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Abstract

We have studied the critical phenomena of the Ising model with long-range interaction and

the Ising model with spatially correlated random field, both of which are expected to change

the effective dimension of the system continuously. The investigation was conducted from the

numerical viewpoint by using the Markov chain Monte Carlo method. Second order phase

transitions can be classified into the universality classes and the dimensionality of the Ising

model changes the universality class: the one-dimensional Ising model has no long-range or-

der at finite temperatures (lower critical dimension), four or higher dimensional model has the

mean-field universality (upper critical dimension), two-dimensional Ising model belongs to dif-

ferent universality from either of them, and so on. Although both of the Ising models with

long-range interaction and the Ising model with spatially correlated random field are believed

to change their critical behavior from its real spatial dimension into different effective dimen-

sions, their detailed behavior has not been known well because of the notorious difficulties in

analysis. In this work, we have obtained the detailed behavior of these models by introducing

and developing the various methods. To investigate the Ising model with long-range interac-

tion, we introduced the Fukui-Todo method, which drastically reduces the computational cost

from O(N2) to O(N), where N is the number of spins, and developed the generalized Ewald

summation, the improved estimator, and the combined Binder ratio technique, which improves

the convergence of the estimation. These techniques lead to the successful estimation of the

boundary of the universality classes. We also investigated the Ising model with correlated ran-

dom field by introducing the method for correlated random number generation and the various

techniques for the precise analysis. Although the present numerical investigations suggested

that the correlated random field causes a shift of effective dimensionality, they also revealed the

difficulty for stronger random-field correlations because of the huge finite-size effects.
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Chapter 1

Introduction

Classification of critical phenomena has been one of the most important and central issues

in the statistical physics for many-body problems for a long time, and has been studied ex-

tensively analytically, experimentally, as well as numerically [3]. Critical phenomena can be

classified into “universality classes” according to their critical exponents (or critical indices).

In general, the critical exponents depend on only a few basic properties of the system, such

as the dimensionality, symmetry of the order parameter, and so on. However, the existence of

long-range interaction (LRI) and/or randomness sometimes changes the behavior of the system

completely [4]. Many materials exhibit nontrivial phenomena in which the long-range nature of

the interactions, such as the dipole-dipole interaction and the Ruderman-Kittel-Kasuya-Yoshida

(RKKY) interaction, plays an essential role. The randomness also causes various nontrivial be-

havior such as the spin-glass transition and extremely slow dynamics, and so on [5]. As for the

phase transitions, they can alter the critical exponents and thus the universality class. Inter-

estingly, this change of universality can be interpreted as the change of the effective dimension

of the system as discussed below.

In the Ising model with long-range interaction, all possible pairs of spins interact with each

other. The simplest and most fundamental long-range interaction is the algebraically decaying

interaction characterized by the exponent, d+σ, where d is the dimension of the lattice and we

call σ the decay exponent in the present work. For sufficiently small σ, the finite-temperature

phase transition is expected to belong to the mean-field universality class. Especially, in the limit

of d+ σ → 0, the system becomes equivalent to the fully connected Ising model. On the other

hand, when σ is sufficiently large, the nearest-neighbor interaction dominates and the transition

belongs to the short-range universality class. In the intermediate regime, between the mean-field

and the short-range limits, the critical exponents that characterize the universality class vary

continuously as σ changes. For the d-dimensional system with the long-range interaction, this

continuous change of the critical exponents between short-range and mean-field universalities

can be interpreted as a continuous change of the effective dimension between d and the upper

critical dimension of the corresponding short-range model [6]. Thus, one can say that the

1



2 Chapter 1. Introduction

long-range interaction effectively increases the dimension of the system.

Similarly, the presence of randomness can also change the effective dimension of the system.

The random-field Ising model (RFIM) is one of the representative random systems, which has

randomly distributed external field [7]. In contrast to the long-range interaction, however, the

random field is considered to decrease the effective dimension. Especially, near the upper critical

dimension, it is predicted that the critical behavior of the d-dimensional RFIM is the same as

the pure system in d− 2 dimensions. This phenomena is called “dimensional reduction” [8–10].

Spatial correlation between random fields can also alter the critical behavior. For the spatial

correlation that decreases algebraically with exponent d − ρ as the distance between spins

increases, the renormalization group study predicts that the upper critical dimension DU and

the lower critical dimension DL become as DU = dU + ρ and DL = dL + ρ, respectively,

where dU = 6 and dL = 2 are the upper and lower critical dimensions of the Ising model with

uncorrelated random field [3, 7]. In other words, the correlation in random field makes the

effective dimension lower.

An interesting point is that the shift of effective dimension is controlled by the continuous

parameter, σ or ρ. By interpreting these continuous parameters as the shift of dimensionality,

we are able to obtain the critical behavior between integral dimensions, i.e., non-integer effective

dimension like a fractal. Thus, in spite of the simpleness of the Hamiltonian, both of the long-

range interacting Ising model and the RFIM are famous for rich behavior and are also notorious

for the difficulty in analysis.

In the present thesis, we investigate the long-range interacting Ising model and the RFIM

with algebraically decaying random-field correlation by means of the large-scale Monte Carlo

simulations and clarify the universality regime boundaries and the decay-exponent dependence

of the universality class.

In the Ising model with long-range interaction, each spin has (N − 1) interactions, where

N is a number of spins. Therefore, simulation of Ising model with long-range interaction needs

to consider O(N2) interactions and thus computation cost becomes large quickly as the system

size increases. Moreover, the long-range interaction causes extremely large finite-size corrections

in critical exponents and critical amplitudes especially near the boundary between the mean-

field and the intermediate regimes, and that between the intermediate and the short-range

regimes. To overcome the difficulties that make conventional analysis ineffective, we utilize

several important techniques: the O(N) Fukui-Todo cluster algorithm [11], the (self-)combined

Binder ratio, the generalized Ewald summation, and a generalization of the improved estimator

for higher-order moments of magnetization.

Systems with randomness, such as the present RFIM, are also known by their difficulties in

analytical calculations as well as in numerical simulations. Several previous studies of the Ising

model with correlated random field are conducted in the analytical way. The renormalization

group analysis [4, 12, 13] and the droplet argument [13] for the random systems are believed
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to be valid near the upper and lower critical dimensions, respectively, and both are considered

to fail to predict correct critical behavior at least quantitatively in the intermediate dimen-

sions. Therefore, the precise numerical simulation is quite important to check the validity of

analytic predictions. Main difficulties of the Monte Carlo simulation of RFIM are the require-

ment of average over large number of random samples and extreme slow convergence of the

Markov chain to the equilibrium (c.f. the infinite disorder fixed point [5]). Thus, we use the

state-of-the-art massively parallel supercomputer systems to simulate larger systems for longer

Monte Carlo steps and take an average over several random samples. To conduct Monte Carlo

simulation with the correlated random field, another essential technique, generation of corre-

lated random number is needed. We generate random fields with arbitrary correlation matrix

and with Gaussian marginal distribution by using diagonalization. Since the computation cost

of diagonalization proportional to O(N3), correlated random-field generation step becomes a

bottleneck for sufficient large system. We overcome this difficulty by introducing the parallel

eigensolver that works efficiently on the massively parallel supercomputer. We perform Monte

Carlo simulations for three and four dimensional RFIMs and precisely investigate the change of

critical properties and effective dimension, especially the competition between the randomness

and correlation of random field, and discuss the validity of the previous analytic predictions.

The present thesis is organized as follows: Chapters 2 and 3 are the introduction and review

parts of the phase transition phenomena and the Monte Carlo algorithms, respectively. New

numerical methods introduced in this work and their results are summarized in Chap. 4 and 5

for the Ising model with LRI and the spatially correlated RFIM, respectively. Finally, Chap. 6

summarizes the entire thesis.





Chapter 2

Critical Phenomena and Effective

Dimensions

2.1 Phase transition phenomena

A “phase” is a state of matter in which the macroscopic physical properties of the substance

are uniform on a macroscopic length scale [3]. Ice, water, and vapor are familiar examples

of a phase of macroscopic numbers of H2O molecules. H2O molecules change its macroscopic

behavior for each varied parameters such as the temperature and pressure. A “phase transition”

is a phenomenon in which a drastic change between thermodynamic phases, like a transition from

ice to water or from water to vapor. At the phase transition point, singular behaviors appear

in physical quantities. Phase transitions are roughly divided by the degree of singularity in

physical quantities. When the first-order derivative of the free energy F shows a discontinuity,

the transition is of first order. On the other hand, the transition is called continuous if the

second- or higher-order derivatives of the free energy shows a discontinuity or a divergence.

It is also common to name phase transitions by the order of the derivative that first shows a

discontinuity or divergence, e.g. it is called second order if it is the second-order derivative of

the free energy that first displays the discontinuity or divergence.

A material may show both first- and second-order transitions depending on the conditions.

Consider the phase diagram of a magnetic material placed in an external magnetic field h. If the

temperature T is lower than critical temperature Tc, the magnetizationm jumps discontinuously

along with the direction of external magnetic field h, thus a first order transition. For negative

h, the spins in the magnetic material align with that negative direction on the macroscopic

scale. They suddenly change the directions as the external field becomes positive. When the

temperature T is higher than Tc, the magnetization changes smoothly at h = 0 without any

singularities. On the other hand, if we keep the external magnetic field infinitesimally small,

h = 0+, and lower the temperature across Tc, then the spontaneous magnetization changes

continuously from 0 to a positive value, thus defining a second-order transition.

5



6 Chapter 2. Critical Phenomena and Effective Dimensions

2.1.1 Critical exponents

The degree of singularity or divergence of physical quantities near the critical point is described

by critical exponents. Experiments show that physical quantities generally have power-law

singularities as functions of the difference between the control parameters (such as the temper-

ature) and their critical values. The critical exponents of simple magnetic materials are defined

as follows.

χ ∝ |t|−γ (2.1)

C ∝ |t|−α (2.2)

m ∝ |t|β (2.3)

m ∝ |h|1/δ (T = Tc) (2.4)

G(r) ∝ r−τe−r/ξ (T ̸= Tc) (2.5)

G(r) ∝ r−d+2−η (T = Tc) (2.6)

ξ ∝ |t|−ν , (2.7)

where t = (T −Tc)/Tc is the dimensionless temperature difference from the critical temperature

Tc, h is the external field, χ = limh→0
∂2

∂h2 (−kBT lnZ) is the magnetic susceptibility, C is

the specific heat, m = |
∑N

i Si|/N is the magnetization, G(r) = ⟨SiSi+r⟩ − ⟨Si⟩⟨Si+r⟩ is the

correlation function, and ξ is the correlation length.

The critical exponents are very basic quantities to characterize critical phenomena. An

important goal of the theory of critical phenomena is to develop a systematic method of cal-

culating the values of critical exponents. Most importantly, there are simple relations between

exponents, scaling relations, and thus each exponents are not independent of each other. Scaling

relations allow determining an exponent from the value of other exponents. A review of the

scaling relations and the way to estimate critical exponents from numerical data are described

in Sec. 2.1.2.

2.1.2 Scaling relations

Scaling relations are conducted by the scaling law, which is formulated by the exponents yt

and yh of eigenvalues of the linearized renormalization group transformation. The free energy

is transformed by a renormalization group transformation,

f(gt, gh, g3, · · · ) = b−df(g′t, g
′
h, g

′
3, · · · ) + w(gt, gh, g3, · · · ), (2.8)

where gt and gh are proportional to the deviation of temperature and external field from the

critical value t and h, respectively. The second term in the right-hand side of Eq. (2.8) expresses

non-singular behavior. Although w does not play a critical role in the determination of the

critical behavior, taking into account the non-singular term is very important to conduct a
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precise analysis from small-size lattices or a model with strong finite-size effect. Especially, our

main targets, the system with LRI and correlated random-field are known as its strong finite-

size effect and high costs in numerical simulation, and thus overcoming the finite-size effect is

one of the main challenges in our current work.

To investigate critical behavior, we can drop the non-singular term, irrelevant fields g3, g4, · · · ,
and the proportionality constant between gt and t and between gh and h. After n steps of renor-

malization, we have

f(t, h) = b−ndf(bnytt, bnyhh). (2.9)

For t ̸= 0, we may choose the number n such that the first argument of the right-hand side

reduces to unity, bnytt = 1. Then, by inserting bn = t−1/yt in the right-hand side of Eq. (2.9),

we find a very important relation known as the “scaling law,”

f(t, h) = td/ytf(1, ht−yh/yt) = td/ytΨ(ht−yh/yt). (2.10)

Although the free energy originally has two independent variables, in the most right-hand side

of Eq. (2.10), the scaling function Ψ depends on these variables only through the combination

ht−yh/yt .

The scaling relations are deduced by a comparison between the scaling law and the critical

exponents. For instance, since the specific heat is the second-order derivative of the free energy

with respect to the temperature, we obtain

C(t, 0) ∝ ∂2f(t, 0)

∂t2
∝ td/yt−2. (2.11)

From Eqs. (2.2) and (2.11), we conclude α = 2− d/yt. The magnetization m and the magnetic

susceptibility χ at h = 0 are described as

m(t, 0) ∝ ∂f(t, h)

∂h

∣∣∣∣
h=0

∝ t(d−yh)/yt (2.12)

χ ∝ ∂2f(t, h)

∂h2

∣∣∣∣
h=0

∝ t(d−2yh)/yt , (2.13)

respectively. Thus we obtain β = (d− yh)/yt and γ = (2yh − d)/yt. The critical exponent δ is

deducted by setting t = 0 in Eq. (2.9) and differentiating with respect to h as

m(0, h) ∝ ∂f(0, h)

∂h
= b−nd−nyhf2(0, b

nyhh), (2.14)

where f2 is the partial derivative of f with respect to the second argument. If we choose n

to become bnyth = 1, the h-dependence of the right-hand side becomes h(d−yh)/yh , and thus
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δ = yh/(d− yh). Those results are summarized as

α = 2− d

yt
, (2.15)

β =
d− yh
yt

, (2.16)

γ =
2yh − d

yt
, (2.17)

δ =
yh

d− yh
. (2.18)

Remember that there are usually only two relevant scaling fields. Accordingly, there are only

two relevant exponents yt and yh, which implies that the four critical exponents α, β, γ, and

δ are not mutually independent. A knowledge on two of them is sufficient to deduce the rests.

By eliminating yt and yh from the scaling relations, we obtain

α+ 2β + γ = 2 (2.19)

γ = β(δ − 1). (2.20)

Additional scaling relations, hyperscaling relations, are obtained by considering the critical

behavior of the correlation function G( #„r , t) = ⟨S(0)S( #„r )⟩ − ⟨S(0)⟩⟨S( #„r )⟩. Assume that h = 0

and G( #„r , t) is independent of the direction of #„r , and then G( #„r ) = G(r), where r = | #„r |.
According to the transformation rule of the spin variable S, G(r, t) acquires the factor c(b)2

after a single step of a renormalization group operation since the correlation function is the

average of the product of two spin variables,

G(r, t) = c2(b)G(b−1r, bytt). (2.21)

On the other hand, the scaling law of the magnetization m is obtained by differentiating

Eq. (2.9), for n = 1 and h = 0 as

m(t, 0) = b−d+yhm(bytt, 0). (2.22)

By comparing Eq. (2.22) and a renormalization group operation similar to Eq. (2.21),

m(t, 0) = c(b)m(bytt, 0), (2.23)

we obtain

c(b) = b−d+yh . (2.24)

By rewriting Eq. (2.22) as

m(bytt, 0) = bd−yhm(t, 0), (2.25)

the scaling dimension of the spin variable is determined as d− yh. Therefore, Eq. (2.21) with n

times renormalization group becomes

G(r, t) = bn(−2d+2yh)G(b−nr, bnytt). (2.26)
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For t ̸= 0, we can choose n such as bnytt = 1, and then the scaling law of the correlation function

is derived as

G(r, t) = b2(d−yh)/ytΦ(rt1/yt) (T ̸= Tc). (2.27)

The correlation function should decay exponentially as e−r/ξ at small but finite t and sufficient

large r. Since the correlation length ξ diverges as t−ν , the exponent r/ξ should be proportional

to rtν . Eq. (2.27) indicates that r appears as a product with a power of t, rt1/yt . Since rt1/yt

and r/ξ ∝ rtν should represent the same function, ν = 1/yt is concluded.

By setting t = 0 and bn = r in Eq. (2.26), we obtain

G(r, 0) ∼ r−2d+2yh (T = Tc). (2.28)

The critical exponent η, defined by G(r, 0) ∼ r−d+2−η, is then determined as η = d − 2yh + 2.

