare or unknown phrase problems). At the same time, however, using compositional embeddings is not
always the best option since some phrases are inherently non-compositional. For example, the phrase
“bear fruits” means “to yield results”8 but it is hard to infer its meaning by composing the meanings
of “bear” and “fruit”. Treating all phrases as compositional also has a negative effect in learning the
composition function because the words in those idiomatic phrases are not just uninformative but can
serve as noisy samples in the training. These problems have motivated us to adaptively combine both
types of embeddings.

Most of the existing methods for learning phrase embeddings can be divided into two approaches.
One approach is to learn compositional embeddings by regarding all phrases as compositional [Pham

8The definition is found at http://idioms.thefreedictionary.com/bear+fruit.
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Figure 4.1: The overview of our method and examples of the compositionality scores. Given a phrase
p, our method first computes the compositionality score α(p) (Eq. (4.15)), and then computes the
phrase embedding v(p) using the compositional and non-compositional embeddings, c(p) and n(p),
respectively (Eq. (4.14)).

et al., 2015; Socher et al., 2012]. The other approach is to learn both types of embeddings sepa-
rately and use the better ones [Kartsaklis and Sadrzadeh, 2014; Muraoka et al., 2014]. Kartsaklis and
Sadrzadeh (2014) show that non-compositional embeddings are better suited for a phrase similarity
task, whereas Muraoka et al. (2014) report the opposite results on other tasks. These results suggest
that we should not stick to either of the two types of embeddings unconditionally and could learn bet-
ter phrase embeddings by considering the compositionality levels of the individual phrases in a more
flexible fashion.

In this paper, we propose a method that jointly learns compositional and non-compositional em-
beddings by adaptively weighting both types of phrase embeddings using a compositionality scoring
function. The scoring function is used to quantify the level of compositionality of each phrase and
learned in conjunction with the target task for learning phrase embeddings. In experiments, we apply
our method to the task of learning transitive verb phrase embeddings and demonstrate that it allows us
to achieve state-of-the-art performance on standard datasets for compositionality detection and verb
disambiguation.

4.2.2 Method

In this section, we describe our approach in the most general form, without specifying the function to
compute the compositional embeddings or the target task for optimizing the embeddings.
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Figure 5.2 shows the overview of our proposed method. At each iteration of the training (i.e.
gradient calculation) of a certain target task (e.g. language modeling or sentiment analysis), our
method first computes a compositionality score for each phrase. Then the score is used to weight
the compositional and non-compositional embeddings of the phrase in order to compute the expected
embedding of the phrase which is to be used in the target task. Some examples of the compositionality
scores are also shown in the figure.

4.2.2.1 Compositional Phrase Embeddings

The compositional embedding c(p) ∈ Rd×1 of a phrase p = (w1, · · · , wL) is formulated as

c(p) = f(v(w1), · · · ,v(wL)), (4.13)

where d is the dimensionality, L is the phrase length, v(·) ∈ Rd×1 is a word embedding, and f(·) is
a composition function. The function can be simple ones such as element-wise addition or multipli-
cation [Mitchell and Lapata, 2008]. More complex ones such as recurrent neural networks [Sutskever
et al., 2014] are also commonly used. The word embeddings and the composition function are jointly
learned on a certain target task. Since compositional embeddings are built on word-level (i.e. unigram)
information, they are less prone to the data sparseness problem.

4.2.2.2 Non-Compositional Phrase Embeddings

In contrast to the compositional embedding, the non-compositional embedding of a phrase n(p) ∈
Rd×1 is independently parameterized, i.e., the phrase p is treated just like a single word. Mikolov
et al. (2013b) show that non-compositional embeddings are preferable when dealing with idiomatic
phrases. Some recent studies [Kartsaklis and Sadrzadeh, 2014; Muraoka et al., 2014] have discussed
the (dis)advantages of using compositional or non-compositional embeddings. However, in most
cases, a phrase is neither completely compositional nor completely non-compositional. To the best of
our knowledge, there is no method that allows us to jointly learn both types of phrase embeddings by
incorporating the levels of compositionality of the phrases as real-valued scores.
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4.2.2.3 Adaptive Joint Learning

To simultaneously consider both compositional and non-compositional aspects of each phrase, we
compute a phrase embedding v(p) by adaptively weighting c(p) and n(p) as follows:

v(p) = α(p)c(p) + (1− α(p))n(p), (4.14)

where α(·) is a scoring function that quantifies the compositionality levels, and outputs a real value
ranging from 0 to 1. What we expect from the scoring function is that large scores indicate high levels
of compositionality. In other words, when α(p) is close to 1, the compositional embedding is mainly
considered, and vice versa. For example, we expect α(buy car) to be large and α(bear fruit) to be
small as shown in Figure 5.2.

We parameterize the scoring function α(p) as logistic regression:

α(p) = σ(W · ϕ(p)), (4.15)

where ϕ(p) ∈ RN×1 is a feature vector of the phrase p, W ∈ RN×1 is a weight vector, N is the
number of features, and σ(·) is the logistic function. The weight vector W is jointly optimized in
conjunction with the objective J for the target task of learning phrase embeddings v(p).

Updating the model parameters Given the partial derivative δp = ∂J
∂v(p) ∈ Rd×1 for the target

task, we can compute the partial derivative for updating W as follows:

δα = α(p)(1− α(p)){δp · (c(p)− n(p))} (4.16)

∂J

∂W
= δαϕ(p). (4.17)

If ϕ(p) is not constructed by static features but is computed by a feature learning model such as
neural networks, we can propagate the error term δα into the feature learning model by the following
equation:

∂J

∂ϕ(p)
= δαW . (4.18)
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When we use only static features, as in this work, we can simply compute the partial derivatives of J
with respect to c(p) and n(p) as follows:

∂J

∂c(p)
= α(p)δp (4.19)

∂J

∂n(p)
= (1− α(p))δp. (4.20)

As mentioned above, Eq. (4.19) and (4.20) show that the non-compositional embeddings are mainly
updated when α(p) is close to 0, and vice versa. The partial derivative ∂J

∂c(p) is used to update the
model parameters in the composition function via the backpropagation algorithm. Any differentiable
composition functions can be used in our method.

Expected behavior of our method The training of our method depends on the target task; that
is, the model parameters are updated so as to minimize the cost function as described above. More
concretely, α(p) for each phrase p is adaptively adjusted so that the corresponding parameter updates
contribute to minimizing the cost function. As a result, different phrases will have different α(p)
values depending on their compositionality. If the size of the training data were almost infinitely
large, α(p) for all phrases would become nearly zero, and the non-compositional embeddings n(p)

are dominantly used (since that would allow the model to better fit the data). In reality, however, the
amount of the training data is limited, and thus the compositional embeddings c(p) are effectively
used to overcome the data sparseness problem.

4.2.3 Learning Verb Phrase Embeddings

This section describes a particular instantiation of our approach presented in the previous section,
focusing on the task of learning the embeddings of transitive verb phrases.

4.2.3.1 Word and Phrase Prediction in Predicate-Argument Relations

Acquisition of selectional preference using embeddings has been widely studied, where word and/or
phrase embeddings are learned based on syntactic links [Bansal et al., 2014; Hashimoto and Tsuruoka,
2015; Levy and Goldberg, 2014b; Van de Cruys, 2014]. As with language modeling, these methods
perform word (or phrase) prediction using (syntactic) contexts.
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In this work, we focus on verb-object relationships and employ a phrase embedding learning
method presented in Hashimoto and Tsuruoka (2015). The task is a plausibility judgment task for
predicate-argument tuples. They extracted Subject-Verb-Object (SVO) and SVO-Preposition-Noun
(SVOPN) tuples using a probabilistic HPSG parser, Enju [Miyao and Tsujii, 2008], from the train-
ing corpora. Transitive verbs and prepositions are extracted as predicates with two arguments. For
example, the extracted tuples include (S, V, O) = (“importer”, “make”, “payment”) and (SVO, P, N)
= (“importer make payment”, “in”, “currency”). The task is to discriminate between observed and
unobserved tuples, such as the (S, V, O) tuple mentioned above and (S, V’, O) = (“importer”, “eat”,
“payment”), which is generated by replacing “make” with “eat”. The (S, V’, O) tuple is unlikely to
be observed.

For each tuple (p, a1, a2) observed in the training data, a cost function is defined as follows:

− log σ(s(p, a1, a2))− log σ(−s(p′, a1, a2))

− log σ(−s(p, a′1, a2))

− log σ(−s(p, a1, a′2)),

(4.21)

where s(·) is a plausibility scoring function, and p, a1 and a2 are a predicate and its arguments,
respectively. Each of the three unobserved tuples (p′, a1, a2), (p, a′1, a2), and (p, a1, a

′
2) is generated

by replacing one of the entries with a random sample.
In their method, each predicate p is represented with a matrix M(p) ∈ Rd×d and each argument

a with an embedding v(a) ∈ Rd×1. The matrices and embeddings are learned by minimizing the cost
function using AdaGrad [Duchi et al., 2011]. The scoring function is parameterized as

s(p, a1, a2) = v(a1) · (M(p)v(a2)), (4.22)

and the VO and SVO embeddings are computed as

v(V O) = M(V )v(O) (4.23)

v(SV O) = v(S)⊙ v(V O), (4.24)

as proposed by Kartsaklis et al. (2012). The operator ⊙ denotes element-wise multiplication. In
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summary, the scores are computed as

s(V, S,O) = v(S) · v(V O) (4.25)

s(P, SV O,N) = v(SV O) · (M(P )v(N)). (4.26)

With this method, the word and composed phrase embeddings are jointly learned based on co-occurrence
statistics of predicate-argument structures. Using the learned embeddings, they achieved state-of-the-
art accuracy on a transitive verb disambiguation task [Grefenstette and Sadrzadeh, 2011].

4.2.3.2 Applying the Adaptive Joint Learning

In this section, we apply our adaptive joint learning method to the task described in Section 4.2.3.1.
We here redefine the computation of v(V O) by first replacing v(V O) in Eq. (4.23) with c(V O) as,

c(V O) = M(V )v(O), (4.27)

and then assigning V O to p in Eq. (4.14) and (4.15):

v(V O) = α(V O)c(V O) + (1− α(V O))n(V O), (4.28)

α(V O) = σ(W · ϕ(V O)). (4.29)

The v(V O) in Eq. (4.28) is used in Eq. (4.24) and (4.25). We assume that the candidates of the phrases
are given in advance. For the phrases not included in the candidates, we set v(V O) = c(V O).
This is analogous to the way a human guesses the meaning of an idiomatic phrase she does not
know. We should note that ϕ(V O) can be computed for phrases not included in the candidates, using
partial features among the features described below. If any features do not fire, ϕ(V O) becomes 0.5
according to the logistic function.

For the feature vector ϕ(V O), we use the following simple binary and real-valued features:

• indices of V, O, and VO

• frequency and Pointwise Mutual Information (PMI) values of VO.

More concretely, the first set of the features (indices of V, O, and VO) is the concatenation of traditional
one-hot vectors. The second set of features, frequency and PMI [Church and Hanks, 1990] features,
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have proven effective in detecting the compositionality of transitive verbs in McCarthy et al. (2007)
and Venkatapathy and Joshi (2005). Given the training corpus, the frequency feature for a VO pair is
computed as

freq(V O) = log(count(V O)), (4.30)

where count(V O) counts how many times the VO pair appears in the training corpus, and the PMI
feature is computed as

PMI(V O) = log
count(V O)count(∗)
count(V )count(O)

, (4.31)

where count(V ), count(O), and count(∗) are the counts of the verb V , the object O, and all VO
pairs in the training corpus, respectively. We normalize the frequency and PMI features so that their
maximum absolute value becomes 1.

4.2.4 Experimental Settings

4.2.4.1 Training Data

As the training data, we used two datasets, one small and one large: the British National Corpus
(BNC) [Leech, 1992] and the English Wikipedia. More concretely, we used the publicly available
data9 preprocessed by Hashimoto and Tsuruoka (2015). The BNC data consists of 1.38 million
SVO tuples and 0.93 million SVOPN tuples. The Wikipedia data consists of 23.6 million SVO tu-
ples and 17.3 million SVOPN tuples. Following the provided code10, we used exactly the same
train/development/test split (0.8/0.1/0.1) for training the overall model. As the third training data, we
also used the concatenation of the two data, which is hereafter referred to as BNC-Wikipedia.

We applied our adaptive joint learning method to verb-object phrases observed more than K times
in each corpus. K was set to 10 for the BNC data and 100 for the Wikipedia and BNC-Wikipedia
data. Consequently, the non-compositional embeddings were assigned to 17,817, 28,933, and 30,682
verb-object phrase types in the BNC, Wikipedia, and BNC-Wikipedia data, respectively.

4.2.4.2 Training Details

The model parameters consist of d-dimensional word embeddings for nouns, non-compositional phrase
embeddings, d×d-dimensional matrices for verbs and prepositions, and a weight vector W for α(V O).

9http://www.logos.t.u-tokyo.ac.jp/˜hassy/publications/cvsc2015/
10https://github.com/hassyGo/SVOembedding
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All the model parameters are jointly optimized. We initialized the embeddings and matrices with zero-
mean gaussian random values with a variance of 1

d and 1
d2

, respectively, and W with zeros. Initializing
W with zeros forces the initial value of each α(V O) to be 0.5 since we use the logistic function to
compute α(V O).

The optimization was performed via mini-batch AdaGrad [Duchi et al., 2011]. We fixed d to 25

and the mini-batch size to 100. We set candidate values for the learning rate ε to {0.01, 0.02, 0.03, 0.04, 0.05}.
For the weight vector W , we employed L2-norm regularization and set the coefficient λ to {10−3, 10−4, 10−5, 10−6, 0}.
For selecting the hyperparameters, each training process was stopped when the evaluation score on
the development split decreased. Then the best performing hyperparameters were selected for each
training dataset. Consequently, ε was set to 0.05 for all training datasets, and λ was set to 10−6,
10−3, and 10−5 for the BNC, Wikipedia, and BNC-Wikipedia data, respectively. Once the training is
finished, we can use the learned embeddings and the scoring function in downstream target tasks.

