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Chapter 1

Introduction

1.1 Preface

If an object cannot be superposed on its mirror image by any sequence of rotation

and translation, the object is chiral. The concept of chirality was first introduced

in the 19th century and is a central and unifying concept in modern science [1]. In

condensed matter, chiral structure is found not only in molecular structures and

crystal structures but also in spin structures; chiral crystals can transmit their

chirality to the magnetism via antisymmetric exchange interaction of relativistic

origin, producing chiral spin structures such as a helical structure [Fig. 1.1]. For

example, chiral spin structures play an important role in magnetoelectric (ME)

effect, namely the mutual coupling between magnetism and electricity [2].

Recently chiral spin structures also attract intensive interest because some

chiral spin structures are topologically nontrivial. Topology is one of the most

important concepts in contemporary physics, characterizing the quantum Hall

states, the topological insulators, and the topological superconductors, for in-

stance [3]. In spin systems, spin structures with nontrivial topology give rise to a

host of novel phenomena, furthermore offering advantage for the potential spin-

tronics applications. One such example is a magnetic skyrmion, which has been
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CHAPTER 1. INTRODUCTION 6

discovered in a chiral magnet of MnSi in 2009 [Fig. 1.1(a)]. Topological nature

of skyrmion brings about various unique transport phenomena; conduction elec-

trons passing through skyrmions acquire the real-space Berry phase, which leads

to topological Hall effect [4]. In addition, the conduction electrons drive skyrmions

through spin transfer torque by ultra low current density, and hence various ap-

plications of skyrmions such as skymion-based non-volatile memory devices have

been proposed [4, 5].

In this Thesis, we have explored novel transport phenomena in which both

chiral and topological properties of skyrmion and chiral spin structures play crucial

roles. Below, we will introduce skyrmions and chiral spin structures and their

transport properties.

Figure 1.1: Spin structures of left- and right-handed skyrmions (a) and left- and

right-handed helical orders (b).
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1.2 Skyrmions and chiral spin structures

1.2.1 Skyrmions and helical structures

Basic aspects of skyrmion

Skyrmion is characterized by the nonzero topological number (skyrmion number)

NSk as defined by

NSk =
1

4π

∫
drn ·

(
∂n

∂x
× ∂n

∂y

)
, (1.1)

where n = n/|m| is an unit vector parallel to the local moment m [4]. This

topological nature guarantees stability of skyrmion; skyrmion cannot continuously

transform to other competing spin structures such as conical or ferrmagnetic states

(i.e. topological stability). As mentioned in the next section, the topology of

skyrmion also gives rise to unique transport phenomena.

Figure 1.2: skyrmion structures with various vorticity m and helicity h. Repro-

duced from Ref. [4].

As shown in Fig. 1.2, there exist several types of skyrmion, which are char-

acterized by helicity h and vorticity m, depending on the dominant mechanisms

of the stabilization of skyrmion [4]. So far, four mechanisms of the stabiliza-
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Magnetic phase diagram in chiral magnets hosting skyrmion share the common

characteristics as shown in Fig. 1.4, which originate from three hierarchical energy

scales: (1) exchange interaction (J) on the strongest scale, (2) DM interaction

(D) on the intermediate scale, and (3) the weakest cubic anisotropy (K) [7].

The ground state is a helical state with a single wavevector q, whose magnitude

is Q = D/J and the direction is determined by the cubic anisotropy. With

increasing magnetic field, the helical state transforms to the conical state, in which

q parallel to the magnetic field direction followed by the induced ferromagnetic

state. Skyrmion form a triangular lattice (SkL) in a narrow temperature-magnetic

field region just below Tc [7, 14, 15, 16] [Fig. 1.4]. The triangular lattice of

skyrmion can be described by a superposition of three helical states [4, 7];

n = nuniform + A

3∑
i=1

[ni1 cos(Qi · r) + ni2 sin(Qi · r)] . (1.2)

Here, nuniform and A are uniform magnetization induced by the external magnetic

field and the magnetization of a single helix, respectively. The Q-vectors are

perpendicular to magnetic field, satisfied the relation Q1+Q2+Q3 = 0, and ni1,

ni2, and Qi are orthogonal to each other.

Observation of skyrmions in chiral magnets

Experimentally, SkL was first observed in B20-type MnSi by using small angle

neutron scattering (SANS)[7]. Figure 1.5 shows the experimental setup and SANS

pattern with magnetic field parallel to the incident neutron beam. As shown in

Fig. 1.5(b), the SANS pattern shows six fold spots, indicating formation of a

triangular lattice of skyrmions.

Subsequently, the real-space observation of skyrmion lattice using Lorentz

transmission microscopy (TEM) was reported in a thin plate sample of B20-type

Fe0.5Co0.5Si, whose thickness is approximately 20 nm [Fig 1.6(a)][8]. In addi-

tion to the triangular lattice of skyrmions [Fig 1.6(a) and (c)], isolated skyrmions

in the helical/ferrromagnetic background are also observed [Fig 1.6(b) and (d)],
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(a)

(c) (d)

 MnSi

 Cu2OSeO3
 Co8Zn9Mn3

(b) Fe0.8Co0.2Si

skyrmion
skyrmion

Figure 1.4: Magnetic phase diagrams of MnSi (a), Fe0.8Co0.2Si (b), Cu2OSeO3 (c),

and Co8Zn9Mn3 (d). Reproduced from Ref. [7, 14, 15, 16].

(b)(a)

Figure 1.5: (a) Experimental setup for the small angle neutron scattering (SANS)

on MnSi. (b) Sixfold SANS pattern in skyrmion phase. Reproduced from Ref.

[7].
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highlighting the particle nature of skyrmions. Whereas in bulk samples SkL is

stabilized only in a narrow temperature-magnetic field region, skyrmions stabi-

lized wide temperature-magnetic field region in the case of thin plate samples [Fig

1.6(e)]. Thickness (t) dependence of skyrmion phase region has been quantita-

tively studied in a wedgewise thinned plate of B20-type FeGe [17]. The temper-

ature range of the skyrmion phase as observed by LTEM extends from Tc of 280

K to 50 K in a thin part (t ≈ 15 nm), while it tends to shrink toward a small

window just below Tc in thicker parts (t ≈ 75 nm). The above observation indi-

cates that the typical t value for the crossover of stability between skyrmion and

conical state is around the helical period (λ = 70 nm). This is perhaps because

the spins cannot form even one cycle of spiral in the case of t ≤ λ, which leads to

destabilization of the conical state over the skyrmion state.

(a)
(b) (c) (d)

(e)

Figure 1.6: (a) Real-space observation of spin structure of skyrmions by Lorentz

transmission electron microscopy (Lorentz TEM) in a thin plate Fe0.5Co0.5Si. (b)-

(d) Lorentz TEM images at various magnetic field (20 mT, 50 mT, and 70 mT)

(e) Phase diagram of the thin plate of Fe0.5Co0.5Si. Reproduced from Ref. [8].
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MnSi

Fe0.8Co0.2Si

(a) (b)

(c) (d)

Figure 1.7: Magnetic phase diagrams of Fe0.8Co0.2Si under thermodynamic equi-

librium (a) and including the metastable skyrmion lattice crated by field cooling

(FC) (b). Magnetic phase diagrams of MnSi under thermodynamic equilibrium

(c) and including the metastable skyrmion lattice crated by created FC (d). Re-

produced from Ref. [14, 19].



CHAPTER 1. INTRODUCTION 12

Metastability of skyrmions

Because of difference in topology between the skyrmion and the conical/helical

structures, the transition between two states are first-order transition. Hence, even

in bulk samples, skyrmion can exist at low temperatures as a metastable state,

although an equilibrium skyrmion sate appears at a narrow temperature region

just below Tc [14, 18, 19, 20]. Figure 1.7(a) is the equilibrium magnetic phase

diagram of Fe0.8Co0.2Si. Skyrmion phase appears at a narrow temperature region.

In contrast, in the case of a field cooling procedure passing thought the equilibrium

skyrmion sate, the skyrmion exists down to the lowest temperature. [Fig 1.7(b)]

[14]. Similar phase diagrams are also reported in MnSi as shown in Fig 1.7(c) and

(d)[19]. Here, we note the effect of a cooling rate on the formation of a metastable

skyrmion state. In general, when the cooling rate is slow enough compared with

the phase-transition kinetics, the phase transition to a thermodynamically stable

state occurs. In contrast, when the cooling rate exceeds the phase-transition

kinetics, the phase transition is avoided and a metastable state appears. In the

case of skyrmions, metastable skyrmions appear with the standard cooling rate

(typically, 2×10−3 to 4×10−1 K/s) when randomly positioned atoms or pressure

inhomogeneities are introduced [14, 18, 20]. In contrast, in nominally pure samples

such as MnSi, metastable skymion appears only when the rapid cooling rate is

performed (typically, 700 K/s) [19].

Metastable skyrmions often show the structural transition from a triangular

lattice to a square lattice. In Fig 1.8, we show SANS patters of metastable tri-

angular lattices and square lattices of skyrmions and magnetic phase diagrams

in Co8Zn8Mn4 [Fig. 1.8(a)] and MnSi [Fig. 1.8(b)] [20, 21]. In both materials,

square lattices of skyrmions appear at low temperatures. This is perhaps because

magnetic anisotropy from the chemical lattice, which is relatively strong at low

temperatures, triggers the structural transition of skyrmion lattice.
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Figure 1.8: Small angle neutron scattering patters of triangular lattice of skyrmion

(a) and square lattice of skyrmions (b) in Co8Zn8Mn4. The 12 spots in Fig

1.8(a) originate from two types of domains of triangular lattice skyrmion, in

which one q of three-q is aligned along [100] or [010]. (c) Magnetic phase dia-

gram of Co8Zn8Mn4 including the metastable skyrmion phase. Small angle neu-

tron scattering patters of triangular lattice of skyrmion (d) and square lattice

of skyrmions (e) in MnSi. (f) Magnetic phase diagram of MnSi including the

metastable skyrmion phase. Reproduced from Ref [20, 21].

1.2.2 Chiral spin fluctuations

Up to this point, we have reviewed the static chiral spin structures, namely helical,

conical and skyrmion structures. Next, we review dynamical chiral spin stricture.
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As mentioned above, in the chiral magnets chirality of spin winding structures is

determined by handedness of the corresponding lattice structures. For example,

in MnSi, the long-period chiral spin structures form below the magnetic ordering

temperature Tc = 29.5 K. However, even above Tc, where the long-range magnetic

orders disappear, short-range spin correlations still survive without losing the

chiral nature, which is called chiral spin fluctuations [22, 23, 24, 25].

Chirality of spin structures can be ascertained by using polarized neutron

scattering. The cross-section for polarized neutron is given by [26]

d2σ

dΩdω
∝

∫
dteiωt⟨SQ · S−Q(t)⟩+ i(Q · P )

(
Q ·

∫
dteiωt⟨C(t)⟩

)
, (1.3)

C(t) = SQ(0)× S−Q(t), (1.4)

where SQ, Q, and P are the Fourier component of a spin structure, the scatter-

ing vector, and the polarization of the incident neutron, respectively, and C(t)

represents chirality of spin structures (vector spin chirality). The second term

predicts that if ⟨C(t)⟩ is nonzero, there is the difference between the scattering

intensities of experimental setup with Q parallel to P and Q anti-parallel to P .

The relation is reversed by changing the sign of either P or C(t). In Fig. 1.9

(a)-(d), we show small-angle polarized neutron scattering (SAPNS) patterns for

two directions of the polarization of the incident neutron in the left-handed MnSi

both above and below Tc. At T = 28.7K < Tc, the four Bragg spots are observed

along ⟨111⟩ directions; the intensity of Bragg spots perpendicular to P are inde-

pendent of the direction of P , whereas the intensity of Bragg spots almost parallel

to P depend on the direction of P in accord with the expected behavior in the

scattering from the homochiral helical structure [ Fig. 1.9 (a) and (b)] [23]. At

T = 29.1K > Tc, the semicircular diffuse patterns oriented along P direction are

observed, indicating the vector spin chirality remains even in the paramagnetic

phase [Fig. 1.9 (c) and (d)]. This is further confirmed by temperature dependence
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of the polarization of the scattering defined as

Ps =
σ(P )− σ(−P )

σ(P ) + σ(−P )
. (1.5)

The polarization of the scattering represents the fraction of the dominant chiral

domain: Ps = 1 for a single chiral domain and Ps = 0 for a fully disordered state or

equal populated chiral domains. A shown in [Fig 1.9 (e)], below Tc, the absolute

value of Ps is almost one, being consistent with the formation of the homochiral

helical structure. Above Tc, Ps still remains finite, and Ps is approximately 0.5

even at T = 33 K, which indicates short-range spin correlations still survive

without losing the chiral nature.

(a) (b)

(c) (d)

(e)

Figure 1.9: (a, b) Small angle polarized neutron scattering (SAPNS) patterns in

MnSi below Tc with different polarization directions. (c, d) SAPNS patters above

Tc. (e) The temperature dependence of the intensity of Bragg spots (left) and

polarization of the scattering Ps (right). Reproduced from Ref [23].
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1.2.3 Partial order state

In MnSi, the long-range static helical order is suppressed under pressure, and

disappears at the critical pressure of pc = 14.6 kbar [27, 28, 29]. Above pc, neutron

diffraction reveals the quasi-static magnetic order, called partial oder (PO) [Fig.

1.10 (a)] [27]. which fluctuates on the time scales between 10−10 s and 10−11 s [28].

In addition, in PO phase, topological Hall signal whose magnitude is almost the

same as that of the triangular skyrmion lattice has been observed, which indicates

that PO has the same topology as that of the skyrmions [Fig. 1.10 (b)] [29].

(a) (b)

Figure 1.10: (a) Temperature(T )-pressure(p) phase diagram of MnSi. Gray

shadow shows partial order region. The insets schematically represent magnetic

scattering intensity in reciprocal sphere at ambient pressure (left) and above the

critical pressure (right). (b) Magnetic field dependence of Hall resistivity in MnSi

at various temperatures and pressures. Orange shadows show partial order region.

Reproduced from Ref [27, 29].
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1.2.4 Other chiral spin structures

Chiral soliton lattice

In the monoaxial chiral magnet of CrNb3S6, ferromagnetic layers are coupled

through the interlayer exchange interaction and DM interaction. Hence, long-

period (48 nm) helical spin structure forms at TN = 127 K [Fig. 1.11 (a)]. When

the magnetic field is applied perpendicular to the helical axis, the helical state

transforms to the nonlinear magnetic order called chiral soliton lattice, which con-

sists of induced ferromagnetic domains and 360◦ domain walls, without inclination

of the propagation direction due to the strong planar magnetic anisotropy [Fig.

1.11 (b)] [30, 31]. Formations of a magnetic structure similar to the chiral soliton

lattice are also proposed in thin films of B20-type compounds, in which helical

axis is strongly pinned by anisotropic effect due to the epitaxial strain of the thin

films [101].

(a)

(b)

Figure 1.11: Schematic illustrations of helical structures (a) and chiral soliton

lattice (b) Reproduced from Ref. [30].

Three dimensional hedgehog lattice

The triangular lattice of the skyrmion can be viewed as the superposition of the

three helical structure with q vectors forming an angle of 120◦ within a plane
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perpendicular to the magnetic field. In contrast, in B20-type MnGe three q are

oriented along ⟨100⟩ axes of the underlying crystal perhaps due to the relatively

strong cubic magnetic anisotropy [34, 35, 36]. The superposition of three q vectors

orthogonal to each other forms a non-trivial chiral spin structure [Fig. 1.11 (a)],

which contains hedgehog and anti-hedgehog spin structures as shown in Fig. 1.11

(b).

(a) (b)

Figure 1.12: Schematic illustrations of spin structures of three dimensional hedge-

hog lattice (a) and hedgehog and anti hedgehog (b). Reproduced from Ref [36].

