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Abstract

In this thesis, we investigated a theory of quantum error correction (QEC) in near-
term quantum devices. Due to the recent development of quantum technologies,
QEC with several tens of qubits is expected to be demonstrated in the next few
years. On the other hand, since such a large quantum system cannot be tracked
with current classical computers, several problems about practical QEC experi-
ments emerge as quantum devices are scaled up. We provided solutions to the
following two essential problems among them.

First, we extended a simulatability of quantum error correcting code under
coherent noise using matchgate circuits. This extension enables an efficient and
accurate evaluation of an effective physical error probability suppressed with QEC
under practical errors. Since this probability should be known before we design
quantum devices for QEC, this result provides vital information for experiments.

Second, we proposed a general framework to use machine learning as a part of
decoding algorithm in QEC. QEC requires a fast and high-performance classical
decoder for its implementation. Using machine learning for decoding is one of the
most promising solutions to this. However, what part of a decoding algorithm
should be delegated to machine learning in order to achieve the near-optimal per-
formance has not been discussed. We constructed a general framework to discuss
it, and showed fundamental relations between the decoding problem and the task
of machine learning. Furthermore, we proposed a criterion for achieving high per-
formance, and showed specific formulation of tasks of machine learning. Then, we
confirmed that the performance of the proposed machine-learning-based decoder
is superior to the known decoders in various situations.
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Chapter 1

Introduction

1.1 Overview

Quantum computation is a framework to utilize properties of quantum mechanics
for computation [1]. Quantum computer is believed to be capable of faster process-
ing than classical ones in a variety of tasks, such as performing integer factoring
[2], searching in unstructured database [3], solving a linear system [4], simulating a
quantum dynamics [5, 6], studying quantum chemistry with a variational scheme
[7], solving semi-definite programming [8], analyzing a large data set [9, 10], and
accelerating machine learning [11]. Furthermore, scalable quantum technologies
are essential for extending applicable scopes of other quantum applications, such
as quantum cryptography [12] and quantum metrology [13]. When we try to build
quantum computer in a scalable manner, the most difficult obstacle is unavoidable
physical errors caused by noise from environment and by imperfection in experi-
mental controls. If we use noisy quantum circuits without any technique of an error
suppression, an applicable size of computational tasks is limited by an achievable
physical error probability. Quantum error correction (QEC) [14] provides essential
solutions to this problem.

We can construct clean logical qubits from several noisy physical qubits with
QEC. A typical scenario of QEC under a probabilistic Pauli noise model is as
follows. We use a 2k-dimensional subspace in a noisy n-qubit system as a space
of k virtual qubits. This subspace is called logical space, and virtual k qubits in
the logical space are called logical qubits. We encode a k-qubit state in the 2k-
dimensional logical space. While we keep the k-qubit state in the 2k-dimensional
logical space of the n-qubit system, physical errors occur on each qubit with a
probability p. In order to check where physical errors occurred, we measure an
observable called a syndrome, in such a way that the state of the k logical qubits
should not be destroyed. Then, we decode the k-qubit state by performing a re-
covery operation, which is determined with the obtained syndrome. When we can
assume a probabilistic Pauli noise model, correct recovery operations recover an
original quantum state of the k qubits, and incorrect ones lead to an orthogonal
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quantum state to the original state. We call a failure probability of the recovery
as a logical error probability pL. In order to build scalable quantum computer,
the logical error probability pL should be decreased to an arbitrary small value
by increasing the number of the physical qubits n. It is known that there is a
value of the physical error probability called an error threshold pth. If the physical
error probability p is smaller than the threshold value pth, we can achieve an ar-
bitrary small logical error probability pL by increasing the number of the qubits n
[15–17]. Thus, in order to demonstrate QEC, it is required to construct quantum
devices with their physical error probability smaller than pth. At the beginning
of the theory of QEC, known threshold values were about 10−5 [1]. On the other
hand, an experimentally achievable physical error probability was far worse than
the threshold value, and the number of implementable qubits was not enough
for QEC. There was a large gap between theoretical requirements for QEC and
achievable quantum technologies. Thanks to recent theoretical and experimental
developments, this gap has become smaller, and it is expected that quantum de-
vices with several tens of qubits with a physical error probability smaller than the
threshold value are achieved in the next few years. One of the most vital progresses
in theoretical QEC is the discovery of topological stabilizer codes [18]. Topological
stabilizer codes are a family of quantum error correcting codes, and have a high
threshold value about 10−2 [19]. Furthermore, topological stabilizer codes have
several preferable properties for realizing QEC in experiments [18, 20, 21]. In the
experimental aspect, various quantum devices have been scaled up with keeping
long coherence time and high controllability [22–25]. Thus, QEC is expected to
be experimentally demonstrated below the threshold value in the next few years
with these near-term quantum devices.

On the other hand, when we start to build quantum devices with more than
about 50 qubits, we encounter several new problems. In particular, there are two
essential problems in QEC experiments with near-term quantum devices. One is
computational hardness of accurate evaluation of topological stabilizer codes under
practical noise models. Though the performance of the topological stabilizer codes
such as the logical error probability and the threshold value under a practical
noise model is essential for designing quantum devices, we cannot efficiently and
accurately know these values with classical computation in general. The other
problem is computational hardness of optimal decoding in QEC. Since we cannot
perform optimal decoding except few specific cases [26, 27], we should construct a
fast, near-optimal, and versatile decoder for QEC. In order to demonstrate QEC
in experiments, these problems should be solved.

In this thesis, we focus on both of the two above problems. For the prob-
lem of the performance evaluation, since the performances of topological stabilizer
codes are essential, they have been evaluated in various settings [28–45]. The
performances of topological stabilizer codes can be accurately evaluated if we can
simulate quantum circuits of quantum error correcting codes under a practical
noise model with classical computers. On the other hand, when the number of the
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physical qubits n is larger than about 50, we cannot store a 2n-dimensional com-
plex vector of an n qubit state with any existing classical computer. Therefore, we
cannot simulate the whole quantum system with a straightforward method. Ac-
cording to the Gottesman-Knill theorem [46], any quantum circuit with n qubits
which consists of Clifford operations and Pauli measurements can be simulated
with a computational cost that increases polynomially to n. In the case of topo-
logical stabilizer codes, measurements of a syndrome can be represented with Pauli
measurements. Various practical noise models such as dephasing, depolarizing, and
amplitude damping noise models can be represented or approximated with Clif-
ford operations. Thus, we can evaluate the performance of topological stabilizer
codes under these noise models with a practical computational cost of classical
computers. However, though coherent noise is unavoidably caused in experiments,
for example, by over-rotation due to imperfect calibration of quantum controls, it
cannot be approximated with Clifford operations and Pauli measurements. There-
fore, novel schemes for evaluating topological stabilizer codes under coherent noise
models are demanded. In this thesis, we propose an efficient scheme for simulating
quantum error correcting codes under coherent noise. This scheme enables an effi-
cient evaluation of vital properties of quantum error correcting codes, such as the
logical error probability and the threshold value. The key idea of this scheme is the
use of an efficiently simulatable class of quantum circuits called matchgate circuits
[47–50]. An advantage of the framework of matchgate circuits compared with that
of Clifford circuits is that a gate set of matchgate circuits contains continuously
parametrized gate operations, such as the Pauli-X rotation with an arbitrary an-
gle. We expect this property is used for simulating coherent noise. On the other
hand, a drawback of the framework of matchgate circuits is that this framework
cannot treat even single Pauli-Z operations and single qubit measurements with
Pauli-Z basis. Usually, quantum circuits of quantum error correcting codes are
represented with Clifford operations and Pauli measurements. Therefore, it is non-
trivial whether we can represent quantum circuits of stabilizer codes only with an
allowed gate set of matchgate circuits. By solving this discrepancy, we will even-
tually show that the surface code, which is one of the most promising topological
stabilizer codes, under coherent noise can be represented as a matchgate circuit.
This representation enables an efficient and accurate evaluation of the property of
the surface code under coherent noise, which is immediately helpful for designs of
quantum devices. Since we cannot define an error probability of coherent noise,
we characterize a coherent noise map with two parameters, a degree of coherence
c ∈ [0, 1] and an effective physical error probability p, so that p coincides with
the physical error probability when the noise is incoherent, namely, c = 0. Then,
we investigate the dependency of the properties of quantum error correcting codes
such as the logical error probability pL and the threshold value pth on the degree of
coherence c. We will find that the increase of coherence c worsens these properties.
We will also discuss the mechanism of this degradation by comparing the accurate
results with a simple approximate model.

8



As for the problem of decoding algorithm, since the performance of quantum
error correcting codes depends on the performance of a chosen decoder for de-
termining a recovery operation from an obtained syndrome, various near-optimal
decoders for specific topological stabilizer codes and noise models have been pro-
posed [21, 27, 51–53]. However, a decoder which is fast, achieves a small logical
error probability, and is applicable to various topological stabilizer codes under
various noise models is still lacking. In this thesis, we propose a general frame-
work for constructing such a fast, reliable, and versatile decoder based on machine
learning. Machine learning provides generic instructions to construct a function
which predicts behavior of an unknown system using a previously known data
set. This process for constructing a prediction function is called training. Ma-
chine learning can be used in various situations, and the constructed prediction
function can be computed fast. Therefore, by using machine learning as a part
of decoding algorithm, we expect that a fast and versatile machine-learning-based
decoder can be constructed. When we want a machine-learning-based decoder to
be reliable, there are several important factors which determine the performance
of the decoder. The most important factor among them is what part of decoding
algorithm to be delegated to machine learning. Though several constructions of
machine-learning-based decoders were proposed [54–58], this point has not been
studied. In order to clarify this point, we propose a framework for constructing
a near-optimal decoder using machine learning as a part. In this framework, we
can treat all the existing decoding methods based on machine learning as specific
cases. Based on this framework, we will clarify what part of the decoding algo-
rithm should be delegated to the machine learning in order to guarantee that the
whole decoding algorithm becomes optimal in any noise model when a training is
ideally performed. Furthermore, we propose a criterion which should be optimized
to construct a near-optimal decoding algorithm when we use machine learning as
a part. We also show specific constructions for various topological codes which
optimize the criterion. We will numerically show that the performance of the
proposed machine-learning-based decoder is superior to all the existing machine-
learning-based decoders. We also confirm that the performance of the proposed
decoder is close to the optimal performance not only in the surface code but also
in color codes, which are another family of topological stabilizer codes.

1.2 Construction of the thesis

In Chapter 2, we provide a preliminary of this thesis. We first clarify the notations
of this thesis. Then, we review theories of quantum error correction, simulatability
of quantum circuits, and supervised machine learning. In Chapter 3, we discuss the
first topic, an efficient simulation of quantum error correcting codes under coherent
noise. By using matchgate circuits, we show that the surface code under coherent
noise can be efficiently simulated. Then, we show numerical results, and we discuss
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the effect of the coherence in noise on the threshold value. In Chapter 4, we discuss
the second topic, a general framework for constructing decoding algorithm using
machine learning as a part. We discuss fundamental relations between the decoding
problems in QEC and the framework of supervised machine learning. We propose
a criterion to optimize for constructing a machine-learning-based decoder. Then,
we provide numerical results to show that the proposed decoder is superior to the
known decoders. In Chapter 5, we summarize the thesis, and describe an outlook.
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Chapter 2

Preliminary

2.1 Notations

In this section, we introduce notations used in the thesis to clarify the definitions
of symbols.

2.1.1 Basic notations

Landau notation

We use Landau notation O, Ω, and Θ for representing an order of a function to
variables. These notations represent upper-bound, lower-bound, and exact order
of a function, respectively. Let n be a variable. For given positive functions f(n)

and g(n), if there are constants ϵ and N such that f(n)
g(n)

< ϵ for an arbitrary n > N ,

we say f(n) is O(g(n)). For given positive functions f(n) and g(n), if there are

constants ϵ and N such that f(n)
g(n)

> ϵ for an arbitrary n > N , we say f(n) is

Ω(g(n)). When f(n) is both O(g(n)) and Ω(g(n)), we say f(n) is Θ(g(n)).
In particular, at several evaluations in this thesis, we are interested in whether

there exists a polynomial function which can upper-bound a growing speed of a
given function in terms of a variable. This is because a scheme which requires an
exponential amount of time or memory to a problem size is not practical. We say
a function f(n0, n1, · · · ) is poly(n0, n1, · · · ) to mean that there exists a polynomial
function g(n0, n1, · · · ) such that f(n0, n1, · · · ) is O(g(n0, n1, · · · )). When we eval-
uate a computational cost of an algorithm, we say an algorithm is efficient if it
requires at most polynomial time.

Indexing and counting

When we mention about an indexed object, such as a vector, an ordered set, and a
matrix, we always use 0-indexed representation. For example, n qubits are counted
from the 0-th qubit to the (n− 1)-th qubit.
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We represent a vector as a bold lowercase character such as v. When we
introduce v as a vector, we assume that the i-th element of v is implicitly defined
as vi. We represent a matrix as an uppercase character such as M . We denote the
element at the i-th row and the j-th column as Mij We denote the i-th row vector
of a matrix M as (M)i. We denote the length of a vector v as |v|. We denote the
number of elements in a set A as |A|.

2.1.2 Quantum states and operations

Qubits and quantum states

We use a two-level quantum system as an element of quantum computation called
a qubit. Any quantum state of n qubits is represented as a linear operator ρ acting
on a tensor product of n two-dimensional Hilbert spaces H⊗n such that ρ satisfies
Tr(ρ) = 1 and ρ ≥ 0. This linear operator ρ is called a density operator. If the rank
of a density operator ρ is unity, the corresponding quantum state is called pure.
Any pure quantum state ρ can be denoted with a 2n-dimensional vector |ψ⟩ ∈ H⊗n

such that ρ = |ψ⟩ ⟨ψ|, where |ψ⟩ is an eigenvector corresponding to the non-zero
eigenvalue of ρ, and ⟨ψ| is the Hermitian conjugate of |ψ⟩. Note that though any
density operator satisfies the normalization condition Tr(ρ) = 1, we sometimes
use unnormalized (Tr(ρ) < 1) density operators for theoretical treatments in this
thesis.

Pauli operators and computational basis

We denote the identity operator as I, and the Pauli operators as X, Y , and Z,
where

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.1)

We denote a group which consists of tensor products of n Pauli operators with
coefficients {±1,±i} as

Pn := {±1,±i} × {I,X, Y, Z}⊗n. (2.2)

Since these Pauli operators are considered as operations on an n-qubit systems,
we call Pn as an n-qubit Pauli group, and call elements in Pn as n-qubit Pauli
operators. We define Pi = I⊗i⊗P ⊗ I⊗(n−i−1) (P ∈ {X,Y, Z}) as an n-qubit Pauli
operator which acts on the i-th qubit as P , acts on the other qubits as an identity
operator, and has +1 coefficient.

The 2n simultaneous eigenstates of n Pauli operators {Z0, Z1, · · · , Zn−1} are
a complete orthonormal set of the 2n-dimensional Hilbert space of the n-qubit
system. We call this set as computational basis. We denote an eigenstate which
has an eigenvalue zi ∈ {±1} for Zi (i = 0, . . . , n− 1) as |x⟩, where x ∈ {0, 1}n is
the binary vector defined as xi = (1 + zi)/2. We also denote the state |x⟩ as |x⟩,
where x =

∑n−1
i=0 2ixi.
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Operations

An arbitrary physical operation on a quantum system can be represented as a
completely-positive trace-preserving (CPTP) map. We say a linear map E is
completely-positive (CP) if E satisfies

(Id⊗ E)(ρ) ≥ 0 (2.3)

for an arbitrary density operator ρ, where Id is an identity channel. We say a map
E is trace-preserving (TP) if it satisfies

Tr(E(ρ)) = Tr(ρ) (2.4)

for an arbitrary density operator ρ. When a given map E is CP and TP, we say E
is CPTP. It is known that any CP map on an n-qubit space has a representation
of

E(ρ) =
L−1∑
i=0

KiρK
†
i , (2.5)

where 1 ≤ L ≤ 4n, and
∑L−1

i=0 K
†
iKi ≤ I. This form is called Kraus representation

of E , and an operator Ki is called a Kraus operator. We call the minimum number
of Kraus operators L as the Kraus rank. Any CP map with unit Kraus rank
takes an arbitrary pure state to another pure state. An operator K which satisfies
K†K = I is called a unitary operator. Note that all the Pauli operators are
unitary.

The information of a CP map E can be stored as a channel state. A channel
state is defined as follows. We consider a doubled Hilbert space H⊗n⊗H⊗n, where
we denote the first Hilbert space asHA, and the other asHB. We define a 2n-qubit
maximally entangled state |ψM⟩ in the space HA ⊗HB as

|ψM⟩ =
1√
2n

2n−1∑
i=0

|i⟩A ⊗ |i⟩B , (2.6)

where {|i⟩A} and {|i⟩A} are the computational basis of the spaces of HA and HB,
respectively. The channel state ρE of a CP map E is given by

ρE = (E ⊗ Id)(ρM), (2.7)

where ρM = |ψM⟩ ⟨ψM |. Using the channel state, for an arbitrary given quantum
state ρ, we can obtain E(ρ) as

E(ρ) = 2nTrB((I ⊗ ρT)ρE), (2.8)

where TrB is a partial trace of the space of HB.
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Measurements

An arbitrary measurement on a quantum system can be formulated as an instru-
ment. Instrument is described with a set of indexed CP maps {Ei} which satisfies∑

i Tr(Ei(ρ)) = 1 for an arbitrary normalized density operator ρ. When we mea-
sure a quantum state ρ with an instrument {Ei}, we obtain a classical output i

with the probability Tr(Ei(ρ)), and the state after the measurement is Ei(ρ)
Tr(Ei(ρ)) .

An operator K which satisfies K = K† and K2 = K is called a projection
operator. When every CP map Ei of an instrument has unit Kraus rank and its
Kraus operator is a projection operator, the measurement with the instruments is
called a projection measurement.

Properties of quantum operations

We define a weight w(P ) of an n-qubit unitary operator P as a number of qubits
to which P applies non-trivially. Equivalently, we also say that a unitary operator
P with a weight w(P ) as a w(P )-local operator.

Any pair of Pauli operators either commute or anti-commute. We define a
commutation relation function c for two Pauli operators as follows.

c(P, P ′) =

{
0 PP ′ = P ′P

1 PP ′ = −P ′P
(2.9)

Fidelity of states and maps

Fidelity is measure of a distance between two normalized quantum states ρ and
ρ′, which is defined as follows.

F (ρ, ρ′) =

(
Tr

(√√
ρρ′
√
ρ

))2

(2.10)

The fidelity becomes unity if two states are equivalent, and becomes zero if two
states are orthogonal.

In the context of quantum error correction, we are interested in how close the
resultant state of quantum error correction is to an input state. We measure it
with an entanglement fidelity defined as follows. Let E be a CPTP map which
takes a n-qubit input state to another n-qubit output state. The entanglement
fidelity of the CPTP map E is defined by the fidelity between the channel state of
E and the channel state of the identity map, i.e.

F (E) := F (ρM , (Id⊗ E)(ρM)), (2.11)

where ρM is a 2n-qubit maximally entangled state defined in Eq. (2.6).
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2.1.3 Binary variables, operations, and representations

Binary variables and operators

The number of one-elements in a binary vector v and a matrix M is represented
as h(v) or h(M), respectively, which is called a hamming weight.

In the coding theory, we frequently use calculus in GF(2). In GF(2), the
addition of binary values v and u is performed with modulo 2, i.e.,

v ⊕ u := v + u mod 2. (2.12)

The calculation of binary vectors and binary matrices are defined in GF(2).
The symplectic product ⊙ is defined for two vectors which have the same and

even length. Let v and u be binary vectors such that |v| = |u| = 2n. The
symplectic product is given by

v ⊙ u := ⊕n−1
i=0 (viui+n ⊕ vi+nui). (2.13)

Suppose that v and u are column vectors. It is convenient to denote the symplectic
product as

v ⊙ u = vTΛu, (2.14)

where Λ is a 2n× 2n matrix defined as

Λ =

(
0 I
I 0

)
. (2.15)

Note that 0 and I are n× n submatrices.
In this thesis, a set of vectors denoted by {0, 1}n represents a set of row vectors.

We perform operations such as additions and multiplications between real-valued
object and binary object. In such a case, we assume that a binary object is
implicitly interpreted as a real-valued object, i.e., v + v′ ∈ Rn if v ∈ Rn and
v′ ∈ {0, 1}n.

Masked binary vector

When we consider a marginal probability, it is convenient to define a masked binary
vector ṽ ∈ {0, 1, ∗}n. The character ∗ means a wild card, i.e., ∗ may be either 0
or 1. For a given binary vector v = (v0, . . . , vn−1) ∈ {0, 1}n and a masked binary
vector ṽ = (ṽ0, . . . , ṽn−1) ∈ {0, 1, ∗}n, we say v ∼ ṽ if and only if vi = ṽi is satisfied
for all the indices i such that ṽi ∈ {0, 1}.

Binary representation of Pauli operators

When we are not interested in the global phase of Pauli operators, it is convenient
to represent calculation between Pauli operators with the calculation of binary
vectors in GF(2). We represent Pauli operators on the i-th qubit as follows.

Ii 7→ σ
(i)
00 , Xi 7→ σ

(i)
01 , Yi 7→ σ

(i)
10 , Zi 7→ σ

(i)
11 (2.16)
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Then, we define a map b : Pn → {0, 1}2n and a map B : {0, 1}2n → {I,X, Y, Z}⊗n

as

b(α⊗n−1
i=0 σ

(i)
vivi+n

) = v, (2.17)

B(v) = ⊗n−1
i=0 σ

(i)
vivi+n

, (2.18)

where α ∈ {±1,±i}.
We can represent calculations of Pauli operators as calculations in GF(2) as

follows. Let P and P ′ be n-qubit Pauli operators. We see P is equivalent to P ′

up to a global phase if and only if b(P ) = b(P ′). The products of Pauli operators
can be represented as

b(PP ′) = b(P )⊕ b(P ′). (2.19)

The commutation relation function c(P, P ′) can be represented as a symplectic
product of binary vectors, i.e.,

c(P, P ′) = b(P )⊙ b(P ′). (2.20)

A weight of a Pauli operator P can be also defined as a function of a binary vector
v = b(P ) as

w(v) =
n−1∑
i=0

(vi ⊕ vi+n ⊕ vivi+n). (2.21)

Note that the summation is performed without modulo 2.

2.2 Quantum error correction

When we experimentally perform a computational task, there are unavoidable
errors on physical qubits due to experimental imperfections and environmental
noises. We can construct logical qubits with a small effective error probability
from a larger number of physical qubits. This process is called quantum error
correction (QEC). QEC is a vital technique to construct a fault-tolerant quantum
computer. In this section, we review the known facts about the theory of QEC.

2.2.1 Quantum error correction with stabilizer code

QEC provides a method to construct a logical qubit with an arbitrary small effec-
tive error probability using a number of physical qubits with a sufficiently small
error probability [15–17]. When we use n physical qubits for constructing k (k ≤ n)
logical qubits, we achieve this by encoding k logical qubits into a 2k-dimensional
subspace in the 2n-dimensional Hilbert space of the n qubits. We call this encoded
2k subspace as the logical space, and a quantum state in the logical space as a
logical state.
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Stabilizer formalism

Stabilizer formalism [59] provides efficient representation of a 2k-dimensional sub-
space. A quantum error correcting code which is constructed with stabilizer for-
malism is called a stabilizer code. In QEC with a stabilizer code, the logical space
is specified using (n − k) of n-qubit Pauli operators, which is called a stabilizer
generator.

We first define a stabilizer generator as follows.

Definition 2.2.1. (Stabilizer generator) We say a set S ⊂ Pn is a stabilizer
generator if S satisfies all of the following properties.

• The number of elements in the group generated from S is 2|S|.

• All the elements in S commute.

• The negative identity −I is not in the group generated from S.

A given stabilizer generator represents a 2n−|S|-dimensional subspace spanned
by a set of quantum states {|ψ⟩}, where S |ψ⟩ = |ψ⟩ for all S ∈ S. We call a
subgroup of the n-qubit Pauli group generated from S as a stabilizer group ⟨S⟩,
and call an element of the stabilizer group as a stabilizer operator. When we
specify a 2k-dimensional subspace, we choose a stabilizer generator S such that
|S| = n− k. In this case, there are 2n−k stabilizer operators.

Quantum error correction with stabilizer codes

Stabilizer code is a family of quantum error correcting codes which specifies a
logical space with stabilizer formalism. For a given stabilizer generator S =
{S0, . . . , Sn−k−1}, we consider a set of projection operators

ΠS(s) :=
n−k−1∏
i=0

I + (−1)siSi

2
, (2.22)

where sT ∈ {0, 1}n−k. The operator ΠS(0) is a projection operator to the logical
space, and ΠS(s) with s ̸= 0 is that to the subspace orthogonal to the logical
space. A set of projection maps {Es} such that

Es(ρ) = ΠS(s)ρΠS(s), (2.23)

is considered as a measurement, and a Kraus rank of each map is unity. We call
this measurement as a stabilizer measurement, and call the (n − k)-bit outcome
of the stabilizer measurement s as a syndrome. A stabilizer measurement is a
non-destructive measurement for any quantum state in the logical space. After
the stabilizer measurement, we choose a CPTP map Rs as a recovery operation,
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based on the obtained syndrome s. We call an estimator of a recovery operator
from s as a decoder.

We call a CPTP map on a k-qubit space from encoding to decoding in QEC
as a logical channel. We use an entanglement fildelity of the logical channel as
performance of QEC. To define a logical channel, we show a typical scenario of
QEC. We consider a case when we encode information of k-qubit state ρkinit into n
physical qubits.

1. We choose stabilizer generator S such that |S| = n−k. We choose a decoder
to determine a recovery operation Rs based on a syndrome s.

2. We encode the state ρkinit to the 2k-dimensional logical space specified by S
in the n physical qubits. Then we obtain a quantum state of the n physical
qubits ρinit.

3. We keep the quantum state ρinit in a while.

4. We perform a syndrome measurement, and we obtain an (n−k)-bit syndrome
s. We apply a recovery operation Rs determined with a decoder from s on
the physical qubits. Then, we obtain a resultant state ρfinal.