To summarize,

ν =
1

yt
(2.29)

η = d− 2yh + 2. (2.30)

Eq. (2.15) to Eq. (2.18) are also able to be rewritten as

α = 2− dν, (2.31)

β =
ν(d− 2 + η)

2
, (2.32)

γ = ν(2− η), (2.33)

δ =
d+ 2− η

d− 2 + η
, (2.34)

respectively. These equations are known as the “hyperscaling relations.”

2.1.3 Finite-size scaling

Scaling laws are also useful to estimate critical values from numerical data. The finite-size scaling

technique provides us to estimate critical values from numerical data for finite-size lattices. We

show how to extract critical exponents from numerical data for the magnetic susceptibility.

Suppose that we perform the process of renormalization group for a system on a hypercubic

lattice with linear size L. Theoretically, the critical phenomena, the singular behavior of the

physical quantities, occur only when the system size is infinite. The parameters of the system

should be tuned for the system to be at the critical point, i.e. t = h = 0. System size L is also

needed to be tuned at an infinite value so that the critical behavior of the system appeared,

L → ∞. This condition is able to be rewritten as 1/L → 0, which implies L−1 must be tuned

to 0 in addition to t and h to keep the system at the critical point. We thus include L−1 in the

relevant argument of the free energy and write

f(t, h, L−1) = b−df(bytt, byhh, bL−1). (2.35)
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It is seen that L−1 is a relevant variable with exponent yL = 1. Magnetic susceptibility is

described by differentiating Eq. (2.35) by h. At h = 0,

χ(t, 0, L−1) = b2yh−df2(b
ytt, 0, bL−1), (2.36)

where f2 is the second-order partial derivative of f(t, h, L−1) with respect to the second ar-

gument. By choosing b = L, we obtain the following equation with the scaling function Ψ̃(·),
analytic for finite L,

χ(t, 0, L−1) = L2−ηΨ̃(tL−1/ν), (2.37)

where we have used 2yh − d = 2− η = γ/ν and yt = 1/ν.

The analysis of numerical data proceeds as follows. Plot the data by changing t for various L

with abscissa tL1/ν and ordinate Lη−2χ, with presumed values of Tc, η, and ν. If these presumed

values are appropriate, these plots fall on the same curve. As in the case of experimental or

numerical data, one adjusts the critical values Tc, η, and ν by trial and error to find the best

possible single curve. In this work, to find the appropriate critical values, we have used the

Bayesian scaling analysis [14, 15] which estimates the appropriate critical values automatically

by the Bayesian statistical technique from numerical data.

2.2 Ising model with long-range interaction

A system with LRI can exhibit substantially different physics from the corresponding sys-

tem only with short-range interaction [16–18]. Many materials show non-trivial phenomena to

which long-range nature of the interactions, such as the dipole-dipole interaction [19] and the

Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction [20], plays an essential role. The compe-

tition between the short-range and the LRIs has also been studied in the cold-atom systems [21].

One of the simplest and the most fundamental playgrounds for LRI is the Ising model with

the algebraically decaying interaction:

H = −
N∑

i<j

JijSiSj , (2.38)

where Si (= ±1) is the Ising spin on the i-th site, Jij is the coupling constant between two

spins (Si and Sj), and N is the total number of spins. The summation in Eq. (2.38) runs over

all spin pairs. The algebraically decaying ferromagnetic LRI is expressed as

Jij =
1

| #„r i − #„r j |d+σ
, (2.39)

where d is the dimension of the system, and #„r i is the coordinate of the i-th site on the square

lattice. The decay exponent, σ, in Eq. (2.39) should be positive to ensure the extensiveness of the

energy, i.e., finite energy density in the thermodynamic limit. Otherwise, one has to introduce
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an appropriate system-size-dependent normalization factor. The system with the algebraically

decaying LRI shows richer critical phenomena than those with only nearest-neighbor interaction.

For sufficiently small σ, the finite-temperature phase transition is expected to belong to the

mean-field universality class: in the limit of d+ σ → 0, the system becomes the fully connected

model, or the Husimi-Temperley model [22, 23]. On the other hand, when σ is sufficiently

large, the nearest neighbor interaction dominates and the transition belongs to the short-range

universality class. In the “intermediate regime” between the mean-field and the short-range

limits, the critical exponents that characterize the universality class vary continuously [17, 18].

For the d-dimensional system with LRI, this continuous change of the critical exponents between

the short-range and the mean-field universalities can be interpreted as the continuous change

of the effective dimension between d and the upper critical dimension of the corresponding

short range model. Although a number of theoretical and numerical studies [6, 17, 18, 24–30]

have been conducted in order to interpret the intermediate regime as non-integral dimensions,

precise identification between the decay exponent, σ, and the effective dimension has not been

well established so far, in spite of the simple form of the Hamiltonian (2.38).

The Ising model with LRI (2.39) has two limits, the fully connected Ising model [(d+σ) → 0]

and the Ising model only with short-range interaction (σ → ∞). The critical property of the

phase transition in these limits is well established. The coupling constants of the former model

are given by

Jij =
1

N
. (2.40)

On the other hand, those of the latter are

Jij =

⎧
⎨

⎩
1 if i and j are nearest neighbor,

0 otherwise.
(2.41)

In Table 2.1, the critical exponents of these models are summarized. Note that the critical

exponents of the fully connected (mean-field) model depend on its dimension because its physical

quantities scale with the total number of sites N = Ld instead of system length L. The well

known values ν = 1/2 and η = 0 for the mean-field model are those at the upper critical

dimension, i.e., d = 4.

A number of theoretical and numerical studies have been conducted mainly based on the

renormalization group argument and the Monte Carlo simulations. For the O(n) model with

LRI, Fisher et al. [17] performed the renormalization group analysis. The O(n) model is a

generalization of the Ising model (n = 1). They found three different regimes, depending on the

value of the exponent σ as listed in Table 2.2. In the intermediate regime, the critical exponent

of the correlation function, η, varies linearly to σ. The results of their renormalization group

analysis have a flaw that η at σ = 2, on the boundary between the intermediate regime and the

short range regime, is not determined uniquely. The exponent η becomes zero if one approaches
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Table 2.1: Critical exponents of the d-dimensional fully connected Ising model and the two-

dimensional short-range Ising model [3].

fully connected short-range

α 0 (discontinuous) 0 (log)

β 1/2 1/8

γ 1 7/4

δ 3 15

ν 2/d 1

η 2− d/2 1/4

Table 2.2: Renormalization-group prediction for the critical exponent η by Fisher et al. [17].

σ η

mean field regime σ < d/2 1

intermediate regime d/2 < σ < 2 2− σ

short range regime 2 < σ ηsr

to σ = 2 from the side of the intermediate regime, while the finite value (ηsr = 1/4) in the short

range regime; thus, η changes discontinuously at σ = 2.

The boundary between the intermediate and the short-range regimes was more carefully

considered by Sak [18] taking into account the higher-order terms in the renormalization group

calculations. In Ref. 18, it was concluded that the boundary is σ = 2− ηsr instead of σ = 2 as

listed in Table 2.3. Then, the exponent η becomes a continuous function of σ. Its derivative,

nevertheless, is discontinuous at σ = 2− ηsr (and also at σ = 1).

Several theoretical studies have reported different conclusions. Most of them are based

on the renormalization group approach and the ϵ-expansion of the Landau-Ginzburg effective

Hamiltonian, where the propagator contains the pσ term in addition to the ordinary p2 term.

For example, van Enter [24] pointed out that the long-range perturbation is relevant for 2−ηsr ≤
σ ≤ 2 in contradiction to the result obtained by Sak [18].

In the meantime, the first numerical study of the Ising model with the LRI was reported by

Table 2.3: Renormalization-group prediction for the critical exponent η by Sak [18].

σ η

mean field regime σ < d/2 1

intermediate regime d/2 < σ < 2− ηsr 2− σ

short range regime 2− ηsr < σ ηsr
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Luijten and Blöte [25]. By means of the cluster-algorithm Monte Carlo method, they calculated

the exponent η for d = 2 as a function of σ, concluding that η = 2 − σ up to 2 − σ = ηsr

and η = ηsr = 1/4 for larger σ. This result seems consistent with the renormalization group

prediction by Sak [18]. Its error bar, however, is too large to exclude the possibility proposed by

van Enter [24]. Recently, Picco [26] showed the more precise Monte Carlo data than before and

concluded that the exponent η varies smoothly, connecting the intermediate regime and the short

range regime, which disagrees with the previous renormalization group analysis. Blanchard et

al. [27] then supported the numerical result by means of the renormalization-group analysis

with the double expansion. Nonetheless, another Monte Carlo calculation by Angelini et al. [6]

and renormalization group study by Defenu et al. [30] agree with the result by Sak [18]. The

discrepancy between the previous researches has been an enigma for years.

2.3 Random field Ising model

In general, real materials contain some impurities or randomness. Although the idealized pure

effective model is widely used to conduct the theoretical analysis of the behavior of materials

for simplicity, to take into account the influence of randomness is occasionally important since

even the infinitesimal small randomness possibly changes the quantitative/qualitative behavior

of the system, as described below. Phase transitions continue to exist as long as randomness is

not too strong, but the critical behavior may get modified and becomes different from the pure

model.

A Hamiltonian describing phase transitions and critical phenomena usually consists of in-

teraction and field terms. These are competing relevant terms, in the sense of renormalization

group, that determine the values of the exponents yt and yh, respectively. The random field

Ising model (RFIM), one of the targets of the current work, is a model with randomness in the

field term,

H = −J
∑

⟨i,j⟩

SiSj −
∑

i

hiSi. (2.42)

The external field at each site is assumed to take a random value according to a probability dis-

tribution function. Adopting a model distribution function of random fields {hi} is a customary

since in most cases it is virtually impossible to identify the values of randomness hi at each site

i from experiments. Typically, the following Gaussian distribution and the binary distribution

are occasionally use:

P (hi) =
1√
2πhR

exp

(
− h2

i

2h2
R

)
(2.43)

P (hi) =
1

2
δ(hi − hR) +

1

2
δ(hi + hR). (2.44)

In this work, we will assume the Gaussian marginal distribution (2.43). Difference of the critical

behavior between Gaussian and binary distributions is an unsolved interesting problem but we
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avoid discussing here. In the mean-field region, the binary distribution is believed to have

tricritical point and shows first-order phase transition above the tricritical point, although the

Gaussian distribution has no tricritical point and the second-order transition continues to zero

temperature [31]. In many cases, an independent and identically distributed (i.i.d.) random

field distribution for each site is assumed in theoretical or numerical studies. In this work,

we introduce some correlation between random fields and thus they are no longer independent

with each other. The correlation changes the critical behavior toward lower dimensional one [4,

13], i.e., the critical dimensions of correlated random-field Ising model become higher than

uncorrelated one, as discussed in Sec. 2.3.3.

2.3.1 Critical dimension of the uncorrelated random-field Ising model

So far, the critical phenomena of the Ising model with the independently distributed random

field is widely studied with various aspects and approaches. Even the simplest random field

model, there are various unsolved problems, the difference between the Gaussian and binary

distributions, the structure of the phase diagram, the critical exponents between upper and

lower critical dimensions, and so on. An Ising model with relatively weak Gaussian random

field, below the critical random-field intensity hR < hRc, is believed to exhibit a second-order

phase transition and we will assume this region following discussion if there is no mention.

Qualitatively, a common sense is that the random fields work as a scattering noise of spin

clusters and disturb to make an ordered phase, and thus critical dimensions become higher

than the pure case.

Lower critical dimension

The lower critical dimension of the random-field Ising model is known to be dlRF = 2, which is

first shown by Imry and Ma [7]. In all dimensions d ≤ dlRF = 2, the ferromagnetic ground-state

becomes unstable with respect to the formation of ill-oriented domains.

Suppose that a cluster of spins of linear size R surrounded by spins with the same direction.

If this cluster is reversed, the energy cost from the domain wall, Edom, is proportional to the

domain wall surface area:

Edom(R) ∼ JRd−1. (2.45)

On the other hand, random fields inside the cluster also increase/decrease the energy and

compete to flip a cluster. The average of the random field contribution is clearly zero, but

the variance is non-zero and thus there is non-zero contribution by a certain random field

configuration in general. According to the central limit theorem, the mean square random field

energy E2
RF inside a region of volume Rd is expressed as

E2
RF ∼ h2

RR
d. (2.46)
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The energy ERF may be positive or negative with equal probability. It is always possible however

to find a region ERF > 0 which compete with the contribution from the domain wall. The total

energy to reverse the domain of the size R is therefore

E(R) ∼ JRd−1 − hRR
d/2. (2.47)

For sufficient large R, E(R) is positive for d > 2 but negative for d < 2. Thus the inversion

of spins due to random fields happen at many locations for d < 2 and the ferromagnetic state

becomes unstable. When d > 2, the increase of the interaction energy is the dominant term

and the ferromagnetic state is stable against spin inversion by random fields. The case exact

d = 2 is also shown by Binder [32] as an unstable long-range order.

Upper critical dimension

The upper critical dimension of the random-field Ising model is able to be estimated as duRF =

6 [3]. It is necessary to take the configuration average of the free energy −T [logZ], which

is apparently a difficult task because the dependence of logZ on random fields {hi} is quite

complicated. To obtain the logarithm of the partition function of the random system, the

replica method [3] is widely used. Remember here that each hi appears in the exponent as

exp(β
∑

i hiSi) in the partition function Z. The same is true for Zn, where n is a natural

number. We then use the identify

[logZ] = lim
n→0

[Zn]− 1

n
. (2.48)

This allows us to first calculate the configuration average of Zn and then take the limit n → 0,

where Zn means to prepare n replicas with identical random field configuration. The operation

of the limit n → 0 for a natural number n requires the validity of such an analytical continuation.

Nevertheless, it turns out that most of the results obtained in this way for random systems have

been proved or conjectured to be true. The validity of the replica method is widely believed

and used.

Let us consider the behavior of the system in the Fourier space by taking the configurational

average using the replica method. It is needed to check the wave number dependence of the

Gaussian effective Hamiltonian, which is simply G̃(q)−1, where G̃(q) is the Forier transformation

of the correlation function G(r). The n-time replicated partition function is expressed as

Zn =

∫ (∏

#„r

n∏

α=1

dφα( #„r )

)
exp

(
−

n∑

α=1

(
kt

∫
d #„r (φα( #„r ))2

+b

∫
d #„r (∇φα( #„r ))2 +

∫
d #„r φα( #„r )h( #„r )

))
. (2.49)

Where φ is the continuous order parameter,kt is the temperature difference from the critical

point, b is the constant known as stiffness, and α is the replica index. We average Zn over
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the distribution of random fields following the prescription of the replica method. Using the

Gaussian distribution (2.43) for each h( #„r ), the random-field part of the above equation is

squared,

Zn =

∫ (∏

#„r

n∏

α=1

dφα( #„r )

)
exp

(
−

n∑

α=1

(
kt

∫
d #„r (φα( #„r ))2

+b

∫
d #„r (∇φα( #„r ))2

)
+

h2
R

2

∫
d #„r

n∑

α,β=1

φα( #„r )φβ( #„r )

⎞

⎠ . (2.50)

The representation in the wave number q by Fourier transformation is

Zn =

∫ ⎛

⎝
∏

#„q

n∏

α=1

dφ̃α( #„q )

⎞

⎠ exp

(
−

n∑

α=1

(
kt

∫
d #„q φ̃α( #„q )φ̃α(− #„q )

+

∫
d #„q bq2φ̃α( #„q )φ̃α(− #„q )

)
+

h2
R

2

∫
d #„q

n∑

α,β=1

φ̃α( #„q )φ̃β(− #„q )

⎞

⎠ . (2.51)

The exponent on the right-hand side is the effective free energy −F .

In order to confirm G̃(q) at t = 0, we have to study the coefficient of φ̃( #„q )φ̃(− #„q ), which is

now an n×n matrix with index {α} for each #„q . Let us write the matrix G̃( #„q )−1 at the critical

point t = 0,

G̃( #„q )−1 = bq2 − h2
R

2
E, (2.52)

where the first term on the right-hand side is the n× n unit matrix multiplied by bq2 and the

second term is the matrix E with all elements unity multiplied by −h2
R/2. The diagonal element

of the inverse of the above matrix, G̃αα( #„q ), gives the Fourier transformation of the correlation

function Gαα( #„r ) = ⟨φα( #„r )φα(
#„
0 )⟩. If we notice the relation E2 = nE, it is straightforward to

see that the inverse matrix is written as

G̃( #„q ) =

(
bq2 − h2

R

2
E

)−1

= (bq2)−1

⎛

⎝1 +
∞∑

j=1

(
h2
R

2bq2

)j

nj−1E

⎞

⎠

=
1

bq2
+

h2
RE

bq2(2bq2 − nh2
R)

. (2.53)

The mean-field approximation is valid only when fluctuations around the average of physical

quantities are negligible. To measure the fluctuations. We accumulate fluctuations of magneti-

zation h2
Rm up to the length scale of the correlation length ξ,

h2
Rm =

∫ ξ

0
⟨(Sr − ⟨Sr⟩)(S0 − ⟨S0⟩)⟩ d #„r =

∫ ξ

0
(⟨SrS0⟩ − ⟨Sr⟩ ⟨S0⟩)d #„r . (2.54)

The integrand in this equation is the two-point correlation function G(r). G(r) takes some finite

value for r smaller than the correlation length ξ and rapidly decreases for r > ξ. We, therefore,
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approximate G(r) by its value at the correlation length G(ξ) and multiply the correlated volume

as

h2
Rm ≈ G(ξ)ξd. (2.55)

Thus, G(r)ξd ≪ m2ξd is the condition of the mean-field approximation, so that

G(ξ) ≪ m2. (2.56)

The Fourier transformation of Eq. (2.53) is expressed as G(ξ) ∝ ξ4−d, since the leading term of

Eq. (2.53) is q−4 in the limit n → 0 and q → 0. This equation and the critical behavior (2.56)

lead the condition:

(d− 4)ν > 2β. (2.57)

By using the mean-field critical exponents, it is concluded that the mean-field behavior is valid

for d > 6, and the upper critical dimension of the random-field Ising model is duRF = 6.