1.3 Transport properties in chiral magnets

A quantum state acquires an additional phase during the adiabatic evolution in

which the quantum state confined within a portion of Hilbert space [37]. This

phase is called the Berry phase, which is an fundamental concept describing topo-

logical and geometric properties of condensed matter [38]. In magnetic metals, for

example, momentum-space Berry phase leads to anomalous Hall effect (AHE). In

addition, conduction electrons passing through non-coplanar spin structures such

as skyrmions acquire the real-space Berry phase, which leads to topological Hall
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effect. In this section, we provide a brief review of transport phenomena in chiral

magnets.

1.3.1 Anomalous Hall effect

Anomalous Hall effect was first reported in 1881 by E. H. Hall [39]. Currently,

mainly three distinct contributions to AHE are recognized [40]: (1) the skew scat-

tering mechanism, (2) the side jump mechanism, and (3) the intrinsic mechanism.

The first and second mechanisms originate from electron scattering. Especially,

the skew scattering is dominant in clean metals with the conductivity higher than

σ = 106Ω−1cm−1. In contrast, the intrinsic mechanism originates from the band

structure and is dominant in metals with 104 < σ < 106Ω−1cm−1[41]. Here, we

focus on the intrinsic mechanism because the conductivity of MnSi of the present

focus is approximately σ ≈ 105Ω−1cm−1, which is within the range of conductivity

where the intrinsic mechanism is dominant.

The intrinsic mechanism was proposed by Karplus and Luttinger (KL) [42].

When an external electric field is applied, conduction electrons acquires an addi-

tional contribution to the group velocity perpendicular to the current direction,

which is called anomalous velocity. The summation of anomalous velocity over

the occupied states is nonzero in the case of ferromagnetic metals, inducing Hall

effect. Recently, the close relationship between the anomalous velocity and the

momentum-space Berry phase has been revealed, and the intrinsic mechanism has

been reconstructed in terms of the momentum-space Berry phases [43, 44]. The

group velocity of electron can be described as

dr

dt
=

∂ϵn(k)

∂k
+ bn(k)×E (1.6)

bn(k) = ∇k ×An(k) = ∇k × (i⟨n|∇k|n⟩). (1.7)

The second term is the anomalous velocity, and An(k) and bn(k) are the Berry

connection and the Berry curvature, respectively. The Hall conductivity is given
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by

σAH−int
xy =

e2

~

∫
dk

(2π)d
f(ϵ)bzn. (1.8)

Anomalous Hall conductivity σAH−int
xy depends only on the band structure and is

independent of scattering time τ , and hence the Hall resistivity ρyx ≈ σxy/σ
2
xx is

proportion to ρ2xx = τ−2.

1.3.2 Topological Hall effect

The real-scape Berry phase also induces Hall effect, which is termed topological

Hall effect (THE) [45, 46, 47, 48]. In principle, THE emerges in non-coplanar spin

structure, in which adjacent three spins (S1, S2, and S3) produce nonzero scalar

spin chirality S1 · (S2×S3), which corresponds to the solid angle Ω subtended by

Si. A conduction electron whose spin aligned to the direction of Si obtain a phase

factor equal to the half of the solid angle Ω. (Fig. 1.13). The phase acquired by

conduction electrons acts as the magnetic flux in analogy to the Aharonov-Bohm

effect, and consequently leads the Hall effect. In the continuum approximation,

the phase factor can be given by the flux of emergent magnetic field described as

[4, 49]

bz =
h

8πe
n ·

(
∂n

∂x
× ∂n

∂y

)
. (1.9)

Therefore, the emergent magnetic flux for a skyrmion is h/e in the strong coupling

limit (see also Eq. 1.1). In a triangular lattice of skyrmions, each skyrmion with

the emergent flux h/e leads to almost an uniform emergent magnetic field as

following:

⟨bz⟩ =
√
3

2λ2

h

e
, (1.10)

where 2λ/
√
3 is the lattice constant of a triangular lattice of skyrmion. For

example, for MnSi with λ = 18 nm ⟨bz⟩ is 11 T and for FeGe with λ = 70

nm ⟨bz⟩ is 0.7 T.

Because the emergent magnetic field acts like magnetic field, the topological
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Hall resistivity can be described as

ρTHE
yx = PR0bz, (1.11)

where R0 is normal Hall coefficient, and P = (n↑ − n↓)/(n↑ + n↓) is the spin

polarization of conduction electrons, with n↑ and n↓ being the density of spin-

up and spin-down carriers; the factor P arises because the sign of the emergent

magnetic for the up-spin carriers is opposite to that for down-spin carriers.

S1

S2
S3

�

Figure 1.13: Schematic view of scalar spin chirality. Black arrows (S1,S2, and S3)

represent local spins and orange arrows represent the spin of conduction electrons

whose spin aligned to the direction of local spins. Ω is the solid angle subtended

by Si.

Figure 1.14 is the topological Hall contributions in the equilibrium [Fig. 1.14(a)]

[49] and metastable [Fig. 1.14(b)] [19] skyrmion phase of MnSi. The magnitude

of ρTHE
yx is 4.5 nΩ cm, whereas the metastable skyrmion phase at low tempera-

tures induces one order of magnitude larger ρTHE
yx of 35 nΩ cm. This is perhaps

because spin polarization P increases at low temperatures. The large enhance-

ments of topological Hall effect at low temperatures have also been reported for

equilibrium skyrmion phases just below Tc in MnSi under pressure [18] and in
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Mn1−xFexSi [50], where Tc continuously decreases from Tc of MnSi at ambient

pressure with the increase in hydrostatic pressure or Fe concentration.

(a)
(b)

Figure 1.14: Topological Hall effect in the equilibrium skyrmion phase (a) and the

metastable skyrmion phase at low temperatures (b) in MnSi. Reproduced from

Ref. [49, 19].

1.3.3 Current induced motion of skyrmion

Topological properties of skyrmion play an important role also in current induced

dynamics of skyrmions. The conduction electrons can drive underlying spin tex-

ture such as ferromagnetic domain walls and skyrmions though exchange of the

angular moment (i.e. spin transfer torque). The threshold current density required

for the translational motion of skyrmoin (typically 106A/m2 ) [51, 52, 53] is five

or six orders of magnitude smaller than that of ferromagnetic domains (typically

1011 − 1012A/m2 ) [54, 55]. This property results mainly from the topological

nature of a skyrmion, stimulating research on the skyrmion-based non-volatile

energy-saving memory devices [56, 57, 58, 59]. The equation of motion of the
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center of mass of a skyrmion can be described as

msk
dvsk

dt
+G× (ve − vsk)− k(αve − βvsk) = −Fpin, (1.12)

where vsk, ve, msk, Fpin, G, and k are the drift velocity of the skyrmion, the drift

velocity of the electrons, the mass of the skyrmion, the pinning force, gyrovector,

and a dimensionless constant, respectively. The gyrovector originates from topo-

logical nature of spin object and given by G = (0, 0, 4πNsk) for the skyrmion and

G = (0, 0, 0) for the non-topological spin objects such as ferromagnetic domain

wall. Hence, in the case of a skyrmion, the second term with |G| = 4π is domi-

nant in Eq. 1.12, and the order of threshold current density can be estimated as

|Fpin|/|G|. In contrast, in the case of the non-topological spin object, because |G|

is zero, |kβ| is dominant in Eq. 1.12, and the order of threshold current density

can be estimated as |Fpin|/|kβ|, which is much larger than that for the skyrmion.

From Eq. 1.12, the drift velocity of skyrmion driven by DC current is derived

as [57, 58],

v∥ =

(
β

α
+

α− β

α3(k/|G|)2 + α2

)
, (1.13)

v⊥ =
(α− β)(k/|G|)
α2(k/|G|)2 + 1

, (1.14)

where v∥ and v⊥ are the components of the skyrmion velocity parallel and per-

pendicular to the current direction, respectively. Here, we neglect Fpin. The

transversal motion of skyrmion in reference to the current direction is termed as

skyrmion Hall effect. Figure 1.15 (a) is the snapshots of a current-induced motion

of a Neel-type skyrmion in a bilayer of Ta/Co20Fe60Co20 taken by using a polar

magneto-optical Kerr effect (MOKE) [60]. The skyrmion moves both parallel and

perpendicular to the current direction. This is further confirmed by the trajectory

of the skyrmion as shown in Fig. 1.15 (b). We note Eq 1.12 holds regardless of

helicity of skyrmion.

In electromagnetism, the change in magnetic flux induces an electric field

(Faraday’s law of induction). Since a skyrmion acts as an emergent magnetic
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(a)

(b)

Figure 1.15: (a) Snapshots of current-induced motion of skyrmion in

Ta/Co20Fe60Co20 taken by using a polar magneto-optical Kerr effect. (b) The

trajectory of skyrmion. Reproduced from Ref. [60].
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flux, the skyrmion motion induces an electric field in analogy to Faraday’s law,

which is called as emergent electric field [4, 52]. The emergent electric field is

given by

ei =
h

2πe
n ·

(
∂n

∂i
× ∂n

∂t

)
. (1.15)

From Eq. 1.9, the emergent electric field is related to the emergent magnetic field

as e = −vsk×b. Because the direction of the emergent electric field is opposite to

that of topological Hall field, the magnitude of Hall resistivity is reduced when the

skyrmion moves. Figure 1.16 is the current density dependence of Hall resistivity

in MnSi [52]. The Hall resistivity decreases only in the skyrmion phase above a

threshold current density jc ≈ 0.5− 2× 106 A/m2.

1.4 Basic information of MnSi

In this section, we briefly summarize basic information of B20-type MnSi.

The crystal structure ofB-20 type MnSi belongs to the space group of P213.The

unit cell of MnSi contains four Mn atoms and four Si atoms [Fig. 1.17 (a)], and

there exist two enantiomeric forms: right- and left-handed structures. Crystal

structures of right- and left-handed MnSi viewed from the [111] direction are

shown in Fig. 1.17 (b) and (c), respectively. We define the right- and left-

handed MnSi as the atomic coordinates (u, u, u), (1/2+u, 1/2−u, 1/2−u), (1/2−

u,−u, 1/2 + u), (−u, 1/2 + u, 1/2 − u) with uMn = 0.863, uSi = 0.155 and with

uMn = 0.137, uSi = 0.845, respectively.

As already mentioned, due to the competition between the ferromagnetic ex-

change interaction and the DM interaction, there emerge various spin winding

structures, whose modulation directions, i.e. magnetic helicity, are determined

by handedness of the corresponding lattice structures. Below the magnetic or-

dering temperature Tc = 29.5 K, the long-period ( 18 nm) helical spin structure

forms [61]. In addition, skyrmions condense in triangular-lattice (SkL) at 0.1 T

≤ B ≤0.3 T just below Tc [see Fig. 1.5 (a)] [7]. Above Tc, where the long-range
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Figure 1.16: Current density dependence of Hall resistivity in MnSi at various

temperatures. The light blue shadows represent the reduction of Hall resistivity

due to emergent electric field originating from current-induced skyrmion motion.

Reproduced from Ref. [52].
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Mn
MnSi

Si

[111]

(a)

(b) (c)Left-handed Right-handed

Figure 1.17: (a) Crystal structures of MnSi. Crystal structures of left- (b) and

right- (c) handed MnSi viewed from the [111] direction.
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magnetic orders disappear, short-range spin correlations still survive without los-

ing the chiral nature (see the section 1.2 2 for the details) [22, 23, 24, 25].

1.5 Purpose of this thesis

The concept of topology is related to fundamental and remarkable transport

phenomena, and chirality also produces unique responses. As introduced in

the above sections, spin structures in chiral crystal also have chirality due to

Dzyaloshinskii-Moriya (DM) interaction. Furthermore, some chiral spin struc-

tures such as skyrmion also have nontrivial topology. We envisage that chirality

and topology of chiral spin structures produce novel transport phenomena and

these phenomena can provide a basic principle of novel electronic devices. How-

ever, these phenomena have not been well investigated. Therefore, in this Thesis,

we investigate transport phenomena in which both chiral and topological proper-

ties of skyrmion and chiral spin structures play crucial roles.

In chapter 3, we investigate anisotropic magnetoresistance related to the mod-

ulation of chiral spin structures in bulk samples of MnSi. For this purpose, we

focus on planar Hall effect, which is a sensitive probe for anisotropic magnetoresis-

tance. Planar Hall effect sensitively detects the 90◦-flop of the magnetic modula-

tion vector upon the skyrmion formation and destruction, showing the prominent

stepwise anomaly in the skyrmion phase. This finding provides a new underlying

principle for the establishment of a method to detect skyrmion formation.

In Chapter 4 and 5, we investigate nonreciprocal and current-nonlinear trans-

port phenomena. which are allowed in the chiral systems from the viewpoint

of symmetry. Here, nonreciprocal response in the nonlinear transport phenom-

ena is defined as different responses against positive and negative current (±j)

when viewed from the current direction. In Chapter 4, we investigate the elec-

trical magnetochiral effect (eMChE), which is nonreciprocal magnetotransport

effect with the resistance proportional to the inner product of magnetic field and
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current. Prominent eMChE signals emerge at specific temperature-magnetic field-

pressure regions: in the paramagnetic phase just above the helical ordering tem-

perature and in the partially-ordered topological spin state at low temperatures

and high pressures. Electrical magnetochiral effect is also discerned at the phase

boundary of the equilibrium skyrmion phase and in the amorphous-like metastable

skyrmion phase. In chapter 5, we demonstrate that the current-induced asym-

metric deformation of skyrmion strings arising from both its flexible nature and

the Dzyaloshinskii-Moriya interaction results in nonreciprocal nonlinear Hall ef-

fect related to the real-space Berry phase. These results demonstrate the topology

and chirality of spin structure give birth to novel current-nonlinear transport phe-

nomena.

In Chapter 6, we investigate stability of skyrmions in thin films by using

measurements of topological Hall effect and planar Hall effect. When in-plane

magnetic field is applied, in-plane skyrmion, which is an array of skyrmion strings

stretching in the plane of the thin films, are stabilized at low temperatures. In

contrast, when out-of-plane magnetic field is applied, the quasi-two-dimensional

skyrmion is stabilized, and the number of the quasi-two-dimensional skyrmion

is the largest in the vicinity of Tc. These results provide an insight into the

stabilization mechanism of skyrmions in thin films.

In Chapter 7, we summarize the results and conclude this thesis.



Chapter 2

Experimental Method

2.1 Fabrication of thin plate devices

We fabricated microscale thin plates of MnSi, whose thickness and width are

approximately 500 nm and 10 µm, by using focused ion beam (FIB) technique

(NB-5000, Hitachi). The detailed procedure is as follows:

1. We cut a plate of MnSi (typically 3µm × 15µm × 30µm) out of single

crystals of MnSi, which Ms. Kikkawa (RIKEN) synthesized with use of

the Czochralski method. The crystalline chirality was confirmed by using

convergent beam electron diffraction (CBED) method by Dr. Morikawa

(RIKEN). The plate was picked up by using a micro-sampling probe [Fig.

2.1 (a)].

2. The picked up thin plate was fixed on a copper plate with the use of the FIB-

assisted tungsten deposition. Then we thinned the plate until the thickness

reached approximately 500 nm by using focused Ga ion beam. [Fig. 2.1

(b)].

3. We deposited gold electrodes on a silicon substrate by using photolithogra-

phy and electron-beam deposition. The thin plate is mounted on the silicon

30
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Figure 2.1: Scanning Electron Microscopy (SEM) images of the fabrication process

of a thin plate device
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substrate and fixed by using the FIB-assisted tungsten deposition. Finally,

we connected the thin plate to the gold electrodes with the use of either the

FIB-assisted tungsten deposition or gold deposition by using photolithogra-

phy and electron-beam deposition. [Fig. 2.1 (c)].
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Figure 2.2: Comparison of temperature dependence of resistivity (ρxx) between

bulk sample (red line) and thin plate sample of MnSi (blue line).