4.2.5 Evaluation on the Compositionality Detection Function

4.2.5.1 Evaluation Settings

Datasets First, we evaluated the learned compositionality detection function on two datasets, VJ’0511

and MC’0712, provided by Venkatapathy and Joshi (2005) and McCarthy et al. (2007), respectively.
VJ’05 consists of 765 verb-object pairs with human ratings for the compositionality. MC’07 is a sub-
set of VJ’05 and consists of 638 verb-object pairs. For example, the rating of “buy car” is 6, which is
the highest score, indicating the phrase is highly compositional. The rating of “bear fruit ” is 1, which
is the lowest score, indicating the phrase is highly non-compositional.

Evaluation metric The evaluation was performed by calculating Spearman’s rank correlation scores13

between the averaged human ratings and the learned compositionality scores α(V O).

Ensemble technique We also produced the result by employing an ensemble technique. More con-
cretely, we used the averaged compositionality scores from the results of the BNC and Wikipedia data
for the ensemble result.

11http://www.dianamccarthy.co.uk/downloads/SVAJ2005compositionality_rating.txt
12http://www.dianamccarthy.co.uk/downloads/emnlp2007data.txt
13We used the Scipy 0.12.0 implementation in Python.
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Method MC’07 VJ’05

Proposed method (Wikipedia) 0.508 0.514
Proposed method (BNC) 0.507 0.507
Proposed method (BNC-Wikipedia) 0.518 0.527
Proposed method (Ensemble) 0.550 0.552

Kiela and Clark (2013) w/ WordNet n/a 0.461
Kiela and Clark (2013) n/a 0.420
DSPROTO [McCarthy et al., 2007] 0.398 n/a
PMI [McCarthy et al., 2007] 0.274 n/a
Frequency [McCarthy et al., 2007] 0.141 n/a

DSPROTO+ [McCarthy et al., 2007] 0.454 n/a

Human agreement 0.702 0.716

Table 4.8: Compositionality detection task.

4.2.5.2 Result Overview

Table 4.8 shows our results and the state of the art. Our method outperforms the previous state of the
art in all settings. The result denoted as Ensemble is the one that employs the ensemble technique,
and achieves the strongest correlation with the human-annotated datasets. Even without the ensemble
technique, our method performs better than all of the previous methods.

Kiela and Clark (2013) used window-based co-occurrence vectors and improved their score using
WordNet hypernyms. By contrast, our method does not rely on such external resources, and only
needs parsed corpora. We should note that Kiela and Clark (2013) reported that their score did not
improve when using parsed corpora. Our method also outperforms DSPROTO+, which used a small
amount of the labeled data, while our method is fully unsupervised.

We calculated confidence intervals (P < 0.05) using bootstrap resampling [Noreen, 1989]. For
example, for the results using the BNC-Wikipedia data, the intervals on MC’07 and VJ’05 are (0.455,
0.574) and (0.475, 0.579), respectively. These results show that our method significantly outperforms
the previous state-of-the-art results.
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Phrase Gold standard (a) BNC (b) Wikipedia BNC-Wikipedia Ensemble ((a)+(b))×0.5

(A)

buy car 6 0.78 0.71 0.80 0.74
own land 6 0.79 0.73 0.76 0.76
take toll 1.5 0.14 0.11 0.06 0.13
shed light 1 0.21 0.07 0.07 0.14
bear fruit 1 0.15 0.19 0.17 0.17

(B)
make noise 6 0.37 0.33 0.30 0.35
have reason 5 0.26 0.39 0.33 0.33

(C)
smoke cigarette 6 0.56 0.90 0.78 0.73
catch eye 1 0.48 0.14 0.17 0.31

Table 4.9: Examples of the compositionality scores.

4.2.5.3 Analysis of Compositionality Scores

Figure 4.2 shows how α(V O) changes for the seven phrases during the training on the BNC data.
As shown in the figure, starting from 0.5, α(V O) for each phrase converges to its corresponding
value. The differences in the trends indicate that our method can adaptively learn compositionality
levels for the phrases. Table 4.9 shows the learned compositionality scores for the three groups of the
examples along with the gold-standard scores given by the annotators. The group (A) is considered to
be consistent with the gold-standard scores, the group (B) is not, and the group (C) shows examples
for which the difference between the compositionality scores of our results is large.

Characteristics of light verbs The verbs “take”, “make”, and “have” are known as light verbs 14,
and the scoring function tends to assign low scores to light verbs. In other words, our method can
recognize that the light verbs are frequently used to form idiomatic (i.e. non-compositional) phrases.
To verify the assumption, we calculated the average compositionality score for each verb by averaging
the compositionality scores paired with its candidate objects. Here we used 135 verbs which take more
than 30 types of objects in the BNC data. Table 4.10 shows the 10 highest and lowest average scores
with the corresponding verbs. We see that relatively low scores are assigned to the light verbs as well

14In Section 5.2.2 in Newton (2006), the term light verb is used to refer to verbs which can be used in combination with
some other element where their contribution to the meaning of the whole construction is reduced in some way.

57



4.2 Learning Compositionality of Phrases
Chapter 4 Task-Oriented Learning of
Semantic Compositionality of Phrases

Figure 4.2: Trends of α(V O) during the training on the BNC data.

as other verbs which often form idiomatic phrases. As shown in the group (B) in Table 4.9, however,
light verb phrases are not always non-compositional. Despite this, the learned function assigns low
scores to compositional phrases formed by the light verbs. These results suggest that using a more
flexible scoring function may further strengthen our method.

Context dependence Both our method and the two datasets, VJ’05 and MC’07, assume that the
compositionality score can be computed for each phrase with no contextual information. However, in
general, the compositionality level of a phrase depends on its contextual information. For example,
the meaning of the idiomatic phrase “bear fruit” can be compositionaly interpreted as “to yield fruit”
for a plant or tree. We manually inspected the BNC data to check whether the phrase “bear fruit”
is used as the compositional meaning or the idiomatic meaning (“to yield results”). As a result, we
have found that most of the usage was its idiomatic meaning. In the model training, our method is
affected by the majority usage and fits the evaluation datasets where the phrase “bear fruit” is regarded
as highly non-compositional. Incorporating contextual information into the compositionality scoring
function is a promising direction of future work.
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Highest average scores Lowest average scores

approve 0.83 bear 0.37
reject 0.72 play 0.38
discuss 0.71 have 0.38
visit 0.70 make 0.39
want 0.70 break 0.40
describe 0.70 take 0.40
involve 0.69 raise 0.41
own 0.68 reach 0.41
attend 0.68 gain 0.42
reflect 0.67 draw 0.42

Table 4.10: The 10 highest and lowest average compositionality scores with the corresponding verbs
on the BNC data.

4.2.5.4 Effects of Ensemble

We used the two different corpora for constructing the training data, and our method achieves the
state-of-the-art results in all settings. To inspect the results on VJ’05, we calculated the correlation
score between the outputs from our results of the BNC and Wikipedia data. The correlation score is
0.674 and that is, the two different corpora lead to reasonably consistent results, which indicates the
robustness of our method. However, the correlation score is still much lower than perfect correlation;
in other words, there are disagreements between the outputs learned with the corpora. The group (C)
in Table 4.9 shows such two examples. In these cases, the ensemble technique is helpful in improving
the results as shown in the examples.

Another interesting observation in our results is that the result of the ensemble technique out-
performs that of the BNC-Wikipedia data as shown in Table 4.8. This shows that separately using
the training corpora of different nature and then performing the ensemble technique can yield better
results. By contrast, many of the previous studies on embedding-based methods combine different
corpora into a single dataset, or use multiple corpora just separately and compare them [Hashimoto
and Tsuruoka, 2015; Muraoka et al., 2014; Pennington et al., 2014]. It would be worth investigating
whether the results in the previous work can be improved by ensemble techniques.
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4.2.6 Evaluation on the Phrase Embeddings

4.2.6.1 Evaluation Settings

Dataset Next, we evaluated the learned embeddings on the transitive verb disambiguation dataset
GS’1115 provided by Grefenstette and Sadrzadeh (2011). GS’11 consists of 200 pairs of transitive
verbs and each verb pair takes the same subject and object. For example, the transitive verb “run”
is known as a polysemous word and this task requires one to identify the meanings of “run” and
“operate” as similar to each other when taking “people” as their subject and “company” as their
object. In the same setting, however, the meanings of “run” and “move” are not similar to each other.
Each pair has multiple human ratings indicating how similar the phrases of the pair are.

Evaluation metric The evaluation was performed by calculating Spearman’s rank correlation scores
between the human ratings and the cosine similarity scores of v(SV O) in Eq. (4.24). Following the
previous studies, we used the gold-standard ratings in two ways: averaging the human ratings for each
SVO tuple (GS’11a) and treating each human rating separately (GS’11b).

Ensemble technique We used the same ensemble technique described in Section 4.2.5.1. In this
task we produced two ensemble results: Ensemble A and Ensemble B. The former used the averaged
cosine similarity from the results of the BNC and Wikipedia data, and the latter further incorporated
the result of the BNC-Wikipedia data.

Baselines We compared our adaptive joint learning method with two baseline methods. One is the
method in Hashimoto and Tsuruoka (2015) and it is equivalent to fixing α(V O) to 1 in our method.
The other is fixing α(V O) to 0.5 in our method, which serves as a baseline to evaluate how effective
the proposed adaptive weighting method is.

4.2.6.2 Result Overview

Table 4.11 shows our results and the state of the art, and our method outperforms almost all of the
previous methods in both datasets. Again, the ensemble technique further improves the results, and
overall, Ensemble B yields the best results.

15http://www.cs.ox.ac.uk/activities/compdistmeaning/GS2011data.txt
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The scores in Hashimoto and Tsuruoka (2015), the baseline results with α(V O) = 1 in our
method, have been the best to date. As shown in Table 4.11, our method outperforms the baseline
results with α(V O) = 0.5 as well as those with α(V O) = 1. We see that our method improves the
baseline scores by adaptively combining compositional and non-compositional embeddings. Along
with the results in Table 4.8, these results show that our method allows us to improve the composition
function by jointly learning non-compositional embeddings and the scoring function for composition-
ality detection.

4.2.6.3 Analysis of the Learned Embeddings

We inspected the effects of adaptively weighting the compositional and non-compositional embed-
dings. Table 4.12 shows the five closest neighbor phrases in terms of the cosine similarity for the three
idiomatic phrases “take toll”, “catch eye”, and “bear fruit” as well as the two non-idiomatic phrases
“make noise” and “buy car”. The examples trained with the Wikipedia data are shown for our method
and the two baselines, i.e., α(V O) = 1 and α(V O) = 0.5. As shown in Table 4.9, the composition-
ality levels of the first three phrases are low and their non-compositional embeddings are dominantly
used to represent their meaning.

One observation with α(V O) = 1 is that head words (i.e. verbs) are emphasized in the shown
examples except “take toll” and “make noise”. As with other embedding-based methods, the compo-
sitional embeddings are highly affected by their component words. As a result, the phrases consisting
of the same verb and the similar objects are often listed as the closest neighbors. By contrast, our
method flexibly allows us to adaptively omit the information about the component words. Therefore,
our method puts more weight on capturing the idiomatic aspects of the example phrases by adaptively
using the non-compositional embeddings.

The results of α(V O) = 0.5 are similar to those with our proposed method, but we can see some
differences. For example, the phrase list for “make noise” of our proposed method captures offensive
meanings, whereas that of α(V O) = 0.5 is somewhat ambiguous. As another example, the phrase
lists for “buy car” show that our method better captures the semantic similarity between the objects
than α(V O) = 0.5. This is achieved by adaptively assigning a relatively large compositionality score
(0.71) to the phrase to use the information about the object “car”.

We should note that “make noise” is highly compositional but our method outputs α(make noise) =

0.33, and the phrase list of α(V O) = 1 is the most appropriate in this case. Improving the composi-
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tionality detection function should thus further improve the learned embeddings.

4.2.7 Related Work

Learning embeddings of words and phrases has been widely studied, and the phrase embeddings have
proven effective in many language processing tasks, such as machine translation [Cho et al., 2014b;
Sutskever et al., 2014], sentiment analysis and semantic textual similarity [Tai et al., 2015]. Most
of the phrase embeddings are constructed by word-level information via various kinds of compo-
sition functions like long short-term memory [Hochreiter and Schmidhuber, 1997] recurrent neural
networks. Such composition functions should be powerful enough to efficiently encode information
about all the words into the phrase embeddings. By simultaneously considering the compositionality
of the phrases, our method would be helpful in saving the composition models from having to be
powerful enough to perfectly encode the non-compositional phrases. As a first step towards this pur-
pose, in this paper we have shown the effectiveness of our method on the task of learning verb phrase
embeddings.

Many studies have focused on detecting the compositionality of a variety of phrases [Lin, 1999],
including the ones on verb phrases [Diab and Bhutada, 2009; McCarthy et al., 2003] and compound
nouns [Farahmand et al., 2015; Reddy et al., 2011]. Compared to statistical feature-based meth-
ods [McCarthy et al., 2007; Venkatapathy and Joshi, 2005], recent methods use word and phrase
embeddings [Kiela and Clark, 2013; Yazdani et al., 2015]. The embedding-based methods assume
that word embeddings are given in advance and as a post-processing step, learn or simply employ
composition functions to compute phrase embeddings. In other words, there is no distinction between
compositional and non-compositional phrases. Yazdani et al. (2015) further proposed to incorporate
latent annotations (binary labels) for the compositionality of the phrases. However, binary judgments
cannot consider numerical scores of the compositionality. By contrast, our method adaptively weights
the compositional and non-compositional embeddings using the compositionality scoring function.