2.3.2 Scaling relations of random system

Dimensional reduction

Critical behavior of the random-field Ising model between upper and lower critical dimensions is

one of the representative unsolved problems of random systems. A perturbation theory known

as “dimensional reduction” [7–9, 33] predicts that the universality class of the d = duRF − ϵ

dimensional random-field Ising model corresponds to D = duSR − ϵ dimensional pure model,

where duSR = 4 is the upper critical dimension of the pure Ising model. The dimensional

reduction prediction is known to lose its validity and breakdown with larger ϵ = duRF − d,

i.e., in lower dimensions. The dimensional reduction mentions the critical behavior of the d

dimensional random-field Ising model correspond to d − 2 dimensional pure Ising model. If

we conjecture the lower critical dimension of the random-field Ising model dlRF by dimensional

reduction, dlRF = 2 + dl = 2 + 1 = 3, where dl = 1 is the lower critical dimension of the pure

Ising model. This estimation does not correspond to the simple and intuitive result shown in

Sec. 2.3.1, dlRF = 2 ̸= 3, and thus dimensional reduction does not provide a valid estimation in

lower dimensions.

We have discussed in Sec. 2.3.1 that the Ising model in a short-range correlated random field

has an ordered phase and phase transition at finite temperature in more than two dimensions,

but not the order of the transition. The mean field approximation predicts a second order

transition for a Gaussian distribution of the random field, but for a bimodal distribution the

transition becomes first order if hR is larger than tricritical point [31]. Although there is still

a matter of controversy and is so far no proof for a continuous transition in finite dimensions,

we will assume in the following the transition is indeed continuous, which seems to be at least

true for a Gaussian random field distribution [34].
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Modified hyperscaling relation

Critical phenomena of the random-field Ising model also believed to be described by the scaling

relations, but its formulations do not correspond to that of the pure system. Generally, the

hyperscaling relation of the random-field Ising model is believed to be replaced by the following

“modified hyperscaling relation” [5, 35]:

ν(d− θ) = 2β + γ = 2− α, (2.58)

where θ is an additional critical exponent, so-called “violation of hyperscaling exponent”. The

exponent θ can be interpreted as a quantity that relates the d dimensional random system with

the

D = d− θ (2.59)

dimensional pure system since we can obtain the standard hyperscaling relation from Eq. (2.58)

by replacing d− θ as D, that implies that θ decreases the effective dimension D from d to d− θ.

The dimensional reduction prediction claims θ = 2. The exponent θ is described by the singular

part of the free energy caused by random field in a correlation volume ∆fRF as following,

∆fRF ∝ ξθ. (2.60)

Having θ > 0 implies that hyperscaling relation must be modified.

The following inequality is exactly proven by Schwartz and Soffer [36],

θ ≥ γ

ν
= 2− η, (2.61)

and this inequality is believed to be asymptotic to an equality [37–39]

θ =
γ

ν
= 2− η. (2.62)

The relations described above are deduced as follows [34]. Near the criticality, the singular

part of the free energy can be attributed to correlated regions of spins(clusters) of linear size ξ.

For the pure system, singular part of the free energy F is described as F = −(kBT ln 2)N/ξd

since each cluster with one Ising degree of freedom can be taken as independently from its

neighbors and singular part of F is described by the entropic part of N/ξd independent clusters.

Hence, singular part of the free energy density of pure system fsing(t, h) is described as

fsing(t, 0) ∝ ξ−d ∝ |t|dν , (2.63)

where Eq. (2.7) was used. On the other hand, for an Ising model with quenched random-field,

singular part of the free energy is caused by the contribution of the Zeeman energy rather

than entropy. Consider the system with clusters of linear dimension ξ, such that each cluster

may be considered as independent of its neighbors. Each cluster is acted by random fields hR.
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In a region of volume ξd, expectation value of the sum of the random fields is described as

[
∑ξd

i hi] ∝ ±hRξd/2 by the central limit theorem, and thus excess random field per spin is

∆h ∝ hRξ
−d/2. (2.64)

This implies that a finite magnetization per spin is

⟨m⟩ ∝ χ∆h ∝ ±rχξ−d/2. (2.65)

The Zeeman contribution to the free energy thus becomes

fsing(t, 0) ∝ ⟨m⟩∆h ∝ h2
Rχξ

d ∝ |t|dν−γ . (2.66)

This dominates the entropy contribution near the critical point since |t|dν−γ > |t|dν for t ≪ 1.

Eq. (2.10) is rewritten as

f(t, 0) ∝ |t|2−α (2.67)

and by comparing with Eq. (2.66), the relation

2− α = ν(d− γ/ν) (2.68)

is obtained rather than the relation of pure system 2−α = νd. By the way, the critical behavior

of the free energy of pure system is expressed as follows by using the hyperscaling relation,

fpure ∝ |t|2−α ∝ |t|dν ∝ ξ−d. (2.69)

On the other hand, the free energy of random system is expressed by Eq. (2.68) as

fRF ∝ |t|2−α ∝ |t|ν(d−γ/ν) ∝ ξ−(d−γ/ν). (2.70)

If we separate the singular behavior of fRF into fpure ×∆fRF and compare with Eq. (2.60),

fRF ∝ ξ−dξγ/ν ∝ fpure∆fRF = ξ−dξθ, (2.71)

and thus we have obtained the relation θ = γ/ν and Eq. (2.68) becomes the modified hyper-

scaling relation (2.58).

The dynamical behavior of the random-field Ising model also differs from the pure system.

Instead of the power law critical slowing down τ ∝ ξz with the “dynamic critical exponent”

z [40], “thermally activated critical slowing down” [5, 35]

ln τ ∝ ξθ (2.72)

appears.
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Connected and disconnected physical quantities and their critical behavior

To estimate the statistical physical quantities of a random system, we have to take into account

two types of fluctuations, thermal fluctuation and random fluctuation. An naive generalization

from the pure case is called the “connected” physical quantity, where the expectation value

of the thermally fluctuated physical quantities for each quenched random field replica are first

estimated, and then the random average of the average values is taken. On the other hand,

to estimate the fluctuation of the physical quantities by randomness, we have to analyze the

behavior of the thermally averaged order parameter, which is called the “disconnected” physical

quantity. The connected and disconnected correlation functions (and their critical behavior)

are expressed as follows:

Gcon(r) = [⟨S(0)S(r)⟩ − ⟨S(0)⟩ ⟨S(r)⟩] ∝ r−d+2−η (2.73)

Gdis(r) = [⟨S(0)⟩ ⟨S(r)⟩]− [⟨S(0)⟩] [⟨S(r)⟩] ∝ r−d+4−η̄, (2.74)

where ⟨·⟩ is the thermal average and [·] is the random average. We introduced another critical

exponent η̄ in the last equation. The magnetic susceptibility of random system are also able to

be defined as follows:

χcon = Ld
[
⟨m2⟩ − ⟨|m|⟩2

]
∝ |t|−γ (2.75)

χdis = Ld(
[
⟨|m|⟩2

]
− [⟨|m|⟩]2) ∝ |t|−γ̄ . (2.76)

The new exponent η̄ is related with γ̄ as follows

η̄ = 4− γ̄

ν
, (2.77)

as the relation between η and γ. The exact relation between the disconnected and connected

critical exponents, η̄ and η, is obtained as follows [36]:

η̄ ≤ 2η. (2.78)

This inequality has been asserted to be equality [37, 39]

η̄ = 2η, (2.79)

which also implies

γ̄ = 2γ. (2.80)

The violation of hyperscaling exponent θ can be expressed as [5, 35, 41]

θ = 2− η̄ + η. (2.81)

By using this relation and Eq. (2.79), the effective dimension D (2.59) is able to be rewritten

by the modified dimensional reduction [37]

D = d− 2 + η̄(d)− η(d) = d− 2 + η(d) = d− 2 + η0(D), (2.82)

where η0(D) is the critical exponent of the D dimensional pure system.
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Harris criterion

If a phase transition occurs at the fixed critical point in a random system, the important

condition, the Harris criterion [42], must be satisfied:

dν ≥ 2. (2.83)

We briefly interpret this condition below. If we divide the system into clusters with volume

ξd which can be count as independent subsystems, the standard deviation of the random-field

inside the cluster is described as Eq. (2.64) and therefore fluctuation causes the fluctuation of

the critical temperature of each subsystem,

∆Tc

Tc
∝ ξ−d/2. (2.84)

The correlation length ξ cannot be larger than that corresponding to a temperature with

Eq. (2.84), since if the growth of ξ causes larger fluctuation of Tc, Tc is scattered and Tc

becomes ill-defined:

ξ ≤
∣∣∣∣
∆Tc

Tc

∣∣∣∣
−ν

∝ ξdν/2. (2.85)

This condition claims the criterion (2.83).

2.3.3 Spatially correlated random-field Ising model

If random fields are correlated with each other, it is predicted that the universality class becomes

changed from the uncorrelated case. Consider the Gaussian random fields with algebraically

long-range correlation,

P (hi) =
1√
2πhR

exp

(
− h2

i

2h2
R

)
, [hihj ] =

⎧
⎨

⎩
h2
R (i = j)

ah2
R

| #„r i− #„r j |d−ρ (i ̸= j).
(2.86)

Kardar et al. [13] predicted the universality class of the random-field Ising model with alge-

braically correlation as follows:

• If ρ ≤ 0, the correlation does not affect the critical behavior, and therefore it corresponds

to the uncorrelated random-field Ising model. Thus, in the following, we assume ρ > 0.

• The upper critical dimension of the correlated random-field Ising model duCRF becomes

duCRF = duRF + ρ = 6 + ρ, (2.87)

which is obtained from the Landau-Ginzburg form.

• The lower critical dimension of the correlated random-field Ising model dlCRF becomes

dlCRF = dlRF + ρ = 2 + ρ, (2.88)

which is obtained from the extended domain-wall picture by Imry and Ma [7].



22 Chapter 2. Critical Phenomena and Effective Dimensions

• A d-dimensional correlated random-field Ising model between upper and lower critical

dimensions corresponds to the

D = d− 2− ρ (2.89)

dimensional pure Ising model, which is obtained from the first order renormalization

group expansions. For ρ ≤ 0, this prediction becomes same as a dimensional reduction

prediction with D = d− 2 dimensional effective behavior, which has already confirmed on

above Sec. 2.3.2 to lose its validity in lower dimensions. Kardar et al. [13] also confirmed

the prediction fails at higher order expansion.

The phase diagram of the n-component spin model with correlated random-field is given in

Fig. 2.1. To summarize, stronger correlation of the random fields makes the critical phenomena

toward lower dimensional one.

Although this prediction seems to violate at least in the region between upper and lower

critical dimensions and precise behavior is unclear. If we believe the prediction of the transi-

tion of the upper and lower critical dimensions which are deduced by comparatively reliable

method at upper and lower critical dimensions, i.e., the Landau-Ginzbrug Hamiltonian and

the domain-wall picture, respectively, it is natural and intuitive analogical inference that the

effective dimension between upper and lower critical dimensions also decreases proportionally

to ρ. The case we compare the effective dimensions of the d-dimensional correlated random-field

Ising model with D′-dimensional uncorrelated one, this assertion is able to be reworded as

D′ = d− ρ (2.90)

for arbitrary dimensions. If we assume the modified dimensional reduction (2.82), the effec-

tive dimension D of the d-dimensional algebraically correlated random-field Ising model with

exponent −(d− ρ) is expressed as

D = D′ − 2 + η(D′) = d− ρ− 2 + η(d− ρ) = d− ρ− 2 + η0(D), (2.91)

where η(D′) and η0(D) are the critical exponents of the D′-dimensional uncorrelated random-

field Ising model and the D-dimensional pure Ising model, respectively. For example, the

universality class of the two-dimensional pure Ising model corresponds to 2 = d−2+1/4 → d =

3.75 dimensional random-field Ising model. Therefore, four-dimensional correlated random field

Ising model with ρ = 1/4 is predicted to correspond to the two-dimensional pure Ising model.
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Figure 2.1: Phase diagram of the O(n) spin model with correlated random-field in the d-ρ plane

(taken from Ref. 4). SRMF is the mean-field region with short-range effective random-field

correlations. LRMF is the mean-field region with long-range effective random-field correlations.

SRNC and LRNC are short-range/long-range non-classical region, which has a behavior between

upper and lower critical dimensions. SRZ and LRZ are below its lower critical dimension and

hence do not have long-range order at finite temperature. The curve ρ = 2ηSR − η̄SR is the

boundary which has dominant short-range term behavior, i.e., the boundary between SRNC

and LRNC. If the prediction (2.79) is correct, this curve lies on the d-axis. The random field

correlation diverges and does not make sense at the unphysical region.





Chapter 3

Review of Numerical Simulation

Algorithms

3.1 Markov chain Monte Carlo

3.1.1 What is Markov chain Monte Carlo method?

The Monte Carlo method is a statistical method to estimate expectation values by using pseudo

random numbers [43]. One of the most simple examples is the expectation value of dice: The

expectation value of hexahedral die, ⟨X⟩, is evaluated analytically as

⟨X⟩ =
6∑

i=1

P (i)X(i) =
6∑

i=1

(
1

6
× i) = 3.5, (3.1)

where X(i) is the pip of a dice and P (i) is its probability. On the other hand, ⟨X⟩ is also

obtained by sufficient large number of trials, N , as

⟨X⟩ = lim
N→∞

1

N

N∑

i=1

Xr
i ≈ 1

N

N∑

i=1

Xr
i . (3.2)

Here, Xr
i is the random number that returns an integer from one to six. Although Eq. (3.1)

is superior for a simple model like a die as it is exact and it is easier to obtain the solution,

the Monte Carlo method reveals its potential for the case where the analytic solution is hardly

obtained.

The expectation value of a physical quantity X at thermal equilibrium is obtained by

⟨X⟩ =
∑

c

exp(−βHc)

Z
X(c), (3.3)

where Z ≡
∑

c exp(−βHc) is the partition function, Hc is the Hamiltonian, and c denotes

configuration of the system. As a simplest example, let us consider the three-dimensional Ising

model of linear size L = 5. It has 53 = 125 spins and the number of states is then 2125 ≈ 1038.

Even if one uses the K Computer, which peak performance is about 1016 flops, the brute-force

25
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enumeration of Eq. (3.3) will take at least 1038/1016 = 1022 sec ≈ 300 trillion years. That is,

exact enumeration is impossible practically even for the present simple model. The Monte Carlo

method with appropriate sampling scheme enables us far faster calculation with high precision.

Eq. (3.2) is an example of so-called simple sampling. As for the case of Eq. (3.3), the simple

Monte Carlo sampling is expressed as follows:

⟨X⟩ ≈

NMC∑

s

exp(−βHcs)X(cs)

NMC∑

s

exp(−βHcs)

(simple sampling), (3.4)

where NMC is the number of Monte Carlo steps (samples) and cs denotes the configuration of

the s-th sample. In the Monte Carlo sampling, the way how to generate configurations affects

greatly the final precision, i.e., the statistical error, of the average of physical quantities. The

most simple way to generate samples is to get configurations uniformly at random [random

sampling, Eq. (3.4)]. However, in many cases the random sampling does not work properly.