We consider the whole above process, state preparation, repetitive syndrome mea-
surements, and a recovery operation, as a CPTP map C from the initial state ρkinit
to the logical space of the final state ρfinal. We call this CPTP map C as the logical
channel. Since we expect that QEC enables us to store any initial logical state,
we use an entanglement fidelity of the logical channel C as a performance of QEC.
If the entanglement fidelity of the logical channel is unity, the logical channel is
equivalent to the identity channel.

Quantum error correction with stabilizer code under Pauli noise

In the discussion below, we employ the following assumptions.

• State preparation, stabilizer measurements, and a recovery operation are
performed without noise.

• We assume that a Pauli error occurs on each physical qubit independently.
Thus, a noise map E can be represented as Enoise(ρ) =

∑
P∈Pn

pPPρP
† with a

probability distribution {pP}. We also assume that we know the probability
distribution {pP}.

• We do not care about time efficiency in determining a recovery operation
from s.

• The recovery operation is a Pauli operation, i.e., Rs(ρ) = R(s)ρR(s)† for
R(s) ∈ Pn.
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We further discuss properties of QEC with these assumptions.
We first consider detectable and undetectable Pauli errors. We say an error P ∈

Pn is detectable if we obtain a non-zero syndrome with the stabilizer measurement.
We see a Pauli error is undetectable if and only if for any S ∈ S, there exists a
Pauli operator S ′ ∈ ⟨S⟩ such that

PS = S ′P. (2.24)

Thus, we obtain a set of undetectable operations as follows.

N (S) := {P |P ∈ Pn,∀S ∈ ⟨S⟩, PSP † ∈ ⟨S⟩}, (2.25)

which is called the normalizer of ⟨S⟩. Since any Pauli operator commutes or anti-
commutes with another Pauli operator, a set of undetectable Pauli errors can be
rewritten as

C(S) := {P |P ∈ Pn,∀S ∈ ⟨S⟩, PSP † = S}, (2.26)

which is called the centralizer of ⟨S⟩. Among undetectable Pauli operators, oper-
ators in

LI := {±1,±i} × ⟨S⟩ (2.27)

do not change any logical state since the logical state is an eigenstate of the oper-
ators. A set of undetectable and non-trivial operators on the logical space is then
given by

LP := N (S) \ LI . (2.28)

When we can assume that noise occurs on each qubit independently, the prob-
ability with which a Pauli error P occurs on the quantum system is decreased
exponentially to its weight w(P ). In order to minimize the probability with which
one of the most probable physical errors in LP occurs, the smallest weight of
undetectable and non-trivial Pauli operators

d := min
P∈LP

w(P ) (2.29)

should be large. The value d is called the distance of the stabilizer code. We
denote a quantum code which encodes k logical qubits into n physical qubits with
a distance d as [[n, k, d]] code.

Next, we discuss the definition of a logical error probability pL. Suppose that
a Pauli error P ∈ Pn occurred on the physical qubits, and then the syndrome
measurement was performed. We denote each element of S as

S = {S0, . . . Sn−k−1}. (2.30)
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The outcome s can be represented as a binary vector

s(P ) := (c(P, S0), . . . , c(P, Sn−k−1))
T, (2.31)

since

ΠS(s)P = PΠS(s(P )⊕ s) (2.32)

for sT ∈ {0, 1}n−k, and thus we have

Tr(Es(P )(PρinitP )) = 1. (2.33)

This means we obtain the syndrome s(P ) with the unity probability. The final
state is written as

ρfinal = R(s(P ))PρinitPR(s(P )), (2.34)

where R(s(P )) ∈ Pn is a recovery Pauli operation. Obviously, any correct recovery
operator should satisfy s(R(s(P ))P ) = 0. Thus, we only consider a decoder which
outputs R(s(P )) satisfying

s(R(s(P ))P ) = 0. (2.35)

In this case, the resultant state ρfinal is at least in the logical space, namely,
R(s(P ))P ∈ N (S). If a recovery operator R(s(P )) such that R(s(P ))P ∈ LP

is chosen, the entanglement fidelity of the logical channel C is zero, and the en-
tanglement fidelity becomes unity if R(s(P ))P ∈ LI . The logical error proba-
bility pL is defined by the probability with which a recovery operator such that
R(s(P ))P ∈ LP is chosen, which can be written as

pL := 1− F (C) = PrP∼{pP } [R(s(P ))P /∈ LI ] . (2.36)

Binary representation of quantum error correction

We can simplify the calculation of QEC by using a binary representation of Pauli
operators. Let a row vector e := b(P ) be the binary representation of a Pauli error
P . We define a matrix

Hc :=

 b(S0)
...

b(Sn−k−1)

 , (2.37)

which is called a check matrix. We see a syndrome s(P ) is given by

s(P ) = HcΛe
T. (2.38)

We denote s(e) = s(P ) with e = b(P ) in the discussion below.
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We define a binary representation of the normalizer of the stabilizer group as

L := b(N (S)) = b(C(S)) = {v|v ∈ {0, 1}2n,∀v′ ∈ b(S),v ⊙ v′ = 0}. (2.39)

Note that |L| = 2n+k. Since the group N (S) contains the stabilizer group, there
exists a set of (n+ k) Pauli operators SN which satisfies L = b(⟨SN⟩) and includes
S as a subset. We denote added elements as

SN \ S = {L0, . . . , L2k−1}. (2.40)

Then, we define a logical generator matrix as

G :=

 b(L0)
...

b(L2k−1)

 . (2.41)

We define cosets Lw with w ∈ {0, 1}2k which are defined by

Lw = {l⊕wG|l ∈ b(⟨S⟩)}. (2.42)

We introduce a pure error t(s), which maps a syndrome value sT ∈ {0, 1}n−k

to a binary representation of a Pauli operator t(s) ∈ {0, 1}2n such that

t(s(e))⊕ e ∈ L, (2.43)

for all e ∈ {0, 1}2n. Given a generator matrix G and a pure error t(s), we can
uniquely represent the binary representation of an arbitrary physical error e as

e = l(e)⊕w(e)G⊕ t(s(e)), (2.44)

where l(e) ∈ L0 and w(e) ∈ {0, 1}2k. As for the representation in Eq. (2.44), we
can easily confirm the following relations:

b(N (S)) = L = ∪w∈{0,1}2kLw (2.45)

b(⟨S⟩) = L0 (2.46)

e ∈ L, e′ ∈ L0 → e⊙ e′ = 0 (2.47)

e ∈ L ↔ s(e) = 0 (2.48)

e ∈ L0 ↔ s(e) = 0,w(e) = 0 (2.49)

We denote the binary representation of a recovery Pauli operator by r(s) :=
b(R(s)) for sT ∈ {0, 1}n−k. Since the global phase of the occurred Pauli error P
does not matter the decoding result, the probability distribution of Pauli errors
{pP} can be interpreted as that of the binary representation of Pauli errors {pe}
written by

pe =
∑

P={±1,±i}×B(e)

pP . (2.50)
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Given an error distribution {pe} and a decoder r(s), the logical error proba-
bility is written as

pL = Pre∼{pe} [e⊕ r(s(e)) /∈ L0] (2.51)

Since we consider decoders satisfying Eq. (2.35), the decoder r(s) satisfies

e⊕ r(s(e)) ∈ L (2.52)

for an arbitrary physical error e. The logical error probability is then written as

pL = Pre∼{pe} [w(e) ̸= w(r(s(e)))] . (2.53)

We see estimating a correct recovery Pauli operator r(s(e)) from s(e) is equivalent
to estimating a correct binary vector w(e) from s(e).

Optimal decoder

An optimal decoder is defined as a decoder which minimizes the logical error prob-
ability for a given probability distribution {pe}. Such a minimization is achieved
by choosing the most probable w given the observed syndrome s. We call a binary
vector w as a class, and call w(e) as a class of e. We define the probability of
class w conditioned on a syndrome s as

qs(w) = Pre∼{pe} [w(e) = w|s(e) = s] . (2.54)

We define the maximum probability among the classes as

q∗s = max
w∈{0,1}2k

qs(w). (2.55)

The optimal decoder outputs a binary representation of a recovery operation r(s)
such that

qs(w(r(s))) = q∗s (2.56)

for any s with Pre∼{pe} [s(e) = s] > 0.

2.2.2 Topological stabilizer codes

Properties of topological codes

The topological stabilizer code [18] is a family of stabilizer codes. It is known that
the topological stabilizer code has the following two properties which are desirable
for implementing QEC in experiments.

First, topological codes are known to have high threshold values pth for various
noise models. If an error probability per qubit p is smaller than the threshold
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value pth, the logical error probability pL is improved by increasing the distance d
of topological codes. It is also known that if p is sufficiently small compared to pth,
the logical error probability pL exponentially decreases as the distance d increases.

The other property is implementation-friendly arrangements of physical qubits.
In the case of the topological code, there is a stabilizer generator set such that
each Pauli operator in the generator set is a spatially local Pauli operation in
two- or three-dimensional array of physical qubits. In any practical quantum
system, qubits are allocated as at most a three-dimensional array, and interaction
between qubits happens in a spatially local region. Thus, it is preferred that a
stabilizer measurement can be performed only with a small number of spatially
local operations on physical qubits which are allocated in experimentally feasible
manner.

From these reasons, the topological code is considered as the most promising
candidate of quantum error correcting codes. Therefore, current experiments to-
ward a scalable quantum computer pursue realization of the topological stabilizer
code.

Specific qubit allocations of topological codes

Among the topological stabilizer codes, two specific constructions called surface
codes [18, 20, 21] and color codes [60] are considered to be easy to implement
in experiments. We show two specific constructions each for surface codes and
color codes. The qubit allocation of the surface code is shown in Fig. 2.1. The
[[2d2 − 2d+ 1, 1, d]] code and the [[d2, 1, d]] code are shown in Fig. 2.1 (a) and (b),
respectively. In both figures, the physical qubits are located on the vertices of the
colored faces. Each red face represents a stabilizer operator which is a product of
Pauli-Z operators on the physical qubits of its vertices. Each blue face represents
one with Pauli-X operators. We see every physical qubit is measured by two
Pauli-Z stabilizer operators (red faces) and two Pauli-X stabilizer operators (blue
faces).

As for the color codes, two types of codes, the [4,8,8]-color code and the [6,6,6]-
color code, are shown in Fig. 2.1 (c) and (d), respectively. The physical qubits
are also located on each vertex of the faces. Each colored face represents two
stabilizer operators, a stabilizer operator which is a product of Pauli-Z operators
on the physical qubits of its vertices, and that of Pauli-X operators. Note that
the color of the faces is irrelevant to the definition of the corresponding stabilizer
operators. The [4, 8, 8]-color code is a [[1

2
d2 + d − 1

2
, 1, d]] code, and the [6, 6, 6]-

color code is a [[3
4
d2 + 1

4
, 1, d]] code. We see every physical qubit except that on

the boundary is measured by three Pauli-Z operators of three faces of the different
colors, and is measured by three Pauli-X operators of three colored faces.
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(a) [[2d2 − 2d+ 1, 1, d]] surface code (b) [[d2, 1, d]] surface code

(c) [4,8,8]-color code. (d) [6,6,6]-color code.

Figure 2.1: The qubit allocations of surface codes and color codes are shown.
Figure (a) and (b) show the qubit allocation of the surface codes with the [[2d2 −
2d + 1, 1, d]] code and the [[d2, 1, d]] code, respectively. Each vertex corresponds
to a physical qubit. Red and blue faces correspond to stabilizer measurements
with X and Z Pauli operator, respectively. Figure (c) and (d) shows the qubit
allocation of the [4,8,8]-color code and the [6,6,6]-color code, respectively. Each
vertex corresponds to a physical qubit. Each face corresponds to two stabilizer
operators, Pauli X on its vertices and Pauli Z on its vertices. The color of the
faces is irrelevant to the definition of the corresponding stabilizer operators.
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Decoder based on minimum-weight perfect matching

It is known that we cannot efficiently perform the optimal decoding except few
specific cases [27]. Since time for decoding is limited [32, 61], we cannot take
long time for decoding process. This means that we cannot perform the optimal
decoding in practice. Therefore, fast decoding algorithms which achieve a small
logical error probability have been studied.

One popular solution to the problem in the case of the surface codes is to use one
of the most probable physical errors e∗(s) conditioned on the observed syndrome s
as a recovery operator, instead of finding the most probable class. This scheme is
called a minimum-distance (MD) decoder. Though the class of the most probable
physical errors is not necessarily the most probable, it is numerically shown that
the MD decoder achieves a near-optimal performance in various codes [31, 62].
It is known that we can perform MD decoding in the surface codes if we can
assume that bit-flip and phase-flip errors occur independently on each physical
qubit [32]. This is because we can reduce the task of finding one of the most
probable physical errors from an observed syndrome to an instance of minimum-
weight perfect matching (MWPM), which is a problem of graph theory known to
be efficiently solved with blossom algorithm [63, 64]. The problem of MWPM is
defined as follows.

Definition 2.2.2. (Minimum-weight perfect matching) We consider a weighted
graph with 2n nodes G = (V,E), where V = (v0, . . . , v2n−1) is a set of nodes and
E : V × V → R is a set of weighted edges. We call Mi = {mi,0,mi,1}, where
0 ≤ mi,0,mi,1 ≤ (2n − 1) and mi,0 ̸= mi,1, as a pair. We also call a set of pairs
M = {M0, . . .M|M|−1} as a matching. We say a matching M is perfect if every
index 0 ≤ m ≤ (2n− 1) is contained in exactly one pair amongM. A weight of a
perfect matchingM is defined by

n−1∑
i=0

E(vmi,0
, vmi,1

). (2.57)

The problem of minimum-weight perfect matching is to find a perfect matching
with the minimum weight.

The blossom algorithm is an efficient algorithm to solve MWPM.

Theorem 2.2.1. (Blossom algorithm) There is an efficient algorithm to solve
minimum-weight perfect matching [63], which is called blossom algorithm. The
best known variation of blossom algorithm solves minimum-weight perfect match-
ing with O(

√
|V ||E|) steps of classical computation [64], where |V | is the number

of nodes, and |E| is the number of edges.

Here we give a brief explanation of the reduction from the task of MD decoding
in the [[2d2−2d+1, 1, d]] surface code under an independent bit-flip noise model to
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Figure 2.2: Examples of an obtained syndrome and occurred bit-flip errors in the
[[2d2 − 2d + 1, 1, d]] surface code at d = 5. Figure (a) and (b) have different
physical errors, but show the same syndrome pattern. Figure (c) and (d) are
another representation of Figure (a) and (b), respectively.

an instance of MWPM. Before starting mathematical explanation, we show why
the decoding problem corresponds to the matching problem with the illustrations
shown in Fig. 2.2. Since we assume that there are only bit-flip (Pauli-X) errors,
we ignore blue faces of the surface code, which monitor phase-flip (Pauli-Z) errors
with Pauli-X stabilizer operator. The green and red circles at the vertices of the
red faces correspond to physical qubits. If there is a bit-flip error on a physical
qubit, qubit is colored with red. Otherwise, it is colored with green. The i-th
red square corresponds to the i-th element of the stabilizer generator Si, where Si

is a product of Pauli-Z operators on its vertices. The i-th red square is colored
deep red if Si anti-commutes with an occurred error, which means that the i-th
stabilizer generator detects a bit-flip error. The i-th red square is colored with
pale red otherwise.
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We see both Fig. 2.2 (a) and (b) show the same syndrome pattern, but occurred
physical errors are different. The situations of Fig. 2.2 (a) and (b) are shown with
another representation in Fig. 2.2 (c) and (d), respectively. In Fig. 2.2 (c) and (d),
each deep red face is represented as a deep red square, and each pale one as a pale
red square. Each physical error is represented as an edge connecting two squares,
where the color of each physical error is not changed. In these figures, we see any
red square is paired with another red square or boundary through red edges. Since
the number of red edges is the same as the weight of a bit-flip error, finding the
most probable bit-flip error is related to finding a perfect matching of red squares
with the minimum number of red edges. Actually, we can construct an instance of
MWPM such that we can construct one of the most probable physical errors from
the answer of the instance. We construct such an instance as follows.

As seen in Fig. 2.2, there are d(d− 1) = n−1
2

relevant stabilizer operators (red
faces) for detecting bit-flip errors. We denote the corresponding syndrome bits by
s0, . . . , sn−1

2
−1. We also define the parity of these bits as

sn−1
2

:=

n−1
2

−1⊕
i=0

si, (2.58)

and construct an extended syndrome binary vector

snode = (s0, . . . , sn−1
2
). (2.59)

We denote the set of the indices of the syndrome bits of which the value is unity
as

V = {m|0 ≤ m ≤ n− 1

2
, (snode)m = 1}. (2.60)

In the case of the surface code, any bit-flip error on a physical qubit changes
exactly two elements of snode. Thus, the number of elements in mnode is always
even, which we denote by 2n. For a given pair M = {m,m′}, we denote one of
the most probable physical errors which generate a syndrome such that (snode)m =
(snode)m′ = 1 and (snode)j = 0 for all j ̸= m,m′ as eM . We denote the probability
with which the physical error eM happens as pM . Note that pM and eM can
be efficiently calculated in this setting. We consider a perfect matching M =
{M0, . . . ,Mn−1} of mnode. The probability pM of the perfect matching M is
defined by the product of the probabilities of each pair pMi

, i.e.,

pM =
n−1∏
i=0

pMi
. (2.61)

By taking a logarithm of Eq. (2.61) and inverting a sign, we obtain

− ln pM =
n−1∑
i=0

(− ln pMi
). (2.62)
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The minimization of the right-hand side of Eq. (2.62) in terms ofM is equivalent
to the maximization of pM. We construct an instance of MWPM with a graph
G = (V,E), where

E(v, v′) = − ln p{v,v′}. (2.63)

According to Theorem 2.2.1, we can efficiently obtain a perfect matchingM∗ with
the minimum weight, which maximizes pM. Then, the physical error

r∗(s) =
⊕

Mi∈M∗

eMi
(2.64)

is one of the most probable physical errors conditioned on s. Since a graph G is
fully connected, this procedure takes O(n5/2) = O(d5) steps in the worst case.

We briefly explain whyM∗ should be correspond to one of the most probable
physical errors. We see any physical error e leading to the given syndrome can
be related to at least one perfect matching M as shown in Fig. 2.2. Then, we
have pe ≤ pM since pM is defined as the maximal probability among the errors
consistent with M. On the other hand, since M∗ is the solution of the MWPM
instance, we have pM ≤ pM∗ = pr∗(s). Hence we have pe ≤ pr∗(s).

In the case of Fig. 2.2 (c), it corresponds to a perfect matching

{(0, 10), (2, 20), (8, 9), (12, 17)}, (2.65)

and Fig. 2.2 (d) corresponds to

{(0, 10), (2, 17), (8, 12), (9, 20)}, (2.66)

where ”20” corresponds to the parity node. Note that a pair (2, 17) in the latter
case is considered to be connected through the parity node s20, and thus (2, 17)
is considered to be paired through 2 edges. When a noise occurs uniformly, the
logarithm of the probability (−p{m,m′}) is proportional to the Manhattan distance
between two nodes sm and sm′ (the minimum number of edges to connect two
nodes). Under a uniform error probability, Fig. 2.2 (c) achieves MWPM.

Suppose that the actual physical error is Fig. 2.3 (a). If we use Fig. 2.2 (c) as a
recovery operation, the resultant Pauli operator R(s)P is as shown in Fig. 2.3 (b).
Since this Pauli operator is in the stabilizer group, we see QEC is a success. On
the other hand, if we use Fig. 2.2 (d) as a recovery operation, the resultant Pauli
operator becomes as shown in Fig. 2.3 (c), which is not included in the stabilizer
group. Thus, the resultant operation non-trivially applies to the logical space, and
thus the logical state changes in general.

When bit- and phase-flip errors happen independently, we can independently
perform this process for each type of errors. On the other hand, when bit-flip and
phase-flip errors does not happen independently, we cannot perform MD decoding
with this approach. We say such a noise model as a correlated noise model. A
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Figure 2.3: Examples of an obtained syndrome and occurred bit-flip errors in the
[[2d2 − 2d+ 1, 1, d]] surface code at d = 5. Figure (a) represents an actual bit-flip
error. Figure (b) and (c) represent the resultant operation when we use bit-flip
errors in Fig. 2.2 (c) and (d) as a recovery operation, respectively.
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practical example of a correlated noise model is depolarizing noise model, which
assumes that Pauli X-, Y -, and Z-operators occur on each physical qubit inde-
pendently with the same probability.

In the reduction, we used a property of the surface code that any physical qubit
is measured by at most two stabilizer operators. Since this does not hold in the
case of the color code, we cannot apply this approach straightforwardly to the color
code, even when we can assume that there are only bit-flip errors. Unfortunately,
it is known that the MD decoder is computationally hard to construct in general
[26]. Thus, another approach is required for performing near-optimal decoding
under correlated noise models, or for performing it in topological stabilizer codes
other than the surface code. The main topic of the Chapter 4 of the thesis is to
construct a near-optimal decoder which is fast, high-performance, and applicable
to an arbitrary noise model and an arbitrary topological stabilizer code, by allowing
massive computation before we use decoding algorithm in experiments.

Threshold value and dropping rate

We show typical behavior of the logical error probability in topological stabilizer
codes. We numerically calculated logical error probabilities in the [[2d2 − 2d +
1, 1, d]] surface code under a uniform bit-flip (Pauli X) noise model using the MD
decoder with d = 3 to d = 15. We calculated 106 samples per plot of whether QEC
succeeds or not. The logical error probability pL to the physical error probability
p is shown in Fig 2.4.

Fig 2.4 (a) shows logical error probabilities against small p to large p. The
logical error probability is exponentially small to the distance d. We see that there
is a threshold value of physical error probability, such that the logical probability
improves by increasing the distance if the physical error probability is smaller than
a threshold value. This value of the physical error probability is called the error
threshold. Fig 2.4 (b) shows logical error probabilities around the threshold value.
According to a scaling ansatz [30, 33], the behavior of a logical error probability
around the threshold value is written by

pL(p, d) = a+ b(p− pth)d1/c, (2.67)

where pth is a threshold value, and a, b, and c are fitting parameters. We obtained
pth = 0.1029(1) by fitting the plots with the above ansatz. This value is consistent
with reported values 0.1030(1) [30, 33]. Note that we use plots with d ≥ 7 for
avoiding finite size effects.

In a practical task of quantum computation, it is expected that QEC is used
with a physical error probability far smaller than the threshold value. At a region
of p ≪ pth, a logical error probability is expected to obey the following equation
[61, 65]

pL(p, d) = a

(
b
p

pth

)(d+1)/2

, (2.68)
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Figure 2.4: Logical error probabilities according to physical error probability per
qubit are plotted. Two figures are plotted in different range of physical error
probabilities.
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Figure 2.5: Dropping rate of logical error probabilities λ(p, d) is plotted to the
physical error probability p. The black dashed line corresponds to λ = p

pth
with

pth determined from the threshold behavior.

where a and b are fitting parameters, and pth is the threshold value. According to
the existing work [61], b is expected to be close to 1. We defined a dropping rate
λ(p, d) as

λ(p, d) =
pL(p, d+ 2)

pL(p, d)
. (2.69)

The calculated dropping rates λ is shown in Fig 2.5. We calculated at least 5×107

samples per plot, and showed plots of which the error bar is smaller than 0.5.
Note that the error bar is calculated only up to the first order of the statistical
deviation. The dropping rate is expected to be close to p

pth
if b ∼ 1. The numerical

results agree with the expectation. Since the dropping rate is slightly larger than
p
pth

, we see that b is slightly larger than 1.
In this subsection, we showed two values, the threshold value pth and the drop-

ping rate λ(p, d), which are calculated from the logical error probability pL as
a function of the physical error probability p. The threshold value represents a
requirement on the imperfection in quantum devices. If the physical error probabil-
ity is larger than the threshold value, the logical error probability is not improved
by QEC. The dropping rate determines how many qubits we need to achieve a
required logical error probability. Thus, these two values are essential when we
design quantum experiments for QEC.

32



2.2.3 Summary and discussion

We showed a framework of QEC with stabilizer codes. Stabilizer formalism pro-
vides a scheme to specify a subspace of a quantum system. Stabilizer codes are
a family of quantum error correcting codes which specify its logical space with
stabilizer formalism.

The entanglement fidelity of a logical channel under practical noise models is
the most important property of stabilizer codes. When we can assume probabilistic
Pauli noise models, the value of the entanglement fidelity is formulated as a logical
error probability pL. The logical error probability is expected to become small
exponentially to the distance d, if noise in a quantum system is sufficiently small.

We reviewed topological stabilizer codes. Topological stabilizer codes are high-
performance quantum error correcting codes with implementation-friendly prop-
erties for experiments. We showed specific qubit allocations for two types of topo-
logical stabilizer codes, the surface code and the color code. These topological
stabilizer codes are expected to be the most promising candidates of the quantum
error correcting codes for demonstrating QEC in experiments.

When we perform decoding in experiments, we should use a high-performance
decoder since the performance of the stabilizer code such as the logical error prob-
ability pL depends on the performance of a chosen decoder. Since the optimal
decoding algorithm is believed to take a time exponential to the number of the
physical qubits n in general, the optimal decoding algorithm is not practical ex-
cept few cases. We introduced a minimum-distance (MD) decoder, which is known
to be near-optimal. We showed that an efficient MD decoder can be constructed
for the surface code under uncorrelated bit- and phase-flip errors by reducing the
decoding problem to minimum-weight perfect matching (MWPM), and by solving
it with the blossom algorithm.