4.2.8 Conclusion and Future Work

We have presented a method for adaptively learning compositional and non-compositional phrase
embeddings by jointly detecting compositionality levels of phrases. Our method achieves the state of
the art on a compositionality detection task of verb-object pairs, and also improves upon the previous
state-of-the-art method on a transitive verb disambiguation task. In future work, we will apply our
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method to other kinds of phrases and tasks.
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Method GS’11a GS’11b

Proposed method (Wikipedia) 0.598 0.461
Proposed method (BNC) 0.595 0.463
Proposed method (BNC-Wikipedia) 0.623 0.483
Proposed method (Ensemble A) 0.661 0.511
Proposed method (Ensemble B) 0.680 0.524

α(V O) = 0.5 (Wikipedia) 0.491 0.386
α(V O) = 0.5 (BNC) 0.599 0.462
α(V O) = 0.5 (BNC-Wikipedia) 0.610 0.477
α(V O) = 0.5 (Ensemble A) 0.612 0.474
α(V O) = 0.5 (Ensemble B) 0.638 0.495

α(V O) = 1 (Wikipedia) 0.576 n/a
α(V O) = 1 (BNC) 0.574 n/a

Milajevs et al. (2014) 0.456 n/a
Polajnar et al. (2014) n/a 0.370
Hashimoto et al. (2014) 0.420 0.340
Polajnar et al. (2015) n/a 0.330
Grefenstette and Sadrzadeh (2011) n/a 0.210

Human agreement 0.750 0.620

Table 4.11: Transitive verb disambiguation task. The results for α(V O) = 1 are reported in
Hashimoto and Tsuruoka (2015).
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Proposed method α(V O) = 1 α(V O) = 0.5

take toll

put strain deplete division put strain
place strain necessitate monitoring cause lack

α(take toll) = 0.11 cause strain deplete pool befall army
have affect create pollution exacerbate weakness
exacerbate injury deplete field cause strain

catch eye

catch attention catch ear grab attention
grab attention catch heart make impression

α(catch eye) = 0.14 make impression catch e-mail catch attention
lift spirit catch imagination become legend
become favorite catch attention inspire playing

bear fruit

accentuate effect bear herb increase richness
enhance beauty bear grain reduce biodiversity

α(bear fruit) = 0.19 enhance atmosphere bear spore fuel boom
rejuvenate earth bear variety enhance atmosphere
enhance habitat bear seed worsen violence

make noise

attack intruder make sound burn can
attack trespasser do beating kill monster

α(make noise) = 0.33 avoid predator get bounce wash machine
attack diver get pulse lightn flash
attack pedestrian lose bit cook raman

buy car

buy bike buy truck buy bike
buy machine buy bike buy instrument

α(buy car) = 0.71 buy motorcycle buy automobile buy chip
buy automobile buy motorcycle buy scooter
purchase coins buy vehicle buy motorcycle

Table 4.12: Examples of the closest neighbors in the learned embedding space. All of the results were
obtained by using the Wikipedia data, and the values of α(V O) are the same as those in Table 4.9.
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Chapter 5

Task-Oriented Learning of Dependency
Structures by a Joint Many-Task Model

In this chapter, I propose a method for learning latent (dependency) graph structures for input sen-
tences in a task-oriented manner. First I present a joint many-task model which hierarchically handles
multiple NLP tasks to jointly learn pipelined NLP tasks. Then I propose how to learn a task-oriented
graph-based dependency parser in the multi-task model, by taking machine translation as an exam-
ple task. Section 5.1 and Section 5.2 in this chapter correspond to the following published papers,
respectively.

Section 5.1 Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. 2017.
A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks. In Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 446–456.

Section 5.2 Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017. Neural Machine Translation with
Source-Side Latent Graph Parsing. In Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 125–135.

5.1 A Joint Many-Task Model for NLP

Summary Transfer and multi-task learning have traditionally focused on either a single source-
target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics
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Figure 5.1: Overview of the joint many-task model predicting different linguistic outputs at succes-
sively deeper layers.

would benefit each other by being trained in a single model. We introduce a joint many-task model
together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher
layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We
use a simple regularization term to allow for optimizing all model weights to improve one task’s loss
without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains
state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and
entailment tasks.
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5.1.1 Introduction

The potential for leveraging multiple levels of representation has been demonstrated in various ways
in the field of Natural Language Processing (NLP). For example, Part-Of-Speech (POS) tags are used
for syntactic parsers. The parsers are used to improve higher-level tasks, such as natural language
inference [Chen et al., 2016] and machine translation [Eriguchi et al., 2016b]. These systems are
often pipelines and not trained end-to-end.

Deep NLP models have yet shown benefits from predicting many increasingly complex tasks
each at a successively deeper layer. Existing models often ignore linguistic hierarchies by predicting
different tasks either entirely separately or at the same depth [Collobert et al., 2011].

We introduce a Joint Many-Task (JMT) model, outlined in Figure 5.1.1, which predicts increas-
ingly complex NLP tasks at successively deeper layers. Unlike traditional pipeline systems, our single
JMT model can be trained end-to-end for POS tagging, chunking, dependency parsing, semantic relat-
edness, and textual entailment, by considering linguistic hierarchies. We propose an adaptive training
and regularization strategy to grow this model in its depth. With the help of this strategy we avoid
catastrophic interference between the tasks. Our model is motivated by Søgaard and Goldberg (2016)
who showed that predicting two different tasks is more accurate when performed in different lay-
ers than in the same layer [Collobert et al., 2011]. Experimental results show that our single model
achieves competitive results for all of the five different tasks, demonstrating that using linguistic hier-
archies is more important than handling different tasks in the same layer.

5.1.2 The Joint Many-Task Model

This section describes the inference procedure of our model, beginning at the lowest level and working
our way to higher layers and more complex tasks; our model handles the five different tasks in the
order of POS tagging, chunking, dependency parsing, semantic relatedness, and textual entailment,
by considering linguistic hierarchies. The POS tags are used for chunking, and the chunking tags
are used for dependency parsing [Attardi and Dell ’Orletta, 2008]. Tai et al. (2015) have shown that
dependencies improve the relatedness task. The relatedness and entailment tasks are closely related to
each other. If the semantic relatedness between two sentences is very low, they are unlikely to entail
each other. Based on this observation, we make use of the information from the relatedness task for
improving the entailment task.
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5.1.2.1 Word Representations

For each word wt in the input sentence s of length L, we use two types of embeddings.
Word embeddings: We use Skip-gram [Mikolov et al., 2013b] to train word embeddings.
Character embeddings: Character n-gram embeddings are trained by the same Skip-gram objective.
We construct the character n-gram vocabulary in the training data and assign an embedding for each
entry. The final character embedding is the average of the unique character n-gram embeddings of
wt. For example, the character n-grams (n = 1, 2, 3) of the word “Cat” are {C, a, t, #B#C, Ca,
at, t#E#, #B#Ca, Cat, at#E#}, where “#B#” and “#E#” represent the beginning and the end of each
word, respectively. Using the character embeddings efficiently provides morphological features. Each
word is subsequently represented as xt, the concatenation of its corresponding word and character
embeddings shared across the tasks.1

5.1.2.2 Word-Level Task: POS Tagging

The first layer of the model is a bi-directional LSTM [Graves and Schmidhuber, 2005; Hochreiter and
Schmidhuber, 1997] whose hidden states are used to predict POS tags. We use the following Long
Short-Term Memory (LSTM) units for the forward direction:

it = σ (Wigt + bi) , ft = σ (Wfgt + bf ) ,

ut = tanh (Wugt + bu) ,

ct = it ⊙ ut + ft ⊙ ct−1, (5.1)

ot = σ (Wogt + bo) , ht = ot ⊙ tanh (ct) ,

where we define the input gt as gt = [
−→
h t−1;xt], i.e. the concatenation of the previous hidden state

and the word representation of wt. The backward pass is expanded in the same way, but a different
set of weights are used.

For predicting the POS tag of wt, we use the concatenation of the forward and backward states in
a one-layer bi-LSTM layer corresponding to the t-th word: ht = [

−→
h t;
←−
h t]. Then each ht (1 ≤ t ≤ L)

is fed into a standard softmax classifier with a single ReLU layer which outputs the probability vector
y(1) for each of the POS tags.

1Bojanowski et al. (2017) previously proposed to train the character n-gram embeddings by the Skip-gram objective.
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5.1.2.3 Word-Level Task: Chunking

Chunking is also a word-level classification task which assigns a chunking tag (B-NP, I-VP, etc.) for
each word. The tag specifies the region of major phrases (e.g., noun phrases) in the sentence.

Chunking is performed in the second bi-LSTM layer on top of the POS layer. When stacking the
bi-LSTM layers, we use Eq. (5.1) with input g(2)t = [h

(2)
t−1;h

(1)
t ;xt; y

(pos)
t ], where h

(1)
t is the hidden

state of the first (POS) layer. We define the weighted label embedding y
(pos)
t as follows:

y
(pos)
t =

C∑
j=1

p(y
(1)
t = j|h(1)t )ℓ(j), (5.2)

where C is the number of the POS tags, p(y(1)t = j|h(1)t ) is the probability value that the j-th POS tag
is assigned to wt, and ℓ(j) is the corresponding label embedding. The probability values are predicted
by the POS layer, and thus no gold POS tags are needed. This output embedding is similar to the
K-best POS tag feature which has been shown to be effective in syntactic tasks [Andor et al., 2016;
Alberti et al., 2015]. For predicting the chunking tags, we employ the same strategy as POS tagging
by using the concatenated bi-directional hidden states h(2)t = [

−→
h

(2)
t ;
←−
h

(2)
t ] in the chunking layer. We

also use a single ReLU hidden layer before the softmax classifier.

5.1.2.4 Syntactic Task: Dependency Parsing

Dependency parsing identifies syntactic relations (such as an adjective modifying a noun) between
word pairs in a sentence. We use the third bi-LSTM layer to classify relations between all pairs of
words. The input vector for the LSTM includes hidden states, word representations, and the label
embeddings for the two previous tasks: g(3)t = [h

(3)
t−1;h

(2)
t ;xt; (y

(pos)
t + y

(chk)
t )], where we computed

the chunking vector in a similar fashion as the POS vector in Eq. (5.2).
We predict the parent node (head) for each word. Then a dependency label is predicted for each

child-parent pair. This approach is related to Dozat and Manning (2017) and Zhang et al. (2017),
where the main difference is that our model works on a multi-task framework. To predict the parent
node of wt, we define a matching function between wt and the candidates of the parent node as
m (t, j) = h

(3)
t · (Wdh

(3)
j ), where Wd is a parameter matrix. For the root, we define h

(3)
L+1 = r as a

parameterized vector. To compute the probability that wj (or the root node) is the parent of wt, the
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scores are normalized:
p(j|h(3)t ) =

exp (m (t, j))∑L+1
k=1,k ̸=t exp (m (t, k))

. (5.3)

The dependency labels are predicted using [h
(3)
t ;h

(3)
j ] as input to a softmax classifier with a single

ReLU layer. We greedily select the parent node and the dependency label for each word. When the
parsing result is not a well-formed tree, we apply the first-order Eisner’s algorithm [Eisner, 1996] to
obtain a well-formed tree from it.

5.1.2.5 Semantic Task: Semantic relatedness

The next two tasks model the semantic relationships between two input sentences. The first task mea-
sures the semantic relatedness between two sentences. The output is a real-valued relatedness score
for the input sentence pair. The second task is textual entailment, which requires one to determine
whether a premise sentence entails a hypothesis sentence. There are typically three classes: entail-
ment, contradiction, and neutral. We use the fourth and fifth bi-LSTM layer for the relatedness and
entailment task, respectively.

Now it is required to obtain the sentence-level representation rather than the word-level repre-
sentation h

(4)
t used in the first three tasks. We compute the sentence-level representation h

(4)
s as the

element-wise maximum values across all of the word-level representations in the fourth layer:

h
(4)
s = max

(
h
(4)
1 , h

(4)
2 , . . . , h

(4)
L

)
. (5.4)

This max-pooling technique has proven effective in text classification tasks [Lai et al., 2015].
To model the semantic relatedness between s and s′, we follow Tai et al. (2015). The feature

vector for representing the semantic relatedness is computed as follows:

d1(s, s
′) =

[∣∣∣h(4)s − h
(4)
s′

∣∣∣ ;h(4)s ⊙ h
(4)
s′

]
, (5.5)

where
∣∣∣h(4)s − h

(4)
s′

∣∣∣ is the absolute values of the element-wise subtraction, and h
(4)
s ⊙ h

(4)
s′ is the

element-wise multiplication. Then d1(s, s
′) is fed into a softmax classifier with a single Maxout

hidden layer [Goodfellow et al., 2013] to output a relatedness score (from 1 to 5 in our case).
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5.1.2.6 Semantic Task: Textual entailment

For entailment classification, we also use the max-pooling technique as in the semantic relatedness
task. To classify the premise-hypothesis pair (s, s′) into one of the three classes, we compute the
feature vector d2(s, s′) as in Eq. (5.5) except that we do not use the absolute values of the element-
wise subtraction, because we need to identify which is the premise (or hypothesis). Then d2(s, s

′) is
fed into a softmax classifier.

To use the output from the relatedness layer directly, we use the label embeddings for the relat-
edness task. More concretely, we compute the class label embeddings for the semantic relatedness
task similar to Eq. (5.2). The final feature vectors that are concatenated and fed into the entailment
classifier are the weighted relatedness label embedding and the feature vector d2(s, s′). We use three
Maxout hidden layers before the classifier.

5.1.3 Training the JMT Model

The model is trained jointly over all datasets. During each epoch, the optimization iterates over each
full training dataset in the same order as the corresponding tasks described in the modeling section.