Generating configurations uniformly at random corresponds to sample in the high temperature

limit. For a system at low temperatures, almost all samples have exponentially small Boltzmann

factor, exp(−βHcs), and only a few dominate the contribution to the partition function, and

therefore the statistical error diverges as the temperature decreases. The importance sampling

is a powerful technique to reduce the statistical error. In this method, configurations are not

chosen uniformly at random, but generated according to some pre-defined probability density

function, P (c). Then, the statistical average of the physical quantity is estimated as

⟨X⟩ ≈

NMC∑

s

exp(−βHcs)X(cs)/P (cs)

NMC∑

s

exp(−βHcs)/P (cs)

(importance sampling). (3.5)

The simple sampling (random sampling) corresponds to the case with P (c) = const. Ideally,

if one can choose P (c) so as to be proportional to the Boltzmann weight of the configuration,

exp(−βHc), then the variance of the denominator of Eq. (3.5) can be eliminated and we get

around to the following simple expression:

⟨X⟩ ≈ 1

NMC

NMC∑

s

X(cs) (ideal sampling). (3.6)

In practice, however, it is almost impossible to generate independent samples according to

P (c) = exp(−βHc)/Z. This is because that we can not know the normalization Z in advance.

Even if one can calculate Z in some way, sample generation is still extremely difficult due to

exponentially large number of configurations.

The Markov chain Monte Carlo (MCMC) method is one of the most powerful methods

which realizes Monte Carlo simulations free from these difficulties [43, 44]. In the MCMC,
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configuration of the system is changed by using the Markov chain, i.e., samples are generated

from the previous one according to the transition matrix, W (cl)(ck), which defines the probability

that a configuration changes from ck to cl. Note that transition matrix W has huge number

of elements. The MCMC enables us to generate samples without using the whole transition

matrix.

The transition matrix is not unique. Innumerable patterns of transition matrix can be used

as long as it meets the requirements [45,46]. The requirements for the transition matrix are as

follows:

• Ergodicity: There exists an positive integer N , and for n ≥ N ,

(Wn)(cl)(ck) > 0 (3.7)

is satisfied for any cl and ck. This condition guarantees that the all configurations with

positive weights will be visited from any initial condition.

• Normalization: In order that W (cl)(ck) represents a probability,

0 ≤ W (cl)(ck) ≤ 1 (3.8)

for any cl and ck, and ∑

l

W (cl)(ck) = 1 (3.9)

for any ck.

• Balance condition:

WPeq = Peq, (3.10)

or
∑

k

W (cl)(ck)P (ck)
eq = P (cl)

eq (3.11)

for all cl. This condition means that the equilibrium distribution Peq is an eigenvector of

W with eigenvalue unity, i.e., it is invariant before and after the transition, where Peq is

the target distribution, i.e., the Boltzmann distribution, exp(−βE(ck))/Z in the statistical

physics problems.

Instead of the balance condition (3.11), the transition matrix W is usually chosen so that

it fulfills the detailed balance condition:

W (cl)(ck) exp(−βE(ck)) = W (ck)(cl) exp(−βE(cl)), (3.12)

which is a sufficient condition of the balance condition. Actually, by taking a summa-

tion over k on both sides of Eq. (3.12), the balance condition (3.11) is recovered since
∑

k W
(ck)(cl) = 1:

∑

k

W (cl)(ck) exp(−βE(ck)) = (
∑

k

W (ck)(cl)) exp(−βE(cl))

= 1× exp(−βE(cl)). (3.13)
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It can be shown that a Markov chain that satisfies the above conditions generates configurations

according to the Boltzmann distribution in the long time limit, and thus the statistical average

of the physical quantities can be evaluated via Eq. (3.4) by sampling long time enough from the

Markov chain.

3.1.2 Single spin flip algorithm

The single spin flip algorithm is one of the most fundamental algorithms for the MCMC method.

The single spin flip update for the Ising model is described as follows:

1. Choose a candidate spin uniformly at random or in series.

2. Flip a chosen spin according to

PM = min{1, exp(−β(H(cl)−H(ck)))} (3.14)

(Metropolis method [47]), or

PHB =
exp(−βH(cl))

exp(−βH(ck)) + exp(−βH(cl))
(3.15)

(Heat bath method [48]), where ck and cl are the spin configurations before and after

flipping the target spin, respectively.

By repeating this procedure, new configurations are generated in sequence. One can show that

the above procedure fulfills the detailed balance condition (3.12) as seen below.

In the case where the transition from ck to cl increases the energy, the transition probability

is expressed as

W (cl)(ck) = exp(−β(H(cl)−H(ck))) (3.16)

W (ck)(cl) = 1 (3.17)

in the Metropolis method. By substituting it to Eq. (3.12), we obtain

left-hand side = W (cl)(ck) exp(−βH(ck))

= exp(−β(H(cl)−H(ck)))× exp(−βH(ck))

= exp(−βH(cl)) (3.18)

right-hand side = W (ck)(cl) exp(−βH(cl))

= 1× exp(−βH(cl)). (3.19)
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Thus, the Metropolis update satisfies the detailed balance. The same applies also for the heat

bath method,

left-hand side = W (cl)(ck) exp(−βH(ck))

=
exp(−βH(cl)) exp(−βH(ck))

exp(−βH(ck)) + exp(−βH(cl))
(3.20)

right-hand side = W (ck)(cl) exp(−βH(cl))

=
exp(−βH(ck)) exp(−βH(cl))

exp(−βH(cl)) + exp(−βH(ck))
. (3.21)

In the single spin update algorithm, configurations before and after the transition are very

similar with each other, since one Monte Carlo step updates only one spin. Therefore, the

autocorrelation time between the succeeding configurations may become very long, and the

relaxation may becomes very slow, especially near the phase transition point or at low temper-

atures, since correlation length diverges. In the next section, we introduce the cluster algorithm

that can reduce the relaxation time drastically in many cases.

3.1.3 Cluster algorithm

Before we explain the cluster algorithm, we first review the Fortuin-Kasteleyn representation.

In general, the energy of the system is expressed as a sum of local interactions (bonds), and

thus the Boltzmann weight is written as a product of local weights:

Z =
∑

{c}

∏

{i,j}

exp(βJijSiSj) =
∑

{c}

Nb∏

l=0

exp(βJlσl), (3.22)

where Nb is a number of bonds, Jl = Jij is the coupling constant of lth bond, σl = SiSj is the

product of the spin states of both ends of the bond l. In the Fortuin-Kasteleyn representation,

the configuration space of the Ising model is extended from {c} to {(c, g)}, where g is called a

graph configuration.

The Swendsen-Wang algorithm is a cluster algorithm for the Ising model [49]. One Monte

Carlo step of the Swendsen-Wang algorithm is described as follows:

1. For each bond l,

• if spins on both sides have the same direction, activate bond l with probability Pl

and let the spins into the same cluster, otherwise delete bond l and do nothing.

• if spins on both sides are opposite with each other, delete bond l and do nothing.

2. Flip spins on each cluster simultaneously at random.

Using the Swendsen-Wang algorithm, configuration evolves much faster than the single spin flip

method especially in the case where the correlation length at equilibrium becomes very large,

because the length scale of generated clusters is proportional to the correlation length. The
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Swendsen-Wang algorithm clearly satisfies the ergodicity; it is possible to reach an arbitrary

configuration from any configuration only by one step, since constructing clusters that consist

of single spins is always possible.

The Swendsen-Wang algorithm also satisfies the detailed balance. In the following, we prove

the detailed balance by induction. Let us consider the partial Hamiltonian, Hn, which contains

only n bonds among Nb bonds in the original Hamiltonian. Clearly, HNb is equivalent to the

original Hamiltonian, while H0 denotes non-interacting spins.

First, it is trivial that the Swendsen-Wang algorithm for H0 satisfies the detailed balance. In

this case, the Swendsen-Wang algorithm generates independent clusters as there is no interaction

in the system. As a result, all spins can be flipped freely and then configurations are sampled

uniformly at random.

Next, let us assume that the Swendsen-Wang algorithm satisfies the detailed balance for

Hn−1 for some n (0 < n ≤ Nb), that is, the transition probability Tn−1(ck → cl) satisfies

Tn−1(ck → cl)

Tn−1(cl → ck)
= exp(−β[Hn−1(cl)−Hn−1(ck)]). (3.23)

In the meantime, the transition probability for the Swendsen-Wang algorithm Hn can be ex-

pressed as

Tn(ck → cl) = T f
n (ck → cl)Pn(ck) + T d

n(ck → cl)[1− Pn(ck)], (3.24)

where T d
n(ck → cl) and T f

n (ck → cl) are the conditional transition probabilities in the case where

bond n is eliminated or activated, respectively. The former satisfies T d
n(ck → cl) = Tn−1(ck →

cl), since n-th bond is always eliminated in Tn−1. On the other hand, T f
n = Tn−1 if σn = 1 and

T f
n = 0 if σn = −1 in cl, because two spins cannot be connected by n-th bond in the case where

they have opposite directions with each other.

Let us consider the case where σn = 1 in both configurations, ck and cl. In this case,

Pn(ck) = Pn(cl) = 1− exp(−2βJn). The ratio of transition probabilities is then written as

Tn(ck → cl)

Tn(cl → ck)
=

T f
n (ck → cl)[1− exp(−2βJn)] + T d

n(ck → cl) exp(−2βJn)

T f
n (cl → ck)[1− exp(−2βJn)] + T d

n(cl → ck) exp(−2βJn)

=
Tn−1(ck → cl)[1− exp(−2βJn)] + Tn−1(ck → cl) exp(−2βJn)

Tn−1(cl → ck)[1− exp(−2βJn)] + Tn−1(cl → ck) exp(−2βJn)

=
Tn−1(ck → cl)

Tn−1(cl → ck)
= exp(−β[Hn−1(cl)−Hn−1(ck)])

= exp(−β[Hn(cl)−Hn(ck)]) (3.25)

as the local energy on bond n does not change between ck and cl. Similarly, in the case where

σn = −1 in both configurations,

Tn(ck → cl)

Tn(cl → ck)
=

T d
n(ck → cl)

T d
n(cl → ck)

= exp(−β[Hn−1(cl)−Hn−1(ck)])

= exp(−β[Hn(cl)−Hn(ck)]). (3.26)
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Finally, we consider the case where σn is different between ck and cl. If σn = 1 (−1) in ck (cl),

Tn(ck → cl)

Tn(cl → ck)
=

Tn−1(ck → cl) exp(−2βJn)

Tn−1(cl → ck)

= exp(−β[Hn−1(cl)−Hn−1(ck)]) exp(−2βJn)

= exp(−β[Hn(cl)−Hn(ck)]). (3.27)

Thus, if the Swendsen-Wang algorithm satisfies the detailed balance for Hn−1, it also does for

Hn (0 < n ≤ Nb). Since the detailed balance is satisfied for n = 0, it is proved for n = Nb by

induction.

3.2 Fukui-Todo method

The main difficulty in simulating the system with the long-range interaction is the large calcula-

tion cost. The number of pairs is N(N−1)/2 ∼ N2 for an N -spin system. A naive update in the

Monte Carlo simulation will suffer from the O(N2) computational cost. To make matters worse,

the system with the long-range interaction is known for the egregious finite-size and boundary

effects compared to the short-range model. Much larger systems thus need to be calculated, for

the estimation of critical exponents, than the case of the short-range interaction. In addition, it

becomes important to take into account interactions from mirror-image cells across the periodic

boundaries and the Ewald summation to further reduce the finite-size effect.

A first efficient algorithm for the Ising model with the long-range interaction was proposed

by Luijten and Blöte [50], whose computational cost scales in O(N logN). We will adopt

the Fukui-Todo cluster algorithm [11] that is a more powerful approach; it further reduces

the computational cost down to O(N) for generic (unfrustrated) long-range interacting spin

models [11, 51,52].

The Fukui-Todo cluster algorithm is based on the Swendsen-Wang cluster algorithm [49].

In the original Swendsen-Wang algorithm for inverse temperature β, we first activate each

(interaction) bond with probability

Pij = 1− exp(−2βJij), (3.28)

when Si = Sj . Then spin clusters, each of which consists of spins connected by activated bonds,

are flipped independently to generate a next spin configuration.

In the Fukui-Todo cluster algorithm, first we introduce the extended Fortuin-Kasteleyn

representation [53, 54]. The partition function of the Ising model (2.38) is rewritten into the

extended Fortuin-Kasteleyn representation:

Z =
∑

{Si}

∑

{kij}

N∏

i<j

∆(σij , kij)Vij(kij), (3.29)
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where σij = SiSj and kij is a non-negative integer assigned to each spin pair (i, j). The

“compatibility function” ∆(σij , kij) and the “weight” Vij(kij) in Eq. (3.29) are defined as

∆(σij , kij) =

⎧
⎨

⎩
1 if σij = 1 or kij = 0

0 otherwise,
(3.30)

and

Vij(kij) =
exp(−2βJij)(2βJij)kij

kij !
, (3.31)

respectively. Due to the property of the compatibility function, antiparallel spin configuration

(σij = −1) is prohibited when kij ≥ 1. Then one can interpret a bond with kij ≥ 1 and kij = 0

as an activated and deactivated bond, respectively, in a similar way to the original Swendsen-

Wang algorithm. Note that Vij(kij) is the probability mass function of the Poisson distribution

with mean 2βJij , and satisfies the normalization condition,
∑∞

kij=0 Vij(kij) = 1 for all (i, j).

Based on the generalized Fortuin-Kasteleyn representation (3.29), one Monte Carlo step of

the Fukui-Todo cluster algorithm is performed as follows:

(i) Generate an integer k from the Poisson distribution f(k;λtot) = exp(−λtot)λk
tot/k!, where

λtot = 2β
∑N

i<j Jij .

(ii) Choose a pair (i, j) according to the probability λij/λtot, and increase ki,j by one if σij = 1,

where λij = 2βJij .

(iii) Repeat (ii) k times in total.

(iv) Spins connected by bonds with kij > 0 are considered to belong to the same cluster. Flip

clusters at random and generate a new spin configuration as in the original Swendsen-

Wang method.

The probability that bond (i, j) is activated can be expressed as

Pij =
∞∑

k=1

f(k;λtot)
k∑

m=1

k!

(k −m)!m!

(
λij

λtot

)m(
1− λij

λtot

)k−m

, (3.32)

since it is the probability that bond (i, j) is chosen at least once. By using the normalization

condition
k∑

m=0

k!

(k −m)!m!

(
λij

λtot

)m(
1− λij

λtot

)k−m

= 1 (3.33)

of the binomial distribution, Eq. (3.32) can be rewritten as

Pij = 1−
∞∑

k=0

f(k;λtot)

(
1− λij

λtot

)k

= 1− exp(−λtot)
∞∑

k=0

1

k!
(λtot − λij)

k

= 1− exp(−2βJij).

(3.34)
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That is, the activation probability in the Fukui-Todo method is equal to the one in the original

Swendsen-Wang algorithm (3.28). Thus the both stochastic processes are equivalent with each

other, satisfying the detailed balance.

The computational cost of the Fukui-Todo method is proportional to the repeat count, k,

of step (ii). The average of k is λtot, obeying the Poisson distribution, f(k,λtot). For a system

with N spins, λtot is expressed as

λtot = 2β
N∑

i<j

Jij = β
N∑

i

N∑

j ̸=i

Jij

≈ β
N∑

i

∫ N1/d

1
dr rd−1J(r)

= βN

∫ N1/d

1
dr rd−1J(r).

(3.35)

Here, we assume the translational invariance and that Jij depends only on the distance between

spins. If J(r) decays faster than r−d, which is equivalent to the condition of the convergence

of energy density for the ferromagnetic ordered state, the integral in the last line of Eq. (3.35)

converges to a finite value even in the thermodynamic limit. The convergence condition is

unchanged even when the mirror-image cells are considered and the Ewald summation is taken

(see Sec. 4.1). Thus, at a finite temperature, λtot increases in proportional to N instead of

N2 as long as σ > 0 and the energy density converges to a finite value. Because step (ii) is

done in O(1) computational cost thanks to the Walker’s method of alias (see the appendices

of Ref. 11), the total cost of the one Monte Carlo step of the Fukui-Todo cluster algorithm is

O(λtot) ∼ O(N).





Chapter 4

Ising Model with Long-Range

Interaction

4.1 Generalized Ewald summation

4.1.1 Ewald method

In the simulation of systems with the long-range interaction under the periodic boundary con-

ditions, we generally need to take into account interactions from mirror-image cells, which are

imaginary systems across the periodic boundaries, in order to reduce strong finite-size correc-

tions. The interaction between Si and Sj is thus expressed as

Hij = −
∑

#„ν

1

| #„L · #„ν + #„r i − #„r j |d+σ
SiSj , (4.1)

where
#„
L = (L1, L2, · · · , Ld) denotes the size of the hypercubic lattice, and #„ν = (ν1, ν2, · · · , νd)

with να = 0,±1,±2, · · · (α = 1, 2, · · · , d) represents the index of image cells. In the following

we consider only the case where σ > 0. The summation in Eq. (4.1) is taken for all the image

cells. The simplest way to get an approximate value of Eq. (4.1) is truncating the summation

up to some threshold, νmax, but this does not work well in practice because the summation of an

algebraically decaying function converges very slowly. The Ewald summation technique [55,56]

is an efficient approach to calculate the contribution from image cells much faster [57, 58]; the

summation is separated into two parts, the short-range term and the long-range term, and

taken separately in the real space and the reciprocal space, respectively. Although the Ewald

summation is usually formulated only for integer exponents, σ = 0, 1, 2, · · · , such as the Coulomb

interaction and the dipole interaction, here we generalize the Ewald summation for exponent of

arbitrary positive real numbers.