Temperature dependence of resistivities and magnetic phase diagram of thin

plate samples resemble those of bulk samples. In Fig. 2.2, we compare linear

longitudinal resistivity (ρxx) of a MnSi thin plate sample with that of bulk single

crystal, out of which we sliced the thin plate. Resistivities of two samples show

similar T dependence, indicating minimal damage due to FIB fabrication process.

We determined the transition temperature of the helical ordering as the temper-

ature where ρxx − T curve exhibits an inflection. Note that the slight increase of

transition temperature in the thin plate sample compared to that of the bulk is

due to perhaps uniaxial strains from the silicon sample stage.
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Figure 2.3: X ray diffraction patterns of MnSi thin film

2.2 Thin-film growth

Mn1−xFexSi epitaxial films were grown on highly-resistive Si(111) substrates (ρ >

1000Ωcm) by solid phase epitaxy. All the components (Mn, Fe, and Si) were

deposited on the wafer using Knudsen cells. We made a seed layer of MnSi by de-

positing 4-monolayer Mn at room temperature onto a Si(111)-7×7 surface followed

by annealing at 200 ◦C. Then, Mn, Fe, and Si were deposited alternately at room

temperature until a prescribed thickness was reached. The film temperature was

raised until the characteristic
√
3×

√
3 reflection high-energy electron diffraction

(RHEED) pattern on the B20-compound (111) surface appeared, and then held

for 5 minutes to anneal the sample. All the films are subject to the compressive

strain of about −0.3 % normal to the plane due to the in-plane tensile strain from

the lattice mismatch of −3 %. The single phase nature of B20-Mn1−xFexSi was

confirmed in all the films by 2θ-θ X-ray diffraction [Fig. 2.3].
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2.3 Magnetization and transport measurement

Magnetization and longitudinal resistivity and Hall resistivity were measured by

using Magnetic Property Measurement System (MPMS) and Physical Property

Measurement System (PPMS). Hydrostatic pressures were applied with use of a

CuBe clamp cell, and the applied pressures were calibrated with pressure change

of superconducting transition temperature of Pb. Second harmonic resistivity was

measured by using a Lock-in technique (SR-830, Stanford Research Systems); we

input low-frequency (f) ac current and measured second harmonic resistivity.



Chapter 3

Planar Hall effect in MnSi

3.1 Introduction

In practicalized magnetic storage devices such as hard disk drives and magneto-

optical drives, which store information as the magnetization direction, various

phenomena have been used to read out the magnetization direction. One of them

is anisotropic magnetoresistance (AMR) effect, i.e difference between magnetore-

sistance with M ⊥ j (ρ⊥M ) and M ∥ j (ρ∥M ) [62, 63]. When magnetization lies

in-plane, longitudinal resistivity in polycrystalline samples can be described as

ρxx = ρ⊥M + (ρ∥M − ρ⊥M ) cos2 θM , (3.1)

where θM is the relative angle between the current (j) and the magnetic field.

Anisotropic magnetoresistance leads to the transversal voltage, so-called planar

Hall effect [64, 65, 66, 67, 68]. Planar Hall resistivity ρPHE
yx is described as

ρPHE
yx =

1

2
(ρ∥M − ρ⊥M ) sin 2θ. (3.2)

Hence planar Hall effect can sensitively extract difference in magnetoresistance

between ρ⊥M and ρ∥M , and a relative angle between magnetization and current

(θ). Since resistivity depends on the magnetization direction, AMR can be used

for the determination of magnetization direction. We note that although AMR

35
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effect had been applied to reading heads of hard disk drives in the 90’s, it has

been replaced by giant magnetoresistance (GMR) effect.

In the case of skyrmion, although a direction of macroscopic magnetization

of a skyrmion is same as that of conical and ferromagnetic state (i.e. both are

parallel to the external magnetic field), the orientation of modulation vector (Q)

of skyrmion (Q ⊥ B ) is different from that of conical (Q ∥ B ). Hence, skyrmion

possibly can be detected by monitoring the orientation of Q vector with respect

to the magnetic field direction. Especially, on the basis of the analogy to AMR

associated with magnetization, we envisage modulation vector (Q) also should

give rise to the anisotropic resistance, i.e. difference in magnetoresistance with

Q ⊥ j (ρ⊥Q) and Q ∥ j (ρ∥Q). This AMR associated with Q should be used for

determination of direction of Q vector as in the case of the AMR associated with

magnetization. To test this working hypothesis, we investigate planar Hall effect

in a single crystal of MnSi. In the following, we demonstrate that planar Hall

effect shows non-monotonous field dependence, and especially exhibits step-like

jump at the phase boundaries between conical and skyrmion phase. The origin of

which is assigned to anisotropic magnetoresistance associated with the orientation

of magnetic modulation. The planar Hall effect offers new method to electrically

detect skyrmion formations.

3.2 Planar Hall effect in MnSi

The MnSi single crystal cut into rectangular shape with a typical size of 2×1×0.3

mm3. Planar Hall effect is measured with a setup shown in the inset of Fig. 3.2(b).

Magnetic field is applied in the x (current direction)-y (voltage direction) plane.

Measured planar Hall resistivity ρPHE
yx reads

ρPHE
yx =

1

2
(ρ∥ − ρ⊥) sin 2θ, (3.3)
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where θ is angle between the current and the magnetic field, ρ∥ and ρ⊥ are resistivi-

ties with the current parallel and perpendicular to the magnetic field, respectively.

We note again that PHE originates from the anisotropic magnetoresistivity, not

the conventional Hall effect. To remove voltages from Hall effect and longitudinal

resistivity due to misalignments of the sample mounting and the electrodes, we

measured the transversal voltage for ±B and ±θ and then symmetrized it against

B and antisymmetrized it against θ. Hereafter we define ρPHE
yx as its signal at

θ = 45◦ unless otherwise noted. The results of PHE shown below were confirmed

to be reproducible.

Figure 3.1(a) shows the B-dependence of magnetoresistivity ρxx(H)/ρxx(0) at

various temperatures for a setup of H ∥ J ∥ [110]. The magnetoresistivity (MR)

shows an inflection at the critical field Bc, where the transition occurs between

conical and ferromagnetic structures. In the magnetic field scan crossing the

skyrmion phase, a small kink (0.1 % change) in MR is also observed [Fig. 3.1(b)],

which is consistent with previous reports [69, 70].

We compare planar Hall signals at the corresponding temperatures measured

with J ∥ [110] and B lying in (001) plane in Fig. 3.2. Planar Hall resistivity

exhibits clear changes at the magnetic phase boundaries. In particular, ρPHE
yx dis-

plays a distinctive stepwise anomaly at the skyrmion phase, which enables us to

use ρPHE
yx as a sensitive probe for the skyrmion phase. Here we again note that

the step-like behavior of PHE in SkX is not a contribution from THE because

the symmetrization against B removes Hall contribution as mentioned above; in

fact the magnitude is approximately ten times larger than THE in MnSi [49]. To

build further assurance about the correspondence between the skyrmion phase

boundaries and ρPHE
yx anomalies, we present development of ρPHE

yx in the T -B re-

gion around the skyrmion phase in Fig. 3.3(a). Sharp stepwise structures are

confirmed between 27.0–28.5 K. In Fig. 3.3(c), we map the B-derivative of PHE

[Fig. 3.3(b)], which emphasizes the abrupt change in PHE, for comparison with

the established phase diagram. The abrupt rises and falls of ρPHE
yx coincide with
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Figure 3.1: (a) Magnetic-field dependence of magnetoresistivity. (b) A magnified

image of magnetoresistivity at the skyrmion phase.



CHAPTER 3. PLANAR HALL EFFECT IN MNSI 39

0.8

0.4

0.0

-0.4

ρ
y
x

P
H

E
/ρ

x
x
(0

) 
 (

%
)

1.20.90.60.30.0

B (T)

   2 K
 10 K
 15 K
 20 K
 28.5 K
 30 K
 100 K

0.8

0.4

0.0

-0.4

ρ
y
x

P
H

E
/ρ

x
x
(0

) 
 (

%
)

543210

B (T)

   2 K
 10 K
 15 K
 20 K
 27.5 K
 30 K
 100 K

(a)

(b)

Figure 3.2: (a) Magnetic-field dependence of planar Hall resistivity in the bulk

sample. (b) A magnified image of magnetoresistivity in low-magnetic field region.

The inset is experimental setup for the measurement of PHE.
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the phase boundaries determined by the magnetization measurements in the T -B

plane, from which we confirmly assign the PHE anomaly to the skyrmion forma-

tion.

3.3 Phenomenological model of the planar Hall

effect

The PHE anomaly at the skyrmion phase can be accounted for with a following

phenomenological model. Provided that resistivity in a periodically modulated

magnetic texture also depends on the orientation of the modulation vector (Q), an

additional contribution will appear obeying the following relation in a similar way

to the conventional PHE with reference to the magnetization: ρPHE,Q
yx = 1

2
(ρ∥Q −

ρ⊥Q) sin 2θQ, where ρ∥Q, ρ⊥Q, and θQ are corresponding parameters measured

with reference to Q. Upon the transformation to the skyrmion state, ρPHE,Q
yx

changes its sign due to the sign inversion of sin 2θQ accompanied by the 90◦-flop

of Q, which causes the distinctive anomaly. We note that the magnetic-field

dependence of ρPHE
yx with passing through other magnetic phases [Fig. 3.2] can be

also explained on the basis of this phenomenological model: While the formation

of a multidomain state of the single-Q helical structure nearly cancels out ρPHE,Q
yx ,

the AMR feature is restored by B-alignment of the domains of the helical (conical)

structure, as the enhanced absolute value of ρPHE,Q
yx in the conical phase. When the

ferromagnetic state is induced above Bc, the contribution from ρPHE,Q
yx disappears,

leading to the reduction of ρPHE
yx magnitude.

The phenomenological expression is further verified by the angular dependence

of PHE. Figure 3.4(a) shows PHE signals normalized by sin 2θ at various θ mea-

sured with the same setting for Fig. 3.2, i.e., J ∥ [110] and B ∥ (001). Since

the spin Q vectors of the conical and skyrmion structures are parallel and per-

pendicular to B, respectively, each ρPHE,Q
yx as well as ρPHE,M

yx obeys the sin 2θ
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Figure 3.3: (a) Magnetic-field dependence of planar Hall resistivity normalized by

longitudinal resistivity at zero field around the skyrmion phase in the bulk sample.

(b) The H-derivative of planar Hall resistivity. (c) A contour map of H-derivative

of planar Hall resistivity. The solid circles and squares represent phase boundaries

determined by magnetization measurements and the open triangles represent the

points where the kinks of planar Hall resistivity are observed, corresponding to

solid triangles in panel (a).
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Figure 3.4: Magnetic-field dependence of planar Hall resistivity normalized by

sin 2θ at various θ with (a) B lying in (001) plane and J ∥ [110], (b) B lying in

(001) plane and J ∥ [100], and (c) H lying in (111) plane and J ∥ [11̄0], respec-

tively. The insets of panels (a)-(c) are experimental setups for the measurement

of PHE. Angular (θ) dependence of PHE in (d) conical phase, (e) skyrmion phase,

and (f) ferromagetic (FM) phase with B lying in (001) plane and J ∥ [110]. Here,

θ is angle between the current and the magnetic field. The light blue lines are fits

to sin 2θ.
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Figure 3.5: (a) Magnetic-field dependence of planar Hall resistivity with (a) H

lying in (011) plane and J ∥ [100], and (c) H lying in (111) plane and J ∥ [11̄0].

dependence. The angles between the electric current and magnetic modulation

direction (θQ) become θ and θ + 90◦ in the conical and skyrmion phases, respec-

tively. Consequently, the angle dependencies of PHE remain sin 2θ in the both

phases: sin 2θQ = sin 2θ and sin 2θQ = sin 2(θ + 90◦) = − sin 2θ. In fact, the sig-

nals of PHE normalized by sin 2θ trace the identical curve [3.4(a)]. This is further

confirmed by θ dependence of ρPHE
yx [Fig. 3.4(d)-(f)]; planar Hall signals at each

magnetic phase clearly follow sin 2θ curves.

We measured planar Hall resistivity with different settings of magnetic field

and crystallographic orientation. As shown in Fig. 3.5, B-dependencies of ρPHE
yx

show different profiles near Tc; ρPHE
yx in conical phase is negative and ρPHE

yx in
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skyrmion phase is positive in the case of B ∥ (001) [Fig. 3.2] and (111) [Fig.

3.5(b)], whereas ρPHE
yx in conical phase is positive and ρPHE

yx in skyrmion phase is

negative in the case of B ∥ (011) [Fig. 3.5(a)]. As shown in Fig. 3.2 and 3.5,

the sign of PHE depends on temperature and magnetic field; ρPHE
yx is positive

(i.e. ρ∥Q − ρ⊥Q > 0) both in high-field region and at low temperatures and

negative (i.e. ρ∥Q − ρ⊥Q < 0) near Tc. This indicates that there is at least two

contributions to AMR related to Q. The contribution with ρ∥Q − ρ⊥Q > 0 is

dominant at low temperatures and high-field region and the contribution with

ρ∥Q − ρ⊥Q < 0 is dominant near Tc. Around the skyrmion phase, the dominant

contribution depends on the direction of magnetic field with respect to crystalline

axes; the contribution with ρ∥Q − ρ⊥Q > 0 is dominant in the case of B ∥ (011)

and ρ∥Q − ρ⊥Q < 0 in the case of B ∥ (001) and (111). This causes the significant

difference in the field profiles of ρPHE
yx at the skrymion phase as observed. We

note that the angular dependence of ρPHE
yx is confirmed also in different settings

of magnetic field and crystallographic orientation [Fig. 3.4(b) and (c)], although

they show much different B-profiles.

3.4 Summary

In this section, we have investigated planar Hall effect in MnSi. Planar Hall effect

sensitively detects the 90◦-flop of the magnetic modulation associated with the

skyrmion formation and destruction, showing the prominent stepwise anomaly

in the skyrmion phase. This finding provides the new guiding principle for the

establishment of a method to detect skyrmion formation.



Chapter 4

Electrical magnetochiral effect in

MnSi

4.1 Introducation

Transport phenomena related to magnetism, including spin fluctuations and chiral

magnetism, provide rich physics and functionalities. For example, antiferromag-

netic spin fluctuations are involved in formation of Cooper pairs in the high-

temperature superconducting cuprates [72], and quantum spin fluctuations break

down the Fermi-liquid behaviour [73]. As for the chiral magnetism, real-space

Berry phase related to non-coplanar spin textures with finite scalar spin chirality

χijk = S · (Sj × Sk) where Sn(n = i, j, k)are adjacent three spins, can produce

emergent magnetic field and hence the topological Hall effect [49, 74]. Despite ap-

preciation of these two concepts, cooperative phenomena from spin fluctuations

and spin chirality (Cij = Si×Sj) have not fully been explored in charge transport

phenomena. For their exploration, we focus on directional nonlinear magneto-

transport with the resistance proportional to inner product of magnetic field (B)

and current, termed electrical magnetochiral effect (eMChE) [75, 76]. The eM-

ChE is one kind of directional magnetotransport phenomena being odd against B,

45
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which are generally allowed in noncentrosymmetric systems. Recently, from the

viewpoint of not only fundamental physics but also applications, such directional

nonlinear transports are investigated, for example, in polar systems such as at

interfaces between ferromagnetic metals and nonmagnetic heavy metals [77, 78],

at surfaces of magnetic and nonmagnetic topological insulator heterostructures

[79], and in polar bulk semiconductor [80]. As for chiral system, however, eMChE

in chiral magnet has not been explored, and the relationship between eMChE and

chiral magnetism remains elusive.

