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Abstract

This thesis focuses on the design of a SPAD in the standard CMOS process, and the design of

SPAD imagers. The basic principle and key parameters of a SPAD are introduced in Chapter

2. Then, structures and experimental results about the designed several types of SPADs

are presented in Chapter 3. From Chapter 4 to Chapter 5, a new sensor architecture with

high readout efficient and 3 SPAD imagers utilizing the proposed architecture are shown. In

Chapter 6, a SPAD imager with real-time event discriminator is introduced.

Chapter 2 provides an introduction about basic principles and features of SPAD in order

to understand the required constraints in designing CMOS SPAD. The breakdown voltage,

dark counts rate (DCR) , and photon detection efficiency (PDE) are introduced. According

to the introduction, the breakdown voltage of a SPAD should be greater than 15 V in order

to suppress the influence of band to band tunneling, and s suitable guard ring is necessary

for preventing premature breakdown due to edge effect. Furthermore, an analysis on the

influence of DCR and PDE is introduce, and the desirable DCR for the SPAD imager is

about 10 kHz.

Chapter 3 focuses on designing and testing about SPADs fabricated by the available stan-

dard CMOS process. The detail about the design of SPADs used for the SPAD imagers in

this work are presented in this chapter. The structures of three types of CMOS SPADs are

reviewed and discussed at first. Then, several test chips fabricated in the Rohm standard

180 nm CMOS process in order to find a suitable structure of SPADs are introduced. Ac-

cording to the analysis in the previous chapter, the target specification of the desirable SPAD

is that a low DCR about 10 kHz when SPADs are over-bias at 1.8 V. A suitable SPAD of

Pwell/DeepNwell with PolyGate around the active region, low DCR with purely avalanche

breakdown, and planer breakdown region were confirmed by the experimental results. Then,

a test circuit for after-pulsing probability measurement is presented. The experimental results
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demonstrates the efficiency of hold-off time about reducing the influence of after-pulsing, and

the after-pulsing probability can be decreased to lower than 1% with a 20 ns hold-off time.

This chapter targets on the efficient readout architecture for SPAD imagers. Since the

breakdown SPAD pixels are sparse in many applications, an architecture that only extracts

the address of breakdown pixels can achieve a higher readout efficiency. A breakdown pixel

extraction (BPE) readout architecture is proposed based on the binary feature of SPADs. The

design and behavior of BPE architecture are introduced at first, and the design of a 15×15

SPAD imager to verify the functionality of the proposed architecture is presented. Then, a

detail design about the imager with 31×31 pixels utilizing background readout method is

shown. This imager adds an additional 1-b memory in each pixel to store the value of the

previous frame, and to realize the background readout. This method can minimized Tdead to

3 cycles under dark conditions or under sparse breakdown pixels. Furthermore, another BPE

based 31×31 SPAD imager with event discriminator is proposed for minimizing Tdead and

event detecting. This imager counts the value of Max(BD,i) of each frames at first, and the

readout procedure only starts when Max(BD,i) became larger than a threshold value.

Chapter 5 presents the experimental results including the functionality, DCR distribution,

PDE and dead time about the three designed imagers in Chapter 4. For the first designed

sensor with 15×15 SPAD array, the functionality of BPE readout method is experimentally

demonstrated firstly. Then, the DCR distribution is measured, and the median value, mean

value, are 10 kHz, 20 kHz, respectively. Based on the measured DCR, an analysis about the

temporal aperture ratio (TAR) is show. For the second imager that contains 31×31 SPAD ar-

ray with background readout method based on BPE architecture, the ability of random event

detection has been shown by pulsed laser imaging at first. Then, measurements about the

DCR distributions of the images with different SPAD sizes are presented. Furthermore, an

analysis about the requirements that can minimize Tdead is presented, and TAR as function of

Twin has been shown comparing with the first imager. A 40% improvement of TAR is shown

based on the calculated results. Finally, Photon detection efficiency of designed SPAD is

measured. For the third imager that employs an event discriminator based on BPE architec-

ture, the functionality of this sensor is measured using the same method as the previous one.
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Then, an analysis about the setting of threshold value is shown.

Chapter 6 shows the design a 32×32 SPAD imager with the real time current logic event

discriminator together with the experimental results. This imager employs a current logic to

monitor the number of breakdown pixels in real time, and a free-running with variable hold-

off time active quenching circuit is proposed to achieve zero Tdead. The ability of random

event distinction is shown through the experimental results.
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Chapter 1

Introduction

1.1 Background

Recently, single photon detectors are employed in a wide variety of applications in science

and technology because of its high sensitivity and fine time resolution. These applications

include time-of-flight (ToF) 3D sensors [1, 2, 3, 4, 5, 6], scintillation detectors [7, 8, 9, 10],

fluorescence lifetime imaging microscopy (FLIM) [11, 12, 13, 14], Raman spectroscopy

(RS) [15, 16, 17], and ultra-fast imaging [18, 19, 20] as shown in Fig. 1.1.

These applications requires to detect the incident photons in a high response speed, and

photomultiplier tubes (PMT) have been utilized as the photon detectors before [21]. A PMT

contains a photo-cathode, several electron multipliers, and an anode. Incident photons is

converted into electrons through the photo-cathode, and these electrons are multiplied by

the electron multipliers. Then, a larger number of electrons reach the anode and generate a

current pulse. The PMT can detect very weak light with high resolution, so that it can satisfy

the requirements for the applications mentioned above.

However, the drawbacks of the conventional PMTs are also obviously. Even though po-

sition sensitive PMT (PS-PMTs) has been developed to improve the spatial resolution, it is

limited by its large size. PMTs are unable to be operated under high magnetic field, and sen-

sitive to electromagnetic disturbances. Moreover, PMTs are fragile, high cost, and require

very high supply voltages (2 to 3 kV) [22]. Therefore, a solid-state, low cost, low power, and

high sensitive single photon detector is desirable.

Single photon avalanche diodes (SPAD) imager fabricated by a standard CMOS process

1
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(a) ToF 3D sensor[6] (b) scintillation detectors [9] 
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(c) Time-corelated single photon counting for FLIM and RS 
[11, 16]. 

(d) Ultra-fast imaging [18]. 

Figure 1.1 Applications based on single photon detectors.
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can satisfy all the requirements including ultra-high sensitivity, fine time resolution, high

spatial resolution, low power supply and low cost. CMOS SPAD imagers have been devel-

oped recently, and show promising results in the applications mentioned above.

1.2 Research Objectives and Thesis Organization

This thesis focuses on the design of a SPAD in the standard CMOS process, and the design

of SPAD imagers. The basic principle and key parameters of a SPAD are introduced in

Chapter 2. Then, structures and experimental results about the designed several types of

SPADs are presented in Chapter 3. From Chapter 4 to Chapter 5, a new sensor architecture

with high readout efficient and 3 SPAD imagers utilizing the proposed architecture are shown.

In Chapter 6, a SPAD imager with real-time event discriminator is introduced.

Chapter 2 provides an introduction about basic principles and features of SPAD in order

to understand the required constraints in designing CMOS SPAD. The breakdown voltage,

dark counts rate (DCR) , and photon detection efficiency (PDE) are introduced. According

to the introduction, the breakdown voltage of a SPAD should be greater than 15 V in order

to suppress the influence of band to band tunneling, and s suitable guard ring is necessary

for preventing premature breakdown due to edge effect. Furthermore, an analysis on the

influence of DCR and PDE is introduce, and the desirable DCR for the SPAD imager is

about 10 kHz.

Chapter 3 focuses on designing and testing about SPADs fabricated by the available stan-

dard CMOS process. The detail about the design of SPADs used for the SPAD imagers in

this work are presented in this chapter. The structures of three types of CMOS SPADs are

reviewed and discussed at first. Then, several test chips fabricated in the Rohm standard

180 nm CMOS process in order to find a suitable structure of SPADs are introduced. Ac-

cording to the analysis in the previous chapter, the target specification of the desirable SPAD

is that a low DCR about 10 kHz when SPADs are over-bias at 1.8 V. A suitable SPAD of

Pwell/DeepNwell with PolyGate around the active region, low DCR with purely avalanche

breakdown, and planer breakdown region were confirmed by the experimental results. Then,



Chapter 1 Introduction 4

a test circuit for after-pulsing probability measurement is presented. The experimental results

demonstrates the efficiency of hold-off time about reducing the influence of after-pulsing, and

the after-pulsing probability can be decreased to lower than 1% with a 20 ns hold-off time.

Chapter 4 targets on the efficient readout architecture for SPAD imagers. Since the break-

down SPAD pixels are sparse in many application, an architecture that only extracts the ad-

dress of breakdown pixels can achieve a higher readout efficiency. A breakdown pixel extrac-

tion (BPE) readout architecture is proposed based on the binary feature of SPADs. The de-

sign and behavior of BPE architecture has been introduced at first, and the design of a 15×15

SPAD imager to verify the functionality of the proposed architecture is presented. Then, a

detail design about the imager with 31×31 pixels utilizing background readout method is

shown. This imager adds an additional 1-b memory in each pixel to store the value of the

previous frame, and to realize the background readout. This method can minimized Tdead to

3 cycles under dark conditions or under sparse breakdown pixels. Furthermore, another BPE

based 31×31 SPAD imager with event discriminator is proposed for minimizing Tdead and

event detecting. This imager counts the value of Max(BD,i) of each frames at first, and the

readout procedure only starts when Max(BD,i) became larger than a threshold value.

Chapter 5 presents the experimental results including the functionality, DCR distribution,

PDE and dead time about the three designed imagers in Chapter 4. For the first designed

sensor with 15×15 SPAD array, the functionality of BPE readout method is experimentally

demonstrated firstly. Then, the DCR distribution is measured, and the median value, mean

value, are 10 kHz, 20 kHz, respectively. Based on the measured DCR, an analysis about the

temporal aperture ratio (TAR) is show. For the second imager that contains 31×31 SPAD ar-

ray with background readout method based on BPE architecture, the ability of random event

detection has been shown by pulsed laser imaging at first. Then, measurements about the

DCR distributions of the images with different SPAD sizes are presented. Furthermore, an

analysis about the requirements that can minimize Tdead is presented, and TAR as function of

Twin has been shown comparing with the first imager. A 40% improvement of TAR is shown

based on the calculated results. Finally, Photon detection efficiency of designed SPAD is

measured. For the third imager that employs an event discriminator based on BPE architec-
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ture, the functionality of this sensor is measured using the same method as the previous one.

Then, an analysis about the setting of threshold value is shown.

Chapter 6 shows the design a 32×32 SPAD imager with the real time current logic event

discriminator together with the experimental results. This imager employs a current logic to

monitor the number of breakdown pixels in real time, and a free-running with variable hold-

off time active quenching circuit is proposed to achieve zero Tdead. The ability of random

event distinction is shown through the experimental results.

Finally, Chapter 7 gives conclusions of this thesis.



Chapter 2

Principles and features of SPAD

This chapter aims to provide an introduction about basic principle of SPAD in order to under-

stand the required constraints in designing CMOS SPAD. Several key parameters of SPAD

including the breakdown voltage, dark counts rate (DCR) , and photon detection efficiency

(PDE) are introduced. Then, an analysis on the influence of DCR and PDE is shown, and the

desirable characteristics of a SPAD are presented.

2.1 Basic Principle of SPAD

Single photon avalanche diode (SPAD) is a PN diode which is reversely biased above the

breakdown voltage (VBD), and usually equipped with a quenching circuit as shown in Fig.

2.1(a) [23, 24]. Under this condition, if there is no carrier in depletion region, the SPAD

remains in a stable state and only a extremely small current is flowing through the SPAD as

shown in Fig. 2.1(1).

Once there is a primary carrier being triggered by incident photons or some other noise

sources [25], the depletion region’s electric field is so high that the energy of accelerated

carrier is large enough to generate additional carriers by impact ionization avalanche [26,

27]. The newly generated carriers can cause more carriers so that the avalanche breakdown

procedure is triggered and a large current flows through the quenching resistor RQ. At the

same time, the cathode’s voltage falls down below VBD immediately to quench the avalanche

breakdown procedure as shown in Fig. 2.1(3). Then, the SPAD is recharged to its over-bias

voltage (VEX) and returns to the stable state.

6



Chapter 2 Principles and features of SPAD 7
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Figure 2.1 Operation procedure of SPAD: (a) SPAD with passive quenching circuit; (b)

SPAD I-V characteristics; (c) SPAD output waveform.