Before we introduce the generalized Ewald summation in Sec. 4.1.3, first we briefly review

the conventional Ewald summation technique for d + σ = 1, which describes the Coulomb

potential, in Sec. 4.1.2.
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4.1.2 Ewald summation for d+ σ = 1

In this section, we consider the Ewald summation for d + σ = 1, i.e., the Coulomb potential

expressed by

φ(i, j) =
∑

#„ν

1∣∣∣
#„
Lν + #„r i − #„r j

∣∣∣
. (4.2)

In the Ewald method, each terms in Eq. (4.2) is separated into two parts by using the comple-

mentary error function:

φ(i, j) =
∑

#„ν

1∣∣∣
#„
Lν + #„r i − #„r j

∣∣∣

=
∑

#„ν

1

| #„r L|
erfc(κ| #„r L|) +

∑

#„ν

1

| #„r L|
[1− erfc(κ| #„r L|)]

=
∑

#„ν

1

| #„r L|
erfc(κ| #„r L|) +

∑

#„ν

1

| #„r L|
erf(κ| #„r L|)

= φ(1)(i, j) + φ(2)(i, j), (4.3)

where κ is the cutoff parameter, | #„r L| =
∣∣∣
#„
Lν + #„r i − #„r j

∣∣∣, and erf(x) and erfc(x) are the error

and the complementary error functions,

erf(x) =
2√
π

∫ x

0
exp(−t2) dt (4.4)

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
exp(−t2) dt, (4.5)

respectively. The first and second term on the third line of Eq. (4.3) represent the short-range

term φ(1)(i, j) and the long-range term φ(2)(i, j), respectively. In the short range term, the

contribution of large #„ν becomes exponentially small since erfc(x) diminishes for large x. On

the other hand, in the long-range term, the contribution of small #„ν is suppressed since erf(x)

becomes exponentially small for small x. The cutoff parameter κ allocates the contribution of

these terms; appropriate κ is required for faster convergence.

The long-range term converges very slow in the real space, while it converges very fast in the

reciprocal space. Let us transform the summation of the long-range term from the real space to

the reciprocal space. Changing the variable from u to | #„r L|ρ, the long-range term is rewritten

as

∑

#„ν

1

| #„r L|
erf(κ| #„r L|) =

∑

#„ν

2√
π

∫ κ| #„r L|

0

1

| #„r L|
exp(−u2)du =

2√
π

∫ κ

0

∑

#„ν

exp(−| #„r L|2ρ2)dρ.

(4.6)

Next, we introduce the Fourier transform of G( #„r ) =
∑

#„ν exp(−| #„r L|2ρ2):

G( #„r ) =
∑

#„
h

πd/2

ρd
exp

(
−π2

ρ2
| #„k |2 + 2πi

#„
k · ( #„r i − #„r j)

)
, (4.7)
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where

#„
k =

(
hx

Lx
,
hy

Ly

)
(4.8)

| #„k |2 =

(
h2
x

L2
x

+
h2
y

L2
y

)
(4.9)

#„
k · ( #„r i +

#„r j) =

(
hx

Lx
(−rjx + rix) +

hy

Ly
(−rjy + riy)

)
, (4.10)

and hx, hy = 0,±1,±2, · · · . In the three-dimensional case, by substituting Eq. (4.7) to Eq. (4.6)

and using the quadrature formula

∫ κ

0

1

ρ3
exp

(
−a2

ρ2

)
dρ =

1

2a2
exp

(
−a2

κ2

)
, (4.11)

the long-range term can be expressed as

φ(2)(i, j) =
1

π

∑

#„
h ̸= #„

0

1

| #„k |2
exp

(
−π2| #„k |2

κ2

)
cos
(
2π

#„
k · ( #„r i − #„r j)

)
. (4.12)

The term with
#„
h =

#„
0 , which represents the static charge of the whole system, must vanish

because of the neutral condition. In other words, the non-neutral system with coulomb potential

and periodic boundary conditions can not be well-defined, since the Hamiltonian of the system

inevitably diverges to infinity.

In summary, the Ewald summation for the Coulomb potential is expressed as follows:

φ(i, j) =
∑

#„ν

1∣∣∣
#„
Lν + #„r i − #„r j

∣∣∣
= φ(1)(i, j) + φ(2)(i, j) (4.13)

with the short-range term:

φ(1)(i, j) =
∑

#„ν

1

| #„r L|
2√
π

∫ κ| #„r L|

0
exp(−t2)dt (4.14)

and the long-range term:

φ(2)(i, j) =
1

π

∑

#„
h ̸= #„

0

1

| #„k |2
exp

(
−π2| #„k |2

κ2

)
cos
(
2π

#„
k · ( #„r i − #„r j)

)
. (4.15)

4.1.3 Generalized Ewald summation

Let us consider the potential with a exponent with an arbitrary real number:

φm(i, j) =
∑

#„ν

1

| #„r |m , (4.16)
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where m = d + σ and #„r = #„r ( #„ν , #„r i,
#„r j) ≡

#„
L · #„ν + #„r i − #„r j . We separate Eq. (4.16) into two

terms by using the gamma function:

φm(i, j) =
∑

#„ν

1

Γ(m/2)

∫ ∞

0

1

| #„r |m t
m
2 −1e−tdt

=
∑

#„ν

[
1

Γ(m/2)

∫ ∞

(κ| #„r |)2

1

| #„r |m t
m
2 −1e−tdt

+
2

Γ(m/2)

∫ κ

0
ρm−1e−| #„r |2ρ2

dρ

]

= φ(1)
m (i, j) + φ(2)

m (i, j). (4.17)

Here, Γ(x) denotes the gamma function:

Γ(x) =

∫ ∞

0
tx−1e−tdt, (4.18)

κ is an arbitrary positive real number,

φ(1)
m (i, j) =

∑

#„ν

1

Γ(m/2)

1

| #„r |m

∫ ∞

(κ| #„r |)2
t
m
2 −1e−tdt (4.19)

represents the short-range term, and

φ(2)
m (i, j) =

∑

#„ν

2

Γ(m/2)

∫ κ

0
ρm−1e−| #„r |2ρ2

dρ (4.20)

does the long-range term. Note that in Eq. (4.20) we have replaced the integration variable, t,

by (| #„r |ρ)2.
Next, we transform Eq. (4.20) from the integration in the real space into that in the reciprocal

space. Let us consider the two-dimensional case, i.e., d = 2,
#„
L = (Lx, Ly), ν = (νx, νy),

#„r i = (rix, riy), etc. We factor
∑

#„ν e−| #„r |2ρ2

in Eq. (4.20) into the two components for each

coordinate axis as

G( #„r i,
#„r j) =

∑

#„ν

e−| #„r |2ρ2

= Gx(rix, rjx)Gy(riy, rjx), (4.21)

where

Gx(rix, rjx) =
∞∑

νx=−∞
exp[−(Lxνx + rix − rjx)

2ρ2] (4.22)

and

Gy(riy, rjy) =
∞∑

νy=−∞
exp[−(Lyνy + riy − rjy)

2ρ2]. (4.23)

Then, Eq. (4.22) is rewritten by taking the Fourier transform on rix as

Gx(rix, rjx) =
∞∑

hx=−∞

1

Lx
Ax(hx, rjx) exp

(
i
2πhx

Lx
rix

)
, (4.24)
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where

Ax(hx, rjx) =

∫ Lx

0
Gx(rix, rjx) exp

(
−i

2πhx

Lx
rix

)
drix

=
∑

νx

∫ Lx(νx+1)−rjx

Lxνx−rjx

exp

[
− ξ2ρ2

− i
2πhx

Lx
ξ + i2πhxνx − i

2πhx

Lx
rjx

]
dξ

=

∫ ∞

−∞
exp

[
− ξ2ρ2 − i

2πhx

Lx
ξ − i

2πhx

Lx
rjx

]
dξ

(4.25)

with ξ = Lxνx+ rix− rjx. Note that exp(i2πhxνx) vanishes because hxνx takes integral values.

Performing the Gaussian integration then yields

Ax(hx, rjx) =

√
π

ρ
exp

(
−π2h2

x

ρ2L2
x

− i
2πhx

Lx
rjx

)
. (4.26)

Next, by using Eq. (4.24) with Eq. (4.26) and the similar expression for Gy(riy, rjy), Eq. (4.21)

is expressed as

G( #„r i,
#„r j) =

∑

hx,hy

π

LxLyρ2
exp

[
− π2

ρ2

(
h2
x

L2
x

+
h2
y

L2
y

)

+ i2π

(
hx

Lx
(rix − rjx) +

hy

Ly
(riy − rjy)

)]
. (4.27)

Introducing
#„
k =

(
hx
Lx

, hy

Ly

)
, Eq. (4.27) is further simplified as

G( #„r i,
#„r j) =

∑

#„
k

π

LxLyρ2
exp[−π2

ρ2
| #„k |2]

×
(
cos[2π

#„
k · ( #„r i − #„r j)] + i sin[2π

#„
k · ( #„r i − #„r j)]

)
. (4.28)

Here, exp[−π2

ρ2 |
#„
k |2] and cos[2π

#„
k · ( #„r i − #„r j)] are even functions of

#„
k . On the other hand,

sin[2π
#„
k ·( #„r i− #„r j)] is an odd function. Therefore, sin[2π

#„
k ·( #„r i− #„r j)] and sin[2π(− #„

k )·( #„r i− #„r j)]

are counterbalanced if summation is taken for all
#„
k .

Extension of the above argument to arbitrary dimensions is straightforward. For the d-

dimensional case, Eq(4.28) should be replace by

G( #„r i,
#„r j) =

πd/2

V ρd

∑

#„
k

exp[−π2

ρ2
| #„k |2] cos[2π #„

k · ( #„r i − #„r j)], (4.29)

where V = Πd
α=1Lα is the volume of the system. The long-range term (4.20) is finally expressed
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as

φ(2)
m (i, j) =

2πd/2

Γ(m/2)V

∑

#„
k

cos
[
2π

#„
k · ( #„r i − #„r j)

]

×
∫ κ

0
ρm−1−d exp

[
−π2

ρ2
| #„k |2

]
dρ

=
2πd/2

Γ(m/2)V

∑

#„
k

cos
[
2π

#„
k · ( #„r i − #„r j)

]

× 1

2
(π| #„k |)m−d

∫ ∞

π2| #„
k |2

κ2

t−
1
2 (m−d)−1e−tdt.

(4.30)

In summary, the Ewald summation for generic exponent σ is expressed as Eq. (4.16) with

the short-range term (4.19) and the long-range term (4.30). The terms in Eqs. (4.19) and (4.30)

become small quite rapidly as | #„ν | and | #„k | increase, respectively, due to the presence of the

exponential functions. Note that the choice of the crossover parameter κ affects the speed of

convergence of the summations over #„ν and
#„
k (or

#„
h ). We find empirically that κ = 2/L is a

reasonable choice, by which both summations converge in double precision for max(|νx|, |νy|) ≤ 4

and max(|hx|, |hy|) ≤ 4.

The integrals in Eqs. (4.19) and (4.30) are calculated numerically. These integrals are known

as the (upper) incomplete gamma function, which is defined as

Γ(s, x) =

∫ ∞

x
ts−1e−tdt. (4.31)

Eqs. (4.19) and (4.30) are expressed by the incomplete gamma function as

φ(1)
m (i, j) =

∑

#„ν

1

Γ(m/2)

1

| #„r |mΓ
(m
2
, (κ| #„r |)2

)
(4.32)

φ(2)
m (i, j) =

2πd/2

Γ(m/2)V

∑

#„
k

cos
[
2π

#„
k · ( #„r i − #„r j)

]

×1

2
(π| #„k |)m−dΓ

(
− 1

2
(m− d),

π2| #„k |2

κ2

)
, (4.33)

respectively.

In the present simulation, we calculated the incomplete gamma function numerically by the

Boost C++ library [59]. The function (4.31), however, is defined only for positive real s in the

library. In the case for negative s, we used the following recursion formula obtained by the
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integration by parts:

Γ(s, x) =

∫ ∞

x
ts−1e−tdt

=
[1
s
tse−t

]∞
x

+

∫ ∞

x

1

s
tse−tdt

= −1

s
xse−x +

1

s
Γ(s+ 1, x)

= −1

s
xse−x − 1

s(s+ 1)
xs+1e−x

+
1

s(s+ 1)
Γ(s+ 2, x)

...

= −
n∑

i=1

{
xs+i−1e−x

i∏

j=1

( 1

s+ j − 1

)}

+
n∏

i=1

( 1

s+ i− 1

)
Γ(s+ n, x), (4.34)

where n = −⌊s⌋. Note that this recursion formula breaks down when σ is an even (positive)

integer since −(m − d)/2 = −σ/2 becomes a negative integer. The denominator in Eq. (4.34)

then becomes zero during the recursion. For even σ, we stopped the recursion when the first

argument of the incomplete gamma function becomes zero, and used

Γ(0, x) =

∫ ∞

x
t−1e−tdt = −Ei(−x), (4.35)

where Ei(−x) is the exponential integral.

4.2 Improved estimator

In the cluster algorithm Monte Carlo methods, so-called the improved estimators for physical

quantities are available, which are defined in terms of the cluster configuration instead of the

spin configuration. Some improved estimators can drastically reduce the asymptotic variance of

physical quantities because they take the average of a number of spin configurations generated

from a cluster configuration automatically. In the present work, we used the improved estima-

tors for measuring the moments of magnetization, i.e., ⟨m2⟩, ⟨m4⟩, ⟨m6⟩, · · · , to calculate the

(combined) Binder ratios.

Let us consider a snapshot of graph configuration g composed of k clusters, and let n1, n2,

· · · , nk be the number of spins included in each cluster. We define mα(g) as an average of mα

over all possible 2k different spin configurations that can be generated by flipping k clusters
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independently:

mα(g) =
1

2k

∑

s1,··· ,sk

( k∑

i

nisi
)α

=
1

2k
{(+n1 + n2 + · · ·+ nk)

α

+ (−n1 + n2 + · · ·+ nk)
α

+ (+n1 − n2 + · · ·+ nk)
α

...

+ (−n1 − n2 − · · ·− nk)
α},

(4.36)

where si = ±1 denotes the spin direction of the i-th cluster. In Eq. (4.36), terms including an

odd power of n1, n2, · · · , nk are counterbalanced by other terms with the opposite sign. Hence

we only have to consider the terms with even powers for all {ni}. Thus, we can rewrite Eq. (4.36)

as

mα(g) =
1

2k
2k (n1 + n2 + · · ·+ nk)

α
even terms

= (n1 + n2 + · · ·+ nk)
α
even terms . (4.37)

Now we assume that mα(g) can be expressed as

mα(g) =
∑

p

ap
∏

j∈p

Cj , (4.38)

with coefficients {ap} and

Cj =
k∑

i

nj
i . (4.39)

The summation
∑

p in Eq. (4.38) is taken over all possible partitions of α into a set of even

integers {j}. We do not need, nevertheless, to consider the combinations with odd j since they

do not contribute after taking the average over the spin configurations as already mentioned.

In the following, we introduce a simple way to obtain {ap} by expanding the right-hand side of

Eqs. (4.37) and (4.38), and comparing their coefficients.