5.1.3.1 Pre-Training Word Representations

We pre-train word embeddings using the Skip-gram model with negative sampling [Mikolov et al.,
2013b]. We also pre-train the character n-gram embeddings using Skip-gram.2 The only difference
is that each input word embedding is replaced with its corresponding average character n-gram em-
bedding. These embeddings are fine-tuned during the model training. We denote the embedding
parameters as θe. More details about this pre-training method are described as follows:

Pre-training details We pre-train the character n-gram embeddings using the objective function of
the Skip-gram model with negative sampling [Mikolov et al., 2013b]. We build the vocabulary of
the character n-grams based on the training corpus, the case-sensitive English Wikipedia text. This is
because such case-sensitive information is important in handling some types of words like named enti-
ties. Assuming that a word w has its corresponding K character n-grams {cn1, cn2, . . . , cnK}, where

2The training code and the pre-trained embeddings are available at https://github.com/hassyGo/

charNgram2vec.
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any overlaps and unknown ones are removed. Then the word w is represented with an embedding
vc(w) computed as follows:

vc(w) =
1

K

K∑
i=1

v(cni), (5.6)

where v(cni) is the parameterized embedding of the character n-gram cni, and the computation of
vc(w) is exactly the same as the one used in our JMT model explained in Section 2.1.

The remaining part of the pre-training process is the same as the original Skip-gram model. For
each word-context pair (w,w) in the training corpus, N negative context words are sampled, and the
objective function is defined as follows:

∑
(w,w)

(
− log σ(vc(w) · ṽ(w))−

N∑
i=1

log σ(−vc(w) · ṽ(wi))

)
, (5.7)

where σ(·) is the logistic sigmoid function, ṽ(w) is the weight vector for the context word w, and wi is
a negative sample. It should be noted that the weight vectors for the context words are parameterized
for the words without any character information.

5.1.3.2 Training the POS Layer

Let θPOS = (WPOS, bPOS, θe) denote the set of model parameters associated with the POS layer,
where WPOS is the set of the weight matrices in the first bi-LSTM and the classifier, and bPOS is the
set of the bias vectors. The objective function to optimize θPOS is defined as follows:

J1(θPOS) =−
∑
s

∑
t

log p(y
(1)
t = α|h(1)t )

+ λ∥WPOS∥2 + δ∥θe − θ′e∥2,

(5.8)

where p(y
(1)
t = αwt |h

(1)
t ) is the probability value that the correct label α is assigned to wt in the

sentence s, λ∥WPOS∥2 is the L2-norm regularization term, and λ is a hyperparameter.
We call the second regularization term δ∥θe − θ′e∥2 a successive regularization term. The suc-

cessive regularization is based on the idea that we do not want the model to forget the information
learned for the other tasks. In the case of POS tagging, the regularization is applied to θe, and θ′e is the
embedding parameter after training the final task in the top-most layer at the previous training epoch.
δ is a hyperparameter.
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5.1.3.3 Training the Chunking Layer

The objective function is defined as follows:

J2(θchk) = −
∑
s

∑
t

log p(y
(2)
t = α|h(2)t )

+ λ∥Wchk∥2 + δ∥θPOS − θ′POS∥2,

(5.9)

which is similar to that of POS tagging, and θchk is (Wchk, bchk, EPOS, θe), where Wchk and bchk

are the weight and bias parameters including those in θPOS, and EPOS is the set of the POS label
embeddings. θ′POS is the one after training the POS layer at the current training epoch.

5.1.3.4 Training the Dependency Layer

The objective function is defined as follows:

J3(θdep) = −
∑
s

∑
t

log p(α|h(3)t )p(β|h(3)t , h(3)α )

+ λ(∥Wdep∥2 + ∥Wd∥2) + δ∥θchk − θ′chk∥2,

(5.10)

where p(α|h(3)t ) is the probability value assigned to the correct parent node α for wt, and p(β|h(3)t , h
(3)
α )

is the probability value assigned to the correct dependency label β for the child-parent pair (wt, α).
θdep is defined as (Wdep, bdep,Wd, r, EPOS, Echk, θe), where Wdep and bdep are the weight and bias
parameters including those in θchk, and Echk is the set of the chunking label embeddings.

5.1.3.5 Training the Relatedness Layer

Following Tai et al. (2015), the objective function is defined as follows:

J4(θrel) =
∑
(s,s′)

KL
(
p̂(s, s′)

∥∥∥p(h(4)s , h
(4)
s′ )

)

+ λ∥Wrel∥2 + δ∥θdep − θ′dep∥2,

(5.11)

where p̂(s, s′) is the gold distribution over the defined relatedness scores, p(h(4)s , h
(4)
s′ ) is the pre-

dicted distribution given the the sentence representations, and KL
(
p̂(s, s′)

∥∥∥p(h(4)s , h
(4)
s′ )

)
is the KL-

divergence between the two distributions. θrel is defined as (Wrel, brel, EPOS, Echk, θe).
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5.1.3.6 Training the Entailment Layer

The objective function is defined as follows:

J5(θent) =−
∑
(s,s′)

log p(y
(5)
(s,s′) = α|h(5)s , h

(5)
s′ )

+ λ∥Went∥2 + δ∥θrel − θ′rel∥2,

(5.12)

where p(y
(5)
(s,s′) = α|h(5)s , h

(5)
s′ ) is the probability value that the correct label α is assigned to the

premise-hypothesis pair (s, s′). θent is defined as (Went, bent, EPOS, Echk, Erel, θe), where Erel is the
set of the relatedness label embeddings.

5.1.4 Related Work

Many deep learning approaches have proven to be effective in a variety of NLP tasks and are becom-
ing more and more complex. They are typically designed to handle single tasks, or some of them
are designed as general-purpose models [Kumar et al., 2016; Sutskever et al., 2014] but applied to
different tasks independently.

For handling multiple NLP tasks, multi-task learning models with deep neural networks have been
proposed [Collobert et al., 2011; Luong et al., 2016], and more recently Søgaard and Goldberg (2016)
have suggested that using different layers for different tasks is more effective than using the same layer
in jointly learning closely-related tasks, such as POS tagging and chunking. However, the number of
tasks was limited or they have very similar task settings like word-level tagging, and it was not clear
how lower-level tasks could be also improved by combining higher-level tasks.

More related to our work, Godwin et al. (2016) also followed Søgaard and Goldberg (2016) to
jointly learn POS tagging, chunking, and language modeling, and Zhang and Weiss (2016) have shown
that it is effective to jointly learn POS tagging and dependency parsing by sharing internal represen-
tations. In the field of relation extraction, Miwa and Bansal (2016) proposed a joint learning model
for entity detection and relation extraction. All of them suggest the importance of multi-task learning,
and we investigate the potential of handling different types of NLP tasks rather than closely-related
ones in a single hierarchical deep model.

In the field of computer vision, some transfer and multi-task learning approaches have also been
proposed [Li and Hoiem, 2016; Misra et al., 2016]. For example, Misra et al. (2016) proposed a
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multi-task learning model to handle different tasks. However, they assume that each data sample has
annotations for the different tasks, and do not explicitly consider task hierarchies.

Recently, Rusu et al. (2016) have proposed a progressive neural network model to handle mul-
tiple reinforcement learning tasks, such as Atari games. Like our JMT model, their model is also
successively trained according to different tasks using different layers called columns in their paper.
In their model, once the first task is completed, the model parameters for the first task are fixed, and
then the second task is handled with new model parameters. Therefore, accuracy of the previously
trained tasks is never improved. In NLP tasks, multi-task learning has the potential to improve not
only higher-level tasks, but also lower-level tasks. Rather than fixing the pre-trained model parame-
ters, our successive regularization allows our model to continuously train the lower-level tasks without
significant accuracy drops.

5.1.5 Experimental Settings

5.1.5.1 Datasets

POS tagging: To train the POS tagging layer, we used the Wall Street Journal (WSJ) portion of
Penn Treebank, and followed the standard split for the training (Section 0-18), development (Section
19-21), and test (Section 22-24) sets. The evaluation metric is the word-level accuracy.
Chunking: For chunking, we also used the WSJ corpus, and followed the standard split for the
training (Section 15-18) and test (Section 20) sets as in the CoNLL 2000 shared task. We used Section
19 as the development set and employed the IOBES tagging scheme. The evaluation metric is the F1
score defined in the shared task.
Dependency parsing: We also used the WSJ corpus for dependency parsing, and followed the stan-
dard split for the training (Section 2-21), development (Section 22), and test (Section 23) sets. We
obtained Stanford style dependencies using the version 3.3.0 of the Stanford converter. The evalua-
tion metrics are the Unlabeled Attachment Score (UAS) and the Labeled Attachment Score (LAS),
and punctuations are excluded for the evaluation.
Semantic relatedness: For the semantic relatedness task, we used the SICK dataset [Marelli et al.,
2014], and followed the standard split for the training, development, and test sets. The evaluation
metric is the Mean Squared Error (MSE) between the gold and predicted scores.
Textual entailment: For textual entailment, we also used the SICK dataset and exactly the same data
split as the semantic relatedness dataset. The evaluation metric is the accuracy.
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5.1.5.2 Training Details

We set the dimensionality of the embeddings and the hidden states in the bi-LSTMs to 100. At each
training epoch, we trained our model in the order of POS tagging, chunking, dependency parsing,
semantic relatedness, and textual entailment. We used mini-batch stochastic gradient decent and em-
pirically found it effective to use a gradient clipping method with growing clipping values for the
different tasks; concretely, we employed the simple function: min(3.0, depth), where depth is the
number of bi-LSTM layers involved in each task, and 3.0 is the maximum value. We applied our
successive regularization to our model, along with L2-norm regularization and dropout [Srivastava et
al., 2014]. More details are summarized as follows:

Pre-training embeddings We used the word2vec toolkit to pre-train the word embeddings. We
created our training corpus by selecting lowercased English Wikipedia text and obtained 100-dimensional
Skip-gram word embeddings trained with the context window size 1, the negative sampling method
(15 negative samples), and the sub-sampling method (10−5 of the sub-sampling coefficient). We also
pre-trained the character n-gram embeddings using the same parameter settings with the case-sensitive
Wikipedia text. We trained the character n-gram embeddings for n = 1, 2, 3, 4 in the pre-training step.

Embedding initialization We used the pre-trained word embeddings to initialize the word embed-
dings, and the word vocabulary was built based on the training data of the five tasks. All words in the
training data were included in the word vocabulary, and we employed the word-dropout method [Kiper-
wasser and Goldberg, 2016] to train the word embedding for the unknown words. We also built the
character n-gram vocabulary for n = 2, 3, 4, following Wieting et al. (2016), and the character n-
gram embeddings were initialized with the pre-trained embeddings. All of the label embeddings were
initialized with uniform random values in [−

√
6/(dim+ C),

√
6/(dim+ C)], where dim = 100 is

the dimensionality of the label embeddings and C is the number of labels.

Weight initialization The dimensionality of the hidden layers in the bi-LSTMs was set to 100. We
initialized all of the softmax parameters and bias vectors, except for the forget biases in the LSTMs,
with zeros, and the weight matrix Wd and the root node vector r for dependency parsing were also
initialized with zeros. All of the forget biases were initialized with ones. The other weight matrices
were initialized with uniform random values in [−

√
6/(row + col),

√
6/(row + col)], where row
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and col are the number of rows and columns of the matrices, respectively.

Optimization At each epoch, we trained our model in the order of POS tagging, chunking, depen-
dency parsing, semantic relatedness, and textual entailment. We used mini-batch stochastic gradient
decent to train our model. The mini-batch size was set to 25 for POS tagging, chunking, and the SICK
tasks, and 15 for dependency parsing. We used a gradient clipping strategy with growing clipping
values for the different tasks; concretely, we employed the simple function: min(3.0, depth), where
depth is the number of bi-LSTM layers involved in each task, and 3.0 is the maximum value. The
learning rate at the k-th epoch was set to ε

1.0+ρ(k−1) , where ε is the initial learning rate, and ρ is the
hyperparameter to decrease the learning rate. We set ε to 1.0 and ρ to 0.3. At each epoch, the same
learning rate was shared across all of the tasks.

Regularization We set the regularization coefficient to 10−6 for the LSTM weight matrices, 10−5

for the weight matrices in the classifiers, and 10−3 for the successive regularization term excluding the
classifier parameters of the lower-level tasks, respectively. The successive regularization coefficient
for the classifier parameters was set to 10−2. We also used dropout [Hinton et al., 2012b]. The dropout
rate was set to 0.2 for the vertical connections in the multi-layer bi-LSTMs [Pham et al., 2014], the
word representations and the label embeddings of the entailment layer, and the classifier of the POS
tagging, chunking, dependency parsing, and entailment. A different dropout rate of 0.4 was used for
the word representations and the label embeddings of the POS, chunking, and dependency layers, and
the classifier of the relatedness layer.

5.1.6 Results and Discussion

Table 5.1 shows our results on the test sets of the five tasks.3 The column “Single” shows the results
of handling each task separately using single-layer bi-LSTMs, and the column “JMTall” shows the
results of our JMT model. The single task settings only use the annotations of their own tasks. For
example, when handling dependency parsing as a single task, the POS and chunking tags are not
used. We can see that all results of the five tasks are improved in our JMT model, which shows that
our JMT model can handle the five different tasks in a single model. Our JMT model allows us to

3In chunking evaluation, we only show the results of “Single” and “JMTAB” because the sentences for chunking evalu-
ation overlap the training data for dependency parsing.
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Single JMTall JMTAB JMTABC JMTDE JMTCD JMTCE

A ↑ POS 97.45 97.55 97.52 97.54 n/a n/a n/a

B ↑ Chunking 95.02 n/a 95.77 n/a n/a n/a n/a

C ↑
Dependency UAS 93.35 94.67 n/a 94.71 n/a 93.53 93.57
Dependency LAS 91.42 92.90 n/a 92.92 n/a 91.62 91.69

D ↓ Relatedness 0.247 0.233 n/a n/a 0.238 0.251 n/a

E ↑ Entailment 81.8 86.2 n/a n/a 86.8 n/a 82.4

Table 5.1: Test set results for the five tasks. In the relatedness task, the lower scores are better.

access arbitrary information learned from the different tasks. If we want to use the model just as a
POS tagger, we can use only first bi-LSTM layer.