As a result, the SPAD generates an easily measurable sharp pulse when breakdown hap-

pens, and even a single incident photon may trigger the avalanche breakdown immediately.

Therefore, SPAD is capable of capturing incident photons that are generated closely in time,

and is a photon detector with ultra-high sensitivity and fine time resolution.

Furthermore, SPADs was firstly fabricated by a standard CMOS process in 2003[28], which

opened the way to SPAD arrays with low fabrication cost and the integration of on-chip

signal processing circuits for high functional imaging systems. As a results, SPAD becomes

a potential candidate for replacing PMT and EM-CCD in applications such as time-of-flight

(ToF) 3D sensors [1, 2, 3, 4, 5, 6], scintillation detectors [7, 8, 9, 10], fluorescence lifetime

imaging microscopy (FLIM) [11, 12, 13, 14], Raman spectroscopy (RS) [15, 16, 17], ultra-

fast imaging [18, 19, 20], etc.



Chapter 2 Principles and features of SPAD 8

2.1.1 Breakdown Voltage

The breakdown voltage of a SPAD is determined by its structure and doping profile of the

PN diode, and there are mainly two kinds of breakdown mechanisms: avalanche breakdown

and tunneling breakdown [26].

Avalanche breakdown

When the reversely biased voltage is so large that the electric field in depletion region is

higher than a threshold value, the carriers can gain enough energy to excite electron-hole

pairs by impact ionization. The number of electron-hole pairs excited by a carrier traveled

in a certain distance is α, which is called as ionization rate and is strongly dependent on the

electric field [29, 30]. Assuming that the electronic current at the beginning of the depletion

region is In0, this current at position x = W is multiplied to In(W) = MnIn0 by the impact

ionization, where Mn is multiplication factor. For the hole current Ip, it reaches its largest

value at x = 0. Therefore, the incremental electronic current value at position x is:

dIn(x) = In(x)αndx + Ip(x)αpdx (2.1)

And the total current I is constant, which is:

I = In(x) + Ip(x) (2.2)

So that,

dIn(x)
dx

+ (αp − αn)In(x) = αpI (2.3)

On the condition that αn = αp = α,

In(W) − In(0) = I
∫ W

0
αdx (2.4)

Since that In(W) = MnIn0 ≈ I, and In(0) = In0,

1 − 1
Mn
=

∫ W

0
αdx (2.5)

The avalanche breakdown voltage is defined as the voltage that Mn becomes infinity, where,

1 =
∫ W

0
αdx (2.6)
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Since the value of α is strongly dependent to the electric filed, the avalanche breakdown

happens when the electric field is higher than a threshold value, this electric field is also

called as critical field (Emax). The value of critical field for silicon is about the order of 105

[V/cm]. Therefore, the avalanche breakdown voltage is mainly determined by the impurity

concentration as shown in Fig. 2.2 [26]. For one-sided abrupt junctions,

VBD =
ϵsiE2

max

2qN
(2.7)

Where N is the doping density of the lightly doped side.

An approximate universal expression can be given as follows [26]:

for abrupt junctions,

VBD = 60(
Eg

1.1eV
)3/2(

N
1016cm−3 )−3/4 (2.8)

for linearly graded junctions,

VBD = 60(
Eg

1.1eV
)6/5(

a
3 × 1020cm−4 )−2/5 (2.9)

where a is the impurity gradient.

The temperature coefficient of breakdown voltage β is given by:

VBD = VBD0(1 + β(T − T0)) (2.10)

where, T0 is room temperature, and VBD0 is the breakdown voltage at room temperature.

When temperature becomes higher, the α value is reduced because the influence of scatter-

ing when carriers passing through the depletion region. Therefore, for the purely avalanche

breakdown, β is positive and usually larger than 7 × 10−4 ◦C−1 [31].

Tunneling breakdown

For the PN diode that is heavily doped, the electric field in depletion may approach 106 [V/cm],

which is 10 times higher than the critical field. At this condition, band-to-band tunneling

happens and significant current starts to flow[32, 33]. This phenomenon is called as the tun-

neling breakdown or the Zener breakdown. For diodes that VBD is lower than 3 V, all the
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Figure 2.2 Avalanche breakdown voltage in Si, ¡100¿-oriented GaAs, and GaP, for (a)

one-sided abrupt junctions (vs. impurity concentration) and (b) linearly graded junctions (vs.

impurity gradient).

breakdowns are caused by Zener effect, between 3 V and 14 V both breakdown mechanisms

occurs simultaneously, and for diodes that VBD is higher than 15 V, only avalanche breakdown
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happens [34, 31].

For the reason that the band-gap energy decreases with temperature increasing, β is negative

for the purely tunneling breakdown. β increases with increasing of VBD, and reaches 0 at

about 6 V. Thus, β is smaller than diodes 7 × 10−4 ◦C−1 if the diode contains both two kinds

of breakdown mechanisms [31].

Since the tunneling breakdown is unrelated to incident photons, and breakdowns triggered

by Zener effect are noise for SPADs. Therefore, this kind of breakdown mechanism is not

desirable for SPADs and should be prevented.

Edge effects

In order to detect incident photons, a planar avalanche breakdown region is desirable, how-

ever, the junction curvature effect at the perimeter can not be ignored [35]. At the perimeter,

the depletion region is narrower and the electric field is higher, so that VBD turns to be lower

can cause premature breakdown or even tunneling breakdown. Therefore, guard rings are

usually necessary for SPADs.

2.1.2 Dark Count Rate

Besides incident photons, the breakdown can also be triggered by the other sources. The

generation mechanisms are [25, 36]:

(a) Direct thermal generation and diffusion.

(b) Direct band-to-band thermal generation.

(c) Trap assisted thermal generation.

(d) Trap assisted tunneling generation.

(e) Band-to-band tunneling generation.

as shown in Fig. 2.3. This kind of non-photon triggered breakdown is called as dark count,

and the number of dark counts happens in one second is dark count rate (DCR).
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Figure 2.3 Sources of dark counts in a SPAD device.

The probability of dark counts (Pdc) occurrence is determined by the number of dark car-

riers generated by the sources mentioned previously (Nd), and the probability of triggering

the avalanche breakdown by each carrier (Pa(Vex)) [37]. This probability follows the Poisson

statistics:

Pdc = 1 − e−NdPa(Vex) (2.11)

The value of Pa is related with the electric profile and the electron-hole ionization rate, in

other words, is determined by the over-bias voltage (Vex) [38, 39].

Pa = 1 − e−Vex/Vc (2.12)

where Vc is a normalizing coefficient on the order of Egap/q. Since Pa is also related with

the photon detection efficiency of a SPAD, the work about designing low DCR CMOS SPAD

mainly focuses on the reduction of dark carriers generation.
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Figure 2.4 Principle of after-pulsing.

After-pulsing

During a breakdown procedure, generated carriers may be trapped in deep levels, and the

releasing of these trapped carriers may trigger the breakdown again as shown in Fig. 2.4.

This kind of breakdown is also a dark count that is called as after-pulsing[40]. Different from

the other kinds of dark counts, the influence of after-pulsing can be reduced by a peripheral

circuit. Since the trapped carriers will be released after a period of time, the probability of

after-pulsing (PAP) can be reduced by setting a hold-off time as shown in Fig. 2.5 [41, 42].

2.1.3 Photon Detection Efficiency

Photon detection efficiency (PDE) is defined as the breakdown probability when a single

photon flies into a SPAD, and this probability is determined by the quantum efficiency η(λ)

and Pa [38]. η(λ) is the absorption efficiency for incident photons with λ wavelength [22],

η(λ) = (1 − R)e−α(λ)D(1 − e−α(λ)W) (2.13)

where α is the silicon absorption coefficient, W is the depletion region thickness, D is the

junction depth, and R is the reflection coefficient for the interface. Therefore, the PDE is,

PDE(λ) = η(λ) × Pa (2.14)
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Figure 2.5 Reduction of PAP by setting a hold-off time.

Assuming that there are Nph photons incident into a SPAD, the probability that light signal

can be detected (Pdect) is:

Pdect(Nph) = 1 − (1 − PDE)Nph (2.15)

Pdect as a function of Nph is depicted in Fig. 2.6, where PDE is assumed to be 10%, and 5%

respectively.

For the pixel in SPAD imager, the number of incident photons is declined by Nph × FF,

where FF is the fill factor of active region of a SPAD. Moreover, SPAD imager have dead

time (Tdead) due to quenching, recharging, holding-off, and readout procedures, that can not

detect incident photons during this period. Therefore, the number of actual incident photons

is also reduced by the duty cycle of window time (Twin) in one frame, which is also called as

temporal aperture ratio (TAR) [43].

T AR =
Twin

Twin + Tdead
(2.16)

Assuming that the intensity of incident light is spatially uniform, and the number of incident

photons per pixel per second is Nph, For a SPAD sensor with N pixels, the probability that
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Figure 2.6 Pdect as a function of Nph. Blue line: PDE=10%; Orange line: PDE=5%.

Ndect pixels are breakdown triggered by photons is,

PNdect =

(
N

Ndect

)
× (1 − Pdect)(N−Ndect) × PNdect

dect (2.17)

The excepted value of Ndect is,

E[Ndect] = N × Pdect (2.18)

and the variance is,

V[Ndect] = N × Pdect(Twin) × (1 − Pdect) (2.19)

The probability that Ndect is larger than Nth (PNdect>Nth) is:

PNdect>Nth(Twin) = 1 −
Nth∑

k=0

PNdect=k(Twin) (2.20)
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Figure 2.7 Pdc(Twin) as a function of Twin at different DCR values.

2.2 Influence of Dark counts

If the dark counts caused by after-pulsing can be ignored, the number of dark counts (k)

per time unit (T) follows a Poisson distribution:

p(k,T ) =
λ(T )ke−λ(T )

k!
(2.21)

where p is the probability when the number of dark counts is k in a period of time T , and

λ(T ) is the expected value of dark counts which equals to T × DCR. For a certain Twin, the

probability that dark count happens (Pdc(Twin)) during Twin is:

Pdc(Twin) = 1 − p(0,Twin) = 1 − e−DCR×Twin (2.22)

Fig. 2.7 plots the calculated Pdc as a function of Twin at different DCR values. At the

condition that the value of Twin × DCR is very small, Pdc is almost linear with Twin.

For a SPADs array sensor contains N pixels, the probability that there are Ndc pixels having

breakdown during Twin is:

PNdc(Twin) =
(

N
Ndc

)
× (1 − Pdc(Twin))(N−Ndc) × Pdc(Twin)Ndc (2.23)
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Figure 2.8 PNdc≤Nth as a function of Twin at different DCR values: (a) DCR=1 [kHz]; (b)

DCR=10 [kHz]; (c) DCR=100 [kHz]; (d) DCR=1 [MHz].

and the excepted value of Ndc is:

E[Ndc(Twin)] = N × (1 − e−DCR×Twin) (2.24)

variance is:

V[Ndc(Twin)] = N × (1 − e−DCR×Twin) × (e−DCR×Twin) (2.25)

The probability that Ndc is not larger than Nth (PNdc≤Nth(Twin)) is:

PNdc≤Nth(Twin) =
Nth∑

k=0

PNdc=k(Twin) (2.26)

This probability expresses the noise level of a SPAD imager and can be utilized for calculat-

ing the influence of DCR for different sensors at different Twin. Fig. 2.8(a)-(d) show plots of
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Figure 2.9 An example of DCR variation.

PNdc≤Nth(Twin) in a 32×32 pixels SPAD imager with different DCR values.

2.2.1 Concerning with process variations

SPAD imagers typically have a DCR distribution that a small fraction of pixels (from 5%

to 20% or higher) with very high DCR as shown in Fig. 2.9 [44], and this small proportion

high DCR SPADs are influnced by traps [45].

Assuming that the N pixels SPAD array contains N1 pixels of which DCR values are DCR1,

N2 pixels with DCR2, ..., Nn pixels with DCRn, and

N = N1 + N2 + ... + Nn (2.27)

The probability that Ndc,k pixels are breakdown among the Nk pixels with DCRk (PNdc,k) is:

PNdc,k(Twin) =
(

Nk

Ndc,k

)
× (1 − Pdc,k(Twin))(Nk−Ndc,k) × Pdc,k(Twin)Ndc,k (2.28)



Chapter 2 Principles and features of SPAD 19

0 200 400 600 800 1000
Window time [ns]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y Variation1, Ndc 15

Variation1, Ndc 8
DCR=10k,Ndc 8

(a)

0 200 400 600 800 1000
Window time [ns]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y Variation2, Ndc 15

Variation2, Ndc 8
DCR=10k,Ndc 8

(b)

Figure 2.10 Comparison on the influences of DCR with different variations: (a) 900 pixels

with DCR=10kHz, 100 pixels with DCR=100kHz, and 24 pixels with DCR=1MHz; (b) 800

pixels with DCR=10kHz, 200 pixels with DCR=100kHz, and 24 pixels with DCR=1MHz.

where k = 1, ..., n, and Pdc,k(Twin) is

Pdc,k(Twin) = 1 − e−DCRk×Twin (2.29)

Therefore, the probability that Ndc pixels are breakdown for this M × N SPAD array is:

PNdc(Twin) =
Ndc∑

k1=0

Ndc−k1∑

k2=0

...