4.2.1 Second moment: m2(g)

In order to determine the improved estimator for the second moment of magnetization, it is

enough to consider a graph configuration composed of only one cluster. In this case, Eq. (4.37)

becomes

m2(g) = n2
1. (4.40)

On the other hand, Eq. (4.38) is expressed as

m2(g) = a1

k∑

i

n2
i = a1n

2
1. (4.41)
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By comparing Eqs. (4.40) and (4.41), we obtain

a1 = 1. (4.42)

The improved estimator m2(g) is thus given by

m2(g) = C2. (4.43)

4.2.2 Fourth moment: m4(g)

Consider a graph configuration composed of two clusters. From Eq. (4.37), we obtain

m4(g) = (n1 + n2)
4
even terms

= (n4
1 + n4

2) + 6n2
1n

2
2 (4.44)

On the other hand, Eq. (4.38) is expressed as

m4(g) = a1C4 + a2C
2
2

= (a1 + a2)(n
4
1 + n4

2) + 2a2n
2
1n

2
2. (4.45)

By comparing Eqs. (4.44) and (4.45), we obtain

a1 = −2

a2 = 3. (4.46)

The improved estimator m4(g) is thus given by

m4(g) = −2C4 + 3C2
2 . (4.47)

4.2.3 Sixth moment: m6(g)

Consider a graph configuration composed of three clusters. From Eq. (4.37), we obtain

m6(g) = (n1 + n2 + n3)
6
even terms

= (n6
1 + n6

2 + n6
3)

+ 15{n4
1(n

2
2 + n2

3) + n4
2(n

2
1 + n2

3) + n4
3(n

2
1 + n2

2)}

+ 90n2
1n

2
2n

2
3 (4.48)

On the other hand, Eq. (4.38) is expanded as

m6(g) = a1C6 + a2C4C2 + a3C
3
2

= (a1 + a2 + a3)(n
6
1 + n6

2 + n6
3)

+ (a2 + 3a3){n4
1(n

2
2 + n2

3) + n4
2(n

2
1 + n2

3)

+ n4
3(n

2
1 + n2

2)
}

+ 6a3n
2
1n

2
2n

2
3. (4.49)
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By comparing Eqs. (4.48) and (4.49), we obtain

a1 = 16

a2 = −30

a3 = 15. (4.50)

The improved estimator m6(g) is thus given by

m6(g) = 16C6 − 30C4C2 + 15C3
2 . (4.51)

4.2.4 Eighth moment: m8(g)

Consider a graph configuration composed of four clusters. From Eq. (4.37), we obtain

m8(g) = (n1 + n2 + n3 + n4)
8
even terms

=
(
n8
1 + n8

2 + n8
3 + n8

4

)

+ 28
∑

i

n6
i

∑

j ̸=i

n2
j

+ 420
∑

i

n4
i

∑

j ̸=i

n2
j

∑

ℓ ̸=j,ℓ̸=i

n2
ℓ

+ 70
∑

i

n4
i

∑

j ̸=i

n4
j

+ 2520n2
1n

2
2n

2
3n

2
4. (4.52)

On the other hand, Eq. (4.38) can be expanded as

m8(g) = a1C8 + a2C6C2 + a3C4C
2
2 + a4C

2
4 + a5C

4
2

= (a1 + a2 + a3 + a4 + a5)
∑

i

n8
i

+ (a2 + 2a3 + 4a5)
∑

i

n6
i

∑

j ̸=i

n2
j

+ (2a3 + 12a5)
∑

i

n4
i

∑

j ̸=i

n2
j

∑

ℓ ̸=j,ℓ̸=i

n2
ℓ

+ (2a3 + 2a4 + 6a5)
∑

i

n4
i

∑

j ̸=i

n4
j

+ 24a5n
2
1n

2
2n

2
3n

2
4. (4.53)

By comparing Eqs. (4.52) and (4.53), we obtain

a1 = −272

a2 = 448

a3 = −420

a4 = 140

a5 = 105. (4.54)



45

10-5

10-4

10-3

10-2

10-1

100

100 101 102

L

|Q - QMF||C - CMF|
SMF 

Figure 4.1: Convergence of the conventional Binder ratio (red circles), Q, the combined Binder

ratio (orange triangles), C, and the self-combined Binder ratio (blue squares), SMF at the critical

point for the fully connected model. The conventional Binder ratio converges to QMF as ∼ L−1,

while the combined Binder ratio and the self-combined Binder ratio converge as ∼ L−2 since

the leading correction term is eliminated.

The improved estimator m8(g) is thus given by

m8(g) = −272C8 + 448C6C2 − 420C4C
2
2 + 140C2

4 + 105C4
2 . (4.55)

4.3 Combined Binder ratio

4.3.1 Combined Binder ratio

In the next section, instead of the critical exponents, we use the value of the Binder ratio for

investigating the universality class of the phase transition. The Binder ratio at the critical point,

which is also referred to as the universal ratio, is constant and takes a universal value [44], since

it is the ratio of two physical quantities that have the same anomalous dimension. It can be

usually calculated more accurately than the critical exponents, which leads to a more reliable

identification of the universality class [60]. The Binder ratio is defined as [44]

Q =
⟨m2⟩2

⟨m4⟩ , (4.56)

where m =
∑

i Si and ⟨ · ⟩ denotes the Monte Carlo average.
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In practice, the Binder ratio exhibits some system-size dependence that is called the correction-

to-scaling. We write the Binder ratio at the critical temperature as follows:

Q(Tc, L) = Q∞ + f(L), (4.57)

where Q∞ denotes the universal ratio and f(L) does the finite-size correction. Note that the

finite-size correction is not universal; i.e., it can be a different form even if the universality class

is the same. Although it is generally difficult to know the explicit form of f(L), the expression

of the leading correction term is known for the fully connected Ising model [50]:

Q(Tc, N) =
⟨m2⟩2

⟨m4⟩

= 4
Γ(3/4)2

Γ(1/4)2
+

16
√
3Γ(3/4)3

5Γ(1/4)3
N− 1

2 +O(N−1),

(4.58)

where Γ(x) is the gamma function. In the case of the two-dimensional fully connected Ising

model (N = L2), the leading correction is proportional to L−1. One can consider different

combinations of the moment of magnetization to build various “Binder ratios,” whose universal

ratio for the fully connected Ising model and its leading correction term at the critical point are

also written explicitly as

⟨m2⟩3

⟨m6⟩ ≃ 4Γ(3/4)2

3Γ(1/4)2
+

(
4
√
3Γ(3/4)

9Γ(1/4)
− 16

√
3Γ(3/4)3

15Γ(1/4)3

)
N− 1

2 (4.59)

⟨m2⟩⟨m4⟩
⟨m6⟩ ≃ 1

3
+

(√
3Γ(1/4)

9Γ(3/4)
− 8

√
3Γ(3/4)

15Γ(1/4)

)
N− 1

2 (4.60)

⟨m2⟩4

⟨m8⟩ ≃ 16Γ(3/4)4

5Γ(1/4)4
+

1536
√
3Γ(3/4)5

125Γ(1/4)5
N− 1

2 . (4.61)

By using these Binder ratios, one can eliminate the lowest order of the correction-to-scaling.

The simplest way is taking an appropriate linear combination, e.g.,

C(Tc, N) =
⟨m2⟩2

⟨m4⟩ − a
⟨m2⟩3

⟨m6⟩ = CMF +O(N−1), (4.62)

where

a =

16
√
3Γ(3/4)3

5Γ(1/4)3(
4
√
3Γ(3/4)

9Γ(1/4) − 16
√
3Γ(3/4)3

15Γ(1/4)3

) (4.63)

and CMF = 0.2843448. Hereafter, we call C(T,N) as the combined Binder ratio.

4.3.2 Self-combined Binder ratio

Unfortunately, the construction of the combined Binder ratio requires an explicit form of the

leading correction term. The application to other universality classes rather than the mean-field
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Figure 4.2: Convergence of the conventional Binder ratio (red circles), Q, and the self-combined

Binder ratio (blue squares), SSR at the critical point for the nearest neighbor model. The

conventional Binder ratio converges to QSR as ∼ L−1.6, while the self-combined Binder ratio

converges as ∼ L−3.2.

universality is not practical. We then introduce another quantity that also has smaller finite-size

corrections, the “self-combined Binder ratio”:

S(T,L) =
1

Q∞
Q(T, L) +Q∞

1

Q(T, L)
− 2. (4.64)

This quantity is a linear combination of Q and Q−1. It is easily seen that regardless of the form

of f(L), leading correction of the universal ratio is reduced from O (f(L)) to O
(
f(L)2

)
if Q∞

is chosen as the exact universal ratio:

S(Tc, L) =
1

Q∞
Q(Tc, L) +Q∞

1

Q(Tc, L)
− 2

=
Q∞ + f(L)

Q∞
+

1

1 + 1
Q∞

f(L)
− 2

≃ f(L)

Q∞
− f(L)

Q∞
+

(
1

Q∞
f(L)

)2

= O
(
f(L)2

)

(4.65)

In our analysis, we use the following self-combined Binder ratios:

SMF(T, L) =
1

QMF
Q(T,L) +QMF

1

Q(T, L)
− 2 (4.66)

SSR(T,L) =
1

QSR
Q(T,L) +QSR

1

Q(T, L)
− 2, (4.67)
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where QMF = 0.456947 and QSR = 0.856216 are the universal ratio of the mean-field univer-

sality [50] and short-range universality [61], respectively. The former, SMF(T, L), converges to

zero at the critical point for the mean-field universality class, and the latter, SSR(T, L), does for

the short-range universality class. Both should exhibit faster convergence than the conventional

Binder ratio, Q(T,L), since the leading correction is eliminated.

In Figs. 4.1 and 4.2, we compare the convergence of the conventional Binder ratio, the

combined Binder ratio, and the self-combined Binder ratio to the limiting values for the fully

connected model and the nearest neighbor model in order to demonstrate the effectiveness of

our new quantities. For both models, the (self-)combined Binder ratios converge much faster,

in the double powers, than the conventional Binder ratio. Again note that the combined Binder

ratio, C(T, L) is available only for the mean-field universality class and not for the short-range

case. We will apply these combined quantities to the phase transition of the Ising model with

the algebraically decaying interaction.

4.4 Results

By means of the Fukui-Todo cluster method, the Monte Carlo simulation was performed on the

two-dimensional L×L square lattice up to L = 4096 for σ = 0.8, 0.9, 1.0, · · · , 1.75, 1.9, and 2.0.

The periodic boundary conditions were imposed and the effect of the mirror images was taken

into account by the generalized Ewald summation (Sec. 4.1.3). The thermal averages of the

moments of the magnetization ⟨mα⟩ (α = 2, 4, · · · ) were calculated by the improved estimator

(Sec. 4.2). Measurement of physical quantities are performed for 16384 Monte Carlo steps,

which is longer enough than the integrated autocorrelation time, e.g., τint = 4.3 and 4.0 for

⟨m2⟩ and ⟨m4⟩, respectively, at the critical temperature for L = 4096 and σ = 1.75. Before

measurement, we discard 128 Monte Carlo steps. We also have confirmed that 128 Monte Carlo

steps is longer enough than the exponential autocorrelation time, that is, there is no statistically

significant difference between the measurement with 128 Monte Carlo thermalization steps and

that with 256 Monte Carlo thermalization steps at the critical point for the largest system size.

4.4.1 Critical temperature

The critical temperature, Tc, was estimated by the finite-size scaling of the Binder ratio. First,

we estimated the critical temperature for each system size, Tc(L), as the crossing point of the

conventional Binder ratios of system size L and 2L (L = 64, 128, 256, 512, 1024, 2048). The

crossing point is estimated by the Bayesian scaling analysis [14,15]. Then, we extrapolated the

value in the thermodynamic limit by assuming the following form:

Tc(L) = Tc + aL−b, (4.68)
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Figure 4.3: σ-dependence of the conventional Binder ratio at the critical point. The horizontal

blue lines denote QMF = 0.456947 [50] and QSR = 0.856216 [61], respectively. The vertical

orange lines denote the critical decay exponents σ = 1 and 7/4 predicted by Sak [18].
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Figure 4.4: σ-dependence of the self-combined Binder ratio, SMF, at the critical temperature.

The vertical orange lines denote the critical decay exponents σ = 1 and 7/4 predicted by

Sak [18].
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Figure 4.5: σ-dependence of the self-combined Binder ratio, SSR, at the critical temperature.

The vertical orange lines denote the critical decay exponents σ = 1 and 7/4 predicted by

Sak [18].

Table 4.1: σ-dependence of the critical temperature, Tc, and the normalized critical temperature,

T̃c. The exact results for the fully connected model (FC) and the nearest neighbor model (NN)

are also included.
σ Tc T̃c

0 (FC) 1 1

0.6 12.555(1) 0.954033(81)

0.8 9.76500(9) 0.923492(9)

0.9 8.80870(32) 0.906553(33)

1.0 8.03009(7) 0.888911(8)

1.1 7.38232(41) 0.870847(49)

1.2 6.83425(15) 0.852617(19)

1.4 5.95819(12) 0.816679(16)

1.6 5.29318(24) 0.782835(36)

1.75 4.89500(12) 0.759570(19)

1.9 4.56406(12) 0.738536(19)

2.0 4.37427(14) 0.725805(24)

∞ (NN) 2.269185 0.5672963
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where the exponent b is related to the correction-to-scaling exponent, ω, as 1/ν+ω. We observed

that the value of b takes larger value in the intermediate regime as reported in Ref. 6. Its precise

estimation, however, is quite difficult even with the precision of the present simulation.

The critical temperature obtained for each σ is summarized in Table 4.1. We confirmed

that the extrapolation by assuming Eq. (4.68) produces estimates for the critical temperatures

that agree with the values for the largest system size within the error bar. The estimation from

the self-combined Binder ratio (crossing point) is also consistent with the result in Table 4.1.

In the table, the normalized critical temperature is also listed, which is defined as T̃c = Tc/J̃

with J̃ =
∑

i ̸=j Jij/N , the sum of coupling constants connecting a single site to all the other

sites. One can see that the normalized critical temperature, T̃c, increases slowly as σ decreases.

This shift of T̃c can be interpreted as the suppression of fluctuations due to the increase of the

effective dimension.

4.4.2 Binder ratio at critical temperature

Next, let us discuss the universality class of the phase transition by using the Binder ratio at the

critical temperature. As we have already discussed in Sec. 2.2, the three different regions are

expected: the mean-field, the intermediate, and the short-range regimes. We will focus on the

boundary, the critical decay exponent, separating the mean-field and the intermediate regimes,

and the intermediate and the short-range regimes.

We calculated the Binder ratio at the critical temperature (Table 4.1) for each σ and L, and

extrapolated the value of the thermodynamic limit by assuming the following form:

Q(Tc, L) = Q∞ + aL−b (4.69)

for each σ, where a and b are σ-dependent fitting parameters.

In Fig. 4.3, the universal ratio of the conventional Binder ratio, Q, is plotted as a function of

σ. The extrapolated values of Q are consistent with QMF in the cases for σ = 0.6 and 0.8, and

consistent with QSR for σ = 1.9 and 2. Meanwhile, the values deviate from QMF or QSR even

outside the region, 1 < σ < 7/4, which is similar to the Monte Carlo result by Picco [26] and in

contradiction to the conclusion by Sak [18]. We will show below, however, that this deviation

and the smooth change are artifacts due to strong corrections to scaling.

Next, we examine the behavior of the self-combined Binder ratio. In Fig. 4.4, SMF [Eq. (4.66)]

is plotted as a function of σ, which has smaller corrections if the transition belongs to the mean-

field universality class. In contrast to the conventional Binder ratio, SMF becomes zero within

the error bar for σ ≤ 1. Moreover, it is observed that SMF grows as ∼ (σ − 1)2 for σ > 1.

Thus, we conclude that the transition belongs to the mean-field universality for σ ≤ 1 and the

conventional Binder ratio changes linearly as |Q − QMF| ∼ (σ − 1) for σ > 1; i.e., the critical

decay exponent between the mean-field and the intermediate regimes is σ = 1 and Q (probably

the critical exponents as well) is non-analytic at the boundary.
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The boundary between the intermediate and the short-range regimes was investigated pre-

cisely by the use of the self-combined Binder ratio, SSR [Eq. (4.67)], as shown in Fig. 4.5. In a

similar way to the previous case, SSR decreases as ∼ (7/4− σ)2 for σ < 7/4 and becomes zero

for σ ≥ 7/4. Thus, we conclude that the critical decay exponent is σ = 7/4.

The apparent deviation of the conventional Binder ratio from the mean-field and short-range

values at σ = 1 and 7/4, respectively, is due to the existence of strong (likely logarithmic [6,

17,62]) corrections at the critical decay exponents. Indeed the nearest neighbor model exhibits

the logarithmic correction-to-scaling in the upper critical dimension (d = 4) [63]. In Figs. 4.6

and 4.7, we compare the system-size dependence of the conventional Binder ratio, the combined

Binder ratio (only for σ = 1), and the self-combined Binder ratio for σ = 1 and 7/4, respectively.

We observe that in both cases the combined or the self-combined Binder ratio converges to zero

smoothly. On the other hand, the conventional Binder ratio has the stronger size dependence

than the combined Binder ratios, which yields large error bars in the extrapolated values (open

symbols). This observation indicates that the conventional Binder ratio presumably suffers

from logarithmic-type corrections, while the (self-)combined Binder ratio is free from the strong

corrections. In other words, we successfully remove the leading corrections of the conventional

Binder ratio by considering the appropriate combination. Note that the combined and the

self-combined Binder ratios have smaller error bars than the conventional Binder ratio. It is

expected that the statistical fluctuations of the terms of the combined quantities cancel with

each other in the linear combination.