Table 5.1 also shows the results of five subsets of the different tasks. For example, in the case of
“JMTABC”, only the first three layers of the bi-LSTMs are used to handle the three tasks. In the case
of “JMTDE”, only the top two layers are used as a two-layer bi-LSTM by omitting all information
from the first three layers. The results of the closely-related tasks (“AB”, “ABC”, and “DE”) show
that our JMT model improves both of the high-level and low-level tasks. The results of “JMTCD” and
“JMTCE” show that the parsing task can be improved by the semantic tasks.

It should be noted that in our analysis on the greedy parsing results of the “JMTABC” setting,
we have found that more than 95% are well-formed dependency trees on the development set. In the
1,700 sentences of the development data, 11 results have multiple root notes, 11 results have no root
nodes, and 61 results have cycles. These 83 parsing results are converted into well-formed trees by
Eisner’s algorithm, and the accuracy does not significantly change (UAS: 94.52%→94.53%, LAS:
92.61%→92.62%).

5.1.6.1 Comparison with Published Results

POS tagging Table 5.2 shows the results of POS tagging, and our JMT model achieves the score
close to the state-of-the-art results. The best result to date has been achieved by Ling et al. (2015),
which uses character-based LSTMs. Incorporating the character-based encoders into our JMT model
would be an interesting direction, but we have shown that the simple pre-trained character n-gram
embeddings lead to the promising result.
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Method Acc. ↑
JMTall 97.55
Ling et al. (2015) 97.78
Kumar et al. (2016) 97.56
Ma and Hovy (2016) 97.55
Søgaard (2011) 97.50
Collobert et al. (2011) 97.29
Tsuruoka et al. (2011) 97.28
Toutanova et al. (2003) 97.27

Table 5.2: POS tagging results.

Method F1 ↑
JMTAB 95.77
Single 95.02
Søgaard and Goldberg (2016) 95.56
Suzuki and Isozaki (2008) 95.15
Collobert et al. (2011) 94.32
Kudo and Matsumoto (2001) 93.91
Tsuruoka et al. (2011) 93.81

Table 5.3: Chunking results.

Method UAS ↑ LAS ↑
JMTall 94.67 92.90
Single 93.35 91.42
Dozat and Manning (2017) 95.74 94.08
Andor et al. (2016) 94.61 92.79
Alberti et al. (2015) 94.23 92.36
Zhang et al. (2017) 94.10 91.90
Weiss et al. (2015) 93.99 92.05
Dyer et al. (2015) 93.10 90.90
Bohnet (2010) 92.88 90.71

Table 5.4: Dependency results.

Method MSE ↓
JMTall 0.233
JMTDE 0.238
Zhou et al. (2016) 0.243
Tai et al. (2015) 0.253

Table 5.5: Semantic relatedness results.

Method Acc. ↑
JMTall 86.2
JMTDE 86.8
Yin et al. (2016) 86.2
Lai and Hockenmaier (2014) 84.6

Table 5.6: Textual entailment results.

Chunking Table 5.3 shows the results of chunking, and our JMT model achieves the state-of-the-art
result. Søgaard and Goldberg (2016) proposed to jointly learn POS tagging and chunking in different
layers, but they only showed improvement for chunking. By contrast, our results show that the low-
level tasks are also improved.

Dependency parsing Table 5.4 shows the results of dependency parsing by using only the WSJ cor-
pus in terms of the dependency annotations.4 It is notable that our simple greedy dependency parser
outperforms the model in Andor et al. (2016) which is based on beam search with global information.
The result suggests that the bi-LSTMs efficiently capture global information necessary for depen-
dency parsing. Moreover, our single task result already achieves high accuracy without the POS and

4Choe and Charniak (2016) employed a tri-training method to expand the training data with 400,000 trees in addition
to the WSJ data, and they reported 95.9 UAS and 94.1 LAS by converting their constituency trees into dependency trees.
Kuncoro et al. (2017) also reported high accuracy (95.8 UAS and 94.6 LAS) by using a converter.
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chunking information. The best result to date has been achieved by the model propsoed in Dozat and
Manning (2017), which uses higher dimensional representations than ours and proposes a more so-
phisticated attention mechanism called biaffine attention. It should be promising to incorporate their
attention mechanism into our parsing component.

Semantic relatedness Table 5.5 shows the results of the semantic relatedness task, and our JMT
model achieves the state-of-the-art result. The result of “JMTDE” is already better than the previous
state-of-the-art results. Both of Zhou et al. (2016) and Tai et al. (2015) explicitly used syntactic trees,
and Zhou et al. (2016) relied on attention mechanisms. However, our method uses the simple max-
pooling strategy, which suggests that it is worth investigating such simple methods before developing
complex methods for simple tasks. Currently, our JMT model does not explicitly use the learned
dependency structures, and thus the explicit use of the output from the dependency layer should be an
interesting direction of future work.

Textual entailment Table 5.6 shows the results of textual entailment, and our JMT model achieves
the state-of-the-art result. The previous state-of-the-art result in Yin et al. (2016) relied on attention
mechanisms and dataset-specific data pre-processing and features. Again, our simple max-pooling
strategy achieves the state-of-the-art result boosted by the joint training. These results show the im-
portance of jointly handling related tasks.

5.1.6.2 Analysis on the Model Architectures

We investigate the effectiveness of our model in detail. All of the results shown in this section are the
development set results.

Shortcut connections Our JMT model feeds the word representations into all of the bi-LSTM lay-
ers, which is called the shortcut connection. Table 5.7 shows the results of “JMTall” with and without
the shortcut connections. The results without the shortcut connections are shown in the column of
“w/o SC”. These results clearly show that the importance of the shortcut connections, and in particu-
lar, the semantic tasks in the higher layers strongly rely on the shortcut connections. That is, simply
stacking the LSTM layers is not sufficient to handle a variety of NLP tasks in a single model. In the
supplementary material, it is qualitatively shown how the shortcut connections work in our model.
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JMTall w/o SC w/o LE w/o SC&LE

POS 97.88 97.79 97.85 97.87

Chunking 97.59 97.08 97.40 97.33

Dependency UAS 94.51 94.52 94.09 94.04
Dependency LAS 92.60 92.62 92.14 92.03

Relatedness 0.236 0.698 0.261 0.765

Entailment 84.6 75.0 81.6 71.2

Table 5.7: Effectiveness of the Shortcut Connections (SC) and the Label Embeddings (LE).

JMTABC w/o SC&LE All-3

POS 97.90 97.87 97.62

Chunking 97.80 97.41 96.52

Dependency UAS 94.52 94.13 93.59
Dependency LAS 92.61 92.16 91.47

Table 5.8: Effectiveness of using different layers for different tasks.

Output label embeddings Table 5.7 also shows the results without using the output labels of the
POS, chunking, and relatedness layers, in the column of “w/o LE”. These results show that the explicit
use of the output information from the classifiers of the lower layers is important in our JMT model.
The results in the column of “w/o SC&LE” are the ones without both of the shortcut connections and
the label embeddings.

Different layers for different tasks Table 5.8 shows the results of our “JMTABC” setting and that
of not using the shortcut connections and the label embeddings (“w/o SC&LE”) as in Table 5.7. In
addition, in the column of “All-3”, we show the results of using the highest (i.e., the third) layer for all
of the three tasks without any shortcut connections and label embeddings, and thus the two settings
“w/o SC&LE” and “All-3” require exactly the same number of the model parameters. The “All-3”
setting is similar to the multi-task model of Collobert et al. (2011) in that task-specific output layers
are used but most of the model parameters are shared. The results show that using the same layers for
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JMTall w/o SR w/o VC

POS 97.88 97.85 97.82

Chunking 97.59 97.13 97.45

Dependency UAS 94.51 94.46 94.38
Dependency LAS 92.60 92.57 92.48

Relatedness 0.236 0.239 0.241

Entailment 84.6 84.2 84.8

Table 5.9: Effectiveness of the Successive Regularization (SR) and the Vertical Connections (VC).

JMTall Random

POS 97.88 97.83

Chunking 97.59 97.71

Dependency UAS 94.51 94.66
Dependency LAS 92.60 92.80

Relatedness 0.236 0.298

Entailment 84.6 83.2

Table 5.10: Effects of the order of training.

the three different tasks hampers the effectiveness of our JMT model, and the design of the model is
much more important than the number of the model parameters.

Successive regularization In Table 5.9, the column of “w/o SR” shows the results of omitting the
successive regularization terms described in Section 5.1.3. We can see that the accuracy of chunking is
improved by the successive regularization, while other results are not affected so much. The chunking
dataset used here is relatively small compared with other low-level tasks, POS tagging and dependency
parsing. Thus, these results suggest that the successive regularization is effective when dataset sizes
are imbalanced.

Vertical connections We investigated our JMT results without using the vertical connections in the
five-layer bi-LSTMs. More concretely, when constructing the input vectors gt, we do not use the bi-
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Single Single+

POS 97.52

Chunking 95.65 96.08

Dependency UAS 93.38 93.88
Dependency LAS 91.37 91.83

Relatedness 0.239 0.665

Entailment 83.8 66.4

Table 5.11: Effects of depth for the single tasks.

Single W&C Only W

POS 97.52 96.26

Chunking 95.65 94.92

Dependency UAS 93.38 92.90
Dependency LAS 91.37 90.44

Table 5.12: Effects of the character embeddings.

LSTM hidden states of the previous layers. Table 5.9 also shows the JMTall results with and without
the vertical connections. As shown in the column of “w/o VC”, we observed the competitive results.
Therefore, in the target tasks used in our model, sharing the word representations and the output label
embeddings is more effective than just stacking the bi-LSTM layers.

Order of training Our JMT model iterates the training process in the order described in Sec-
tion 5.1.3. Our hypothesis is that it is important to start from the lower-level tasks and gradually
move to the higher-level tasks. Table 5.10 shows the results of training our model by randomly shuf-
fling the order of the tasks for each epoch in the column of “Random”. We see that the scores of
the semantic tasks drop by the random strategy. In our preliminary experiments, we have found that
constructing the mini-batch samples from different tasks also hampers the effectiveness of our model,
which also supports our hypothesis.
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Single (POS) Overall Acc. Acc. for unknown words

W&C 97.52 90.68 (3,502/3,862)

Only W 96.26 71.44 (2,759/3,862)

Table 5.13: POS tagging scores on the development set with and without the character n-gram embed-
dings, focusing on accuracy for unknown words. The overall accuracy scores are taken from Table 12.
There are 3,862 unknown words in the sentences of the development set.

Depth The single task settings shown in Table 5.1 are obtained by using single layer bi-LSTMs,
but in our JMT model, the higher-level tasks use successively deeper layers. To investigate the gap
between the different number of the layers for each task, we also show the results of using multi-layer
bi-LSTMs for the single task settings, in the column of “Single+” in Table 5.11. More concretely,
we use the same number of the layers with our JMT model; for example, three layers are used for
dependency parsing, and five layers are used for textual entailment. As shown in these results, deeper
layers do not always lead to better results, and the joint learning is more important than making the
models complex only for single tasks.

Character n-gram embeddings Finally, Table 5.12 shows the results for the three single tasks with
and without the pre-trained character n-gram embeddings. The column of “W&C” corresponds to
using both of the word and character n-gram embeddings, and that of “Only W” corresponds to using
only the word embeddings. These results clearly show that jointly using the pre-trained word and
character n-gram embeddings is helpful in improving the results. The pre-training of the character
n-gram embeddings is also effective; for example, without the pre-training, the POS accuracy drops
from 97.52% to 97.38% and the chunking accuracy drops from 95.65% to 95.14%.

5.1.6.3 Better Handling Unknown Words with Character N-gram Embeddings

One expectation from the use of the character n-gram embeddings is to better handle unknown words.
We verified this assumption in the single task setting for POS tagging, based on the results reported
in Table 5.12. Table 5.13 shows that the joint use of the word and character n-gram embeddings
improves the score by about 19% in terms of the accuracy for unknown words.

We also show the results of the single task setting for dependency parsing in Table 5.14. Again,
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Overall scores Scores for unknown words
Single (Dependency) UAS LAS UAS LAS

W&C 93.38 91.37 92.21 (900/976) 87.81 (857/976)

Only W 92.90 90.44 91.39 (892/976) 81.05 (791/976)

Table 5.14: Dependency parsing scores on the development set with and without the character n-
gram embeddings, focusing on UAS and LAS for unknown words. The overall scores are taken from
Table 12. There are 976 unknown words in the sentences of the development set.

we can see that using the character-level information is effective, and in particular, the improvement
of the LAS score is large. These results suggest that it is better to use not only the word embeddings,
but also the character n-gram embeddings by default. Recently, the joint use of word and character
information has proven to be effective in language modeling [Miyamoto and Cho, 2016], but just
using the simple character n-gram embeddings is fast and also effective.

5.1.6.4 Analysis on Dependency Parsing

Our dependency parser is based on the idea of predicting a head (or parent) for each word, and thus
the parsing results do not always lead to correct trees. To inspect this aspect, we checked the parsing
results on the development set (1,700 sentences), using the “JMTABC” setting.

In the dependency annotations used in this work, each sentence has only one root node, and we
have found 11 sentences with multiple root nodes and 11 sentences with no root nodes in our parsing
results. We show two examples below:

(a) Underneath the headline “ Diversification , ” it counsels , “ Based on the events of the past week
, all investors need to know their portfolios are balanced to help protect them against the market
’s volatility . ”

(b) Mr. Eskandarian , who resigned his Della Femina post in September , becomes chairman and
chief executive of Arnold .