Ndc−k1−k2−...kn−2∑

kn−1=0

(PNdc,1=k1 PNdc,2=k2 ...PNdc,n−1=kn−1 PNdc,n=Ndc−∑n−1
i=1 ki

)

(2.30)

Fig. 2.10 shows a comparison on the influences of DCR with different variations.

2.3 Signal and Noise

2.3.1 Comparing on the breakdown probability

For a SPAD, in order to detect the incident photons, the probability of detecting true inci-

dent photons should be larger than the probability of triggering breakdown by dark counts.

1 − (1 − PDE)Nph > 1 − e−DCR×Twin (2.31)

Therefore,

DCR < −Nph log (1 − PDE)
Twin

(2.32)
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Concerning with the influence of dark counts, the breakdown probability for a SPAD with

Nph incident photons (Pbd) is,

Pbd = Pdect + Pdc − Pdect × Pdc (2.33)

2.3.2 Comparing on the number of breakdown pixels

For SPAD imagers, the main application is single photon imaging and the sensor is used to

count the number of incoming photons. Thus, the ratio of number of breakdown pixels caused

by incident photons and dark counts is important. PNdect>Nth and PNdc≤Nth give a guideline about

determine the parameters of SPAD imagers both in designing and utilizing, such as DCR,

PDE, Twin, etc.

For example, for a NaI(TI) scintillator, totally about 20,000 photons are generated by one

scintillation event with 137Cs (662 keV) [46]. Assuming that the number of pixels is 1024, the

fill factor is about 10%, and PDE is 10%, so that the number of photons incident into a pixel

for one event is,

Nph = 20, 000 × 1
6 × NPixel

× FF ≈ 0.325 (2.34)

Therefore, the excepted number of breakdown pixels caused by incident photons is:

E[Ndect] = 1024 × (1 − (1 − 0.1)0.325) ≈ 34.47 (2.35)

and the excepted number of breakdown pixels caused by dark counts is:

E[Ndc] = 1024 × (1 − eDCR×Twin) (2.36)

Fig. 2.11 shows a plot about the comparison on PNdect>Nth (the red line) and PNdc≤Nth (the blue

and black line) with DCR=10kHz and 100kHz when Twin is 200 ns, respectively. This figure

illustrates that Ndect is obviously larger than Ndc when DCR is 10 kHz, and Ndc is much larger

than Ndect.

2.4 Summary

This chapter provided an introduction about basic principles and features of SPAD in order

to understand the required constraints in designing CMOS SPAD. The breakdown voltage,
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Figure 2.11 Comparison on PNdect>Nth and PNdc≤Nth with different DCR values.

dark counts rate (DCR) , and photon detection efficiency (PDE) were introduced. According

to the introduction, the breakdown voltage of a SPAD should be greater than 15 V in order

to suppress the influence of band to band tunneling, and s suitable guard ring is necessary

for preventing premature breakdown due to edge effect. Furthermore, an analysis on the

influence of DCR and PDE has been shown, and the desirable DCR for the SPAD imager is

about 10 kHz.



Chapter 3

CMOS SPAD Implementation

This chapter focuses on designing and testing about SAPDs that were fabricated by the avail-

able standard CMOS process. The details about the design of SPADs that are used for the

SPAD imagers in this works are included in this chapter. The structures of three types of

CMOS SPADs are reviewed and discussed at first. Then, several test chips fabricated in the

Rohm standard 180 nm CMOS process are introduced.

According to the analysis in the previous chapter, the target specification of the desirable

SPAD is that a low DCR about 10 kHz when SPADs are over-bias at 1.8 V, and a suitable

structure is founded according to the measurement results. Then, a test circuit for after-

pulsing probability measurement is presented with the experimental results.

3.1 SPAD Design

Fig. 3.1 illustrates the cross-sections of designed SPADs [47, 48, 49] to find the structure

of a SPAD with a planar breakdown region and low DCR. The layers used in this work are

defined as follows:

• Pdiff and Nidff: drain/source layer of PMOS and NMOS;

• Pwell and Nwell: body of NMOS and PMOS;

• DeepNwell: isolation layer for the body of NMOS

• STI: shallow trench isolation

22
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• PolyGate: Gate layer

N NP

(a) Pdiff/Nwell with STI guard ring
N P

(b) Ndiff/Pwell with STI guard ring

P

N NP

(d) Pdiff/Nwell with Pwell guard ring and PolyGate
N NP

(e) Pwell/DeepNwell with STI gurad ring

Pdiff
Ndiff
Pwell

Nwell
DeepNwell

STI

PolyGate
Contact

N NP

(f) Pwell/DeepNwell with STI gurad ring and PolyGate

N NP

(c) Pdiff/Nwell with Pwell guard ring

PN junction

Figure 3.1 The structure of designed SPAD: (a) Pdiff/Nwell with STI guard ring; (b)

Ndiff/Pwell with STI guard ring; (c) Pdiff/Nwell with Pwell guard ring; (d) Pdiff/Nwell

with Pwell guard ring with PolyGate;(e) Pwell/DeepNwell with Pwell guard ring; (f)

Pwell/DeepNwell with Pwell guard ring and PolyGate.
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Totally 6 types of SPADs were designed and tested containing Pdiff/Nwell SPAD with STI

guard ring (Fig. 3.1(a)), Ndiff/Pwell SPAD with STI guard ring (Fig. 3.1(b)), Pdiff/Nwell

SPAD with Pwell guard ring (Fig. 3.1(c)), Pdiff/Nwell SPAD with Pwell guard ring with

PolyGate (Fig. 3.1(d)),Pwell/DeepNwell SPAD with STI guard ring (Fig. 3.1(e)), and

Pwell/DeepNwell SPAD with STI guard ring and PolyGate (Fig. 3.1(f)).

3.1.1 Pdiff/Nwell with STI guard ring and Ndiff/Pwell with STI guard ring

The shallow trench isolation process has been used to isolate the adjacent transistors in

sub-micron CMOS technology [50]. Because of the SiO2’s 30 times higher electric strength,

the STI process can be utilized as the guard rings to prevent the premature breakdown for

CMOS SPADs [51, 52, 53]. The advantages of STI guard ring is high fill factor and fast

response time [52], however, the DCR of these SPADs are very high due to traps located at

the Si/SiO2 interface as shown in table 3.1. The influence of traps can be suppressed by

surrounding the STI with several passivation implant [53], however, the passivation process

is only available in custom CMOS technology or CMOS image sensor (CIS) technology. For

the SPADs designed this work, SPAD(a) has the same structure as [51], and SPAD(b) reverts

the cathode and anode with Ndiff and Pwell, respectively.

3.1.2 Pdiff/Nwell with Pwell guard ring

Besides STI, the layer with lower doping concentration can also be utilized as guard rings

to prevent premature breakdown [54, 55, 56, 57, 58, 59, 60, 61]. However, STI is still etched

everywhere except the Pdiff and Ndiff area by default in almost all the CMOS processes, so

that the influence of STI is still existence as shown in Fig. 3.1(c). In [56], a method to prevent

the STI process around the active area by drawing a poly-silicon gate layer was proposed as

shown in Fig. 3.1(d), and SPADs with the same structures were designed and fabricated in

this work.
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3.1.3 Pwell/DeepNwell SPAD

The SPADs that use Pdiff/Nwell or Ndiff/Pwell junction as the breakdown region have

shown acceptable measurement results in some references, however, there are also some

SPADs having very high DCR with the same structures in different processes such as the

SPADs in [54]. This high DCR is caused by the high doping concentration of the process, the

depletion region is thin with a very high electric field, and this assumption is proved by DCR

temperature dependence measurement [53]. This high electric field in the narrow Pdiff/Nwell

or Ndiff/Pwell depletion increases the probability band-to-band tunneling [62, 63]. There-

fore, the Pdiff/Nwell or Ndiff/Pwell breakdown region should be modified to reduce the field

strength, and the layers with lower doping density that can be utilized in CMOS process are

the well layers such as Nwell, Pwell, and DeepNwell.

The P-/DeepNwell is used as the breakdown region in [62], P- implant is available in some

CIS process to fulfill to role of STI passivation implant, and the STI around P- layer is the

guard ring to prevent premature breakdown. In [63], the breakdown region is Pwell and

DeepNwell, and an implant stop layer is used for stopping the implanting of either Nwell or

Pwell around the breakdown region to make a ‘No-well’ layer with lower doping density as

the guard ring. The same method in [56] was utilized to reduce the influence of STI interface,

improved versions of SPADs in [62, 63] were introduced in [60].

Unfortunately, neither the No-well nor the P- layer is available in the process we can use

in this work, and the same structure introduced above can not be implemented. On the other

hand, the position of DeepNwell is reported to be very shallow, so that STI can be used as the

guard ring around breakdown region as shown in Fig. 3.1(e) and (f). The difference between

SPAD(e) and SPAD(f) is that there is a distance between Pdiff and STI in (e) by using the

same method in [56].
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3.2 SPAD Characterization

3.2.1 Breakdown voltage and DCR

Measurement results about the breakdown voltage and DCR of the designed SPADs are

shown in table. 3.1 SPAD(a)-SPAD(e). VBD is obtained by extrapolating the linear I-V

curve measured above VBD backwards to find its intercept with the voltage axis [39]. DCR is

obtained by counting the pulse rate of a passive quenching circuit as shown in Fig. 2.1.

Pdiff/Nwell and Ndiff/Pwell SPAD

For the SPADs using Pdiff/Nwell or Ndiff/Pwell breakdown region, the breakdown voltage

is about 8.0 V, which is lower than all the other SPADs reviewed before as shown in table.

These SPADs also have very high DCR, and this high value is assumed to be caused by the

band-to-band tunneling, and the measurements about the temperature coefficient in the next

section proved this assumption. Therefore, these structures are not suitable for SPADs in this

process.

Pwell/DeepNwell SPAD

The breakdown voltage of SPADs using Pwell/DeepNwell junction is about 27 V, which

is much larger than the Pdiff/Nwell SPADs. This high value also indicate that avalanche

breakdown is the dominant kinds of breakdown, the measured I-V characteristics also proved

this assumption. Moreover, leaving a distance between Pdiff and STI can reduce the DCR

significantly as shown in the table. This low DCR make the SPAD(f) to be available in

SPAD imagers, and all the imagers designed in this work were using the same structure with

SPAD(f).

3.2.2 Temperature coefficient measurement

I-V characteristics of SPAD(a) and SPAD(f) were measured under different temperature to

derive the temperature coefficient and breakdown mechanisms of these SPADs as show in
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Table 3.1 SPAD parameters for several SPADs and the designed SPADs in this work

SPAD Tech. Node [nm] PN junction Guard ring VBD[V] DCR [Hz]@Vex

[51] 180 Pdiff/Nwell STI 11 N/A

[52] 180 Pdiff/Nwell STI 11 ≈ 106

[53] CIS130 Pdiff/Nwell STI 9.4 300k@1.8 V

[54](1) 90 Ndiff/Pwell Nwell/Gate 10.4 >100k@0.2 V

[54](2) 65 Ndiff/Pwell Nwell/Gate 9.5 >100k@0.2 V

[55] 350 Ndiff/Pwell Nwell 12 10k@1 V

[56] 130 Pdiff/Nwell Pwell/Gate 9.7 100k@1.7 V

[57] 130 Pdiff/Nwell Pwell 12.3 231@V1.5 V

[58] 500 Pdiff/Nwell Nwell/Gap 14.2 3k@0.6 V

[59] 150 Pdiff/Nwell Nwell 18.2 40@V3 V

[60](3) CIS130 Pdiff/Nwell P- 12.4 47@0.8 V

[61](2) 150 Pdiff/Nwell P-sub 16.1 100@3 V

[62] CIS130 P-/DeepNwell STI 12.4 100@1 V

[63] CIS130 Pwell/DeepNwell No-well 14.36 50@1 V

[60](1) CIS130 Pwell/DeepNwell No-well/Gate 14.36 25@ V

[60](2) CIS130 P-/DeepNwell No-well/Gate 17.9 40@ V

[61](1) 150 Pwell/DeepNwell No-well 23.1 200@3 V

SPAD(a) 180 Pdiff/Nwell STI 7.9 >1M@0.05 V

SPAD(b) 180 Ndiff/Pwell STI 8.0 >1M@0.05 V

SPAD(c) 180 Pdiff/Nwell Pwell 7.9 500k@0.05 V

SPAD(d) 180 Pdiff/Nwell Pwell/Gate 7.9 1.5M@0.05 V

SPAD(e) 180 Pwell/DeepNwell STI 27 5.4k@0.1 V

331k@0.3 V

>1Mk@1.8 V

SPAD(f) 180 Pwell/DeepNwell STI/Gate 27 <1k@0.3 V

7.3k@1 V

20.2k@1.8 V
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Figure 3.2 SPADs I-V characteristics: (a) P-diff/Nwell SPAD; (b) P-well/DeepNwell SPAD.