Spin structures and their dynamics in chiral-lattice magnets bear chiral na-

ture due to antisymmetric exchange interactions, such as Dzyaloshinskii-Moriya

(DM) interaction (D · Cij); the sign of the DM vector D is intrinsically depen-

dent on the crystalline chirality. As a consequence, the sign of their magnetic

chirality, as defined for example by rij ·Cij (rij being the vector connecting i-th

and j-th sites), is macroscopically coherent throughout the crystal, which can

make the chirality dependent transport signals macroscopically visible. MnSi of

the present focus has the noncentrosymmetric lattice structure, which can exist in

two enantiomeric forms: right- and left-handed structures as shown in Fig. 4.1(a).

Due to the competition between the ferromagnetic exchange interaction and the

DM interaction, there emerge various spin winding structures, whose modulation

directions, i.e. magnetic helicity, are determined by handedness of the correspond-

ing lattice structures. Below the magnetic ordering temperature Tc = 29.5 K, the

long-period (18 nm) helical spin structure [Fig. 4.1(b)] forms [61]. In addition,

topological spin objects, skyrmions [Fig. 4.1(c)], condense in triangular-lattice

(skyrmion-lattice state) at 0.1 T ≤ B ≤ 0.3 T just below Tc [7]. Above Tc, where

the long-range magnetic orders disappear, short-range spin correlations still sur-

vive without losing the chiral nature [22, 23, 24, 25]. Strong enhancement of

the chiral spin fluctuations around Tc has been theoretically proposed [81] and

demonstrated by polarized neutron scattering experiments [22, 23, 24, 25].

In the following we demonstrate that thermal and quantum spin fluctuations
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Figure 4.1: Crystal structures of right- and left-handed MnSi viewed from the

[111] direction (a) and the corresponding spin structures of helical orders (b)

and skyrmions (c). We define the right- and left-handed MnSi as the atomic

coordinates (u, u, u), (1/2+u, 1/2−u, 1/2−u), (1/2−u,−u, 1/2+u), (−u, 1/2+

u, 1/2 − u) with uMn = 0.863, uSi = 0.155 and withuMn = 0.137, uSi = 0.845,

respectively.

endowed with finite vector spin chirality, i.e. chiral spin fluctuations, produce an

eMChE. We find that prominent electrical magnetochiral signals emerge at spe-

cific temperature-magnetic field-pressure regions: in the paramagnetic phase just

above the helical ordering temperature and in the partially-ordered topological

spin state at low temperatures and high pressures, where thermal and quantum
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spin fluctuations are conspicuous in proximity of classical and quantum phase

transitions, respectively.

4.2 Electromagnetic chiral effect in paramagen-

tic phase and partial order phase

4.2.1 Experimental design for detection of eMChE in MnSi

We found that the chiral spin fluctuations play a key role in the eMChE in MnSi.

From the viewpoint of symmetry, eMChE can generally appear in chiral systems.

Resistivities with current density j parallel and antiparallel to magnetic field B

exhibit different values [75, 76]. Resistivity considering eMChE can be described

as follows:

E = ρ[1 + γR/L(B)(j ·B)]j. (4.1)

Here, ρ is the linear term of longitudinal resistivity, R and L denote right-

and left-handed crystalline chiralities, and γR/L(B)is the eMChE coefficient being

an even function of B. We schematize the current-directional response in MnSi

for each experimental configuration in Fig. 4.2(b). Note that Eq. (1) can be

transformed to the equivalent form, j = (1/ρ)[1 − γR/L(B)(E ·B)/ρ2]E. Under

time-reversal operation, the current direction for higher conductance is reversed.

Likewise, the higher-conductance direction is opposite for different crystal chiral-

ities; γR(B) = −γL(B). Since voltage signals from eMChE are anticipated to

be small, enough large current density is required to detect eMChE. In order to

increase current density under the limitation of external high-precision current

sources, by using focused ion beam (FIB) we fabricated microscale thin plates of

MnSi, whose thickness and width are approximately 500 nm and 10 µm, respec-

tively [Fig. 4.2(a)] (see Chapter 2 for the detail).
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(a)

(b)
B

B B

B

Figure 4.2: (a) A scanning electron microscope image of a MnSi thin plate sam-

ple: MnSi crystal (green), gold electrodes (yellow), tungsten for fixing the sample

(light blue), and silicon stage (grey). Scale bar, 5 µm. (b) Experimental configu-

rations for measurements of electrical magnetochiral effect and expected dichroic

properties of current density. The bold arrows schematically represent paths with

the larger current density at a constant electric field along the arrow direction.

4.2.2 Electrical magnetochiral effect at ambient pressure

First, we show typical profiles of eMChE signals observed in MnSi. Since eMChE

appears as a nonlinear transport response in proportion to j2 (Eq. 1), we measured

second harmonic resistivity (ρ2f), which is directly connected to eMChE as ρ2f =

ρ
2
γR/L(B)(j · B). The magnetic field and current were applied parallel to [100]

direction unless otherwise noted. Figures 4.3(a) and (b) present ρ2f of right- and

left-handed MnSi at T = 35 K with current density j = 1.0 × 109Am−2 and
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Figure 4.3: Magnetic field dependence of second harmonic resistivity ( ρ2f ) in

right-handed (a) and left-handed MnSi crystals (b).

frequency f = 30.5 Hz. The both right- and left-handed crystals were selected

from several batches by identifying the handedness in terms of the conversion
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Figure 4.4: Current-density (j) dependence of ρ2f (a) and angle (θ) dependence

of second harmonic resistivity ρ2f (b) in left-handed MnSi. Here θ is the angle

between current and the magnetic field as shown in the inset of (b). The solid

line is fit to cosθ

beam electron diffraction method (see Chapter 2). In accord with the expected

contributions from eMChE, both the field profiles of ρ2f of the right- and left-

handed crystals are antisymmetric against B, exhibiting the opposite sign to each
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other. To further confirm that the observed ρ2f signals stem from eMChE, we

measured ρ2f at B = 0.4 T as functions of current density and relative angle θ

between B and j both lying in-plane (Figs. 4.4). Both the j- and θ-dependences

obey the expected behaviours from the relation ρ2f = ρ
2
γR/L(B)(j · B); ρ2f is

proportional to j and cos θ, respectively. We evaluate γR/L from the fitting of the

angular dependence of ρ2f by the equation ρ2f = ρ
2
γR/L(B)(j · B) (see also the

solid line of Fig. 4.4(b) for the fitting curve). The magnitude of γR/L(B) at B =

0.4 T is 1.8×10−13 m2T−1A−1, lying within a range of γR/L(B) values reported for

non-magnetic chiral materials (∼ 10−8 − 10−14m2T−1A−1) [76].　We note that

the observed second harmonic resistivity does not result from Nernst effect, which

is proposed as a possible origin of second harmonic resistivity [77, 79]. While

Nernst voltage might be, more or less, generated perpendicular to the magnetic

field, the observed angular dependence of ρ2f indicates that the second harmonic

voltage is produced parallel to the magnetic field.

Next, we discuss a dominant mechanism of eMChE in MnSi. One mecha-

nism proposed for eMChE in non-magnetic materials is so-called self-field effect

[75]. In this mechanism, eMChE is expected to show B-linear dependence. This

is however inconsistent with the present observation that ρ2f is suppressed at

high magnetic field as presented in Figs. 4.3. Another possible mechanism of

eMChE is asymmetric electron scatterings by chiral scatterers [75]. To examine

this, we investigate T - and B-dependences of ρ2f . In Fig. 4.5(a), we show a

contour mapping of ρ2f in the T -B plane for left-handed MnSi, measured with

j = 7.5× 108Am−2. We determined the helical-to-ferromagnetic phase boundary

and ferromagnetic-to-paramagnetic crossover line from kinks in B-dependence of

the planar Hall resistivity (see Chapter 3) and inflection points of ρ − T curve,

respectively. Second harmonic resistivity becomes prominent in the paramag-

netic region, showing the broad peak profile in the T − B plane just above the

phase boundary (helical-to-paramagnetic) and the crossover line (ferromagnetic-

to-paramagnetic). In contrast, the signal suddenly declines with entering the long-
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Figure 4.5: (a) Contour mapping of second harmonic resistivity ( ρ2f ) in left-

handed MnSi in T -B plane. The green and blue lines denote the phase boundary

enclosing the helical phase and the crossover line between the induced ferromag-

netic and paramagnetic phases, respectively. For the ρ2f anomaly around the

narrow skyrmion-lattice phase region (denoted by a dotted green line) (b) Tem-

perature dependence of ρ2f at B = 0.4 T.



CHAPTER 4. ELECTRICAL MAGNETOCHIRAL EFFECT IN MNSI 54

range ordering phases. These behaviours are exemplified by the T -scan of ρ2f at

B = 0.4 T as shown in Fig. 4.5(b); the magnitude of ρ2f exhibits its maximum

near Tc, and shows sharper decrease at the side of helical phase than at the side of

paramagnetic phase. Here, we defined the transition temperature for the helical

ordering as the temperature where ρ−T curve shows an inflection. We note that

ρ2f for right-handed MnSi qualitatively shows similar T− and B−dependences

to ρ2f for left-handed MnSi, apart from the reversed sign [Fig. 4.6]. The above

results indicate that eMChE in MnSi is related to the strongly enhanced chiral

spin fluctuations around and immediately above Tc [22, 23, 24, 25], which should

induce asymmetric electron scatterings. This scattering process of spin-polarized

conduction electrons may share the common microscopic mechanism with asym-

metric scatterings of polarized neutrons by chiral spin fluctuations [22, 23, 24, 25].

4.2.3 Electrical magnetochiral effect at the phase bound-

ary of the equilibrium skyrmion-lattice states

Electrical magnetochiral effect is also observed at the phase boundary between the

conical and skyrmion-lattice states. To precisely estimate the phase boundary, we

employed measurements of planar Hall effect, which was proven in the former

study to sensitively detect variations in anisotropic magnetoresistance associated

with magnetic transitions, typically showing kinks at phase boundaries between

skyrmion-lattice, conical, and induced ferromagnetic states. In Fig. 4.7(b), we

present B−dependence of planar Hall resistivity (ρPHE) around Tc, marking the

phase boundaries as red and green triangles. The magnetic phase diagram for

the thin plate sample is also similar to that for bulk crystal, except for slight

expansion of the skyrmion-lattice phase region. Incidentally, the stabilization of

skyrmion state are attributed to uniaxial strain, which arises from difference in

thermal expansion between the MnSi thin plate and the sample stage made of
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Figure 4.6: Contour mapping of second harmonic resistivity (ρ2f ) in right-handed

MnSi in T − B plane, measured with j = 7.5 × 108Am−2. Note that the sign of

ρ2f is reversed as compared with the case of left-handed MnSi [Fig. 4.5(a)]. The

green and blue lines denote the phase boundary enclosing the helical phase and

the crossover line between the induced ferromagnetic and paramagnetic phases,

respectively.

Si. A contour mapping of ρ2f in a right-handed MnSi sample measured with

j = 1.0×109A/m2 is presented in Fig. 4.7(a), together with the phase boundaries

determined from these ρPHE-mesurements. This clearly captures the enhanced

magnitude of ρ2f at the boundaries of skyrmion-lattice phase, indicating that the

asymmetric electron scattering by the chiral spin fluctuations also manifests itself

at the phase transition between the skyrmion-lattice and the conical or helical

states.
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Figure 4.7: (a) Contour mapping of ρ2f of right-handed MnSi around skyrmion

phase. (b) Magnetic field dependence of planar Hall resistivity ρPHE at various

temperatures. The green and red triangles represent the phase transitions between

the ferromagnetic and conical phases and between the conical and skyrmion-lattice

phases, respectively.

4.2.4 Electrical magnetochiral effect in partial order phase

Up to this point, we have revealed that the eMChE in MnSi arises from thermal

spin fluctuations enhanced in the vicinity of the helical order as well as of the
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Figure 4.8: Resistivity of thin plate sample at various pressures. The magnetic

transition temperatures are determined from the inflection points of ρxx−T curves.

The transition temperatures decrease with increasing applied pressure, resulting

in the disappearance of the helical transition above p = 17.4 kbar.

skyrmion-lattice phase. In this section, we investigate the possible effect of quan-

tum spin fluctuations on eMChE. In bulk samples of MnSi, the long-range static

helical order is suppressed under pressure, and disappears at a pressure of p = 14.6

kbar [27, 28, 29], where the quantum phase transition occurs and consequently

the quantum spin fluctuations become dominant. Even above the pressure for this

quantum phase transition, there exists a dynamical topological magnetic order,

which fluctuates on time scales between 10−10 s and 10−11 s [27, 28, 29] (see also

Chapter 1). Since this dynamical magnetic order, called partial order (PO), is

promoted by quantum fluctuations, the investigation of eMChE in the PO state

will provide us with insight into effects of quantum chiral spin fluctuations.

We determined magnetic phase diagram for MnSi thin plate under pressure
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Figure 4.9: (a)-(c), Magnetic-field dependence of Hall resistivity (ρyx) at vari-

ous temperatures under p = 0 kbar. Magnetic-field dependence of ρyx at various

temperatures under 17.4 kbar (d)-(f) and 20.5 kbar (g)-(i) above the critical pres-

sure (pc), where long-range helical ordering is suppressed. The orange shadows

represent contribution of topological Hall effect. The distinctive topological Hall

signals verify the formation of a topological spin structure above pc in the thin-

plate samples of MnSi.

from measurements of ρxx and ρyx. In Fig 4.8, we present T -dependence of resis-

tivity of the thin plate sample at various pressures. We assigned inflection points

of ρxx − T curves to the magnetic transition temperatures. The transition tem-

peratures decrease with increasing applied pressure, and above p = 17.4 kbar, the

helical transition disappears. We also measured the Hall resistivity of MnSi thin
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plates and reproduced the similar signals of topological Hall effect as reported

in MnSi bulk sample. In Fig. 4.9, we show magnetic-field dependence of Hall

resistivity in a MnSi thin plate sample at various temperatures and pressures, in

accord with the results reported in Ref. [49]. Hall resistivity at p = 0 kbar is

dominated by sum of ordinary and anomalous Hall signals [Fig. 4.9(a) ― (c)]. In

contrast, above pc, we found the additional contribution of topological Hall effect

as indicated by orange shadows [Fig. 4.9 (d) ― (i)]. The observation of topologi-

cal Hall effect identifies the existence of topological spin structure above pc even

in thin plate samples of MnSi. In Fig. 4.10(a), we show p − T phase diagram

determined from T -dependence of resistivity and topological Hall resistivity ρTHE
yx .

The p − T phase diagram is almost identical to that of bulk sample except for

increase of the critical pressure pc ≈ 17 kbar. The increased pc is probably due

to the tensile strain from the Si sample stage, which compensates the effect of

applied hydrostatic pressure.

Figure 4.10(b) shows T -dependence of ρ2f in a left-handed MnSi thin plate

sample under B = 0.4 T at various pressures, measured with j = 7.5× 108Am−2.

Contour mappings of ρ2f in T − B plane are presented at several pressures in

Figs. ??. Here, we determined the helical-to-ferromagnetic and the partial order-

to-ferromagnetic phase boundaries from the inflection points of ρ−B curves and

magnetic field where ρTHE
yx disappeared, respectively. For p ≤ pc ≈ 17kbar, a

large magnitude of eMChE signal is detected at the periphery just above Tc, like

the case under the ambient pressure (see also Fig. 4.6 for ρ2f at p = 0 kbar).