In the example (a), the two boldfaced words “counsels” and “need” are predicted as child nodes of the
root node, and the underlined word “counsels” is the correct one based on the gold annotations. This
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example sentence (a) consists of multiple internal sentences, and our parser misunderstood that both
of the two verbs are the heads of the sentence.

In the example (b), none of the words is connected to the root node, and the correct child node of
the root is the underlined word “chairman”. Without the internal phrase “who resigned... in Septem-
ber”, the example sentence (b) is very simple, but we have found that such a simplified sentence is
still not parsed correctly. In many cases, verbs are linked to the root nodes, but sometimes other types
of words like nouns can be the candidates. In our model, the single parameterized vector r is used to
represent the root node for each sentence. Therefore, the results of the examples (a) and (b) suggest
that it would be needed to capture various types of root nodes, and using sentence-dependent root
representations would lead to better results in future work.

5.1.6.5 Analysis on Semantic Tasks

We inspected the development set results on the semantic tasks using the “JMTall” setting. In our
model, the highest-level task is the textual entailment task. We show an example premise-hypothesis
pair which is misclassified in our results:

Premise: “A surfer is riding a big wave across dark green water”, and

Hypothesis: “The surfer is riding a small wave”.

The predicted label is entailment, but the gold label is contradiction. This example is very
easy by focusing on the difference between the two words “big” and “small”. However, our model
fails to correctly classify this example because there are few opportunities to learn the difference. Our
model relies on the pre-trained word embeddings based on word co-occurrence statistics [Mikolov et
al., 2013b], and it is widely known that such co-occurrence-based embeddings can rarely discriminate
between antonyms and synonyms [Ono et al., 2015]. Moreover, the other four tasks in our JMT model
do not explicitly provide the opportunities to learn such semantic aspects. Even in the training data
of the textual entailment task, we can find only one example to learn the difference between the two
words, which is not enough to obtain generalization capacities. Therefore, it is worth investigating
the explicit use of external dictionaries or the use of pre-trained word embeddings learned with such
dictionaries [Ono et al., 2015], to see whether our JMT model is further improved not only for the
semantic tasks, but also for the low-level tasks.

87



5.1 A Joint Many-Task Model for NLP
Chapter 5 Task-Oriented Learning of Dependency

Structures by a Joint Many-Task Model

5.1.6.6 How Do Shared Embeddings Change

In our JMT model, the word and character n-gram embedding matrices are shared across all of the
five different tasks. To better qualitatively explain the importance of the shortcut connections shown
in Table 7, we inspected how the shared embeddings change when fed into the different bi-LSTM
layers. More concretely, we checked closest neighbors in terms of the cosine similarity for the word
representations before and after fed into the forward LSTM layers. In particular, we used the corre-
sponding part of Wu in Eq. (1) to perform linear transformation of the input embeddings, because ut

directly affects the hidden states of the LSTMs. Thus, this is a context-independent analysis.
Table 5.15 shows the examples of the word “standing”. The row of “Embedding” shows the

cases of using the shared embeddings, and the others show the results of using the linear-transformed
embeddings. In the column of “Only word”, the results of using only the word embeddings are shown.
The closest neighbors in the case of “Embedding” capture the semantic similarity, but after fed into the
POS layer, the semantic similarity is almost washed out. This is not surprising because it is sufficient
to cluster the words of the same POS tags: here, NN, VBG, etc. In the chunking layer, the similarity in
terms of verbs is captured, and this is because it is sufficient to identify the coarse chunking tags: here,
VP. In the dependency layer, the closest neighbors are adverbs, gerunds of verbs, and nouns, and all
of them can be child nodes of verbs in dependency trees. However, this information is not sufficient
in further classifying the dependency labels. Then we can see that in the column of “Word and char”,
jointly using the character n-gram embeddings adds the morphological information, and as shown in
Table 12, the LAS score is substantially improved.

In the case of semantic tasks, the projected embeddings capture not only syntactic, but also seman-
tic similarities. These results show that different tasks need different aspects of the word similarities,
and our JMT model efficiently transforms the shared embeddings for the different tasks by the simple
linear transformation. Therefore, without the shortcut connections, the information about the word
representations are fed into the semantic tasks after transformed in the lower layers where the se-
mantic similarities are not always important. Indeed, the results of the semantic tasks are very poor
without the shortcut connections.

5.1.6.7 Further Discussions

Training strategies In our JMT model, it is not obvious when to stop the training while trying to
maximize the scores of all the five tasks. We focused on maximizing the accuracy of dependency
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parsing on the development data in our experiments. However, the sizes of the training data are
different across the different tasks; for example, the semantic tasks include only 4,500 sentence pairs,
and the dependency parsing dataset includes 39,832 sentences with word-level annotations. Thus,
in general, dependency parsing requires more training epochs than the semantic tasks, but currently,
our model trains all of the tasks for the same training epochs. The same strategy for decreasing
the learning rate is also shared across all the different tasks, although our growing gradient clipping
method described in Section 5.1.5.2 helps improve the results. Indeed, we observed that better scores
of the semantic tasks can be achieved before the accuracy of dependency parsing reaches the best
score. Developing a method for achieving the best scores for all of the tasks at the same time is
important future work.

More tasks Our JMT model has the potential of handling more tasks than the five tasks used in our
experiments; examples include entity detection and relation extraction as in Miwa and Bansal (2016)
as well as language modeling [Godwin et al., 2016]. It is also a promising direction to train each task
for multiple domains by focusing on domain adaptation [Søgaard and Goldberg, 2016]. In particular,
incorporating language modeling tasks provides an opportunity to use large text data. Such large text
data was used in our experiments to pre-train the word and character n-gram embeddings. However,
it would be preferable to efficiently use it for improving the entire model.

Task-oriented learning of low-level tasks Each task in our JMT model is supervised by its cor-
responding dataset. However, it would be possible to learn low-level tasks by optimizing high-level
tasks, because the model parameters of the low-level tasks can be directly modified by learning the
high-level tasks. One example has already been presented in Hashimoto and Tsuruoka (2017), where
our JMT model is extended to learning task-oriented latent graph structures of sentences by training
our dependency parsing component according to a neural machine translation objective.

5.1.7 Conclusion

We presented a joint many-task model to handle multiple NLP tasks with growing depth in a single
end-to-end model. Our model is successively trained by considering linguistic hierarchies, directly
feeding word representations into all layers, explicitly using low-level predictions, and applying suc-
cessive regularization. In experiments on five NLP tasks, our single model achieves the state-of-the-art
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or competitive results on chunking, dependency parsing, semantic relatedness, and textual entailment.
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Word and char Only word

leaning stood
kneeling stands

Embedding saluting sit
clinging pillar
railing cross-legged

warning ladder
waxing rc6280

POS dunking bethle
proving warning
tipping f-a-18

applauding fight
disdaining favor

Chunking pickin pick
readjusting rejoin
reclaiming answer

guaranteeing patiently
resting hugging

Dependency grounding anxiously
hanging resting
hugging disappointment

stood stood
stands unchallenged

Relatedness unchallenged stands
notwithstanding beside
judging exists

nudging beside
skirting stands

Entailment straddling pillar
contesting swung
footing ovation

Table 5.15: Closest neighbors of the word “standing” in the embedding space and the projected space
in each forward LSTM.
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5.2 Latent Graph Parsing for Machine Translation

Summary This paper presents a novel neural machine translation model which jointly learns trans-
lation and source-side latent graph representations of sentences. Unlike existing pipelined approaches
using syntactic parsers, our end-to-end model learns a latent graph parser as part of the encoder of
an attention-based neural machine translation model, and thus the parser is optimized according to
the translation objective. In experiments, we first show that our model compares favorably with state-
of-the-art sequential and pipelined syntax-based NMT models. We also show that the performance
of our model can be further improved by pre-training it with a small amount of treebank annota-
tions. Our final ensemble model significantly outperforms the previous best models on the standard
English-to-Japanese translation dataset.

5.2.1 Introduction

Neural Machine Translation (NMT) is an active area of research due to its outstanding empirical re-
sults [Bahdanau et al., 2015; Luong et al., 2015; Sutskever et al., 2014]. Most of the existing NMT
models treat each sentence as a sequence of tokens, but recent studies suggest that syntactic informa-
tion can help improve translation accuracy [Eriguchi et al., 2016b; Eriguchi et al., 2017; Sennrich and
Haddow, 2016; Stahlberg et al., 2016]. The existing syntax-based NMT models employ a syntactic
parser trained by supervised learning in advance, and hence the parser is not adapted to the translation
tasks. An alternative approach for leveraging syntactic structure in a language processing task is to
jointly learn syntactic trees of the sentences along with the target task [Socher et al., 2011b; Yogatama
et al., 2017].

Motivated by the promising results of recent joint learning approaches, we present a novel NMT
model that can learn a task-specific latent graph structure for each source-side sentence. The graph
structure is similar to the dependency structure of the sentence, but it can have cycles and is learned
specifically for the translation task. Unlike the aforementioned approach of learning single syntactic
trees, our latent graphs are composed of “soft” connections, i.e., the edges have real-valued weights
(Figure 5.2). Our model consists of two parts: one is a task-independent parsing component, which
we call a latent graph parser, and the other is an attention-based NMT model. The latent parser can
be independently pre-trained with human-annotated treebanks and is then adapted to the translation
task.

In experiments, we demonstrate that our model can be effectively pre-trained by the treebank an-
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All the calculated electronic band structures are metallic  .
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Figure 5.2: An example of the learned latent graphs. Edges with a small weight are omitted.

notations, outperforming a state-of-the-art sequential counterpart and a pipelined syntax-based model.
Our final ensemble model outperforms the previous best results by a large margin on the WAT English-
to-Japanese dataset.

5.2.2 Latent Graph Parser

We model the latent graph parser based on dependency parsing. In dependency parsing, a sentence is
represented as a tree structure where each node corresponds to a word in the sentence and a unique root
node (ROOT) is added. Given a sentence of length N , the parent node Hwi ∈ {w1, . . . , wN ,ROOT}
(Hwi ̸= wi) of each word wi (1 ≤ i ≤ N) is called its head. The sentence is thus represented as a set
of tuples (wi,Hwi , ℓwi), where ℓwi is a dependency label.

In this paper, we remove the constraint of using the tree structure and represent a sentence as a set
of tuples (wi, p(Hwi |wi), p(ℓwi |wi)), where p(Hwi |wi) is the probability distribution of wi’s parent
nodes, and p(ℓwi |wi) is the probability distribution of the dependency labels. For example, p(Hwi =

wj |wi) is the probability that wj is the parent node of wi. Here, we assume that a special token ⟨EOS⟩
is appended to the end of the sentence, and we treat the ⟨EOS⟩ token as ROOT. This approach is similar
to that of graph-based dependency parsing [McDonald et al., 2005] in that a sentence is represented
with a set of weighted arcs between the words. To obtain the latent graph representation of the
sentence, we use a dependency parsing model based on multi-task learning proposed by Hashimoto et
al. (2017).

5.2.2.1 Word Representation

The i-th input word wi is represented with the concatenation of its d1-dimensional word embedding
vdp(wi) ∈ Rd1 and its character n-gram embedding c(wi) ∈ Rd1 : x(wi) = [vdp(wi); c(wi)]. c(wi) is
computed as the average of the embeddings of the character n-grams in wi.
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5.2.2.2 POS Tagging Layer

Our latent graph parser builds upon multi-layer bi-directional Recurrent Neural Networks (RNNs)
with Long Short-Term Memory (LSTM) units [Hochreiter and Schmidhuber, 1997]. In the first layer,
POS tagging is handled by computing a hidden state h

(1)
i = [

−→
h

(1)
i ;
←−
h

(1)
i ] ∈ R2d1 for wi, where

−→
h

(1)
i = LSTM(

−→
h

(1)
i−1, x(wi)) ∈ Rd1 and

←−
h

(1)
i = LSTM(

←−
h

(1)
i+1, x(wi)) ∈ Rd1 are hidden states of

the forward and backward LSTMs, respectively. h(1)i is then fed into a softmax classifier to predict a
probability distribution p

(1)
i ∈ RC(1)

for word-level tags, where C(1) is the number of POS classes.
The model parameters of this layer can be learned not only by human-annotated data, but also by
backpropagation from higher layers, which are described in the next section.

5.2.2.3 Dependency Parsing Layer

Dependency parsing is performed in the second layer. A hidden state h
(2)
i ∈ R2d1 is computed

by
−→
h

(2)
i = LSTM(

−→
h

(2)
i−1, [x(wi); y(wi);

−→
h

(1)
i ]) and

←−
h

(2)
i = LSTM(

←−
h

(2)
i+1, [x(wi); y(wi);

←−
h

(1)
i ]),

where y(wi) = W
(1)
ℓ p

(1)
i ∈ Rd2 is the POS information output from the first layer, and W

(1)
ℓ ∈

Rd2×C(1)
is a weight matrix.

Then, (soft) edges of our latent graph representation are obtained by computing the probabilities

p(Hwi = wj |wi) =
exp (m(i, j))∑
k ̸=i exp (m(i, k))

, (5.13)

where m(i, k) = h
(2)T
k Wdph

(2)
i (1 ≤ k ≤ N + 1, k ̸= i) is a scoring function with a weight matrix

Wdp ∈ R2d1×2d1 . While the models of Hashimoto et al. (2017), Zhang et al. (2017), and Dozat and
Manning (2017) learn the model parameters of their parsing models only by human-annotated data,
we allow the model parameters to be learned by the translation task.

