学位論文

大気中における代替フロン等の超微量ハロカーボン類 の分布と変動および挙動に関する研究

平成10年12月博士(理学)申請

東京大学大学院理学系研究科 化学専攻 白井 知子

学位論文

大気中における代替フロン等の 超微量ハロカーボン類の 分布と変動および挙動に関する研究

平成10年12月博士(理学)申請

東京大学大学院理学系研究科

化学専攻

白井 知子

目次	
図目次	
表目次	
34 6 6	
序	1
 研究の背景 	
1-1 フロンとは ······	4
1-2 大気中フロンの環境への影響	6
1-2-1 CFC による成層圏オゾン層破壊	
1-2-2 成層圏オゾン層破壊の影響	
1-2-3 地球温暖化への影響	
1-3 フロンの規制と代替フロンの開発	8
2. 実験方法 - 分析法の確立	
2-1 測定装置 1	3
2-1-1 試料導入系	
2-1-2 GC/MS (ガスクロマトグラフ/質量分析計)	
2-1-3 PC による装置の制御・データ処理	
2-2 試料の導入	.0
2-2-1 低温濃縮·脱水法	
2-2-2 cryofocusing method	
2-3 GC 条件	18
2-4 MS条件	19
2-4-1 MS 検出器	
2-4-2 測定モード	
2-5 測定操作	24
2-6 濃度較正	27
2-6-1 試料調整用真空ラインの作製	
2-6-2 希釈容器のコンディショニング	
2-6-3 一次標準試料の調製	
2-6-4 二次標準試料	
2-7 分析精度·確度	29
2-7-1 精度	
2-7-2 確度	

3. 試料採取法		
3-1 対流圈大気試料		32
3-1-1 試料容器の製作		
3-1-2 試料採取準備		
3-1-3 サンプリング地点 -	バックグラウンド濃度とは -	
3-1-4 サンプリング		
3-2 成層圈大気試料	************************************	39
3-2-1 クライオジェニックサ	ンプリング法	
3-3 保存試料中の安定性	**********	43
4. 代替フロンの大気中濃度の	D経年変化	
4-1 序		46
4-2 測定条件とデータ処理		48
4-2-1 測定条件の統一		
4-2-2 データの評価		
4-3 測定結果		49
4-4 2-box モデル計算		53
4-5 観測結果への考察		55
4-5-1 HFC-134a		
4-5-2 HCFC-141b		
4-5-3 HCFC-142b		
4-5-4 代替フロンの大気中への	の放出について	
4-6 都市部における代替フロ	ン濃度	65
5. ハロカーボン類の高度分布	ជ	
5-1 序		67
5-2 大気球による成層圏大気	試料採取実験	67
5-2-1 三陸における大気球実際	ê.	
5-2-2 キルナにおける大気球集	2. 験	
5-2-3 南極における大気球実験	¢.	
5-3 成層圈大気試料測定		72
5-4 緯度や季節の異なるデー	-タ解析における検討事項	75
5-4-1 対流圏界面高度の緯度	変化	
5-4-2 気圧高度による比較		
5-4-3 等温位面解析		

5-4-4 子午面循環

6. ハロゲン化メチルの大気中濃度測定

6-1. 月	F .			*********	108
6-2. 润	測定と定量 .				109
6-3. /	、ロゲン化メチルのステンレ	ス容器中で	の安定性		109
6-3-1	序				
6-3-2	対流圏大気試料容器中での安	定性			
6-3-3	ブランク実験				
6-3-4	ステンレス由来の汚染				
6-3-5	対策法の検討				
6-3-6	成層圈試料容器				
6-4. /	、ロゲン化メチル類の大気の	□濃度			124
6-4-1	試料容器中の安定性と大気中	濃度測定			
6-4-2	北海道および沖縄におけるハ	ロゲン化メチ	ル濃度		
6-4-3	季節変動				
6-4-4	森林火災によるハロゲン化メ	チルの放出			
6-5. /	い ロゲン化メチル類の高度分	分布			131
6-5-1	観測されたハロゲン化メチ	ル類の高度分	布		
6-5-2	観測されたハロゲン化メチ	レ類の高度分類	布の解釈		
4± 7 8					143
THE UN		* * * * * * * * * * * * *	****		+ 10
参考文献	武				145

謝辞

図目次

Figure 1-1. Annual production of fluorocarbons	0
Figure 1-2. Phase out schecule of HCFCs	2
Figure 2-1. Schematic diagram of the analytical system	4
Figure 2-2. Mass chromatogram of a typical remote air sample 2	25
Figure 3-1. Sampling canisters	33
Figure 3-2. Locations for tropospheric atmospheric sampling	8
Figure 3-3. Locations of the balloon launching stations	40
Figure 3-4. Schematic diagram of the balloon-borne cryogenic sampler 4	1
Figure 3-5. Flight train of the balloon system	12
Figure 3-6. Observed concentrations ratio of methyl chloride and HCFC-22 relative to	
CFC-12 in atmospheric sample stored in the stainless steel canister	45
Figure 4-1. Observed atmospheric concentrations of HFC-134a in the northern	
hemisphere and the southern hemisphere, and their global average	50
Figure 4-2. Observed atmospheric concentrations of HCFC-141b in the northern	
hemisphere and the southern hemisphere, and their global average 5	1
Figure 4-3. Observed atmospheric concentrations of HCFC-142b in the northern	
hemisphere and the southern hemisphere, and their global average	52
Figure 4-4. Total sales of HFC-134a by category in the world	56
Figure 4-5. Total sales of HCFC-141b by category in the world 5	8
Figure 4-6. Total sales of HCFC-142b by category in the world	0
Figure 4-7. Observed atmospheric concentrations of HCFC-142b by UT and NOAA . 6	iI
Figure 4-8. Total sales and estimated release of HCFC-142b	53
Figure 4-9. Cumulative emissions of CFC substitute for each use category	54
Figure 4-10 Relationship between emisions in Japan and excess concentrations of	
HCECs and HEC in Tokyo	66

Figure 5-1. Seasonal variation of wind direction and speed over Sendai	9
Figure 5-2. Trajectory of the balloon launched from Sanriku on 30 May, 1997	0
Figure 5-3. Trajectory of the balloon launched from Sanriku on 3 September, 1998	71
Figure 5-4. Trajectory of the balloon launched from Kiruna on 22 February and 18	
March, 1997	3
Figure 5-5. Trajectory of the balloon launched from Syowa station on 3 January,	
1998	4
Figure 5-6. Temperature profiles recorded by rawin sonde	7
Figure 5-7. Pressure profiles recorded by rawin sonde	18
Figure 5-8. Potential temperature profiles calculated based on the rawin sonde data 8	0
Figure 5-9. Schematic cross section of transport in the stratosphere	1
Figure 5-10. Vertical profiles of halocarbons over Sanriku on 30 May, 1997	3
Figure 5-11. Vertical profiles of halocarbons over Sanriku on 3 September, 1998 8	84
Figure 5-12. Vertical profiles of halocarbons over Kiruna on 22 February, 1997	85
Figure 5-13. Vertical profiles of halocarbons over Kiruna on 18 March, 1997	86
Figure 5-14. Vertical profiles of halocarbons over Syowa station on 3 January, 19988	17
Figure 5-15. Vertical profiles of halocarbons over Sanriku on 30 May, 1997	
(plotted versus pressure)	88
Figure 5-16. Vertical profiles of halocarbons over Sanriku on 3 September, 1998	
(plotted versus pressure) 8	39
Figure 5-17. Vertical profiles of halocarbons over Kiruna on 22 February, 1997	
(plotted versus pressure)	90
Figure 5-18. Vertical profiles of halocarbons over Kiruna on 18 March, 1997	
(plotted versus pressure)	91
Figure 5-19. Vertical profiles of halocarbons over Syowa station on 3 January, 1998	
(plotted versus pressure)	92
Figure 5-20. Vertical profiles of halocarbons over Sanriku on 30 May, 1997	
(plotted versus potential temperature)	93
Figure 5-21. Vertical profiles of halocarbons over Sanriku on 3 September, 1998	
(plotted versus potential temperature)	94

Figure 5-22.	Vertical profiles of halocarbons over Kiruna on 22 February, 1997	
	(plotted versus potential temperature)	95
Figure 5-23.	Vertical profiles of halocarbons over Kiruna on 18 March, 1997	
	(plotted versus potential temperature)	96
Figure 5-24.	Vertical profiles of halocarbons over Syowa station on 3 January, 1998	
	(plotted versus potential temperature)	97
Figure 5-25.	Absorption cross sections of halocarbons	99
Figure 5-26	Vertical eddy diffusion coefficient based on the observed profile of CH4	
	and N2O, and one-dimensional model calculation	100
Figure 5-27.	Potential vorticity on 475K isentropic level	104

Figure 6-1.	Response ratio of HCFC-22 and methyl chloride to CFC-12 during
	storage in defferent canisters
Figure 6-2.	Growth of methyl halides in blank a sample when the canister was heated
	at 110°C
Figure 6-3.	Growth of methyl halides in a blank sample when the canister was heated
	at 200°C
Figure 6-4.	Growth of methyl halides in several balance gases
Figure 6-5	Concentrations of methyl halides standard mixture in the canister
Figure 6-6	Observed mixing ratios of methyl halides at remote sites in Japan
Figure 6-7	Vertical profiles of methyl halides over Sanriku on 30 May, 1997
Figure 6-8	Vertical profiles of methyl halides over Sanriku on 3 September, 1998 133
Figure 6-9	Vertical profiles of methyl halides over Kiruna on 22 February, 1997 134
Figure 6-1	0. Vertical profiles of halocarbons over Kiruna on 18 March, 1997
Figure 6-1	1. Vertical profiles of halocarbons over Syowa station on 3 January, 1998.136
Figure 6-1	2. Calculated loss rates for methyl halides
Figure 6-1	3. Calculated vertical profiles for methyl halides
Figure 6-1	4. Dynamical aspects of stratosphere-troposphere exchange142

表目次

Table 1-1, M	Major CFCs, HCFCs, HFCs, and halons
Table 1-2. (Global Warming Potentials of CFCs, HCFCs, and HFCs
Table 2-1.	Selected monitored ions for measured halocarbons
Table 2-2.1	Precision and detection limit of the analytical system
Table 4-1.1	Reported observations of HFC-134, HCFC-141b, HCFC-142b
Table 6-1	Reported observations of methyl halides
Table 6-2	Methyl halide emissions from Indonesian forest fires

人間活動に伴う放出による大気中微量成分の濃度変化は、成層圏オゾン層破 壊や地球温暖化など地球環境全体に影響を及ぼしている。1985年に南極上空で 発見されたオゾンホールは、年々増大し続け、近年では北極上空でも観測され るようになり、日本など中緯度も含め地球全体で成層圏オゾンの減少が観測さ れている。1974年に米国カリフォルニア大学のF.S. RowlandとM. J. MolinaがCFC による成層圏オゾン層破壊の仮説を発表して以来、1970年代の終わりから成層 圏オゾン層破壊物質の国際的な規制への動きが始まり、1985年には「オゾン層 保護条約」が採択された。その後、1987年の「オゾン層を破壊する物質に関す るモントリオール議定書」に基づいて、1989年より国際的に特定フロン類の生 産・消費量の規制が開始され、さらにその後の同議定書締約国会議による規制 強化を経て、CFC類(ChroIofluorocarbons)の生産は先進国では1995年末で全廃 された。

特定フロンの規制に伴い、工業界はオゾン破壊効果の小さい代替フロンの開 発に取り組み、分子中に水素原子を含んでおり対流圏内でOHラジカルと反応し て分解しやすく、成層圏オゾン層への影響が少ないとされるHCFC類 (hydrochlorofluorocarbons)、分子中に塩素原子を含まずオゾン層に影響を 及ぼさないHFC類 (hydrofluorocarbons)などの代替品を開発した。しかし、 HCFCは小さいながらも成層圏オゾンを破壊効果を持つため、1992年の第4回モ ントリオール議定書締約国会議(於コペンハーゲン)において、1996年の規制 開始および2030年全廃が決定され、1995年の第7回モントリオール議定書締約 国会議(於ウィーン)において2020年全廃へ前倒しされた。また、HFCについ ても温暖化ガスとして、「気候変動に関する国際連合枠組条約京都議定書」 (1997)により規制されることが決定した。

一方、二酸化炭素、メタン、一酸化二窒素などの主な温暖化ガスは、天然に も大きな発生源を持ち、その発生量や消失量が不確実な上、人為起源の放出も

序.

化石燃料の燃焼、森林の伐採など規制が困難なため、地球温暖化への対応は遅 れている。成層圏オゾン層を破壊するハロカーボン類は一方で温暖化ガスでも あり、対流圏における温暖化ガスの増加のもたらす成層圏温度の低下が成層圏 オゾン破壊の促進に繋がるとの指摘もあり、成層圏オゾン層破壊と対流圏温暖 化効果とは相互に影響を及ぼしあっている。近年、人間活動に起因するエアロ ゾルの増加による放射強制力の低下が温暖化を緩和する効果も含め、気候への 影響を見積もる努力がなされているが、依然として未解明の点が多い。

このように、様々な要素が複雑に影響し合って起こる地球規模の環境問題の 解明には、全地球的な観測が不可欠であり、人工衛星観測や気象モデル計算が 行われている。しかし、成層圏・対流圏循環の化学・力学過程は、全球で一様 でなく局所的な動きの組み合わせで成り立っているため、衛星による観測だけ では不十分である。地上、航空機、気球などで大気を採取し、GCなどにより地 上で分析する手法は、衛星観測などに比べ、分析の感度や精度が高く、細かい 空間分解能での試料採取も可能であり、微量成分や比較的規模の小さい現象を 捉えるのに有効である。この手法は気象条件や観測地点などに制約があり、広 範囲に渡り連続的に測定するには適さないが、定常的な観測と系統的な解析を 行うことにより、空間的・時間的に幅広い情報を得ることが可能である。

本研究では、成層圏オゾン層破壊および地球温暖化など、地球環境に大きな 影響を及ぼす大気中微量ハロカーボン類のガスクロマトグラフ(GC)/質量分 析計(MS)による精密測定法を開発し、過去に採取して保存されてきた大気試料 や、新たに採取された種々の緯度の成層圏大気試料など様々な試料を分析し、 これらのハロカーボン類の全球規模での大気中濃度の分布や変動および環境中 での挙動の解明を試みた。

中でも、近年使用量が急増している代替フロンのHFC-134a、HCFC-141bおよ びHCFC-142bの極めて低いバックグラウンド濃度の検出に成功し、北海道およ び南極において採取し保存している対流圏大気試料を分析して、過去十数年に わたる南北両半球ならびに全球平均における対流圏大気中濃度の経年変化およ び年増加率を明らかにしたことは、地球温暖化防止への社会的関心の高まりと

2

あいまって、社会的にも大きな意味を持つことになった。また、これらは完全 な人工物質であるため、生産統計値を用いて見積もられた放出量を用いて計算 した大気中濃度と観測された大気中濃度とを比較し、そのずれから現在の放出 量の推定値に問題があることを指摘した。これらの観測を継続することは、将 来の動向の予測にも大きく貢献すると期待される。

また、本研究では、1997年から1998年にかけ、三陸大気球実験場およびス ウェーデン・キルナ、南極昭和基地において、大気球搭載クライオジェニック サンプラーにより採取された成層圏試料を分析し、種々の緯度におけるハロ カーボン類の大気中濃度の高度分布を明らかにした。

大気中ハロカーボン類の成層圏における高度分布は、大気の運動と光化学反応の効果のバランスによって支配されている。地表でのみ発生し、大気中での反応、消滅過程の限られているハロカーボン類は、大気の輸送過程のトレーサーとして非常に有効である。本法では、CPC-12、CFC-11、CFC-113、CFC-114(およびCFC-114a)などの特定フロン類や、Halon-1211などのハロン類、およびHCFC-22、HCFC-142bなどの代替フロン類などの完全な人工起源物質の他、天然にも発生源を持つ塩化メチル、臭化メチル、ヨウ化メチルなどのハロゲン化メチル類など大気中挙動の大きく異なる化合物の同時測定により、化合物間の相関などからも有用な情報を得ることができた。

成層圏・対流圏大気の循環過程については、これまで主として、長時間の平 均を捉えるオイラー的解析による力学的な理解が進められてきた。近年、空気 塊の動きを追跡するラグランジュ解析も進められるようになったが、物質輸送 の面からはまだ解明されていない部分が多い。観測されたハロカーボン類の高 度分布からは、リモート・センシングやモデル計算では得られない成層圏・対 流圏大気循環の微細構造についての情報が得られた。今後は、さらに、観測さ れた高度分布から各化合物の光化学時定数を計算し、輸送過程における紫外線 被曝量を見積もり、空気塊の輸送経路と輸送の時定数を明らかにすることで、 より定量的な大気循環過程の解明に繋げることができると考えられる。

3

1. 研究の背景

1-1. フロンとは

フロンという名称は、フッ素、塩素などを含むハロゲン化炭化水素類の日本 特有の名称であり、クロロフルオロカーボン(chlorofluorocarbon、CFC)、 ハイドロクロロフルオロカーボン(hydrochlorofluorocarbon、HCFC)、ハイ ドロフルオロカーボン(hydrofluorocarbon、HFC)など多くの種類がある。世 界的には「CFC」のように略称が使用されることが多い。また、フロン類のう ち、臭素を含むものは国際的にもハロン(halon)と呼ばれる。

フロンは、1928年に米国のゼネラル・モーターズ社のT. Midgleyによって初 めて合成された。一般的に、四塩化炭素(CC14)やクロロホルム(CHC1a)など のクロロカーボンの塩素を触媒の存在下にフッ素化することにより製造する。 フッ素源には蛍石(CaF2)に濃硫酸を反応させて製造した無水フッ化水素が用 いられる。フロンは低毒性、化学的・熱的安定性、不燃性、非腐食性、選択的 溶解性などのほか、高揮発性である一方、加圧によって液化しやすい、表面張 力が小さいなどの特徴から、冷媒、発泡剤、エアロブル噴射剤などの多くの分 野で急速に使用が広がった。また、ハロンはもともと軍事用に開発され、消火 剤として広く用いられるようになった。Table 1-1 に主なフロンの性質と用途 を示す。

フロンの工業使用の増加に伴い、多くの種類のあるフロンを区別できるよう米国の希凍空調 暖房学会によりフロンの冷媒番号 (ASHRAE Standard 34) が決められた。これらの番号は、1 の位の数字が分子中のフッ素の数、10の位の数字が水素数に1を加えた数、100の位の数字が 炭素数から1を差し引いた数に対応する。さらに異性体がある場合は、分子の対称性の頃に、 1の位の数字の後に添字を付けて区別する(最も対称性が高い異性体には添字を付けず、2番 目以降、a,b,...と付ける)。

Compound	Chemical Formula	b.p.(°C)	Atmospheric Lifetime (years)	*ODP (CFC-11=1)	Use
CFC-11	CCI3F	23.8	50	1.0	Foaming agent Aerosol propellant
CFC-12	CCI ₂ F ₂	-30.0	102	0.95	Refrigerant Foaming agent Aerosol propellant
CFC-113	CCI2FCCIF2	47.6	85	0.8	Solvent Degreasing agent
CFC-114	CCIF2CCIF2	3.77	300	1.0	Aerosol propellant
CFC-114a	CCI2FCF3	3.6		1.0	Aerosol propellant
CFC-115	CCIF2CF3	-39.1	1700	0.6	Refrigerant
HCFC-22	CHCIF ₂	-40.8	13.3	0.055	Refrigerant Foaming agent Aerosol propellant
HCFC-123	CHCl ₂ CF ₃	27.5	1.4	0.02	Refrigerant Foaming agent
HCFC-124	CHCIFCF3	-12,0	5.9	0.022	Refrigerant Foaming agent
HCFC-141b	CH3CCl2F	32.3	9.4	0.11	Foaming agent Solvent Degreasing agent
HCFC-142b	CH ₃ CCIF ₂	-9.22	19.5	0.065	Refrigerant Foaming agent Aerosol propellant
HCFC-225ca	CHCl2CF2 CF3	51.1	2.5	0.025	Solvent
HCFC-225cb	CHCIFCF2 CCIF2	56.1	6.6	0.033	Solvent
HFC-23	CHF3	-82.1	264	0	Refrigerant
HFC-32	CH ₂ F ₂	-51.7	5.6	0	Refrigerant
HFC-125	CHF ₂ CF ₃	-48.5	32.6	0	Refrigerant
HFC-134a	CH2FCF3	-25.9	14.6	0	Refrigerant Foaming agent Aerosol propellant
HFC-143a	CH ₃ CF ₃	-47.4	48.3	0	Refrigerant
HFC-152a	CH3CHF2	-25.0	1.5	0	Refrigerant
Halon-1301	CBrF3	-57.8	65	10.0	Fire extinguisher
Halon-1211	CBrClF ₂	-3.9	20	5.1	Fire extinguisher

Table 1-1. Major CFCs, HCFCs, HFCs, and halons

*ODP (Ozone Depletion Potential) :

A quantity describing the extent of ozone depletion calculated to arise from the release to the atmosphere of 1 kg of a compound relative to the ozone depletion calculated to arise from a similar release of CFC-11. The calculation is an integration of all potential effects on ozone over the whole time that traces of the compounds could remain in the atmosphere.