Fig 3.2. Temperature coefficient β is calculated from equation:

β =
1

VBD0

× VBD − VBD0

T − T0
(3.1)

The calculated β of Pdiff/Nwell SPAD is 5.765× 10−4, which indicates the existence of band

to band tunneling [31]. On the other hand, the β of Pwell/DeepNwell SPAD is 8.455 × 10−4.

3.2.3 Breakdown region confirmation

A series of I-V sweep measurements were conducted to confirm the breakdown region of

Pwell/DeepNwell SPAD:

1. Connecting the Sub contact to the ground.

2. Applying a constant voltage ‘VP’ to the P contact.

3. Sweeping the ‘VN’ of N contact until breakdown.

4. Confirming the breakdown region by the current.

5. Changing the voltage of ‘VP’, and repeating the measurement.

Table. 3.2 shows the measurement results. When ‘VP’ is 0 V, breakdown occurs at the

condition that ‘VN’ is 18 V, and the current is flowing through N contact and Sub contact

as shown in Fig. 3.3(a),so that the breakdown region is assumed to be Pwell/Nwell. When
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N NP SubSub

(a) Pwell/Nwell breakdown

(b) Pwell/DeepNwell breakdown
Figure 3.3 Confirmation of breakdown region (a) Nwell/Pwell breakdown; (b)

Pwell/DeepNwell breakdown.

Table 3.2 Measurement results to confrim breakdown region.

VP VN at breakdown VN-VP at breakdown Breakdown region

0 18 18 PwellNwell

-5 18 23 Pwell/Nwell

-10 17 27 Pwell/DeepNwell

-15 12 27 Pwell/DeepNwell

-20 7 27 Pwell/DeepNwell

-25 2 27 Pwell/DeepNwell

‘VP’ turns to be 5 V, breakdown still happens at the condition that ‘VN’ is 18 V indicating the

same breakdown region. However, when ‘VP’ becomes lower than -10 V, the value of ‘VN’

start to change at breakdown, and ‘VN’-‘VP’ keeps to be 27 V, and the breakdown current is

flowing through N contact to P contact. Therefore, the breakdown region of SPAD (e) and

(f) is confirmed to be the Pwell/DeepNwell region.
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Figure 3.4 Schematic of variable hold-off time active quenching circuit.

3.3 After-pulsing probability measurement

The probability of after-pulsing can be reduced by setting a hold-off time [64], however,

longer hold-off time also reduces the duty cycle of Twin that is very important in some appli-

cations.

3.3.1 Active quenching circuit with variable hold-off time

A variable hold-off time active quenching circuit (VHAQC) was designed to measure the

relationship between hold-off time and after-pulsing probability. Fig. 3.4 illustrates the

schematics of the VHAQC, and Fig. 3.5 shows the simulation waveforms of this circuit.

The SPAD is connected with 4 transistors ‘P1’, ‘P2’, ‘N1’, and ‘N2’. ‘P1’ is worked as the

quenching resistor, the voltage of ‘VQ’ is kept to low, and the voltage of ‘VP’ is slightly

above ‘-VBD’.

When the SPAD is breakdown, current flows through ‘P1’, and ‘VN’ goes down. This low

voltage turns on ‘N2’ to hold the SPAD ‘OFF’ by biasing the SPAD below the VBD. Then,

‘Output’ rises up as well as ‘P3’ is turned off after a delay, so that ‘Charge pre’ starts to

fall down by the current flowing through ‘N3’. The value of this current is controlled by
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Figure 3.5 Simulation waveforms about VHAQC.

the external bias voltage ’VBias’. When ‘Charge pre’ falls below the threshold value of the

inverter, ‘P2’ is turned on to recharge the SPAD to its over-bias voltage. Therefore, the hold-

off time is variable while changing the value of ‘VBias’. ‘N1’ and ‘P4’ are added to force the

SPAD ‘OFF’ in order to achieve a very long hold-off time by the ‘Force Off’ signal.
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Figure 3.6 Relation between the Hold-off time and after-pulsing probability.

3.3.2 Measurement Results on the VHAQC

A test-of-concept chip about VHAQC was fabricated in the same process, and the layout

of VHAQC is shown in Fig. 3.6. Fig. 3.7 illustrates a waveform captured by an oscilloscope
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Figure 3.7 Captured output waveform when VBias is 0.9 V.

when VBias is 0.9 V, and the pulse width of this waveform represents the hold-off time. For

each bias voltage, 100,000 waveforms were recorded to obtain the hold-off time at different

VBias. The measured hold-off time with a function of VBias is plotted in Fig. 3.8.

The DCR and after-pulsing probability can be calculated through measuring the time inter-

val between the falling edge of the first pulse and the rising edge of its next pulse as shown

in Fig. 3.9. The time intervals were measured by a logic analyzer with 1 ns resolution. To

prevent the breakdown triggered by incident photons, all the measurements were conducted

in a black box, so that all the measured breakdowns are triggered by dark counts.

First of all, the time intervals distribution of ‘real’ dark counts were measured. In order to

capture the dark counts free of after-pulsing, 1 ms hold-off time was set by the external input

signal ‘Force Off’. The measurement was repeated 250,000 times to get the distribution of

time intervals. Since the hold-off time is so long that the after-pulsing can be ignored, all the
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Figure 3.9 Captured waveform by logic analyzer to measure time intervals distribution.
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Figure 3.10 Exponential PDF and distribution of measured time intervals.

dark counts are caused by thermal noise or tunnel effects. Therefore, the dark counts occur

independently, and the time intervals distribution should follow a exponential distribution.

The mean value of measured intervals (E[X]) is 9.532×104 ns, the measured variance

(V[X]) is 8.986×109, the measured standard deviation 9.480×104 ns, and the measured me-

dian (m[X]) is 6.636×104 ns. These measured values also fit the characteristics of exponential

distribution:

E[X] =
1
λ

(3.2)

V[X] = λ2 (3.3)

m[X] =
ln(2)
λ

(3.4)
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Figure 3.11 Time intervals distribution when hold-off time is 2.4 ns.

Base on the measurement results, the probability density function (PDF) is:

p(t) = λe−λt, (λ = 1/E[X]) (3.5)

The blue line in Fig. 3.10 shows the PDF based on Equation 3.5, and the red histogram

represents the probability distribution of time intervals (interval probability) when the width

of a single bin is 1 µs.

When hold-off time is very short, the dark counts triggered by after-pulsing can not be

ignored. Therefore, the time intervals between two dark counts should also be different with

equation 3.5.

Fig. 3.11 shows a comparison on the interval probability with different hold-off time. The

green line illustrates the time intervals probability when hold-off time is set at 2.4 ns, and the

red line is the distribution of dark counts without after-pulsing. The distributions are almost

the same when the time interval is large, on the other hand, the green line’s probability is
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Figure 3.12 Time intervals distribution when hold-off time is 2.4 ns.

significantly larger than the red one when the time interval is small. These additional dark

counts are triggered by the trapped carriers that have not been released during the short hold-

off time, in other words, the after-pulsing.

Fig. 3.12 shows the normalized distribution of time intervals at different hold-off time, and

the width of time bin is set at 10 ns. Therefore, the after-pulsing probability can be calculated

by comparing the time interval probability at different hold-off time as shown in equation

3.7.

Supposing that the probability of primary dark count happens during a certain time unit ‘t’

is PDC(t) which can be calculated through the long hold-off time measurement results. PBD(t)

is the measured interval probability of dark counts including after-pulsing happens during

the same period when the hold-off time is short, and PAP(t) is the after-pulsing probability, so
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Figure 3.13 After-pulsing probability at different hold-off time.

that

PBD(t) = 1 − (1 − PDC(t)) × (1 − PAP(t)) (3.6)

PAP(t) = 1 − 1 − PBD(t)
1 − PDC(t)

(3.7)

Since there is almost no difference when the time interval is larger than 1 us as shown in Fig.

3.12, the time period ‘t’ is also set at 1 us, and Fig. 3.13 shows the calculated after-pulsing

probability at different hold-off time. The calculation results illustrate that the after-pulsing

probability is reduced to about 1% when the hold-off time is 20 ns.

3.4 Summary

This chapter focused on designing and testing about SAPDs that were fabricated by the

available standard CMOS process. The detail about the design of SPADs that have been used
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for the SPAD imagers in this work were presented in this chapter. The structures of three

types of CMOS SPADs have been reviewed and discussed at first. Then, several test chips

fabricated in the Rohm standard 180 nm CMOS process in order to find a suitable structure

of SPADs were introduced.

According to the analysis in the previous chapter, the target specification of the desirable

SPAD is that a low DCR about 10 kHz when SPADs are over-bias at 1.8 V. A suitable SPAD

of Pwell/DeepNwell with PolyGate around the active region, low DCR with purely avalanche

breakdown, and planer breakdown region were confirmed by the experimental results. Then,

a test circuit for after-pulsing probability measurement has been presented presented. The

experimental results demonstrated the efficiency of hold-off time about reducing the influence

of after-pulsing, and the after-pulsing probability can be decreased to lower than 1% with a

20 ns hold-off time.



Chapter 4

SPAD Imagers with

Breakdown-Pixel-Extraction Architecture

4.1 Introduction

This chapter targets on the efficient readout architecture for SPAD imagers. A breakdown

pixel extraction (BPE) readout architecture is proposed based on the binary feature of SPADs.

This architecture only extracts the address of breakdown pixels to achieve a higher readout

efficiency. The design of a 15×15 SPAD imager to verify the functionality of the proposed

architecture is introduced, and an improved version of imager with 31×31 pixels utilizing

background readout method is shown. Then, another BPE based 31×31 SPAD imager with

event discriminator is proposed for minimizing the dead time of SPAD.

4.2 Idea of Breakdown Pixel Extraction Architecture

Since the SPADs are too sensitive, the incident light intensity should be relative low in

order to obtain available images or fine time resolution. Therefore, breakdown SPAD pix-

els are very sparse in many applications. For an example, only 1 to 2% pixels of a imager

are breakdown for a FLIM measurement [14]. However, in the traditional readout architec-

ture, the entire frame is firstly readout indifferent with the low number of events. Moreover,

for the applications that requiring to detect random events such as scintillation detectors, a

short readout time under dark conditions is desirable. Therefore, new readout architecture is

necessary for SPAD imagers [43].

A breakdown-pixel-extraction (BPE) architecture was proposed in order to improve the

40
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readout efficiency for SPAD imagers [65, 66, 67]. The basic idea of this architecture is to

extract the address of breakdown pixels only, and the procedure of BPE architecture is shown

in Fig. 4.1. There are three types of pixels in the figure: the blank pixels represent the

pixels with stable SPAD, the gray pixels represent the pixels with breakdown SPAD, and the

dark gray pixels are the pixels that are under extraction. In order to maximize the readout

efficiency, the row parallel scheme is employed in this architecture [68].

The procedure starts with the rise transition of leftmost search signals in each row (Fig.

4.1(a)). These search signals propagate until arriving at a breakdown pixel in a row in one

clock cycle as shown in Fig. 4.1(b). If there is no breakdown pixel in a row, the search signal

directly propagate to rightmost pixel and trigger a flag signal to indicate the end of readout

procedure of this row. The flag signals are connected together by an AND gate tree. Then,

at the next clock cycle, a global ‘Next’ pulse signal (the blue line in Fig. 4.1) is broadcast to

resume the propagation of search signals and to start extracting the addresses of the detected
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pixels as shown in Fig. 4.1(c). These processes are repeated until all search signals have

reached the rightmost pixel and raised flags as shown in Fig. 4.1(d)-(f). Then, a global reset

signal is generated to reset the sensor.