For p ≥ pc ≈ 17 kbar, the eMChE signal shows the maximum magnitude at the

lowest measurement temperature within the PO phase, not around the boundaries

between the PO and ferromagnetic states nor between the PO and paramagnetic

states [Figs. 4.11(c) and (d)]. This feature suggests that the eMChE under p ≥ pc

is induced by the quantum spin fluctuations or dynamics of the PO state, which

should possess the chiral nature as well.

Lastly, we comment on the existence of eMChE signals with positive (negative)
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Figure 4.10: (a) Pressure (p) - Temperature (T ) phase diagram together with

contour mapping of observed topological Hall resistivity ρTHE
yx at 0.4 T (see Fig.

4.9). (b) Temperature dependence of second harmonic resistivity ( ρ2f ) for 0.4 T

at various pressures in left-handed MnSi.

sign in the left-handed (right-handed) MnSi, which show the opposite sign to

those induced by thermal and quantum spin fluctuations as discussed above. The
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Figure 4.11: (a)-(d), Contour mappings of second harmonic resistivity ρ2f at

various pressures in T -B plane in left-handed MnSi. The green lines are the phase

boundary between the conical and induced ferromagnetic phases determined from

magnetoresistivity measurements, and the blue lines are the phase boundary of

the partial order phase determined from topological Hall effect measurements.
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positive ρ2f signals in the left-handed crystal are observed at portions of helical

and ferromagnetic phases at ambient pressure (blue region of Fig. 4.6) and at low

magnetic fields in the PO phase [blue regions of Figs. 4.11(c) and (d)]. Magnetic-

field scans in the temperature region with positive ρ2f at ambient pressure (T =

10 - 25 K) indicates that the eMChE signals vary in proportion to magnetization.

This implies contribution from another mechanism for eMChE related not to the

spin fluctuations but to the static magnetization. Observation of such a different

sign of ρ2f in the low-field region of the PO phase may also capture some static

or frozen-order nature of the PO state.

4.3 Electrical magnetochiral effect in metastable

skyrmion phase

As mentioned above, we observed electrical mangetochiral effect in phase bound-

ary of the equilibrium skyrmion phase. However, because equilibrium skyrmion

phase is stable only in a narrow temperature (T )-magnetic field (B) region, the

observed signal is a little bit obscure and detailed investigation of the relationship

between eMChE and skyrmion strings is challenging. To overcome this problem,

we focus on the metastable skyrmions, which is stable in a wider T -B field range.

Both the thermodynamic equilibrium phase diagram and the metastable skyrmion

phase are determined by using planar Hall effect, which can sensitively monitor

the direction of Q vectors with respect to the magnetic field; the planar Hall

resistivity associated with Q vector can be described as

ρPHE,Q
yx =

1

2
(ρ∥Q − ρ⊥Q) sin 2θQ. (4.2)

Here θQ is the relative angle between B and Q (see also Chapter 3 for the detail).

Since the direction of Q vectors of the skyrmion phase (Q ⊥ B) and the conical

phase (Q ∥ B) differ by 90◦ , the sign of ρPHE,Q
yx is abruptly reversed at the phase

boundary of skyrmion phase.
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Figure 4.12: (a) Magnetic field dependence of planar Hall resistivity ρPHE
yx mea-

sured with decreasing field from 0.8 T at various temperatures. (b) Phase diagram

under thermodynamic equilibrium determined by measurement of planar Hall ef-

fect. (c) Magnetic field dependence of ρPHE
yx measured with decreasing field from

0.8 T (the dark blue) and measured after field cooling (FC) with 0.2 T (light

blue).

Figure 4.12(a) is the planar Hall resistivity (ρPHE
yx ) measured with decreasing

field from 0.8 T. At 10 K and 20 K, ρPHE
yx shows almost constant negative values

at high field region (0.6 / B / 0.8 T), which we assign to planar Hall effect

related magnetization (M). With decreasing magnetic field, ρPHE
yx continually

increases below 0.6 T. This positive contribution to ρPHE
yx results from planar Hall

effect associated with conical modulation. At T = 30 K, ρPHE
yx exhibits abrupt

reduction and becomes negative at a narrow magnetic field range (0.1 < B < 0.3

T). The abrupt reduction of ρPHE
yx indicates that 90◦-flop of Q vector, and hence we

assign this magnetic field range to the skyrmion phase. The equilibrium magnetic
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Figure 4.13: Magnetic field (B) dependence of second harmonic voltage (V 2f )

in conical phase of left-handed MnSi (a) and right-handed MnSi (b). Magnetic

field dependence of V 2f starting from metastable skyrmion phase created by field

cooling with 0.2 T in left-handed MnSi (c) and right-handed MnSi (d). Magnetic

field dependence of V 2f at various current density (e) and with various frequency

of the input current (g). (f) Current density dependence of V 2f . (h) Dependence

of V 2f on frequency of the input current.



CHAPTER 4. ELECTRICAL MAGNETOCHIRAL EFFECT IN MNSI 65

phase diagram determined from the measurements of planar Hall effect is shown

in 4.12(b). Next, we demonstrate formation of metastable skyrmion in the thin

plate sample. Magnetic field dependence of ρPHE
yx after field cooling (FC) passing

through the equilibrium skyrmion phase with B = 0.2 T and cooling rate of 0.16

K/s is shown in Fig. 4.12(c) (the light blue line). Hereafter, we employ the field

cooling condition with B = 0.2 T and cooling rate of 0.16 K/s. The sign of ρPHE
yx

after FC shows opposite to the sign of ρPHE
yx in the thermodynamically stable

conical phase (the dark blue line), indicating direction of Q is perpendicular to

the magnetic field direction, and therefore we conclude that metastable skyrmion

is created.

In the phase boundary between the thermodynamically stable conical and the

ferromagnetic phase, magnetic field-profiles of second harmonics voltage (V 2f ) of

left- and right-handed MnSi exhibit the broad peaks, whose sign is opposite to

each other in accord with the expected contribution from electrical magnetochiral

effect. [Figs. 4.13(a) and (b)]. This originates from the critically enhanced chiral

spin fluctuations at the second-order conical-to-ferromagnetic transition. In Figs.

4.13(c) and (d), we show the magnetic field dependence of V 2f of left- and right-

handed MnSi in metastable skyrmion phase created by FC. Second harmonic re-

sistivity shows the sharp peaks at high field region of the metastable skyrmion

phase (0.5 < B < 0.6 T), whereas ρ2f is almost zero at low field region of the

metastable skyrmion phase (0.2 < B < 0.5 T). The peaks exhibit opposite sign to

each other in accord with the expected contribution from eMChE. Figure 4.13(e)

is magnetic field dependence of V 2f of right-handed MnSi after FC at various

current density; the magnitude of V 2f continuously increase with increasing cur-

rent density. As shown in Fig. 4.13(f), the peak value of V 2f is proportional to

the square of the current density. We also measured the dependence of V 2f on

the input-current frequency; the field profile of V 2f is almost same regardless of

the input-current frequency [Fig. 4.13(g) and (h)]. The absence of neither any

threshold current density or frequency dependence indicates that the observed
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Figure 4.14: (a)-(c) Magnetic field dependence of second harmonic voltage (V 2f )

after field cooling (FC) passing through the equilibrium skyrmion phase at various

temperatures. (d) Temperature dependence of ∆V 2f . We defined V 2f as the dif-

ference between the peak value of V 2f and the value of ∆V 2f at the ferromagnetic

phase. (e) Magnetic phase diagram including metastable skyrmions, constructed

by a magnetic field sweep measurement after FC of planar Hall effect and V 2f .

(d) The time dependence of V 2f normalized by the value of V 2f at 900 s at various

temperatures.
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sharp peaks are irrelevant to the current-induced dynamics of skyrmions.

Magnetic field dependence of V 2f at various temperatures is shown in Fig.

4.14(a)-(c). Here, two aspects are highlighted: (1) the magnetic field range where

nonzero V 2f is observed becomes wider with decreasing temperature. (2) the peak

value of V 2f at the metastable skyrmion phase increases with decreasing temper-

ature [Fig. 4.14(d)]. Note that at 12.6 K and 15.1 K, in addition to the peaks

of ρ2f at the metastable skyrmion phase, we also observe the broad peaks of V 2f

around the conical-to-ferromagnetic phase boundary, which originates from en-

hancement of chiral spin fluctuations associated with the second-order conical-to-

ferromagnetic transition. Figure 4.14 (e) is magnetic phase diagram constructed

by a magnetic field sweep measurement after FC of ρPHE
yx and V 2f ; the metastable

skyrmion phase divided into distinct two regimes: (1) low-magnetic-field field re-

gion, where V 2f is almost zero and (2) high-magnetic-field region, where V 2f is

nonzero. In fact, the similar metastable skyrmion phase diagram is also observed

in FeGe by using LTEM and the high-field region is revealed as amorphous-like

metastable skyrmions. Therefore, we assume that the high-magnetic-field region

corresponds to amorphous-like form of metastable skyrmions and the disorders of

skyrmion strings produces prominent V 2f signals.

To examine this scenario, we measured time dependence of the V 2f ; after FC

with 0.2 T passing through the equilibrium skyrmion phase, we increased the

magnetic field from 0.2 T to target field with the sweep rate 100 Oe/sec and

monitored V 2f . Figure 4.14(f) is the time dependence of the peak value of V 2f

normalized by V 2f at 900 s. The second harmonic voltage remains almost constant

as a function of a time at least up to 900 s, which indicates that V 2f arises from a

relatively long-lived state rather a transient process such as an annihilation process

of a skyrmion string; in the case of a transient annihilation process of skyrmion

string, the signal should decrease as a function of time and finally become zero

because the number of skyrmions continuously decreases with time. Hence the

above result reasonably supports the scenario that an amorphous-like skyrmion
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string stats give rise to the enhancement of V 2f .

To further verify the formation of an amorphous-like skyrmion state at the

high-field region, we performed a micromagnetic simulation using MuMax3 [82],

employing the cuboid with a size of 256×128×256 nm3. The following parameters

were used: saturation magnetization Msat = 1.6 × 105 A/m, exchange stiffness

Aex = 1.8 × 10−12 J/m, DM interaction D = 6.7 × 10−4 J/m2, and damping

constant α = 0.1. The size of the elementary cells was 4×1×1 nm3, and magnetic

field is applied to the x-axis. We introduced the magnetic anisotropy with easy-

axis parallel to the x-axis at randomly selected sites to represent the impurities.

Figures 4.15(a)-(d) are the color maps of the x component of magnetization on

y − z planes, their fast Fourier transform (FFT) patterns, and position of the

core of skyrmion strings at various magnetic field. At 0.14Bc, the metastable

skyrmions form the triangular lattice, and skyrmion strings are almost straight

[Fig. 4.15(a)]. At 0.73Bc, the triangular lattice begins to be distorted, and the

six-fold spots of FFT is broadened [Fig. 4.15(b)]. With increasing magnetic field

further, the number of skyrmions are decrease, and the six-fold spots of FFT

patters almost disappear [Fig. 4.15(c)]. The magnetic field dependence of the

peak intensity of the FFT patterns and the skyrmion number NSk highlights the

existence of distinct three regions as a function of the magnetic field [Figs. 4.15(e)

and (f)]: (1) the triangular-lattice skyrmion region, where both the peak intensity

and the skyrmion number almost are constant, (2) the disordered skyrmion region,

where both peak intensity and the skyrmion number are continuously reduced,

and (3) the ferromagnetic region. The simulated magnetic field dependence of

metastable skyrmions is consistent with experimental observations.

4.4 Summary

In this section, we have investigated the electrical magnetochiral effect (eMChE),

which is directional nonlinear magnetotransport effect with the resistance propor-
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tional to the inner product of magnetic field and current, and have revealed the

close relationship between eMChE and fluctuations and/or disorders of chiral spin

structures.

Prominent eMChE signals emerge at specific temperature-magnetic field-pressure

regions: in the paramagnetic phase just above the helical ordering temperature

and in the partially-ordered topological spin state at low temperatures and high

pressures, where thermal and quantum spin fluctuations are conspicuous in prox-

imity of classical and quantum phase transitions, respectively. Electrical magne-

tochiral effect is also discerned in the phase boundary of the equilibrium skyrmion

phase and in the high-magnetic-field region of the metastable skyrmions phase,

where skyrmions form amorphous-like state. Our finding sheds light not only on

the transport phenomena related to the vector spin chirality but also on the novel

functionality in chiral magnets, such as the directional nonlinear magnetotrans-

port.
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Figure 4.15: (a)-(d) Color maps of the x component of magnetization on y − z

planes, their fast Fourier transform (FFT) patterns, and position of the core of

skyrmion strings at various magnetic field. Bc is determined from a kink in the

magnetic field dependence of magnetization. Magnetic field dependence of peak

intensity of FFT patterns (e) and the skyrmion number (NSk).



Chapter 5

Current-induced dynamics of

skyrmion strings investigated by

nonreciprocal Hall effect

5.1 Introduction

Topologically stable defects cannot be unwound by continuous transformation

or weak perturbations [83]. As for string-like topological defects, the topologi-

cal stability brings about the degree of freedom of bends; for example, when a

part of a string is pulled, string does not tear up but flexibly deforms. Because

of this nature the string-like topological defects exhibit rich forms and dynamical

properties. One of the most prototypical examples is vortex lines in type-II super-

conductors (SC); aggregate of vortex lines forms various state such as glass state

and liquid state, mainly depending on relative strength of pinning force, thermal

fluctuations and energy cost to bend vortex lines [84]. Moreover, deformations

are also dynamically induced by external forces such as electrical current[85].

Recently a string-like topological defect has been found in spin system, that

is skyrmion strings [7, 8, 13, 4]. Skyrmion string is a vortex-like topological spin

71
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(b)

(a)

Figure 5.1: (a) schematic picture of translationally moving skyrmion strings and

the experimental setup for second- harmonic Hall measurement. (b) A scanning

electron microscope image of a MnSi thin plate sample: MnSi crystal (green),

gold electrodes (yellow), tungsten (light blue) for fixing the MnSi and connecting

the gold electrodes to MnSi, and a silicon stage (grey).
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structure of 5-200 nm in diameter and 10-10,000 nm in length along the external

magnetic field direction, emerging in non-centrosymmetric magnets due to com-

petition between ferromagnetic exchange interaction and Dzyaloshinskii-Moriya

(DM) interaction. The topological nature of skyrmion, which is characterized by

a topological number of -1, not only guarantees its stability against weak per-

turbations but also leads unique transport phenomena related to the real-space

Berry phase, which acts as emergent electromagnetic field to conduction electrons

[4, 86], such as topological Hall effect [49], and low-current drive [51] and con-

sequent emergent electric field in analogy to the electromagnetic induction [52].

Especially, the latter stimulates researches on the skyrmion-based memory device

application [5]. However, in previous researches on the current-induced transla-

tional motion, skyrmion strings are treated as two-dimensional objects or straight

cylinders, and the degree of freedom of the bend of skyrmion strings (i.e. flex-

ibility) has been ignored. In reality, a skyrmion string possesses flexible nature

as in the case of the vortex line because of its topological nature. Hence, espe-

cially under translational motion in the presence of random impurities, skyrmions

string should dynamically bend to avoid impurities [Fig. 5.1 (a)]. This assump-

tion is based on the simulation in a two-dimensional system [58], according to

which translationally moving skyrmion is deformed so as to avoid impurities; it is

natural to extend the concept of the deformation to a skyrmion string in three-

dimensional system. We note that current-induced dynamics of skyrmion strings

in three-dimensional system also have been simulated to find flexible deformation

of the strings [87]. Here, we investigate current-induced deformation dynamics

of skyrmion strings arising from the flexibility. To this end, we focus on the

nonreciprocal and current-nonlinear Hall effect, which is empirically known as a

sensitive probe for current-induced spin dynamics in non-centrosymmetric sys-

tems [88], typically for the skyrmion lattice (SkL) phase of B20-type MnSi, in

which the skyrmion strings form a triangular lattice as in the Abrikosov lattice

of SC vortex lines [84]. In the following, we demonstrate that skyrmion strings
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asymmetrically deformed due to both the flexible nature and the DM interaction,

consequently giving rise to nonreciprocal nonlinear Hall response originating from

emergent electromagnetic field.