1-2. 大気中フロンの環境への影響

1-2-1 CFCによる成層圏オゾン層破壊

1970-73年、英国のJ. Lovelockは自ら開発した電子捕獲型検出器(electron capture detector, ECD)を用いてCFC-12(CCl₂F₂)とCFC-11(CCl₃F)の大気中 濃度を測定し、発生源から遠く離れた南半球まで広くフロンが分布しているこ とを示した(Lovelock 1971, 1973)。この結果を知った米国カリフォルニア大 学のF.S. RowlandとM. J. Molinaは、大気中のフロンの除去過程についての研究 を始め、1974年にCFCによる成層圏オゾン層破壊の仮説を発表した(Molina and Rowland 1974)。CFCは対流圏では光分解せず、雨にも溶けず、酸化反応 も受けないため、そのまま蓄積し、拡散により何年もかかって成層圏へ到達す る。成層圏中部まで達すると、そこで短波長の紫外線の照射を受けて光分解し、 遊離した塩素原子の連鎖反応により成層圏オゾンを破壊するとの考えである。 成層圏オゾン層破壊の中心となるのは、以下に示すClOxサイクルをはじめとす る塩素・臭素原子およびその酸化物の活性ラジカルとの連鎖反応である。

 $\begin{array}{rcl} C1 + 0_{3} & \rightarrow & C10 + 0_{2} \\ \\ \hline \\ C10 + 0 & \rightarrow & C1 + 0_{2} \\ \hline \\ 0_{3} + 0 & \rightarrow & 20_{3} \end{array}$

1980年代半ば以降、実際にCFCによる成層圏オソン層破壊が進行しているこ とを裏付ける観測が相次いで報告された。1982年に日本の南極観測隊の忠鉢が、 南極の春に成層圏オゾン密度が著しく減少していることを観測し、1984年の国 際会議で発表した。1985年には、英国のJ.C.Farmanが、春の成層圏オゾンが 年々減少している傾向をフロン濃度増加と関連付けて「Nature」に発表した。 それを受けた米国航空宇宙局(NASA)が過去の衛星観測(TOMS)のデータを再 調査したところ、南極上空のオゾンが1980年代に入って毎年春に著しく減少し ていることがわかり、それらのオゾン分布画像から、その後「オゾンホール」 と呼ばれるようになった。 衛星によるオゾン観測データから、その後、全地球的なオゾン量の減少傾向が明らかになり、オゾンホールは、近年になって、北極上空でも出現するようになった。

1-2-2 成層圏オゾン層破壊の影響

太陽紫外線のエネルギーは大きくUV-A、UV-B、UV-Cの3つの波長領域に分け られる。UV-A(波長400~320nm)は大気中の分子にほとんど吸収されず、地 表に到達する。UV-C(波長280nm以下)は、酸素分子によって吸収され、高度 40~50kmまでしか到達しない。UV-Cの一部により酸素分子が分解されて生じた 酸素原子が別の酸素分子と反応してオゾンが生成し、生成したオゾンにより大 部分のUV-Bが吸収されている。

このように、地表に到達するUV-B量は成層圏オゾン層によって大きく削減さ れている。UV-Bは生物に有害なため、成層圏オゾン層破壊が進み、UV-Bの地 表への到達量が増加すると、皮膚癌や白内障の増加など人体への悪影響のほか に、動植物も含めた生態系全体に重大な影響があると考えられる。また、オゾ ンは紫外線を吸収して成層圏の重要な熱源となっているため、オゾン量の減少 により成層圏の温度分布が変化し、気候変動に繋がる可能性がある。

1-2-3 地球温暖化への影響

可視光として地表に到達して吸収された太陽エネルギーは、赤外光として地 表から上空へと放射されるが、大気中分子がこれを吸収し、再び放射すること により地球の気温を高める働きがある。この温室効果をもたらす大気中成分は 温室効果ガスと呼ばれ、二酸化炭素や水蒸気、メタン、一酸化二窒素、フロン などがある。フロンの大気中濃度は二酸化炭素やメタンなど他の温室効果気体 に比べはるかに低いが、フロンの吸収する赤外線の波長は他の温室効果ガス (特に二酸化炭素)との重なりが少ないため、単位重量あたりでは地球温暖化 への寄与は数千倍にも達し、著しく大きい。地球温暖化効果は気体分子の赤外 吸収能と大気中寿命から見積もられ、フロンでは、GWP(地球温暖化係数)が 指標となる。これは、一定質量のフロンを大気中に放出した際にもたらす温暖 化効果を、CO₂を基準として相対的に表したものである。モデル計算の方法によ り多少結果が異なるが、IPCC (Intergovernmental Panel on Climate Change) により算出されたGWPをTable 1-2 に示す。

1-3. フロンの規制と代替フロンの開発

成層圏オゾン層破壊への取り組みは国連環境計画(UNEP)が中心となって進 められ、「オゾン層保護のためのウィーン条約」が1985年に26カ国間で調印さ れた(1988年に発効)。1987年には、同条約に基づく具体的なフロン規制のス ケジュールを定めた「オゾン層を破壊する物質に関するモントリオール議定 書」が採択され、1989年7月から、世界のフロン消費量の82%を占める29カ国 と欧州共同体(EC)の批准を得て、国際的なフロンの生産規制が始まった。当 初、規制対象物質は特定フロンと呼ばれるCFC-11、CFC-12、CFC-113、CFC-114、CFC-115と、ハロン(halon-1211、halon-1301, halon-2402)の8種類 のみであったが、その後、ロンドン(1990年)、コペンハーゲン(1992年)にお ける締約国会議における規制強化により、18種類に増加した。規制スケジュー ルも前倒しされ、1993年1月からハロン、1996年1月からCFCとCH₆CC1,およびCC1, の生産が先進国において全廃された。

モントリオール議定書による特定フロンの規制に伴い、各国の関連企業の間 で代替物質、代替技術の開発が進んだ。中でもCFC類の化学的特長を備え、か つ成層圏オゾンへの影響が抑えられたフロン系の代替物質が最も早く市場に出 回るようになった。それらは特定フロンと区別して代替フロンと呼ばれており、 その代表的なものはHFC類とHCFC類である。分子内に塩素原子を含まないHFC類 はオゾン層を全く破壊しない。また、HCFC類は塩素原子を含まないHFC類 なため対流圏で分解しやすく、成層圏へ到達する割合が小さいため、オゾン層 破壊効果は小さい。代替フロンとして使用される主なHCFC類およびHFC類を Table 1-1 に示した。また、Figure 1-1 に、AFEAS⁻¹によりまとめられた世界 のフロン生産量の推移を示す。産業界におけるCFCの生産削減と、これらの代

Compound	Chemical Formula	Estimated Atmospheric	GWPs (a	t time horizo $CO_2 = 1$	ons of)
		Lifetime (years)	20 years	100 years	500 years
CFC-11 (a)	CCl ₃ F	50	5000	4000	1400
CFC-12 (a)	CCl ₂ F ₂	102	7900	8500	4200
CFC-113 (a)	CCl ₂ FCClF ₂	85	5000	5000	2300
CFC-114 (a)	CCIF2CCIF2	300	6900	9300	8300
CFC-115 (a)	CCIF2CF3	1700	6200	9300	13000
HCFC-22 (a)	CHCIF ₂	13.3	4300	1500	520
HCFC-123 (a)	CHCIFCCIF2	1.4	300	93	29
HCFC-124 (a)	CHCIFCF3	5.9	1500	480	150
HCFC-141b (a)	CH3CCl2F	9.4	1800	630	200
HCFC-142b (a)	CH ₃ CClF ₂	19.5	4200	2000	630
HCFC-225ca (a)	CHCl2CF2CF3	2.5	550	170	52
HCFC-225cb (a)	CHCIFCF2CCIF2	6.6	1700	530	170
HFC-23 (b)	CHF3	264	9100	11700	9800
HFC-32 (b)	CH ₂ F ₂	5.6	2100	650	200
HFC-43-10mee(b)	C5H2F10	17.1	3000	1300	400
HFC-125 (b)	CHF2CF3	32.6	4600	2800	920
HFC-134a (b)	CH ₂ FCF ₃	14.6	3400	1300	420
HFC-143a (b)	CH3CF3	48.3	5000	3800	1400
HFC-152a (b)	CH3CHF2	1.5	460	140	42
HFC-227ea (b)	CF3CHFCF3	36.5	4300	2900	950
HFC-236fa (b)	CF3CH2CF3	209	5100	6300	4700
HFC-245ca (b)	CH2FCF2CHF2	6.6	1800	560	170

Table 1-2. Global Warming Potentials of CFCs, HCFCs, and HFCs

a. IPCC (1995)

b. IPCC (1996)

替フロンへの転換が1990年頃から急速に進展したことが明らかである。

オゾン層保護への国際的取り組みはさらに年々強化され、1990年にはHCFCも 過渡的物質として規制対象に加えられた⁴⁰。その後、1992年のコベンハーゲン 会議および1995年のウィーン会議において、HCFCの全廃期限が2030年から2020 年に早められた。それらHCFCの規制スケジュールをFigure 1-2 に示す。

*1. AFEASは、Alternative Fluorocarbons Environmental Acceptability Studyの略で、世 界のフロンメーカーにより構成され、特定フロンや代替フロンの生産量の統計値をまとめて公 表している。現在、アメリカ合衆国、欧州連合(EC)、日本、カナダ、ブラジル、メキシコ、 オーストラリア、南アフリカ、アルゼンチン、ベネズエラの主要企業が加盟している。旧ソ連 や中国、東欧などは含まれていないため、CFCについてはかなりの統計漏れがあるが、近年代 替フロンとして使用が開始されたHFC、HCFCについては、発展途上国などではまだほとんど生 産されていないことから、全世界の生産量をほぼ完全に捕捉できていると考えられている。

*2. HCFCはオゾン層破壊物質として、HFCは温室効果ガスとしての規制が決定されたため、 現在では特定フロン、代替フロンなどの名称をやめ、CFC、HCFC、HFCなどの名称を使用する ことが産業界では推奨されている。このことを認識した上で、本論文では、「CFCの代替物質 として開発され、従来のCFCの用途に使用されているフロン系化合物」として、HCFCおよびHFC を「代替フロン」と呼ぶ。

 $100 \% (1989 \text{ basis}) = \text{HCFC}(1989) + \text{CFC}(1989) \times x \%$ x = 3.1 (1992), 2.8 (1995)

12

2. 実験方法 - 分析法の確立

2-1. 測定装置

分析装置は、大きく分けて、試料導入系、GC(ガスクロマトグラフ)、MS (質量分析計)から構成される(Figure 2-1)。GC/MS 部の制御、データの記録・解析はコンピューターで行う。

2-1-1 試料導入系

真空ラインはステンレススチール管(SUS-316製)と全ステンレススチール 製ベローズバルブ(Nupro SS-4H)を用いて製作されており、真空圧力計は、 Edwards 製バラトロンゲージ(1000 Torr 計および100 Torr 計)を用いた。試料 導入量は、大型容器および真空ライン各部の体積を予め求めておき、その圧力 変化から算出する。

ステンレス管の接続には、予想される付け外し操作の頻度に応じて、銀ロウ 付けあるいは Swagelok 製ユニオン、Cajon 製 ultratorr を用いた。ステンレス 管や各部品は、加工前後に必ずアセトン浴超音波洗浄により僅かな汚れも取り 除くようにした。また、汚染・吸着や、dead volume を最小限にするため、配 管には1/16″管を用い、流路が最短となるよう工夫した。特に GC 分離後の配管 は、再吸着やパンド幅の広がりを避けるため、必要最低限の長さとし、コード ヒーターを巻いて保温した。流路切り替えパルプには VALCO 製2ポジションパ ルプ (DC6UWP および DC4UWP)を利用した。パルプは、リークおよび汚染・吸着 を避けるためヒーター付の保温箱に入れ、約50℃に保った。

真空ラインの真空度はヘリウムリークディテクタでチェックしたほか、キャ リアーガスのみを流しつつ MS で窒素や酸素、水由来のビークをモニターし、 流路の一部を液体窒素で冷やした際の変化から空気の漏れ部分を特定し、改善 を徹底して行った。

脱水や濃縮などの試料の導入前操作を行う場合には捕集管を流路に組み込む が、これについては、次節(2-2)に記述する。

Figure 2-1, schematic diagram of the analytical system

2-1-2 GC/WS (ガスクロマトグラフ/質量分析計)

使用した GC/MS は、島津製ガスクロマトグラフ GC-17A と四重極型質量分析 計 QP-5000から構成され、GC/MS インターフェースはキャビラリーカラム直結 インターフェースである。

2-1-2-a ガスクロマトグラフ

く分離カラム>

分離カラムには、HP(Hewlett Packerd)製 Poraplot Q キャピラリーカラム (内径:0.32nm, 膜厚:10~20μ m, 長さ:25m)を用いた。PLOT カラムはポリ シロキ酸系のカラムに比べ吸着活性が大きく、低沸点成分分析に適している。 また、固定相は多孔質樹脂であり、担体と液相とに分かれていないため、担体 表面での吸着による分離への悪影響はないとされる。

< カラム周辺の配管 >

1/16"ステンレス管とキャビラリーカラムとの接続には、VALCO 製接続部品 Zero Dead Volume Fitting を用いた。なお、フェルールはステンレス管側には 金属製 (SUS 303)、キャビラリーカラム側には樹脂製 (ポリイミド)を用い た。特にリークを避けたい箇所は、金メッキのフェルールを用いた。

GC の下流にある流路切替四方バルブから MS インターフェースまでは、内表 面が不活性化処理され、固定相が充填されていないキャビラリー管: HP 製 Retention Gap (0.25mm×61.5cm)により配管した。

(キャリアーガス)

キャリアーガスには、日本酸素製純ヘリウム (He 99.9999%以上) を不純物 除去カラムでさらに精製して用いた。この精製カラムは内径8mm の銅管に上流 側から Molecular Sieve 5A 、活性炭、Molecular Sieve 13X を順に充填し、 320°Cでコンディショニングしたものである。ガスシリンダーに接続する調圧 弁には、新品では CFC-113や1.1,1-トリクロロエタンなどによる汚染が見られ ることが多いため、長期間高純度ガス用に使用され、汚染のないものを使用した。キャリアーガス流量は、GC 付属の電子式フローコントローラーにより定流 量制御した。流量・温度プログラムなどのGC 制御、実測値のモニタリングは、 光伝送インターフェースによりPC で行った。

2-1-2-b 質量分析計

MS はイオン源部、四重極電極、イオン検出器から構成されている。イオン化 には、EI法(Electron Impact Ionization)を用いた。

四重極電極は、高周波電圧のみを印加しているプリロッド部と高周波電圧と 直流電圧とを印加しているメインロッド部から成る。四重極ロッドに高周波電 圧と直流電圧を重畳することにより得られる双曲線電場を通過するイオンにつ いての運動方程式より、印加電圧を変化させることにより ^m/₂ に応じてイオン を分離する。

分離されたイオンの検出は、OFP-AXIS ディフレクタ(イオンを収束させ、検 出器に導くための電圧が印加されている電極)付の二次電子増倍管でなされ、 以降プリアンプを通し、CPUにて処理される。

2-1-3 PC による装置の制御・データ処理

装置の制御、データ処理などは、ソフトウェア CLASS-5000により行った。GC のコントローラとのプログラムやデータの送受信は GC コントロール 1/F ボー ドを介して行う。測定から定量にいたるまでの分析法をメソッドファイルとし て、測定結果はデータファイルとしてそれぞれ保管した。

2-2. 試料の導入

クロマトグラフィー全体の性能を左右する試料導入において、要求される基 本条件は、試料が組成を保ったまま、狭いバンド幅の状態でカラムに導入され ることである。大気中微量成分の分析では、さらに、試料導入前に濃縮・脱水 などの操作を行うことが必要となる。 濃縮法としては、吸着剤や溶媒を用いる方法もあり(0^oDorberty et al. 1993)、脱水法には Perma Pure Dryer 管(Nafion tube) (Foulger et al. 1979)や、過塩素酸マグネシウム、炭酸カリウム充填管などによる乾燥もある が、本研究では、大気中成分が化学反応や吸着を起こす可能性があり、また汚 染の危険性もあるこれらの方法を避け、低温冷却による濃縮および脱水法につ いて検討した。

また、ピーク幅を縮めクロマトグラムの向上を図るため、 cryofocusing の 操作についても検討した。

2-2-1 低温濃縮·脱水法

キャピラリーGC カラムおよび MS の試料許容量は少なく、一度に導入できる 試料量に限界があるため、目的成分がごく低濃度である場合、採取した試料を そのまま分析装置に導入しても検出できない。さらに、実際の大気試料におい ては、様々な共存成分の影響への対策が必要となる。特に、試料中の水分は、 クロマトグラム上の妨害成分となり検出感度を下げるほか、MS のイオン化にも 影響を与え、検出器を不安定にするため、水分の除去が必要である。