Next, [h(2)i ; z(Hwi)] is fed into a softmax classifier to predict the probability distribution p(ℓwi |wi),
where z(Hwi) ∈ R2d1 is the weighted average of the hidden states of the parent nodes:

∑
j ̸=i p(Hwi =

wj |wi)h
(2)
j . This results in the latent graph representation (wi, p(Hwi |wi), p(ℓwi |wi)) of the input sen-

tence.

5.2.3 NMT with Latent Graph Parser

The latent graph representation described in Section 5.2.2 can be used for any sentence-level tasks,
and here we apply it to an Attention-based NMT (ANMT) model [Luong et al., 2015]. We modify the
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encoder and the decoder in the ANMT model to learn the latent graph representation.

5.2.3.1 Encoder with Dependency Composition

The ANMT model first encodes the information about the input sentence and then generates a sentence
in another language. The encoder represents the word wi with a word embedding venc(wi) ∈ Rd3 . It
should be noted that venc(wi) is different from vdp(wi) because each component is separately mod-
eled. The encoder then takes the word embedding venc(wi) and the hidden state h

(2)
i as the input to a

uni-directional LSMT:
h
(enc)
i = LSTM(h

(enc)
i−1 , [venc(wi);h

(2)
i ]), (5.14)

where h
(enc)
i ∈ Rd3 is the hidden state corresponding to wi. That is, the encoder of our model is a

three-layer LSTM network, where the first two layers are bi-directional.
In the sequential LSTMs, relationships between words in distant positions are not explicitly con-

sidered. In our model, we explicitly incorporate such relationships into the encoder by defining a
dependency composition function:

dep(wi) = tanh(Wdep[h
enc
i ;h(Hwi); p(ℓwi |wi)]), (5.15)

where h(Hwi) =
∑

j ̸=i p(Hwi = wj |wi)h
(enc)
j is the weighted average of the hidden states of the

parent nodes.

Note on character n-gram embeddings In NMT models, sub-word units are widely used to address
rare or unknown word problems [Sennrich et al., 2016]. In our model, the character n-gram embed-
dings are fed through the latent graph parsing component. To the best of our knowledge, the character
n-gram embeddings have never been used in NMT models. Wieting et al. (2016), Bojanowski et al.
(2017), and Hashimoto et al. (2017) have reported that the character n-gram embeddings are useful in
improving several NLP tasks by better handling unknown words.

5.2.3.2 Decoder with Attention Mechanism

The decoder of our model is a single-layer LSTM network, and the initial state is set with h
(enc)
N+1 and

its corresponding memory cell. Given the t-th hidden state h
(dec)
t ∈ Rd3 , the decoder predicts the t-th
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word in the target language using an attention mechanism. The attention mechanism in Luong et al.
(2015) computes the weighted average of the hidden states h(enc)i of the encoder:

s(i, t) =
exp (h

(dec)
t ·h(enc)

i )∑N+1
j=1 exp (h

(dec)
t ·h(enc)

j )
, (5.16)

at =
∑N+1

i=1 s(i, t)h
(enc)
i , (5.17)

where s(i, t) is a scoring function which specifies how much each source-side hidden state contributes
to the word prediction.

In addition, like the attention mechanism over constituency tree nodes [Eriguchi et al., 2016b],
our model uses attention to the dependency composition vectors:

s′(i, t) =
exp (h

(dec)
t ·dep(wi))∑N

j=1 exp (h
(dec)
t ·dep(wj))

, (5.18)

a′t =
∑N

i=1 s
′(i, t)dep(wi), (5.19)

To predict the target word, a hidden state h̃
(dec)
t ∈ Rd3 is then computed as follows:

h̃
(dec)
t = tanh(W̃ [h

(dec)
t ; at; a

′
t]), (5.20)

where W̃ ∈ Rd3×3d3 is a weight matrix. h̃(dec)t is fed into a softmax classifier to predict a target word
distribution. h̃(dec)t is also used in the transition of the decoder LSTMs along with a word embedding
vdec(wt) ∈ Rd3 of the target word wt:

h
(dec)
t+1 = LSTM(h

(dec)
t , [vdec(wt); h̃

(dec)
t ]), (5.21)

where the use of h̃(dec)t is called input feeding proposed by Luong et al. (2015).
The overall model parameters, including those of the latent graph parser, are jointly learned by

minimizing the negative log-likelihood of the prediction probabilities of the target words in the training
data. To speed up the training, we use BlackOut sampling [Ji et al., 2016]. By this joint learning using
Equation (5.15) and (5.19), the latent graph representations are automatically learned according to the
target task.

Implementation Tips Inspired by Zoph et al. (2016), we further speed up BlackOut sampling by
sharing noise samples across words in the same sentences. This technique has proven to be effective
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in RNN language modeling, and we have found that it is also effective in the NMT model. We have
also found it effective to share the model parameters of the target word embeddings and the softmax
weight matrix for word prediction [Inan et al., 2016; Press and Wolf, 2017]. Also, we have found that
a parameter averaging technique [Hashimoto et al., 2013] is helpful in improving translation accuracy.

Translation At test time, we use a novel beam search algorithm which combines statistics of sen-
tence lengths [Eriguchi et al., 2016b] and length normalization [Cho et al., 2014a]. During the beam
search step, we use the following scoring function for a generated word sequence y = (y1, y2, . . . , yLy)

given a source word sequence x = (x1, x2, . . . , xLx):

1

Ly

 Ly∑
i=1

log p(yi|x, y1:i−1) + log p(Ly|Lx)

 , (5.22)

where p(Ly|Lx) is the probability that sentences of length Ly are generated given source-side sen-
tences of length Lx. The statistics are taken by using the training data in advance. In our experiments,
we have empirically found that this beam search algorithm helps the NMT models to avoid generating
translation sentences that are too short.

5.2.4 Experimental Settings

5.2.4.1 Data

We used an English-to-Japanese translation task of the Asian Scientific Paper Excerpt Corpus (AS-
PEC) [Nakazawa et al., 2016b] used in the Workshop on Asian Translation (WAT), since it has been
shown that syntactic information is useful in English-to-Japanese translation [Eriguchi et al., 2016b;
Neubig et al., 2015]. We followed the data preprocessing instruction for the English-to-Japanese
task in Eriguchi et al. (2016b). The English sentences were tokenized by the tokenizer in the Enju
parser [Miyao and Tsujii, 2008], and the Japanese sentences were segmented by the KyTea tool5.
Among the first 1,500,000 translation pairs in the training data, we selected 1,346,946 pairs where the
maximum sentence length is 50. In what follows, we call this dataset the large training dataset. We
further selected the first 20,000 and 100,000 pairs to construct the small and medium training datasets,
respectively. The development data include 1,790 pairs, and the test data 1,812 pairs.

5http://www.phontron.com/kytea/.
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For the small and medium datasets, we built the vocabulary with words whose minimum frequency
is two, and for the large dataset, we used words whose minimum frequency is three for English and
five for Japanese. As a result, the vocabulary of the target language was 8,593 for the small dataset,
23,532 for the medium dataset, and 65,680 for the large dataset. A special token ⟨UNK⟩ was used to
replace words which were not included in the vocabularies. The character n-grams (n = 2, 3, 4) were
also constructed from each training dataset with the same frequency settings.

5.2.4.2 Parameter Optimization and Translation

We turned hyper-parameters of the model using development data. We set (d1, d2) = (100, 50) for
the latent graph parser. The word and character n-gram embeddings of the latent graph parser were
initialized with the pre-trained embeddings in Hashimoto et al. (2017).6 The weight matrices in the
latent graph parser were initialized with uniform random values in [−

√
6√

row+col
,+

√
6√

row+col
], where

row and col are the number of rows and columns of the matrices, respectively. All the bias vectors
and the weight matrices in the softmax layers were initialized with zeros, and the bias vectors of the
forget gates in the LSTMs were initialized by ones [Jozefowicz et al., 2015].

We set d3 = 128 for the small training dataset, d3 = 256 for the medium training dataset, and
d3 = 512 for the large training dataset. The word embeddings and the weight matrices of the NMT
model were initialized with uniform random values in [−0.1,+0.1]. The training was performed by
mini-batch stochastic gradient descent with momentum. For the BlackOut objective [Ji et al., 2016],
the number of the negative samples was set to 2,000 for the small and medium training datasets, and
2,500 for the large training dataset. The mini-batch size was set to 128, and the momentum rate was set
to 0.75 for the small and medium training datasets and 0.70 for the large training dataset. A gradient
clipping technique was used with a clipping value of 1.0. The initial learning rate was set to 1.0, and
the learning rate was halved when translation accuracy decreased. We used the BLEU scores obtained
by greedy translation as the translation accuracy and checked it at every half epoch of the model
training. We saved the model parameters at every half epoch and used the saved model parameters
for the parameter averaging technique. For regularization, we used L2-norm regularization with a
coefficient of 10−6 and applied dropout [Srivastava et al., 2014] to Equation (5.20) with a dropout rate
of 0.2.

The beam size for the beam search algorithm was 12 for the small and medium training datasets,

6The pre-trained embeddings can be found at https://github.com/hassyGo/charNgram2vec.
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and 50 for the large training dataset. We used BLEU [Papineni et al., 2002], RIBES [Isozaki et al.,
2010], and perplexity scores as our evaluation metrics. Note that lower perplexity scores indicate
better accuracy.

5.2.4.3 Pre-Training of Latent Graph Parser

The latent graph parser in our model can be optionally pre-trained by using human annotations for
dependency parsing. In this paper we used the widely-used Wall Street Journal (WSJ) training data to
jointly train the POS tagging and dependency parsing components. We used the standard training split
(Section 0-18) for POS tagging. We followed Chen and Manning (2014) to generate the training data
(Section 2-21) for dependency parsing. From each training dataset, we selected the first K sentences
to pre-train our model. The training dataset for POS tagging includes 38,219 sentences, and that for
dependency parsing includes 39,832 sentences.

The parser including the POS tagger was first trained for 10 epochs in advance according to the
multi-task learning procedure of Hashimoto et al. (2017), and then the overall NMT model was trained.
When pre-training the POS tagging and dependency parsing components, we did not apply dropout to
the model and did not fine-tune the word and character n-gram embeddings to avoid strong overfitting.

5.2.4.4 Model Configurations

LGP-NMT is our proposed model that learns the Latent Graph Parsing for NMT.

LGP-NMT+ is constructed by pre-training the latent parser in LGP-NMT as described in Sec-
tion 5.2.4.3.

SEQ is constructed by removing the dependency composition in Equation (5.15), forming a sequen-
tial NMT model with the multi-layer encoder.

DEP is constructed by using pre-trained dependency relations rather than learning them. That is,
p(Hwi = wj |wi) is fixed to 1.0 such that wj is the head of wi. The dependency labels are also given
by the parser which was trained by using all the training samples for parsing and tagging.
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BLEU RIBES Perplexity

LGP-NMT 14.31±1.49 65.96±1.86 41.13±2.66
LGP-NMT+ 16.81±0.31 69.03±0.28 38.33±1.18

SEQ 15.37±1.18 67.01±1.55 38.12±2.52
UNI 15.13±1.67 66.95±1.94 39.25±2.98
DEP 13.34±0.67 64.95±0.75 43.89±1.52

Table 5.16: Evaluation on the development data using the small training dataset (20,000 pairs).

K BLEU RIBES Perplexity

0 14.31±1.49 65.96±1.86 41.13±2.66
5,000 16.99±1.00 69.03±0.93 37.14±1.96

10,000 16.81±0.31 69.03±0.28 38.33±1.18
All 16.09±0.56 68.19±0.59 39.24±1.88

Table 5.17: Effects of the size K of the training datasets for POS tagging and dependency parsing.

UNI is constructed by fixing p(Hwi = wj |wi) to 1
N for all the words in the same sentence. That is,

the uniform probability distributions are used for equally connecting all the words.

5.2.5 Results on Small and Medium Datasets

We first show our translation results using the small and medium training datasets. We report averaged
scores with standard deviations across five different runs of the model training.

5.2.5.1 Small Training Dataset

Table 5.16 shows the results of using the small training dataset. LGP-NMT performs worse than
SEQ and UNI, which shows that the small training dataset is not enough to learn useful latent graph
structures from scratch. However, LGP-NMT+ (K = 10,000) outperforms SEQ and UNI, and the
standard deviations are the smallest. Therefore, the results suggest that pre-training the parsing and
tagging components can improve the translation accuracy of our proposed model. We can also see
that DEP performs the worst. This is not surprising because previous studies, e.g., Li et al. (2015),
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BLEU RIBES Perplexity

LGP-NMT 28.70±0.27 77.51±0.13 12.10±0.16
LGP-NMT+ 29.06±0.25 77.57±0.24 12.09±0.27

SEQ 28.60±0.24 77.39±0.15 12.15±0.12
UNI 28.25±0.35 77.13±0.20 12.37±0.08
DEP 26.83±0.38 76.05±0.22 13.33±0.23

Table 5.18: Evaluation on the development data using the medium training dataset (100,000 pairs).

have reported that using syntactic structures do not always outperform competitive sequential models
in several NLP tasks.

Now that we have observed the effectiveness of pre-training our model, one question arises natu-
rally:

how many training samples for parsing and tagging are necessary for improving the translation
accuracy?

Table 5.17 shows the results of using different numbers of training samples for parsing and tagging.
The results of K= 0 and K= 10,000 correspond to those of LGP-NMT and LGP-NMT+ in Table 5.16,
respectively. We can see that using the small amount of the training samples performs better than
using all the training samples.7 One possible reason is that the domains of the translation dataset and
the parsing (tagging) dataset are considerably different. The parsing and tagging datasets come from
WSJ, whereas the translation dataset comes from abstract text of scientific papers in a wide range
of domains, such as biomedicine and computer science. These results suggest that our model can
be improved by a small amount of parsing and tagging datasets in different domains. Considering
the recent universal dependency project8 which covers more than 50 languages, our model has the
potential of being applied to a variety of language pairs.
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5.2.5.2 Medium Training Dataset

Table 5.18 shows the results of using the medium training dataset. In contrast with using the small
training dataset, LGP-NMT is slightly better than SEQ. LGP-NMT significantly outperforms UNI,
which shows that our adaptive learning is more effective than using the uniform graph weights. By pre-
training our model, LGP-NMT+ significantly outperforms SEQ in terms of the BLEU score. Again,
DEP performs the worst among all the models.