Supposing that the number of breakdown pixels in the i-th row is NBD,i, readout time

(Treadout) depends on the maximum value of NBD,i (Max(NBD,i)) in this method. For the

dark condition or the application that receives sparse incident photons, only a few SPADs

are breakdown, so that Treadout should also be shorter than the conventional readout method.

4.3 Analysis on Treadout

For each detected breakdown pixel, the number of cycles that is needed to extract its address

is 1+Nbit, where Nbit represents the bit-length of the address, for example, Nbit is 5 when there

are 31 pixels in a row, and the additional 1 cycle is the global ‘Next’ pulse signal. Moreover,

one more cycle is needed for the first search signal. Therefore, Treadout is:

Treadout = TCLK × (1 + Max(NBD,i) × (Nbit + 1)) (4.1)

The similar method about the influence of DCR in Chapter 2 is utilized to calculate Treadout

is this section. Assuming that the SPAD imager contains M × N pixels, the probability that

there are Ndc breakdown pixels in a single row with N pixels is:

PNdc(Twin,DCR,M,N) =
(

N
Ndc

)
× (1 − Pdc(Twin))(N−Ndc) × Pdc(Twin)Ndc (4.2)

The probability for Max(NBD,i) = k is:

PMax(NBD,i=k)(Twin,DCR,M,N) = (
k∑

i=0

PNdc=i(Twin))M − (
k−1∑

i=0

PNdc=i(Twin))M (4.3)

Fig. 4.2 shows the probability of PMax(NBD,i=k)(Twin,DCR,M,N) with a function of at Twin

when DCR=1KHz(a), DCR=10kHz(b), DCR=100kHz(c), and DCR=1MHz(d). These graphs

show that when Twin is short and DCR is low, the value of Max(NBD,i) should also be very

small as shown in the Table 4.1. Therefore, TReadout is so short under dark conditions that the

duty cycle of Twin (TAR) can be improved by this proposed method. A high TAR can help

to improve the detection efficiency of randomly happening event such as scintillation event.
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Figure 4.2 Distribution of PMax(NBD,i=k)(Twin,DCR,M,N) in a 31×31 SPAD array at

different Twin with different DCR: (a) DCR=1kHz; (b) DCR=10kHz; (c)DCR=100kHz;

(d)DCR=1MHz

Table 4.1 Calculated results about PMax(NBD,i=k), where N=31, M=31, and DCR=10kHz.

Twin PMax(NBD,i=0) PMax(NBD,i=1) PMax(NBD,i=2) PMax(NBD,i=3) E[Max(NBD,i]

100 ns 0.383 0.603 0.014 <0.001 0.632

150 ns 0.237 0.732 0.031 <0.001 0.795

200 ns 0.146 0.800 0.053 0.001 0.909

Besides capturing the random events, the proposed method is also suitable for applications

with sparse incident photons such as the FLIM.
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Figure 4.3 Procedure of BPE logic.

4.4 Design of BPE Circuit

Fig. 4.3 illustrates the behavior of the BPE logic. During the BPE procedure, there are

two cases that depend on the states of the SPAD in the pixel. If the SPAD is stable, ‘SPAD

State’ is low, so that transistor ‘M5’ keeps ‘ON’. When ‘Search[i]’ goes high, this high signal

propagates to the right neighboring search signal ‘Search[i+1]’ directly after a delay as shown

in Fig. 4.3(a).
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In the other case, SPAD is breakdown and ‘M5’ is turned ‘OFF’ at first. When ‘Search[i]’

goes high, the output of the AND gate (input of the DFF) also goes high and ‘Search[i+1]’ is

kept low, so that the propagation of search signals is blocked. Then, when the global ‘Next’

pulse signal rises up, ‘Mask[i]’ also goes high to turn on the transistor ‘M5’ and ‘M6’. Since

‘M5’ is ‘ON’, the propagation of search signals is resumed. At the same time, ‘Address[i]’,

which is generated by the column address generator located at outside of the pixel array, can

be readout through ‘M6’ (Fig. 4.3(c)). When ‘Next’ is triggered again, ‘Mask[i]’ returns low,

and ‘Address readout’ is connected to the address of the next breakdown pixel if such a pixel

exists (Fig. 4.3(d)).

If the search operation has not been completed in one clock cycle and the global ‘Next’

pulse signal goes high, the address of this breakdown pixel can not be readout until ‘Next’

goes high again shown in Fig 4.4(a) and (b). This kind of situation does not effect the readout

results, however, increase Treadout. Therefore, ‘Next’ should be triggered after the search

operation, and the time difference between ‘Search[0]’ and the first ‘Next’ signal is limited

by the delay of the propagation of search signals.

The worst delay of search operation is that there is no breakdown pixel in a row. The search

signal has to be propagated along all the pixels in this row. Fig 4.5 shows a post-layout

simulation result of such case in a row containing 15 pixels. The time difference between the

trigger of ‘Search[0]’ and ‘Search[15]’ is 3.9 ns. Therefore, the propagation delay for one

pixel is 260 ps.
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Figure 4.5 Effects of time difference between ‘Search[0]’ and ‘Next’.

4.5 Design of 15×15 SPAD imager featuring BPE architecture

4.5.1 Chip Architecture

In order to verify the functionality of the proposed BPE method, a test-of-concept chip was

developed with a 15×15 SPAD array using the same CMOS process. Fig. 4.6 shows the

overall architecture of the designed sensor. It contains an array of 15×15 SPAD pixels, a

column address generator (CAG), and a global search completion detection block. The CAG

is used to generate the addresses of breakdown pixels for readout, and the control signal are

input from external. The outputs of this chip are the 15-b row parallel readout addresses

representing the addresses of breakdown pixels, and a 1-b readout finish signal.

Fig. 4.6(b) show a block diagram of three neighboring pixels and their interconnections.

Each pixel contains a SPAD, a passive quenching circuit (PQC), and a BPE logic. Fig. 4.7(a)
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Figure 4.6 (a)Sensor architecture; (b) Pixel diagram; (c) Schematic of a quenching circuit;

(d) Schematic of a BPE logic.

shows the layout of the SPAD in this sensor, the active area a circle with a radius of 7.8 µ m

and the distance between Pdiff and STI is 0.4 µ m. Fig. 4.6(b) shows the layout of a pixel,

the size is 80 µ m×80 µ m, so that the fill factor is about 3%.

4.5.2 Passive Quenching Circuit

Fig. 4.8 illustrates the behavior of PQC in the pixel. The SPAD is in the free-running mode,

so that the SPAD is always reversely biased above the breakdown voltage until breakdown

happens. Twin is controlled by ‘WIN’ that is input from the external. Since the output of the

NOR gate is always low, the state of SPAD can not be transmitted to the DFF when ‘WIN’

is high. On the other hand, during the period that ‘WIN’ is low, each breakdown generates a

pulse feeding into the DFF. Thus, the output of the DFF (QC out) will goes high once there is

a breakdown happens during Twin. At the end of Twin, QC out goes back to low by the ‘RST’

signal.

The advantage of PQC is its simple circuit that can achieve a high FF, however, this circuit

also has some drawbacks. Firstly, Twin can not be controlled precisely due to the long and

asynchronous recharging time. Moreover, there are no hold-off time for this circuit, therefore,
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Figure 4.7 (a)Sensor architecture; (b) Pixel diagram; (c) Schematic of a quenching circuit;

(d) Schematic of a BPE logic.

the influence of after-pulsing is large.

4.5.3 Timing Diagram

Fig. 4.9 shows a timing diagram of the designed sensor. ‘WIN’, ‘RST’, ‘Search[0]’, ‘Next’,

and 4-b ‘WL’ are input signals from external. ‘WIN’ is used to control Twin. ‘RST’ is con-

nected to all the DFFs in PQC and BPE circuits to restart a frame. ‘Search[0]’ and ‘Next’

are the control signals for the BPE circuits as mentioned before. ‘WL[0:3]’ are the 4-b input

signals for the CAG. ‘SCH fin’ is the output of Global search completion detection block

to represent the completion of addresses output procedure. ‘Output[0:14]’ are the output

addresses of 15 rows.

The BPE procedure is activated with the rising of ‘Search[0]’ at the end’s of frame’s Twin.

The first ‘Next’ goes high after one cycle, and 4 cycles are needed to readout the 4-b address.

As a result, the total Treadour is (Max(NBD,i×5+1)) cycles.
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Figure 4.8 Behavior of passive quenching circuit.
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Figure 4.9 Sensor timing diagram.

4.6 Design of 31×31 SPAD Imager based on BPE architecture with

Background Readout

In this section, the design of a 31×31 SPAD Imager based on BPE architecture with back-

ground readout is introduced [69]. This sensor is also based on the BPE architecture, and an

additional 1-b memory in each pixel is utilized to store the value of the previous frame. Thus,

the background readout is realized during the Twin as shown in Fig. 4.10. Through this read-
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Figure 4.11 (a) Sensor architecture; (b) Pixel Diagram; (c) Detailed schematic of a single

pixel.

out scheme, Tdead is minimized to 3 cycles if the readout procedure can be completed before

the end of next frame’s window time. The Tdead contains one cycle for ‘Write’, ‘Hold-off’ and

‘Charge’. On the other hand, if there are a lot of breakdown pixels in a frame, Treadout turns

to be so long that the readout procedure can not satisfy the minimized Tdead requirement, all

the data during Treadout have to be dropped.

4.6.1 Chip Architecture

Fig 4.11 shows the overall architecture of this sensor. The sensor contains an array of

31×31 SPAD pixels, a CAG, a control block, and a global search completion detection block.

Fig. 4.11 shows a block diagram of three pixels which is almost the same with the 15×15
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Figure 4.12 (a) Sensor architecture; (b) Pixel Diagram; (c) Detailed schematic of a single

pixel.

SPAD imager introduced before. Each pixel contains a SPAD, an active quenching circuit

(AQC) and a BPE logic.

Instead of the circular SPADs, rounded corners square SPADs are utilized in this chip to

achieve a higher fill factor as shown in Fig. 4.12(a). In order to analysis the relationship

between the DCR and the size of a SPAD, three chips are fabricated with different sizes

SPADs. The length of the SPADs in this sensor are 9.2 µm, 11.2 µm, and 13.2 µ, respectively.

Fig. 4.12(b) shows the layout of a single pixel and the fill factor is 4.8%, 7.1%, and 9.0%.

4.6.2 Active Quenching Circuit

Fig. 4.11 illustrated the schematic of a single pixel containing an active quenching circuit

(AQC) and a BPE logic. The BPE logic is the same with the first sensor, however, the AQC

is newly designed to achieve the proposed background readout scheme as well as improving

the performance comparing with the disadvantages of PQC discussed before.

The behavior of AQC is shown in Fig. 4.13. The anode of a SPAD is slightly biased
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Figure 4.13 Behavior of AQC.

above the breakdown voltage (-VS PAD), and the cathode is connected with 4 transistors and

an inverter. When ‘WIN’ is high, the SPAD is over biased at Vex and is able to detect the

incident photons. However, charging the SPAD and writing data into DFF needs another two

cycles. Therefore, the actual Twin is the pulse width of ‘WIN’ minus two clock cycles as

shown in Fig. 4.13.

During Twin, if no breakdown happens, the voltage of cathode keeps high, and the inverter’s

output is ‘0’ (Fig. 4.13(c)). Once there is a breakdown happening, the voltage of cathode falls

down and the inverter’s output turns to be ‘1’. Then, this high voltage turns ‘M4’ on so that

the cathode of SPAD is connected to the ground and keeps low. Therefore, the hold-off
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procedure starts after detecting a breakdown. At the end of Twin, the SPAD’s state of this

frame is written into the DFF. During the next clock cycle, Twin goes low to force the SPAD

‘OFF’, this off period make the SPAD’s hold-off time to be one cycle at least.