大気試料の大部分を占めるのは窒素、酸素であるが、これらは測定対象成分 よりもかなり低沸点なので、この沸点差を利用して目的成分を捕集しつつこれ らの主成分を逃がすことにより濃縮を行う。実際の操作としては、液体窒素温 度に冷やした捕集管を通して、体積既知の真空大型容器へ圧力差により試料を 導入する。導入試料量は大型容器内の圧力変化から求めた。また、捕集成分の 追い出しには温水(70℃)を用い(保温ボット使用)、試料中の水分を捕集管 に留めることにより、濃縮と同時に脱水を行った。

濃縮・脱水操作を行うに当たっての必要条件は、測定成分が定量性を保った まま捕集・脱着されることである。捕集管の捕集能が足りないと完全な捕集が できず、破過(breakthrough)が起きる。また、脱離温度は、低過ぎると、完全 な脱離がなされず試料が捕集管に残留するが、高過ぎると試料の熱分解などが 起きる。 基礎実験として、吸着部分の容積と冷却温度、試料導入の際の流速を変えて 各化合物の定量値を比較し、完全に近い捕集効率で再現性良く濃縮できる条件 を決定した。

2-2-2 cryofocusing method

cryofocusing とは、GC の分離カラム導入部直前で、目的成分をあらかじめ 冷却した小体積のトラップに凝縮させ、次いでトラップを急速に加熱し試料を 短時間に気化させることにより、バンド幅を小さくして分離カラムに導入する 方法である。加熱速度が大きいほど小さい試料バンド幅が得られる。分離カラ ムに導入される試料のバンド幅を縮めることで、よりシャープで S/N 比の高い ビークが得られ、高分離が達成されるため、分析精度が向上する。

cryofocusing トラップには、管径の異なるステンレス管および分析カラム の一部を利用して何種類かを用意し、また、熱脱着の手段についても、湯裕、 ドライヤー、コードヒーターの三種について、比較した。当初は1/16⁹ステンレ ス管をコードヒーターで加熱する方法を取っていたが、その後、トラップの冷 却体積なども変えて、再度、最適条件を探した結果、より小体積で熱効率の良 い内径0.50mm のステンレススチールキャビラリー管を用い、ドライヤーの熟風 で温める方法で最もシャープなビークが得られ、GCの分離能が向上した。

2-3. GC条件

PLOT (porous polymer open tublar)カラムは低沸点ハロカーボン類の分離 に有効であるが、分析時間が長くなりがちである。単位時間あたり分析できる 試料数を増やすため、良好な分離能を保ちつつ、沸点範囲が100℃にもわたる ハロカーボン類を短時間で流出させるためのGC条件を検討した。

主に検討したのは初期温度、昇温プログラム、キャリアガス流量である。基本の温度プログラムは、初期温度で数分保持した後、一定速度で昇温を開始し、 そのまま終了まで昇温し続けるというものである。初期温度は、室温に近いと 室温の変化の影響を受けやすいため、室温よりも10℃以上高い40℃、50℃、 60℃について検討を行った。初期温度を上げると、前半に留出する化合物の保 持時間が短くなる一方、分離が悪くなる。特に、HFC-134a と HCFC-22の保持時 間は非常に近いため、それらの分離が重要である。十分な分離能を保ちつつ分 析時間の短縮を図るために最適の初期温度は40℃であった。

クロマトグラムへの影響が最も大きいのは、昇温開始のタイミングと昇温速 度である。昇温開始は、測定開始2分後から12分後までの範囲で検討を行った が、早いほど前半部の留出が早まるものの分離は悪くなり、また、高沸点側の 化合物の溶出時にベースラインの上昇が始まり、定量が妨害された。昇温速度 は毎分4℃から10℃までで検討したが、昇温速度が速過ぎると、同様に後半の ベースライン上昇が著しくなった。

検討の結果、初期温度40℃で6分保った後、毎分5℃で昇温するという温度条件で、目的全成分を、分析時間30分のうちに検出することが可能となった。 分析開始前には必ずカラムの焼き出しを行った。毎回、200℃までの昇温焼き 出しを行うことで、妨害成分の影響なく再現性の良いクロマトグラムを得た。

カラム流量は、Van Deemter 式より求められる最適線速度とMS の真空排気系 の排気能を考慮して決定した。流量を増やすと見かけ上ビークがシャープにな るが、分離能は向上しない。ただし、分析時間の短縮という利点がある。排気 速度50 1/sec のターボ分子ボンプ使用時は1~2m1/min、150 1/sec のターボ分 子ボンプに交換した後は3m1/min とした。

2-4. MS条件

MS では、多くのパラメータ設定が可能である。例えば、レンズや電極、 ディフレクタ等の各部分への印加電圧を変化させると収束条件が変化し、ビー クの強度、形状、スペクトルパターンが変化する。検出器電圧 (electron multiplyer に印加している電圧)を変化させるとイオンー電子の増幅率が変わ り信号強度が変化する。また、RF(Rapid frequency:高周波)ゲインや RF オフ セットの値によりピークの分解能を調整することもできる。

2-4-1 MS 検出器

分析法の改良にあたり、特に変更を加えたのは、MS の検出ゲインである。検 出器電圧は0.5kV の変化で信号強度が1桁変化するほどで、直接感度に影響す るが、試料濃度に対し設定された電圧が高すぎると検出器の出力が飽和するた め、試料濃度に応じた設定を行わなければならない。そこで、目的化合物の濃 度と感度に応じて、タイムプログラムを組み、その保持時間に合わせて検出器 電圧を変化させることで微量化合物の検出を試みた。

MS の検出器として最も普及しているエレクトロンマルチプライヤは、フェム トアンペアレベルのイオン電流でも検出できる増幅特性を持つ。エレクトロン マルチプライヤ(EMP)には、連続ダイノードエレクトロンマルチプライヤ (チャンネルトロン)と不連続ダイノードエレクトロンマルチプライヤ (チャンネルトロン)と不連続ダイノードエレクトロンマルチプライヤ (チャ ンネルプレート)があり、どちらも10⁷程度の高いゲインの増幅特性を持ってい るが、連続型は劣化が早いため、最近は不連続型が用いられることが多い。検 出器が劣化すると、信号強度が減少し、検出器電圧を非常に高くしなければ求 める信号強度が得られなくなる。検出器の劣化は、真空度の悪化や過度のイオ ンが入射などにより起こり、放電が起きる場合もある。一度劣化した検出器は 再生不能であり、特に連続型では一度劣化し始めると進行が早いとされる。

当初、本装置では連続型 EMP を使用していたが、約5年ほどで、検出器の劣 化のため、検出器交換が必要となった。その際、連続型は製造中止というメー カーの都合もあり、不連続型 EMP に交換することになった。検出器交換により 感度は向上したが、交換直後は、精度が上がらず、しばらく「慣らし運転」が 必要であった。

一般にMSの動作圧力は10⁻⁵~10⁻⁵ torr が望ましいとされ、分析管部の真空 度が悪いと検出器が劣化し、感度が落ちるとともに分解能が低下する。QP-5000の真空排気系は、排気速度50 1/sec のターボ分子ボンプと補助ボンブの50 1/min のロータリボンブからの構成であるが、使用カラム内径が0.32mm 以上の 場合、より排気量の大きいターボ分子ボンブが望ましく、検出器交換に伴い、 ターボ分子ボンプも交換した。

2-4-2 測定モード

質量分析には二種類の測定モードがあり、分析条件はモードにより異なる。 それらは、四重極に印加する高周波電圧や直流電圧を連続的に変化させる SCAN モードと、設定した質量数についてのみ検出する SIM(Selected Ion Monitoring)モードである。 SCAN モードではある範囲内の全てのマスについ ての情報を得ることができるため定性に用い、SIM モードはイオン種を限定し て検出するためより高い検出感度が得られることから定量に用いた。

2-4-2-a SCAN 測定

SCAN 測定では、まず走査質量範囲を設定する。これはマススペクトル情報を 得たい質量範囲で、通常は空気成分を除去するため m/2 = 40程度から対象成分 の分子量がカバーできる値までを設定する。ただし、大気試料の分析において は比較的低分子量のものが多く、また空気ピークも情報を与えるため、測定開 始質量数は設定可能な最低値 m/2=10とし、測定最大質量数は m/2 = 200とした。 ただし、範囲が広いほど感度が下がるため、設定範囲は対象成分に合わせてそ の都度変更した。

マススペクトル測定の走査速度は、速いほどクロマトグラムのビークを正し く描くことができるが、速過ぎると感度が低下する。定性分析では、走査間隔 0.5sec(走査速度500 AMU/sec)に設定した。

また、マススペクトル中に現れる微小な電気ノイズを除去するためのしきい 値も、目的成分が非常に低濃度であることから、感度を優先するため通常の 1/1000程度に設定した。

分析時間としては、試料注入後データ採取を開始するまでの時間(測定開始 時間)と、データ採取を終了するまでの時間(測定終了時間)を設定する。目 的成分の溶出の前に空気主成分が大量に溶出する場合、フィラメントや検出器 保護のため、空気主成分の溶出が終了するまでフィラメント、検出器電圧、FF 電源を OFF にした。分析時間は、各測定ごとに欲しい情報に応じて設定した。 2-4-2-b SIM 測定(測定成分の検討)

SIM 測定では、目的成分ごとに、定量処理のための目的イオン(モニターイ オン)を設定する。生成する多種のイオンの中で最も感度良く安定して検出さ れるものを確かめるため、まず標準試料を用いてスキャン測定を行い、得られ たマスフラグメントバターンより、妨害成分との重なりがなく強度が最大であ るイオンをモニターイオンとする。

最初は、保持時間が HCFC-22に近く、かつ感度が十分ある(大気中濃度が高い、妨害の少ないモニターイオンがある)ような低沸点ハロカーボンを対象とした。SCAN 測定では、NMHC (非メタン炭化木素)も感度良く検出できるが、それらは寿命が短いため、都市大気などで短い時間スケールの変化を調べる場合には興味深いが、全球規模の分布や変動を調べるには適さないとして除外した。その後、さらに大気中濃度が低く、検出の困難な代替フロンの HFC-134a や HCFC-141b の検出を目的として高感度化を行った。その結果、大気中濃度が低いために検出できなかったハロンの Halon-1301と Halon-1211、特定フロンの CFC-114と CFC-114a およびヨウ化メチルの検出が可能となった。また、測定範囲も CFC-113までと、より高沸点の化合物まで対象を広げた。

大気中寿命が非常に長く、温室効果ガスとして問題とされている PFC 類や SF_eの検出も検討したが、SF_eは感度不足のため検出されず、感度良く検出でき る ECD による分析を行うのが適していると判断した。また、CF₄および C_F_eは沸 点が非常に低いため、保持時間が短く、空気ビークとの分離が難しい上、濃縮 の際の捕集効率が悪く、再現性良く捕集するのが困難であった。これらの捕集 には捕集管に適当な吸着剤を充填することが必要となるため、本方法では定量 対象から外した。

成層圏試料の測定では、分析系からの誤差をチェックする目的で、Kr や Xe などの希ガスも測定したが、これらは沸点が低く液体窒素温度での低温濃縮法 での捕集の再現性が良くなかったため、捕集操作の指標としてのみ参照した。

これらの検討の結果、定常的に検出する成分として選んだ14成分を Table 2-1 に示す。 Table 2-1. Selected monitored ions for measured halocarbons

bunound	Formula	B.P.(°C)	m/z (Monitored ion)
IFC-134a	CH2FCF3	-25.9	69 (CF ₃ ⁺), 83 (CH ₂ CF ₃ ⁺)
ICFC-141b	CH3CCl2F	32.3	81 (CH ₂ C ³⁵ ClF ⁺)
ICFC-142b	CH3CCIF2	-9.22	65 (CH ₂ CF ₂ ⁺)
ICFC-22	CHCIF ₂	-40.8	51 (CHF ₂ ⁺)
0FC-12	CCl2F2	-30.0	85 (C ³⁵ CIF ₂ ⁺), 87 (C ³⁷ CIF ₂ ⁺)
3FC-11	CCl3F	23.8	101 (C ⁴⁵ Cl ₂ F ⁺)
3FC-113	CCl2FCClF2	47.6	101 (C ³⁵ Cl ₂ F ⁺)
3FC-114	CCIF2CCIF2	3.8	$85 (C^{36} CIF_2^+)$
CFC-114a	CCl2FCF3	3.6	85 (C ³⁵ CIF ₂ ⁺)
Halon-1301	CBrF3	-57.9	69 (CF ₃ ⁺)
Halon-1211	CBrClF2	-3.9	$129 (C^{79} BrF_2^{-1})$
nethyl chloride	CH ₃ Cl	-23.8	50 (CH ₃ ³⁵ Cl ⁺), 52 (CH ₃ ³⁷ Cl ⁺)
nethyl bromide	CH3Br	3.6	94 (CH ₃ ⁷⁹ Br ⁺)
nethyl iodide	CH ₃ I	42.5	142 (CHaI ⁺)

S1M 測定において、検出感度は、同時にモニターするイオンが少ないほど上 がるため、妨害成分がない限り、一つの化合物につき一つのモニターイオンの み検出した。各化合物の保持時間に合わせて検出するイオンを設定し、各保持 時間にはその化合物のモニターイオンのみを検出するようにプログラムを組ん だ。ただし、ビークの分離が不十分な化合物については、同時に二つ以上のイ オンをモニターした。

例えば、HFC-134aではCF₃*(z/m=69)が最も多く生成するマスフラグメントで あるが、ベースラインが妨害成分の影響を受けることがあるため、次に多い CH₆CF₃*(z/m=83)を参照イオンとして同時にモニターした。また、塩化メチル、 CFC-12については、妨害成分はないが、感度が十分あるため、二つのイオンを モニターし、その生成比の再現性から全体のイオン化効率の再現性の目安とし た。(実際にはかなり再現性が良く、チェックの必要はないほどであった。)

本測定法により北海道で採取されたバックグラウンド大気試料を測定して得 られたクロマトグラムをFigure 2-2に示す。(導入試料量:400 mlsm)

2-5 測定操作

これまでの検討結果を踏まえて最終的に決定した測定の操作手順を以下に示 す (Figure 2-1参照)。

1) 真空ラインは、予めよく排気しておく。

2) 前濃縮トラップ(以下、トラップ P とする)を一定部分だけ液体窒素に浸 す。

3) バルブg、j、fを閉める。真空圧力計 Y の値を記録する(大型容器 V 内の初 期圧)。

4) 試料容器のバルブを開け、真空圧力計 X の値を読んで試料容器内圧を記録 し、再び閉める。

5) トラップ P が十分に冷却されていることを確認した上で、真空圧力計 X お よび Y で圧変化を追いつつ試料容器バルブおよびバルブ f を徐々に開け、ゆっ

Figure 2-2. Mass chromatogram of a typical remote air sample collected at Wakasakanai in Hokkaido, Japan (45 N, 142 E) on 3 August, 1998. Peak numbers are 1: Halon1301(×50), 2:HFC-134a(×50), 3:HCFC-22, 4: methyl chloride, 5:CFC-12, 6:HCFC-142b(×10), 7:methyl bromide(×10), 8:CFC-114a(×10), 9:Halon-1211(×100), 10:CFC-114(×10), 11:CFC-11, 12:methyl iodide(×25), 13:HCFC-141b(×10), and 14:CFC-113(×2). Some peaks are magnified as shown in parentheses.

25

くりと試料濃縮を開始する。この時、クライオフォーカシングトラップ(以下 トラップCとする)を液体窒素に浸す。

6) 試料導入速度は試料容器のバルブの操作で調節する。40ml/min 程度の一定 流速。波体窒素で冷却する体積は一定とする。

7) 測定に用いる試料量の98%程度を導入したところで試料容器のバルブを閉め、 100%入る直前でバルブ f を閉める。しばらく待って、真空圧力計Yの値が安定 してから記録する(導入後圧力)。バルブ1を閉める。

8) トラップ C が十分に冷却されていることを確認した上で、トラップ P を70℃ の湯裕に浸けると同時に六方バルプを切り替えて、捕集成分をトラップ C に送 る。(-2'30")

9) トラップ P を湯浴から外すと同時に六方バルプを元に戻す(-0'30")。トラッ プ C を液体窒素浴から外し、ドライヤーで加熱すると同時に分析を開始する (GC 温度プログラム開始・MS 測定開始) (0'00")。

10)GC温度プログラム:初期温度40℃、5℃/minで昇温開始(6'00")。

 11) MS 測定終了(30'00")。GC (160℃) はそのまま昇温して焼き出し (200℃まで 8分間)。分析中に異常な現象(未知のビークなど)が見られた場合、測定を 延長することもある。

12) バルブ g、f、1 を開け、トラップ P をドライヤーで熱しつつ真空に引いて 残存する水分を除く。

※引き続いて次の測定を行う場合は、8)と9)の間でバルブ j を開け、大型容器 V の排気を開始する。 2-6. 濃度較正

2-6-1 試料調整用真空ラインの作製

ガラス製真空ラインにおいて、体積希釈法と圧力希釈法を組み合わせた方法 により HCFC-22の一次標準試料を調製したところ、pptv(10^{-12 Y}/,)レベルの一 次標準試料調製においては、容器や調製を行う真空ラインからの汚染が問題と なることがわかった。そこで、標準試料調製用の全金属製真空ラインを新たに 製作した。

pptv レベルの最終希釈は分析用試料導入ラインで行うことができるので、そ の前段階の高濃度の希釈のみを目的とし、シンプルな構成とした。用いた部品 全てにアセトン超音波洗浄と加熱乾燥を施し、バルブはさらに焼き出してから 使用した。1/4"ステンレススチール管を Swagelok ユニオンと Cajon の ultratorr で接続して基本的な配管を組み立て、管径の異なるステンレス管同 士、管と接続部品の接続には銀ロウ付けを施した。

2-6-2 希釈容器のコンディショニング

希釈に用いる容器は、不純物ビークが検出されなくなるまで純窒素ガスで繰 り返し洗浄した。繰り返し利用されている容器の場合、目的化合物が高濃度で 保存されていた履歴がないことを過去の用途を遡って確かめた。新品の容器を 使用する場合も、体積測定や洗浄の際に室内空気中のハロカーボン類が入るた め、これらを完全に除かねばならない。測定対象化合物のうち、CFC や HCFC な どのフロンガスは比較的残留しにくいのに対し、ハロゲン化メチル類、中でも 塩化メチルとヨウ化メチルはコンディショニングを繰り返しても完全に取りき るのは非常に困難であった。

ppmv, ppbv, pptv: ppt (parts per million), ppb (parts per billion), ppt (parts per trillion) は濃度の単位でそれぞれ10^m, 10⁻⁰ を意味する。気体濃度の場合、乾燥空気に対する体積比(volume)を用いてモル比で表すが、質量比(weight: ppmw, ...)と区別するため ppmv,のように最後に v を付ける。省略して単に ppm、....と書かれることも多い。
2-6-3 一次標準試料の調製

系統誤差および汚染を避けるべく体積希釈法と圧力希釈法を組み合わせた方 法により一次標準試料の調製を行った。代替フロン4種混合(HCFC-22、HCFC-142b、HCFC-141b、HFC-134a)およびハロゲン化メチル三種混合(塩化メチル、 臭化メチル、ヨウ化メチル)の pptv レベルの標準試料は、大陽東洋酸素社製 (重量法による Na希釈)の高純度標準ガス(代替フロン類: lppm、ハロゲン化 メチル類: 0.1ppb)を希釈して調製した。

pptv レベルの標準試料を調製するには、三段階の希釈操作(一回目と二回目 は体積希釈法、三回目は圧力希釈法による)を行った。各操作における圧力・ 体積の条件を検討し、必要外の操作は極力省略した。また、真空ラインからの 汚染を避けるため、段階ごとに異なるラインを用いて操作を行った。操作時の 室温変化の影響も無視できず(室温が300 K とすると、±0.3℃の変化が 0.1% の誤差になる)、補正を行った。

また、希釈ガスとして、ECD では感度やベースライン形状への 0.の影響が大きいため、なるべく大気試料に近づけるため最終希釈には純空気を用いていたが、MS-SIM 測定では 0.の影響は見られないので純 N.希釈とした。

2-6-4 二次標準試料

定量は、濃度既知の標準試料と大気試料を交互に測定し、そのビーク面積の 平均値の比から行ったが、現分析法では、一回の測定に200~400mlの試料量が 必要であり、大量の標準試料が必要となるため、一次標準により定量した大気 試料を二次標準として用いた。二次標準試料には、24L 球形ステンレス製容器 に北海道で採取したバックグラウンド大気試料を用いた。 2-7. 分析精度、確度

2-7-1 精度

Table 2-2に各化合物の分析精度と検出限界を示す。分析精度は各ビークの 大きさ(各成分の感度、濃度や試料導入量による)によって決まるため、ここ では対流圏試料を400ml STP 導入した時の繰り返し再現性の値を示した。検出 限界としては、クロマトグラムの S/N 比が2以下になる典型的な対流圏大気中 濃度を示した。

成層圏試料測定では、導入試料量を増やせば限界を下げることができるため、 予想される大気中濃度に応じて導入試料量を調整しており、高い高度の試料ほ ど導入量を増やしている(最大11/回程度)。成層圏では湿度が非常に低いた め、試料を大量に濃縮する際も水分による妨害を受けずに定量性良く濃縮でき、 結果的に対流圏試料測定における限界よりも低い濃度まで検出可能となる。

Compounds	Precision*(%)	Detection Limit ^b (pptv)
HFC-134a	<4	1.0
HCFC-141b	< 4	1.0
HCFC-142b	<4	1.0
HCFC-22	<2	0.8
CFC-12	<2	0.8
CFC-11	<2	0.8
CFC-113	<2	0.8
CFC-114	< 5	1.0
CFC-114a	<10	1.5
Halon-1301	<10	1.5
Halon-1211	<8	1.2
methyl chloride	<2	1.0
methyl bromide	<3	1.0
methyl iodide	<4	1.0

Table 2-2. Precision and detection limit of the analytical system

a. Relative standard deviation for replicate analyses of a background air sample.

b. Detection limit was estimated from the area of the peak which gave a signal-tonoise ratio of two.