5.2 Second-harmonic Hall effect

B20-type MnSi has the non-centrosymmetric lattice structure, which can exist in

two enantiomeric forms: right- and left-handed structures. From the viewpoint

of symmetry, nonreciprocal nonlinear Hall electric field (Ez ) in MnSi can be

described as follows:

Ez = α(jx, Bz)jx (5.1)

Here, jx, and Bz are the x component of current density, and the z component of

magnetic field, respectively, and the nonlinear Hall coefficient α(jx, Bz) is pseudo-

scalar which is an odd function of jx and Bz [Fig. 5.1(a)]. Hence, a direction of

the nonlinear Hall electric field is independent of current direction, being parallel

or anti-parallel to Bz depending on the crystal chirality. We fabricated microscale

MnSi thin plates by using focused ion beam (FIB) [Fig. 5.1(b)] to increase current

density under the limitation of external high-precision current sources. The crys-

tal chirality was determined by using convergent beam electron diffraction. We

determined the magnetic phase diagram for MnSi thin plate from the measure-

ments of longitudinal resistivity (ρxx) and planar Hall resistivity (ρPHE ), both of

which are widely employed as the sensitive probes of magnetic transitions in MnSi.

The helical-ordering temperature (Tc) at the zero magnetic field is determined as

the temperature where the ρxx − T curve exhibits an inflection [Fig. 5.2(a)]. The

helical-to-conical, helical/conical-to-skyrmion, and conical-to-ferromagnetic tran-

sitions are determined from the kinks in B-dependence of ρPHE [Figs. 5.2(b)-(e)].

To detect nonlinear Hall signal, we performed second-harmonic measurement;

low-frequency sine-wave AC current was input and real part and imaginary part

of second-harmonic complex resistivity (Reρ2fzx and Imρ2fzx) were measured, which
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Figure 5.2: (a) Temperature (T ) dependence of longitudinal resistivity (ρxx). We

determined the helical-ordering temperature as the inflection point of the ρxx−T

curve (the black triangle). (b)-(e), Magnetic-field (B) dependence of planar Hall

resistivity (ρPHE) at various temperatures. We assigned the kinks in B-dependence

of ρPHE to the helical-to-conical transition (the blue triangle), helical/conical-to-

skyrmion transition (the red triangles), and conical-to-ferromagnetic transition

(the green triangles). The letters H, C, SkL, and F represent helical, conical,

skyrmion-lattice, and ferromagnetic phases, respectively.
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Figure 5.3: Magnetic field dependence of second-harmonic Hall resistivity (ρ2fzx)

in right-handed (c) and left-handed MnSi crystals (d). The blue, orange, green,

and white shadow represent helical (H), skyrmion lattice (SkL), conical (C), and

ferromagnetic (FM) phase, respectively.



CHAPTER 5. CURRENT-INDUCEDDYNAMICS OF SKYRMION STRINGS INVESTIGATED BYNONRECIPROCAL HALL EFFECT77

are directly linked to the nonreciprocal nonlinear Hall coefficient. First, we show

typical profiles of the second-harmonic Hall effect. As shown in Figs. 5.3 (a) and

(b), the B-dependence of Reρ2fzx of both right- and left- handed crystal exhibits

the prominent enhancement in the SkL phase. The signs of Reρ2fzxare opposite

between right- and left-handed crystal in accord with the expected contributions

from the nonreciprocal nonlinear Hall effect. Figure 5.4 shows the B-dependence

of Reρ2fzx in left-handed MnSi with current density j = 2.1× 108A/m2 (blue lines)

and j = 8.3 × 108A/m2 (red lines) at various temperatures. The magnitude of

Reρ2fzx measured with j = 2.1× 108A/m2 is small below noise levels. In contrast,

in the case of Reρ2fzx measured with j = 8.3 × 108A/m2, the prominent signals

of Reρ2fzx are observed in the skyrmion phase. The clear correspondence between

SkL phase and the conspicuous Reρ2fzx signals is further confirmed in the contour

map of Reρ2fzx with j = 8.3× 108A/m2 in T −B phase diagram (Fig. 5.5 ).

To gain more insight, we measured the detailed current-density dependence

of ρ2fzx. Taking account of increase in the sample temperature owing to Joule

heating, we derived the temperature from longitudinal resistivity of the thin plate

sample itself, and adjusted the temperature of the heat bath so that the sample

temperature was kept constant. Figure 5.6(a) shows current-density dependence

of the temperature of the sample, assuring us that temperature of the sample is

kept nearly constant within the range of T = 29.0± 0.08 K. The current-density

dependence of Reρ2fzx at T = 29 K measured by using sine-wave AC current with

f = 13 Hz exhibits the non-monotonous profile [Fig. 5.6(b)]. Here, we note that

current-density dependence measured by using sine-wave AC current and square-

wave current is almost similar. This result rules out the possibility that the

non-monotonous current dependence results from temporal temperature change,

which would possibly occur in the case of sine-wave AC current but not in the

case of square-wave current [see Figs. 5.7(a) and (b)]. When a square-wave

current applied, the nonreciprocal nonlinear Hall voltage appears as a constant DC

voltage V DC
z parallel to magnetic field. Here we define nonreciprocal nonlinear Hall
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Figure 5.4: Magnetic field dependence of real part of second-Hall resistivity (Re

ρ2fzx) measured with current density j = 2.1 × 108A/m2 (blue lines) and j =

8.3 × 108A/m2 (red lines). The blue, orange, green, and white shadow represent

helical (H), skyrmion lattice (SkL), conical (C), and ferromagnetic (FM) phase,

respectively.

resistivity measured by using the square-wave current as ρsquarezx = V DC
z /jxd. As in

the case of the measurement using the sine-wave current, we estimated the sample

temperature from the longitudinal resistivity, and adjusted the temperature of the
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Figure 5.5: Contour mapping of second-Hall resistivity (Re ρ2fzx) in the plane

of temperature and magnetic-field. The blue, green, red circles denote the phase

transitions of helical-to-conical, conical-to-ferromagnetic, and skyrmion-to-conical

phase, respectively, determined from kinks in magnetic-field dependence of planar

Hall resistivity. The green squares represent the phase transitions of helical, coni-

cal, SkL to paramagnetic phase determined from inflection points of temperature

dependence of longitudinal resistivity
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heat bath of PPMS to control the cooling power. As shown in Fig. 5.7(c) the

sample temperature stays almost constant. As shown in Fig. 5.7(d), the current

dependence of ρsquarezx in the skyrmion phase exhibits a profile almost similar to that

of second harmonic Hall resistivity measured by using the sine-wave current [Fig.

5.6(b)]. This result rules out the possibility that the non-monotonous current

dependence of second-harmonic Hall resistivity measured by using the sine-wave

current results from the possible temporal temperature change.
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Figure 5.6: The current density (j) dependence of temperature of MnSi thin

plate sample estimated from longitudinal resistivity (a) and real part of second-

harmonic Hall resistivity (Re ρ2fzx) at B = 0.15 T measured with frequency f =13

Hz (b). The red solid curve is a guide to eyes. (c) The temperature dependence

of threshold current densities jth and the crossover point jCO at B =0.15 T. The

values of jth andjCO at T = 29.0 K are represented as inverse triangles in Fig.

5.6(b).

The profile of the current-density dependence of Reρ2fzx is divided into the dis-
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tinct three regimes: (1) almost zero below jth = 3.2 × 108A/m2, (2) monotonic

increase between jth and jCO = 8.9×108A/m2, and (3) monotonic decrease above

jCO. This indicates that the nature of the SkL state changes with increasing

current density. In fact, such changes are widely observed in charge density wave

(CDW) [89, 90] and SC vortex [91, 92]: (1) pinned lattice state at low current den-

sities, (2) disordered flow of lattice affected by pinning potential in intermediate

current densities, and (3) recovery of crystallinity due to the motional narrowing,

i.e., relative reduction of pinning force, at large current densities, termed the dy-

namical reordering. In fact, such a dynamical phase diagram is also theoretically

predicted for SkL in the presence of strong random pinning potential [93]. On the

basis of this theoretical prediction and the analogy to dynamical phase diagrams of

CDW and SC vortex, we assign jth and jCO to the onset of disordered translational

motion and dynamical reordering of skyrmion strings, respectively. Note that jth

corresponds to the dynamical phase transition point, while jCO characterizes the

crossover (CO). The temperature dependences of jth and jCO are also consistent

with the above assignment; jth and jCO decrease with increasing temperature

as shown in Fig. 5.6(c), because thermal activation effectively weakens the pin-

ning force. Therefore a plausible scenario accounting for the non-monotonous

current dependence of ρ2fzx is that the translational motion of deformed skyrmion

strings occurs at the current densities between jth and jCO, leading to the second-

harmonic Hall signal along B-direction. We note that the critical current density

required for translational motion of SkL jth = 3.2×108A/m2 is two orders of mag-

nitude larger than that in bulk MnSi [51, 52]. This is perhaps due to the chemical

disorder/strain on the wide top and bottom surfaces of the sample plate caused

by the device fabrication procedure with focused ion (Ga ion) beams, which acts

as additional pinning sites for skyrmion strings.

The close relationship between second-harmonic Hall effect and the transla-

tional motion of skyrmion strings is further confirmed by dependence of ρ2fzx on

the input-current frequency. In Fig. 5.8(a), we show the frequency dependence of
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Figure 5.8: (a) Dependence of real part (red line) and imaginary part (blue line) of

ρ2fzx on the input current frequency at T = 28 K and B = 0.16 T. (b), Temperature

dependence of frequency where imaginary part of ρ2fzx peak (f0). The f0 at T =

28 K are represented by the inverse triangle in Fig. 5.8(a). The thick light blue

band is a guide to eyes.

Reρ2fzx and Imρ2fzx measured with j = 7.0× 108A/m2 at T = 28 K. Around f = 3

kHz, Reρ2fzx shows rapid decrease together with the Imρ2fzx peak, and both Reρ2fzx

and Imρ2fzx are almost zero above f = 6 kHz. This non-monotonous frequency

dependence in the range of the present frequency range (f < 10 kHz) cannot
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Figure 5.9: The real part (red) and imaginary part (blue) of frequency-dependent

skyrmion velocity derived from Thiele’s equation. The vertical and horizontal axes

are normalized by the velocity at zero frequency and f = (G2 + (Dα)2)/4πmDα,

where G, D, α and m are gyromagnetic coupling, dissipative force, the coefficients

for Gilbert damping.
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be explained by conventional mechanisms of second-harmonic Hall effect, such

as spin-orbit torque [88] or asymmetric electron-magnon scattering [94], whose

typical frequencies are several gigahertz. Since characteristic frequency in motion

of nanoscale spin structures such as ferromagnetic domain wall is below several

megahertz [95], the observed frequency dependence can be interpreted as repre-

senting the relationship between ρ2fzx and translational motion of skyrmion strings;

skyrmion string cannot follow the AC current with high frequency above f = 6

kHz. In fact, the profile of the observed frequency dependence of ρ2fzx resembles

that of the skyrmion velocity (vSK) derived from Thiele ’s equation:

vxSk(f) =
G/(G2 + (Dα2)

1 + 2πi 2mDα
(G2+(Dα)2

f
ve. (5.2)

Here, m, D, α and ve are effective mass of skyrmion, dissipative force constant, the

Gilbert damping coefficient, and drift velocity of electrons, respectively. Because

the skyrmion velocity perpendicular to the current direction (vySk) is smaller than

vxSk, we ignore v
y
Sk. As shown in Fig 5.9, the real part of vxSk(f) begins to decrease

around f = [G2 + (Dα)2]/4πmDα, and the imaginary part of vxSk(f) exhibits the

peak at f = [G2 + (Dα)2]/4πmDα. This is because skyrmions motion cannot

follow the driven AC current with frequency above f = [G2 + (Dα)2]/4πmDα.

The frequency profile of skyrmion velocity resembles that of second-harmonic re-

sistivity [Fig. 5.8(a)], which supports the relationship of nonlinear Hall signal to

translational motion of SkL. Additionally, as shown in Fig. 5.8(b), the frequen-

cies (f0) at which Imρ2fzx peaks increases with increasing temperature. Because

skyrmion strings can be driven faster at higher temperatures owing to assistance

of thermal activation, the temperature dependence of f0 also reasonably supports

the relationship between ρ2fzx and the translational motion of SkL.
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5.3 Current-induced dynamics of skyrmion strings

In order to clarify the dominant mechanism of the nonlinear Hall signal along

B-direction, Hoshino calculate the current-induced dynamics of skyrmion strings

and consequent emergent electromagnetic field in the presence of impurity poten-

tial. The model corresponds to the experimental situations in which skyrmion

strings flow while accompanying distortions (i.e. jth < j < jCO). In the follow-

ing, we demonstrate that the experimental observation is well explained in terms

of current-driven asymmetric flexible bending dynamics of skyrmion string and

consequent generation of emergent electromagnetic field. On the basis of the spin

density wave picture, the spin texture for SkL is given by the triple-helix state

with the modulated phase in space-time [7, 4, 96]. This deformation corresponds

to the low-lying spin-wave excitation modes of SkL, namely phason [96]. The re-

sponse function for phasons is calculated from the energy cost of the deformation

based on the DM ferromagnetic Hamiltonian in the presence of impurities [97]:

H =

∫
dr

a3

[
1

2
Ja3(∇n)2 +Dan · (∇× n− gµBB · n)

]
+

∫
dr

l3
V (r)(nz)

2 (5.3)

where the first, second, third and fourth terms are Heisenberg interaction, DM

interaction, Zeeman term, and impurity potential, respectively. The length l ( >

lattice constant a) is an averaged distance between impurities, and the inverse of

skyrmion radius is given byQ = |D|/(Ja) in this model. Combining the above

Hamiltonian with the Berry phase term in the action, we derive a dynamical

response function. The excitation energy ϵ(q) of SkL, which is determined from

the pole of the response function, has the following form: ϵ(q) = αq2 + βq4 +

γq4qz + O(q6) [Fig. 5.10(a)]. The third term with qz shows nonreciprocity of

skyrmion string dynamics along z direction, which is crucial for the nonlinear

Hall effect as shown in the following.

To provide an intuitive picture for the current-induced string dynamics in the

presence of impurities and consequent emergent electromagnetic fields, we focus

on a single flowing skyrmion string deformed to avoid an impurity. Bending of the
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Figure 5.10: (a) Dispersion relation of low-energy excitation (ϵ) of SkL with a

propagating vector along external magnetic field direction (qz). (b) Schematic

picture for current dependence of nonlinear Hall resistivity. The blue solid line

represents the theoretical calculation, which is valid for the current density be-

tween jth and jCO, and the blue broken line is square of current density (guide

to eyes). Red line is the experimentally observed current profile [see also Fig.