4.6.3 Timing Diagram

Fig. 4.14 shows a timing diagram of the sensor. ‘WIN’, ‘Charge’, ‘Write’, ‘Search’, and

‘Next’ are control signals generated by the control block outside of the array. The pulse

width of ‘WIN’ is controlled by the 5-b external inputs. After writing the frame’s data into

the registers located in each pixel, the SPADs are turned ‘OFF’ by the falling of ‘WIN’ to

achieve a certain hold-off time. Then, these SPADs are recharged again for the next frame,

and Twin starts again. At the same time, the BPE procedure is activated to readout the stored

data off the chip in parallel. Since 5 cycles are needed to readout an address for the 31 pixels

in a row, the total readout time is:

Treadout = TCLK × (Max(NBD,i) × 6 + 1) (4.4)
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and the requirement that Tdead can be minimized is:

Treadout < 3TCLK + Twin (4.5)

Twin > TCLK × (Max(NBD,i) × 6 − 2) (4.6)

This condition is defined that the frame is in the safety zone that Tdead is minimized and no

data is dropped.

If the requirement can not be satisfied, Tdead turns to be:

Tdead = 3TCLK + Ndrop × (3TCLK + Twin) (4.7)

where, Ndrop represents the number of frames that have to be dropped,

(Ndrop − 1) × (Twin + 3TCLK) ≤ Treadout < Ndrop × (Twin + 3TCLK) (4.8)

Twin is set to 10 cycles (The pulse width of ‘WIN’ is 12 cycles) in this timing diagram, so

that Maximum value for Max(NBD,i) to satisfy the requirement is one. For the first frame, the

value of Max(NBD,i) is assumed to be one, thus, Tdead can be minimized to be 3 clock cycles.

For the second frame, Max(NBD,i) is 8, so that the frame is not in the safety zone. Treadout is

49 cycles for this frame, thus, 4 frames have to be dropped, and Tdead is 48 cycles.

4.7 Design of 31×31 SPAD Imager with Event Discriminator based

on BPE Architecture

The feature of BPE logic is that stable SPAD pixels are automatically skipped, and the

search signals are stopped at breakdown pixels in one cycle. Thus, BPE logic is also able to

count the Max(NBD,i) without readout procedure, and the counting time (Tcount) is,

Tcount = TCLK × (1 + Max(NBD,i)) (4.9)

Fig. 4.15 shows a Monte Carlo simulation results to show that the value of Max(NBD,i)

is proportion to the number of total breakdown SPADs (total counts) in an array. Since the

difference between dark frame and event frame is the total number of breakdown pixels, event

distinction can be conducted through the counted value of Max(NBD,i). Therefore, the BPE

logic can be used as a discriminator to detect the event frames from the dark frames.
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Figure 4.15 A Monte Carlo simulation result about total counts and Max(NBD,i).

4.7.1 Idea of Event Discriminator Based on BPE Logic

The counting procedure is similar to the BPE readout method introduced before, and an

additional counter is utilized to count Max(NBD,i) as shown in Fig. 4.16. The counter is reset

to 0 at the first. The counting procedure starts with the trigger of leftmost search signals

in each row Fig. 4.16(a), and these signals propagate until arriving at a breakdown pixel in

a row (Fig. 4.16(b)). Then, at the next cycle, a global ‘Next’ pulse signal is broadcast to

resume the propagation, and add 1 to the value of counter as shown in Fig. 4.16(c). These

processes are repeated until all search signals have reached the rightmost pixel that ends the

counting procedure, and the counter’s value equals to Max(NBD,i).

Fig. 4.17 shows the scheme of proposed idea. The counting procedure is conducted after

a frame’s Twin. If the counter’s value is smaller than the threshold value (Nth) as shown in

the first frame, a global reset signal is triggered to reset the frame without readout. On the

other case, if the value becomes larger than NNth, the counting procedure stops and the BPE

readout procedure is triggered after one clock cycle. Different from the previous imagers,
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Figure 4.17 Proposed event discriminator scheme.

a serial output method is utilized in this method for two reasons: the serial output reduces

the number of output pins from 31 to 1, which make measurement be more convenient; only

event frame is readout so that the high-speed readout is unnecessary.
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Figure 4.18 Chip architecture.

4.7.2 Chip Architecture

Fig. 4.18 shows the overall architecture of this sensor. The sensor contains an array of

31×31 SPAD pixels, a CAG, a control block, a Global search completion detection block,

and shift register. It is almost the same with the last sensor except the control block and the

additional shift register. For the control block, additional 5-b inputs are used to represent the

Nth, and the event distinction function is added.

4.7.3 Timing Diagram

Fig. 4.19 illustrates a timing diagram of this sensor. The pulse width of ‘WIN’ is con-

trolled by the external inputs, which is 12 cycles in this timing diagram. The same with the

last sensor, the actual Twin is the pulse width of ‘WIN’ minus two cycles because of writ-
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Figure 4.19 Sensor timing diagram.

ing and charging. The value of Nth is also controlled by a 5-b external inputs, which is 3

in this diagram. ‘RST’, ‘Write’, ‘Search’, ‘Next’, ‘Out start’, 5-b ‘WL[0:4]’, ‘SCH Fin’,

and ‘Out write’ are control signals generated by the control block. ‘RST’, ‘Write’, ‘Search’,

‘Next’, and ‘WL[0:4]’ have the same functions with the last chip. ‘Out start’ goes high when

the value of counter becoming larger than Nth, and represents the starting of readout proce-

dure. ‘SCH Fin’ represents the finish of counting procedure or readout procedure that is feed-

back to the control block. ‘Out write’ is used to write the addresses to the 31-b shift-registers

for readout. ‘CNT’ represents the value of the an internal counter to count Max(NBD,i).

‘Out state’ is one of the output signal representing the output state. ‘Address Output’ is

the serially output addresses.

For the first frame in the timing diagram, the Max(NBD,i) is 2, which is smaller than Nth, so

that the readout procedure is not executed for this frame, and ‘Write’ signal rises up at the

end of the second frame’s Twin.

For the second frame, the counting procedure has not been finished when the value of CNT

becomes 4, which indicates that Max(NBD,i) is larger than Nth. Thus, the ‘Search’ signal falls

down to suspend the counting procedure, and ‘Out start’ goes high. At the next clock cycle,

‘Search’ signal rises up again to start the BPE readout procedure. Then, ‘Out write’ rises
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up to write addresses to the shift-resisters for readout after one cycle when ‘Next’ goes high.

After one cycle, ‘Out state’ also goes high representing the beginning of addresses readout

procedure. ‘Write’ keeps low and drops all the data until the completion of BPE procedure.

Since there is no readout procedure for the dark conditions, Tdead is always minimized to 3

cycles at all the dark conditions.

4.8 Summary

This chapter targeted on the efficient readout architecture for SPAD imagers. Since the

breakdown SPAD pixels are sparse in many application, an architecture that only extracts the

address of breakdown pixels can achieve a higher readout efficiency. A breakdown pixel ex-

traction (BPE) readout architecture has been proposed based on the binary feature of SPADs.

The design and behavior of BPE architecture has been introduced at first, and the design

of a 15×15 SPAD imager to verify the functionality of the proposed architecture has been

presented.

Then, a detail design about the imager with 31×31 pixels utilizing background readout

method has been shown. This imager added an additional 1-b memory in each pixel to store

the value of the previous frame, and to realize the background readout. This method could

minimized Tdead to 3 cycles under dark conditions or under sparse breakdown pixels.

Furthermore, another BPE based 31×31 SPAD imager with event discriminator has been

proposed for minimizing Tdead and event detecting. This imager counted the value of Max(BD,i)

of each frames at first, and the readout procedure only started when Max(BD,i) became larger

than a threshold value.



Chapter 5

Experimental results of Designed BPE SPAD

Imagers

5.1 Introduction

This chapter presents the experimental results including the functionality, DCR distribu-

tion, PDE and dead time about the three designed imagers. Then, a comparison on the three

designed imagers are presented.

5.2 Experimental Results of the 15×15 SPAD Imager

Fig. 5.1 shows a chip photomicrograph of the 15×15 SPAD imager with BPE architecture

fabricated by the same process introduced in Chapter 4. The chip was tested by a logic

analyzer, and the measured waveforms when the chip was being operated at 25 MHz are

shown in Fig. 5.2. ‘Search[0]’ (Fig. 5.2(b)), and ‘Next’ (Fig. 5.2(a)) are input signals that

were generated by the logic analyzer. ‘Address out’ is one of the 15 rows parallel readout

addresses, and the measured waveform is shown in Fig. 5.2(c). This measured waveform

indicates that the 2nd and 11th pixels of this row were breakdown at this frame. And Treadout

for this frame is 11 clock cycles. The search finish signal goes high after all the breakdown

pixels had been readout out as shown in Fig. 5.2(b).

5.2.1 DCR Distribution Measurement

To measure the DCR distribution over the chip, the imager was positioned in a black box,

and operated with different Twin. Fig. 5.3 shows an example of the measured image by sum-

60
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Figure 5.1 Chip photomicrograph of the 15×15 SPAD Imager.

ming up 1000 frames that were measured in the black box with 400 ns Twin. Since the SPAD

imager can only distinct whether breakdown happens or not during the Twin, the number

written in each pixels (Counts) represents the probability of breakdown happening (Pbd).

Pbd =
Counts
1000

(5.1)
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Figure 5.2 Measured waveforms by a logic analyzer.

According to the introduction in Chapter 2, the number of dark counts per time unit (Twin)

follows a Poisson distribution:

p(k,Twin) =
λke−λ

k!
(5.2)

where λ is the expected value of dark counts during Twin, so that

λ = Twin × DCR (5.3)

Therefore, Pbd is

Pbd =

∞∑

k=0

p(k,Twin) (5.4)

and, DCR is:

1 − Pbd = p(0,Twin) = e−Twin×DCR (5.5)

1 − Counts
1000

= e−Twin×DCR (5.6)

DCR = − log (1 − Counts
1000 )

Twin
(5.7)
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Figure 5.3 Summation of 1000 dark frames when Twin was 400 ns.

Fig. 5.4 shows the cumulative DCR plot over the sensor at four different Twin. The median

value, mean value, and the largest value are 10 kHz, 20 kHz, and 130 kHz, respectively.

5.2.2 Pinhole Imaging

Fig. 5.5 shows the experimental setup to demonstrate the sensor functionality. During

the experiments, pinholes with different sizes (the diameters are 5 µm, 25 µm, and 100 µm,

respectively) are placed in front of the chip. The photons are generated by a digital modulated

laser. The whole system is placed in a black box. The generation of control signals and output

data acquisition are conducted by the logic analyzer. The pulse width of laser is 100 ns, and

Twin is 300 ns. The system operates at 50 MHz, and the power of laser beam is controlled by

a PC.

Fig. 5.6(a)-(c) show the simulated diffraction patterns with different size of pinholes. The
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Figure 5.4 Cumulative DCR plot at different Twin.

Figure 5.5 Experimental setup of pinhole diffraction pattern measurement.

color of these figures represent for the number of incident photons in a 10×10 µm2 square.

Fig. 5.6(d)-(f) show the captured images with different pinholes, by summing 1000 frames

together. The pinhole diffraction pattern is clearly observed.
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Figure 5.6 Pinhole diffraction patterns simulated with normalization ((a), (b) and (c)) and

captured count without normalization ((d), (e) and (f)) at a total integration time of 100 µs

(100 ns × 1000 frames).

5.2.3 Calculation about Tdead and Temporal Aperture Ratio

For this sensor, before the starting of each frame, one cycle for resetting all the DFFs is

needed, so that Tdead is,

Tdead = TCLK + Treadout = TCLK × (2 + 5 × Max(NBD,i)) (5.8)

Base on the calculation results about the probability distribution of Max(NBD,i) in Chapter 4

section 2, the probability of Tdead as a function of Twin is shown in Fig. 5.7(a) when the chip is

operated at 50 MHz. The DCR used in this plot is 20 kHz, which is the measured mean DCR

value of the imager. The expected value and standard deviation are calculated derived from

the probability distribution, and the calculation results are plotted in Fig. 5.7(b). Fig. 5.8

illustrates the relationship between the temporal aperture ratio (TAR) and Twin of this sensor
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Figure 5.7 (a) Probability distribution of Tdead at different Twin; (b) Excepted value of Tdead

at different Twin.
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Figure 5.8 Relationship between TAR and Twin under dark conditions.

under dark condition comparing with the number of breakdown pixels over the chip, where

T AR =
Twin

Tdead + Twin
(5.9)
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Figure 5.9 Probability distribution of Tdead at different Twin.