2-7-2 確度

分析確度は、主に標準試料濃度の確度に依存する。実験室にて行った一次標 準試料の希釈操作に伴う誤差は計算上では1%程度である(白井、1996)が、 原料として純ガスではなく希釈混合ガスを用いているため、その誤差を考慮し なくてはならない。三種以上の混合ガスの希釈混合に伴う誤差(誤差を減らす には、純ガスから希釈することが望ましいが、今回は標準試料調整用真空ライ ンの準備ができていなかったことから希釈混合ガスを用いた)および二次標準 の定量に伴う誤差などを合わせると、ハロゲン化メチルなど、化合物によって は10%近くになると推定される。

確度の向上をはかる手段として、異なる研究機関の間で独自に調製された標 準試料を相互に比較し合う Interlaboratory comparison がある (Rasmussen et al. 1983)。また、同一機関の中でも原料、希釈法、真空ライン、操作を 行う人をそれぞれ変えて標準試料を調製し、定量結果を比較する方法もある (Montzka et al. 1993, 1994)。今回は、限られた条件の中で1人で調製を 行ったので後者のような確認を行うことはできなかったが、今後、海外の観測 機関などと協力して、一次標準試料の比較、統一化を行うことが望まれる。

3. 試料採取法

3-1. 対流圈大気試料

大気試料の採取法には容器採取法のほか、吸着管やフィルターを用いる方法 などがある。試料を直接分析系に導入するオンライン導入法は定点での連続モ ニタリングには適しているが、各地で採取した試料や過去に採取した試料を実 験室で分析する場合には大気の容器への採取が必要となる。

本研究のように、pptv レベルの超微量揮発性成分を採取する場合には、試料 採取に伴う汚染や吸着、また採取試料の保存中の安定性が問題となる。フィル ター法は主に高沸点化合物の採取に用いられる。吸着管捕集法には、かさばら ない、試料採取時に濃縮操作を行えるという利点があるが、一回しか分析でき ない上、捕集成分との化学反応や分解、吸湿などによる吸着剤からの汚染が起 きる可能性がある。また、本研究で対象とした代替フロンなどの低沸点化合物 は吸着が不完全となり、適用できない。容器採取法には、テドラーバッグやテ フロンコック付きガラス製真空瓶を用いる方法もあるが、保存性が低いほか、 汚染や吸着、光化学反応の可能性もある。また、これらの方法は、採取時にポ ンプを必要とするため、ポンプからの汚染も考えられる。

本研究では、対流圏(地表)大気試料採取は、真空排気した全金属製キャニ スター容器(Figure 3-1)に大気圧まで空気を導入する方法(グラブサンブリ ング)により行った。この方法は、ポンプ、有機ポリマー類からの汚染もなく、 長期保存性に優れている。試料容器は以下に述べる手順で、研究室で製作し、 試料採取前のコンディショニングを行った。

3-1-1 試料容器の製作

<材料>

ステンレススチール製ビーカー: SUGICO 2L:SH-1002, 12L:SH-1001-12
 (継ぎ目なし深絞りステンレススチール製ビーカーの縁を切断加工したもの)
 内容積2L(直径12.5cm、高さ17cm)、12L(直径25cm、高さ28cm)

ステンレススチール製蓋(ボートコネクタ用1/4"穴が開けてある。)
 全ステンレススチール製ベローズバルブ: Nupro 製 SS-400
 Swagelok 1/4"ポートコネクター: Swagelok SS-401-PC

<容器製作手順>

1. ビーカー・蓋・ボートコネクターの洗浄

1. ビーカー・蓋を中性洗剤とスチールなしスポンジたわしを用いて洗浄する。

2.水道水、蒸留水の順にすすいで風乾する。

3.特級アセトンで10分間超音波洗浄する。

4. 洗瓶に入れた特級アセトンですすぐ。

5.オープンに入れて 50℃で 30 分間乾燥する。

 ポートコネクターも同様に特級アセトン超音波洗浄・すすぎを行いオーブン で乾燥する。

Ⅱ, バルブの洗浄

- バルプのノブ、ナット、フロントフェルール、パックフェルールを外す。バ ルブボンネット部のグリースを丁寧に除去し、バルブボンネット部をアルミ 箔で覆う。
- バルブとフェルールを特級アセトンで10分間超音波洗浄する。この時バル ブは立てて配列し、バルブのガスの通る部分のみがアセトンに浸かるように アセトンを注ぐ。

3.洗浄したバルブをガスの通る部分のみ新品の特級アセトンですすぐ。

4.オーブンに入れて 50°Cで 30 分間乾燥する。

Ⅲ,ポートコネクターのアルゴンアーク溶接

ポートコネクターとナットを組み合わせてアルミ箔で包み、蓋と合わせて外部 業者にアルゴンアーク溶接を依頼する。 IV. 蓋の再洗浄

 Ⅲで溶接した蓋(ポートコネクター付き)の溶接部周辺を、アセトンを含ま せた綿棒を用いて、綿棒に汚れがつかなくなるまで丁寧に拭き取る。

2.蓋の特級アセトン超音波洗浄・すすぎ・乾燥を行う。

V. ビーカー・蓋のアルゴンアーク溶接

 ビーカー・蓋に錆・汚れがないことを確認し、ビーカーは口を、蓋は全体を アルミ箔で覆ってアルゴンアーク溶接を依頼する。

VI. バルブの取り付け

バルブの方向に注意して溶接済み容器にバルブを取り付ける。

3-1-2 試料採取準備

1. 加熱排気

- 1. 常温で容器を R.P. (rotary pump)で 1Pa まで排気する。
- 2. バルブノブを外してグリスを丁寧に除去し、バルブ全体をアルミ箔で覆う。
- オーブンを 50℃に設定し、実際に 50℃になってから 10 分以上放置する。
 この操作を 10℃ごとに 110℃まで行い 110℃で約 12 時間加熱する。
- 室温に戻ってから、バルブのネジ山と軸ににモリコートグリース(Mo 系高 温用グリース)を塗り、ノブを付けてバルブのすり合わせをよく行ってか らバルブを閉じる。

Ⅱ 湿潤空気の採取

水蒸気添加のため、湿潤大気を大気圧まで採取し、1日以上放置する。

Ⅲ 排気

 まず R.P. で粗引きした後、4~6 Pa で D.P. (diffusion pump) に排気系を 切り換える。5.0×10⁻³ Torr 以下で電離真空計が使用可能となる。約 6.0× 10⁻Torr まで排気を行う。

IV. リークチェックと再排気

- 排気した容器を1日以上放置してからリークチェックを行う。リークチェックは予め真空ラインを約6.0×10^sTorrまで引いておき、電離真空計の電源を0FFにしてから容器バルブを開ける。
 - 真空度が 10⁻¹Torr 前半であればそのまま継続して 6.0×10⁺ Torr 以下まで 排気する。

V. N.パージ、キャップ

バックグラウンド大気採取に備え、キャップをする前に、キャップとバルブ の内部の空隙の空気を窒素で置換しておく。

3-1-3 サンプリング地点 - バックグラウンド濃度とは -

大気中微量成分の観測においては、観測の目的および目的化合物の大気中寿 命や発生源を考慮してサンプリング地点を選ぶ必要がある。

対流圏における大気循環は、経度方向には貿易風、偏西風などにより良く混 合されるのに対し、南北鉛直断面(子午面)循環による緯度方向の混合には比 較的時間がかかり、特に、南北半球間の大気混合は、熱帯収束帯(ITC2, intertropical convergence zone)により遮られて1~2年ほどかかる。

本研究で測定したフロンガスの場合は、大気中寿命が10年~100年以上と、 大気循環の時定数に比べて十分に長いため、放出源からの局所的・一時的影響 を除いた地球規模での平均濃度を求めることができる。これをバックグラウン ド濃度と呼んでいる。フロンガスの放出源は、北半球中高緯度の地表に集中し ているため、放出が続く限り、両半球の平均濃度の間には差が生じるが、本研 究では、南北各半球におけるバックグラウンド濃度を測定し、その平均から全 球平均濃度を求めた。

北半球のバックグラウンド試料を採取するためのサンプリング地点および気 象条件等については、巻出、横畑らにより検討され(横畑 1985、巻出 1981), 日本周辺では、Figure 3-2 に示す北海道沿岸のサンプリング地点においてパッ クグラウンド試料の採取が可能であることが明らかになっている。以来、本研 究室の大気分析グループでは、1979 年から、現在も、毎年7月下旬から8月上 旬および1月下旬から2月上旬の年2回、気象条件を選んでサンプリングを 行ってきた。

南半球については、日本南極観測隊の協力を得て、南極昭和基地において、 主として1~2月および7~8月にサンプリングを行った。南半球では放出源 がほとんどないため、基地における人間活動の影響を避ければ、パックグラウ ンド大気の探取が可能である。

3-1-4 サンプリング

サンプリングは、気象条件を選んで以下のような手順で行う。一時的・局地 的汚染の影響を避けるため、同一地点で複数のサンブルを異なった時間帯に採 るようにする。

- サンプリングを行う前にまず、局所的な汚染の原因が周囲にないことを 確かめる。近くで工事が行われているときなどは、その影響を受けない地 点を選ぶ。また、海上に船が見られるときなど、気づいたことは全て容器 ラベルに記入する。
- 振り回し式乾湿計、方位磁針を用い、気温、湿度、風向、風速を測る。
 採取年月日、時刻、場所、天気、雲量、気温、湿度、風向、その他の気象
 条件などをラベルに記入する。
- レンチを用いて容器の Swagelok のキャップを開け、風上に向かってしば らくバルプを風にさらし、バルブ入り口の空気を外気で置換する。
- バルブをゆっくり開けて容器内に空気を導入する。シューという音が止
 み、大気圧まで空気が導入されたらバルブを固く閉める。
- 5. Swagelok のキャップをして、レンチで手締めから1/8だけ増し締めする。

3-2. 成層圈大気試料

本研究室では、宇宙科学研究所および東北大学と共同で、大気球搭載の液体 ヘリウム使用クライオジェニックサンプラーによる成層圏大気試料の採取を 行ってきた。1985年以来、年に1~2回、宇宙研の三陸大気球観測所(岩手県 三陸町)で実験が行われてきたが、1997年には ADEOS 衛星搭載の微量気体観測 用 ILAS センサの検証実験の一環として、北極圏のキルナ(スウェーデン)で も行われたほか、1998年には世界で初めて南極昭和基地上空でのクライオジェ ニックサンプリングに成功した。Figure 3-3に放球場所の位置を示す。

3-2-1 クライオジェニックサンプリング法

成層圏大気試料の採取にあたり、上空では気圧が低く、グラブサンプリング 法では一定容積に採取可能な大気試料量がかなり少なくなるため、空気を固化 して採取するクライオジェニックサンプリング法が開発された(本田 1987、 Honda 1996)。クライオジェニックサンプラーの概要を Figure 3-4に示す。 アルミニウム製の気密耐圧容器(観測器ゴンドラ)内に、FRP 製液体へリウム デュワー内に納められた12本のステンレススチール製筒型試料容器(内容積 760m1)、マニフォールド、試料導入配管系、制御回路、コマンドとテレメー タシステムおよび電池が収納されている。

気球の荷姿を Figure 3-5に示す。コントロールゴンドラは、宇宙科学研究所 の気球工学チームにより制御され、コマンドによる排気弁の開閉・測距のため の送受信、バラストの投下、気球の切り放しなどが行われる。

ゴンドラからの汚染を避けるため、試料採取用ホースは放球時には採り入れ ロを密封してゴンドラの周りに固定しておくが、最初の試料採取直前に、地上 からのテレコマンド信号によりゴンドラの採り入れ口をゴンドラから4m 下方ま で垂れ下げ、採り入れ口のキャップを火薬密封式カッターにより切断する。試 料採取は、地上からテレコマンド信号により各試料容器に取り付けたモーター 駆動式バルプを開閉することにより行う。バルプ開量および試料採取時間を調 整することにより各高度で約201mの大気を採取する。試料採取直前には配管

Figure 3-4. Schematic diagram of the balloon-borne cryogenic sampler (Itoh, 1991)

Figure 3-5. Flight train of the balloon system (Itoh, 1991)

内に溜まった空気による汚染を避けるため、試料容器のうちの一本を真空ボン プ代わりに用い、マニフォールドおよび配管内を外気でパージする。

気球が水平飛行(レベルフライト)から徐々に高度を下げながら試料採取を 行い、高度が18km 程度になると、気球を切り放してバラシュートでゴンドラを 海上または陸上へ落下させる。バラシュート降下中の大気試料採取は、通信が 混乱することから、搭載コンピューターにより自動で行われる。三陸では海上 に落下させ、船で回収するが、キルナでは雪原へ落下させ、トラックで回収し た。南極昭和基地では南極観測船「しらせ」により回収された。なお、陸上回 収の場合、ゴンドラの周りに金属製の緩衝機構(タラッシュバッド)を装着す ることにより、観測器は落下による衝撃から保護される。

気球やバラシュートその他の機器からの汚染を避けるためには気球の下降中 に試料採取を行うことが望ましいが、風などの気象条件や飛行時間との関係で 上昇中にも試料採取を行わざるを得ないことが多かった。ただし、現在までの ところ、上昇中に採取された試料についても、気球からの汚染は見られていな い。

3-3 保存試料中の安定性

キャニスターサンブリング法は、試料を採取してから実験室において分析す るまでの間に容器内で濃度変化がないことが前提であり、試料容器中での化合 物の安定性は非常に重要な問題である。特に大気中濃度の経年変化を過去に 遡って測定する場合には、何年にもわたって保存された試料中の安定性が保証 されている必要がある。VOCs(揮発性有機化合物)の容器中での安定性につい ての実験室データは非常に限られている上、各測定グループが自らの方法つい て報告しているのみであり、容器の材質やコンディショニング方法をはじめ試 料中の化合物の濃度や圧力、水蒸気添加の有無など実験条件が揃っておらず、 体系的に調べられたことはない(Kelly et al. 1995)。本研究室では、CPC-12などのCFC類についてはステンレス容器中で十年以上にわたり安定であるこ とが確認されているが、HCFC、ハロゲン化メチルについてはデータが不足して いたため、先に、従来の方法で作製し、コンディショニングした12L 試料容器 に上野で採取した都市大気試料を半年間にわたり定期的に分析し、CFC-12に対 する比を調べた(自井 1995)。その結果、HCFC-22は安定であったのに対し、 塩化メチルでは2倍以上もの増加が見られた(Figure 3-7)。その後継続して、 測定対象全成分について同様の測定を行い、材質や作製法、コンディショニン グ法の異なる容器内での安定性を調べた。その結果、HFC およびHCFC 類につい ては、実験に用いた試料容器全てにおいて、3年以上安定であることが確かめ られたが、ハロゲン化メチル類(塩化メチル、臭化メチル、ヨウ化メチル)は、 試料容器によっては濃度変動が大きく、定量が困難であることがわかった。ハ ロゲン化メチル類は、フロン類に比べ反応性や極性が大きいが、極性炭化木素 などでよく見られるのは分解や吸着などによる濃度減少であり、濃度増加に対 する説明は困難である。ハロゲン化メチルの試料容器中での安定性に関しては、 第6章により詳細に記す。

Figure 3-6. Observed concentration ratio of methyl chloride and HCFC-22 relative to CFC-12 in the atmospheric sample stored in a stainless steel canister

The sample was collected in Tokyo on 6 July, 1995.