5.6(a)].

skyrmion string is described by displacement vector u = (ux, uy, 0) [Fig. 5.11 (a)],

and the Hall electric field originating from emergent magnetic and electric field

is given by E = e + (ve − vSk)× b, where ve = vex̂ and vSk = vSkê are velocity

of electron and skyrmion (vSk < ve), and e = −u̇× b and (ve − vSk)× b are the

emergent electric field and topological Hall electric field in the moving frame of

skyrmion, respectively. As shown in Figs. 5.11(a) and (d), the electric field Ez

along magnetic field direction is nonzero only when a skyrmion string bends. For

detailed investigation of electric fields along the B-direction arising from current-

induced dynamical bending, we calculate time evolution of the bending skyrmion

string by using ϵ(q) and its eigenmode and the concomitant magnitude of [(ve −

vSk) × b]z and ez = −[u̇ × b]z. Figures 5.11(b) and (e) are time evolution of
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a bending skyrmion string shown together with the color map of the magnitude

of[(ve − vSk)× b]z and ez = −[u̇× b]z, respectively, and Figs. 5.11(c) and (f) are

time dependence of the averages of [(ve − vSk)× b]z and ez = −[u̇× b]z over the

skyrmion string. At the initial state (t =0), because deformation is symmetric,

both [(ve − vSk) × b]z and ez = −[u̇ × b]z cancel out. With increasing time,

however, the skyrmion string asymmetrically deforms due to the nonreciprocity

of the dispersion, which leads to nonzero average of [(ve − vSk) × b]z and ez =

−[u̇× b]z. The above intuitive picture thus indicates asymmetric deformation of

skyrmion strings and therein the emergent electromagnetic fields play a crucial

role in the nonreciprocal nonlinear Hall signal along the B-direction.

Hoshino calculate the the nonreciprocal response in SkL and obtain the non-

reciprocal Hall resistivity defined by EDC
z = ρDC

zx jx

ρDC
zx ∼ ~a

e2

(
~a2
e
jc

)3

(2D

(
j

jc

)2

, (5.4)

where the electrical current is given by j = eneve with ne = a−3 being an elec-

tron density. From Eq. 5.4, the sign of D, which depends on crystal chirality,

corresponds to the sign of nonreciprocal Hall resistivity, which is consistent with

the experimental observation. With the parameter values for MnSi, typical value

at j = 2jc is estimated as ρDC
zx 0.6nΩ cm, which is comparable to the experimental

values.

Although Eq. 5.4 is valid in the disordered-skyrmion flowing regime at the

current density with jth < j < jCO, the above microscopic mechanism also quali-

tatively explain the experimental observation of the decrease of the nonreciprocal

Hall signal above jCO, which we assign to the onset of the dynamical reordering

(i.e. onset of reduction of effective pinning force). Since the stronger disorder

potential gives the larger deformation of SkL, the nonreciprocal Hall signal is an

increasing function of strength of pinning potential. Therefore the effective re-

duction of pinning force reduces the deformation of skyrmion strings, leading the

decrease of nonreciprocal Hall signals.
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(c) (f)

Figure 5.11: Schematic pictures of emergent electromagnetic field for the defor-

mation of a skyrmion string when it collides with point-like impurity. The u

represents the displacement vector of skyrmion string. The red arrows demon-

strate z-components of topological Hall electric field [(ve − vSk) × b]z (a) and

emergent electric field ez = −[u̇ × b]z (d). The positon (z) dependence of dis-

placement of skyrmion strings shown together with color map of z-components of

both (ve − vSk)× b (b) and e = −u̇× b (e) at several time points. Time depen-

dence of the averaged z-components of both [(ve − vSk)× b]z (c) and e = −u̇× b

(f) over the skyrmion string.
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5.4 Summary

In this section, we have demonstrated that the current-induced asymmetric defor-

mation of skyrmion strings arising from both its flexible nature and the Dzyaloshinskii-

Moriya interaction results in nonreciprocal transport response related to the real-

space Berry phase of skyrmion string. The asymmetric dynamics and consequent

nonreciprocal transport response are one of the generic properties of dynamics

of string-like objects in non-centrosymmetric systems including vortex lines in

non-centrosymmetric superconductors as well as skyrmion string in nonsymmet-

ric mangets investigated here.



Chapter 6

Transport properties ans stability

of skyrmions in MnSi thin films

6.1 Introduction

In favor of such applications, thin films of skyrmionic materials offer the stage

of stable skyrmions in a wide temperature range below the magnetic transition

temperature (Tc),[8, 17, 98] whereas the helical or the conical spin state almost

dominates the temperature (T )-magnetic field (B) phase diagram in the bulk

sample.[7, 14, 99] Theoretical studies based on a two-dimensional (2D) model

well reproduce the experimental T -H phase diagram of the Fe0.5Co0.5Si thinned

(< 100 nm) plate [8], in which the helical or conical modulation period (∼ 90 nm)

is comparable to or longer than the sample thickness. This is perhaps because

the quasi-two-dimensional skyrmion state is stabilized relatively to the helical or

conical state with the modulation vector normal to the plate, when the magnetic

field is applied normal to such a thin plate. In contrast, an effect of uniaxial

magnetic anisotropy on stability of skyrmion also has been studied; theoretically,

when a magnetic field is applied in the easy-plane or parallel to the easy-axis,

skyrmions are stabilized. Since epitaxial thin film of MnSi on Si(111) substrates

91
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has an easy-plane anisotropy arising from a tensile strain due to the lattice mis-

match, skyrmions are expected to be stabilized when an in-plane magnetic field is

applied, which is an array of skyrmion strings stretching in the plane of the thin

films [100] (i.e. in-plane skyrmion) [Fig. 6.1(a)]. However, there have been few

comprehensive studies on stability of both the quasi-two-dimensional skyrmions

and the in-plane skyrmions in thin films.

To this end, we employ (1) planar Hall effect to detect the formation of in-

plane skyrmion and (2) topological Hall effect to detect the quasi-two-dimensional

skyrmion. By measurements of planar Hall effect (PHE), which sensitively ex-

tracts an anisotropic component of electrical conductance, we identify the emer-

gence of skyrmions. In-plane skyrmions appears at low temperatures, which is

distinct from the hitherto known skyrmion phase stretching from Tc. The in-plane

skyrmion strings are stabilized by the magnetic anisotropy, which is enhanced at

low temperatures. By measurement of topological Hall effect, we also identified the

formation of quasi-two dimensional skyrmions in a wide temperature range below

Tc when out-of-plane magnetic field is applied. The topological signal is largest

in the vicinity of Tc, indicating the number of quasi-two-dimensional skyrmions

reaches a maximum near Tc, which differ from the phase diagram for the in-plane

skyrmion. These results indicate the dominant mechanism of the stabilization

for the in-plane skyrmion and the quasi-two-dimensional skyrmions is different.

We also demonstrate a systematic change of skyrmion stability as a function of

thickness (t) and helical period (λ), the latter of which can be controlled by Fe

content x.
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6.2 Formation of in-plane skyrmions in MnSi

thin films

To detection of the in-plane skyrmion strings forming in the epitaxial MnSi thin

films, we apply the PHE measurement, which is a sensitive probe for skyrmion

formation as discussed in Chapter 3. In Fig. 6.1 are presented the magnetic field

dependencies of magnetization M , magnetoresistivity normalized by its value at

zero field ρxx(B)/ρxx(0), and PHE signal normalized by the longitudinal resistivity

at zero field ρPHE
yx /ρxx(0), at three temperatures (2, 10, 30 K). Magnetoresistivity

and PHE are measured with electric current J ∥ [11̄0] and with magnetic field

B ∥ J and B ∥ (111) surface, respectively. It is obvious that PHE signal shows a

distinctive anomaly characteristic of the skyrmion formation at low temperatures

below 20 K [Figs. 6.1(i) and 6.1(j)]. Given the theoretical prediction [100], the

skyrmion strings stretching along the in-plane B in the thin film are likely respon-

sible for the PHE anomalies, as schematically shown in Fig. 6.1(a). Between 20

K and 40 K(≈ Tc), all the three quantities [M , ρxx(B)/ρxx(0), and ρPHE
yx /ρxx(0)]

indicate only one distinct magnetic transition at Bc as exemplified in Figs. 6.1(e),

(h), and (k). Above Tc, no significant signals are observed (not shown). We

note that there are observed tiny anomalies in M and ρPHE
yx /ρxx(0) at interme-

diate fields between the zero field and the critical field Bc at T = 25–35 K [see

also Figs. 6.1(e) and 6.1(k)]. These may indicate sparse formation of skyrmion

strings.

The magnetic field range of the PHE anomaly (Bsk1 < B < Bsk2) extends well

above Bc [Figs. 6.1(i) and (j)] and even reaches zero field in the decreasing field

process at 10 K [Fig. 6.1(j)]. Once skyrmions are created, they coexist with other

magnetic phase persisting beyond their thermodynamical-stability B-region. This

originates from the first-order phase transition nature associated with topological

change in the magnetic texture, i.e., unwinding the skyrmions costs a consider-

able barrier energy. Because of the topologically-stable nature of skyrmions, the
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Figure 6.1: (a) A schematic illustration of the skyrmion formation in the presence

of in-plane magnetic field. (b) An experimental setup for the measurement of

PHE. Magnetic-field dependence of (c)-(e) magnetization, (f)-(h) magnetoresis-

tivity, and (i)-(k) planar Hall resistivity of 26-nm MnSi thin film at 2 K, 10 K, and

30 K. Red lines indicate the data taken with increasing field and blue lines the data

with decreasing field. The vertical dashed lines represent Bsk1, Bsk2, and Bc; Bsk1

and Bsk2 correspond to the lower and upper critical fields of the ρPHE
yx -hysteretic

regime, where the ρPHE
yx originating from the in-plane skyrmions appears, and Bc

stands for the critical field above which the spin collinear ferromagnetic state

shows up.
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(a)

(b)

Figure 6.2: Color maps of (a) planar Hall resistivity (ρPHE
yx ) normalized by lon-

gitudinal resistivity at zero field with increasing field and (b) ∆ρPHE,Hys
yx /ρxx(0)

defined by the hysteretic component of ρPHE
yx in the magnetic field scans [see Figs.

6.1(i)-(k)]. Squares represent Bsk1 and Bsk2. Solid triangles and open circles rep-

resent Bc with increasing field and decreasing field, respectively. Orange circles

represent transition temperature Tc.



CHAPTER 6. TRANSPORT PROPERTIES ANS STABILITY OF SKYRMIONS INMNSI THIN FILMS96

hysteretic skyrmion formation with respect to magnetic field change also shows

up as the hysteresis in the PHE signal [Figs. 6.1(i) and (j)]. The PHE anomaly is

more prominent in the course of increasing field than decreasing field at 2 K [Fig.

6.1(i)]. Since the magnitude of the PHE anomaly should be associated with the

skyrmion density, the large hysteresis in PHE indicates that the density of packed

skyrmion strings depends on the precedented magnetic structure determined by

the magnetic field history; the helical structure is more prone to the development

of the skyrmions than the ferromagnetic state. With a slight elevation of tem-

perature from 2 K, for example at 10 K, skyrmion formation occurs in different

B-ranges between the increasing and decreasing field processes [Fig. 6.1(j)]. With

increasing field, the transformation of the in-plane skyrmion strings from the heli-

cal structure occurs at Bsk1, followed by the continued existence of skyrmions well

above Bc; with decreasing field, skyrmions appear at Bc, remaining even near zero

field. Here we note that while there are also discerned kinks and/or hysteretic

behaviors corresponding to the skyrmion phase in the magnetization and magne-

toresistivity curves, the planar Hall signal shows much better sensitivity for the

skyrmion formation.

We show contour mapping of ρPHE
yx /ρxx(0) for the increasing field process in

Fig. 6.2(a), along with phase boundaries determined by measurements of M and

PHE. In contrast to the skyrmion phase in the bulk MnSi as stabilized by the

large thermal fluctuations near Tc, the in-plane skyrmion phase for the thin film

appears at low temperatures; this indicates a different driving force is involved

in the formation of the in-plane skyrmions. The uniaxial magnetic anisotropy

enhanced at low temperatures is perhaps the major contribution as theoretically

suggested [100]. To highlight the hysteretic formation of the in-plane skyrmion, we

map in Fig. 6.2(b) the ∆ρPHE,Hys
yx defined as difference calculated by subtracting

ρPHE
yx with decreasing field from that with increasing field, which removes the M -

induced PHE showing a significant contribution above Bc between 20–50 K. As

described above, the in-plane skyrmion formation largely depends on the magnetic
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field history; namely, skyrmions tend to coexist with the ferromagnetic (helical)

state in the increasing (decreasing) field process. That hysteretic behavior is

presented as positive [blue part in Fig. 6.2(b)] or negative [red part in Fig.6.2(b)]

∆ρPHE,Hys
yx , while there is no hysteretic signal in the other T -H region. We note

that the magnetic phase diagram determined by PHE is different from that of

previous study [100] based on the magnetization measurement.

Finally, we discuss the thickness (t) dependence of planar Hall signal (Fig. 6.3).

At low temperatures, where we demonstrate the in-plane skyrmion formation, a

polarized neutron reflectometry study [101] has proposed a helicoidal state. The

helicoidal state proposed in Ref. [101] shows discrete changes in its helix turns

with a magnetic field variation. When the sample thickness is nλ ≤ t < (n+1)λ,

where λ is helical period, the helicoidal state with n-turns is realized. With

application of the magnetic field, the turns would be discretely unwound. If we

assume the large kink in PHE [e.g. see Fig. 6.1(i)] originates from the helicoidal

structure, namely the discrete change in the number of turns, additional kink

would appear in a thicker film. Figure 6.3 shows that the PHE signals in 26 and

50-nm thick films. Even if we increase the thickness twice, the overall feature

remains unchanged; this is inconsistent with the model of the helical structure

formation, but supports the present interpretation, i.e. the in-plane skyrmion

formation.

6.3 Stability of two-dimensional skyrmions in-

vestigated by topological Hall effect

In this section, we investigate the stability of skyrmions in MnSi thin films with

various film thickness and helical period, the latter of which can be controlled by

Fe content x, when an out-of-plane magnetic field is applied by using topological

Hall effect. The magnetic and transport properties of present films are in good
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Figure 6.3: Magnetic-field dependence of ρPHE
yx at 2K in (a) 26 nm film and (b)

50 nm film.

agreement with previous reports[102, 103]. Magnetic transition temperatures of

the 20-nm films are presented along with those of the bulk for comparison in

Fig. 6.5(c). The transition temperatures (Tc) were determined from the inflection

points in the M -T curves (Figs. 6.4) by adopting the peaks of second T -derivative

of magnetization M under an out-of-plane field of 0.05 T. The transition temper-

atures Tc of the Mn1−xFexSi films are higher approximately by 10 K than those

of bulk due to the strain from the Si substrate, yet they do not depend on film

thickness (not shown), as already recognized in previous studies [102, 103]. Fig-

ures 6.5(a) and (b) show the temperature dependence of resistivity ρxx for all the

Mn1−xFexSi films. The resistivity shows an inflection corresponding to the mag-

netic transition. The residual resistivity decreases with t because of reduction of

the surface scatting [Fig. 6.5(a)], while increasing with x due to scattering by Fe

dopants [Fig. 6.5(b)].

Shown in Figs. 6.6(a)-(c), Figs. 6.6(d)-(f), and Fig. 6.7 are the magnetic-field

dependences of magnetization M , magnetoresistivity ρxx(B)/ρxx(0), and Hall re-

sistivity ρyx of 20-nm Mn1−xFexSi films, respectively, from which we extract the
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Figure 6.4: (a)-(c) Temperature dependence of magnetization and its second

derivative of 20-nm Mn1−xFexSi films (x = 0, 0.02, and 0.04) at B = 0.05 T.



CHAPTER 6. TRANSPORT PROPERTIES ANS STABILITY OF SKYRMIONS INMNSI THIN FILMS100

Figure 6.5: Comparison between T -dependences of resistivities of (a)

Mn0.96Fe0.04Si films with different thicknesses and (b) 20-nm Mn1−xFexSi films

with different Fe contents. (c) The transition temperature Tc of 20-nmMn1−xFexSi

films compared with those of bulk samples.[104]
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topological Hall signals as described below. The transition between the wind-

ing (helical, conical, skyrmionic, etc.) magnetic structure and the ferromagnetic

structure is represented as the inflection in the M -B curve, the magnetic field

at which is defined as Bc by adopting the peak of first B-derivative of M . The

observed profiles of ρyx indicate additional contributions other than the B-linear

and M -linear terms of the respective normal and anomalous Hall effects.