We numerically calculated the logical error probability pL in terms of an error
probability per qubit p for the [[2d2 − 2d+ 1, 1, d]] surface code under the bit-flip
noise model with the MD decoder. We saw that there is a threshold value pth
such that the logical error probability pL decreases as the increase of the number
of the physical qubits n if the physical error probability p is smaller than pth. We
can say that the threshold value pth represents a requirement on the imperfection
in quantum devices in experiments. We confirmed that the threshold value in
the above setting is about 10%. We are also interested in how much the logical
error probability pL improves according to the increase of the distance d when
the physical error probability p is sufficiently smaller than pth. The dropping rate
λ(p, d) is defined as the decreasing rate of the logical error probability pL in terms
of the distance d. It determines how many qubits n are required for achieving a
required logical error probability pL. As in Eq. (2.68), it is conjectured that the
dropping rate λ(p, d) is almost independent of the distance d, and its value can be
estimated from the ratio between the threshold value pth and the physical error
probability p. We numerically confirmed that the dropping rate λ(p, d) shows
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the behavior expected from this conjecture. These parameters, the logical error
probability pL, the threshold value pth, and the dropping rate λ(p, d) are essential
properties of quantum error correcting codes for designing quantum devices for
QEC.

2.3 Efficiently simulatable class of quantum cir-

cuits

2.3.1 Overview

In this section, we discuss the simulatability of a given quantum circuit. In order to
evaluate performance of a quantum error correcting code for a noise model, whether
quantum circuits of the quantum error correcting code under the noise model can
be efficiently simulated or not is essential. The most straightforward method of
the simulation is to store and update a quantum state vector, i.e., 2n amplitudes
in computational basis of an n-qubit system. This method takes memory and
time exponential to the number of qubit n, and this approach is exhausted at
around 50 qubits with the existing classical computers [66, 67]. Thus, there have
been massive efforts to reveal what class of quantum circuits can be efficiently
simulated with classical computer.

In this section, we clarify three definitions of simulatability of quantum circuits:
strong simulation, weak simulation, and adaptive simulation. The adaptive simu-
latability is the most essential property in the context of QEC. Then, we show two
important efficiently simulatable classes of quantum circuits: the Clifford circuit
and the matchgate circuit. Clifford circuits can be understood as an efficiently
traceable dynamics in stabilizer formalism. The simulatability of matchgate cir-
cuits is based on an efficiently traceable dynamics of free fermions.

2.3.2 Definitions of simulatabilities

We first clarify the definitions of simulatability [68]. We show three types of
simulatability: strong simulation, weak simulation, and adaptive simulation.

In this thesis, we consider an n-qubit quantum circuit Cn with the following
properties. Every qubit is finally measured or discarded. The outcome of the
final measurements for qubits is binary. Other intermediate operations in Cn may
include unitary operations, probabilistic operations such as noise, intermediate
measurements such as stabilizer measurements, and unitary operations based on
the previous outcomes of intermediate measurements such as a recovery operation.

For a given quantum circuit Cn, we denote the number of qubits which subject
to the final measurements as m(Cn). We denote the probability with which we
obtain v ∈ {0, 1}m(Cn) as pCn(v), where vi ∈ {0, 1} is the outcome of the final
measurement at the i-th measured qubits. We also define a marginal probability
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pCn(ṽ) with ṽ ∈ {0, 1, ∗}m(Cn) as

pCn(ṽ) :=
∑
v∼ṽ

pCn(v). (2.70)

The first definition is strong simulation, which is defined as follows.

Definition 2.3.1. (Strong simulation) We say an n-qubit quantum circuit Cn is
strongly simulatable if the probability pCn(ṽ) for an arbitrary masked binary vector
ṽ ∈ {0, 1, ∗}m(Cn) can be calculated with poly(n) steps of classical computation.

The second is weak simulation, which is defined as follows.

Definition 2.3.2. (Weak simulation) We say an n-qubit quantum circuit Cn is
weakly simulatable if we can sample a binary vector v ∈ {0, 1}m(Cn) from the
probability distribution {pCn(v)} with poly(n) steps of classical computation.

We finally introduce the definition of adaptive simulation, which is a hybrid
of strong one and weak one, in the following sense. We represent all of the in-
termediate components in Cn such as unitary operations, probabilistic operations,
intermediate measurements, and unitary operations based on the previous out-
comes of intermediate measurements, as a large instrument In. We denote the
outcome of In as vIn . We also denote the probability with which we obtain vIn

as pIn(vIn), and the probability with which we obtain ṽ ∈ {0, 1, ∗}m(Cn) at the
final measurement conditioned on the outcome vIn as pCn(ṽ|vIn). Then, adaptive
simulatability is defined as follows.

Definition 2.3.3. (Adaptive simulation) We say an n-qubit quantum circuit Cn

with an intermediate outcome vIn is simulatable in adaptive sense if we can sample
vIn from the probability distribution {pIn(vIn)} with poly(n) steps of classical
computation, and if the probability pCn(ṽ|vIn) can be calculated for an arbitrary
masked binary vector ṽ ∈ {0, 1, ∗}m(Cn) and for an arbitrary outcome vIn of In
with poly(n) steps of classical computation.

When we can simulate a quantum circuit of quantum error correcting codes
in adaptive sense, we can sample syndrome values, and can calculate the success
probability of decoding conditioned on the observed syndrome efficiently and ac-
curately. By repeating the sampling of the success probabilities, we can estimate
the logical error probability within a statistical error. Thus, adaptive simulatabil-
ity of a given quantum error correcting code under a noise model is a sufficient
condition for evaluating the performance of the quantum error correcting code
accurately and efficiently.

In this section, we show two known simulatable classes of quantum circuits in
adaptive sense, the Clifford circuit and the matchgate circuit.
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2.3.3 Clifford circuit

The Clifford circuit is the most popular efficiently simulatable class of quantum
circuits, which is studied by Gottesman [46]. The simulatability of Clifford cir-
cuits is based on the stabilizer formalism described in Sec 2.2.1. Since stabilizer
formalism specifies a 2k-dimensional subspace with (n−k) Pauli operators, we can
specify a quantum state with n Pauli operators. For example, a quantum state
|0⟩⊗n can be stabilized with a set of n Pauli operators {Z0, . . . , Zn−1}.

Let us consider an n-qubit quantum circuit Cn with the following properties.
An initial state is |0⟩⊗n. Every intermediate quantum operation is a unitary op-
eration. We perform a projection measurement with projection operators I±Pi

2
,

where Pi ∈ {Xi, Yi, Zi}, as the final measurements on each qubit, which we call
measurements with Pauli basis. We see that the initial state is characterized with
a generator set {Z0, . . . , Zn−1}. The action of the circuit Cn can be regarded as se-
quential updating of the quantum state via the intermediate operations. Suppose
that a current quantum state |ψ⟩ which is specified with a set of n Pauli operators
S is updated with a unitary operator U contained in the circuit Cn. Since

U |ψ⟩ = US |ψ⟩ = (USU †)U |ψ⟩ (2.71)

for any S ∈ S, the updated quantum state U |ψ⟩ is specified as the +1 eigenstate
of a set of operators S ′ = {USU †|S ∈ S}. If the new set of operators S ′ consists
only of Pauli operators, we can specify the new quantum state with the stabilizer
formalism. The following class of operators is thus defined.

Definition 2.3.4. (Clifford operator) An operator C is called a Clifford operator
if and only if C satisfies

CPC† ∈ Pn (2.72)

for an arbitrary Pauli operator P ∈ Pn.

If every intermediate unitary operator in Cn is a Clifford operator, we can
specify quantum states at any step in Cn using a set of n Pauli operators. Since
any set of n Pauli operators can be represented by 2n(n + 1) classical bits, we
can efficiently track a quantum circuit Cn. It is also known that we can efficiently
calculate the probability p(s), where s is an outcome of a Pauli measurement, and
can efficiently calculate the updated stabilizer generator of the post-measurement
state [1]. As for the final measurements, we can calculate the marginal probability
pCn(ṽ) for an arbitrary masked vector ṽ as follows. We set i = 0 and p = 1. If the
i-th element of ṽ is ∗, we set i ← i + 1. If not, we calculate the probability p(ṽi)
for the measurement of the i-th qubit, update p ← pp(ṽi), update the stabilizer
generator by assuming we obtain the outcome ṽi, and set i← i+1. We repeat them
from i = 0 to i = (m(Cn)− 1). Then, the resultant p is the value of pCn(ṽ). When
there is an intermediate measurement in a quantum circuit Cn, we can simulate it

36



in weak sense as follows. Let s be the outcome of the intermediate measurement.
We calculate the probabilities p(s) for all possible values of s, randomly choose a
specific outcome s with the probability p(s), and construct the stabilizer generator
specifying the state after the measurement. We can obviously treat probabilistic
Clifford operations and Clifford operations based on the previous outcomes of
intermediate measurements in weak sense. Thus, we reach the following theorem.

Theorem 2.3.1. (Gottesman-Knill theorem [46]) Let Cn be an arbitrary quantum
circuit which satisfies the following. The quantum circuit Cn consists of unitary
Clifford operations, probabilistic Clifford operations, intermediate Pauli measure-
ments, and unitary Clifford operations based on the outcomes of the intermediate
Pauli measurements. The initial state of Cn is |0⟩⊗n, and each qubit is eventually
measured by Pauli basis or discarded. Then, we can simulate Cn in adaptive sense.

2.3.4 Matchgate circuit

Matchgate circuits are another efficiently simulatable class of quantum circuits,
which is suggested by Valiant [47]. The class of matchgate circuits is later under-
stood to be equivalent to efficiently simulatable dynamics of free fermions [48, 49].
The applicable scope of matchgate circuits is widened from unitary dynamics to
non-unitary dynamics by Knill and Bravyi [48, 50].

Free-fermionic dynamics

We consider a quantum system with n fermionic modes. Let ai and a
†
i with i =

0, . . . n − 1 be the annihilation operator and the creation operator of the i-th
fermionic mode, respectively. These operators satisfy the following commutation
relations,

{ai, aj} = {a†i , a
†
j} = 0, (2.73)

{ai, a†j} = δij, (2.74)

where {a, b} = ab+ ba.
Let |vac⟩f be the vacuum state. We denote 2n Fock basis of the n fermionic

modes as {|f⟩f}, where f ∈ {0, 1}n and

|f⟩f := (a†0)
f0 · · · (a†n−1)

fn−1 |vac⟩f . (2.75)

We define 2n Majorana fermionic operators {ci} with i = 0, . . . , 2n− 1 as

c2i := ai + a†i , (2.76)

c2i+1 := (−i)(ai − a†i ). (2.77)
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The following relations are derived from those of the fermionic operators Eqs. (2.73)
and (2.74):

ci = c†i , (2.78)

c2i = I, (2.79)

{ci, cj} = 2δij. (2.80)

We define a vector of Majorana fermionic operators as c = (c0, . . . , c2n−1)
T.

The essence of efficient simulatability of matchgate circuits is based on a prop-
erty of fermionic Gaussian states and fermionic Gaussian operations. We define
fermionic Gaussian states and fermionic Gaussian operations as follows.

Definition 2.3.5. (fermionic Gaussian state) For given 2n Majorana fermionic
operators c, we say a quantum state ρ is Gaussian if it has a form of

ρ = C exp

(
i

2
cTGc

)
, (2.81)

where C is a normalization factor, and G is a 2n× 2n anti-symmetric real-valued
matrix.

Definition 2.3.6. (fermionic Gaussian operation) For given 2nMajorana fermionic
operators c, we say an operator K is Gaussian if it has a form of

K = C exp

(
1

2
cTAc

)
, (2.82)

where C is a normalization factor, and G is a 2n × 2n anti-symmetric complex
matrix.

Note that fermionic Gaussian operations are not necessarily unitary. Let ρ be
an arbitrary fermionic Gaussian state. The state ρ can be perfectly characterized
by its covariance matrix M and its norm Γ := Tr(ρ), where the covariance matrix
M is defined by

Mij =
i

2

Tr(ρ[ci, cj])

Tr(ρ)
, (2.83)

where [a, b] = ab − ba. Consider a CP map E defined by E(ρ) = KρK†, where
K is a fermionic Gaussian operator. We call such a map a Gaussian CP map. It
is known that a Gaussian CP map takes any fermionic Gaussian state to another
fermionic Gaussian state [48, 50], and thus the resultant state E(ρ) can also be
characterized by its covariance matrix and norm. The covariance matrix and norm
of the resultant state can be obtained as follows. We define a maximally entangled
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fermionic state ρFM in the space of 2n fermionic modes (corresponding to 4n
Majorana fermionic operators) as follows.

ρFM =
1

22n

2n−1∏
i=0

(I + icici+2n). (2.84)

The channel state of Gaussian CP map E is defined as

ρE := (E ⊗ I)(ρFM). (2.85)

Its 4n× 4n covariance matrix ME is given by

(ME)ij =
i

2

Tr(ρE [ci, cj])

Tr(ρE)
. (2.86)

Let write ME in the following form

ME =

(
A B
−BT D

)
, (2.87)

where A, B, and D are 2n× 2n submatrices. We denote the norm of the channel
state ρE as ΓE := Tr(ρE). Let (M,Γ) be the covariance matrix and the norm of an
input state ρ, and (M ′,Γ′) be those of the output state E(ρ). Then, (M ′,Γ′) can
be obtained as

M ′ = A−B(M −D)−1BT (2.88)

and

Γ′ = ΓΓEPf(M −D), (2.89)

where Pf(·) is the Pffafian of a matrix. Note that the Pffafian of a matrix M can
be calculated as a square root of a determinant of M , i.e., Pf(M)2 = det(M).
Eqs. (2.88) and (2.89) can be derived with Gaussian integration in Grassman alge-
bra. See Ref. [50] for the derivation. The calculation of a determinant and a matrix
multiplication takes at most O(n3) computational steps. Thus, we can efficiently
obtain (M ′,Γ′) from (M,Γ), norm ΓE , and submatrices A, B, and D. Thus, the
following theorem holds.

Theorem 2.3.2. (simulatability of fermionic Gaussian dynamics) Consider a sys-
tem of n fermionic modes. Let {Ei} be an arbitrary instrument that consists solely
of fermionic Gaussian CP maps. Let ρ be an arbitrary fermionic Gaussian state.
We denote the channel state of Ei as ρEi . If the covariance matrices and the norms
of ρ and ρEi are given, we can efficiently calculate the probability of obtaining
outcome i when we measure the state ρ with the instrument {Ei}. We can calcu-
late the covariance matrix and the norm of the post-measurement quantum state
conditioned on outcome i with poly(n) steps of classical computation.
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Matchgate circuit

We map the efficiently simulatable framework of fermionic Gaussian dynamics to
that of quantum circuits, and construct a class of simulatable quantum circuits in
adaptive sense, which is called matchgate circuits.

We achieve this by relating the 2n Fock basis {|f⟩f} to the 2n computational
basis {|v⟩}. There are several schemes to relate the Fock basis to the computational
basis [69, 70]. The simplest and the most intuitive relation is the Jordan-Wigner
transformation, which relates Fock basis to computational basis as |f⟩f = |f⟩.
In this thesis, to be compatible with the notation in Chapter 3, we choose the
following relation.

|f⟩f ↔ H⊗n |f⟩ , (2.90)

where H is a Hadamard operator

H =
1

2

(
1 1
1 −1

)
. (2.91)

Using the Hadamard-conjugated Jordan-Wigner transformation, Pauli opera-
tors are identified with 2n Majorana fermionic operators as follows.

c2i =

j=i−1∏
j=0

XjZi (2.92)

c2i+1 =

j=i−1∏
j=0

XjYi. (2.93)

Thus, a quadratic term of the fermionic operators icicj takes one of the following
forms:

Q := {Xi|0 ≤ i ≤ n− 1}
∪{ZiXi+1 · · ·Xj−1Zj|0 ≤ i < j ≤ n− 1}
∪{ZiXi+1 · · ·Xj−1Yj|0 ≤ i < j ≤ n− 1}
∪{YiXi+1 · · ·Xj−1Zj|0 ≤ i < j ≤ n− 1}
∪{YiXi+1 · · ·Xj−1Yj|0 ≤ i < j ≤ n− 1}. (2.94)

Applying this relation to the Theorem2.3.2, we can map efficiently simulatable
fermionic dynamics to an efficiently simulatable class of quantum circuits. We
redefine the fermionic Gaussian operation in the picture of quantum circuits as
follows.

Definition 2.3.7. (complete Gaussian instruments) We say an instrument {Ei}
is complete if every indexed CP map has unit Kraus rank. We say a complete
instrument {Ei} is complete Gaussian if every Kraus operator Ki of each CP map

Ei(ρ) = KiρK
†
i (2.95)
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has a form of

Ki = C exp

(∑
j

αjQj

)
, (2.96)

where αj is a complex value and Qj ∈ Q.
We show that we can efficiently simulate quantum circuits which consist of

complete Gaussian instruments {Ei} in adaptive sense as follows. Let ρ be a
current state, and (M,Γ) be the covariance matrix and the norm of ρ. We define
pi as the probability with which we obtain i as a classical outcome. The probability
pi is given by

pi :=
Tr(Ei(ρ))
Tr(ρ)

. (2.97)

We can efficiently calculate this using Eq. (2.89). This means we can efficiently cal-
culate the probability distribution of the classical outcome, and we can sample an
outcome accurately. The covariance matrix of the state after measurement is ob-
tained using Eq. (2.88). We can also treat complete Gaussian instruments of which
the description depends on the previously obtained outcomes in the same way. We
call such a complete Gaussian instruments is adaptive. As for final measurements,
if all the measurements are described as complete Gaussian instruments, we can
efficiently calculate the probability distribution of the classical outcomes, including
marginal ones. Thus, we can say that if the initial state is fermionic Gaussian, and
every operation including final measurements in quantum circuits is a complete
Gaussian instrument, we can efficiently simulate the quantum circuits in adaptive
sense. Thus, the following theorem holds.

Theorem 2.3.3. (Adaptive simulatability of matchgate circuit) Let Cn be an
arbitrary quantum circuit which satisfies the followings. The circuit Cn consists
of complete Gaussian instruments, which may include adaptive ones. The initial
state of Cn is a fermionic Gaussian state, and qubits are eventually measured with
fermionic Gaussian instruments or discarded. Then, we can simulate quantum
circuits Cn in adaptive sense.

When we are given quantum states and CP maps which are not guaranteed to
be Gaussian, we often need to check whether the given ones are Gaussian or not.
To this end, the following two properties are useful. As for a state, it is known
that a state ρ is a fermionic Gaussian pure state if and only if MTM = I, where
M is a covariance matrix of ρ. As for a CP map, it is known that a CP map E is
Gaussian if it has a form of E(ρ) = KρK† with

K = cos θI + sin θcicj (2.98)

or

K =
1

2
(I + eiθicicj), (2.99)

where θ ∈ R. See Appendix A for the proof of these properties.
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2.3.5 Summary and discussion

We introduced three types of simulatabilities: strong, weak, and adaptive simula-
tion. Since a recovery operation based on outcomes of stabilizer measurements is
an adaptive operation, it is essential to know what class of quantum circuits can
be efficiently simulated in adaptive sense.

We showed two types of efficiently simulatable families of quantum circuits
in adaptive sense: Clifford circuits and matchgate circuits. The simulatability of
Clifford circuits is based on stabilizer formalism. The simulatability of matchgate
circuits is based on Gaussian dynamics of fermions.

Since any stabilizer measurement without noise can be written as Pauli mea-
surements, any noiseless quantum circuit of an arbitrary stabilizer code can be
written as a Clifford circuits containing adaptive operations. Thus, as far as noise
can be written as a probabilistic Clifford operation based on Pauli measurements,
we can simulate noisy quantum circuits in adaptive sense using Gottesman-Knill
theorem. This implies that the Gottesman-Knill theorem is a powerful tool for
simulation and evaluation of stabilizer codes.

A property of the framework of matchgate circuits distinguished from Clifford
circuits is that it contains quantum operations such as the Pauli-X rotation eiθXi

with an arbitrary angle θ ∈ R. We expect that coherent noise, which is not accu-
rately tractable in the Gottesman-Knill theorem, can be treated with matchgate
circuits. On the other hand, a drawback of the framework of matchgate circuits
is that it cannot treat even single Pauli operators, such as Zi and Yi. It has not
been known whether there is a non-trivial set of an error correcting code and a
noise model which can be represented as a matchgate circuit. This is why match-
gate circuits have not been used for evaluating quantum error correcting codes.
The main result of Chapter 3 is that the surface code under coherent noise can be
represented as a matchgate circuit.

2.4 Supervised machine learning

Machine learning is a framework of tasks such as predicting behavior of an unknown
system only with previously known information. While such a general task cannot
always be solved perfectly, there are several state-of-the-art methods which are
expected to achieve it with a high accuracy. A framework of machine learning
has been applied to many practical problems in both theoretical and experimental
research in physics, such as the classification of the readout signals of experiments
[71], simulation of quantum systems [72], classification of the phase of matter [73],
data compression of the quantum state [74], and decoding in QEC [54–58].

In this thesis, we focus on a framework called supervised machine learning.
Since a part of decoding problems can be formulated as a task of supervised ma-
chine learning, we expect that a decoder which is applicable to general settings can
be constructed by using state-of-the-art methods in supervised machine learning.
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In this section, we show a specific formalism of supervised machine learning for
constructing a machine-learning-based decoder.

2.4.1 Framework of supervised machine learning

Though there are several specific formalisms of supervised machine leaning, we
consider the following formalism in this thesis. We consider two finite and discrete
variable spaces, feature space X and label space Y . Let D be a joint probability
distribution of a feature space X and a label space Y . We sample |T | pairs of
features and labels {(xi,yi)} independently with the probability D(x,y). A set of
|T | pairs T := {(xi, yi)}i is called a training data set. Our purpose is to construct
a function F : X → Y using the training data set T , where F can predict y only
from x with a high probability. The function F is called a prediction function.
The accuracy of the prediction function F is given by

pacc(F ) := Pr(x,y)∼D [y = F (x)] . (2.100)

Since sampled x and y are not perfectly correlated in general, the maximal pre-
diction accuracy is not necessarily unity. A prediction model Fopt is optimal if it
satisfies

Pr(x,y)∼D [y = Fopt(x)|x = x′] = max
y′∈Y

Pr(x,y)∼D [y = y′|x = x′] (2.101)

for an arbitrary feature x′ ∈ X such that Pr(x,y)∼D [x = x′] > 0. The maximal
accuracy is then given by

popt := pacc(Fopt). (2.102)

2.4.2 Training process

The most vital and non-trivial factor of supervised machine learning is how to
choose an accurate prediction function using the training data set. It is empirically
known that the following process called training generates a high-performance
prediction function in various cases.

We redefine the discrete label space Y as a set of |Y| discrete points in a
continuous variable space Y ′. We call Y ′ as a prediction space. We choose a
prediction model M̂ : X ×Θ→ Y ′, where Θ is a space of a set of parameters. An
element θ ∈ Θ is called model parameters, which represent a configuration of the
prediction model. We choose a loss function L : Y ′×Y → R, which represents how
a predicted output y′ ∈ Y ′ is deviated from the correct label y ∈ Y . Thus, usually
it is minimized if and only if y = y′. We choose an interpreting function ξ : Y ′ → Y
to interpret a prediction y′ ∈ Y ′ as an element of Y . We choose an optimizer Ô
which suggests a preferable set of model parameters as a result of optimization
using a training data set T and a loss function L, i.e., Ô(M̂, L, T ) ∈ Θ.
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When a training data set T is given, we find a preferable set of model param-
eters θ∗ using the optimizer as θ∗ = Ô(M̂, L, T ). This process is called training.
We choose Mθ∗ : X → Y , where Mθ∗(x) := ξ(M̂(x,θ∗)), as a prediction function.
The accuracy of the prediction function Mθ∗ is given by

pacc(Mθ∗) = Pr(x,y)∼D[y =Mθ∗(x)]. (2.103)

In principle, an optimizer Ô tries to minimize a total loss for a training data
set, which is defined by

L(θ) :=
1

|T |

|T |−1∑
i=0

L(M̂(xi,θ),yi). (2.104)

The optimizer usually uses gradients of the total loss function according to a set
of model parameters ∇θL(θ) in order to find a set of model parameters θ∗ which
minimizes the total loss function. For a stable training, it is required that L(θ) has
smooth and computable gradient for model parameters at almost all the points.
This is why the prediction space Y ′ should be continuous though what we want to
predict is a discrete element of Y .

We show a simple example. Suppose X and Y be discrete variable spaces
X = {0, 1}3 and Y = {0, 1, 2, 3}2, respectively. We choose a linear prediction
model such that M̂(x, (a, A)) = a + Ax, where a ∈ R3 and A is a 2 × 3 real-
valued matrix. It is equivalent to choosing a set of model parameters θ as θ =
(a0, a1, a2, A0,0, A0,1, . . . , A1,2), Θ as a space where (a, A) spans, and Y ′ = R3. We
choose a rounding function ξ(x)i = min(max(⌊xi + 0.5⌋, 0), 3) as an interpreting
function. We choose squared L2 distance between a prediction vector and a correct
label vector L(y′,y) = ||y′−y||22 as a loss function. With these choices, we expect
that a relation between x and y, which are sampled from the distribution D, is
linearly fitted.

2.4.3 Vital factors in training process

Though we can achieve the optimal accuracy popt in ideal situations, there are sev-
eral causes of degradation of accuracy in practice. In this subsection, we describe
vital factors which determine the performance of the resultant prediction function.

The first factor is the choice of a prediction model M̂ . When a chosen pre-
diction model M̂ cannot represent any optimal prediction function by tuning θ,
there is a gap between an achievable accuracy and the optimal one. This means
that we can achieve the optimal accuracy only when any optimal prediction func-
tion is in {Mθ|θ ∈ Θ}. How many functions can be represented with a chosen
prediction model by tuning a set of parameters θ is called a representation power
of a prediction model. We should choose a prediction model with a sufficiently
large representation power to achieve a required accuracy. Though we can enlarge
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a representation power of the prediction model by increasing its degrees of free-
dom, i.e., the number of model parameters, this leads to an increase in the time
spent for each prediction. Though it is hard to find a prediction model which can
achieve both of a short prediction time and a large representation power, several
state-of-the-art prediction models are known which are effective for a variety of
tasks.

The second factor is the choice of a loss function L, an optimizer Ô, and a time
for the training process. The minimization of the total loss is usually formulated
as an instance of non-linear optimization. Since non-linear optimization is known
to be computationally hard in general, there is a trade-off relation between an
achievable loss and the time for training. Though this minimization may take
an exponential time to the number of model parameters, it is required only once
before many runs of prediction. A required accuracy is achieved when we choose
appropriate loss function and optimization algorithm, and pay a sufficient time for
optimization.