4. 代替フロンの大気中濃度の経年変化

4-1. 序

成層圏オゾン層破壊をもたらすとして国際的に生産・消費が規制され、先進 国ではすでに全廃された特定フロン(CFC: Chlorofluorocarbons)に代わり、 代替フロンの使用量が増加している。主要な代替フロシである HCFC (Hydrochlorofluorocarbons)は小さいながらオゾン層破壊効果があり、一方、 HFC (Hydrofluorocarbons)は地球温暖化に寄与するため、それぞれ全廃およ び規制が決定しているが、次世代の代替品ないし回収・破壊技術が開発される までは、生産・放出が続くことが予想される。

これらの代替フロンの環境への影響を評価するためにはその大気中濃度の分 布や変動を正確に観測することが不可欠であるが、世界的にも観測例が非常に 限られている。本研究では、低温濃縮/GC/MS 法により、代替フロン類の中でも、 近年特に使用量が急増している HFC-134a、HCFC-141b および HCFC-142b の大気 中濃度を高感度・高精度で測定し、それらの極めて低いバックグラウンド濃度 および過去十数年にわたる南北両半球ならびに全球平均における対流圏大気中 濃度の経年変化および年増加率を明らかにした。また、統計値を用いて計算し た大気中濃度の値と観測値との比較を行い、それらの放出形態について考察し た。

これまでに報告された HFC-134a、HCFC-141b、HCFC-142b の大気中濃度の観 御例を Table 4-1 に示す。これらの化合物より以前から使用されはじめパック グラウンド大気中濃度が150pptv 近い HCFC-22では、キャリアーガスに酸素を 添加して高感度化した ECD による測定例も報告されているが、HFC-134a、 HCFC-141b、HCFC-142b は、大気中濃度が HCFC-22に比べてかなり低く、酸素添 加 ECD でも検出が難しいため、MS による測定例しか報告されていない。

また、米国大気海洋局(NOAA)や East Anglia 大(英)/CSIRO(豪)共同グ ループも、最近のデータについては公表しておらず、大気中濃度の急増傾向に Table 4-1. Reported observations of HFC-134, HCFC-141b, and HCFC-142b

		-			Sample		Detection	Observ	ed
Researcher	Observing Organization	Compounds	Detector	Technique	Size (mISTP)	Precision (%)	Limit (pptv)	Concenti (pptv	ation ()
Montzka et al.	NOAA,	HCFC-141b, HCFC-142b	MS	dryer : P2O5 or Mg(ClO4)2	5	5 6		Glob.:0.7 Glob.:4.3	(1993)
Schauffler et al.	NCAR, NOAA	HCFC-141b	MS	cryogenic preconcentration	1000	15	0.05	NH: 0.83 SH: 0.28	(1993) (1993)
Oram et al. (1995)	Univ. E.A., CSIRO	HCFC-141b, HCFC-142b	MS	Nation dryer, cryogenic preconcentration	ġ.	4.3	ь.	SH: 0.46 SH: 3.0	(1993)
Montzka et al. (1996)	NOAA	HFC-134a HCFC-141b, HCFC-142b	MS	dryer : P2Os or Mg(ClO4)2	800	<2 5 6	0.05	Glob.:1.6 Glob.:3.5 Glob.:7.2	(1995) (1995) (1995)
Oram et al. (1996)	Univ. E.A., CSIRO	HFC-134a	MS	dryer : Mg(CIO ₄) ² , cryogenic preconcentration	200	<2		NH: 1.48 SH: 0.43	(1994) (1994)
Shirai and Makid (1998)	e Univ. Tokyo	HFC-134a HCFC-141b, HCFC-142b	MS	cryogenic preconcentration, cryofocusing	400	4 < < 4 < < 4 < < < < < < < < < < < < <	1.0	Glob.:5.9 Glob.:5.7 Glob.:10.4	(7991) (7991) (7991)
Simmonds et al. (1998)	Univ. Bristol, M.J.T.	HFC-134a HCFC-141b, HCFC-142b	MS	microtrap : carbon molecular sieve, cryogenic preconcentration	2000	<1.1 <1.6 <1.4	1	NH: 3.67 NH: 7.38 NH: 8.78	(9661) (9661)
Glob - Global Av	UPETGO	NH : Northern H	emisnhere	SH : Southern	Hemisphe	re			

NOAA: National Oceanic and Atmospheric Administration, Boulder, CO, USA

NCAR: National Center for Atmospheric Research, Boulder, CO, USA

Univ. E.A.: University of East Anglia, Norwich, United Kingdom

CSIRO: Commonwealth Scientific and Industrial Research Organisation, Victoria, Australia

M.I.T.: Massachusetts Institute of Technology

47

ついては、本研究により最初に報告された (Shirai and Makide, April/1998)。 その直後に Bristol 大(英)と M. I.T.(米)の共同グループにより報告された アイルランドでの観測値 (Simmonds et al., July/1998) は、本研究の北海道 での観測値と矛盾なく、本観測結果の確度を裏付けるものであった。

4-2. 測定条件とデータ処理

測定法および試料採取法に関しては前章までに述べた通りである。ここでは、 代替フロンの経年変化を調べるという目的で行った一連の測定に際して注意し たことがらについて述べる。

4-2-1 測定条件の統一

ー連の測定において、試料の前処理および GC/MS の測定条件は全て統一した。 プランクおよび標準試料は1日に2回ずつ、本試料の測定を始める前および、 本試料測定の後半部に挟み込み、感度の変化に対応した(実際には一日では補 正が必要なほどの感度のドリフトはなかった)。また、1990年から1996年まで に採取された試料の測定は、分析法を確立した1996年の冬に一斉に行ったが、 それ以降については、各季節のサンプリング終了直後にその都度測定を行った。 その際、一次標準で定量して濃度の変化がないことを確かめた二次標準試料を 用いて、長期間にわたる装置の感度の変化の影響を補正し、データの連続性を 保った。

4-2-2 データの評価

毎年、北海道において、夏冬それぞれ、12L 容器8試料および2L 容器+数試 料が採取されている。また、南極昭和基地においては、12L 容器は夏冬に各1 本ずつ、2L 容器は一年を通して10本採取されている。本法では、1回の測定に 400ml の試料が必要であり、測定を複数回行うことを考慮して、12L 容器試料 のみ測定した。12L 容器と2L 容器は同一地点、同一期間で同時に採取されてお り、データの偏りはないと判断される。南極試料については、各季で1本ずつ しか試料がないため、同時期に採られた2L 容器試料を1回だけ測定し、データ に異常がないことを確かめた。北海道試料についても必要があると判断された 際には2L 容器試料の測定も行った。

複数の試料の測定結果から、その季節のバックグラウンド濃度を得る際には、 各化合物の濃度の分布のばらつきおよび同一試料内の他の測定成分の濃度から、 汚染の見られるデータを排除した。代替フロン類の大気中濃度のばらつきは、 放出源からの影響というよりは、気象条件によるところが大きかったが、これ は、まだサンプリング地点の近くで代替フロンの局所的な放出が起こっていな かったためと考えられる。

4-3. 測定結果

北海道および南極昭和基地で採取された大気試料を測定して得られた HFC-134a、HCFC-141b および HCFC-142b の南北各半球におけるバックグラウンド濃 度および南北の平均値の経年変化をそれぞれ Figure 4-1、Figure 4-2、Figure 4-3 に示す。測定の誤差は4%程度であった。図中の破線は、次節(p.53~)で 説明する2-box モデルにより中高緯度の北半球および南半球について計算した 大気中濃度および両半球の平均濃度である。

Figure 4-1. Observed atmospheric concentrations of HFC-134a in the Northern Hemisphere (\bigcirc : Hokkaido) and the Southern Hemisphere (\diamondsuit : Syowa Station), and their global average(\bullet). Dashed lines represent corresponding concentrations anticipated by a 2-box model calculation based on the statistics of world production and release estimation.

Figure 4-2. Observed atmospheric concentrations of HCFC-141b in the Northern Hemisphere (\bigcirc : Hokkaido) and the Southern Hemisphere (\diamondsuit : Syowa Station), and their global average(\bullet). Dashed lines represent corresponding concentrations anticipated by a 2-box model calculation based on the statistics of world production and release estimation

Figure 4-3. Observed atmospheric concentrations of HCFC-142b in the Northern Hemisphere (\bigcirc : Hokkaido) and the Southern Hemisphere (\diamondsuit : Syowa Station), and their global average(\bullet). Dashed lines represent corresponding concentrations anticipated by a 2-box model calculation based on the statistics of world production and release estimation.

4-4.2-box モデル計算

大気中微量成分の濃度は、放出量と大気中寿命で決まる。代替フロンの場合、 完全な人工物質なので、生産量から推定された放出量を用いて、予想される大 気中濃度を計算することができる。本研究では南北各半球の対流圏をそれぞれ 一つのボックスと見なす2-box モデルを用いた。

北半球(n)、南半球(s)の対流圏大気をそれぞれ一つのボックスと見なし、各 半球内の緯度方向、経度方向の各気体の分布が均一であると仮定すると、物質 収支は次式で表される。

$$\frac{dC_n}{dt} = \frac{2\gamma_n f}{n_a} E - \frac{C_n}{\tau} + \frac{C_{n-C_s}}{\tau_{ns}}$$

$$\frac{dC_s}{dt} = \frac{2(1-\gamma_n)f}{n_a} E - \frac{C_s}{\tau} + \frac{C_n C_s}{\tau_{ns}}$$
(4-1)
(4-2)

C., C.: 北半球、南半球の対流圏内平均濃度

y_:北半球における放出量の全世界放出量に対する割合

f:対流圏内と全大気中の平均混合比の比

E:年間の全世界放出量 (mol yr⁻¹)

na: 地球大気の総質量 (mols)

τ: 大気中寿命 (yr)

τ.: 南北両半球間の大気交換の時定数 (yr)

(4-1)、(4-2)式中の左辺は大気中濃度の年増加率を、右辺第1項は放出による増分を、第2項は大気中での分解による減少を、第3項は南北両半球間の大気の交換による拡散(移動)をそれぞれ表している。

n_aは、文献値(Trenberth et al. 1994)より、5.14×10¹⁸ kgとした。 Y_nは、生産量を報告している企業の北半球及び南半球における販売実績 (AFEAS 1997, 1998)から算出した。

fは次式で表され(分母が全大気中の平均混合比で、分子が対流圏大気中の 平均混合比を示す)、対象成分の対流圏一成層圏高度分布から見積もられるが、 圏界面高度h、成層圏内の大気の運動などの年変動の影響を受ける。

$$f = \frac{\int_0^h \int_0^{2\pi} C(h,\theta) M(h) dh d\theta / \int_0^h M(h) dh}{\int_0^\infty \int_0^{2\pi} C(h,\theta) M(h) dh d\theta / \int_0^\infty M(h) dh}$$

今回測定した代替フロン類の高度分布については後の章で記述するが、fを 見積もるにはデータ量が不足であり、2-BOX モデル計算には文献値(HFC-134a: 1.12±0.1, HCFC-141b: 1.15±0.1, HCFC-142b: 1.1±0.1; Montzka et al. 1994)を用いた。これらの値は、各化合物の構造式と大気中濃度増加率から計 算により見積もられたものである。

Eには、AFEAS が集計した生産量をもとに、放出の遅れを考慮して Midgley らにより見積られた年間放出量の値を用いた(AFEAS, 1997, 1998)。代替フロ ン類の放出は短期間のうちに急増したため、放出量の増加率が非常に大きい期 間については、年間放出量を1ヶ月ごとに区切って、前年と翌年の値とスムー ズに繋がるようにそれぞれ重みをつけて分配した。

ての求め方にはいくつかの方法があるが(豊田、1996)、ここでは CFC-11と 1,1,1-トリクロロエタンの大気寿命に基づくモデル計算による大気中寿命の文 献値 (HFC-134a: 14yrs, HCFC-141b: 9yrs, HCFC-142b: 20yrs)を用いた (IPCC, 1994)。

Tacは下式で表される。

 $\tau_{ns} = \frac{(M_n - M_s)}{D}$

(4-4)

(4-3)

M., M.: 北半球、南半球における対象成分の総質量 (mols)

Φ:南北両半球間の交換の正味のフラックス

本研究では、観測値の南北各半球値をフィッティングしたときに最もよく一致した τ_{ns} = 2.3yrs を採用した。この値は、低緯度における観測結果を用いて 求められた ITCZ における τ_{ns} = 1.2 yrs (Singh and Kanakidou 1993) より1年 以上長い。これは、本研究では、北半球、南半球の濃度 C_n . C_s をそれぞれ北海 道(42-45%)、南極昭和基地(69%)における濃度で代表しているため、各半球内 の大気量の分布 (30%、30% で1/2となる) および各半球内における多少の緯度 勾配を考慮すると、低緯度における観測結果に比べ、 C_n . C_s の差が開き、 (*M_n*-*M_y*)が大きくなることによる。(4-1)、(4-2)式の右辺の第三項の分母、 分子とも大きくなるため、第三項の値は低緯度における観測値を用いた場合と 変わらない。

大気中濃度の経年変化も、北海道での濃度で示すと過大に、昭和基地での濃 度で示すと過小になるが、それらの平均値ではキャンセルされ、同一になる。

4-5. 観測結果への考察

4-5-1 HFC-134a

HFC-134a は HFC の中で最も多く生産されており、CFC-12や HCFC-22に代わ り、カーエアコンや冷蔵庫の冷媒、エアゾール噴射剤などに広く使用されてい る。特に、日本国内では代替技術の早期確立により転換は順調に進み、1995年 までに新車のカーエアコン冷媒は完全に HFC-134a に切り替えられた(日本自 動車工業会)。

Figure 4-4 に AFEAS のまとめた世界の HFC-134a の総生産量とその用途内訳 を示すが、HFC-134a の生産量は世界的にも近年著しく増加していることがわか る。 HFC-134a の大部分は冷媒用途に用いられている。一部はエアゾール噴射 剤として使用されており、発泡用途にも用いられる割合は非常に少ない。

観測結果を Figure 4-1 に示す。HFC-134a の大気中濃度は、使用開始が1990 年代はじめからと比較的最近であるため、1993年以前には検出下限以下であっ た。しかし、その後の大気中濃度増加は著しく、1994年から1997年にかけて全 球平均濃度で年83%と指数関数的に増加した。1998年の初めには、全球平均で 80ptv 近い濃度が観測された。

観測された大気中濃度と、前節で記述した放出量の推定値に基づく2-box モ デルによる計算結果とを比較した。増加傾向はほぼ一致したが、計算値は観測 値に比べ、時間的に半年ほどの遅れが見られた。この遅れは、各国の企業の報 告による生産量の統計に遅れがあったか、Midgley らによる放出量の見積もり に伴う誤差である可能性が高いと考えられる。Midgley らによる放出量の見積 り方法とその問題点については次節に記す。

HFC はオゾン層を破壊する恐れはないものの高い温暖化効果を持つため、気 候変動枠組み条約の中で温室効果ガスとして検討され、1997年の温暖化防止京 都会議で温暖化ガスとして規制対象に加えられることが決定された。ただし、 もともとの温暖化効果も CFC より低い上 (Table 1-2) 、機器の省冷媒化や漏 波対策が進み冷媒使用量が低下していること、回収・破壊技術も進んでいるこ となどから、実質的な温暖化への影響はそれほど大きくならないであろうと考 えられる。より効果的な代替物質や代替技術が確立するまでは、一方的に規制 を進めず、温暖化効果のみならず、エネルギー効率、安全性、経済性なども含 めた総合的な判断で規制を進めるべきであると考えられる。大気中濃度の動向 および大気中挙動を調べることは、この化合物の正しい影響評価のために、今 後ますます重要となるに違いない。

4-5-2 HCFC-141b

HCFC-141b は、CFC-11の代替として、冷蔵庫や建材用硬質断熱材の発泡に使 用されるほか、CFC-113に代わりドライクリーニングや、プリント基板・金属 などの工業用洗浄の溶媒として使用されている。Figure 4-5 に世界の HFC-141b の総生産量とその用途内訳を示す。HCFC-141b は、1990年代はじめに使用 が開始されてから著しく生産が増えており、最近、洗浄剤としての生産が減少 に転じたが、発泡剤としての生産は増加し続けている。

観測された HCFC-141b の大気中濃度 (Figure 4-2) は、1993年以降、1997年 にかけて指数関数的増加を示した。濃度増加率は全球平均濃度で年63%であっ た。1998年の初めには、8pptv 近い全球平均濃度が観測されたが、近年、増加 率減少の兆候が見られる。

HCFC-141b では、観測値と計算値はかなり良い一致を示した。HCFC-141b は、 硬質断熱材のように生産から放出まで長期間かかる用途に用いられる一方、洗 浄剤のように生産後すぐに大気中に放出される用途にも用いられる。代替フロ ンとして使用が開始されてからあまり時間が経っていない、これまでの放出量 では、後者からの寄与が大きいため、放出量の推定に伴う誤差が小さく、計算

Figure 4-5. HCFC-141b total sales by category in the world (AFEAS, 1998)

値は観測値と良く一致したと考えられる。ただし、今後は長期にわたる硬質断 熱材からの放出が大気中濃度に寄与する割合が増えるため、放出量の推定は難 しくなると見られる。また、すでに開始されている HCFC の規制による生産・ 消費量の削減による生産量、放出量の変化も大気中濃度に大きく影響するとみ られる。 HCFC-141b は分子内に塩素原子を2個含み、HCFC の中では ODP が高 く、規制が急がれており、また、大気中寿命が比較的短いため、放出量の減少 が大気中濃度に現れるまでの期間も短いと考えられる。 HCFC-141b の今後の大 気中濃度の変動が、他の代替フロン類に先行して有用な情報を与えることが期 待される。

4-5-3 HCFC-142b

HCFC-142b は主に建築用断熱材や緩衝包装材の発泡剤として使用されている。 Figure 4-6 に世界の HFC-142b の総生産量とその用途内訳を示す。HCFC-142b は、HFC-134a や HCFC-141b よりも10年ほど早い1980年頃から使用されており、 やはり既存の代替フロンである HCFC-22には及ばないものの、代替フロンとし ては長期にわたり使用されてきた。近年、生産が減少し始めたが、既存の製品 からの放出は依然として続いていると考えられる。

観測された大気中濃度 (Figure 4-3) は1993年の時点ですでに全球平均で 5pptv 以上であったが、その後の増加率は、1994年から1997年にかけて、年幸 20%と比較的小さく、放出量の増加も鈍化していることが示唆された。

HCFC-142b では、計算値の2倍以上も高い大気中濃度が観測された。この差 は生産量の統計漏れでは説明できず、また、HFC-134a、HCFC-141b と同じ方法 で調製した標準試料で定量していることから、HCFC-142b だけ濃度較正が大幅 にずれているとは考えられない。参考までに、NOAA による HCFC-142b の観測結 果と比較してみたところ、本研究の観測値と比較的よく一致した (Figure 4-7)。また、2-box モデル計算中のその他のパラメータの誤差からも、2倍もの 差は生じないため、Widgley らにより見積もられた放出量に問題があると考え た。

Figure 4-6. HCFC-142b total sales by category in the world (AFEAS, 1998)

大気中濃度の観測値から逆算した HCFC-142b の年間放出量を Figure 4-8 に 示す。既製の HCFC-142b のうち、現在までに大気中に放出された割合が半分以 下とされる Midgley らの見積もりに対し、観測結果からは、HCFC-142b は実際 にはかなり短期間のうちに大気中に放出されていることが示唆された。具体的 には、発泡時や製品加工時など、生産されて間もない段階での放出量、断熱材 などの既存製品からの漏洩による放出速度、製品の廃棄頻度などが、実際より も低く見積もられていることが原因として考えられる。

4-5-4 代替フロンの大気中への放出について

HFC-134a、HCFC-141b、HCFC-142b の大気中への放出量の見積もりにあたり、 Midgley らは、CFC や HCFC-22のために開発した方法を応用している (Midgley and Fisher 1993, Midgley and McCulloch 1997, AFEAS 1998)。

代替フロンには、エアロジル噴射剤、軟質断熱材の発泡剤などのように生産 されてから短期間で大気中へ放出される用途もあれば、硬質断熱材の発泡剤な どのように長時間かけて放出される用途もある。統計値として得られるのは年 間生産量であり、年間放出量を見積もるには、代替フロンの各用途ごとに、生 産されてから大気中に放出されるまでの期間を推定する必要がある。