5.3 Experimental Results of the 31×31 SPAD Imager with Background

Readout Method

Fig. 5.9 shows a chip photomicrograph of the 31×31 SPAD imager based on BPE architec-

ture with background readout. According to the analysis in Chapter 4, the maximum clock

frequency depends on the propagation delay of search signals. The worst case is that there is

no breakdown pixel in a row, and the search signal has to be propagated along all the pixels
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Figure 5.10 Measured output waveforms.

in this row. The post-layout simulation result of such case shows that the time difference

between the leftmost search signal and the rightmost search signal is 8.1 ns. Therefore, the

maximum clock frequency for this chip is about 120 MHz.

5.3.1 Pulsed Laser Detection

A pulsed laser with 100 ns pulse width was used as the light source to emulate the random

event. The measurement setup is the same with the previous chip, and the chip was operated
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Figure 5.11 Captured images.

at 50 MHz, Twin was set at 200 ns. In order to reduce the number of incident photons, a

pinhole with a diameter of 25 µm was placed in front of the chip.

Fig. 5.10 shows the measured output waveforms, the blue line is the readout addresses of

the 16-th row, and totally 4 frames were recorded. Fig. 5.11(a) illustrates the timing diagram

during this measurement period, and Fig. 5.11(b)-(e) show the images of captured frames.

For the first frame ‘Frame[0]’, the signal had kept low indicating that there was no break-

down pixel in this row. However, there are some breakdown pixels in the other rows and

Max(NBD,i) is 1 as shown in Fig. 5.11(b). Thus, the first frame’s Max(NBD,i) satisfies the re-

quirement of safety zone according to the analysis results in chapter 4, and Tdead is minimized

to 60 ns (3 clock cycles).

For the ‘Frame[1]’, the output was ‘00001’ that represents only the first pixel of this row

was breakdown, this frame’s Max(NBD,i) is also 1, so that Tdead is minimized to 60 ns too, and

no data had been dropped.

For the third frame, there were 6 breakdown pixels in this row, that implies the existence of

many incident photons during Twin, and the assembled breakdown pixel because of pinhole

diffraction proved this assumption. On the other hand, since Max(NBD,i) could not satisfy the
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Figure 5.12 Max(NBD,i) histograms of the captured 11970 frames.

requirement, Tdead was 840 ns and 4 frames’ data had be dropped. Fig. 5.11(f) shows the

summation results of 11970 captured frames in 4 ms with 996 pulsed laser event.

(a) (b)

Figure 5.13 (a) Summation of frames that Max(NBD,i) are larger than 2; (b) Summation of

frames that Max(NBD,i) are larger than 3.
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The histograms of Max(NBD,i) is shown in Fig. 5.12. Among the 11970 captured frames,

773 frames’ Max(NBD,i) are larger than 2, which indicates a high probability of pulsed laser

event happened during these frames’ Twin. For the other frames, there are frames that only

contain dark counts, or some frames containing some breakdown pixels caused by incident

photons. Fig. 5.13(a) and (b) show the images that only summed the frames that Max(NBD,i)

are larger than 2 or 3, respectively. These clearly diffraction pattern shows the ability of event

distinction by counting the value of Max(NBD,i).

5.3.2 Measurements on DCR Distribution

The DCR distribution of the three types of fabricated sensor with different SPAD sizes were

measured and calculated using the same method with the previous chip. For each type of sen-

sor, 3 chips with totally 2883 pixels were measured for each sizes. The detailed measurement

results are shown in table 5.1, and the cumulative DCR plots are shown in Fig. 5.14. The

same with the introduction in chapter 2, these plots show that most of the pixels have a low

DCR, on the other hand, a fraction of SPADs have a very high DCR. It is obviously that a

larger SPAD size has a higher DCR.

Table 5.1 Measurement results about DCR.

Chip1 Chip2 Chip3

Area [µm2] 144 196 256

Perimeter[µm] 24 28 32

Mean [kHz] 12 19 27

Median [kHz] 2 4 9

Max [kHz] 444 591 966
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Figure 5.14 Cumulative DCR distributions of the three chips.

5.3.3 Calculation about Tdead and TAR

Probability about the safety zone

According to the analysis about Tdead in Chapter 4, the largest Max(NBD,i) value that can

satisfy the requirement of minimized Tdead is plotted in Fig. 5.15, and the operation clock is

also set at 50 MHz.

The probability that Max(NBD,i) is not larger than a threshold value Nth is,

PMax(NBD,i≤k)(Twin,DCR) = (
k∑

i=0

PNdc=i(Twin))M (5.10)

where DCR is 20 kHz, M is 31, and this probability as a function of Twin is plotted in Fig.

5.16.

The probability that the frame can be in safety zone can be derived by combining the results

in Fig. 5.15 and Fig 5.16 as shown in Fig. 5.17. This plot shows that when Twin is larger than

320 ns, the probability that a frame is in the safety zone Tdead can be minimized is almost

one.
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Figure 5.15 Largest Max(NBD,i) that satisfies the requirement.
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Figure 5.16 PMax(NBD,i) ≤ k as a function of Twin.

Analysis about Tdead

Fig. 5.18 shows the relationship between Twin and Tdead at different Max(NBD,i). Based this

relationship and the probability distribution of Max(NBD,i) in equation 4.3, the excepted value
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Figure 5.18 Tdead at different Max(NBD,i).

of Tdead is plotted in Fig. 5.19, and TAR comparing with the total dark counts are shown in

Fig. 5.20. The red line in figure represents the TAR of this method, and the green line is the

calculated TAR of the previous chip extended to 31×31 pixels.
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Figure 5.20 Comparison on the excepted TAR with the previous imager.

5.3.4 Measurements about Photon Detection Efficiency

The PDE of the SPAD was measured through pinhole imaging with this imager. Supposing

that Nph is the number of photons incident into a SPAD, and the probability that dark counts
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Figure 5.21 Measured PBD mapping.

happens during a measurement is PDC, the probability that the SPAD is breakdown PBD is:

PBD = 1 − (1 − PDE)Nph × (1 − PDC) (5.11)

Therefore, PDE is:

PDE = 1 − (1 − PBD)
(1 − PDC)

1
Nph

(5.12)

where, the value of Nph is calculated from the pinhole diffraction pattern and the energy of

pulsed laser, PDC is calculated from the measured DCR distribution, and PBD is calculated

from the measured counts of pinhole imaging as shown in Fig. 5.21.

PBD =
Counts

Total number of measured frames
(5.13)

Fig. 5.22(a) and (b) shows the calculated PDE distribution over the chip when the SPAD is

over biased at 1.4 V and 1.8 V respectively.
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Figure 5.22 (a) Calculated PDE when VS PAD is -27 V; (b) Calculated PDE when VS PAD is

-27.4 V.

5.4 Measurements about 31×31 SPAD Imager with Event Discrimi-

nator Based on BPE Architecture

5.4.1 Pulsed Laser Imaging

Fig. 5.23 shows a chip photomicrograph of the 31×31 SPAD imager with event discrimi-

nator based on BPE architecture. The experimental setup to test the chip’s functionality is the

same with the previous chip too. Fig. 5.24 shows the measured output waveforms, when the

chip was operated at 50 MHz, pulse width of laser is 20 ns, a 50 µ m pinhole was positioned

in front of the chip, Twin was set at 200 ns, and Nth was set a 4. Based on the analysis about the

Max(NBD,i) in previous section, the probability that Max(NBD,i) is larger than Nth is smaller

than 0.01% as shown in Fig. 5.15.

For each test, the measurement period was 200 µs, pulsed laser was activated at 100 µs as

shown in the blue line in Fig. 5.24. The red line is ‘Search’ signal to show the beginning of

counting procedure, green line is ‘Out state’ that represents the beginning of readout proce-

dure, and black line is ‘Address Output’. Totally 795 frames were captured during the 200 µs,

and only one frames was readout because of that frame’s Max(NBD,i) was larger than Nth.

Fig. 5.25 shows the same waveforms focusing on the period of readout procedure. Since

the value of Max(NBD,i) was not larger than Nth, no data was readout until the pulsed laser

was incident. For the frame that ‘Laser’ was high during its Twin, the measured ‘OUT state’
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Figure 5.23 Chip photomicrograph of the SPAD imager with Event Discriminator.

went high and this frame’s data was readout.

Fig. 5.26 illustrates a summation of the 1000 measured frames, and this diffraction demon-

strated the functionality of this imager. Moreover, the noise is also automatically filtered by

the reduction of readout frames.

5.4.2 Analysis about the setting of Nth

For this imager, Tdead can be always minimized to 3 cycles and detect the events efficiently

if Nth is set appropriately. The appropriate is defined by three requirements:

• Filtering all the dark frames.

• Tdead is minimized under dark condition.



Chapter 5 Experimental results of Designed BPE SPAD Imagers 79

0

1
Laser

0

1
Search

0

1
Out_State

0 25 50 75 100 125 150 175 200
Time [us]

0

1
Address Output

Figure 5.24 Captured waveforms.
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Figure 5.25 Enlarged captured waveforms.

• Detecting events efficiently.
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Figure 5.26 Summation of 1000 captured frames.

First requirement: dark frames filtering

The principle of the proposed event discriminator is based on the value of Max(NBD,i), so

that most of the dark frames can be filtered off if Nth is high enough. Fig. 5.27 illustrates the

minimum value of Nth that can filter 99.99% the dark frames. The parameters that relate with

the probability distribution of Max(NBD,i) are the same with the analysis in previous section

(CLK=50 MHz, M=31, N=31, and DCR= 20kHz).

Second requirement: minimized Tdead

If the counting procedure can be finished before the ending of next frame’s Twin, Tdead can

be minimized to 3 cycles. Counting procedure is completed by two cases:
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Figure 5.27 Minimum value of Nth that can filter 99.99% the dark frames.

• Case 1: Searching procedure is completed and Max(NBD,i) is not larger than Nth.

• Case 2: Max(NBD,i) becomes larger than Nth during the searching procedure.

And the duration of counting procedure (Tcount) is,

Case 1: Tcount = TCLK × (1 + Max(NBD,i)) (5.14)

Case 2: Tcount = TCLK × (1 + Nth) (5.15)

For the reason that Nth must be not smaller than Max(NBD,i) to satisfy the first requirement,

Tcount discussed in this part is the value of the second case.

TCLK × (1 + Nth) ≤ 2TCLK + Twin (5.16)

Fig. 5.28 plots the maximum value of Nth that satisfies the second requirement comparing

with the minimum value of Nth that is calculated in the previous part.
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Figure 5.28 Minimum value of Nth that can filter 99.99% the dark frames.

Third requirement: event frames distinction

It is difficult to define the efficiency of event distinction since the intensity of incident

light varies with applications and measurement conditions. In this part, the total number of

incident photons is Nph, and the positions of incident photons are assumed to be randomly

distributed over the imager. The fill factor of the imager is 9.0 %, DCR is 20 kHz and PDE is

8 % based on the measurement results of previous section. The breakdown probability for a

pixel is:

PBD = 1 − (1 − PDC) × (1 − PDE)
Nph×FF

961 (5.17)

the probability that number of breakdown pixels is NBD in a row (PNBD) is

PNBD =

(
31

NBD

)
× (1 − PBD)(31−NBD) × PNBD

BD (5.18)

so that, the probability for Max(NBD,i)¿k is:

PMax(NBD,i)>k = 1 − (
k∑

i=0

PNBD=i)31 (5.19)
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Figure 5.29 A comparison about the Max(NBD,i) with 10,000 incident photos and under

dark condition.

Fig. 5.29 shows a comparison about the value of Max(NBD,i) with 10,000 incident photos (the

solid line) and under dark condition (the dots). According to this figure, both the probability

that NBD is larger than 3 and the probability that NDC is not larger than 2 is almost 1 when

Twin is about 200 ns. Moreover, 3 is also the appropriate value for the Nth as shown in Fig.

5.28.

5.5 Summary

This chapter presented the experimental results of the three designed imagers.

For the first designed sensor with 15×15 SPAD array, the functionality of BPE readout

method has been experimentally demonstrated. Then, the DCR distribution has been mea-

sured, and the median value, mean value, are 10 kHz, 20 kHz, respectively. Based on the

measured DCR, an analysis about the temporal aperture ratio (TAR) has been shown.

For the second imager that contains 31×31 SPAD array with background readout method
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based on BPE architecture, the ability of random event detection has been shown by pulsed

laser imaging at first. Then, measurements about the DCR distributions of the images with

different SPAD sizes have been shown. Furthermore, an analysis about the requirements

that can minimize Tdead has been presented, and TAR as function of Twin has been shown

comparing with the first imager. A 40% improvement of TAR has been shown based on the

calculated results. Finally, Photon detection efficiency of designed SPAD has been measured.