The third is the size |T | of the training data set. When the data set T consists
of randomly drawn finite samples, the result of the minimization of the total loss
depends on statistical fluctuation of samples in the training data set. When a
given training data set is too small, a distribution expected from the training data
set is deviated from the actual distribution D, which leads to a degradation of the
resultant accuracy. Thus, it is basically preferable to use as large a training data
set as we can. If a task allows us to sample a training data set with any size, we
should use a sufficiently large training data set so that we can achieve a required
accuracy.

The final one is the design of a feature space X , a label space Y , a prediction
space Y ′, and an interpreting function ξ. Since a raw input and output of the
task does not necessarily coincide with the feature and label, these spaces and
function should be chosen so that the resultant accuracy becomes high. Allowed
and preferable choices of these spaces and the function are dependent on the task.
Thus, understanding the properties of the task is essential to choose appropriate
spaces and function. Since the degradation of the accuracy due to wrong choices
of them cannot be retrieved by increasing an amount of computational resource,
these choices should be carefully examined according to the task.

The achievable accuracy is mainly determined from these four factors. Though
we cannot perfectly satisfy all of them in practical cases, we should examine these
factors to construct a fast and reliable prediction function for a given task.

2.4.4 Summary and discussion

The framework of supervised machine learning provides instructions to construct
a prediction function for estimating behavior of a given system using a previously
known training data set. In the framework, we construct a prediction function by
choosing a prediction model which is characterized by a set of model parameters,
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and by choosing model parameters so that a total loss for the training data set is
minimized. This process of minimization is called training. Since this framework is
general, supervised machine learning has been widely applied to various problems
including problems in the field of quantum information.

We reviewed four essential factors which determine the accuracy of the resultant
prediction function in supervised machine learning: 1) the choice of a prediction
model M̂ , 2) the choice of a loss function L, an optimizer Ô, and a time for the
loss minimization, 3) the preparation of the training data set of a size |T |, and 4)
the choice of a feature space X , a label space Y , a prediction space Y ′, and an
interpreting function ξ.

As detailed in Chapter 4, we discuss a general framework for constructing a
decoder based on machine learning. In that discussion, we mainly focus on the
last factor, the choices of the spaces and the interpreting function.

2.5 List of notations

Many of the symbols and definitions introduced in this chapter are used throughout
this thesis. Here, we briefly summarize them for the reference. The notations
about quantum states and operations are shown in Table 2.1. The notations about
quantum error correction are shown in Table 2.2. The notations about efficiently
simulatable classes of quantum circuits are shown in Table 2.3. The notations
about supervised machine learning are shown in Table 2.4.

Table 2.1: The notations about quantum states and operations.

Symbol Description
Pn n-qubit Pauli group ({±,±i} × {I,X, Y, Z}⊗n).
ρM Maximally entangled state (ρM = |ψM⟩ ⟨ψM | and |ψM⟩ =

1√
2n

∑
i |i⟩ ⊗ |i⟩).

(E ⊗ Id)(ρM) Channel state of a CP map E , which gives a representation of CP
maps by quantum states in doubled Hilbert space. See explanations
around Eq. (2.7).

F(E) Entanglement fidelity of a CP map E . See Eq. (2.11) for the defini-
tion.

b(P ) Binary representation of Pauli operator (b : Pn → {0, 1}2n). See
Eq. (2.17) for the definition.

c(P, P ′) Commutation relation of Pauli operators (0:commute, 1:anti-
commute).

Λ 2n×2n matrix for a symplectic product. The commutation relation
can be represented as c(P, P ′) = b(P )Λb(P ′)T.

w(P ) Weight of Pauli operators. The number of qubits to which P applies
non-trivially.
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Table 2.2: The notations about quantum error correction.

Symbol Description
S Stabilizer generator set. The stabilizer formalism specifies a sub-

space spanned by {|ψ⟩} such that S |ψ⟩ = |ψ⟩ for all S ∈ S. See
Definition. 2.2.1.

C Logical channel. The CPTP map from initial k-qubit state to the
logical space of recovered quantum state. We measure performance
of quantum error correcting codes using the entanglement fidelity
of logical channels.

s Syndrome (s ∈ {0, 1}n−k). The outcome of the stabilizer measure-
ments.

Hc Check matrix ((n − k) × 2n binary matrix). When the error is
represented by a Pauli operator P , the syndrome is given by s(e) =
HcΛe

T, where e = b(P ).
[[n, k, d]] A code with n physical qubits, k logical qubits, and distance d.
G Logical generator matrix (2k × 2n binary matrix). Its 2k rows

correspond to binary representations of 2k independent logical op-
erators.

t(s) Pure error (t : {0, 1}n−k → {0, 1}2n). A pure error satisfies
t(s(e)) ⊕ e ∈ L, where e is a binary representation of an arbi-
trary Pauli error.

w(e) Class of a physical error e. Using a syndrome, a class, a logical
generator, and a pure error, a binary representation of a Pauli error
can be uniquely decomposed as in Eq. (2.44).

L Binary representations of all the undetectable Pauli operators.
Lw A set of binary representations of physical errors which have a class

w in the decomposition in Eq. (2.44).
qs(w) The probability with which an occurred physical error has a class

w conditioned on an observed syndrome s.
r(s) Recovery operator for an observed syndrome s. A decoder is an

algorithm determining a recovery operator from a syndrome.
pL Logical error probability. In the case of a probabilistic Pauli noise

model, see Eq. (2.36) for the definition. An optimal decoder satisfies
Eq. (2.55).

pth Threshold value. If a physical error probability per qubit is smaller
than pth, we can achieve an arbitrary small logical error probability
pL by increasing the number of physical qubit.

λ(p, d) Dropping rate. See Eq. (2.69) for its definition.
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Table 2.3: The notations about Clifford circuits and matchgate circuits.

Symbol Description
{C|∀P ∈ Pn, CPC

† ∈ Pn} A set of Clifford operations. Clifford circuits are
efficiently simulatable.

ai, a
†
i Fermionic annihilation and creation operators.

c2i = ai+ a
†
i , c2i+1 = (−i)(ai− a†i ) Majorana fermionic operators. These operators

are related to Pauli operators as in Eqs. (2.92) and
(2.93).

c = (c0, . . . , c2n−1)
T Array of Majorana fermionic operators

Cec
TAc Fermionic Gaussian state. A is a 2n × 2n real-

valued matrix, and C is a normalization factor.

Cec
TGc Fermionic Gaussian operation. G is a 2n×2n com-

plex matrix, and C is a normalization factor.
M (Mij =

i
2
Tr(ρ[ci, cj])/Tr(ρ)) Covariance matrix of a state ρ. Any density matrix

of fermionic Gaussian state ρ is characterized by
its covariance matrix M and norm Tr(ρ).

ρFM Fermionic maximally entangled state. See
Eq˙ (2.84) for the definition. Using the channel
state of a fermionic Gaussian operation, a resul-
tant state after applying the fermionic Gaussian
operation to a fermionic Gaussian state can be ef-
ficiently computed. See Eqs. (2.88) and (2.89) for
the scheme.
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Table 2.4: The notations about supervised machine learning.

Symbol Description
X ,Y Feature space and label space.
D Joint probability distribution of X and Y . Our purpose in a task

of supervised machine learning is to predict a label y ∈ Y from a
feature x ∈ X , where a pair (x,y) is sampled from D.

T Training data set (T = {(xi,yi)}i). The training data set is a set
of |T | pairs of features and labels independently sampled from D.

Y ′ Prediction space. We require the prediction space should be con-
tinuous. Elements in the label space Y are considered as discrete
points in the prediction space Y ′.

Θ A space of model parameters.

M̂ Prediction model (M̂ : X × Θ → Y ′). A set of model parameters
θ ∈ Θ represents a configuration of a prediction model.

ξ Interpreting function (ξ : Y ′ → Y).
L Loss function (L : Y ′ × Y → R). A measure of distance from a

predicted value y′ ∈ Y ′ to the correct label y ∈ Y .
Ô Optimizer. An algorithm determining a preferable set of model

parameters θ ∈ Θ using the training data set T , the loss function
L, and the prediction model M̂ .

Mθ Resultant prediction function (Mθ : X → Y). The function Mθ is
defined by Mθ(x) := ξ(M̂(x,θ)), where θ = Ô(M̂, L, T ).
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Chapter 3

Efficient simulation of quantum
error correction under coherent
error using matchgate

3.1 Background

Properties of quantum error correcting codes under a noise model, such as the
logical error probabilities, the threshold values, and the dropping rates, are vital
information when we design quantum devices. Therefore, performances of various
QEC schemes have been evaluated under various assumptions of the noise models
and degrees of rigor [28–45]. If we can simulate a quantum circuit of a quantum
error correcting code under a given noise model in adaptive sense, we can sample a
syndrome from accurate distribution, and can calculate the probability with which
QEC succeeds conditioned on the sampled syndrome. Then, we can calculate the
logical error probability for a given physical error probability within statistical
error. The threshold value and dropping rate can be obtained from the behavior
of the logical error probability as shown in Sec 2.2.2. Our goal is to represent noisy
quantum circuits of a given quantum error correcting code under a given noise
model as simulatable quantum circuits in adaptive sense.

By virtue of the Gottesman-Knill theorem [46, 75], shown in Theorem 2.3.1,
we can efficiently simulate any Clifford circuit in adaptive sense. Since noiseless
stabilizer measurements can always be represented as Pauli measurements, any
noiseless quantum circuit of stabilizer codes can be represented as a Clifford cir-
cuit. When we can assume a noise model which only consists of probabilistic
Clifford operations and Pauli measurements, the logical error probability can be
efficiently and accurately estimated numerically [30–33]. The bit-flip noise and the
depolarizing noise are examples of probabilistic Clifford noise. On the other hand,
non-Clifford noise is also unavoidable in practical experiments [22–24]. Quantum
error correcting codes under such a non-Clifford noise cannot be treated with the
Gottesman-Knill theorem. Specifically, it is theoretically predicted that coher-
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ent noise, which is non-Clifford and is caused, for example, by over rotation, can
have negative effects on quantum error correction [76]. Therefore, massive effort
has been made for evaluating the effect of noise coherence on the performance of
quantum error correcting codes.

When the number of qubits is so small that we can fully simulate the whole state
vector in classical computer, we can evaluate the performances using brute-force
simulation. It was reported that evaluation of the performance of the [[d2, 1, d]]
surface code at d = 3 can be achieved with thousands of hours with this method
[43]. The computational cost of such a brute-force simulation can be relaxed using
tensor-network [44, 45]. By contracting the network appropriately, the computa-
tional cost can be reduced to some extent. Furthermore, this method becomes
efficient if we allow approximations. In the case of the concatenated codes, which
is not a family of topological codes, there is an efficient method to analytically
estimate the error threshold under non-Clifford noise [41]. We may approximate
non-Clifford noise using Clifford operations and Pauli measurements for an efficient
simulation [34–40]. Several non-Clifford noise models such as amplitude damping
noise can be approximated with Clifford circuits with a certain accuracy. How-
ever, all of these methods sacrifice either accuracy, efficiency, or applicability to
topological stabilizer codes. An efficient and accurate scheme to simulate quantum
circuits of topological stabilizer codes under a non-Clifford noise is still lacking.

In this chapter, we show that the surface code under coherent noise can be
efficiently and accurately simulated. The key idea in our scheme is the use of
matchgate circuits for simulating quantum circuits of topological stabilizer codes.
As we explained in Chapter 2, a gate set of the matchgate circuits contains coherent
operations such as eiθX for θ ∈ R. We can expect that quantum circuits under
coherent Pauli-X noise may be treated with matchgate circuits efficiently and
accurately. On the other hand, the same gate set of the matchgate circuits does not
contain even basic Pauli operations and measurements. For example, we cannot
perform Pauli-Z operations on a single qubit, and cannot perform measurements on
a qubit with Pauli Z-basis. Since stabilizer topological codes are usually described
with Clifford circuits, it has been non-trivial whether we can describe quantum
circuits of quantum error correcting codes with matchgate circuits.

First, in the next section, we show that one-dimensional (1D) repetition code,
which is a 1D line of the surface code, under coherent noise can be represented as
a matchgate circuit. Though the 1D repetition code is a classical code, it is still
able to capture a necessary ingredient for fault-tolerant QEC, and hence was ex-
perimentally demonstrated as a building block for scalable fault-tolerant quantum
computation [22]. We focus on the simulatability of the 1D repetition code since
we use a similar technique when we will show that quantum circuits of the surface
code under coherent errors can be represented as a matchgate circuit. As a noise
model, we assume that coherent error occurs on both of the physical qubits and
measurement processes. Using the above result, we numerically calculate logical
error probabilities for various degrees of coherence of noise in the 1D repetition
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code. We evaluate the effect of the coherence in noise on the threshold value and
the dropping rate. As compared to the probabilistic noise model, we will find that
the error threshold of the 1D repetition code becomes about one third when noise
is fully coherent. We also confirm that the dropping rate becomes large when the
threshold value decreases due to the noise coherence as expected from Eq. (2.68).
The dependence of the error threshold on noise coherence is explained by using a
leading-order analysis with respect to coherence terms of noise map.

We then proceeds to show, in Sec 3.3, that quantum circuits of the surface code
under coherent errors can also be represented with a matchgate circuit. We can
allow a noise model in which there are coherent X-type errors on the physical
qubits, and probabilistic Pauli Z, Y and X errors on the physical qubits and the
measurement process.

3.2 Efficient simulation of one-dimensional rep-

etition code under coherent error

Before representing the surface code using matchgate circuits, we show a matchgate
representation of the 1D repetition code.

3.2.1 Problem settings

One-dimensional repetition code

The 1D repetition code is a [[d, 1, d]] classical error correcting code, which is capable
of correcting only bit-flip noise. In the 1D repetition code, a classical bit ain
is encoded into physical n(= d) qubits {|0⟩⊗n , |1⟩⊗n}, which are stabilized by
(n − 1) operators S = {ZiZi+1}n−2

i=0 . Since we later consider a noise model which
assumes errors also on the measurement processes, we explicitly consider auxiliary
(n − 1) qubits for measurements, in addition to the n qubits forming the code.
We call them as measurements qubits and data qubits, respectively. The stabilizer
measurements are achieved using the (n − 1) measurement qubits, each of which
monitors the parities of the neighboring data qubits, namely, the i-th measurement
qubit is used for the stabilizer measurement with Pauli operator ZiZi+1. In the 1D
repetition code with repetitive parity measurement, the data qubits are repetitively
measured for r cycle, and we obtain syndromes with r(n−1) bits. The encoded bit
is finally decoded using the final state of the n data qubits and r(n−1) syndromes.
We denote the decoded classical bit as aout ∈ {0, 1}. The quantum circuit of the
1D repetition code with repetitive parity measurements is shown in Fig. 3.1(a).
Since this is a classical error correction, the logical error probability can be simply
considered as the probability with which aout is flipped from ain, i.e.

pL = Prob(ain ̸= aout). (3.1)
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(a) (b)

Figure 3.1: (a) The QEC circuit of the 1D repetition code with n = 3. (b) The
error allocation of the phenomenological (left) and circuit-based (right) models.

Noise model and allocations

We consider a noise model such that coherent X-type errors occur on both of
the data and measurement qubits. Since the 1D repetition code is capable of
correcting only X-type error, we consider a CPTP map of a general single-qubit
X-type noise, which is regarded as a mixture of theX-type unitary (fully-coherent)
and stochastic (incoherent) noise:

E(ρ,X) = ceiθXρe−iθX + (1− c) ((1− p)ρ+ pXρX)

=
1 + c

2
eiθXρe−iθX +

1− c
2

e−iθXρeiθX , (3.2)

where θ is defined by cos θ =
√
1− p and sin θ =

√
p. The parameter c (0 ≤ c ≤ 1),

which we call noise coherence, is a measure of coherence in the noise. We call the
parameter p (0 ≤ p ≤ 1) as the physical error probability since it can be understood
as the probability with which the input state |0⟩ is measured as the output state
|1⟩. When c = 0, the noise becomes a probabilistic bit-flip with the probability p.
When c = 1, it becomes a unitary X-type operation.

We consider two types of noise allocation models [62] as shown in Fig. 3.1(b).
In the case of the phenomenological model, a noise map E(ρ,X) is located on each
of the data and measurement qubits at the beginning of each cycle. In the case of
the circuit-based model, the noise map is located at each time step of preparation,
gate operation, and measurement, on every qubit including the one that is idle at
the time step. There, we assume that two-qubit noise map

E2qubit(ρ,X) := pXIE(ρ,X ⊗ I) + pIXE(ρ, I ⊗X) + pXXE(ρ,X ⊗X) (3.3)
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acts on the output qubits after each controlled-Not (CNOT) operation. Since our
noise models are symmetric over the bit values, we may choose ain = 0 to evaluate
the logical error probability as pL = Pr(aout = 1).

Decoder

In order to calculate the logical error probability, we should choose a decoding
algorithm. It is known that we can perform MD decoding for the 1D repetition
code under probabilistic bit-flip noise (c = 0) both on the data and measurement
qubits. This is done by constructing an instance of MWPM as we explained in
Sec 2.2.2. This reduction is detailed in Ref. [22]. Here we give a brief explanation.

We define sx,y ∈ {0, 1} as an outcome of the syndrome measurement with the
stabilizer operator ZxZx+1 (x = 0, . . . n−2) at the y-th (y = 0, . . . r−1) cycle. We
decode the final bit by directly measuring all the data qubits with noisy Pauli-Z
basis. We denote the measurement outcome of the x-th data qubit (x = 0, . . . n−1)
as dx ∈ {0, 1}. We define

sx,r = dx ⊕ dx+1 (3.4)

for x = 0, . . . n− 2. We also define parity bits mx,y as

mx,y = sx,y−1 ⊕ sx,y (3.5)

for 0 ≤ x ≤ n − 2 and 0 ≤ y ≤ r, where syndrome values with undefined indices
are assumed to be zero. We also define the parity of all mx,y as

mparity := ⊕x,ymx,y. (3.6)

Then, we construct a binary vector with ((n− 1)(r + 1) + 1) values as

snode := (m0,0,m0,1, . . . ,mn−2,r,mparity). (3.7)

When the noise is incoherent (c = 0) and we choose the phenomenological noise
model, a bit-flip error occurs independently on each data and measurement qubit
in each cycle. When a bit-flip occurs on a data qubit on the boundary, one bit
of mx,y and a parity bit mparity are flipped. When a bit-flip occurs on other data
qubits, two neighboring bits mx,y and mx+1,y are flipped. When it occurs on a
measurement qubit, two bits of mx,y and mx,y+1 are flipped. We see an arbitrary
single bit-flip occurs on data or measurement qubit at any cycle flips exactly two
bits of snode. When we choose repetitive count as r = n − 1, the situation is
perfectly equivalent to that of the [[2d2s − 2ds + 1, 1, ds]] surface code at ds = n
under bit-flip noise only on data qubits with uniform error probability p, which we
demonstrated in Sec 2.2.2. Thus, we can calculate the most probable physical error
by using the blossom algorithm. Let r(sall) ∈ {0, 1}n be the recovery operation
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determined with this decoding scheme. Since we can assume that the recovered
state r(sall)⊕ (d0, . . . , dn−1) is at least in the logical space,

r(sall)⊕ (d0, . . . , dn−1) ∈ {0n, 1n} (3.8)

is guaranteed.
In this section, we use this decoder for all the settings. Since this decoder is

not the MD decoder in other settings, we call this decoder as an MWPM decoder
in order to distinguish it from the MD decoder. Eq. (3.8) is always guaranteed,
regardless of noise models. Note that when we choose c = 0 and choose the
circuit-based noise model, we can construct the MD decoder by setting appropriate
non-uniform weights. This construction is discussed later.

3.2.2 Reduction to matchgate circuit

Interpreting noise maps as a sequence of complete Gaussian instruments

According to Theorem 2.3.3, we can simulate quantum circuits which consist of
complete Gaussian instruments and a fermionic Gaussian initial state in adaptive
sense. Thus, our purpose is to represent quantum circuits of the 1D repetition code
under coherent noise as a sequence of complete Gaussian instruments. To this end,
we start from showing that noise maps and noisy measurements can be represented
as indexed CP maps on the data qubits, each of which has unit Kraus rank. Note
that though we cannot obtain the index of the chosen probabilistic noise map in
actual experiments, we can always assume that the corresponding measurement
was virtually performed to obtain the index, for the purpose of simulation.

There are three types of operations on the data qubits in the quantum circuits of
the 1D repetition code: single qubit noise on a data qubit, noisy measurements on
data qubits, and decoding process. We identify them with indexed Kraus operators
K

(β)
α corresponding to each CP map with unit Kraus rank, where α represents the

description of the Kraus operator, and β is an outcome of its CP map. For clarity,
we describe the case of the phenomenological model in the discussion below.

The first type is the single-qubit noise E given in Eq. (3.2). Its operation on
the i-th qubits is equivalently described by Kraus operators

K
(ϕ)
noise,i =

√
p(ϕ)eiϕXi , (3.9)

where ϕ ∈ {±θ} and p(±θ) := 1±c
2
.

The second type is the parity measurement on the i-th and (i + 1)-th data
qubits, which composed of a measurement qubit and two CNOT gates. Treating
the noise map E on the measurement qubit as above, it can be represented by

K
(s,ϕ)
parity,i =

√
p(ϕ)

1

2
(I + (−1)se−2iϕZiZi+1), (3.10)

where s ∈ {0, 1} is the output of the parity measurement.
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The third type appears in an alternate description of the decoding process.
As we described in Eq. (3.4), in the decoding process, we perform single-qubit
noisy measurements on each data qubit, calculate the parities of the outcomes
dx⊕dx+1 for the MWPM decoder, and the decoded bit aout is determined. Instead
of describing these noisy direct measurements and classical computations, we use
the following equivalent process. We apply map E on each data qubit. We perform
ideal parity measurements on neighboring data qubits, whose Kraus operator is
given by

K
(s)
parity,i =

1

2
(I + (−1)sZiZi+1). (3.11)

Note that these outcomes are equivalent to the parities dx ⊕ dx+1 for all x. In the
whole circuit of the 1D repetition code including the above ideal measurements, we
denote the outcome of the k-th instrument as tk, and a corresponding CP map as
E (tk)k (ρ) = K

(tk)
k ρ(K

(tk)
k )†. Kraus operator K

(tk)
k which corresponds to the k-th CP

map with outcome tk should be written as one of the Kraus operators enumerated
above, K

(ϕ)
noise,i, K

(s,ϕ)
parity,i, and K

(s)
parity,i. The probability of a sequence of outcomes

tk := tk...t0 is given by

Pr(tk) = Γ(tk) := ⟨0⊗n|(K(tk))†K(tk)|0⊗n⟩ , (3.12)

where K(tk) := K
(tk)
k K

(tk−1)
k−1 . . . K

(t0)
0 . Let kf be the index of the last ideal parity

measurement, and define t := tkf . All the r(n − 1) bits of syndrome values
and (n − 1) bits of parities are contained in t. We denote these bits required
for MWPM decoding as sall. Based on the obtained syndrome sall, we choose a
recovery operation

R(sall) =
n∏

i=1

X
ri(sall)
i , (3.13)

where r(sall) = (r0(sall), . . . , rn−1(sall)) is determined using the MWPM decoder.
The recovered state R(sall)K

(t) |0⟩⊗n is in the code space of the 1D repetition code,
which should be written in the form

R(sall)K
(t) |0⟩⊗n = α |0⟩⊗n + β |1⟩⊗n , (3.14)

where α, β ∈ C and |α|2 + |β|2 = Γ(t). The decoded bit aout is thus obtained by,
for example, measuring the (n − 1)-th qubit with Z-basis. The probability of a
decoding failure conditioned on t is given by

Pr(aout = 1, t) = ΓL(t) := ⟨0⊗n|(R(t)K(t))†
I − Zn−1

2
R(t)K(t)|0⊗n⟩ (3.15)

= ⟨0⊗n|(K(t))†
I − (−1)rn−1(sall)Zn−1

2
K(t)|0⊗n⟩ , (3.16)

Pr(aout = 1|t) =
ΓL(t)

Γ(t)
. (3.17)
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By taking the average of Pr(aout = 1|t) about the probability distribution of t, we
have

pL = Pr(aout = 1) = ⟨Pr(aout = 1|t)⟩t . (3.18)

Since all the Kraus operators K
(ϕ)
noise,i, K

(s,ϕ)
parity,i, and K

(s)
parity,i have a form of

Eq. (2.98) or Eq. (2.99), we see these Kraus operators are fermionic Gaussian op-
erators. If the initial state |0⟩⊗n were a fermionic Gaussian state, we could effi-

ciently sample t with probability Γ(t). If the operator I−(−1)rn−1(sall)Zn−1

2
were also

a fermionic Gaussian operation, we could calculate the conditioned probability
Pr(aout = 1|t) = ΓL(t)/Γ(t) efficiently. However, the initial state |0⟩⊗n and the

final measurement operator I−(−1)rn−1(sall)Zn−1

2
are not a fermionic Gaussian state

and a fermionic Gaussian operation, respectively. For an efficient simulation, we
need a further trick as follows. Note that while similar tricks in Refs. [68, 77, 78]
might be employed, the following construction is much simpler and more efficient
for our purpose. We add one ancillary qubit, indexed as the n-th, and correspond-
ing Majorana fermionic operators c2n, c2n+1. We consider a quantum state

|ψ̃⟩ := (|0⟩⊗(n+1) + |1⟩⊗(n+1))/
√
2. (3.19)

We can verify that |ψ̃⟩ is a fermionic Gaussian state since its covariance matrix
M̃ satisfies M̃M̃T = I. We suppose the case when we use the state |ψ̃⟩ as an
initial state instead of |0⟩⊗n. Using the fact that K(tk) commutes with

∏n
j=0Xj,

we obtain

⟨ψ̃|(K(tk))†K(tk) ⊗ In|ψ̃⟩ =
1

2

∑
i,j=0,1

⟨i|⊗(n+1) (K(tk))†K(tk) ⊗ In |j⟩⊗(n+1)

=
∑
j=0,1

⟨0|⊗(n+1) (K(tk))†K(tk) ⊗ In |j⟩⊗(n+1)

= ⟨0|⊗n (K(tk))†K(tk) |0⟩⊗n

= Γ(tk). (3.20)

Since I−(−1)rn−1(sall)Zn−1Zn

2
also commutes with

∏n
j=0Xj, we obtain

⟨ψ̃|(K(t))†
I − (−1)rn−1(sall)Zn−1Zn

2
K(t)|ψ̃⟩ = ΓL(t). (3.21)

We see I−(−1)rn−1(sall)Zn−1Zn

2
is a fermionic Gaussian operation for both rn−1(sall) ∈

{0, 1}. Thus, we see that the initial state is Gaussian, and all the CP maps in the
quantum circuits are complete Gaussian instruments. This means we can represent
any quantum circuit of the 1D repetition code under coherent noise as a matchgate
circuit.
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Interpretation in the case of the circuit-based noise model

In the case of the circuit-based model, the two-qubit noise map assumed after each
CNOT gate contains a non-local X-type noise term eiXcontrolXtarget . We can convert
this non-local noise to local noise by replacing it with a local noise preceding the
CNOT gate UCNOT since

E(UCNOTρU
†
CNOT, XcontrolXtarget) = UCNOTE(ρ,XcontrolItarget)U

†
CNOT. (3.22)

Thus, to simulate the two-qubit noise map faithfully, we probabilistically place a
single-qubit noise map E at

• the target qubit after the CNOT gate

• the control qubit after the CNOT gate

• the control qubit before the CNOT gate

with the probabilities pXI , pIX and pXX , respectively. The single-qubit noises
associated with state preparations and measurements for the measurement qubits
are placed deterministically. The ones for the data qubits at the beginning of the
decoding process are also placed deterministically.