Midgley らは、各用途を短期、中期、長期の3カテゴリーに分け、短期は製造時に8割が放出され、1年以内に全てが大気中に放出される、中期は製造時に4割、それから10年以内に全てが放出される、長期は数十年かけて少しずつ 大気中に放出されるとして放出量を見積もっている(Figure 4-9)。

しかし、その根拠となる実験データは不足しており、放出速度が直線近似さ れているなど、実際の現象とかけ離れている可能性が高く、この方法では大ま かな見積もりにも不十分であると思われる。各用途ごとに、生産時、加工時、 使用時、回収・破壊時における放出速度を調べる必要があるが、正確に把握す るのは容易ではない。

このように、代替フロンの大気中への放出量の見積もりに伴う誤差は大きく、 計算による大気中濃度の予測は難しいため、正確な観測値が不可欠である。

Figure 4-8. HCFC-142b total sales, estimated release (AFEAS, 1998) and calculated release based on our observed atmospheric concentration

Short-term emissions : aerosols, blowing agent for open cell foams and extruded foams Medium-term emissions : essentially uses related to refrigeration and air conditioning Long-term emissions : primarily used as a blowing agent for closed cell thermoset foams

Figure 4-9. Cumulative emissions of CFC substitute for each use category (Midgley and Fisher, 1993)

HFC-134a、HCFC-141b は生産が始まってからの期間が短いため、長期的な用途 からの放出の寄与が今のところ少ない。生産から放出までの期間の見積もりに 伴う誤差が小さいため、観測値と計算値は比較的よく一致したと考えられる。 一方、HCFC-142b では、長期用途に分類される硬質断熱材の発泡用途が大きな 割合を占めており、近年、生産が減少傾向にあるため、既存の製品からの放出 の寄与が年々増えていることから、放出量の見積もりの誤差が広がったと見ら れる。今後は回収・破壊技術の開発に伴い、生産と放出との関係がますます複 雑になると見られ、継続的な大気中濃度の観測は、これらの将来の環境影響を 評価するのに大きく貢献すると思われる。

4-6. 都市部における代替フロン濃度

前節では、北海道や南極の観測値から代替フロン類のバックグラウンド濃度 についての知見を得たが、これらの放出源が集中している都市部における濃度 測定も試みた。本研究室において三好らにより約一ヶ月にわたり3時間おきに 行われた東京都心部での都市大気の連続測定の結果(1997年7月31日~8月30 日)から、自ら調製した標準試料で定量を行い、各代替フロン類の都市大気中 平均濃度を得た。これらは都市域で活発に放出されており、経時変動が大きい ため、著しく高い濃度を除いて平均を取った。

各成分の都市部における平均濃度とバックグラウンド濃度との差は、東京に おけるこれらの放出量を反映していると考えられる。そこで、国内の生産量の 統計値(日本フルオロカーボン協会調べ)を用いて放出量を見積もり、東京に おける濃度増分との相関を調べた。放出量の見積もりは、日本国内と全世界に おける代替フロンの用途割合が近いことから、AFEAS による生産量と放出量の 関係から導いた係数を国内の生産量に乗じて国内の放出量とした。得られた結 果を Figure 4-10 に示す。1997年における各成分の都市部における平均濃度と バックグラウンド濃度との差は、東京におけるこれらの放出量にほぼ比例して 良い相関を示した。このように粗っぽい近似でも、都市部における大気中平均 濃度にはこれらの代替フロン類の放出状況が反映されていることが示された。

Figure 4-9. Relationship between emissions in Japan and excess concentrations of HCFCs and HFC observed in Tokyo

5. ハロカーボン類の高度分布

5-1. 序

大気中微量成分の濃度変化は、成層圏オゾン層破壊や地球温暖化など地球環 境全体に影響を及ぼしている。近年、それらの問題解明に向け、気象モデル計 算が活発に行われているが、成層圏・対流圏循環の化学・力学過程にはまだ未 解明の点が多く、観測値の充実が望まれる。

完全な人工起源物質であるフロン類は、大気中での反応、消滅過程などが比 較的ハッキリしているため、大気化学的トレーサーとしての価値が高く、その 高度分布は、対流圏から成層圏にかけての大気の流れ、大気中化学物質の輸送 過程の指標となる。しかし、人工衛星による分光学的方法による観測では、精 度が低く、定量が困難な上、詳細な高度分布を得ることは難しい。航空機、気 味などに観測器を搭載し、その場で分析する方法もあるが、感度・精度が不十 分であることが多い。その点、地上、航空機、気味などで大気を採取し、持ち 帰って分析する方法は、感度・精度が高く、低濃度の化学種を捉えるのに非常 に有効であり、かつ高度分布を詳細に解明することができる。

本研究では、大気球により採取された成層圏大気試料を GC/MS により高感 度・高精度で分析し、大気中微量ハロカーボン類の混合比の高度分布を明らか にした。日本の三陸、北極圏のスウェーデン・キルナ、南極昭和基地において 成層圏試料採取実験が行われ、全球規模の成層圏・対流圏循環についての情報 が得られた。

5-2、大気球による成層圏大気試料採取実験

5-2-1 三陸における大気球実験

1996年から1998年にかけて、宇宙科学研究所三陸大気球観測所において、宇 宙科学研究所、東北大学、東京大学の合同チームにより、計4回の大気球によ るクライオサンプリング実験が行われた。成層圏では、夏半球は東風が、冬半 球は西風が卓越している (Figure 5-1)。三陸の位置する北半球中緯度では、 対流圏では偏西風が吹いていることから、上昇中の気球は東へ流されるが、初 夏または晩夏の成層圏では弱い偏東風が吹いているため、上昇した気球は西へ 戻される。この東西風の高度変化を利用した、ブーメラン気球と呼ばれる方法 により長時間の観測と放球場近くでの回収が可能となる。「戻り風」(成層圏 の偏東風)が強過ぎると日本海側まで気球が流され、回収が困難となることか ら、気球観測は、例年5月下旬から6月初旬および8月下旬から9月上旬に集 中して行われる。三陸では、1996年から1998年にかけて4回の実験が行われた が、完全な試料採取に成功したのは、1997年5月30日および1998年9月3日に行 われた2回であった。各実験における気球の航跡を Figure 5-2 および Figure 5-3 に示す。

5-2-2 キルナにおける大気球実験

1996年8月に宇宙開発事業団により打ち上げられた地球観測プラットフォー ム衛星 ADEOS (Advanced Earth Observing Satellite、通称「みどり」)に搭 載された環境庁による改良型大気周縁赤外分光計 ILAS (Improved Limb Atmospheric Spectrometer)の大気成分観測の検証実験として、南極および北 極で様々な地上観測が展開された。その一環として、1997の1~3月に、ス ウェーデン北部に位置するキルナ (68°N, 21°E)において、大気球観測国際 キャンベーンが実施され、8カ国の大気球やゾンデなど数十機が放球された。 成層圏大気クライオジェニックサンプラーは日本側で準備され、気球の放球は、 フランス国立宇宙科学センター (CNES:Centre National D'Etude Spatiales) とスウェーデン宇宙公社エスレンジ (SSC Esrange)の協力により行われた (Kanzawa 1997)。

冬の極域成層圏では、極渦と呼ばれる大規模な低気圧の渦がほぼ極を中心と して形成される。キルナ上空はちょうど極渦の辺縁部に位置しており、極渦の 形状により極渦内に入ったり出たりするが、北極におけるオゾンの減少メカニ ズムの解明を目的とした人工衛星観測の検証という観点および、気象条件的に

Figure 5-2. Trajectory of the balloon launched from SBC on May 30,1997. Samples are named A1, B1, ... for identification.

Figure 5-3. Trajectory of the balloon launched from SBC (Sanriku) on 3 September, 1998

極渦外では成層圏での西風が強過ぎる(気球がロシア領にまで流されると回収 が難しくなる)ことから、ヨーロッパ気象中期予報センター(ECWMF)による成 層圏大気状況の予報に基づき、極渦内での放球が実施された。日本のクライオ ジェニックサンプラー搭載気球は1997年2月22日および3月18日に放球され、成 層圏試料採取に成功した。キルナ上空では高度とともに風速が増す傾向にある ため、三陸に比べ到達高度は低く抑えられた。それぞれの気球の航時を Figure 5-4 に示す。

5-2-3 南極における大気球実験

1998年1月3日、宇宙科学研究所、東北大学および国立極地研究所により、南 極昭和基地(69°S, 40°W)上空で、南極域では世界初のクライオジェニックサ ンプリングが行われた。南極では、少人数の現場関係者のみで、観測機器だけ でなく、気球工学関連機器についても、準備・操作を行う必要があり、非常に 厳しい条件の中で成層圏試料採取が成功した。過去の昭和基地上層風観測デー タを用いた航跡シミュレーションや、日本の極地研と昭和基地をリアルタイム で結ぶコンピュータネットワークなどが新たに開発された。気球の航跡を Figure 5-5 に示す。

5-3, 成層圈大気試料測定

成層圏試料測定では、GC/MS 以降の測定条件は対流圏試料測定と同様である が、試料導入までの操作ではいくつかの異なる点がある。

まず、クライオジェニックサンプリングでは、大気試料が気化したときの試 料容器内圧が30気圧近くまで加圧された状態となるため、試料導入時にバルプ 操作を誤ると試料損失や、圧力計や真空ラインの破壊をもたらすことから、実 験操作を慎重に行わなければならない。

また、高度とともに各成分とも低混合比となるため、上空で採取された試料 の測定においては、濃縮導入試料量を増やして検出限界を下げる必要が出てく る。今回の実験では、高度に応じて、一回につき400~1000m1の試料を用いた。

Figure 5-5. Trajectory of the balloon launched from Syowa station on 3 January, 1998

対流圏試料では11 もの試料の濃縮は試料中の水分の妨害を受けて困難となるが。 成層圏試料中は水分が少ないため、そのような困難はなかった。

成層圏大気試料は共同実験者と共有しており、使用可能な大気試料量が限ら れているため、1 試料の測定回数は2回とした。2回の測定のぼらつきは、採 取高度が低く比較的高濃度の試料では1%以内であり、高高度の試料ほど大きく なったが、最大でも15%以内であった。CFC-11、CFC-12、CFC-113については、 当研究室において同一試料の ECD による測定も行われたが、ECD による測定値 と GC/MS による測定値は非常によく一致し、検出器感度や濃縮効率など測定法 由来の誤差は非常に小さいことが示された。

成層圏試料容器は12本あり、そのうちの1本は配管バージ用のポンプとして 用いられるため、採取試料は11本ある。マニフォールドの両側に試料容器が奥 から A1~A6、B1~B6と対照的に配置されており、A 系統、B 系統の容器に交互 に試料を採取して、配管系からの汚染の偏りを防ぐ。分析時も、高高度ほど濃 縮導入試料量が増えることなどから、系統誤差を避けるため、高度や採取の順 番に沿わず、ランダムな順序で測定を行った。

5-4. 緯度や季節の異なるデータ比較における検討事項

5-4-1 対流圏界面高度の緯度変化

大気圏は、温度構造に基づいて区分されており、地表から高度10km 前後(緯 度により異なる)までの対流圏では、気温は6.5℃/km の割合で高度上昇ととも に直線的に下降する。成層圏における気温は、下部ではほぼ一様であるが、中 部から上昇傾向に転じ、約50km にある成層圏界面でビークに達する。対流圏と 成層圏の境界面は対流圏界面と呼ばれるが、「圏界面」と略される場合が多い。

対流圏界面高度は、通常、高度上昇による気温の減率が2℃/km 以下となる高 度で定義される。本研究では、対流圏界面高度は気温の鉛直分布より決定した。

圏界面は、極域から中緯度にかけては高度8~12kmにあるが、熱帯・赤道域 では高度15~18km となっており、緯度30°付近にギャップを持つ。低緯度域で は日射加熱と積雲対流活動による水蒸気凝結域の集中の結果、平均上昇流が生 じ、その上昇流による断熱冷却が高い高度にまで及ぶため、対流圏界面が上に 押し上げられると考えられている。

キルナ、三陸、南極上空における温度の鉛直分布を Figure 5-6 に示す。圏 界面高度は、中緯度の三陸では15~16km 付近にあったのに対し、高緯度のキル ナ、南極では9~10km と低かった。冬の極域であるキルナでは気温減率の急激 な変化がなく、圏界面が不明瞭であった。

このように、対流圏界面高度は緯度により大きく異なるため、異なる緯度帯 における高度分布を比較する際には注意が必要である。CFC のように、対流圏 では分解されず成層圏で分解される化合物では、圏界面高度からの高さで揃え て比較する方法がある。しかし、圏界面高度の変化に伴い、圏界面より上の大 気が膨張も圧縮もせず、そのまま並行移動するとは考えられないため、この方 法には問題があると思われる。また、冬の極域などのように、圏界面が不明瞭 な場合には、圏界面高度の誤差が高度分布の誤った解釈に繋がる危険性がある (Goldan et al. 1980)。これらのことから、本研究では、圏界面高度で揃える 方法は取らず、その緯度による変化を考慮しつつ、そのままの高度で比較する ことにした。

5-4-2 気圧高度による比較

緯度や季節による空気密度の違いを揃えるため、気圧高度での比較も行った。 気圧データは最寄り地点(キルナでは Esrange、三陸では秋田もしくは仙台、 南極では昭和基地)のレーウィンゾンデによる観測値(Figure 5-7)を用いた。 気圧の鉛直分布を比較すると、キルナ上空では三陸および南極に比べ、同高度 に対する気圧が低く、空気が下方へ圧縮されていることがわかる。

5-4-3 等温位面解析

大気が大気の運動が断熱的に起こるとき、空気塊は等温位面に沿って動くこ とから、空気塊の動きを追跡するのに温位座標がよく用いられる。温位 (potential temperature) θは、気圧P、気温Tの気塊が一定の気圧P。(ふつう

Figure 5-6. Temperature profiles recorded by rawin sonde.

Figure 5-7. Pressure profiles recorded by rawin sonde.

1,000 hPa にとる)まで断熱的に膨張・圧縮された時の温度で、次式で示される。

 $\theta = T(P_s/P)^*$ $\kappa \equiv R/C_v = 2/7$ C_v : 定圧比熱 温位の計算には最寄り地点のレーウィンゾンデによる気温、気圧の観測値 (Figure 5-6, Figure 5-7)を用いた。各地点における温位の高度分布を Figure 5-8 に示す。対流圏では、等温位面は低緯度で高くなり、等高度では 高緯度ほど温位が低いが、高度とともに緯度勾配は減少して、成層圏に入ると 緯度勾配はほとんどなくなり、温位を高度座標の代わりに使えることがわかる。

5-4-4 子午面循環

成層圏での物質の流れは赤道から極へ向かう流れにおおよそ代表される。あ る程度、寿命の長い物質のグローバルな分布は、単なる光化学反応によって決 まるのではなく、プリューワー・ドプソン型の流れによって決められている部 分が大きい。プリューワー・ドプソン循環は、低緯度で成層圏へ流入した対流 圏大気が赤道から極へ向かう流れに乗って成層圏を極向きに輸送され、極域で 下降するという子午面循環である。空気中の水蒸気は、対流圏内で断熱膨張に より冷却されて雨となり、更に成層圏へ流入する時、氷となって除去される (水分の絞り出し;freeze out)。観測された成層圏の水蒸気が非常に低濃度 であることから、対流圏大気の成層圏への流入は、極めて寒冷な赤道対流圏界 面を経由すると考えられた。(南極成層圏が赤道上空成層圏よりも冷たい場合 には、南極成層圏でもう一度成層圏の水蒸気が対流圏に抜けることがある。) 緯度の異なるデータを解析する際には、基本的にこのような子午面循環の存在 を仮定して検討した (Figure 5-9)。

Figure 5-8. Potential temperature profiles calculated based on the rawin sonde data.

Figure 5-9. Schematic cross section of transport in the stratosphere. Latitude-height distribution of mean potential temperature (in kelvin) for the month of January, averaged over longitude.

(Marlman, 1997)

5-5. 三陸、キルナ、南極におけるハロカーボン類の高度分布

 三陸(1997年5月30日および1998年9月3日)、キルナ(1997年2月22日および 1997年3月18日)、昭和基地(1998年1月3日)上空で得られたハロカーボン類 の混合比の高度分布を絶対高度に対してブロットしたものを Figure 5-10、 Figure 5-11、Figure 5-12、Figure 5-13、Figure 5-14 に示す。また、気圧 高度によるプロットを Figure 5-15、Figure 5-16、Figure 5-17、Figure 5-18、 Figure 5-19に、温位によるブロットをそれぞれ Figure 5-20、Figure 5-21、 Figure 5-22、Figure 5-23、Figure 5-24に示す。

地表濃度のデータは、三陸では、1997年冬と夏に北海道で採取されたバック グラウンド試料濃度からの内挿値および1998年夏に北海道で採取されたバック グラウンド試料濃度でそれぞれ示した。昭和基地では、気球実験当日に昭和基 地で地表サンプリングされた大気試料の分析結果を示した。

*. 濃度と混合比

高度とともに気圧は減少し、大気中の分子の数密度も減少するため、微量成分の高度分布は、 濃度の代わりに混合比(mixing ratio)で表す。混合比とは、ある成分の数密度と、その高度に おける大気の平均数密度との比であり、高度による気圧変化の効果がキャンセルされる。した がって、大気の移動によっても、光分解等が起こらなければ混合比は保持される。

大気球によるクライオジェニックサンプリングで採取した空気を分析して得られるのは、微 量成分の混合比である。これに対し、衛星など分光観測で得られるのは微量成分の数密度であ り、大気圧、温度等により変化することから、混合比を得るのは容易ではない。

Figure 5-10. Observed vertical profiles of halocarbons over Sanriku (39°N) on 30 May, 1997. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45°N).

Figure 5-13. Observed vertical profiles of halocarbons over Kiruna on 18 March, 1997.

Figure 5-15. Obseved vertical profiles of halocarbons over Sanriku (39 N) on 30 May, 1997 shown by pressure vs mixing ratio. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45 N).

Figure 5-16. Observed vertical profiles of halocarbons over Sanriku (39°N) on 3 September, 1998 shown by pressure vs mixing ratio. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45°N).

Figure 5-19. Observed vertical profiles of halocarbons over Syowa station on 3 January, 1998 shown by pressure vs mixing ratio. The surface concentrations are obtained by samples collected at the station on the day.

Figure 5-20. Observed vertical profiles of halocarbons over Sanriku (39°N) on 30 May, 1997 shown by potential temperature vs mixing ratio. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45°N).

Figure 5-21. Observed vertical profiles of halocarbons over Sanriku (39°N) on 3 September, 1998 shown by potential temperature vs mixing ratio. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45°N)

Figure 5-24. Observed vertical profiles of halocarbons over Syowa station on 3 January, 1998 shown by potential temperature vs mixing ratio. The surface concentrations are obtained by samples collected at the station on the day.