By using our beam search strategy, the Brevity Penalty (BP) values of our translation results are
equal to or close to 1.0, which is important when evaluating the translation results using the BLEU
scores. A BP value ranges from 0.0 to 1.0, and larger values mean that the translated sentences have
relevant lengths compared with the reference translations. As a result, our BLEU evaluation results
are affected only by the word n-gram precision scores. BLEU scores are sensitive to the BP values,
and thus our beam search strategy leads to more solid evaluation for NMT models.

5.2.6 Results on Large Dataset

Table 5.19 shows the BLEU and RIBES scores on the development data achieved with the large
training dataset. Here we focus on our models and SEQ because UNI and DEP consistently perform
worse than the other models as shown in Table 5.16 and 5.18. The averaging technique and attention-
based unknown word replacement [Jean et al., 2015; Hashimoto et al., 2016] improve the scores.
Again, we see that the translation scores of our model can be further improved by pre-training the
model.

Table 5.20 shows our results on the test data, and the previous best results summarized in Nakazawa
et al. (2016a) and the WAT website9 are also shown. Our proposed models, LGP-NMT and LGP-
NMT+, outperform not only SEQ but also all of the previous best results. Notice also that our imple-
mentation of the sequential model (SEQ) provides a very strong baseline, the performance of which
is already comparable to the previous state of the art, even without using ensemble techniques. The
confidence interval (p ≤ 0.05) of the RIBES score of LGP-NMT+ estimated by bootstrap resam-
pling [Noreen, 1989] is (82.27, 83.37), and thus the RIBES score of LGP-NMT+ is significantly

7We did not observe such significant difference when using the larger datasets, and we used all the training samples in
the remaining part of this paper.

8http://universaldependencies.org/.
9http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/list.php?t=1&o=1.
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B./R. Single +Averaging +UnkRep

LGP-NMT 38.05/81.98 38.44/82.23 38.77/82.29
LGP-NMT+ 38.75/82.13 39.01/82.40 39.37/82.48

SEQ 38.24/81.84 38.26/82.14 38.61/82.18

Table 5.19: BLEU (B.) and RIBES (R.) scores on the development data using the large training dataset.

BLEU RIBES

LGP-NMT 39.19 82.66
LGP-NMT+ 39.42 82.83

SEQ 38.96 82.18

Ensemble of the above three models 41.18 83.40

Cromieres et al. (2016) 38.20 82.39
Neubig et al. (2015) 38.17 81.38
Eriguchi et al. (2016a) 36.95 82.45
Neubig and Duh (2014) 36.58 79.65
Zhu (2015) 36.21 80.91
Lee et al. (2015) 35.75 81.15

Table 5.20: BLEU and RIBES scores on the test data.

better than that of SEQ, which shows that our latent parser can be effectively pre-trained with the
human-annotated treebank.

The sequential NMT model in Cromieres et al. (2016) and the tree-to-sequence NMT model in
Eriguchi et al. (2016b) rely on ensemble techniques while our results mentioned above are obtained
using single models. Moreover, our model is more compact10 than the previous best NMT model in
Cromieres et al. (2016). By applying the ensemble technique to LGP-NMT, LGP-NMT+, and SEQ,
the BLEU and RIBES scores are further improved, and both of the scores are significantly better than
the previous best scores.

10Our training time is within five days on a c4.8xlarge machine of Amazon Web Service by our CPU-based C++
code, while it is reported that the training time is more than two weeks in Cromieres et al. (2016) by their GPU code.
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As a result , it was found that a path which crosses a sphere obliquely existed .

Reference: その結果、球内部を斜めに横切る行路の存在することが分かった。

LGP-NMT: その結果、球を斜めに横切る経路が存在することが分かった。
LGP-NMT+: その結果、球を斜めに横切る経路が存在することが分かった。
(As a result , it was found that a path which obliquely crosses a sphere  existed .)

Google trans: その結果、球を横切る経路が斜めに存在することが判明した。
SEQ: その結果、球を横断する経路が斜めに存在することが分かった。
(As a result , it was found that a path which crosses a sphere  existed obliquely .)

The androgen controls negatively ImRNA .

Reference: ImRNA はアンドロゲンにより負に調節される。

LGP-NMT+: アンドロゲンは ImRNA を負に制御している。
(The androgen negatively controls ImRNA .)

Google trans: アンドロゲンは負の ImRNA を制御する。

LGP-NMT: アンドロゲンは負の ImRNA を制御する。
(The androgen controls negative ImRNA .)

SEQ: アンドロゲンは負の ImRNA を負に制御する。
(The androgen negatively controls negative ImRNA .)

Translation Example (1)

Translation Example (2)

Figure 5.3: English-to-Japanese translation examples for focusing on the usage of adverbs.

5.2.6.1 Analysis on Translation Examples

Figure 5.3 shows two translation examples11 to see how the proposed model works and what is missing
in the state-of-the-art sequential NMT model, SEQ. Besides the reference translation, the outputs of
our models with and without pre-training, SEQ, and Google Translation12 are shown.

Selectional Preference In the translation example (1) in Figure 5.3, we see that the adverb “obliquely”
is interpreted differently across the systems. As in the reference translation, “obliquely” is a modifier
of the verb “crosses”. Our models correctly capture the relationship between the two words, whereas
Google Translation and SEQ treat “obliquely” as a modifier of the verb “existed”. This error is not a

11These English sentences were created by manual simplification of sentences in the development data.
12The translations were obtained at https://translate.google.com in Feb. and Mar. 2017.
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surprise since the verb “existed” is located closer to “obliquely” than the verb “crosses”. A possible
reason for the correct interpretation by our models is that they can better capture long-distance depen-
dencies and are less susceptible to surface word distances. This is an indication of our models’ ability
of capturing domain-specific selectional preference that cannot be captured by purely sequential mod-
els. It should be noted that simply using standard treebank-based parsers does not necessarily address
this error, because our pre-trained dependency parser interprets that “obliquely” is a modifier of the
verb “existed”.

Adverb or Adjective The translation example (2) in Figure 5.3 shows another example where the
adverb “negatively” is interpreted as an adverb or an adjective. As in the reference translation, “neg-
atively” is a modifier of the verb “controls”. Only LGP-NMT+ correctly captures the adverb-verb
relationship, whereas “negatively” is interpreted as the adjective “negative” to modify the noun “Im-
RNA” in the translation results from Google Translation and LGP-NMT. SEQ interprets “negatively”
as both an adverb and an adjective, which leads to the repeated translations. This error suggests that
the state-of-the-art NMT models are strongly affected by the word order. By contrast, the pre-training
strategy effectively embeds the information about the POS tags and the dependency relations into our
model.

5.2.6.2 Analysis on Learned Latent Graphs

Without Pre-Training We inspected the latent graphs learned by LGP-NMT. Figure 5.2 shows an
example of the learned latent graph obtained for a sentence taken from the development data of the
translation task. It has long-range dependencies and cycles as well as ordinary left-to-right dependen-
cies. We have observed that the punctuation mark “.” is often pointed to by other words with large
weights. This is primarily because the hidden state corresponding to the mark in each sentence has
rich information about the sentence.

To measure the correlation between the latent graphs and human-defined dependencies, we parsed
the sentences on the development data of the WSJ corpus and converted the graphs into dependency
trees by Eisner’s algorithm [Eisner, 1996]. For evaluation, we followed Chen and Manning (2014) and
measured Unlabeled Attachment Score (UAS). The UAS is 24.52%, which shows that the implicitly-
learned latent graphs are partially consistent with the human-defined syntactic structures. Similar
trends have been reported by Yogatama et al. (2017) in the case of binary constituency parsing. We
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Figure 5.4: An example of the pre-trained dependency structures (a) and its corresponding latent graph
adapted by our model (b).

checked the most dominant gold dependency labels which were assigned for the dependencies de-
tected by LGP-NMT. The labels whose ratio is more than 3% are nn, amod, prep, pobj, dobj,
nsubj, num, det, advmod, and poss. We see that dependencies between words in distant posi-
tions, such as subject-verb-object relations, can be captured.

With Pre-Training We also inspected the pre-trained latent graphs. Figure 5.4-(a) shows the de-
pendency structure output by the pre-trained latent parser for the same sentence in Figure 5.2. This
is an ordinary dependency tree, and the head selection is almost deterministic; that is, for each word,
the largest weight of the head selection is close to 1.0. By contrast, the weight values are more evenly
distributed in the case of LGP-NMT as shown in Figure 5.2. After the overall NMT model training,
the latent parser is adapted to the translation task, and Figure 5.4-(b) shows the adapted latent graph.
Again, we can see that the adapted weight values are also distributed and different from the original
pre-trained weight values, which suggests that human-defined syntax is not always optimal for the
target task.

The UAS of the pre-trained dependency trees is 92.52%13, and that of the adapted latent graphs
is 18.94%. Surprisingly, the resulting UAS (18.94%) is lower than the UAS of our model without
pre-training (24.52%). However, in terms of the translation accuracy, our model with pre-training
is better than that without pre-training. These results suggest that human-annotated treebanks can

13The UAS is significantly lower than the reported score in Hashimoto et al. (2017). The reason is described in Sec-
tion 5.2.4.3.

106



5.2 Latent Graph Parsing for Machine Translation
Chapter 5 Task-Oriented Learning of Dependency

Structures by a Joint Many-Task Model

provide useful prior knowledge to guide the overall model training by pre-training, but the resulting
sentence structures adapted to the target task do not need to highly correlate with the treebanks.

5.2.7 Related Work

While initial studies on NMT treat each sentence as a sequence of words [Bahdanau et al., 2015;
Luong et al., 2015; Sutskever et al., 2014], researchers have recently started investigating into the use
of syntactic structures in NMT models [Bastings et al., 2017; Chen et al., 2017; Eriguchi et al., 2016a;
Eriguchi et al., 2016b; Eriguchi et al., 2017; Li et al., 2017; Sennrich and Haddow, 2016; Stahlberg et
al., 2016; Yang et al., 2017]. In particular, Eriguchi et al. (2016b) introduced a tree-to-sequence NMT
model by building a tree-structured encoder on top of a standard sequential encoder, which motivated
the use of the dependency composition vectors in our proposed model. Prior to the advent of NMT,
the syntactic structures had been successfully used in statistical machine translation systems [Neubig
and Duh, 2014; Yamada and Knight, 2001]. These syntax-based approaches are pipelined; a syntactic
parser is first trained by supervised learning using a treebank such as the WSJ dataset, and then the
parser is used to automatically extract syntactic information for machine translation. They rely on the
output from the parser, and therefore parsing errors are propagated through the whole systems. By
contrast, our model allows the parser to be adapted to the translation task, thereby providing a first step
towards addressing ambiguous syntactic and semantic problems, such as domain-specific selectional
preference and PP attachments, in a task-oriented fashion.

Our model learns latent graph structures in a source-side language. Eriguchi et al. (2017) have
proposed a model which learns to parse and translate by using automatically-parsed data. Thus, it is
also an interesting direction to learn latent structures in a target-side language.

As for the learning of latent syntactic structure, there are several studies on learning task-oriented
syntactic structures. Yogatama et al. (2017) used a reinforcement learning method on shift-reduce ac-
tion sequences to learn task-oriented binary constituency trees. They have shown that the learned trees
do not necessarily highly correlate with the human-annotated treebanks, which is consistent with our
experimental results. Socher et al. (2011b) used a recursive autoencoder model to greedily construct a
binary constituency tree for each sentence. The autoencoder objective works as a regularization term
for sentiment classification tasks. Prior to these deep learning approaches, Wu (1997) presented a
method for bilingual parsing. One of the characteristics of our model is directly using the soft con-
nections of the graph edges with the real-valued weights, whereas all of the above-mentioned methods
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use one best structure for each sentence. Our model is based on dependency structures, and it is a
promising future direction to jointly learn dependency and constituency structures in a task-oriented
fashion.

Finally, more related to our model, Kim et al. (2017) applied their structured attention networks to
a Natural Language Inference (NLI) task for learning dependency-like structures. They showed that
pre-training their model by a parsing dataset did not improve accuracy on the NLI task. By contrast,
our experiments show that such a parsing dataset can be effectively used to improve translation accu-
racy by varying the size of the dataset and by avoiding strong overfitting. Moreover, our translation
examples show the concrete benefit of learning task-oriented latent graph structures.

5.2.8 Conclusion and Future Work

We have presented an end-to-end NMT model by jointly learning translation and source-side latent
graph representations. By pre-training our model using treebank annotations, our model significantly
outperforms both a pipelined syntax-based model and a state-of-the-art sequential model. On English-
to-Japanese translation, our model outperforms the previous best models by a large margin. In future
work, we investigate the effectiveness of our approach in different types of target tasks.
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Chapter 6

Conclusions

In this dissertation, I presented joint learning methods for task-oriented representations in NLP. I have
empirically shown that the proposed methods are effective in incorporating task-oriented information
into word embedding learning, phrase embedding learning, and latent structure learning. There are
many future directions in this challenging research field, NLP. Some of them are listed as follows:

• Developing task-oriented pre-training methods for more complex tasks (e.g., machine transla-
tion) than text classification. Explicitly incorporating real-world knowledge is an interesting
future direction.

• Like the compositionality learning method, it would be a promising direction to learn task-
oriented word segmentation for unsegmented languages, such Japanese and Chinese.

• Not only latent structures in sentences, but also those in documents are worth investigating,
because relationships between sentences are crucial in understanding stories.
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