With these replacements, we can consider a noise allocation of the circuit-
based noise model as that of the phenomenological noise model, where there are
additional one-qubit noise map E(ρ,X) on the data and measurement qubits. We
can treat additional noise maps on the data qubits by increasing the length of the
sequence of CP maps. When there are additional noise maps on the measurement
qubits, we are allowed to use the same form of K

(s,ϕ)
parity,i except that the probability

mass function p(ϕ) is replaced by

p(kθ) =

(
N

(N − k)/2

)(
1 + c

2

)(N−k)/2(
1− c
2

)(N+k)/2

(3.23)

for k = {−N,−N + 2, ..., N − 2, N}, where N is a number of noise maps on the
measurement qubit. Thus, the sequence of CP maps in the case of circuit-based
noise model can be treated as a variation of the phenomenological noise model.

58



3.2.3 Sampling scheme

Covariance matrix of initial state and channel states

For the numerical calculation, we need the covariance matrix M̃ of the initial states
|ψ̃⟩. The covariance matrix of the inital state |ψ̃⟩ is obtained as follows.

M̃ =



0 0 −1
0 0 −1

1 0 0
0 0 −1

1 0
. . .

0 −1
1 0 0

1 0 0


(3.24)

We also need the description of the channel state of the Gaussian CP maps. We
calculated 2n×2n submatrices A, B and D of the 4n×4n covariance matrix of the
channel state as described in Eq. (2.87), and calculated the norm of the channel

state ΓG for each CP map. For K
(ϕ)
noise,i =

√
p(ϕ)eiϕXi with p(±θ) = 1±c

2
, which is a

noise operation on a data qubit, we have Γ
(tk)
G = p(ϕ) and A(tk) = D(tk) = 0. The

submatrix B(tk) is calculated as B(tk) = I + B′, where B′ has nonzero elements
only for (

B′
2i−1,2i−1 B′

2i−1,2i

B′
2i,2i−1 B′

2i,2i

)
=

(
−1 + cos 2ϕ − sin 2ϕ

sin 2ϕ −1 + cos 2ϕ

)
. (3.25)

For K
(s,ϕ)
parity,i =

√
p(ϕ)1

2
(I + (−1)se−2iϕZiZi+1), which represents a parity mea-

surement on two qubits, we have Γ
(tk)
G = p(ϕ)/2. The matrix A(tk) has nonzero

elements only for

A2i,2i+1 = −A2i+1,2i = −(−1)s cos 2ϕ, (3.26)

and D(tk) = −A(tk). The matrix B(tk) is calculated as B(tk) = I + B′′, where B′′

has nonzero elements only for(
B′′

2i,2i B′′
2i,2i+1

B′′
2i+1,2i B′′

2i+1,2i+1

)
=

(
−1 (−1)s sin 2ϕ

−(−1)s sin 2ϕ −1

)
. (3.27)

The form of p(ϕ) depends on the noise allocation model.

For K
(s)
parity,i, we have Γ

(tk)
G = 1

2
, and A(tk), B(tk) and D(tk) are equivalent to those

for the K
(s,ϕ)
parity,i with ϕ = 0.

For the final measurement I−(−1)rn−1(sall)Zn−1Zn

2
, we also have Γ

(tk)
G = 1

2
, and the

submatrices are equivalent to those for K
(s,ϕ)
parity,i with ϕ = 0 and s = 1− r(sall)n−1.
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Sampling process

We describe the scheme of sampling t and computing ΓL(t)/Γ(t). The simulation
can be divided into three processes.

Process 1 — Allocations of noise maps
We allocate local noise maps according to a given assumed noise allocation model.
Then, we obtain a sequence of CP maps characterized by Kraus operators {K(tk)

k }.
Process 2 — Simulation of the circuit

We start the simulation from (M̃, 1), which is formally denoted by (M(t0),Γ(t0)).
Given (M(tk−1),Γ(tk−1)), the value of tk is sampled from the probability Γ(tk)/Γ(tk−1).
Then the updated pair (M(tk),Γ(tk)) is calculated by

M(tk) = A(tk) −B(tk)(M(tk−1)−D(tk))−1(B(tk))T , (3.28)

Γ(tk) = Γ
(tk)
G Γ(tk−1)

√
det(M(tk−1)−D(tk)), (3.29)

where A(tk), B(tk), D(tk) and Γ
(tk)
G are associated with the fermionic Gaussian oper-

ator K
(tk)
k .

After repeating the r(n − 1) syndrome measurements, we perform noiseless
parity measurement for each neighboring data qubits. As a result, we obtain
(r+ 1)(n− 1) outputs of the parity measurements sall included in t, and the final
state of data qubits (M(t),Γ(t)) = (M(tkf ),Γ(tkf )).

Process 3 — Decoding
We determine the recovery operation R(t) =

∏n−1
i=0 X

ri(sall)
i by using MWPM

decoder. We then calculate ΓL(t)/Γ(t) from Eqs. (3.20) and (3.21) as

ΓL(t)

Γ(t)
=

1− (−1)rn−1(sall)M(t)2n,2n−1

2
. (3.30)

Time efficiency and implementations

There are O(nr) noise maps and syndrome measurements. Each of them takes at
most O(n3) steps. Therefore, this scheme requires O(n4r) computational time ex-
cept that for decoding. The decoding time with the MWPM decoder is O((nr)5/2).
When we choose r = O(n), both of them are O(n5). When we choose r = n − 1,
the time for simulation per sample with single thread of Intel Core i7 6700 takes
about 20 ms with the parameter (n, p, c) = (15, 0.03, 0) in the circuit-based model.
See Appendix D for the detailed implementation of the MWPM decoder.

3.2.4 Numerical results

The effect of coherence in noise on threshold value

We show the logical error probability pL as a function of the physical error proba-
bility p under incoherent noise (c = 0) and fully coherent noise (c = 1) in Fig. 3.2.
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Figure 3.2: The logical error probability pL is plotted as a function of the physical
error probability p for the two patterns of noise allocation. Insets show the error
threshold pth as a function of the amount of the coherence c. The blue dots are
numerical results. The solid black curve in the circuit-based model is estimated
behavior from the simulation of small-size QEC circuits. The dotted curves are
drawn as references.
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We calculated 50,000 samples of decoding results for each physical error probabil-
ity p, noise coherence c, distance n, and noise model. We have varied the number
r of cycles according to n as r = n− 1. We assumed uniform error probability for
two-qubit noise, i.e., pXI = pIX = pXX = 1

3
, in the circuit-based model.

The logical error probability pL is expected to be exponentially small in the
number of the data qubits n as far as the physical error probability p is below
a certain value pth. According to the scaling ansatz described in Sec 2.2.2, we
obtained the threshold values pth = 10.34(1)% for c = 0 and 7.87(2)% for c = 1
in the phenomenological model, and 3.243(6)% for c = 0 and 1.040(5)% for c = 1
in the circuit-based model. Dependence of the error threshold pth on the noise
coherence c is shown in the insets of Fig. 3.2. We see that the error threshold pth
decreases as the noise coherence c increases. In particular, when we choose the
circuit-based model as the noise model, the threshold value under fully coherent
noise (c = 1) becomes about one-third compared with that of the incoherent limit
(c = 0).

We also confirmed exponential decay of logical error probability pL with code
distance d below the threshold value. Recall that approximated equation is

pL(p, d) = a

(
b
p

pth

)(d+1)/2

(3.31)

as in Eq. (2.68). We numerically investigate whether this approximation is still
valid for the coherent noises by calculating the dropping rate λ(p, d) defined by

λ(p, d) :=
pL(p, d+ 2)

pL(p, d)
∼ p

pth
. (3.32)

The result is shown in Fig. 3.3 for the case of the coherent noise (c = 1) and the
incoherent noise (c = 0). In both the phenomenological and the circuit-based
model, Eq. (3.31) is satisfied with the same level of approximation regardless of
the degree of coherence in the noises. We can conclude that the dropping rate is
also worsened when the noise becomes fully coherent, and that the conjectured
universal relation between the dropping rate and the threshold value [Eq. (2.68)]
also holds true for coherent noise models.

Improvement with non-uniform weighting in MWPM decoder

We applied the MWPM decoder assuming uniformly weighted edges for all of the
settings. Though it works as the MD decoder when we choose the phenomenolog-
ical noise model under incoherent noise (c = 0), that is not the case for the other
settings. It is possible to find a weighted graph that faithfully reproduces the MD
decoder in the case of the circuit-based model under incoherent noise (c = 0).

We constructed the weighted graph for the circuit-based model under inco-
herent noise. Note that each value of weights is approximated with its leading
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Figure 3.3: The figures show the decay rate parameter λ(p, d) := pL(p,d+2)
pL(p,d)

in terms

of the physical error probability p, (a) for the phenomenological model and (b)
for the circuit-based model. The cases with the incoherent noise (c = 0) and
those with the fully coherent noise (c = 1) are marked with circles and triangles,
respectively. The dashed and solid lines in each figure correspond to λ = p

pth
with

pth determined from the threshold behavior for c = 0 and 1, respectively. The
black symbols are for d = 5, and the red ones are for d = 11.
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Figure 3.4: The error threshold pth versus coherence c in the circuit-based model.
Two plots correspond to uniformly weighted decoder and optimally weighted de-
coder.

O(p) term for simplicity. These non-uniform weights were efficiently calculated
using Warshall-Floyd algorithm [79]. We applied the decoder based on the con-
structed graph to the circuit-based model with various values of coherence c. The
obtained error thresholds are shown in Fig. 3.4, together with the thresholds for
the uniform-weight decoder. Compared to the error threshold using the uniform
weight, the error threshold is improved for arbitrary values of c, but the amount of
the improvement is small and the dependence of the error threshold on the noise
coherence c is also similar.

3.2.5 Leading-order analysis of threshold value based on
an ansatz

The dependence of the logical error probability and the threshold value on c can
be explained with a leading-order analysis as follows. The noise map of Eq. (3.2)
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Figure 3.5: The sets of coherent error allocations which contribute to the proba-
bility distribution of the syndrome measurements.

can be rewritten as

E(ρ,X) = (1− p)ρ+ ic
√

(1− p)p(Xρ− ρX) + pXρX. (3.33)

We call the second term ic
√

(1− p)p(Xρ− ρX) as the coherence term. This term
contributes to diagonal terms of the density matrix only through a concatenation
of multiple noise maps. The correction to the diagonal terms after several cycles
is written as even-order terms in c

√
(1− p)p. For p ≪ 1, the leading order of

the correction is O(p) in the circuit-based model, while it is O(p2) in the phe-
nomenological model since an error on a data qubit spreads to two measurement
qubits before the next noise map is applied on the data qubit. For example, the
product of the coherence terms of noise maps located in the positions shown in
Fig. 3.5 contributes the correction. In the case of the phenomenological model, the
leading term is proportional to c4p2, and its sign depends on the results of previ-
ous syndrome measurements. Such a noise leads to space-time correlations in the
syndrome measurements. Since the decoder is not adapted to such correlations,
the existence of coherence in noise is expected to result in a worse logical error
probability. On the other hand, in the case of the circuit-based model, the leading
term is proportional to c2p, and it always increases the error probability. This
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directly worsens the logical error probability and the error threshold.
In the case of the circuit-based model, we seek a more quantitative explanation

of the behavior by proposing a heuristic ansatz as follows. We define an effective
physical error probability of a data qubit per cycle peff(p, c) as a marginal proba-
bility with which results of two measurement qubits neighboring a data qubit are
flipped at a certain cycle from the results of the previous cycle. More precisely,
we define peff(p, c) as the marginal probability of mx,y = mx+1,y = 1, using the
notation introduced in Sec 3.2.1. While peff(p, c) may depend on the values of x
and y, its leading term for small p is independent of x and y (except y = 0) and
of the system size n.

The probability peff(p, c) should be expanded for small p as

peff(p, c) = β(1 + αc2)p+O(p2), (3.34)

where α is constant and is independent of the system size n. This leading term
can be analytically obtained as 8

3
(1 + 11

6
c2)p, and thus α = 11/6.

We assume that the logical error probability pL(p, c) can be well explained by
the local increase of noise, i.e.,

pL(p, c) = pL((1 + αc2)p, 0). (3.35)

Based on this ansatz, the error threshold under coherent noise pth(c) can be written
as

pth(c) ∼
pth(0)

1 + αc2
(3.36)

if pth ≪ 1. By using the analytically obtained value α = 11/6, this ansatz gives the
solid curve in the inset of Fig. 3.2, which is in good agreement with the accurate
numerical results. We may expect that a similar leading-order ansatz also holds for
the surface code, since it is a two-dimensional extension of the 1D repetition code.
The factor α is also easily obtained by analytically calculating the effective bit-flip
probability, and pth(0) for incoherent noises can be efficiently computed since only
a few noise maps and qubits are relevant to the leading term. Therefore, the error
threshold of the surface code under coherent noise will be estimated by the same
approach.

3.3 Efficient simulation of surface code under co-

herent error

3.3.1 Problem settings

Here we extend our scheme of the efficient classical simulation using matchgate
circuits to the surface code with a specific noise model including coherent errors.
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We consider the [[d2, 1, d]] surface code for an odd number d. An example with
d = 5 is shown in Fig 3.6.

The data qubits are located on the d2 vertices of the colored faces. Each colored
face corresponds to a measurement qubit. The measurement operator of each
face is the product of Y or Z Pauli operators on the data qubits on its vertices.
Note that assignments of Pauli operators to the vertices are modified from the
code explained in Sec 2.2.2 for the compatibility to the modified Jordan-Wigner
transformation of Eq. (2.90). We denote the stabilizer operator of the blue face at
the r-th row as Sb

r (r = 0, . . . , d−2). We denote the stabilizer operators of the red
faces in the c-th column (c = 0, . . . , d− 2) as {Sr,c

i } (i = 0, . . . , d− 2), and that of
the green face as Sg,c. The rules for assigning the index i will be explained later.
For each cycle of syndrome measurement, the stabilizer operators as observables
are measured via controlled gates and Z-basis measurement on the measurement
qubits.

We consider an error model in which the code truly works as a fully quantum
code, namely, including both X- and Z-type errors. More specifically, we assume
the following phenomenological noise model. For each cycle, one of the following
three types of errors occurs on each data qubit probabilistically, the Pauli Y error,
the Pauli Z error, and an X-type coherent error as in Eq. (3.2). We assume that
the measurement qubits also suffer from the three types of errors probabilistically,
the Pauli X, Y , and Z errors. We also assume, for simplicity, that the syndrome
measurement in the final cycle is error-free. This noise model can be considered
as the phenomenological model with added Pauli Y and Z noises on both types of
qubits, while limiting the X-type coherent errors to the data qubits. Apparently,
such an error model including the coherent noise cannot be treated with the method
based on the Gottesman-Knill theorem.

In contrast to the 1D repetition code in Sec 3.2 where the logical error probabil-
ity is the only parameter of interest, we evaluate the performance of the quantum
code with the entanglement fidelity of the logical channel. Since we assumed that
the final syndrome is correct, the whole circuit including a recovery operation can
be viewed as a one-qubit logical channel C on the logical qubit space spanned by
{|0L⟩ , |1L⟩}. Thus, it is enough for evaluating the performance of the code to
compute the channel state ρ(C) of the logical channel.

3.3.2 Reduction to matchgate circuit

Since the fermionic representation depends on the order of the data qubits, we
assign numbers 0, 1, . . . , d2 − 1, where n = d2, to the data qubits in the order as
shown in the gray boxes in Fig 3.6. We also assume that the ancillary qubit is the
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Figure 3.6: The figure shows the qubit allocation of the surface code in the distance
d = 5. This architecture consists of d2 data qubits and d2−1 measurement qubits.
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Figure 3.7: The figure shows a line of the surface code.

n-th data qubit. Recall that the Majorana fermionic operators can be chosen as

c2i =

(
i−1∏
j=0

Xj

)
Zi (3.37)

c2i+1 =

(
i−1∏
j=0

Xj

)
Yi, (3.38)

where i = 0, . . . , n − 1. While the stabilizer operators for the blue and green
faces are quadratic, those for the red faces are not. Our idea is to introduce a
new equivalent set of stabilizer operators which are all quadratic. Let us con-
sider the stabilizer operators in the c-th column, {Sr,c

0 , . . . , Sr,c
d−2, S

g,c}. With an
appropriate rotation, each column can be considered as a part shown in Fig 3.7.
We assign the index of the stabilizer operators of the red faces in the column as
shown in the figure. Let us introduce new red stabilizer operators defined from
{Sr,c

0 , . . . , Sr,c
d−2, S

g,c} as

S̃r,c
i = (

d−2∏
j=i

Sr,c
j )Sg,c (3.39)

for i = 0, . . . , d− 2. Since they are explicitly written in the form

Wdc+jXdc+j+1 · · ·Xd(c+2)−2−jWd(c+2)−1−j, (3.40)

where W is either Z or Y , they are all quadratic in Majorana fermionic op-
erators. The set {Sr,c

0 , . . . , Sr,c
d−2, S

g,c} can be conversely expressed in terms of
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{S̃r,c
0 , . . . , S̃r,c

d−2, S
g,c} as

Sr,c
i =

{
S̃r,c
i S̃r,c

i+1 if i < d− 2

S̃r,c
d−2S

g,c if i = d− 2
. (3.41)

This indicates that {Sr,c
0 , . . . , Sr,c

d−2, S
g,c} and {S̃r,c

0 , . . . , S̃r,c
d−2, S

g,c} are equivalent
sets as stabilizer generators. To be precise, let us introduce the projector onto the
eigenspace of a stabilizer operator S associated with syndrome bit s by

P (S, s) :=
1

2
(I + (−1)sS). (3.42)

Then, it follows that

P (Sg,c, sg)
d−2∏
i=0

P (Sg,c
i , sri) = P (Sg,c, sg)

d−2∏
i=0

P (S̃g,c
i , s̃ri) (3.43)

if

si =

{
(s̃ri ⊕ s̃ri+1) if j < d− 2

(s̃rd−2 ⊕ sg) if j = d− 2
. (3.44)

This implies that the syndrome measurement of {Sr,c
0 , . . . , Sr,c

d−2, S
g,c} can be equiv-

alently done by those of {S̃r,c
0 , . . . , S̃r,c

d−2, S
g,c} followed by calculation according to

Eq. (3.44).
Now we will show that the quantum error correction circuit can be efficiently

simulated to compute ρ(C). First, we show that the initial state |ϕinit⟩ is a fermionic
Gaussian state. The projection operator to the code space is given by

PC =

 ∏
S∈{Sb

i }∪{S
r,c
i }∪{Sg,c}

P (S, 0)


=

 ∏
S∈{Sb

i }∪{S̃
r,c
i }∪{Sg,c}

P (S, 0)

 , (3.45)

which is a fermionic Gaussian operator. We consider the following logical Z and
Y operators,

LZ = Zn−d

(
n−1∏

i=n−d+1

Xi

)
, (3.46)

LY = Yd−1

(
n−1∏
i=d

Xi

)
, (3.47)
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and choose |0L⟩ and |1L⟩ to satisfy LZ |0L⟩ = |0L⟩, LZ |1L⟩ = − |1L⟩, and LY |0L⟩ =
i |1L⟩. Since |ϕinit⟩ is stabilized by LZZn, −LY Yn, and the d2 − 1 stabilizer opera-
tors, we have

|ϕinit⟩ ⟨ϕinit| = PCP (LZZn, 0)P (−LY Yn, 0). (3.48)

Since LZZn and LY Yn are quadratic, |ϕinit⟩ ⟨ϕinit| is a fermionic Gaussian operator,
and hence |ϕinit⟩ is a fermionic Gaussian state.

Simulation of the execution of the circuit is done as follows. The error on
each data qubit is sampled, and if it is X-type, the state can be directly updated
to a new fermionic Gaussian state since the X-type error operator is a fermionic
Gaussian operator. Pauli Z and Y operator is not a fermionic Gaussian operator,
and hence it cannot be directly applied. When we implement Z error on the i-th
qubit, we apply ZiZn instead, which is a fermionic Gaussian operator, and the
updated state can be calculated. We apply YiZn for Y error. The appearance of
Zn should be recorded, and will be compensated in the final stage. A syndrome
measurement of a stabilizer operator S on a current fermionic Gaussian state |ϕ⟩
without any error is done by calculating

ps′ := ⟨ϕ|P (S, s′)|ϕ⟩ (3.49)

for s′ ∈ {0, 1}, and sampling s′ accordingly, and then calculating the updated state

P (S, s′) |ϕ⟩√
⟨ϕ|P (S, s′)|ϕ⟩

. (3.50)

As we have seen, we are allowed to use S̃r,c
i instead of Sr,c

i , and to compute the
syndrome for {Sr,c

i } through Eq. (3.44), which assures that P (S, s′) is always a
fermionic Gaussian operator. As for the Pauli error on the measurement qubit,
it can be equivalently translated to a composition of the following operations: a
bit-flip of the computed syndrome (for X and Y ), and Pauli errors on the data
qubit (for Y and Z). After all the cycles are executed, the recovery operator R is
calculated using the sampled syndrome values. R can be written as a product of
Pauli operators and hence computed by possible inclusion of Zn.

After a single run of simulation, we obtain a final fermionic Gaussian state
|ϕfinal⟩ and the record of the number w of applications of Zn. If w is even, the
fermionic Gaussian state is an accurate sample of the desired state ρ(C). If w is
odd, Zn |ϕfinal⟩ is an accurate sample of ρ(C). Hence, all we need is to convert
the description of |ϕfinal⟩ as an (n + 1)-qubit fermionic Gaussian state to that as
a two-qubit density operator. We choose the Pauli operators for the logical qubit
as LZ and LY defined in Eqs. (3.46) and (3.47), LI := I⊗n, and

LX = −iLYLZ = −Yd−1

(
n−d−1∏
i=d

Xi

)
Yn−d. (3.51)
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The density operator is then decomposed as

|ϕfinal⟩ ⟨ϕfinal| =
∑
W,W ′

1

4
AW,W ′LWW

′
n (3.52)

AW,W ′ := ⟨ϕfinal|LWW
′
n|ϕfinal⟩ , (3.53)

where W,W ′ ∈ {I,X, Y, Z} and AI,I = 1. The coefficient AX,X can be obtained
as follows. The final state |ϕfinal⟩ is a +1 eigenstate of all the stabilizer operators.
The operator LX can be transformed to X⊗n by multiplying all the (d − 1) blue
stabilizers, all the (d − 1) green stabilizers, and the (d − 1)2/2 red stabilizers
composed of Pauli Zs. We thus have LXXn |ϕfinal⟩ = X⊗(n+1) |ϕfinal⟩. SinceX⊗(n+1)

commutes with all the fermionic Gaussian operators and |ϕinit⟩ is a +1 eigenstate
of X⊗(n+1), we have X⊗(n+1) |ϕfinal⟩ = |ϕfinal⟩, and hence AX,X = 1. This also
implies AW,W ′ = 0 if LWW

′
n anti-commutes with LXXn. The remaining 6 non-

trivial coefficients are expectation values of LX , Xn, LY Yn, LYZn, LZYn, and LZZn

which are all expectation values of fermionic Gaussian operators. These values can
be calculated from the fermionic Gaussian state description of |ϕfinal⟩. We thus
obtain the density operator |ϕfinal⟩ ⟨ϕfinal|.

An accurate sample of ρ(C) is then given by applying the correction Zw
n . The

ρ(C) is calculated as

ρ(C) = ave(Zw
n |ϕfinal⟩ ⟨ϕfinal|Zw

n ), (3.54)

where ave(·) represents averaging function over the samples. The entanglement
fidelity F (C) is then computed as

F (C) := ⟨ϕinit|ρ(C)|ϕinit⟩

=
1

4
(1 + tr(ρ(C)LXXn)− tr(ρ(C)LY Yn) + tr(ρ(C)LZZn))

=
1

4
(1 + ave((−1)w(1− AY,Y ) + AZ,Z)). (3.55)

3.3.3 Extension of simulatable noise model

We would like to introduce another fully quantum error correcting circuit which is
efficiently simulated by our method. The circuit is a modification of the previous
circuit. It uses the same surface code, but each of the new red syndromes {S̃r,c

i }
is actually measured through a measurement qubit, instead of {Sr,c

i }. For this
circuit, we can allow X-type coherent errors on measurement qubits, just as in the
phenomenological noise model in the case of the 1D repetition code. In this case,
the X-type coherent error can be absorbed by replacing the measurement operator
P (S, s) with

P ′(S, s, θ) :=
1

2
(I + (−1)se−2iθS), (3.56)
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where θ is a rotation angle dictated by the X-type coherent error. Since all the
stabilizer operators are quadratic terms of Majorana fermionic operators in the
modified circuit, all of these operators are fermionic Gaussian operators.