5-5-1 三陸上空におけるハロカーボン類の高度分布

ハロカーボン類の消滅過程は、主に、対流圏内では 0H ラジカルによる分解、 成層圏内では光分解である。

観測結果(P83~P97)より、対流圏内では、CFC 類およびハロンは非常に安 定で分解されないため、対流圏界面近くまで、地表とほぼ等しい混合比を示し たのに対し、HCFC 類は、対流圏内で、OH ラジカルによって分解されるため、 地表から圏界面までにも混合比の減少が見られた。

成層圏に入ると各成分とも短波長の紫外光による分解を受けるため、高度と ともに混合比の減少が見られた。ハロカーボン類の室温付近における光吸収断 面積を Figure 5-25 に示す(なお、成層圏温度における測定値はほとんどな い)。光吸収断面積は、一つの炭素に結合している塩素数が多いほど大きく、 臭素やヨウ素を含む化合物ではさらに大きい。

吸収断面積の比較的大きい CFC-11、CFC-114a、ハロン-1211では下部成層圏 内で著しく混合比が減少するのに対し、CFC-114は中部成層圏以上でも分解を 受けにくいなど、化合物ごとに、吸収断面積に応じた高度分布が観測された。

HCFC 類は、光吸収断面積が CFC 類よりも比較的小さいため、中部成層圏以上 の高度における減少傾向が小さかった。上の高度で下部よりも混合比が高くな る逆転現象も観測されたが、これは、光分解の効果よりも、気団の違いによる 採取大気中の混合比の差の方が大きかったためと思われる。

また、1997年5月30日の高度22km と26km 付近で採取した二つの試料において は、全成分で著しく低い混合比が観測された(Figure 5-20)。緯度-高度で 表した気球の航跡図(Figure 5-3 右下)から、高度20km~30km で気球が階段状 の航跡を描いて降下していたことがわかる。すなわち、高度22km と26km 付近 では、気球は他の高度と異なり、北向きの速い大気の流れに乗っていたと判断 され、ハロカーボン類の混合比の気団の違いによる差が顕著に現れたと考えら れる。垂直渦拡散係数は、CH₄や N₂0 の高度分布から計算されることが多いが、 圏界面付近で最小となり、下部成層圏から中部成層圏にかけて小さいとされる (Figure 5-26)。今回の観測から、中部成層圏では鉛直方向の拡散が起こり

Figure 5-25. Adsorption cross sections of halocarbons at 295-298 K (JPL, 1997)

Figure 5-26. Vertical eddy diffusion coefficient based on the observed profile of CH₄ and N₂O, and one-dimensional model calculation (Matsuno, 1981)

にくく、初夏の三陸上空では、2~3km 程度の薄い大気の層が積み重なった微細 な構造が存在することが実際に証明された。

さらに、これらの低い混合比を示した高度の試料において、採取された各空 気塊の起源を調べるため、国立環境研究所地球環境研究センターのデータベー スおよび解析ソフトによるパックワード流跡線解析(back trajectory analysis)を試みた。このデータベースはヨーロッパ気象中期予報センター (ECWMF)による気象データから成るが、成層圏においては、高度20km までしか 設定できず、気圧高度では、中部成層圏では、10、30、50、70 hPa という刻み であるため、各試料採取高度を区別することができなかった。気球実験により、 成層圏の気象データの高度分解能では捉えることのできない小規模な構造が観 測されたことは、このような観測実験の意義を示している。

1998年9月3日に三陸上空で得られたハロカーボン類の高度分布 (Figure 5-11) は1997年5月の分布とかなりよく一致したが、1997年初夏に見られたよう な混合比のギャップは見られず、スムーズな減少傾向を示した。

成層圏では夏は安定した東風が吹いているが、冬に西風に入れ替わると、偏 西風帯の半球規模の波動であるプラネタリー波が対流圏から伝播してくるため、 春~初夏では晩夏に比べて大気の状態は不安定になる。1998年の気球実験は安 定した夏の成層圏の構造を表し、1997年初夏の気球実験は、春の風向逆転直後 に行われたため、成層圏大気の乱れた状態を表していると考えられる。

5-5-2 キルナ上空におけるハロカーボン類の高度分布

1997年2月22日および3月18日のキルナ上空におけるハロカーボン類の高度分 布を Figure 5-14, 5-15に示した。2月22日の高度10.3km および高度20.5km の 大気試料では、いくつかの化合物が全く検出されなかった。CFC-11など光吸収 断面積の大きな化合物が検出されていることから、光分解により検出下限以下 の混合比まで減少したとは考えにくく、また、ECD 測定も行った同一試料中の CFC11、CFC-12、CFC-113について、両測定結果がよく一致したことから、分析 法の問題とも考えられない。おそらくこれらの試料容器について、吸着などの 問題があったと考えられ、Figure 5-12、 Figure 5-17、 Figure 5-22では、 プロットから削除した。また、3月18日の20.4km の試料では、試料容器パルプ に漏れがあったことが明らかになっており、これも Figure 5-13、 Figure 5-18、 Figure 5-22からは削除した。

キルナにおける大気試料採取実験は、同シーズンの2月と3月に行われたが、 その高度分布を比較すると、2月には、高度とともにスムーズに混合比が減少 していたのに対し、3月のキルナにおいては、高度20km付近で勾配が小さくな り、それ以上の高度では急激な減少が見られた。一方、高度20km付近までは、 2月と3月のCFCの分布はよく一致した。

極渦内では大気の沈降が確認されており、衛星観測によるメタンや水蒸気の 混合比データなどから下降速度は1.5~1.8km/月と見積もられている (Schoeberl et al. 1995, Notholt et al. 1997, 河本ら、1998)。今回、 一ヶ月近い時間が経過したにも関わらず、2月と3月のCFC の高度20km 付近まで

の分布がよく一致したことから、CFC から下降流の影響を読みとることは難し いと言える。

また、3月の HCFC の高度分布では、気球が上昇中に採取した試料と下降中に 採取した試料との間に大きな混合比の差が見られ、下降中に採取した試料では、 上昇中に採取された試料に対し、著しく高い混合比が観測された。この原因に ついて、極渦との位置関係に着目して検討した。

極渦は、ほぼ極を中心に上空に存在する大規模な低気圧渦で、極渦に付随し て中・高緯度で西風が吹く。1996/1997年の冬季には、北極圏の成層圏では冷 たい安定した極渦が例年より長く形成されていた。極渦の境界領域には、低緯 度からの気塊の流入を阻む輸送の壁があり、この付近で渦位(Potential vorticity; PV)が急激に変化する。半球面上の渦位データから渦位の観点での

「緯度座標」である Equivalent latitude (EL)が求められ、渦位はこれに大し て単調増加するが、極渦が形成されている時期には EL= 60°~70°付近に勾配の 大きい領域が現れ、これより渦位の値が大きいところは極渦内、小さいところ は極渦の外部にあると考えられる。極渦の境界領域は、EL に対する渦位の二次 微分量が極小/極大になる点および同様に極渦の境界領域に最大値を持つ平均 風力を掛け合わせて定められる。

気球の飛行した高度範囲の気球実験当日の極渦の状態を調べるため、渦位を 調べた。ECMWF2.5x2.5を用いて国立環境研究所で計算した渦位マップを用い、 350K, 380K, 400K, 425K, 450K, 475K, 500K, 550K, 625K, 675K, 700K の各等 温位面について、極渦と気球の航跡との関係を調べた。なお、温位を縦軸に 取って表したキルナ上空でのハロカーボン類の高度分布を Figure 5-22, 5-23 に示した。これによると、試料は温位300K 前後から700K 近くまでの範囲で採 取されたことがわかる。温位350K 面の渦位図では、極渦は形成されておらず、 380K 面図では極渦が見られることから、極渦の下限は温位350K~380K の間で あったと判断される。また、極渦の上限は700K 以上であり、気球が飛んだ高度 範囲では上限には達していなかったと見られる。極渦と気球航跡の関係を示す 例として、定義により極渦の辺縁部に色を付けて示した475K 等温位面の渦位図 を Figure 5-27 に示す。

気球の航跡図(Figure 5-4)からわかるように、2月には、気球は真東に流き れ、3月にはやや南へと流された。各放球日における極渦と航跡の関係から、2 月22日には、気球は極渦の内部を飛行したのに対し、3月18日には、気球は南 へ流され、極渦の辺縁部にかかっていたことがわかった。以上より、3月のフ ライトでは、気球の上昇中に採取された試料は周りから孤立した極渦内の大気 だったのに対し、下降中に採取された大気は極渦外の大気の影響を受けていた ために HCFC 混合比のギャップが見られたと考えられる。一方、近年活発に放 出されている HCFC に対し、CFC の放出はほとんど停止し、全球的に分布が均一 化しているために、CFC 分布にはギャップが現れなかったと考えられる。

5-5-3 南極昭和基地上空におけるハロカーボン類の高度分布

1998年1月3日に南極昭和基地上空において得られたハロカーボン類の高度分 布を Figure 5-14 に示した。この実験では、1997年2月にキルナで行われた実 験と同じ試料容器が再コンディショニングされた後に用いられた。高度10.4km

と25.1km の試料ではいくつかの化合物が全く検出されなかったが、この二つの 試料容器では、キルナ実験でも、同じ化合物について分析値の異常が見られて おり、試料容器に問題があることが確実となった。

1月の南極上空におけるハロカーボン類の混合比の高度による減少傾向は小 さく、特に18km 以下の下部成層圏においてはほとんど減少の見られない層が見 られた。一方、20km より上空では CFC-11など光分解しやすい化合物の混合比 の減少が見られたが、全体的に、上空まで勾配は小さかった。

南半球においては、極域の温度が急速に上昇し夏型循環に向かういわゆる最 終昇温は11月下旬から12月上旬に起こる。1月初旬の南極昭和基地上空におい て混合比の勾配が小さかったことから、一ヶ月ほど前の極渦崩壊に伴う上空大 気の混合などの影響を受けたと考えられる。また、夏季の南半球では低緯度か らの速い輸送経路があり、微量成分が比較的光分解を受けずに高緯度域まで運 ばれるために、上空でも高い混合比が見られたと思われる。成層圏では低緯度 と中・高緯度の間に大気の交換の壁があるとされている(Plunb 1996)が、下 部成層圏では比較的速い輸送があるとされることから、低緯度からの輸送と上 空大気の混合とが組み合わさってこのような高度分布となったと考えられる。

5-6. 三陸、キルナ、南極上空における高度分布からみた大気の大循環

キルナ、三陸、南極上空における各化合物の高度分布を比較すると、高度に 対する混合比の減少はキルナで著しく大きかった。また、夏の南極上空におけ るハロカーボン類の混合比の高度に対する減少傾向は、冬のキルナ上空とはか なり異なっており、減少傾向は小さかった。

5-6-1 冬の極域における大気の断熱圧縮および下降の効果

キルナ、三陸、昭和基地上空の気温の鉛直分布(Figure 5-6)を比較すると、 冬のキルナでは、気温は全高度にわたり三陸や昭和基地よりも低く、成層圏に 入ってからの温度上昇もほとんど見られなかった。一方、夏の昭和基地では、 対流圏での気温は三陸に比べ低いものの、下部成層圏から中部成層圏にかけて 約1.1℃/km もの温度上昇を示し、成層圏での気温は三陸に比べ10℃以上も高 かった。

このように、キルナでは、成層圏における気温が著しく低かったことから、 空気の圧縮による効果を考慮して、気圧高度に対する高度分布を三陸と比較し てみた(Figure 5~15, 5~17, 5~18)。圏界面高度が異なるため、圏界面上の 高度に対する混合比の減少傾向のみを比較すると、キルナと三陸における減少 傾向はほぼ同程度であった。すなわち、冬の極域では空気が圧縮されているこ とによりハロカーボン類の高度分布も圧縮されて、減少傾向がより著しく見え ていることがわかった。

また、等温位面解析 (Figure 5-20, 5-22, 5-23) によれば、ハロカーボン 混合比を指標としてキルナと三陸とを比較すると、キルナにおける高度分布は、 200Kほども低かった。これは、キルナでは、大気が冷却されて放熱し、等温 位面を横切って沈降していること (diabatic subsidence) を表していると見 られる。冬季極渦内における下降流の存在は、ドイツのグループによる気味観 測の結果からも指摘されており (Schmidt et al. 1991, 1994, Bauer 1994)、 彼らの観測では、11月の極渦形成前の高度分布は中緯度(44^{ex}) の高度分布 (温 位座標) とよく一致していたが、極渦形成後、混合比の勾配は後々に増大した。 一酸化二窒素の等濃度層の下降速度から見積もった大気の沈降速度 (1991年12 月) は、100-180m/day であった。

我々のグループの1997年2月と3月のキルナでの観測結果から見積もった沈降 速度は約40m/day であり、大気の沈降はそれほど活発でなかったと考えられる。

5-6-2 子午面循環の南北半球、季節による違い

南極昭和基地(69%)は、北極圏のキルナ(68%)と緯度的に対称な位置にある。 圏界面高度は、両地点とも10km 前後であり、両緯度帯では季節によらずほぼ対 称に位置していると考えられる。子午面循環が赤道をはさんで対称でかつ季節 変化がないとすれば、両地点における高度分布はよく似ているはずである。し かし、半球、季節ともに異なる昭和基地とキルナ上空で観測されたハロカーボ ン類の高度分布は、互いに大きく異なっていた。北半球と南半球、冬季と夏季 とで、子午面循環の違いが生じる要因としては、地球の公転軌道が楕円である ことや陸海の分布の違いなどにより、太陽放射をはじめ重力波・プラネタリー 波の効果などが大きく異なることが考えられる。また、夏半球では冬半球に比 べ、成層圏における低緯度側からの大気の極向き輸送の速度が大きいため、ハ ロカーボン類が比較的光分解を受けず、南極昭和基地上空に輸送されたと考え られる。

6. ハロゲン化メチルの大気中濃度測定

6-1. 序

近年、工業化に伴い放出されたフロン、ハロンなどの人為起源のハロカーボ ン類による成層圏の塩素、臭素濃度の増加が、成層圏オゾンの減少をもたらし たが、大気中には、ハロゲン化メチル類のように天然に発生源を持つものも存 在している。

塩化メチルは天然起源のハロカーボン類の中で最も多く大気中に存在し、人 工物質の放出が始まる以前には、成層圏の塩素濃度を制御していたと見られて いる。臭化メチルは、農業使用やバイオマスバーニングなど人間活動からも放 出されるが、成層圏において塩素原子の約40倍ものオゾン破壊能を持つ臭素原 子を放出することから比較的高いオゾン破壊係数(0.6)が見積もられており

(WMO 1994)、モントリオール条約による規制が決定されている。ヨウ化メチ ルは対流圏内で紫外可視領域の光分解を受けるため、大気中寿命は数日から数 週間程度と短いものの、最近、非常に速い対流輸送により下部成層圏に達し、 活性なヨウ素ラジカルを放出してオゾン破壊をもたらす可能性も検討されてい る (Solomon 1994)。成層圏まで達したヨウ素のほとんどはフリーラジカルと して働くので、塩素や臭素のフリーラジカル率が低い下部成層圏において影響 が大きいと考えられる。

ハロゲン化メチルの天然における発生は、主に、海洋中の生物活動によると されており、アイルランドの Kelp bed (大型海草林) で、北大西洋海木に比べ 1000倍もの高濃度が観測されたり (Zarifou 1975)、kelp を栽培して実験した 結果から、kelp による生産が証明された (Manley 1987) が、他にもハロゲン 化メチルを生産する生物は多いと考えられる。生産の機構については、酵素に よる有機物のハロゲン化、DMS やその前駆体とハロゲンイオンの反応など諸説 が挙げられている (Theiler 1978, White 1982. Hu et al. 1996) が、詳細に ついてはよくわかっていない。 また、消滅過程についても、0H ラジカルとの反応および光分解のほか、海洋、 土壌、植物などの寄与が考えられているが、その詳細については未解明である。

このように、ハロゲン化メチルは、成層圏オゾン層破壊だけでなく、対流圏 での化学反応においても重要な位置を占めている。本研究では、その大気中濃 度分布および大気中での挙動を調べるため、低温濃縮 GC/MS 法を用いて、これ ら塩化メチル、臭化メチル、ヨウ化メチルの大気中濃度測定を試みた。

6-2. 測定と定量

分析法については、第2章に記した。MSのSIM 測定において、塩化メチルの 定量は、親イオンである質量数50をモニターイオンとして行ったが、代替フロ ンの HCFC-22の CF2イオンによる同質量数 (m/z = 50)のビークがすぐ後に出て くるため、HCFC-22からは生成しない質量数52の同位体ビークとの比からビー クの重なりの影響がないことを確認した。臭化メチルについても質量数94の親 イオンの他に質量数96の同位体イオン、ヨウ化メチルでも質量数142の親イオ ンの他に質量数127のヨウ素原子イオンを用いて感度や再現性、妨害成分の影 響などをチェックした。

塩化メチルは大気中濃度は数百 pptv と大気中濃度が比較的高いため、検出 しやすいが、臭化メチルは20pptv 前後、ヨウ化メチルは数 pptv と非常に大気 中濃度が低く、検出困難であった。検出下限を下げ、安定した測定値を得るた めの試行錯誤については、第2章に記述した。

定量には、大陽東洋酸素社調製の100pptv 混合ガスを用いた。低濃度成分に ついてはこれを希釈した二次標準試料を用いたが、次説で述べる通り、これら のハロゲン化メチルの試料容器中での安定性には問題があることが確認されて いるため、その都度一次標準で標定を行った。

6-3. ハロゲン化メチルのステンレス容器中での安定性

6-3-1 序

ステンレススチール容器内でハロゲン化メチル濃度が変動することは既に第

3章でも述べた。初期に、同一試料中のCFC-12、HCFC-22のビークに対する塩 化メチルのピークの相対比が、時間の経過に従って大きくなることから、この 問題に気づき、その後、同様にステンレススチール製試料容器を用いているア メリカの NOAA (大気海洋局) やUC1 (カリフォルニア大学アーバイン校) など でも同様の問題が見出されていることがわかったが、その原因は依然として未 解明のままである (Montzka 1995、WM0 1995)。

試料容器中での安定性が保証されない限り、過去に採取した大気試料から、 過去の大気中濃度を把握することはできない。また、南極試料のように、試料 採取から測定するまでに数カ月から一年以上かかる場合、南極における大気中 濃度の正確な値は得られないことになる。ハロゲン化メチル類の大気中挙動を 解明するには、まず、この現象を解明する必要がある。そこで、本研究では、 ハロゲン化メチルのステンレススチール製容器内における保存性の問題につい て、内表面での吸着、脱着、反応、汚染の可能性についてシミュレーション実 験を行って検討した。

6-3-2 対流圏大気試料容器中での安定性

6-3-2a 容器による違い

対流圏大気試料を表面処理法や体積の異なる容器で保存したときのハロゲン 化メチル類濃度の安定性を調べるため、北海道で採取された対流圏大気試料を 2年間にわたり定期的に分析し、ハロゲン化メチル類の濃度の CFC-12濃度に対 する比を調べた。1996年の夏の北海道において、各5個のステンレス製大気試 料採取容器に同時サンプリングし計10個の容器で保存された大気試料を定期的 に測定した結果を Figure 6-1 に示す。それぞれの試料容器の履歴を以下に記 す。

・24L:当研究室にて十数年前に作製された球形容器(内容積24ℓ)。現在と焼き 出し温度が異なる(200℃で焼き出し)。勝浦(千葉)で採取された大気が保 存され、標準試料として使用されていた。サンプリングに当たっては、残って いた試料を完全に真空引きしてから用いた。

Figure6-1. Response ratio of HCFC-22 and CH₃Cl to CFC-12 during storage in different canisters. Numbers show the volume of the canisters. 6Ls means a 6L silicosteel canister. The atmospheric samples were collected at (a)Wakasakanai on 21 August, 1996 and (b)Nossapu-misaki on 23 August, 1996.