Figure 6.6: (a)-(f) Magnetic-field dependence of magnetization and magnetoresis-

tivity of 20-nm Mn1−xFexSi films (x = 0, 0.02, and 0.04). In panels (a)-(c), the

diamagnetic contribution of Si substrate estimated by the M -B curve at 300 K is

subtracted from the raw data.

In general, the topological Hall contribution is less distinguishable when the

ρyx-B curve deviates from the straight line due to other origins such as the mul-
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Figure 6.7: (a)-(f) Magnetic-field dependence of Hall resistivity of 20-nm

Mn1−xFexSi films (x = 0, 0.02, and 0.04).
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ticarrier effect on the ordinary Hall response [105]. To distinguish topological

Hall signals from possible other contributions, we measured the inclination angle

dependence of Hall resistivity. Here we define the inclination angle θ as the angle

between the normal vector to the film plane and the magnetic field direction [see

inset of Fig. 6.8(a)]. Figures 6.8(a)-(d) present Hall resistivity of the Mn1−xFexSi

film (t = 20 nm, x = 0.04) at various values of θ. We adopt the two-carrier

model of normal Hall effect [105] and analyze ρyx(θ) by employing the following

relations:[34, 106]

ρyx = ρNyx + ρAyx + ρTyx,

ρNyx =
R1ρ

2
2 +R2ρ

2
1 +R1R2(R1 +R2)(H cos θ)2

(ρ1 + ρ2)2 + (R1 +R2)2(H cos θ)2
H cos θ,

ρAyx = SHρxx(θ)
2M(θ) cos θ. (6.1)

Here, ρNyx and ρAyx are the normal and the anomalous Hall resistivities, respectively.

R1 (R2) and ρ1 (ρ2) are normal Hall coefficient and resistivity of each carrier. SH

is anomalous Hall coefficient. In this model, the normal Hall resistivity ρNyx does

not obey B-linear dependence except for high field regime (ρNyx → [R1R2/(R1 +

R2)]H cos θ). The measured Hall resistivity converges with the B-linear profile

at high fields, where the ferromagnetic (spin-collinear) state is induced and the

topological Hall effect disappears. This enables us to reproduce the experimental

data in the high field by using a simple relation ρyx = ρNyx + ρAyx = RθH +

Sθρxx(θ)
2M(θ), where Rθ = R1R2

R1+R2
cos θ and Sθ = SH cos θ. Magnetoresistivity

ρxx(θ) and magnetization M(θ) were measured at every angle (not shown). Sum

of the B-nonlinear contributions from the multicarrier effect and the topological

Hall effect can be extracted as the difference between the measured Hall resistivity

ρyx and the fitted curve, which we denote by ∆ρyx [see Figs. 6.8(a)-6.8(d) for the

fitting].

Figures 6.9(a)-(d) show development of ∆ρyx at various inclination angles,

plotted as a function of the effective magnetic field perpendicular to the film plane

(B cos θ) normalized by Bc. Below the transition temperature Tc (T = 10, 15, and
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Figure 6.8: Magnetic-field dependence of (a)-(d) Hall resistivity ρyx of the

Mn1−xFexSi film (t = 20 nm, x = 0.04) at various inclination angles and tem-

peratures. Thick lines show the measured ρyx, and thin lines are fitting curves for

high magnetic fields (H ≫ Bc), using the relation that ρyx = RθB +Sθρ
2
xxM (see

text). The inset of panel (a) is a sketch of the experimental setup.

20 K), the ∆ρyx shows a sudden decrease around θ = 30◦ with increasing θ, and

it converges with a dome-shaped profile at the larger angles (θ = 40◦ and 55◦),

which indicates a sharp change in the magnetic structure around θ = 30◦-40◦ [Figs.
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Figure 6.9: Magnetic-field dependence of (a)-(d) ∆ρyx, and (e)-(h) ρTyx/ cos θ of

the Mn1−xFexSi film (t = 20 nm, x = 0.04) at various inclination angles and

temperatures (see text for the definitions of ∆ρyx and topological component ρTyx).

The green and the purple shadowed parts in panels (a)-(d) show the contribution

from topological Hall effect and multicarrier effect, respectively
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6.9(a)-(c)]. Conversely, the ∆ρyx remains as the same curve at every inclination

angle above Tc [Fig. 6.9(d)]. We assign the drop of ∆ρyx observed below Tc to the

disappearance of topological Hall contribution ρTyx due to the destruction of the

skyrmions by tilting the sample with respect to the magnetic field direction. The

convergent curves of ∆ρyx observed both above and below the transition tempera-

ture are the B-nonlinear component arising from the multicarrier effect on ρNyx. We

show variation of the extracted ρTyx at various angles in Figs. 6.9(e)-6.9(h). The ex-

tracted ρTyx is defined as ρTyx(B cos θ, θ) = ∆ρyx(B cos θ, θ)−∆ρyx(B cos θ, θ = 55◦).

Given this assignment of the topological Hall effect, we can know a critical an-

gle of the skyrmion formation itself; we normalize the ρTyx (proportional to the

skyrmion density) by cos θ because the spacing between skyrmions is elongated,

by a factor of 1/ cos θ along the current path with tilting the sample [also see Fig.

6.11 (b)]. The sharp decline of ρTyx, reflecting the annihilation of non-coplanar

magnetic structures like skyrmions, is again highlighted at the temperatures be-

low Tc [Fig. 6.9(e)-(g)], while no topological Hall contribution is observed above

Tc [Fig. 6.9(h)]. The critical angle is revealed to be around θ = 30◦ (Fig. 6.10).

Figure 6.10: Peak values of topological Hall resistivity at 20 K normalized by cos θ

in the 20-nm Mn0.96Fe0.04Si film as a function of the inclination angle θ.

We map the skyrmion phases for all the Mn1−xFexSi films by projecting the
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(a)

(b)
H

H H H

Figure 6.11: Schematic illustrations of (a) a bird’s-eye view and (b) side views

of a triangular lattice of skyrmions in a thin-plate formed sample. In each pillar

structure, a vortex-like spin texture as indicated by hue-colored arrows stretches

along a magnetic field. Red (blue) parts correspond to the areas where spins point

parallel (anti-parallel) to the magnetic field. When the normal vector to the thin

plate is inclined at a certain angle from the magnetic field, the skyrmion lattice

is no longer stable and the conical spin structure with a uniform spin component

along the field appears instead.

extracted ρTyx on the T -B plane [Figs. 6.12(a)-(e)]. The topological Hall resistivity,

essentially representing the skyrmion density, gradually varies with T and B, and

shows a maximum around the transition temperature Tc. This feature is common

to all the Mn1−xFexSi thin films, which is in good agreement with previous reports

of LTEM observation of thinned plate samples of B20-type compounds [8, 17, 98].

Among the Mn0.96Fe0.04Si films with different thicknesses (t = 10, 15, and 20

nm), the temperature range of the dense-skyrmion phases (∆Tsk), as defined by the

regions where ρTyx > 6 nΩ cm, shrink with increasing thickness (t) [Figs. 6.12(a)-

(c)]. By contrast, among the 20-nm films with different Fe contents (x = 0, 0.02,
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and 0.04), ∆Tsk is also reduced with doping Fe [Figs. 6.12(c)-(e)]. The helical

period perhaps becomes shorter with doping Fe as observed for the corresponding

bulk system [107]. Thus, the helical period as well as the sample thickness are the

primary parameters which determine the width of ∆Tsk, or the skyrmion stability.

The topological Hall effect was also detected above Tc and above Bc, which

indicates some spin structure endowed with the non-vanishing topological charge

(scalar spin chirality) still remains in those regions. As mentioned above, in bulk

sample of MnSi, the chiral nature of spin structure still remains above Tc (chiral

spin fluctuations). However, in general, a spin structure with chiral spin fluctu-

ations does not necessarily possess nonzero scalar spin chirality, and existence of

nonzero scalar spin chirality above Tc in bulk MnSi is controversial.

6.4 Summary

In this section, we investigate stability of skyrmions in thin films, employing (1)

planar Hall effect to detect the formation of in-plane skyrmion and (2) topological

Hall effect to detect the quasi-two-dimensional skyrmion.

By measurements of planar Hall effect (PHE), we have revealed the formation

of the in-plane skyrmions in the MnSi epitaxial thin films, which can hardly be

detected by the conventional detection methods such as Lorentz TEM and topo-

logical Hall effect. PHE sensitively detects the 90◦-flop of the magnetic modulation

associated with the skyrmion formation and destruction, showing the prominent

stepwise anomaly in the skyrmion phase. We could determine the development of

the respective magnetic texture in the MnSi film under the in-plane magnetic field,

including the hysteretic formation of the in-plane skyrmions against the magnetic

field change. The uniaxial magnetic anisotropy due to the strain is likely the cause

of the in-plane skyrmion formation at low temperatures.

Quasi-two-dimensional skyrmion phases is determined by mapping the mag-

nitude of topological Hall resistivity in the T -B plane. We could identify the
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Figure 6.12: (a)-(e) Color maps of topological Hall resistivity in the T -B plane for

Mn1−xFexSi films. Compare panels (a)-(c) [panels (c)-(e)] for thickness (helical-

period) dependence of skyrmion phase. White lines are contour lines indicating

ρTyx = 6 nΩ cm. Orange dots represent Bc.
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topological Hall effect from the B-nonlinear normal Hall effect by studying the

change of Hall resistivity at various inclination angles of applied magnetic field.

The sharp reduction in some part of Hall anomaly, which represents the disappear-

ance of the topological Hall contribution likely associated with the destruction of

quasi-two-dimensional skyrmion structures, was observed in the process of inclin-

ing the magnetic field. The mapped skyrmion phases show the systematic change

in ∆Tsk (skyrmion-stable temperature range) against the thickness (t) relative to

helical period (λ), ensuring the more robust skyrmion phase in the lower t/λ sys-

tem [17]. The number of quasi-two-dimensional skyrmions reaches a maximum

near Tc, which differ from the phase diagram for the in-plane skyrmion. These

results indicate the dominant mechanisms of the stabilization for the in-plane

skyrmion and the quasi-two-dimensional skyrmions are different; the former is

uniaxial strain and the letter is dimensionality.



Chapter 7

Conclusion

In this Chapter, we summarize the results to conclude this thesis and discuss

perspectives. In this thesis, we have investigated transport phenomena in which

both chiral and topological properties of skyrmion and chiral spin structures play

a crucial role.

In Chapter 3, we investigate anisotropic magnetoresistance originating from

the modulation of chiral spin structures in bulk samples of MnSi, focusing on

planar Hall effect, which is a sensitive probe for anisotropic magnetoresistance.

Planar Hall effect sensitively detects the 90◦-flop of the magnetic modulation

associated with the skyrmion formation and destruction, showing the prominent

stepwise anomaly in the skyrmion phase. This finding provides a new underlying

principle for the establishment of a method to detect skyrmion formation.

In Chapter 4 and 5, we focused on the nonreciprocal transport phenomena,

which are allowed in the non-centrosymmetric system from the viewpoint of sym-

metry. In Chapter 4, we have investigated the electrical magnetochiral effect (eM-

ChE), which is nonreciprocal magnetotransport effect with the resistance propor-

tional to the inner product of magnetic field and current. Prominent eMChE sig-

nals emerge at specific temperature-magnetic field-pressure regions: in the para-

magnetic phase just above the helical ordering temperature and in the partially-

111



CHAPTER 7. CONCLUSION 112

ordered topological spin state at low temperatures and high pressures. Electrical

magnetochiral effect is also discerned at the phase boundary of the equilibrium

skyrmion phase and in the amorphous-like metastable skyrmion phase. These

results indicate the close relationship between eMChE and fluctuations and/or

disorders of chiral spin structures.

In chapter 5, we have demonstrated that the current-induced asymmetric

deformation of skyrmion strings arising from both its flexible nature and the

Dzyaloshinskii-Moriya interaction results in nonreciprocal Hall effect related to

emergent electric field. The asymmetric dynamics and consequent nonreciprocal

transport response are one of the generic properties of dynamics of string-like ob-

jects in non-centrosymmetric systems including vortex lines in non-centrosymmetric

superconductors as well as skyrmion string in nonsymmetric mangets investigated

here.

In Chapter 6, we have investigated stability of skyrmion against both in-plane

and out-of-plane magnetic field in thin films by using transport measurements.

When in-plane magnetic field is applied, in-plane skyrmions, which is an array

of skyrmion strings stretching in the plane of the thin films, are stabilized at

low temperatures. In contrast, when out-of-plane magnetic field is applied, the

quasi-two-dimensional skyrmion are most stabilized in the vicinity of Tc. These

results indicate the dominant mechanisms of the stabilization for the in-plane

skyrmion and the quasi-two-dimensional skyrmions are different; the former is

uniaxial strain and the letter is the dimensionality.

　 Finally, we discuss perspectives. We have revealed that the coupling be-

tween conduction electrons and spin structures with nontrivial topology and/or

chirality gives birth to nonreciprocal and current-nonlinear transport responses.These

phenomena are expected to widely occur in chiral spin systems other than B20-

type MnSi. In addition, in helimagnets with centrosymmetric structure, although

right- and left-handed spin structures are energetically degenerate, the nonrecip-

rocal transport phenomena are allowed in a homochiral domain. Furthermore, the
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nonreciprocal transport phenomena and asymmetric skyrmion strings dynamics

investigated here also provide insight into those in other non-centrosymmetric sys-

tems such as polar magnets or bilayer films, in which nonreciprocal phenomena

with the selection rule which differs from that in the chiral system are allowed.

Moreover, the coupling between pure spin current, and chirality and topology of

spin structures is also of great interest.

To realize skyrmion-based devices, the stabilization of skyrmion in thin films

at room temperature is essential. Basic mechanisms for stabilizing skyrmions in

thin films of chiral magnets discussed in this thesis provide design guidelines for

thin films of chiral magnets hosting skyrmion above room temperature such as

Co-Zn-Mn alloys.
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[51] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Nuebauer, W.Münzer, A. Bauer,
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[90] G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

[91] U. Yaron, P. L. Gammel, D. A. Huse, R. N. Klemiman, C. S. Oglesby, E.

Bucher, B. Batlogg, D. J. Bishop, K. Mortensen, and K. N. Clausen, Nature

376, 753 (1995).

[92] C. J. Olson, C. Reichhardt, and F. Nori, Phys. Rev. Lett. 81, 3757 (1998).

[93] C. Reichhardt, D. Ray, and C. J. Olson Reichhardt, Phys. Rev. Lett. 114,

217202 (2015).

[94] K. Yasuda, A. Tsukazaki, R. Yoshimi, K. Kondou, K. S. Takahashi, Y.

Otani, M. Kawasaki, and Y. Tokura, Phys. Rev. Lett. 119, 137204 (2017).

[95] W. Kleemann, J. Rhensius, O. Petracic, J. Ferre, J. P. Jamet, and H. Bernas,

Phys. Rev. Lett. 99, 097203 (2007).

[96] G. Tatara and H. Fukuyama, J. Phys. Soc. Jpn. 83, 104711 (2014).

[97] P. Bak, and H. Jensen, J. Phys. C 13, L881 (1980).

[98] A. Tonomura, X. Z. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N.

Kanazawa, H. S. Park, and Y. Tokura, Nano Lett. 12, 1673 (2012).

[99] E. Moskvin, S. Grigoriev, V. Dyadkin, H. Eckerlebe, M. Baenitz, M.

Schmidt, and H. Wilhelm, Phys. Rev. Lett. 110, 077207 (2013).



BIBLIOGRAPHY 122

[100] M. N. Wilson, E. A. Karhu, A. S. Quigley, U. K. Rößler, A. B. Butenko,
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