The second example, i.e., the noise model described above, shows that the
1D repetition code in Sec 3.2 can be extended to a fully quantum code with no
compromise on the noise model. Hence the applicability of our method relies
neither on the simple structure of the repetition code nor on the absence of Z
and Y errors. On the other hand, the comparison between the two examples of
the surface code reveals an interesting trade-off. In the second example, the new
syndrome measurements are non-local in the column direction, and only local in
the row direction. In other words, it may be regarded as a 1D circuit with local
stabilizer measurements. The first example, the noise model employed in Sec 3.3.1,
is a true 2D circuit, but the efficient simulation seems to be possible only when
the measurement qubits suffer no coherent errors. It is an open problem whether
we can achieve both of them, efficient simulation of a truly 2D quantum error
correction circuit with local syndrome measurement under coherent errors on both
the data and measurement qubits.

3.4 Conclusion

We constructed an efficient and accurate scheme for calculating a logical error
probability of the 1D repetition code and the surface code under coherent noise.
We used matchgate circuits for simulating the noisy quantum circuits of these
codes.

We have calculated the error threshold under coherent noise in terms of the
physical error probability p and the noise coherence c. When noise becomes fully
coherent, we found that the threshold value of the 1D repetition code becomes one-
third compared with that in the case of the incoherent noise. We also numerically
showed that the dropping rate of the logical error probability shows the same
behavior. This implies that the conjectured relation between the dropping rate
and the threshold value [Eq. (2.68)] holds also for coherent noise models.

Then, we showed that the surface code under coherent noise can be also repre-
sented as a matchgate circuit. This is the first example of efficiently and accurately
simulatable quantum circuits of topological stabilizer codes under a noise model
which assumes all X-, Y - and Z-Pauli errors and a part of them is a continuously
parametrized coherent error.

We have also proposed a leading-order ansatz for the estimation of the error
threshold under coherent noise, and found that it gives good approximation of the
accurate numerical results in the case of the 1D repetition code. This suggests
that the effect of any type of coherent noise on the surface code will be assessed
by an analogous ansatz, which can be calculated easily.

Our results imply that several future studies are possible. The proposed simu-
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lation scheme is the first example which provides efficient and accurate evaluation
of the topological stabilizer codes except those based on the Gottesman-Knill the-
orem. In this chapter, we have shown two important examples, but there may
still be more examples which are efficiently simulated using matchgate circuits.
For example, recently, another scheme to simulate the surface code under coherent
noise using matchgate circuits was proposed [80]. In this work, simulation of the
surface code under different types of coherent noise is enabled by representing each
physical qubit with four Majorana fermionic operators. More generally, it is also
important to find general conditions that stabilizer codes and noise models can be
represented as matchgate circuits.

Our results are also useful for evaluating applicability of other efficient but
not accurate simulation schemes based on approximations. The obtained accurate
error thresholds will serve as a reference to test the accuracy of approximated or
heuristic schemes for simulating non-Clifford noise. For example, we have used the
accurate results as a benchmark for the leading-order ansatz.

It is also interesting to investigate what types of noise can be well approximated
with matchgate circuits. As many types of noises are approximated with Clifford
circuits, there may be practical noise models which can be efficiently approximated
with matchgate circuits, but not with Clifford circuits.

In the case of the Clifford circuit, it is known that quantum circuits dominated
by Clifford gates but contain a few T gates, which is not a Clifford gate, can
be simulated with a cost increase exponential to the number of the T gates [81].
Though the time for simulation grows exponentially, the cost is expected to be
much smaller than the full simulation of the general quantum circuits. We may
find a matchgate analog of this simulation. If there is such a framework, we can
simulate quantum circuits under noise dominated by matchgate operations with
a far smaller cost than that of the full simulation. This enables us to simulate a
noisy quantum circuit including a few non-matchgate operations with a practical
computational cost.

An architecture of topological fault-tolerant quantum computation [82] explic-
itly utilizes Majorana fermions as elements of computation. A fermionic Gaussian
operation is understood as a dynamics with Hamiltonian which consists only of
quadratic terms of Majorana fermionic operators. In such a system, dynamics
with such a Hamiltonian with quadratic terms is expected to be a dominant factor
of the physical error. Thus, using the framework of matchgate circuits may be
the best way to evaluate the performances of quantum error correcting codes for
topological fault-tolerant quantum computation under a practical noise.
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Chapter 4

General framework for
constructing near-optimal
machine-learning-based decoder
of the topological stabilizer codes

4.1 Background

The performances of quantum error correcting codes, such as the logical error prob-
ability, the threshold value, and the dropping rate, depend on the performance of
a chosen decoder. It is known that carrying out the optimal decoding takes a
time that grows exponentially to the number of physical qubits n except few cases
[27]. According to a proposed architecture of fault-tolerant quantum computa-
tion, time for decoding is limited [32, 61]. Therefore, we cannot use the optimal
decoding in general. As we saw in an example in Sec 2.2.2, another method is to
use one of the most likely physical errors that are consistent with the observed
syndrome as a recovery operation. This method is called the minimum-distance
(MD) decoder. Though the MD decoder is known to be near-optimal, construc-
tion of an efficient MD decoder is known only for limited cases of quantum codes
and noise models [21]. In the case of the surface code under correlated noise
models, by ignoring the correlation of bit-flip and phase-flip errors, we can use
a decoder based on minimum-weight perfect matching (MWPM) as an efficient
decoder, while its performance is low. This approach is called the MWPM de-
coder. As for the other topological codes, we cannot even use the MWPM decoder
straightforwardly. Thus, massive efforts have been paid for developing efficient and
near-optimal decoders which is applicable to various topological stabilizer codes
and various noise models.

A method to use the MWPM decoder also for the color code [60] by projecting
a color code to a surface code is proposed [51]. Another approach is to use renor-
malization group method [52] for decoding, which is applicable to any topological
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code including the surface code and the color code. A method proposed in Ref. [53]
uses union-find data-structure for decoding, which is fast and applicable to both of
the surface and color codes, but has performance lower than that of the MWPM
decoder. Therefore, the existing methods sacrifice either efficiency, near-optimal
performance, or applicability to various topological codes and various noise mod-
els. For the first experimental realization of QEC on near-term devices, faster,
more versatile, and near-optimal decoders are demanded.

In this chapter, we discuss a general construction of machine-learning-based
decoders. The framework of supervised machine learning provides a state-of-the-
art method to construct a prediction function which can estimate the correct label
from a given feature with a high probability if the prediction model is appropriately
trained. By delegating a part of decoding algorithm to machine learning, we can
expect that a prediction function which estimates one of the correct recovery op-
erations from an observed syndrome with a high probability is constructed. There
are several advantages of such a machine-learning-based decoder compared with
the previously known approaches. First, since the framework of machine learning
is general, we expect that machine-learning-based decoders can be used for an
arbitrary quantum error correcting code under an arbitrary noise model. Second,
if we can train the prediction model appropriately, the trained model is expected
to achieve a near-optimal accuracy in principle. Finally, though the training pro-
cess may take a long time, it is required only at once before experiments, and
each prediction for a given feature (syndrome) is expected to be fast. From the
three points, we expect that machine-learning-based decoders can be used as a fast
and high-performance decoder which is applicable to various topological codes and
noise models.

Very recently, several machine-learning-based decoders have been proposed [54–
58]. The first proposal of the machine-learning-based decoder was given by Torlai
et al. [54]. They used a restricted Boltzmann machine as a prediction model, and
numerically showed that a high-performance machine-learning-based decoder can
be constructed. They named machine-learning-based decoders which use neural
networks as a prediction model as neural decoders. Varsamopoulos et al. [55] and
Krastanov et al. [57] studied what type of neural networks shows high performance
as a prediction model of the neural decoder. They proposed neural decoders using
neural networks called multi-layer perceptron models. Baireuther et al. [56] and
Breuckmann et al. [58] extended the applicability of machine-learning-based de-
coders to the cases where the length of the syndrome data is not fixed, which often
occurs when noisy syndrome measurements are repeated. All these existing studies
numerically showed that the performance of the neural decoder is comparable with
or superior to the known efficient decoders for the surface code when sufficiently
large amount of the training data set is supplied. On the other hand, the appli-
cability of these neural decoders appears to be limited to a very small distance.
The neural decoders proposed in Refs. [55, 56] showed high performance only at
distances no larger than 7. The neural decoders proposed in Refs. [54, 57, 58] re-
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quire a post-processing which is expected to take a time that grows exponentially
to the number of the physical qubits n. In other words, the interpreting func-
tion ξ introduced in Sec 2.4.2 cannot be computed efficiently, which slows down
each prediction. Furthermore, the applicability of all the existing neural decoders
was shown only for the surface code. In order to circumvent these drawbacks
and to construct high-performance machine-learning-based decoders, it should be
carefully studied how the decoding problem should be translated to the task of
machine learning.

We explained in Sec 2.4.3 that there are four essential factors which determine
the performance of the prediction function. The first is the choice of the prediction
model, which was studied in Refs. [55, 57]. The second is the choice of the loss
function and the optimizer, and a time for training. Since time for training process
is not basically limited, we can use a time as long as accessible computational
resource allows. Refs. [56, 58] improved the re-usability of the trained model,
which is helpful when the training process takes a lot of time. The third factor
is to prepare a sufficiently large training data set. In all the existing studies, the
prediction model is trained with as large a training data set as we can prepare
with the practical computational time. Compared to these three factors, little or
no attention has been paid to the fourth factor, the choices of the feature space
X , the label space Y , the prediction space Y ′, and the interpreting function ξ. So
far, each of the previous studies introduces its own heuristic construction of the
data set with little consideration on this point. We believe it is the reason why the
existing neural decoders are only applicable to codes of a very small size. In this
chapter, we focus on how we should choose these spaces and the function based
on the properties of decoding problems in QEC.

As for the feature space X , it is natural to choose a binary space of a syn-
drome {0, 1}n−k as a feature space X , since we can only observe a syndrome in
experiments. On the other hand, there are various possible choices about the label
space Y . Recall that the binary representation of a physical error e ∈ {0, 1}2n is
uniquely decomposed as

e = l0(e)⊕w(e)G⊕ t(s(e)), (4.1)

as shown in Eq. (2.44). The optimal decoder outputs one of the most probable w
conditioned on s. The MD decoder outputs one of the most probable e conditioned
on s. Intuitively, possible choices are to use a binary space of w as the label
space Y , or to use a binary space of e as the label space. However, there is
no guarantee that we can achieve near-optimal performance with these choices.
Actually, we later prove that we may not achieve the optimal performance with
these two choices even if we can assume that a prediction model has an infinite
representation power, we use an unlimited training data set, and the total loss
is perfectly minimized. Though all the existing studies avoid this problem using
heuristic methods, it is not understood why such a heuristic is required. This
implies that an analytical study about the mechanism of machine-learning-based
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decoder is essential for constructing near-optimal neural decoders.
Here, we propose a general framework for constructing a neural decoder, linear

prediction framework, to elucidate the factors that determine the performance of
the decoders. In particular, we show conditions required for achieving the optimal
performance when we can assume an unlimited training data set and the perfect
loss minimization. We also propose a criterion called normalized sensitivity which
should be optimized for constructing a near-optimal machine-learning-based de-
coder. Then, we propose specific constructions of a training data set for surface
codes and color codes which satisfy the above condition and optimize the normal-
ized sensitivity. We call these constructions as uniform data construction. We show
the neural decoder with the uniform data construction shows performance higher
than the existing neural decoders for surface codes. By comparing our results
with that of the MD decoder, which is known to be near-optimal, we check that
the performance of our construction achieves near-optimal performance. We also
calculate the performance of the neural decoder for the color codes, and showed
our construction and criterion is valid also for the color codes.

4.2 Linear prediction framework

In this section, we discuss how the decoding problem should be formulated as a
task of machine learning in order to achieve near-optimal performance. To this
end, we propose a general framework, which we call linear prediction framework.
In this framework, we can analytically study the behavior of the neural decoder,
and can discuss requirements for achieving near-optimal performance.

In order to discuss the behavior of the neural decoder in a unified view, we
consider a neural decoder with the following two specifications. First, the neural
decoder uses the syndrome vector s as the feature data to be fed to the trainable
model, namely, X = {0, 1}n−k. Second, the label space Y is a set of binary
vectors, and the prediction space Y ′ is a real-valued vector space which has the
same dimension as the binary vectors. Each label y ∈ Y is linearly generated from
the physical error vector e in GF(2). We call a linearly generated correct label
vector g as a diagnosis, and a matrixHg which generates the diagnosis g := HgΛe

T

as a diagnosis matrix. We denote the length of the diagnosis g by Lg. Therefore,
the label space Y is {HgΛe

T|e ∈ {0, 1}2n} ⊆ {0, 1}Lg , and the prediction space
Y ′ is RLg . The recovery operator r is calculated from the predicted diagnosis g
and the syndrome s. We use an assumed physical error distribution {pe} only for
generating a training data set {(si, gi)}, and do not use it for constructing Hg or
in the calculation of the recovery operator r from g and s. Though this framework
restricts the label to be linearly generated from the physical error, this is general
enough to formulate all the constructions described in the existing methods as
special cases with small technical exceptions.

Since the actual performance of the neural decoder depends on many factors
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such as configurations of the training process, the size of the training data set, and
details of the chosen prediction model, we start with considering the problem under
an ideal limit. We first consider the problem under the simple 0-1 loss function
with an unlimited size of the training data set. Then, we relax these impractical
assumptions to practical ones. Though we numerically investigate the case of a
single logical qubit (k = 1) later, we present the formalism for a general value of
k.

4.2.1 The neural decoder with the 0-1 loss function and an
unlimited training data set

We first consider a hypothetical decoder that can minimize any loss function with
an unlimited number of the training data set. Though such an assumption is not
practical, it is convenient to reveal the conditions for performing optimal decoding
with machine learning in the ideal limit. We choose the 0-1 delta function δ(g, g′)
as the loss function, which is zero if the predicted and the correct diagnosis are the
same, and unity otherwise. Let us consider the portion of training data set with
a specific value of s with Pre∼{pe} [s(e) = s] > 0. If the neural decoder returns
diagnosis g for the input s, the total loss for this portion is proportional to the
following value,

L(δ)
s (g) := Ee∼{pe}

[
δ(g, HgΛe

T)
∣∣s(e) = s

]
= 1− Pre∼{pe}

[
HgΛe

T = g
∣∣s(e) = s

]
. (4.2)

Let g(δ)(s) be the output of the ideally trained neural decoder. Since it should
minimize the total loss for every s, it satisfies

L(δ)
s (g(δ)(s)) = min

g
L(δ)
s (g). (4.3)

We call this ideal decoder a delta diagnosis decoder and g(δ)(s) a delta diagnosis
vector.

We show the condition for a diagnosis matrix Hg to guarantee that we can
perform the optimal decoding with the delta diagnosis decoder. To this end, we
define a property of the diagnosis matrix and introduce a set of diagnosis vectors
as follows.

Definition 4.2.1. faithful diagnosis matrix — Given a check matrix Hc, we say
diagnosis matrix Hg is faithful if

span({(Hcg)i}) = L, (4.4)

or equivalently,

HcgΛe
T = 0↔ e ∈ L0, (4.5)
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where

Hcg :=

(
Hc

Hg

)
. (4.6)

Definition 4.2.2. faithful diagnosis vectors — Given a check matrix Hc, a pure
error t(s), and a faithful diagnosis matrix Hg, we define 22k faithful diagnosis
vectors {gs(w)} (w ∈ {0, 1}2k) associated with a syndrome vector s by

gs(w) := HgΛ(wG⊕ t(s))T. (4.7)

Note that the faithful condition of Hg implies that

w 7→ gs(w) (4.8)

is injective and

HgΛe
T = gs(w(e)), (4.9)

with s = HcΛe
T. As a result, when Hg is faithful, we have

1− L(δ)
s (g) = Pre∼{pe} [gs(w(e)) = g|s(e) = s] (4.10)

from Eqs. (4.2) and (4.9). Then the injective property of gs(w) leads to

1− L(δ)
s (gs(w)) = qs(w), (4.11)

where qs(w) is defined in Eq. (2.54).
When the diagnosis matrix is faithful, we can construct an optimal decoder as

follows. From Eqs. (4.3) and (4.11), we see that the delta diagnosis vector g(δ)(s)
is one of the faithful diagnosis vectors. We can thus write it in the form

g(δ)(s) = gs(w
∗(s)). (4.12)

Eqs. (4.3), (4.11), and (4.12) imply that

1− qs(w∗(s)) = L(δ)
s (g(δ)(s))

= min
w∈{0,1}2k

(1− qs(w))

= 1− max
w∈{0,1}2k

qs(w). (4.13)

Since gs(w) is injective, one can calculate w∗(s) from the diagnosis g(δ)(s) and
syndrome s. The recovery operator is then chosen as

r(s) = w∗(s)G⊕ t(s). (4.14)

For the optimality, we have

Pre∼{pe} [e⊕ r(s) ∈ L0|s(e) = s] = qs(w
∗(s))

= max qs(w) (4.15)

for any s with Pre∼{pe} [s(e) = s] > 0, which satisfies Eq. (2.55).
We can also prove a converse statement for the cases where Hg is not faithful

(see Appendix B), arriving at the following lemma.
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Lemma 4.2.1. If the diagnosis matrix Hg is faithful, there exists a map r∗(g, s)
such that the decoder with r(s) = r∗(g(δ)(s), s) is optimal for arbitrary distribu-
tion {pe}. If the diagnosis matrix Hg is not faithful, no such map exists.

This lemma implies that we can perform optimal decoding with the delta diag-
nosis decoder only when the diagnosis matrix Hg is faithful. Note that the set of
the faithful vectors {gs(w)|w ∈ {0, 1}2k} is independent of the choice of the gen-
erator G and the pure error t(s). Whether we can perform the optimal decoding
or not is dependent only on the construction of Hg.

4.2.2 The neural decoder with the L2 loss function and an
unlimited training data set

In this subsection, we replace the 0-1 loss function with a more practical one,
which is the squared L2 distance. We still consider the limit of an infinite size of
the training data set and the perfect loss minimization. In this case, the total loss
for a fixed s under an unlimited training data set is proportional to the following
value.

L(L2)
s (g) = Ee∼{pe}

[
||g −HgΛe

T||22
∣∣s(e) = s

]
(4.16)

We define a decoder which is ideally trained with the L2 loss function as an L2
diagnosis decoder. We also call the output of the L2 diagnosis decoder as an L2
diagnosis vector g(L2)(s). The L2 diagnosis vector satisfies the following equation.

L(L2)
s (g(L2)(s)) = min

g∈{0,1}Lg
L(L2)
s (g). (4.17)

When the chosen diagnosis matrix is faithful, the L2 diagnosis vector can be written
as follows.

g(L2)(s) :=
∑

w∈{0,1}2k
qs(w)gs(w) (4.18)

Let us define a column vector of order 22k as

qs := (qs(0
2k), . . . qs(1

2k))T. (4.19)

It satisfies the following matrix equation:(
ĝ(L2)(s)

1

)
= Dsqs, (4.20)

where

Ds =

(
gs(0

2k) · · · gs(1
2k)

1 · · · 1

)
. (4.21)

81



We can solve it for qs if Ds has a left inverse D−1
s such that D−1

s Ds = I in the
real-valued calculation, namely, if the rank of Ds as a real-valued matrix is 22k. If
the rank is smaller, solution qs is not unique, and hence it is not always possible to
determine w that maximizes qs(w), which implies we cannot perform the optimal
decoding.

Though the rank condition depends apparently on the syndrome s, we can
formulate it as a condition which is independent of s. Any faithful diagnosis
gs(w) can be written as

gs(w) = HgΛ(wG)
T ⊕ δ(s) (4.22)

with

δ(s) := HgΛt(s)
T ∈

(
{0, 1}Lg

)T
. (4.23)

We define a transformation σδ by

(σδ(v))i := δi + (−1)δivi (4.24)

for δ ∈ {0, 1}2k and v ∈ R2k. It is affine, isometric, and involutory. Since gs(w) =
σδ(s)(HgΛ(wG)

T), we have

Ds =

(
σδ(s)(HgΛ((0

2k)G)T) · · · σδ(s)(HgΛ((1
2k)G)T)

1 · · · 1

)
. (4.25)

We see that a transformation σδ is an affine transformation, and this transforma-
tion satisfies

σδ(σδ(v)) = v (4.26)

σ0(v) = v. (4.27)

When we apply the transformation σδ(s) to Eq. (4.20), we obtain(
σδ(g

(L2)(s))
1

)
= Dqs, (4.28)

where

D :=

(
HgΛ((0, . . . , 0)G)

T · · · HgΛ((1, . . . , 1)G)
T

1 · · · 1

)
, (4.29)

Thus, we can uniquely calculate qs for an arbitrary s if a matrix D has a left
inverse, which is equivalent to the condition that {HgΛ(wG)

T|w ∈ {0, 1}2k} is
affinely independent. We will call a diagnosis matrix satisfying this condition to
be decomposable:
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Definition 4.2.3. decomposable diagnosis matrix — Given a generator matrix G,
we say a diagnosis matrixHg is decomposable if a set of real vectors {HgΛ(wG)

T|w ∈
{0, 1}2k} is affinely independent, namely, the rank of a matrixD defined in Eq. (4.29)
is 22k when we consider D as a real-valued matrix.

When Hg is faithful, the above definition is independent of G, because the set
{HgΛ(wG)

T|w ∈ {0, 1}2k} is independent of G then.
We show a scheme to perform the optimal decoding using L2 diagnosis decoder

when a diagnosis matrix is faithful and decomposable. When Hg is decomposable,
there exists a left inverse D−1 such that D−1D = I in real vector space. When we
observe a syndrome vector s, we obtain the L2 diagnosis g(L2)(s) using the trained
L2 diagnosis decoder, and calculate δ(s) = HgΛt(s). Since the diagnosis matrix
is faithful, the probabilities of the faithful diagnosis vectors are given by

qs = D−1

(
σδ(s)(g

(L2)(s))
1

)
. (4.30)

Then, we construct a recovery operator as

r(s) = w∗(s)G⊕ t(s), (4.31)

where w∗(s) satisfies

qs(w
∗(s)) = max

w
qs(w). (4.32)

With this recovery operator, we obtain

Pre∼{pe} [e⊕ r(s) ∈ L0|s(e) = s] = qs(w
∗(s)), (4.33)

and thus this decoder satisfies Eq. (2.55).
When the diagnosis matrix Hg is faithful, we can also prove a converse state-

ment for the cases where a faithful diagnosis matrix Hg is not decomposable (see
Appendix B), arriving at the following lemma.

Lemma 4.2.2. If the diagnosis matrix Hg is faithful and decomposable, there
exists a map r∗(g, s) such that the decoder with r(s) = r∗(g(L2)(s), s) is optimal
for arbitrary distribution {pe}. If the diagnosis matrix Hg is faithful but not
decomposable, no such map exists.

We show a simple example of a faithful and decomposable matrixHg in the case
of k = 1. We choose vectors l01, l10, and l11 from L01, L10, and L11, respectively.
We construct Hg and generator G as

Hg =

l01
l10
l11

 , (4.34)

G =

(
l01
l10

)
. (4.35)
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We see that span({(Hg)i}) = L, and thus Hg is faithful. A set {HgΛ(wG)
T|w ∈

{00, 01, 10, 11}} is

{(0, 0, 0)T, (0, 1, 1)T, (1, 0, 1)T, (1, 1, 0)T}, (4.36)

which is affinely independent, and thus Hg is decomposable. We can verify the
same by checking the rank of

D =

(
g(00) g(01) g(10) g(11)
1 1 1 1

)

=


0 0 1 1
0 1 0 1
0 1 1 0
1 1 1 1

 (4.37)

to be 4 in real vector space.

4.2.3 The neural decoder with the L2 loss function under
a finite training data size

In practical cases, the size of the training data set is limited, and hence the loss is
not perfectly minimized. This implies that the output diagnosis from the model
deviates from the L2 diagnosis vector. In such a case, it is desirable to construct
a decoder such that its prediction is as robust against the deviations as possible.
We introduce a slight modification to the optimum decoding scheme in the last
subsection, so that it should applicable to an output diagnosis deviated from the
L2 diagnosis vector.

We denote the predicted diagnosis as gP(s) ∈ RLg , which deviates from the L2
diagnosis vector. Note that gP(s) cannot be represented as a linear combination of
the faithful diagnosis vectors in general. In order to construct a decoding scheme
which is robust to a small deviation, it is natural to extend the scheme employed
in Sec. 4.2.2 such that we project gP(s) to the hyper-plane formed by affine combi-
nations of the faithful diagnosis vectors, and then extract the coefficients qP

s from
the projected point. This projection and extraction is achieved as follows. We
perform QR decomposition for D, and obtain D = QR, where Q is an orthogonal
matrix, and R is an upper-triangular matrix. We construct D−1 = R−1QT, which
satisfies D−1D = I. Then, we obtain a predicted vector qP

s as

qP
s = D−1

(
σδ(s)(g

P(s))
1

)
, (4.38)

where δ(s) = HgΛt(s). We construct a recovery operator as

r(s) = w∗(s)G⊕ t(s), (4.39)
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where w∗(s) satisfies

qPs (w
∗(s)) = max

w
qPs (w). (4.40)

Note that though elements of qP
s may be out of [0, 1], the above procedure is still

well-defined.

4.3 Criterion for diagnosis matrix and specific

constructions

In the last section, we showed that we can achieve the optimal performance with
the ideal training when a diagnosis matrix is faithful and decomposable. There are
several constructions of faithful and decomposable diagnosis matrices. In this sec-
tion, we show a criterion called normalized sensitivity, which should be optimized
for performing near-optimal decoding when a size of a training data set is limited.
Then, we show specific constructions of diagnosis matrices, which are faithful and
decomposable, and have the optimal order of the normalized sensitivity in terms
of the distance. We call these specific constructions as uniform data constructions.