At last, it is quite interesting to see, in Fig. 4.6, that the combined Binder ratio [Eq. (4.62)]

has even smaller corrections than the self-combined Binder ratio at σ = 1. The behavior

of the conventional Binder ratio (red circles in Fig. 4.6) indicates that the leading correction

term might have a different exponent (smaller than 1/2) and have a quite different form from

Eq. (4.58). In such a case, Eq. (4.62) with coefficient (4.63) usually cannot eliminate the leading

correction. The reason for this accidental cancellation is not clear at the moment. It remains a

future problem.
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Figure 4.6: System-size dependence of the conventional Binder ratio (Q with red circles), the

combined Binder ratio (C with orange triangles), and the self-combined Binder ratio (SMF with

blue squares) at σ = 1. Open symbols denote the extrapolated values to the thermodynamic

limit by the fit to a function, A + aL−b, where A, a, and b are fitting parameters. The least-

squares fitting yields b ≃ 0.41 and 0.47 for Q and SMF, respectively. The x-axis is taken as L−b

with b = 0.41.
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Figure 4.7: System-size dependence of the conventional Binder ratio (Q with red circles) and

the self-combined Binder ratio (SSR with blue squares) at σ = 7/4. Open symbols denote the

extrapolated values to the thermodynamic limit by the fit to a function, A+ aL−b, where A, a,

and b are fitting parameters. The least-squares fitting yields b ≃ 0.32 and 0.29 for Q and SSR,

respectively. The x-axis is taken as L−b with b = 0.32.



Chapter 5

Spatially Correlated Random-Field

Ising Model

5.1 Correlated random field generation

To conduct Monte Carlo simulations of the spatially correlated random-field Ising model (RFIM),

generating correlated random numbers described by Eq. (2.86) is needed. In other words, ran-

dom fields should have a correlation matrix C described by

C =

⎛

⎜⎜⎜⎜⎜⎝

1 a
| #„r 1− #„r 2|d−ρ · · · a

| #„r 1− #„r N |d−ρ

a
| #„r 2− #„r 1|d−ρ 1 · · · a

| #„r 2− #„r N |d−ρ

...
...

. . .
...

a
| #„r N− #„r 1|d−ρ

a
| #„r N− #„r 2|d−ρ · · · 1

⎞

⎟⎟⎟⎟⎟⎠
, (5.1)

where a is an arbitrary constant.

This random-field generation is accomplished with uncorrelated Gaussian random numbers

and the decomposition of the correlation matrix. Consider the decomposition of the correlation

matrix into matrices M and its transpose MT ,

C = MMT . (5.2)

This decomposition is able to be done by the Cholesky decomposition or the diagonalization.

The decomposition by the diagonalization is done by

C = UλU−1 = UλUT = U
√
λ
√
λUT := MMT , (5.3)

where U a unitary matrix of eigenvectors of the correlation matrix, λ is a diagonal matrix with

eigenvalues, and
√
λ is a diagonal matrix with the square root of eigenvalues. By multiplying the

matrix M and a vector of uncorrelated Gaussian random numbers, X, we obtain the Gaussian

random vector Y with correlation C,

Y = MX. (5.4)

55
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This is easily verified as follows. Consider the covariance matrix of the random vector Y ,

which corresponds to the correlation matrix if random variables are normalized. The covariance

matrix is described as the expectation value of the multiplication of the random vector Y and

its transpose Y T as

E
[
Y Y T

]
= E

[
(MX)(MX)T

]
= E

[
MXXTMT

]
(5.5)

= ME
[
XXT

]
MT = MIMT = MMT = C, (5.6)

where the matrix M commutes with the expectation E[·], since the multiplication is a linear

operation. Thus, the correlation matrix of the random vector Y can give exactly the arbitrary

correlation matrix C. This transformation also does not distort the marginal distribution of the

Gaussian distributed vector. The joint distribution function of the k-dimensional multivariate

Gaussian distribution with zero mean and identity covariance I is expressed as

f(X) =
1√
(2π)k

exp

(
−1

2
XT I−1X

)
. (5.7)

By using the transformation (5.4), since X = M−1Y and (MT )−1(M)−1 = (MMT )−1, the

distribution becomes

f(Y ) =
1√
(2π)k

exp

(
−1

2
Y T (MT )−1I−1(M)−1Y

)

=
1√
(2π)k

exp

(
−1

2
Y T

(
MMT

)−1
Y

)

=
1√
(2π)k

exp

(
−1

2
Y TC−1Y

)
. (5.8)

Thus the transformation makes the distribution into the one with correlation matrix C, still

the Gaussian distribution.

Note that too large coefficient a in Eq. (5.1) is unphysical and it causes a fail in the transfor-

mation since the diagonalization (5.3) returns some negative eigenvalues and thus
√
λ becomes

imaginary. On the other hand, if a is too small, the effect of correlation also becomes small and

thus hardly observed especially for finite-size lattices. In brief, we have to use sufficiently large

but not too large coefficient a. In this work, we have used a = 0.2 to generate random fields

from empirical insight.

Although the correlated random-field generation may become a bottleneck of the Monte

Carlo simulation for larger system sizes since the computational cost of diagonalization propor-

tional to O(N3), it does not reach the bottleneck yet for the condition used in this work, i.e.,

system size N = 215 and 210 random samples.

5.2 Path in the phase diagram

A schematic phase diagram of the RFIM is presented in Fig. 5.1. To detect a phase transition,
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Figure 5.1: Schematic phase diagram of the RFIM in the T -hR-H space (taken from Ref. 64),

where T is the temperature, hR is the standard deviation of the random fields, and H is the

uniform external field.

one can consider arbitrary paths with crossing the phase boundary on the H = 0 plane. In this

work, paths are slightly tuned for the efficient computation as follows.

• We use the path with hR/T fixed, in other words, an intensity of the random field hR is

set to be proportional to temperature T . In this work, the critical random-field intensity

hRc is possibly changed from the uncorrelated case, and its value is not known in advance.

Generally, by introducing correlations between random fields, the critical random-field in-

tensity becomes smaller, since the correlation makes the effect of the random field stronger,

as shown in the results below. It is expected that the random-field intensity becomes zero

if correlation exponent ρ becomes large enough so that the effective dimension reaches

to the lower critical dimension, and our work indeed includes the simulation around the

lower critical dimension. The path to T = hR = 0 guarantees the crossing with the phase

boundary even for a sufficient small but finite critical random-field intensity hRc. This

path also makes the effect of random fields moderate since it avoids spins from freezing

completely by too strong random field at low temperatures, and also makes it easier to

distinguish the system from the ferromagnetic one without magnetic field by large enough

random fields at high temperatures.

• Although the mean value of the Gaussian random field is zero, the average of random

fields in each random sample has some deviation proportional to
√
N from the central

limit theorem. This deviation affects as an effective uniform field and causes some bias in
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the order parameter distribution. To eliminate this bias, a uniform field H = −
∑

i hi/N

is introduced to each sample so that to counterbalance the deviation of the random fields,

which is expected to work the same as the equal-weight path [65].

Note that the introduction of the uniform field H = −
∑

i hi/N slightly alters the correla-

tion between the random fields as described below. Let us consider the effective external

field h′( #„r ) = h( #„r ) + H and its correlation function C ′( #„r 1,
#„r 2) = [h′( #„r 1)h′( #„r 2)]. The

correlation function of the random field without a uniform field, C( #„r 1,
#„r 2), is described

as

C( #„r 1,
#„r 2) = [h( #„r 1)h(

#„r 2)] =

⎧
⎨

⎩
h2
R ( #„r 1 = #„r 2)

ah2
R

| #„r 1− #„r 2|d−ρ ( #„r 1 ̸= #„r 2).
(5.9)

By using C( #„r 1,
#„r 2), the modified correlation function, C ′( #„r 1,

#„r 2), is decomposed into

C ′( #„r 1,
#„r 2) = [(h( #„r 1) +H) (h( #„r 2) +H)]

=
[
h( #„r 1)h(

#„r 2) + h( #„r 1)H + h( #„r 2)H +H2
]

= C( #„r 1,
#„r 2) + 2 [h( #„r )H] + [H2], (5.10)

where we have assumed [h( #„r 1)H] = [h( #„r 2)H] = [h( #„r )H] by the translational symmetry.

The second term in the last line of Eq. (5.10) can be evaluated as

[h( #„r )H] =

⎡

⎣h( #„r )
∑

j

−h( #„r j)

N

⎤

⎦ = − 1

N

⎛

⎝[h( #„r )2
]
+
∑

#„r j ̸= #„r

[h( #„r )h( #„r j)]

⎞

⎠ . (5.11)

The first term in the right hand side of Eq. (5.11) is the variance of the marginal dis-

tribution h2
R. As for the second term, by taking the continuous limit and replacing the

summation by the integration, we obtain

∑

#„r j ̸= #„r

[h( #„r )h( #„r j)] ≃
∫ L

0
drdj [h(

#„r )h( #„r j)]

=

∫ L

0
drdj

a

| #„r − #„r j |d−ρ

≃
∫ L/2

0
dr′j

a

r′d−ρ
j

Sd−1r
′d−1
j

=
aSd−1

2ρρ
Lρ, (5.12)

where r′j is | #„r − #„r j |, and Sd−1 is the surface area of the d-dimensional unit sphere, and

we have assumed the spherical symmetry of the system. Thus, Eq. (5.11) becomes

[h( #„r )H] ≃ −h2
RN

−1 − aSd−1

2ρρ
N−(1−ρ/d). (5.13)
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The third term in the last line of the Eq. (5.10) can be evaluated similarly as

[H2] =

⎡

⎣
∑

j

h( #„r j)

N

∑

k

h( #„r k)

N

⎤

⎦

≃ 1

N2

(
N
[
h( #„r j)

2
]
+

∫ L

0

∫ L

0
drdjdr

d
k

a

| #„r j − #„r k|d−ρ

)

≃ 1

N2

(
Nh2

R +

∫ L

0
drdk

∫ L/2

0
dr′j

a

r′d−ρ
j

Sd−1r
′d−1
j

)

=
1

N2

(
Nh2

R +N
aSd−1

2ρρ
Lρ

)

= h2
RN

−1 +
aSd−1

2ρρ
N−(1−ρ/d). (5.14)

By using Eqs. (5.13) and (5.14), we finally obtained the asymptotic form of the effective

correlation function (5.10) as

C ′( #„r 1,
#„r 2) ≃ C( #„r 1,

#„r 2)− h2
RN

−1 − aSd−1

2ρρ
N−(1−ρ/d) (5.15)

The effect of negative correlation decreases as the system size increases since ρ/d < 1

to ensure the physical requirement that the random-field correlation must decay for long

distance.

To summarize, the above conditions modify the Hamiltonian as

H = −J
∑

⟨i,j⟩

SiSj −
∑

i

hiSi −H
∑

i

Si, (5.16)

where hR/T = const. → hR ∝ T and H = −
∑

i hi/N . In this work, we have used the condition

hR/T = 0.35 for the uncorrelated random-field case and hR/T = 0.2 for the correlated one, to

keep the moderate critical temperature.

5.3 Results

As described in Chap. 2, correlation between random fields is believed to change the critical

behavior toward lower dimensional one. In this work, we have studied the three-dimensional

and the four-dimensional spatially correlated RFIMs. Previous analytical studies predict the

three-dimensional and the four-dimensional RFIMs reach to the lower critical dimension at

ρ ≥ 1.0 and ρ ≥ 2.0, respectively, from Eq. (2.88).

We have used the Metropolis algorithm with 8192 Monte Carlo steps for sampling, after the

1024 steps for thermalization, and performed 1024 random average for correlated/uncorrelated

random-field configurations. For the three-dimensional system, we have studied the uncorre-

lated, ρ = 0.0, ρ = 0.5, ρ = 1.0, and ρ = 2.0, and for the four-dimensional system, we have

studied the uncorrelated, ρ = 0.0, ρ = 0.5, ρ = 1.0 and ρ = 1.5. In this section, we especially
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Figure 5.2: Temperature dependence of the specific heat of the three-dimensional RFIM with

(a) ρ = −∞, (b) ρ = 0.5, and (c) ρ = 2.0. Growth of a double-peak structure is clearly observed

for larger ρ.

focus on how spatially correlated random fields affect the critical phenomena, and the identity of

the critical phenomena between systems in different dimensions, i.e., the identity of the effective

dimension.

5.3.1 Specific heat

Does Harris criterion restrict α to negative?

It is generally argued that the Harris criterion (2.83) conducts the restriction on the critical

exponent, α ≤ 0, by using the hyperscaling relation (2.31), and thus the specific heat of a

random system should remain finite even at the critical point [42]. For the RFIM, however,

since the modified hyperscaling relation (2.58) should be satisfied instead of the hyperscaling

relation (2.31), α = 2− ν(d− θ) ̸= 2− dν, α ≤ νθ is concluded instead of α ≤ 0.

In the case of the correlated RFIM, the Harris criterion should be further modified by

replacing the dimension from d to D′ = d− ρ [12] as

(d− ρ)ν ≥ 2. (5.17)

As a result, the critical exponent α should satisfy

α ≤ ν(θ − ρ). (5.18)

in the spatially correlated RFIM.

Weird double-peaked behavior at large ρ

In general, the specific heat has a peaked singular behavior near the critical temperature if

the exponent α is positive. For the present RFIM, we observe that for larger ρ an extra peak

appears at higher temperature in addition to the peak near the critical point as shown in

Fig. 5.2. Although we cannot conclude the solid reason for this weird double-peak behavior for

the moment, it possibly suggests manifestation of another type of critical behavior [66].
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5.3.2 Disconnected Binder ratio

The Binder ratio, which is used to detect the critical point, also can be applied to random

systems. For a random system, one can define the connected and disconnected Binder ratios, as

described in Sec. 2.3.2. The connected and disconnected Binder ratios are defined respectively

as follows

Qcon =

[
⟨m2⟩2

]

[⟨m4⟩] (5.19)

Qdis =

[
⟨m2⟩

]2
[
⟨m2⟩2

] , (5.20)

where ⟨·⟩ denotes the thermal average and [·] does the random average. Both of the Binder

ratios are known to converge to the constant value at the critical point, but the connected one

does not show a crossing behavior since it converges to the some value for N → ∞ also in the

ordered phase [34], while the disconnected Binder ratio still shows the crossing behavior and it

is thus more useful for the random case.

We investigate the critical behavior of the disconnected Binder ratio for various ρ. The

disconnected Binder ratio of the three-dimensional RFIM is shown in Figs. 5.3, 5.4, 5.5, 5.6,

and 5.7. The four-dimensional one is also shown in Figs. 5.8, 5.9, 5.10, 5.11, and 5.12. Note

that in these figures we plot 1 − Qdis in logarithmic scale since the critical behavior of RFIM

are close to the first-order phase transition and thus the value of the disconnected Binder ratio

at the crossing point is found to be very close to unity. The disconnected Binder ratio of the

uncorrelated or weakly correlated systems, presented in Figs. 5.3, 5.4, 5.8, and 5.9, exhibits

the constant crossing point near the critical temperature. On the other hand, the systems

with stronger correlations, or larger ρ, shows a gradual shift of the crossing point toward lower

temperatures as the system size increases, which seems to suggest the stronger finite-size effect

or the absence of finite-temperature phase transitions. If we consent to the prediction Eq. (2.88),

three-dimensional RFIM with ρ ≥ 1.0 reaches or exceeds the lower critical dimension, and thus

the extrapolation of the crossing points in Figs. 5.6 and 5.7 would be the zero temperature in

the thermodynamic limit.
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Figure 5.3: Disconnected Binder ratio (1−Qdis) of the three-dimensional uncorrelated RFIM.
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Figure 5.4: Disconnected Binder ratio (1−Qdis) of the three-dimensional RFIM with ρ = 0.0.
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Figure 5.5: Disconnected Binder ratio (1−Qdis) of the three-dimensional RFIM with ρ = 0.5.
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Figure 5.6: Disconnected Binder ratio (1−Qdis) of the three-dimensional RFIM with ρ = 1.0.
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Figure 5.7: Disconnected Binder ratio (1−Qdis) of the three-dimensional RFIM with ρ = 2.0.
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Figure 5.8: Disconnected Binder ratio (1−Qdis) of the four-dimensional uncorrelated RFIM.
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Figure 5.9: Disconnected Binder ratio of the four-dimensional RFIM with ρ = 0.0.
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Figure 5.10: Disconnected Binder ratio (1−Qdis) of the four-dimensional RFIM with ρ = 0.5.
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Figure 5.11: Disconnected Binder ratio (1−Qdis) of the four-dimensional RFIM with ρ = 1.0.
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Figure 5.12: Disconnected Binder ratio (1−Qdis) of the four-dimensional RFIM with ρ = 1.5.
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Figure 5.13: Scaling plot of the three-dimensional uncorrelated RFIM. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.
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Figure 5.14: Scaling plot of the three-dimensional RFIM with ρ = 0.0. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.