For the third imager that employed an event discriminator based on BPE architecture, the

functionality of this sensor has been measured using the same method as the previous one.

Then, an analysis about the setting of threshold value has been shown.



Chapter 6

SPAD Imager with Real-Time Current Logic

Event Dircriminator

6.1 Introduction

This chapter shows a sensor architecture with real time event discriminator. It employs a

current logic to monitor the number of breakdown pixels in real time. A 32×32 SPAD imager

with the architecture is shown together with the experimental results.

6.2 Idea of SPAD Imager with Current Logic Event Discriminator

The drawback of the imagers designed in the previous chapter is that there is still a certain

Tdead of 3 clock cycles due to the global charging, writing, and holding off procedures.

In this chapter, a Tdead free architecture with current logic based event discriminator is

introduced. The idea of the proposed imager is shown in Fig. 6.1. Instead of the time gated

mode, the SPADs are in free-running mode to achieve zero Tdead. There is a hold-off time

after each breakdown in order to reduce the influence of after-pulsing as well as to realize

the current logic based event discriminator. The output of quenching circuit is connected to

a current source cell, and a current is generated during the period when SPAD is ‘OFF’. All

the current cells in each pixel are connected together, so that the value of the current sum are

proportion to the number of breakdown pixels as shown in Fig. 6.1. If event happens and

the photons that incident into the imagers can trigger many SPADs breakdown, so that the

sum will become larger than a threshold value. Then, ‘CMP out’ rises up to start the readout

procedure.

85
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Figure 6.1 Idea of the proposed imager with current logic event discriminator.

A test-of-concept chip was developed with a 32×32 SPAD array imager using the same

processes to verify the functionality of this proposed idea.

6.3 Design of SPAD Imager with Real Time Current Logic Based

Event Discriminator

Fig. 6.2 illustrates the architecture of the designed imager. It contains a 32×32 SPAD array,

a control block generating the control signals, a 6-b DAC to generate the threshold value in

chip (V ref), a comparator comparing ‘V ref’ with the current logic output (V SPAD), and a
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Figure 6.2 Architecture of the proposed sensor.

32-b shift-registers for output.

The readout method utilized in this chip is the conventional raster scan method instead of

BPE method for two reasons:
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Figure 6.3 Detailed schematic of pixel circuit.

• Simplifying the circuit in pixel to achieve a higher FF.

• High-speed readout is not necessary for this architecture.

6.3.1 Design of Pixel Circuit

Fig. 6.3 shows the detailed schematic design of a pixel circuit. The pixel circuit contains

a VHAQC that is the same with the circuit for measuring the after-pulsing probability in

Chapter 3, an unit current cell (UCC), and a readout unit. The duration of hold-off time is

controlled by the external bias voltage ‘VBias’. The value of output current is controlled by

the two external bias voltages ‘Bias2’ and ‘Bias3’. The UCC is turned on during the hold-off

time, and all UCCs’ output are connected together with a resistor as shown in Fig. 6.2 to

generate ‘V SPAD’. For the readout unit, the CMP unit’s output (‘CMP out’) is fed into the

‘CLK’ of DFF in the unit, so that the SPAD’s state is recorded once an event is detected.

Then, the data is serially readout through the transistor in readout unit. The layout of a pixel

is shown in Fig. 6.4 (a), the area is 42 µm×42 µm with a fill factor about 10.4%.
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Figure 6.4 (a) Pixel layout; (b) DAC layout; (c) CMP layout.

1.0

1.2

1.4

1.6

1.8

O
ut

0 500 1000 1500 2000 2500 3000 3500 4000
Time[ns]

1.0

1.2

1.4

1.6

1.8

O
ut

_b

Figure 6.5 DAC simulation.

6.3.2 Peripheral Circuits

Digital-to-analog converter

The 6-b digital-to-analog converter (DAC) in the imager is used to generate the reference

voltage for the comparator. The same unit current cell in pixel circuit is utilized in the DAC,
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and the layout is shown in Fig. 6.4(b). The simulation result is shown in Fig. 6.5

Comparator

Fig. 6.6 shows the schematic of comparator. A folded cascade comparator is used in the

imager for the reason that both V ref and V SPAD are near to VDD. The reverted output of

comparator (‘CMP out pre’) is connected to the ‘CLK’ port a DFF in order to prevent the

signal falls back during the readout and global recharging procedures. The layout of this

circuit is shown in Fig. 6.4(c).

6.3.3 Timing Diagram

Fig. 6.7 shows the timing diagram of the proposed sensor. ‘V SPAD’ is the output of cur-

rent summing circuit as shown in Fig. 6.2. ‘V ref’ is the output of DAC, which is controlled

by the 6-b external inputs. ‘CMP out pre’ is the internal signal of CMP unit as shown in Fig.

6.6. ‘CMP out’ is the output of CMP unit that represents the comparison result of ‘V ref’
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Figure 6.7 Imager timing diagram.

and ‘V SPAD’, and rises up when ‘V SPAD’ becomes lower than ‘V ref’.

‘Force off’, 5-b ‘Row’, ‘Load’, ‘DFF RST’ and ‘Readout’ are the control signals generated

by the control block. ‘Force off’ goes high at the rise edge of a CLK signal when ‘CMP out’

is high to hold the SPADs ‘OFF’, and falls down when readout procedure is completed to

restart the global recharging. The 5-b ‘Row’ signals represent the selected row during readout

procedure. ‘Load’ rises up at the beginning of each row’s readout to write the pixels data into

shift registers for sensor output. ‘DFF RST’ is the global reset signal that is triggered by the

finish of readout procedure or the external reset signal. ‘Readout’ represents the readout state

that keeps high during the readout procedure.

All the control signals are kept stable when ‘CMP out’ is low, which represents the number

of breakdown pixels in a period of hold-off time is small. When event happens and ‘CMP out’

falls down, the control block starts to work. At the same time, the states of SPADs are

recorded into the registers located in each pixel as shown in Fig. 6.3. At the rising edge of

the next clock, ‘Force off’ rises up to hold all SPADs ‘OFF’, and the readout procedure is

triggered and ‘Readout’ goes high. Then, ‘Load’ goes high to write the first row’s data into

shift-registers, and the data is shifted out of the chip through ‘Sensor out’. After all the 32

bits data has been shifted out, the value of ‘Row’ becomes 1, and ‘Load’ rises up again to
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Figure 6.8 Chip photomicrograph of the imager.

write the second row’s data. These processes are repeated until all the rows’ data have been

readout. Then, a global ‘DFF RST’ pulse signal is triggered to reset the DFF in pixels and

CMP unit, so that both ‘Force off’ and ‘CMP out’ fall down.

6.4 Experimental Results

Fig. 6.8 shows the chip photomicrograph fabricated in the same process. The mesurement

setup was the same the previous chip for pulsed laser imaging, the chip was operated at
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Figure 6.9 Measured waveforems.

80 MHz, the 25 µm pinhole was positioned in front of the chip.

Fig. 6.9 shows the measured waveforms, the red line is the control signal for the pulsed
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Figure 6.10 Summation of captured frames from 1000 times measurements.

laser, the blue line is ‘Readout’, the black waveform is ‘Sensor out’, and the value of green

line (Row[4:0]) represents the row that is under readout procedure.

For each measurment, the pulsed laser was triggered at 1 µs, and the measurement duration

is 17 µs. ‘Readout’ kept low before the triggering of plused laser since there are only a few

SPADs under dark conditions, and went high when laser was triggered as shown in Fig. 6.9.

Fig. 6.10 shows a summation of captured frames from 1000 times measurements, and the

width of pulsed laser is 62.5 ns. This diffraction pattern demonstrated the functionality of this

proposed event discriminator and this prototype imager. However, a further measurements

about the performance of the DAC and the comparator are necessary to evaluate the designed

imager.
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6.5 Summary

We have presented a sensor architecture with real time event discriminator in this chapter. A

32×32 SPAD imager with the architecture has been presented together with the experimental

results. This imager employed a current logic to monitor the number of breakdown pixels

in real time, and a free-running with variable hold-off time active quenching circuit has been

proposed to achieve zero Tdead. The ability of random event distinction has been shown

through the experimental results.



Chapter 7

Conclusions

This thesis focused on the design of a SPAD in the standard CMOS process, and the design

of SPAD imagers. The basic principle and key parameters of a SPAD have been introduced

in Chapter 2. Then, structures and experimental results about the designed several types of

SPADs have been presented in Chapter 3. From Chapter 4 to Chapter 5, a new sensor archi-

tecture with high readout efficient and 3 SPAD imagers utilizing the proposed architecture

have been shown. In Chapter 6, a SPAD imager with real-time event discriminator has been

introduced.

Chapter 2

This chapter provided an introduction about basic principles and features of SPAD in order

to understand the required constraints in designing CMOS SPAD. The breakdown voltage,

dark counts rate (DCR) , and photon detection efficiency (PDE) were introduced. According

to the introduction, the breakdown voltage of a SPAD should be greater than 15 V in order

to suppress the influence of band to band tunneling, and s suitable guard ring is necessary

for preventing premature breakdown due to edge effect. Furthermore, an analysis on the

influence of DCR and PDE has been shown, and the desirable DCR for the SPAD imager is

about 10 kHz.

Chapter 3

This chapter focused on designing and testing about SAPDs that were fabricated by the

available standard CMOS process. The detail about the design of SPADs that have been used

96
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for the SPAD imagers in this work were presented in this chapter. The structures of three

types of CMOS SPADs have been reviewed and discussed at first. Then, several test chips

fabricated in the Rohm standard 180 nm CMOS process in order to find a suitable structure

of SPADs were introduced.

According to the analysis in the previous chapter, the target specification of the desirable

SPAD is that a low DCR about 10 kHz when SPADs are over-bias at 1.8 V. A suitable SPAD

of Pwell/DeepNwell with PolyGate around the active region, low DCR with purely avalanche

breakdown, and planer breakdown region were confirmed by the experimental results. Then,

a test circuit for after-pulsing probability measurement has been presented presented. The

experimental results demonstrated the efficiency of hold-off time about reducing the influence

of after-pulsing, and the after-pulsing probability can be decreased to lower than 1% with a

20 ns hold-off time.

Chapter 4

This chapter targeted on the efficient readout architecture for SPAD imagers. Since the

breakdown SPAD pixels are sparse in many application, an architecture that only extracts the

address of breakdown pixels can achieve a higher readout efficiency. A breakdown pixel ex-

traction (BPE) readout architecture has been proposed based on the binary feature of SPADs.

The design and behavior of BPE architecture has been introduced at first, and the design

of a 15×15 SPAD imager to verify the functionality of the proposed architecture has been

presented.

Then, a detail design about the imager with 31×31 pixels utilizing background readout

method has been shown. This imager added an additional 1-b memory in each pixel to store

the value of the previous frame, and to realize the background readout. This method could

minimized Tdead to 3 cycles under dark conditions or under sparse breakdown pixels.

Furthermore, another BPE based 31×31 SPAD imager with event discriminator has been

proposed for minimizing Tdead and event detecting. This imager counted the value of Max(BD,i)

of each frames at first, and the readout procedure only started when Max(BD,i) became larger

than a threshold value.
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Chapter 5

This chapter presented the experimental results of the three designed imagers.

For the first designed sensor with 15×15 SPAD array, the functionality of BPE readout

method has been experimentally demonstrated. Then, the DCR distribution has been mea-

sured, and the median value, mean value, are 10 kHz, 20 kHz, respectively. Based on the

measured DCR, an analysis about the temporal aperture ratio (TAR) has been shown.

For the second imager that contains 31×31 SPAD array with background readout method

based on BPE architecture, the ability of random event detection has been shown by pulsed

laser imaging at first. Then, measurements about the DCR distributions of the images with

different SPAD sizes have been shown. Furthermore, an analysis about the requirements

that can minimize Tdead has been presented, and TAR as function of Twin has been shown

comparing with the first imager. A 40% improvement of TAR has been shown based on the

calculated results. Finally, Photon detection efficiency of designed SPAD has been measured.

For the third imager that employed an event discriminator based on BPE architecture, the

functionality of this sensor has been measured using the same method as the previous one.

Then, an analysis about the setting of threshold value has been shown.

Chapter 6

We have presented a sensor architecture with real time event discriminator in this chapter. A

32×32 SPAD imager with the architecture has been presented together with the experimental

results. This imager employed a current logic to monitor the number of breakdown pixels

in real time, and a free-running with variable hold-off time active quenching circuit has been

proposed to achieve zero Tdead. The ability of random event distinction has been shown

through the experimental results.
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