4.3.1 Normalized sensitivity

In practice, the number of the training data set is far smaller than the total
variation of syndrome vectors s when distance d is larger than about 7. For
example, according to the existing methods [54–57], the size of the training data
set is at most 109. On the other hand, the number of variations in the syndrome,
2n−k, becomes larger than 109 at the distance d = 7 for the [[d2, 1, d]] surface
code. This implies that almost all the patterns of the syndrome vector s given
in experiments are not found in the training data set. The model should infer
the label g(L2)(s) of s where s is not included in the training data set. The aim
of this subsection is to propose a criterion for Hg which we believe to reflect the
robustness of the prediction when we use such a sparsely sampled training data
set.

Since the problem is to estimate the vector-valued function g(L2)(s) from a
sparsely sampled set of values, its difficulty should depend on how rapidly the
function changes its output value as the input value s varies. From Eqs. (4.9) and
(4.18), we see that the function is written as

g(L2)(s) = Ee∼{pe}[HgΛe
T|s(e) = s], (4.41)

which shows that g(L2)(s) is implicitly determined from the two functions of errors,
g(e) = HgΛe

T and s(e) = HcΛe
T. In order to quantify how rapidly these function
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change, let us introduce a sensitivity m(H) of a binary matrix H as

m(H) := max
e,e′∈{0,1}2n
h(e⊕e′)=1

||HΛeT −HΛe′T||22

= max
e∈{0,1}2n
h(e)=1

h(HΛeT). (4.42)

Using the sensitivity, the variation of s(e) is bounded as

||s(e)− s(e′)||22 ≤ m(Hc)h(e⊕ e′). (4.43)

In the case of topological codes, m(Hc) is a small constant. This is because each
physical qubit is monitored by at most constant number of the stabilizer operators.

Suppose that g(L2)(s) is close to one of the faithful diagnosis gs(w
∗), and let

S(s,w∗; 0) be the set of errors e satisfying w(e) = w∗ and s(e) = s. We further
define a set

S(s,w∗;h) := {e|∃e′ s.t. e′ ∈ S(s,w∗; 0), h(e⊕ e′) ≤ h} (4.44)

We see that any e ∈ S(s,w∗;h) produces a training data (s′, g′) such that

||s′ − s||22 ≤ m(Hc)h (4.45)

||g′ − gs(w
∗)||22 ≤ m(Hg)h. (4.46)

The choice of Hg also affects how precisely g(L2)(s) should be estimated in order
to determine w∗ correctly. To quantify this, we consider how far gP(s) can be
deviated from a faithful diagnosis gs(w) without affecting the decoding method
of Eqs. (4.38) and (4.39). When the decoding result changes from w∗ = w to
w∗ = w′, the solution of Eq. (4.38) should satisfy qPs (w) = qPs (w

′), namely, gP(s)
should be written in the form

gP(s) = α(gs(w) + gs(w
′)) +

∑
w′′ ̸=w,w′

βw′′gs(w
′′). (4.47)

We define the minimum boundary distance M(Hg) so as to assure that w∗ = w
as long as |gP(s)− gs(w)| ≤M(Hg). Hence M(Hg) can be explicitly defined as

M(Hg) := min
w,w′,α,{βw′′}

||(1− α)g(w)− αg(w′)−
∑

w′′ ̸=w,w′

βw′′g(w′′)||22. (4.48)

Note that the above definition is independent of s, since the affine transformation
σδ(s) is isometric. M(Hg) is nonzero if and only if Hg is decomposable.

RegardingM(Hg) as the relevant length scale, we define the following quantity
to be used as a criterion for a better construction of Hg.
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Definition 4.3.1. Normalized sensitivity —We define normalized sensitivityN(Hg)
of a faithful and decomposable matrix Hg as

N(Hg) :=
m(Hg)

M(Hg)
, (4.49)

where m(Hg) is a sensitivity of Hg defined in Eq. (4.42), andM(Hg) is a minimum
boundary distance of Hg defined in Eq. (4.48).

Eqs. (4.46) and (4.48) implies that an error belonging to S(s,w∗;h) with h ∼
(m(Hg)/M(Hg))

−1 leads to a training data useful for estimation of g(L2)(s). We
thus expect that the use of a diagnosis matrix Hg with a small normalized sensi-
tivity N(Hg) enables high-performance prediction with a small training data set.

4.3.2 Uniform data construction

We propose specific constructions which minimize the normalized sensitivity up
to the order of d in the case of k = 1. We first consider a lower-bound of the
normalized sensitivity. When a diagnosis matrix Hg is faithful, each row vector
of Hg corresponds to a logical operator or a stabilizer operator. We denote the
number of the logical operators in the rows of Hg as nL. The minimum boundary
distance M(Hg) is upper-bounded by

M(Hg) ≤
nL

4
(4.50)

Since any logical operator has at least d of one-elements in its binary representa-
tion, there are at least dnL of one-elements in the diagnosis matrix. By denoting
the number of the one-elements in the diagnosis matrix Hg as χ(Hg), we have

dnL ≤ χ(Hg). (4.51)

Since there are 2n columns in Hg, we also have

χ(Hg) ≤ 2nmax
i
h((HT

g )i). (4.52)

The sensitivity m(Hg) is equal to the maximum hamming weight of the column
vectors of the diagnosis matrix, namely,

max
i
h((Hg)

T
i ) = m(Hg). (4.53)

From Eqs. (4.50) - (4.53), we obtain

N(Hg) ≥
2d

n
(4.54)
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In particular, when we focus on the two-dimensional topological codes such that
n = Θ(d2) , the order of the normalized sensitivity is lower-bounded as

N(Hg) = Ω(d−1). (4.55)

For surface codes and color codes with the single logical qubit, we found specific
constructions of Hg such that N(Hg) scales as Θ(d−1). See appendix C for the
specific constructions. We named these constructions as uniform data construction
of the data set, since logical operators corresponding to the rows of Hg are chosen
uniformly to cover all the physical qubits.

4.4 Construction of data set and example

Let us summarize the discussion in Sec 4.2 and Sec 4.3. Given the check matrix
Hc of the code and the error model {pe}, the whole protocol can be described as
follows.

• Preparation: We construct a faithful and decomposable diagnosis matrix
Hg with a small normalized sensitivity, possiblyN(Hg) = Θ(d/n). We choose
a pure error t(s) and a generator matrix G. We perform QR decomposition
to a matrix

D :=

(
g(02k) · · · g(12k)

1 · · · 1

)
, (4.56)

where g(w) = HgΛ(wG)
T, and obtain Q and R. We calculate the left inverse

matrix D−1 as

D−1 := R−1QT. (4.57)

• Data generation: We generate a set of physical errors {e0, e1, . . .} with the
probability distribution {pe}, and generate data set {(s0, g0), (s1, g1), . . .}
from it, where si := HcΛe

T
i and gi := HgΛe

T
i .

• Training: The model is trained so that it can predict g from s. The loss
of the prediction is defined as the L2 distance between g and gP, where gP

is a real-valued output vector of the model.

• Prediction: When an observed syndrome s is given to the trained model,
it predicts gP(s). In parallel, we calculate δ(s) given by

δ(s) = HgΛt(s)
T. (4.58)

We calculate vector qs defined in Eq. (4.19) as

qP
s = D−1

(
σδ(s)(g

P(s))
1

)
, (4.59)
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where σδ(s) is an affine transformation such that

(σδ(s)(v))i = δi + (−1)δivi. (4.60)

We choose wP that satisfies

qPs (w
P) = max

w∈{0,1}2k
qPs (w), (4.61)

where {qPs (w)} is the elements of qP
s . Then, we obtain an estimated recovery

operator

r(s) = wPG⊕ t(s). (4.62)

We emphasize that the choice of t(s) and G dose not affect the performance of
the decoder, since the success of the estimation is independent of them. Only the
construction of Hg affects the performance of the decoder.

We show a specific example of the decoding scheme. For simplicity, we consider
the case where there is only bit-flip errors in the [[2d2 − 2d+ 1, 1, d]] surface code.
In this case, it is enough for QEC to consider the stabilizer operator with Pauli Z
operators. The simplified picture of the code is shown in Fig. 4.1.

In this picture, a bit-flip error on a physical qubit is represented by the color
of the corresponding edge (green: no error, red: error), and the syndrome value is
represented by the color of the circle (green: undetected, red: detected). As shown
in Fig. 4.1(a), The matrix Hg is constructed with logical operators each of which
is the product of the Pauli Z operators on the edges crossing the dotted line. In
this case, we see M(Hg) = O(d), m(Hg) = O(1), and m(Hg)

M(Hg)
= O(d−1).

Suppose that bit-flip errors occur on a set of the physical qubits as shown in
Fig. 4.1(b). The physical error is detected with the syndrome values as shown in the
same figure. The diagnosis vector is calculated as the commutation relation of the
chosen logical operators and the physical error. We show the calculated diagnosis
on the right side of the lattice. In the training phase, the model learns the relation
between the positions of the red circles and the values of the diagnosis vector. In
the prediction phase, only the positions of the red circles are given. The trained
neural network outputs a real-valued prediction of the diagnosis vector as shown
in Fig. 4.1(c), for example. From this information, we extract the probabilities of
the faithful diagnosis, and we choose the faithful diagnosis which is expected to
be the most probable, as shown in Fig. 4.1(d). Since the chosen diagnosis vector
is equivalent to the diagnosis vector generated by the actual physical error, this
decoding trial is a success.

4.5 Relation to the existing methods

In this section, we explain how the existing methods [54–57] can be treated in the
linear prediction framework. The method proposed by Varsamopoulos et al. [55]
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(a) (b)

(c) (d)

Figure 4.1: The figures show the decoding process based on proposed scheme.
Each picture shows only Z lattice, of which the edge corresponds to whether there
is a bit-flip error on the physical qubit or not, and the circle shows whether an
error is detected through the syndrome measurement. (a) Five logical Z operators

which minimize the normalized sensitivity m(Hg)

M(Hg)
. (b) The actual physical error

is drawn as red edges, and the detected syndromes as red circles. The binary
numbers shown to the right is the diagnosis vector of the physical errors. The
neural network learns the relation between the location of the detected syndromes
and the diagnosis vector. (c) The real-valued diagnosis vector is predicted by
the neural decoder. (d) With the syndrome pattern, faithful diagnosis vector is
either 10000 or 01111. The chosen faithful diagnosis vector is 10000. Accordingly,
we choose the recovery operator shown in the figure. In this case, the decoding
succeeds.
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used an approach similar to the example shown in Sec 4.2.2 in the case of k = 1.
In this method, a linear map is used for the pure error, which is called a simple
decoder. The pure error is then written in the form t(s)T = Ts, where T is a
2n × (n − k) matrix satisfying HcΛT = I. The label vector used in this method
can essentially be regarded as being generated by a diagnosis matrix defined by

Hg =

l01
l10
l11

 (I ⊕ ΛTHc). (4.63)

We see this is faithful and decomposable constructions. Let a generator matrix G
be

G =

(
l01
l10

)
. (4.64)

Then, a diagnosis generated from the diagnosis matrix is

g = HgΛe =

 w(e)1
w(e)0

w(e)0 ⊕ w(e)1

 , (4.65)

where w(e) = (w(e)0, w(e)1). The method in Ref. [55] uses a different set of label
vectors g′ called one-hot representation, which has a one-to-one correspondence
with g as

g = (0, 0, 0)T 7→ g′ = (1, 0, 0, 0)T (4.66)

g = (0, 1, 1)T 7→ g′ = (0, 1, 0, 0)T (4.67)

g = (1, 0, 1)T 7→ g′ = (0, 0, 1, 0)T (4.68)

g = (1, 1, 0)T 7→ g′ = (0, 0, 0, 1)T. (4.69)

The above relation as real vectors can be written as

g′ =
1

2


−1 −1 −1 1
−1 1 1 1
1 −1 1 1
1 1 −1 1

(g0
)
+


1
0
0
0

 . (4.70)

Since it is an isometric affine transformation, we expect that this transformation
has little effect on the performance of the supervised machine learning. The ma-
trix Hg is faithful and decomposable, but its normalized sensitivity is O(1). We
thus expect that this decoder becomes near-optimal when the training is ideally
performed, but the prediction is not robust when the size of the training data set
is small.

The method proposed by Baireuther et al. [56] mainly focuses on a model
applicable to quantum error correction when we perform various counts of repet-
itive stabilizer measurements by utilizing recurrent neural network. They use the
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commutation relation between the physical error and a logical Z operator as the
label, since they only concerned about the logical bit-flip probability with the fixed
initial state in the logical space. We can thus consider this method as a case of
the linear prediction framework.

Torlai et al. [54], Krastanov et al. [57], and Breuckmann et al. [58] took a
different approach from the above two [55, 56]. They used the binary representa-
tion of the physical error as the label vector. In the linear prediction framework,
it corresponds to a choice of Hg = Λ leading to

g = HgΛe
T = eT (4.71)

Since Hg is not faithful, it cannot constitute an optimal decoder even with the
delta diagnosis decoder. Interestingly, the delta diagnosis decoder with this choice
of Hg works as an MD decoder, which can be shown by the following lemma.

Lemma 4.5.1. If the matrix Hcg has rank 2n in GF(2), there exists a map r∗(g, s)
such that the decoder with r(s) = r∗(g(δ)(s), s) works as an MD decoder for
arbitrary distribution {pe}. If Hcg does not have rank 2n, no such map exists.

Proof. If Hcg has rank 2n, there exists a left inverse binary matrix H−1
cg such that

H−1
cg Hcg = I. Then, we can obtain the physical error e as

ΛH−1
cg

(
s
g

)
= eT . (4.72)

Thus, we can obtain the most probable physical error e∗(s) from the most probable
diagnosis.

If Hcg does not have rank 2n in GF(2), there exist two physical errors which
generate the same pair of syndrome and diagnosis. We cannot determine which is
more probable. Thus, we cannot perform MD decoding when Hcg does not have
rank 2n.

A drawback in this approach is difficulty arising when we replace a loss function
with a practical one such as L2 distance. In order to satisfy a decomposable
property in MD decoding, the length of the diagnosis must be no shorter than
2n+k since there are 2n+k possible candidates of the most probable physical error.
This is not practical when the distance is large, and thus it requires heuristics such
as repetitive sampling.

4.6 Numerical Result

We numerically show that the uniform data construction improves the performance
of the neural decoder in the case of k = 1. We trained a prediction model called
multi-layer perceptron (MLP) with the uniform data construction, and compare
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it with other data constructions of the neural decoders with the MLP model.
See Appendix D for the definition of the multi-layer perceptron. We also make a
comparison with known decoders such as the MD decoder and the MWPM decoder.
We choose the [[d2, 1, d]] surface code for the comparison, since most of the existing
methods were benchmarked with this code. We calculated the performance for two
types of error models, the bit-flip noise and depolarizing noise. The probability
distribution of the bit-flip noise is described as follows.

pe =

{
pw(e)(1− p)n−w(e) ∀i > n, ei = 0

0 otherwise
, (4.73)

where p is an error probability per physical qubit, and w(e) is a weight of physical
error e defined in Eq. (2.21). The probability distribution of the depolarizing noise
is described as follows.

pe = (p/3)w(e)(1− p)n−w(e). (4.74)

Note that the occurrences of the bit-flip and phase-flip errors are correlated in the
depolarizing noise.

We first calculated the performance when the physical error probability is
around the error threshold, namely, p = 0.1 for the bit-flip noise and p = 0.15
for the depolarizing noise. The specific construction of the MLP model is opti-
mized for each noise model and for each size of the training data set. See Appendix
D for the details of the parameter optimization and implementation.

The performance of the neural decoder under the bit-flip noise is shown in
Fig. 4.2(a). The solid lines are the performance of the neural decoder with the
uniform data construction. The bottom dashed lines represent the logical error
probability achievable with the MD decoder. The colors red, green, blue, and cyan
correspond to distances 5, 7, 9, 11, respectively.

Comparing these two types of decoders, we see that the logical error probability
of the neural decoder is near-optimal with 106 data set at distance 11. On the other
hand, there are gaps between the converged logical error probabilities of the neural
decoder and that of the MD decoder when the distance is large. These gaps can
be improved by explicitly utilizing the spatial information of the topological codes.
This point is discussed in Ref. [83].

We also implemented the neural decoder with short diagnosis, i.e., the con-
struction with N01 = N10 = N11 = 1, where Nw is a number of logical operators
in the rows of Hg corresponding to the class w. This is equivalent to the con-
struction which we showed as an example in Sec 4.2.2. We call this construction,
with the normalized sensitivity of O(1), as short diagnosis construction, which is
shown as the pale plots in Fig. 4.2(a). Note that the performance of this decoder
depends on the choice of the logical operators. We have tried this construction
with various choice of the logical operators. The plotted data is the best among
our trials. Although both constructions become near-optimal in the limit of large
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Figure 4.2: The performance comparison between the neural decoder with the
uniform construction (solid lines) and that with short diagnosis construction (pale
lines), the MD decoder (dashed lines), and the MWPM decoder (dotted lines) in
the case of the [[d2, 1, d]] surface code. The logical error probabilities are plotted
against of the sizes of the training data set with the fixed physical error probability
p. We calculated the performance for distances d = 5 (red), 7 (green), 9 (blue),
and 11 (cyan). (a) The case for the bit-flip noise with p = 0.1. Note that there
are no lines of MWPM decoder since the MWPM decoder is equivalent to the MD
decoder in this setting. (b) The case for the depolarizing noise with p = 0.15.
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Figure 4.3: The performance comparison between the neural decoder with the
uniform construction (solid lines), the MD decoder (dashed lines), and the MWPM
decoder (dotted lines) in the case of the [[d2, 1, d]] surface code. We calculated the
performance for distances d = 5 (red), 7 (green), 9 (blue), and 11 (cyan) with the
same 106 training data set. (a) The case of the bit-flip noise. (b) The case of the
depolarizing noise.
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Figure 4.4: The performance comparison between the neural decoder with the
uniform construction (solid lines), the MD decoder (dashed lines), and the MWPM
decoder (dotted lines) in the case of the [[d2, 1, d]] surface code. The neural decoder
is trained with the 106 training data set. We calculated the performance for
distances d = 5 (red), 7 (green), 9 (blue), and 11 (cyan). (a) The case of the
bit-flip noise. The training data set is generated at the physical error probability
p = 0.08. (b) The case of the depolarizing noise. The training data set is generated
at the physical error probability p = 0.11.
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Figure 4.5: The performance comparison between the neural decoder with the
uniform construction (solid lines), and the MD decoder (dashed lines) in the color
codes. We calculated the performance for distances d = 3 (black), 5 (red), 7
(green), and 9 (blue) with the 106 training data set. (a) The case of the bit-flip
noise in the [4,8,8]-color code. (b) The case of the depolarizing noise in the [4,8,8]-
color code. (c) The case of the bit-flip noise in the [6,6,6]-color code. (d) The case
of the depolarizing noise in the [6,6,6]-color code.
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training data size, we see that the performance with the uniform data construc-
tion achieves smaller logical error probability than that with the short diagnosis
construction for any size of the training data set. We have also confirmed that the
performance of the neural decoder degrades when the row vectors of Hg consist of
the same O(d) logical operators of X, Y and Z. In this case, while the number
of the rows in Hg is the same as that of the uniform data construction, the sensi-

tivity m(Hg) becomes O(d), which makes the normalized sensitivity m(Hg)

M(Hg)
to be

O(1). Though these results are not plotted, the performance of this construction
is almost the same as the short diagnosis construction. These results support our
argument that it is essential for the performance of the neural decoder to minimize
the normalized sensitivity.

The results with the depolarizing noise are shown in Fig. 4.2(b). Note that
for the surface code under correlated noise such as the depolarizing noise, it is
not known how an efficient MD decoder can be constructed. We see that the
performance of the neural decoder becomes near-optimal, and is superior to that
of the MWPM decoder with 106 training samples at d = 5, 7, 9.

We also calculated the logical error probability in terms of the physical error
probability. The plots in the vicinity of the threshold value are shown in Fig. 4.3.
We chose the size of the training data set as 106, and calculated the performance
for the distance d = 5, 7, 9, 11 and for the bit-flip and depolarizing noises. Note
that as for not trainable parameters about the MLP model, such as the number
of model parameters, we used the best configurations in the calculation of Fig. 4.2
when the size of the training data set is 106. See Appendix D for these untrainable
parameters called hyper-parameter. For both of the noise models, the performance
is near-optimal when the distance is small. On the other hand, when the distance
becomes large, the logical error probability becomes larger than that of the MWPM
decoder. The error threshold is usually estimated with the cross point of the
performance in terms of the distance. We see that the error threshold based on
the distance is worse than that of the MWPM decoder, though the logical error
probability is smaller than that of the MWPM decoder.

The actual experiment is expected to be performed with a physical error prob-
ability sufficiently smaller than the threshold value. Therefore, we calculated the
performance of the decoder with a small physical error probability. The numerical
results are shown in Fig. 4.4. Since the training data set generated with a small
value of p is highly imbalanced, we trained the model with p = 0.08 for the bit-flip
noise model, and with p = 0.11 for the depolarizing noise model. Then, we tested
the trained models with the data set generated with p ≤ 0.1. We see that the
logical error probability is smaller than the MWPM decoder in this region, for all
the distances except d = 11.

We also calculated the performance of the neural decoder for two types of color
codes. We chose the size of training data set as 106, and calculated the logical
error probability for the distance d = 3, 5, 7, 9. Note that we cannot construct
an efficient MD decoder in the color code even under independent bit-flip and
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phase-flip noise. The plots of the logical error probability to the physical error
probability p are shown in Fig. 4.5. The configurations of the plots and lines
are the same as that for the surface code. In the case of the bit-flip noise, the
near-optimal performance is achieved. The performance is also near-optimal in
the case of the depolarizing noise at distances except d = 9. We also see that
the performance of the [4,8,8]-color code is better than that of [6,6,6]-color code.
We speculate that this is because the number of the physical qubits required in
the [4,8,8]-color codes is smaller than that of the [6,6,6]-color code at the same
distance. These results suggest that the neural decoder with the uniform data
construction is effective also for the color codes.

4.7 Conclusion

In this chapter, we theoretically analyzed the mechanism of machine-learning-
based decoders for QEC, and proposed a general direction to construct the tasks of
machine learning. Then, we have numerically shown that our direction is effective
compared with the previously known approaches.

Since the formalism of the machine learning is flexible, there are many possible
ways to reduce the decoding problem in QEC to the task of the machine learning.
In order to clarify what is the best way of reduction, we introduced the linear
prediction framework. This framework essentially includes the existing methods
as specific cases, and enables us to discuss conditions for satisfying natural require-
ments for a good decoder for QEC. In particular, we have derived the condition
to perform the optimal decoding in the limit of a large training data size. We also
introduced a measure, normalized sensitivity, which represents a properly-scaled
bound on the deviation in the prediction target resulting from a small change in
the physical error pattern. We proposed to use this measure as a criterion for con-
structing a better decoder. We then proposed specific constructions of the data
set, uniform data construction, for surface codes and color codes. We numerically
confirmed that the performance of the neural decoder is improved with the uniform
data construction. Our decoder was found to be superior to known efficient de-
coders, such as the known neural decoders and the decoder based on the reduction
to minimum-weight perfect matching. We also confirmed that the performance of
our neural decoder is near-optimal in various situations by comparing it with the
minimum-distance decoder, which is known to be near-optimal but not efficient
in general. We also confirmed that the neural decoder can achieve near-optimal
performance not only for surface codes but also for color codes.

Since using machine learning for QEC is an emergent field, there are still many
possible extensions and directions of the neural decoders. As we detailed in Ap-
pendix D, the prediction time of the neural decoders is smaller than that of the
MD decoder, but larger than that of the MWPM decoder in our desktop PC. Since
the prediction of the neural decoders can be done with simple matrix multiplica-
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tions and non-linear activations, the time for prediction can be further made short
by using an optimized hardware, such as field-programmable gate array (FPGA).
While we have discussed only a label linearly generated in GF(2), the performance
may be improved further by allowing labels nonlinearly generated from the phys-
ical error. For example, the relation between the syndrome values and the weight
of the physical error, which cannot be generated linearly in GF(2), can be trained
and predicted independently with a neural network. Then, the recovery map can
be predicted with the syndrome values and the predicted weight with another neu-
ral network. The linear prediction framework also limits the sample in the training
data set to that is sampled from the assumed physical error distribution. However,
the distribution which is the best for the training is not necessarily the same as the
actual distribution. There can be a more artificial way to construct the training
data set to achieve the performance with a smaller size of the training data set.
In the numerical investigation, we observed that the required amount of the data
set becomes exponentially large in terms of the distance. This may be suppressed
by using more structured neural networks, such as convolutional neural networks,
as a prediction model. When the stabilizer measurements themselves suffer from
noise, stabilizer measurements are often repetitively performed during QEC. In
such a case, the length of the syndrome data is not fixed. In our construction,
we need to train the neural network again whenever the length of the syndrome
data changes. The studies of Refs. [56, 58] focused on removing this drawback by
utilizing recurrent neural network and convolutional neural network. Using the
technique proposed in Refs. [56, 58], our neural decoder may be also applicable to
the cases when we perform repetitive stabilizer measurements.
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Chapter 5

Summary and outlook

5.1 Summary

In this thesis, we investigated a theory of QEC for near-term quantum devices. In
order to build quantum computer in a scalable manner, QEC is a vital technique.
Topological stabilizer codes are considered as the promising candidates of quan-
tum error correcting codes, since they have preferable properties for experimental
implementation. Therefore, current experiments towards scalable quantum com-
puter pursue realization of QEC using topological stabilizer codes as a milestone.
On the other hand, when we experimentally try to demonstrate QEC with more
than about 50 qubits, we encounter several practical problems about QEC. We
focused on two essential problems among them in this thesis.