5.3.3 Finite-size scaling

Next, we perform the finite-size scaling analysis for the connected magnetic susceptibility (2.75),

the disconnected magnetic susceptibility (2.76), and the square of the magnetization
[
⟨m2⟩

]

simultaneously with assuming the critical temperature Tc and the critical exponent ν as sharing

parameters of these quantities, by using the Bayesian scaling analysis [14,15]. We avoided to use

the specific heat because of its difficulty and the weird behavior described in subsection 5.3.1.

For three-dimensional systems, L = 16, 18, 20, 22, 24, 28, 30, and 32 was used. For uncorre-

lated four-dimensional systems, L = 10, 12, 14, and 16 was used, while L = 8, 10, 12, and 14

for the correlated cases. The result of finite-size scaling for the three-dimensional system with

uncorrelated, ρ = 0.0, ρ = 0.5, and ρ = 1.0, are shown in Figs. 5.13, 5.14, 5.15, and 5.16,

respectively. For ρ = 2.0, we can not obtain a reasonable finite-size scaling plot, which suggests

the effective dimension becomes smaller than the lower critical dimension in this case. The

four-dimensional system with uncorrelated, ρ = 0.0, ρ = 0.5, ρ = 1.0, and ρ = 1.5 are shown

in Figs. 5.17, 5.18, 5.19, 5.20, and 5.21, respectively. The scaling plots also suggest stronger

finite-size effect for larger correlation, i.e., larger ρ makes larger deviation in the scaling plot.
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Figure 5.15: Scaling plot of the three-dimensional RFIM with ρ = 0.5. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.
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Figure 5.16: Scaling plot of the three-dimensional RFIM with ρ = 1.0. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.

5.3.4 Critical exponents

We have estimated the critical exponents from the finite-size scaling plot of the connected

magnetic susceptibility χcon, the disconnected magnetic susceptibility χdis, and square of the

magnetization m2, as explained in Sec. 5.3.3. The estimates for the critical exponents are

summarized in Table 5.1, in which ρ = −∞means the uncorrelated case. The critical exponents,

α, η, and η̄, and the effective dimension D are obtained from Eqs. (2.19), (2.33), (2.77), and

(2.91), respectively. The confidence intervals, which are denoted by the figures in parenthesis,

are estimated by the largest deviation of the finite-size scaling results with subsets of Ls. The

subsets are chosen for all possible combination of the nearest four system sizes. For three-

dimensional system, the subsets are {16, 18, 20, 22}, {18, 20, 22, 24}, · · · , and {26, 28, 30, 32}. For
four-dimensional system, the subsets are {6, 8, 10, 12} and {8, 10, 12, 14}. For three-dimensional

system with ρ = 1.0, the Bayesian scaling analysis fails to converge for more than half of the

subsets, which probably suggests the effective dimension becomes smaller than the lower critical

dimension.

Here, we note that the direct comparison of the critical temperatures Tc between the uncor-

related and correlated models is meaningless since the variance of random fields is different, as
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Figure 5.17: Scaling plot of the four-dimensional uncorrelated RFIM. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.
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Figure 5.18: Scaling plot of the four-dimensional RFIM with ρ = 0.0. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.

explained in Sec. 5.2. If the same variance is used for both cases, the critical temperature Tc

of the correlated RFIM should be significantly smaller than the uncorrelated RFIM, since the

introduction of correlation between random fields decreases the critical intensity hRc.

We found that γ gradually increases with increasing ρ. This behavior is consistent with the

larger ρ makes the effective dimension lower since lower dimensional Ising model has larger γ (cf.

in the pure case, γ of the mean-field model, three-dimensional Ising model, and 2D Ising model

are 1, 1.2372, and 7/4 = 1.75, respectively). Eq. (2.90) predicts the identities of the critical

behavior between different dimensional systems. For example, the four-dimensional system with

ρ = 1.0 is identical to the three-dimensional system with ρ < 0.0, and this identification seems

valid at these points, 1.3 ≃ 1.4, and therefore the effective dimension of the three-dimensional

uncorrelated RFIM and four-dimensional RFIM with ρ = 1.0 are estimated from D ≃ 1.3 to

D ≃ 1.4.

On the other hand, quantitative estimation of the critical exponents seems to fail for larger

ρ, especially for the disconnected critical exponents γ̄ and η̄. The relation (2.80) expects the

γ̄/γ = 2, but it seems to be broken for larger ρ as well. Although Eq. (2.80) is merely a

prediction, in addition to the violation of the γ̄/γ = 2, the exact relation (2.78) is also broken,
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Figure 5.19: Scaling plot of the four-dimensional RFIM with ρ = 0.5. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.
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Figure 5.20: Scaling plot of the four-dimensional RFIM with ρ = 1.0. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.

0.8 > 2 × 0.3 = 0.6 at ρ = 0.5. We have no other choices but to interpret as the failure of

estimation of the correct disconnected critical exponents for larger ρ. The effective dimension

D of the three-dimensional system with ρ = 0.5 is also invalid since D = 0.8 is smaller than the

lower critical dimension despite ρ < 1.0. In the region with effective dimension D′ = d− ρ < 3,

where D′ is the effective dimension from the aspect of the uncorrelated RFIM, there seems be

strong finite-size effect and we conclude that the precise estimation of the critical exponents is

extremely difficult by the present scale of the simulations.

The origin of stronger finite-size corrections for the larger correlation is qualitatively ex-

plained as follows: Strongly correlated random fields tend to align toward the same direction,

and each aligned region behaves like a bulk of external field. This implies that the number of

effective spins decreases compared with the uncorrelated case, and hence the correlated RFIM

behaves as a effectively smaller system.
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Figure 5.21: Scaling plot of the four-dimensional RFIM with ρ = 1.5. (a) Connected magnetic

susceptibility χcon. (b) Disconnected magnetic susceptibility χdis. (c) Square of the magnetiza-

tion ⟨m2⟩.

Table 5.1: Critical temperature and critical exponents of the spatially correlated RFIM.

d ρ Tc ν γ γ̄ β γ̄/γ α η η̄ D

3 −∞ 3.42(4) 1.4(2) 2.3(2) 4.8(8) 0.09(14) 2.1(4) -0.5(2) 0.3(1) 0.5(4) 1.3(1)

3 0.0 3.55(6) 1.5(4) 2.5(7) 5.1(7) 0.05(2) 2.0(4) -0.6(3) 0.4(2) 0.6(5) 1.4(2)

3 0.5 3.43(5) 1.5(3) 2.5(4) 4.7(8) 0.04(1) 1.9(3) -0.6(4) 0.3(3) 0.8(5) 0.8(3)

3 1.0 3.17(9) 1.8(4) 3.0(2) 5.5(6) 0.01(2) 1.9(2) -1.0(1) 0.3(3) 0.9(3) 0.3(3)

4 −∞ 5.74(3) 0.8(1) 1.5(2) 3.4(5) 0.28(3) 2.2(1) -0.1(1) -0.04(6) -0.6(2) 2.0(2)

4 0.0 5.82(6) 1.1(2) 2.1(3) 5.6(6) 0.19(3) 2.67(2) -0.5(2) 0.1(2) -1.0(5) 2.1(2)

4 0.5 5.68(9) 1.3(3) 2.3(3) 6.7(8) 0.14(5) 2.87(3) -0.6(2) 0.2(2) -1.1(5) 1.7(2)

4 1.0 5.45(15) 1.6(3) 2.6(4) 8(1) 0.07(6) 3.15(6) -0.7(3) 0.3(2) -1.2(6) 1.3(2)

4 1.5 4.92(30) 2.3(6) 3.4(7) 11(1) -0.1(1) 3.56(6) -1.2(4) 0.5(1) -1.3(5) 1.0(1)





Chapter 6

Summary

In the present thesis, we have studied the critical phenomena of the Ising model with various

effective dimensionality, includes the non-integer effective dimensions. In higher dimensions,

spins interact with more and more spins, and that makes easier to develop the long-range order.

This difference also makes the critical behavior different. Conversely, the difference of the

universality class is qualitatively explained as the difference in the difficulty of the development

of the long-range order. By introducing the interaction which increases or disturbs the growth of

the long-range order, we expect that the system exhibits different universality class in effectively

different dimensions. In this work, we have studied the Ising model with long-range interaction

(LRI) and the spatially correlated random-field Ising model (RFIM), both of which are expected

to change the critical behavior continuously.

In Chap. 2, we introduced the theory and the previous studies of the general critical phe-

nomena, the Ising model with LRI, and the spatially correlated RFIM. The Ising model with

LRI changes its universality class with respect to the decay exponent σ. For a sufficiently small

σ (strong LRI), the universality corresponds to the mean-field one since the strong LRI is qual-

itatively the same as the fully connected model. On the other hand, for a sufficiently large

σ (weak LRI), the universality corresponds to the short-range interaction since the LRI is no

longer effective. The boundary of these regions, that is, the critical decay exponents, were not

known well in spite of the simple form of the Hamiltonian.

The RFIM, on the other hand, is believed to change the critical behavior from pure Ising

model toward lower dimensional one since random fields scatter the ordered clusters toward

random directions and the development of the long-range order becomes more difficult. The

scaling relation of the random-field Ising model is different from the pure system and there

are various predictions, but the exact scaling relations are not established yet and under the

controversy. The case where random fields have spatial correlations with each other, the critical

behavior becomes different further. Correlated random fields tend to align toward the same

direction and each aligned region behaves like a bulk of external field. The scattering effect

of these aligned bulks is stronger than independent one since a spin is excited not only by a
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random field acting on that site but also nearby random fields via exited spins aligned toward

the same direction as the bulk random fields. Since both of the parameters, the long-range

interaction σ and the correlation of the random-field ρ, are believed to change the effective

dimension continuous, these models are expected to have the continuous dimensions, i.e., non-

integer effective dimensions.

In Chap. 3, we introduced the various Markov chain Monte Carlo methods. The single

spin flip algorithm and the cluster algorithm, the most fundamental Monte Carlo algorithms,

are introduced. In addition to these fundamental algorithms, we introduced the Fukui-Todo

method, which drastically decreases the computational cost for the system with LRI from O(N2)

to O(N).

In Chap. 4, we presented the results for the two-dimensional Ising model with LRI. In this

chapter, we especially focused on the quantitative classification of the universality class by

decay exponent σ. Concretely, we estimated the boundaries between the mean-field and the

intermediate, and between the intermediate and the short-range. The main difficulty of the

Monte Carlo study of the LRI is divided into two parts, the huge computation cost and the

extremely slow (possibly log-like) convergence of the physical quantities. The former was solved

by the Fukui-Todo method, which was introduced in Chap. 3. In addition to the Fukui-Todo

method, we developed the generalized Ewald summation and the improved estimator. Although

the Ewald summation is known to improve the convergence of the summation of the periodic

potential far faster than the brute-force summation, it was available only for the algebraic

potential with integral exponents. We generalized the exponent of the Ewald summation from

integral numbers into real numbers. We used the improved estimator, which is a more efficient

method used in the cluster algorithm to obtain the expectation value of the magnetization. To

derive the equation of the improved estimator, we introduced the simple method to obtain the

equation of the improved estimator for the power of the magnetization with an arbitrary even

number. To overcome the extremely slow convergence of the physical quantities occurring in

the LRI, we used the Binder ratio instead of the critical exponents and introduced the combined

Binder ratio, which converges far faster than the conventional Binder ratio at the critical point.

The results of the current work, Monte Carlo simulations of the two-dimensional Ising model

with LRI and its analysis, concluded the boundary of the mean-field and the short-range are

σ = 1.0 and σ = 1.75, respectively. Our results agree with one of the renormalization group

predictions [18, 30].

In Chap. 5, we introduced the research of the spatially correlated RFIM. To accomplish

the Monte Carlo simulation with the correlated random-field, we generated correlated Gaussian

random variables by the diagonalization of the correlation matrix. We analyzed the behavior of

the three-dimensional and the four-dimensional correlated RFIMs. The disconnected Binder ra-

tio [34], which is used to estimate the critical point of the RFIM, revealed the universal crossing

point for the uncorrelated or weakly correlated system, but the shift of the crossing point was
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observed for the strongly correlated RFIM. The finite-size scaling of the RFIM also exhibited

larger deviation in the strongly correlated region. These behaviors imply that the stronger cor-

relation of random fields causes the larger finite-size effect. The critical exponents are estimated

by the finite-size scaling technique. The critical exponents suggest that the larger correlation

shifts the effective critical behavior toward lower dimensional one, but unfortunately quanti-

tative estimation seems to be quite difficult especially for the system with strongly correlated

random fields by the present scale of the simulations.
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[50] Luijten, E. & Blöte, H. W. J. Monte Carlo method for spin models with long-range

interactions. Int. J. Mod. Phys. C 6, 359 (1995). [4 citations in pp. 31, 46, 48, and 49.]

[51] Tomita, Y. J. Phys. Soc. Jpn. 78, 014002 (2009). [One citation in p. 31.]

[52] Todo, S. & Suwa, H. Geometric allocation approaches in Markov chain Monte Carlo. J.

Phys.: Conf. Ser. 473, 012013 (2013). [One citation in p. 31.]

[53] Fortuin, C. M. & Kasteleyn, P. W. On the random-cluster model I. introduction and

relation to other models. Physica 57, 536 (1972). [One citation in p. 31.]

[54] Kawashima, N. & Gubernatis, J. E. Generalization of the Fortuin-Kasteleyn transformation

and its application to quantum spin simulations. J. Stat. Phys. 80, 169 (1995). [One citation

in p. 31.]

[55] Ewald, P. P. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys

64, 253 (1921). [One citation in p. 35.]



81

[56] Karasawa, N. & Goddard, W. A. Acceleration of convergence for lattice sums. J. Chem.

Phys. 93, 7320 (1989). [One citation in p. 35.]

[57] Kretschmer, R. & Binder, K. Ordering and phase transitions in Ising systems with com-

peting short range and dipolar interactions. Z. Phys. B 34, 375 (1979). [One citation in

p. 35.]

[58] Ueda, A. Computer Simulation (in Japanese) (Asakura, Tokyo, 1990). [One citation in

p. 35.]

[59] http://www.boost.org/. [One citation in p. 40.]

[60] Yasuda, S. & Todo, S. Monte Carlo simulation with aspect-ratio optimization: Anomalous

anisotropic scaling in dimerized antiferromagnets. Phys. Rev. E 88, 061301(R) (2013).

[One citation in p. 45.]
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[63] Brézin, E. An investigation of finite size scaling. J. Phys. (France) 43, 15 (1982). [One

citation in p. 52.]

[64] Nattermann, T. Theory of the random field Ising model arXiv:970529. [One citation in

p. 57.]

[65] Borgs, C. & Kappler, S. Equal weight versus equal height: a numerical study of an

asymmetric first-order transition. Phys. Lett. A 171, 37 (1992). [One citation in p. 58.]

[66] Sacconi, R. Numerical study of the transition of the four-dimensional random field Ising

model. J. Phys. A: Math. Gen. 31, 3751 (1997). [One citation in p. 60.]

arXiv:970529

	1 Introduction
	2 Critical Phenomena and Effective Dimensions
	2.1 Phase transition phenomena
	2.1.1 Critical exponents
	2.1.2 Scaling relations
	2.1.3 Finite-size scaling

	2.2 Ising model with long-range interaction
	2.3 Random field Ising model
	2.3.1 Critical dimension of the uncorrelated random-field Ising model
	2.3.2 Scaling relations of random system
	2.3.3 Spatially correlated random-field Ising model


	3 Review of Numerical Simulation Algorithms
	3.1 Markov chain Monte Carlo
	3.1.1 What is Markov chain Monte Carlo method?
	3.1.2 Single spin flip algorithm
	3.1.3 Cluster algorithm

	3.2 Fukui-Todo method

	4 Ising Model with Long-Range Interaction
	4.1 Generalized Ewald summation
	4.1.1 Ewald method
	4.1.2 Ewald summation for d+=1
	4.1.3 Generalized Ewald summation

	4.2 Improved estimator
	4.2.1 Second moment: m2(g)
	4.2.2 Fourth moment: m4(g)
	4.2.3 Sixth moment: m6(g)
	4.2.4 Eighth moment: m8(g)

	4.3 Combined Binder ratio
	4.3.1 Combined Binder ratio
	4.3.2 Self-combined Binder ratio

	4.4 Results
	4.4.1 Critical temperature
	4.4.2 Binder ratio at critical temperature


	5 Spatially Correlated Random-Field Ising Model
	5.1 Correlated random field generation
	5.2 Path in the phase diagram
	5.3 Results
	5.3.1 Specific heat
	5.3.2 Disconnected Binder ratio
	5.3.3 Finite-size scaling
	5.3.4 Critical exponents


	6 Summary
	Bibliography