One is computational hardness of accurate and efficient evaluation of topo-
logical stabilizer codes under practical noise models. When we design quantum
devices for QEC, the performance of quantum error correcting codes under practi-
cal noise models is essential. Quantum circuits of any stabilizer code are described
as Clifford circuits, and we can simulate any Clifford circuit efficiently using the
Gottesman-Knill theorem. Therefore, if we can assume noise models which consist
only of Clifford operations, we can efficiently simulate quantum circuits of quan-
tum error correcting codes, and we can evaluate the performance of them. On the
other hand, though coherent noise, which is practically caused by over-rotation
due to experimental imperfection, is unavoidable in experiments, we cannot ef-
ficiently evaluate the performance of topological stabilizer codes under coherent
noise models since coherent noise cannot be represented or approximated with
Clifford operations. Thus, a novel scheme for evaluating the performance of topo-
logical stabilizer codes under coherent noise models is demanded. In Chapter 3,
we proposed an efficient and accurate scheme for simulating quantum circuits of
the surface code under coherent noise. Using this scheme, we can efficiently evalu-
ate the performances of the surface code under coherent error, such as the logical
error probability, the threshold value, and the dropping rate. Since coherent noise
is unavoidable in experiments, our results are immediately useful for evaluating
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the effect of the coherence in noise on the performance of QEC.
The key idea of our scheme is the use of matchgate circuits, which is an ef-

ficiently simulatable class of quantum circuits. Though a gate set of matchgate
circuits cannot treat even single Pauli-Z operations, we showed that quantum
circuits of the surface code under coherent noise can be represented as a match-
gate circuit. We first constructed such a representation for the one-dimensional
repetition code, which is a one-dimensional line of the surface code. We then nu-
merically investigated the performance of the one-dimensional repetition code. We
found that when the noise becomes fully coherent, the threshold value becomes
one-third compared with the case of the incoherent noise. We observed that the
dropping rate is also worsened when the noise becomes fully coherent, and con-
firmed that the conjectured universal relation between the dropping rate and the
threshold value [Eq. (2.68)] also holds true for coherent noise models.

By extending the scheme for the one-dimensional repetition code, we showed
that quantum circuits of the surface code under coherent noise can also be repre-
sented with a matchgate circuit. In the simulation of the surface code, we assumed
a noise model such that there are all X-, Y -, and Z-type Pauli errors and the X-
type errors can be coherent. Since this noise model contains coherent errors and
contains both of bit- and phase-flip errors, our scheme enables the simulation of
quantum circuits of the surface code which suffers from quantum and coherent
errors.

Though our scheme covers a variety of coherent noise models, it does not
support the simulation of quantum circuits of the surface code under an arbitrary
coherent noise model. It is also not obvious whether our idea is applicable to other
topological stabilizer codes. In order to obtain deeper understanding on how the
coherence in errors reduces the threshold value, we considered an approximation
based on a leading-order ansatz. We investigated the effect of the coherence in
noise on the performance of QEC using a leading-order ansatz. The ansatz is
based on a conjecture that the effect of coherence in noise can be attributed to an
effective increase of a physical error probability under an incoherent noise model.
As long as the latter model is efficiently simulatable, this approximation allows
us to calculate the logical error probability efficiently. We confirmed that the
approximated values in the one-dimensional repetition code agree well with the
accurately estimated values. Since this approximation is expected to be used for
an arbitrary coherent noise model and an arbitrary topological stabilizer code,
we may efficiently evaluate the property of topological stabilizer codes under an
arbitrary coherent noise model using the ansatz.

The other problem is the lack of a fast, reliable, and versatile decoder in QEC.
The performance of a quantum error correcting code depends on the performance
of a chosen decoder. Since we cannot perform the optimal decoding efficiently in
general, a fast decoder which is applicable to various topological stabilizer codes
under various noise models, and achieves a small logical error probability is de-
manded. Supervised machine learning provides generic instructions to construct a
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fast and accurate prediction function through the training process using a train-
ing data set. Thus, we expect that a decoder which has preferable properties can
be constructed using machine learning. When we construct a machine-learning-
based decoder, one of the most essential factors that determine its performance
is to choose which part of decoding algorithm to be delegated to machine learn-
ing. In Chapter 4, we focused on this problem. In order to understand this issue
comprehensively, we proposed a general framework of the machine-learning-based
decoder called linear prediction framework. In this general framework, we showed
the diagnosis matrix, which characterize the label space, must be faithful and de-
composable in order to achieve the optimal performance in the limit of a large
training data set. We also proposed the criterion called normalized sensitivity
which should be minimized for achieving near-optimal performance with a train-
ing data set of a practical size. We proposed uniform data constructions for the
[[2d2 − 2d + 1, 1, d]] and [[d2, 1, d]] surface codes and the [6,6,6]- and [4,8,8]-color
codes, which satisfy the faithful and decomposable conditions, and optimize the
normalized sensitivity. We numerically showed that the machine-learning-based
decoder constructed with the uniform data construction is superior to the previ-
ously known machine-learning-based decoders in the surface code under the bit-flip
noise and the depolarizing noise. We also numerically showed that the performance
of the proposed machine-learning-based decoder is near-optimal by comparing it
with the minimum-distance decoder, which is known to be inefficient but near-
optimal. We also numerically showed that the performance is also near-optimal
for the color codes.

5.2 Outlook

In this thesis, we focused on the problems about QEC for near-term quantum de-
vices, and proposed two solutions to the problems. We used two theories, match-
gate circuits and machine learning, as essential tools for solving the problems. We
believe that these tools are potentially useful for tackling problems other than
QEC.

One example is a technique of calibrating experimental quantum gates. Though
we assumed that the noise model is given with problems in Chapter 3 and 4, it
is non-trivial how to characterize an actual behavior of a given quantum system.
Obviously, finding an appropriate model is essential not only for evaluation in
QEC, but also for calibrating and improving quantum controls. Even when the
number of qubits is small, it is still hard to accurately estimate properties of
the actual noise since we are only allowed to use noisy instruments for measur-
ing properties of the noise in practice. For example, it is hard to distinguish a
small physical error probability per quantum gate from noise due to state prepa-
rations and measurements. A method called randomized benchmarking [84, 85]
enables us to accurately evaluate several properties of the actual noise such as a
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very small physical error probability and a degree of coherence in noise. In the
randomized benchmarking, the properties are extracted using a quantum circuit
which consists of a sequence of randomly chosen Clifford operations. Thanks to a
theoretically tractable property of random Clifford operations, we can characterize
these properties with a practical number of experiments. By revealing properties
of a sequence of operations randomly chosen from a gate set allowed in match-
gate circuits, more helpful properties of the actual noise may be characterized
efficiently. When the number of qubits becomes large, the actual noise behavior
becomes complex due to cross-talks between physical qubits and those between
quantum controls. A method to obtain a measure for precise calibration in such
a large quantum system is proposed in Refs. [66, 86]. This method is also based
on a property of random quantum circuits which consist of quantum gates cho-
sen from a universal quantum gate set. Using this method, we can estimate an
effective amount of very small noise in a large quantum system. On the other
hand, since this method requires strong simulation of random universal quantum
circuits with classical computer, this method is not applicable to a system with
more than about 50 qubits. Thus, when properties of random circuits of efficiently
simulatable classes are further studied, such a complex property of noise for a large
quantum system may be characterized efficiently.

Though various tasks about large quantum systems may be solved with effi-
ciently tractable theories such as Clifford circuits and matchgate circuits, there will
always be other important tasks with no such efficient solution, since simulating
generic quantum circuits is believed to be hard. In such a case, using heuristic
methods is one of the best practical solutions, and machine learning will be a
convenient way to find a heuristic function which can be computed fast and is
expected to be reliable for various purposes. Supervised machine learning has pro-
vided practical solutions to a variety of tasks about quantum computation other
than QEC, such as simulation of quantum systems [72] and calibration of quan-
tum controls [71]. It is a definite merit of the machine learning that the same
methodology is applicable to a wide variety of problems. Nonetheless, we have
learned in Chapter 4 that in order to construct a prediction function to be reliable,
it must be carefully considered how we should use machine learning for solving
the tasks. In the case of decoding in QEC, we showed that a naive use of machine
learning leads to degraded performance of machine-learning-based decoders even
if we can assume an unlimited training data set. More generally saying, when we
try to map our problem to a task of machine learning, deep understanding about
what we must essentially extract from quantum systems is required. Therefore,
we believe that understanding of fundamental relations between the problems of
quantum computation and the framework of machine learning makes a technique
of machine learning a more powerful and versatile tool for practical treatments of
near-term quantum devices.
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Appendix A

Supplemental materials about
matchgate

A.1 Sufficient condition for fermionic Gaussian

state

We show a fermionic Gaussian state ρ is pure if and only if its covariance matrixM
satisfiesMMT = I. We can transform any fermionic Gaussian state to a canonical
form as follows. It is known that any anti-symmetric real-valued matrix G has an
orthogonal matrix W such that

WGWT =
n−1⊕
i=0

(
0 λi
−λi 0

)
, (A.1)

where λi ∈ R. Thus, we can expand the form of a Gaussian state as

ρ = C exp

(
i

2
cTGc

)
(A.2)

= C
n−1∏
i=0

(coshλiI + sinhλiid2id2i+1), (A.3)

where

d = (d0, . . . , dn−1)
T := WTc. (A.4)

We say the form of Eq (A.3) as a canonical form of a fermionic Gaussian state ρ.
Since Tr(ρ2) = Tr(ρ) if and only if tanhλi = ±1 for all i = 0, . . . , n− 1, any pure
fermionic Gaussian state is represented as a limit of λi → ±∞.

For a pure Gaussian state ρ, using the canonical form of ρ, we can calculate
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the element of covariance matrix Mij(ρ) as follows. We see

i

2
Tr(ρ [di, dj]) =


tanhλk 2k = i, 2k + 1 = j

− tanhλk 2k = j, 2k + 1 = i

0 otherwise

. (A.5)

The covariance matrix M is obtained as

M = WT

n−1⊕
i=0

(
0 tanhλi

− tanhλi 0

)
W. (A.6)

Since WWT = I, we see MMT = I if and only if tanhλi = ±1, which implies ρ is
a pure Gaussian state.

A.2 Sufficient condition for fermionic Gaussian

operation

In Chapter 3, we use the fact that a Kraus operator K which has the form of

K = cos θI + sin θcicj (A.7)

or

K =
1

2
(I + eiθcicj) (A.8)

is Gaussian for arbitrary indices i, j and for an arbitrary real value θ ∈ R. The
first one is trivial since

K = e−θcicj = cos θI + sin θcicj. (A.9)

The other is derived as

K =
1√

2(coshϕ− i sinhϕ)
e±(π

4
+iϕ)cicj (A.10)

=
1

2

(
I ± 1 + i tanhϕ

1− i tanhϕ
cicj

)
(A.11)

This operator covers 0 ≤ θ < 2π of Eq. (A.8). Note that θ = π
2
, 3
2
π is obtained as

a limit of ϕ→ ±∞.
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Appendix B

Proof of the lemmas in Chapter 4

B.1 Proof of the converse part in Lemma4.2.1

Here we prove the last statement of Lemma4.2.1. When Eq. (4.4) does not hold,
either (i) there exists e1 such that

e1 /∈ L0, (B.1)

HcgΛe
T
1 = 0, (B.2)

or (ii) there exists e1 such that

e1 ∈ L0, (B.3)

HcgΛe
T
1 ̸= 0. (B.4)

For (i), consider two probability distributions {pe} and {p′e} such that

Pre∼{pe} [e = 0|s(e) = 0] = 0.75, (B.5)

Pre∼{pe} [e = e1|s(e) = 0] = 0.25, (B.6)

and

Pre∼{p′e} [e = 0|s(e) = 0] = 0.25, (B.7)

Pre∼{p′e} [e = e1|s(e) = 0] = 0.75. (B.8)

An optimal decoder for each case succeeds with probability 0.75 given s = 0.
On the other hand, since g(δ)(0) = 0 in both cases, only the value of r∗(0, 0) is
relevant. Since w(0) ̸= w(e1), any choice of r∗(0, 0) leads to a success probability
no greater than 0.25 for at least one of the cases.

For (ii), choose w ̸= 0, and if HgΛ(wG)
T ̸= 0, define

e2 := wG. (B.9)
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Otherwise, define

e2 := e1 ⊕wG. (B.10)

It ensures that s(e2) = 0 and g2 := HgΛe2 ̸= 0. Consider two probability distri-
butions {pe} and {p′e} such that

Pre∼{pe} [e = 0|s(e) = 0] = 0.4, (B.11)

Pre∼{pe} [e = e1|s(e) = 0] = 0.0, (B.12)

Pre∼{pe} [e = e2|s(e) = 0] = 0.6, (B.13)

and

Pre∼{p′e} [e = 0|s(e) = 0] = 0.3, (B.14)

Pre∼{p′e} [e = e1|s(e) = 0] = 0.3, (B.15)

Pre∼{p′e} [e = e2|s(e) = 0] = 0.4. (B.16)

An optimal decoder for each case succeeds with probability 0.6 given s = 0. On the
other hand, since g(δ)(0) = g2 in both cases, only the value of r∗(g2, 0) is relevant.
Since w(0) ̸= w(e2), any choice of r∗(g2, 0) leads to a success probability no
greater than 0.4 for at least one of the cases.

B.2 Proof of the converse part in Lemma4.2.2

When the diagnosis matrix is not decomposable, there exists a non-empty subset
W ⊂ {0, 1}2k such that∑

w∈W

αwg0(w) =
∑

w∈{0,1}2k\W

βwg0(w), (B.17)

where αw, βw ≥ 0 and

Γ :=
∑
w∈W

αw =
∑

w∈{0,1}2k\W

βw > 0. (B.18)

Consider two probability distributions {pe} and {p′e} such that

Pre∼{pe}A [w(e) = w, l(e) = l|s(e) = 0] =

{
αw/Γ w ∈ W , l = 0

0 otherwise
,(B.19)

Pre∼{p′e}B [w(e) = w, l(e) = l|s(e) = 0] =

{
βw/Γ w /∈ W , l = 0

0 otherwise
.(B.20)

From Eq. (B.17), the L2 diagnosis vector g(L2)(0) is identical for the two dis-
tributions. On the other hand, the most probable class w is different for the two
probability distributions. This means that a single decoder cannot perform the
optimal decoding for both of the two distributions.
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Appendix C

Uniform data construction for
surface codes and color codes

We have introduced the uniform data construction in Chapter 4. In this appendix,
we show specific uniform data construction for the surface and color codes.

We choose 3d logical operators for the [[2d2−2d+1, 1, d]] surface code by using
two patterns as shown in Fig. C.1. For pattern 1, each dotted line corresponds to
a logical X operator, which is the product of the Pauli Z operators on the vertices
on the line. For pattern 2, each dotted line corresponds to a logical Z operator,
which is the product of the Pauli X operators on the vertices on the line. We
choose d logical Y operators written as the product of the i-th logical X operator
and the i-th logical Z operator for i = 0, . . . , d−1. We choose 3d logical operators
for the [[d2, 1, d]] surface code with two patterns as shown in Fig. C.2. The rule of
choice is the same as that of the [[d2, 1, d]] surface code.

We choose 9
2
(d + 1) logical operators for the [6,6,6]-color code as shown in

Fig. C.3. There are 1
2
(d + 1) lines for each pattern. In all of the three patterns,

each line corresponds to the logical X-, Z-, and Y -Pauli operators on the physical
qubits on the line. We choose 6(d + 1) logical operators for the [4,8,8]-color code
as shown in Fig. C.4. There are 1

2
(d+ 1) lines for each pattern. The choice of the

logical operators is the same as that of the [6,6,6]-color codes.
In all the patterned choice of the logical operators, we can verify that the

sensitivity is constant, since every physical qubit is measured by at most constant
number of logical operators. On the other hand, the minimum boundary distance
is scaled as O(d), since the same number O(d) of logical X-, Y -, and Z-operators
are used. Thus, the normalized sensitivity is scaled as O(d−1) with these choices.
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Figure C.1: Logical operators used for the construction of a diagnosis matrix for
the surface codes [[2d2 − 2d + 1, 1, d]]. Each dotted black line corresponds to a
chosen logical operator.
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Figure C.2: Logical operators used for the construction of a diagnosis matrix for
the surface codes [[d2, 1, d]]. Each dotted black line corresponds to a chosen logical
operator.
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Figure C.3: Logical operators used for the construction of a diagnosis matrix for
the [6,6,6]-color codes. Each colored line corresponds to chosen logical operators.
The lines are colored only for visibility, and are not related to the colors of color
codes.
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(a) Pattern 1 (b) Pattern 2

(c) Pattern 3 (d) Pattern 4

Figure C.4: Logical operators used for the construction of a diagnosis matrix for
the [4,8,8]-color codes. Each colored line corresponds to chosen logical operators.
The lines are colored only for visibility, and are not related to the colors of color
codes.
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Appendix D

Implementations of decoders

D.1 Neural decoder

D.1.1 Definition of multi-layer perceptron

We used a multi-layer perceptron as a prediction model in Chapter 4. A multi-layer
perceptron model is defined as follows. Suppose the feature space is X = {0, 1}n0

and the prediction space is Y ′ = Rnl , where l is a positive integer, and {ni}
(0 ≤ i ≤ l) is a set of integers. We consider a function M̂ such that

M̂(x,θ) = hl(x,θ), (D.1)

hi(x,θ) =

{
x i = 0

ϕi−1(Ai−1hi−1(x,θ) + bi−1) l ≥ i ≥ 1
, (D.2)

where {ϕi} is a set of element-wise non-linear functions for a real-valued vector,
{Ai} is a set of ni+1 × ni real-valued matrices, {bi} is a set of real-valued vectors
such that |bi| = ni+1, and a set of model parameters θ consists of all the elements
of {Ai} and {bi}.

Each vector hi (0 ≤ i ≤ l) is called a layer, and each real-valued element
of layers is called a neuron. The layers except h0 and hl are called hidden lay-
ers. The whole function M̂ is called a multi-layer perceptron (MLP). According
to the universal approximation theorem [87], when chosen non-linear functions
{ϕ0, . . . , ϕl−1} are non-constant, bounded, and monotonically-increasing contin-
uous functions, for an arbitrary real value ϵ > 0 and for an arbitrary function
F : X → [0, 1]nl , there exists a set of finite integers {n1, . . . , nl−1} and model
parameters θ such that |M̂(x,θ) − F (x)| < ϵ for all x if l ≥ 2. Therefore, we
can expect that the MLP model with l ≥ 2 has a sufficient representation power
for our purpose by constructing the model with a set of sufficiently large integers
{n1, . . . , nl−1}.
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D.1.2 Detailed settings of multi-layer perceptron

In this subsection, we describe the detailed implementation of the MLP model and
training process. We chose a rectified linear unit function (ReLU(x)i = max(0, xi))
as the element-wise non-linear function for ϕ0, . . . ϕl−2, and a sigmoid function
(Sigmoid(x)i = 1/(1 + e−xi)) for ϕl−1. We assume that all the hidden layers
have the same number of neurons h, i.e., ni = h for all i except 0 and l. As
a loss optimization algorithm Ô, we used the following process. We shuffled the
order of the training data set T , and split it to exclusive subsets of the same size.
Each subset is called a batch, and the number of samples per batch |T |b is called
a batch size. We can extract ⌊|T |/|T |b⌋ batches from a training data set T . We
computed the loss for a batch, and computed its gradients to the model parameters
θ. Then, we updated θ with Adam optimization method [88] using the computed
gradients. We controlled the speed of optimization with a coefficient λ, which is
called a learning rate. We sequentially performed the above update of θ for every
batch. This set of the ⌊|T |/|T |b⌋ updates of θ is called an epoch. We repeated
the above process until the logical error probability for θ converges to a certain
value. In order to avoid over-fitting of the model to a small training data set, we
used a technique called L2 regularization, i.e., we added L2 norms of the model
parameters as an extra loss in the training process with the coefficient β, which is
called a regularization parameter. In order to accelerate the training, we also used
a technique called batch normalization.

There are tunable parameters which are important but not included in the
model parameters: the number of hidden layers (l−1), the number of neurons per
layer h, the batch size |T |b, the regularization parameter for the L2 regularization
β, and the schedule of the learning rate λ. These parameters are called hyper-
parameters. As for the learning rate λ, we started the training with λ = 10−3, and
it was decreased to λ = 10−5 according to the count of epochs. As for the other
hyper-parameters, we calculated the logical error probability for all the combina-
tion of (l−1) ∈ {2, 3, 4}, h ∈ {d2, d3, d4}, |T |b ∈ {100, 500}, and β ∈ {0, 0.01, 0.1}.
Note that in the case of d = 11, we tuned h by hand since we cannot choose h = d4

due to the memory limit of devices. Then, we chose the combination of the hyper-
parameters which shows the best logical error probability. When we compared the
performance in terms of the combination of the hyper parameters, we calculated
the logical error probability with an independently generated data set of the size
105, which is called a validation data set. We optimized these hyper-parameters
for each construction of the diagnosis matrix, distance, physical error probability,
error model, and size of the training data set in the calculation for Fig. 4.2 and
Fig. 4.5. The optimized hyper-parameters are re-used in the calculation for Fig. 4.3
and Fig. 4.4. Since the optimized set of the hyper-parameters is over-fitted to the
validation data set, the plotted logical error probability in the main text was cal-
culated using another independently generated data set of the size 106, which is
called a test data set.
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D.2 Other decoders

D.2.1 Minimum-weight perfect matching decoder

The minimum-distance decoder of the surface code under uncorrelated noise mod-
els such as bit-flip noise model can be implemented by reducing the problem into
minimum-weight perfect matching. See Sec 2.2.2 for the reduction to minimum-
weight perfect matching.

D.2.2 Inefficient minimum-distance decoder

As far as we can assume probabilistic Pauli noise, we can reduce any decoding
problem of the minimum-distance decoding to an instance of binary programming.
Though binary programming is known to be computationally hard, we can solve
it when the distance is small. In the case of the stabilizer codes, we can formulate
the problem as

Minimize w(e) s.t. HcΛe
T = s. (D.3)

We solved this problem for each sample using an integer-programming solver. In
the numerical results in the main text, we obtained at least 105 samples for each
plot. In all the cases, the solver reached the optimal solution.

D.3 Time for single prediction and environment

We measured the time for single decoding on the [[2d2− 2d+ 1, 1, d]] surface code
with d = 11 and p = 0.15 under the depolarizing noise for the MD decoder,
MWPM decoder, and the proposed neural decoders with the MLP models. Note
that the times of the MD decoder and the MWPM decoder depend on the physical
error probability.

We used a software IBM ILOG CPLEX via python-wrapper for constructing
the MD decoder. The program was executed on Intel Xeon E5-2687W v4 with de-
fault settings. The MD decoder took about 330 milliseconds per decoding. Note
that the time may be improved by optimizing the settings of CPLEX. The Kol-
mogorov’s implementation of blossom algorithm [63, 89] was used for the MWPM
decoder. The codes were compiled with Microsoft Visual C++ 2015. The pro-
gram was executed on Intel Core i7-6700 without parallelization. The MWPM
decoder took about 56 microseconds per decoding. The proposed neural decoders
were implemented with python. We used library tensorflow to construct a neural
network and perform training process. We measured the time for single prediction
by setting batch size as 1, the number of hidden layers as 2, and the number of
units per layer as 7000. The computation was performed using Intel Core i7-6700
and GeForce GTX 1060 6GB with CUDA 8.0. The proposed neural decoders with
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the MLP model took 4 milliseconds for feed-forwarding the input data and finding
the most probable class. Since the prediction of the neural decoders can be done
with simple matrix multiplications, we expect that the time for single prediction
of the neural decoder can be made shortened by using an optimized hardware such
as FPGA, for example.
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chine learning for discriminating quantum measurement trajectories and im-
proving readout. Physical review letters, 114(20):200501, 2015.

[72] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body prob-
lem with artificial neural networks. Science, 355(6325):602–606, 2017.

[73] Juan Carrasquilla and Roger G Melko. Machine learning phases of matter.
Nature Physics, 13(5):431–434, 2017.

[74] Jonathan Romero, Jonathan Olson, and Alan Aspuru-Guzik. Quantum
autoencoders for efficient compression of quantum data. arXiv preprint
arXiv:1612.02806, 2016.

[75] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70(5):052328, 2004.

[76] Richard Kueng, David M. Long, Andrew C. Doherty, and Steven T. Flammia.
Comparing experiments to the fault-tolerance threshold. Phys. Rev. Lett.,
117:170502, Oct 2016.

[77] Sergey Bravyi. Classical capacity of fermionic product channels. arXiv
preprint quant-ph/0507282, 2005.

122



[78] Richard Jozsa, Akimasa Miyake, and Sergii Strelchuk. Jordan-wigner formal-
ism for arbitrary 2-input 2-output matchgates and their classical simulation.
In Quantum Inf. and Comp., volume 15, pages 541–556, 2015.

[79] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[80] Sergey Bravyi, Matthias Englbrecht, Robert Koenig, and Nolan Peard. Cor-
recting coherent errors with surface codes. arXiv preprint arXiv:1710.02270,
2017.

[81] Sergey Bravyi and David Gosset. Improved classical simulation of quantum
circuits dominated by clifford gates. Physical review letters, 116(25):250501,
2016.

[82] Sergey Bravyi. Universal quantum computation with the ν= 5/ 2 fractional
quantum hall state. Physical Review A, 73(4):042313, 2006.

[83] Amarsanaa Davaasuren, Yasunari Suzuki, Keisuke Fujii, and Masato Koashi.
General framework for constructing fast and near-optimal machine-learning-
based decoder of the topological stabilizer codes. (To be submitted).

[84] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost,
C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized bench-
marking of quantum gates. Phys. Rev. A, 77:012307, Jan 2008.

[85] Joel Wallman, Chris Granade, Robin Harper, and Steven T Flammia. Esti-
mating the coherence of noise. New Journal of Physics, 17(11):113020, 2015.

[86] C Neill, P Roushan, K Kechedzhi, S Boixo, SV Isakov, V Smelyanskiy,
R Barends, B Burkett, Y Chen, Z Chen, et al. A blueprint for demon-
strating quantum supremacy with superconducting qubits. arXiv preprint
arXiv:1709.06678, 2017.

[87] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[88] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[89] Vladimir Kolmogorov. Blossom v: a new implementation of a minimum
cost perfect matching algorithm. Mathematical Programming Computation,
1(1):43–67, 2009.

123