 ・12L : 当研究室にて1995年に作製された筒型容器(12ℓ)。作製方法は第3章に 記した通り。

 ・21 : 当研究室にて1995年に作製された筒型容器(21)。作製方法は第3章に 記した通り。

・6Ls : 印(Hewlett Packard) 社から1996年に購入された球形 Silicosteel canister (6ℓ)。内表面にフューズドシリカをコーティングし不活性化してある。SilicoCanとも呼ばれる。

この一連の storing test から、以下のことがらが明らかになった。 < 容器内での安定性 >

CH_aCl と CH_aBr は、試料残圧によらず、時間に比例して増加し(大気中濃度の 何倍にもなる)、CH_aCl は2年以上増加し続けるが、CH_aBr は1年くらい経つと 飽和した。また、CH_aI は増加する場合と減少する場合とが見られた。

く容器による違いう

・内容積2Lと12Lの容器とで有意の差は見られなかった。

新品(焼き出しのみ)の容器と使い込んだ容器とで増え方に有意の差は見られなかった。

・Silicocan、24L 試料容器ではハロゲン化メチルの増加は見られなかった。 12L、2L 試料容器ととの違いは、

・材質 → 24L と12L、2L は同じ SUS304、Silicocan は fused silica coating されている。

・焼き出し温度 → 24LとSilicocanでは高温(200℃以上)で焼き出し。12L、
2Lは110℃。

となり、焼き出し温度や内壁処理の違いにより両者に差が出ていると見られた。

6-3-2b 試料による違い

試料容器中のハロゲン化メチルの増加が、大気試料中の共存成分によるもの

であるとすれば、異なる試料では、増加の傾向に差があると見られる。例えば NOAA では、増加傾向と試料中の水蒸気量とに相関が見られ、水蒸気量の少ない 南極の試料では、むしろ濃度減少が見られるという(Montzka, 1997)。一方、 本研究室で用いている試料容器では、南極試料中でも濃度増加が見られた。増 加の程度も北海道試料と同等であり、採取直後の増加傾向についてはデータが ないが、その後の増加傾向がほぼ同等であることから、増加のタイムスケール もほぼ同等と推測される。また、湿度の高い沖縄にて採取された試料において も濃度増加傾向、タイムスケールともに北海道と同程度であった。このことよ り、この現象は、大気試料中の水蒸気量や炭化水素その他の大気中共存成分に よるものである可能性は低いと考えた。

6-3-3 ブランク実験

前節で推測したように、濃度増加は、大気試料中の水蒸気量、共存化合物の 濃度などと無関係に起こるのかどうか確かめるため、純 N₂を用いてブランク実 験を行った。結果を Figure 6-2 に示す。まず、純 N₂を大気圧まで充填し、充 填直後に測定を行ったところ、どのハロゲン化メチルも検出されなかった。と ころが、数日経過後に測定すると、塩化メチルが検出され、時間の経過につれ て増加の傾向が見られた。さらに、純 N₂を充填したまま110℃で一晩加熱した ところ、濃度が2倍以上になった上、臭化メチルやヨウ化メチルが検出された。 塩化メチルは常温でも、時間の経過につれて濃度増加を示したが、臭化メチル およびヨウ化メチルは温度を上げないと検出されなかった。110℃で焼き出し を繰り返すと、3成分ともに、ほぼ直線的な濃度増加が見られた。一度上昇し た濃度は、温度を常温まで下げて数日〜数週間経過後も高いままであった。

また、焼き出し温度を200℃に上げて一晩加熱したところ、さらに著しい濃 度増加が見られた(Figure 6-3)。この実験の結果から、この濃度増加が吸着・ 脱着により起こっていると仮定した場合の脱着の活性化エネルギーを計算した。 脱着の一次反応速度(Arrhenius型)は次式で表せる。

Figure 6-2. Growth of methyl halides in a blank sample (pure N_2) in the canister heated at 110°C for 12 hours every night (2-6) after stored at room temperature for 3 days(1-2).

Figure 6-3. Growth of methyl halides in a blank sample (pure N₂) in the canister heated at 110°C for 12 hours during the night on the 2nd day and at 200°C during the night on the 3rd day.

 $k_{a} = Ae^{-id_{hT}}$ E_a: 脱着の活性エネルギー

ー般に、物理吸着では、 $E_d = 25k Imol^{-1}$ 、化学吸着では、 $E_d = 100 k Imol^{-1}$ と言われている。

実験結果から、脱着量:K_a(mol/hr)、焼き出し温度(110°C, 200°C)を式に代 入し、E_aを計算したところ、

CH₃C1 : 53 kJmol⁻¹ , CH₃Br : 76 kJmol⁻¹ , CH₃I : 105 kJmol⁻¹

となった。これより、この現象が吸着・脱着によるとすると、単なる物理吸着 よりも強力に吸着されていると言える。

また、加熱する前後の濃度差から吸着量を見積もると、

CH₃Cl: 755 pmol, CH₃Br: 33 pmol, CH₃I: 39 pmol

となった。今回、プランク実験で生成したハロゲン化メチルの物質量の比は、 個々の容器や加熱温度により異なるが、ハロゲン元素の海水中での存在比 (Cl:Br:I = 10⁶: 1500: 0.6) よりも塩素に対する臭素、ヨウ素の比がかな り大きかった。

これだけのハロゲン化メチルがもともとこの2L 容器の内表面に吸着されるために必要な1atm 大気中のそれぞれの濃度は、

2L 容器内体積 V = π r² *h =1923 cm³ (r=6 cm, h=17 cm)

 $CH_{3}C1:755 * 10^{-12} * 22400 / 1923 = 8.8 * 10^{-9} v/v = 8.8 ppb$

CH_3Br : 33 * 10⁻¹² * 22400 / 1923 = 3.8 * 10⁻⁹ v/v = 3.8 ppb

 $CH_{a}I$: 39 * 10^{-12} * 22400 / 1923 = 4.5 * 10^{-9} v/v = 4.5 ppb

となり、現在の大気中濃度よりも CH₀Cl は1桁、 CH₀Br は2桁、 CH₀I は3桁も 高濃度となる。このことから、この現象は採取大気中のハロゲン化メチルが容 器内壁に吸着されたものの脱着によるとは考えられない。また、容器内壁がそ のような高濃度のハロゲン化メチルにさらされる過程も考えられない。以上よ り、この現象は、大気からハロゲン化メチルの容器内壁への吸着・脱着過程に よるものではないと判断した。 6-3-4 ステンレス由来の汚染

ハロゲン化メチル濃度のステンレススチール容器中での増加が吸着・脱着に よるものでないとすると、何らかの過程を経て、ステンレススチール容器内壁 もしくはステンレススチール内からハロゲン化メチルが発生している可能性が 考えられる。

ブランク試料の SCAN 測定において、エタノールやアセトンをほじめとする 有機化合物が微量ながら検出されることから、作製時にアセトン洗浄を行った 容器表面に有機物が存在することは確かであるが、ハロゲンのもとはどこから 来るのであろうか。

金属ベルク内にハロゲンが入り込む可能性は非常に小さいと考えられるため、 金属表面に残留した微量の有機物中に溶け込んでいる可能性を考えた。ステン レススチールは、鉄にクロムを添加することにより表面にクロムの酸化皮膜が 作られ、耐食性に優れた合金である。ニッケルを含むものはクロム-ニッケル 系ステンレス鋼と呼ばれるが、モリブデン、鋼、ニオブ、チタンなどが添加さ れたものもある。ステンレス鋼の加工過程において、精錬時に、炭素、ケイ素、 マンガン、リン、硫黄、窒素などの不純物が入ってくることが知られているが、 ハロゲン元素が混入する可能性について検討した。その結果、溶解、精錬、鋳 造を経たステンレス鋼を製品の形にする「圧延」という段階で、潤滑剤として 塩素が添加された工作油がよく用いられていることが明らかになった(ステン レス協会、1997)。「ステンレス鋼板のように加工硬化を起こしやすい材料は、 油膜の強い反溶着性のある工作油が要求され、塩素含有量が多く粘度が高い不 水溶性の工作油が多く使用されている。」との日本工作油(株)による記述があ る。臭素、ヨウ素については、塩素中に不純物として含まれている可能性が高 い。

一般に、ステンレス鋼などの金属を、CH₂Cl₂やC₂HCl₃などの有機溶媒で洗浄す ると、それらの溶媒による汚染が長期に渡って残留することが知られている。 また、ステンレス鋼に機械的な刺激を加えるとメタンが発生するとの報告もあ る。そこで、加工の際に何らかの形で取り込まれたハロゲンがメチル基と反応 してハロゲン化メチルを生成するという機構を考えた。一般に、塩化メチルは メタノールと塩酸を硫酸、塩化亜鉛、塩化鉄(III)などの存在下で反応させて 作るか、天然ガスあるいはメタンを原料とし、塩素ガスを気相で加熱して反応 させ、生成ガスを冷却液化し分留により他の塩素化メタン類を分離して得る。 臭化メチルはメタノールに臭素と赤リンを作用させるか、硫酸の存在下で臭化 水素酸を作用させて得られる。ヨウ化メチルは、メタノールにヨウ素と赤リン を作用させるか、硫酸ジメチルにヨウ化カリウム水溶液を作用させて得られる。 メチル基のもととなる有機化合物は容器内に存在しており(例えばアセトンの 熱分解からもメチルラジカルは発生する)、ハロゲン各元素が共存していれば、 金属表面上でハロゲン化メチルの生成反応が起きてもおかしくはないと考えら れる。

6-3-5 対策法の検討

6-3-5a 熱湯水蒸気洗浄

試料容器の原料であるステンレス製ビーカーに塩化エチルなどによる汚染が あった場合、溶接前の洗浄段階で除去する目的で、一部の容器について、熱湯 水蒸気洗浄を行い、従来の方法で洗浄された容器と比較した。水蒸気洗浄は、 水洗とアセトン超音波洗浄の間の段階で以下の手順で行った。

<熱湯水蒸気洗浄> ステンレス製鍋に容器材料のビーカーまたは蓋材を入れ全体が浸かるように蒸留水を満たし鍋蓋をして10分間加熱した。12L ビーカーの 場合は、鍋に入らないため、ホットプレート上に直接ビーカーを置き蒸留水を 1/3ほど満たし、蓋をして加熱した。

水蒸気洗浄を行った試料容器と通常の洗浄のみ施した試料容器は、組み合わ せて同時サンプリングを行い、試料中のハロゲン化メチル濃度の変化を比較し た。その結果、水蒸気洗浄を行った容器では、逆に C₂HCl₃、C₂Cl₄などの吸着が 見られたものの、CFC や HCFC などには全く変化は見られず、ハロゲン化メチル についても、両容器で特に違いは見られなかった。このことから、ハロゲン化 メチル類の容器内での安定性に関して、水蒸気洗浄の効果はないと結論した。 6-3-5b 酸化処理

ブランク実験で用いた純N2の代わりに、純Air や純02を充填して、前節と同 様に焼き出し実験を行い、内壁が酸化されることによる効果を調べた。また、 パイレックス管内を減圧にして、テスラコイルにより管内放電させることによ り純02から03を発生させるオゾン発生装置を組み立て、ppm レベルの03を含む 02を金属容器中に導入して、効果を比較した。それぞれの導入直後の濃度と、 110℃で12時間昇温した後の濃度を Figure 6-4 に示す。

オゾンを導入した容器では、加熱前からハロゲン化メチルがかなりの高濃度 で検出された。また、加熱による増加の程度も N₂ < Air < 0₂ < 0₃/0₂ であり、 ハロゲン化メチルの生成は、ステンレス内壁の酸化で抑えられず、むしろ促進 されることがわかった。また、ハロゲン化メチルが、試料容器内で 0₃等と反応 して分解されないことも確かめられた。

6-3-5c Radical scavenger としての効果

CH₃C1、CH₃Br、CH₃Iをそれぞれ100pptv含む標準ガスを2L容器に充填して安定性を調べた(Figure 6-5)。常温で1日経過後および3日経過後の測定値は測定の誤差の範囲で安定していた。その容器を110℃で12時間昇温後、測定したところ、CH₃C1 150pptv、CH₃Br 100pptv、CH₃I 0.4pptvという結果を示した。その容器をそのまま常温で4ヶ月半放置後、測定したところ、CH₃C1 133pptv、CH₃Br 75pptv、CH₃I 0.5pptvとなった。さらに110℃で12時間昇温後、測定したところ、CH₄C1 177pptv、CH₃Br 66pptv、CH₄I 0.9pptvという結果を示した。

常温保存では各化合物とも三日間は安定であった。110℃ に昇温したときの 変化は化合物ごとにかなり異なっていた。塩化メチルは増加したもののその増 加率は blank 試料や ambient 大気試料に比べて小さかった。臭化メチルは加熱 により減少はしても増加はしなかった。ヨウ化メチルは加熱によりほとんどが 分解された。

ヨウ化メチルは容易に分解してラジカルを捕集するため、radical scavenger としてよく用いられる。 blank 試料や ambient 大気試料比べ、ヨウ

Figure 6-5. Concentrations of methyl halides standard gas mixture (100 pptv) in the canister stored at room temperature for 3 days (1-3), heated at 110°C for 12 hours on the 3rd day (3-4), stored at room temperture for 4.5 months (4-5), heated at 110°C for 12 hours on the 5th day (5-6).

化メチル濃度が非常に高い100pptv 標準試料において昇温時の塩化メチル・臭 化メチルの増加が少なかったことから、ハロゲン化メチルの生成をもたらすラ ジカル反応がヨウ化メチルにより抑制された可能性も考えられる。

6-3-5d 高温焼出し

ステンレススチール容器に純窒素を充填し、110℃で焼き出しては真空に引 く、という操作を繰り返すと、ハロゲン化メチルの濃度増加は減少した。また、 200℃で焼き出した試料容器では、110℃で焼き出したものに比べ、減少傾向が 著しかった。同じステンレススチールにより作製されたにもかかわらず、ハロ ゲン化メチルの濃度増加が見られない24L大型容器は、200℃以上の高温で焼き 出された履歴を持つ。これらより、容器内でのハロゲン化メチルの安定性は、 焼き出しの有無、焼き出し温度により異なると見られる。これについては、高 温で焼き出すことでステンレス表面が変化し、それによりハロゲン化メチルの 生成が抑えられる可能性を検討しているが、裏付けるにはさらに200℃よりも 高温で焼き出しを行うなどの追実験を行う必要がある。

6-3-5e ステンレス素材による違い

ステンレス由来の生成が起きているとすれば、ステンレス素材を変えること で現象に差が見られる可能性がある。NOAA では、モリブデンが添加された SUS 316ステンレスで作製した容器中では、従来の SUS 304ステンレス製試料容器に 比べ、1~2ヶ月間の安定性が著しく向上したという報告がある (Montzka, 1997)。

そこで、本研究においても SUS 316ステンレスで試料容器を作製し、従来の SUS 304ステンレス製試料容器との比較を行ってみた。純窒素ガス導入直後と、 110℃で一晩加熱した後で測定を行ったところ、ハロゲン化メチルは、導入直 後には検出されなかったが、加熱後には、両容器ともにほぼ同濃度で検出され た。つまり、プランク実験では両材質に違いは見られなかった。

6-3-6 成層圈試料容器

成層圏試料採取で用いているクライオジェニックサンプラーの試料容器もス テンレススチール製であるため、容器中でのハロゲン化メチルの安定性につい ての検討を行った。試料容器内壁には電解研磨を施してあり、成層圏試料採取 実験前には、排気しながら130℃で24時間焼き出し、その後ターボ分子ポンプ で一週間以上排気を継続し、10⁻⁹ torr 台の高真空に保っている。

1995年6月8日に三陸大気球実験場より放球され、成層圏大気採取を行った際 の試料容器を用いて実験を行った。この容器は、試料採取後、まず東北大に送 られ、二酸化炭素などの測定を終えた後、1995年7月21日に東大において第1 回目の測定が行われた。その後、東北大に送り返され、酸素の同位体比などの 測定を終え、試料残量が非常に少なくなった容器が返送されてきた。第2回目 測定は、1998年8月2日に行った。試料量は非常に限られていたが、残っていた 試料中の CFC 類、HCFC 類は濃度がほぼ保たれていた。ハロゲン化メチル類は微 量ながら上空(30km) 試料でも検出された。

6-3-6a ストアリング実験

1998年8月2日の測定後、一度内部を真空に引いて純 N_eを800torr 専人した。 1.5ヶ月後の9月21日に測定したところ、ハロゲン化メチル3種とも全ての容器 で検出され、化合物間の濃度比は容器によらず近い値を示した。(全日本中10 本の容器で、CH₂C1/CH₂Br = 18~24。残る1個では CH₂C1/CH₂Br = 38。)

さらにその3ヶ月後の12月24日に制定したところ、塩化メチルと臭化メチル は11本中9本の容器で3ヶ月前の1.2~2.3倍の濃度増加を示した。この増加の 前後で塩化メチルと臭化メチルの濃度比はほぼ保たれていた。これは、塩化メ チルと臭化メチルとが一定の割合で発生していることを示唆しているが、その ような発生の機構は考えにくい。一方、ヨウ化メチルは全ての容器で3ヶ月前 の30~90%の濃度に減少していた。ヨウ化メチルは塩化メチル、臭化メチルに 比べ不安定なため、発生よりも分解の速度の方が大きいためと考えられる。 6-3-6h 昇温実験

試料容器のうちの一本を用いて昇温実験を行った。まず、1998年8月2日に純 N₂を800torr 導入し、1.5ヶ月後の9月21日に測定、3日後の9月25日に再測定し たところ、二回の測定結果はハロゲン化メチル3種類ともよく一致した。その 後、一度内部を真空に引いてから純N₂を1200torr 導入し、直後に測定し、ハロ ゲン化メチルが検出されないことを確かめた。この容器にアルミ箔、コード ヒーターを巻き付け、純N₂が入ったまま110℃で12時間昇温した。常温に戻し た後、測定すると、ハロゲン化メチルは3種とも昇温しなかった場合の約3倍 の濃度で検出された。

さらに、そのまま常温で保存した試料容器中のハロゲン化メチル濃度を約 3ヶ月後(12月24日)に、再測定したところ、塩化メチル、臭化メチルは3ヵ 月前とほとんど濃度変化しなかったのに対し、ヨウ化メチルは検出されなかっ た。この測定後、一度内部を真空に引いてから純 N₂を1300torr 導入し、直後の 測定でハロゲン化メチルが検出されないことを確かめた後、前回と同様に純 N₂ を入れたまま、今度は120℃で16時間昇温した。昇温後、常温に戻し、再度測 定したところ、ハロゲン化メチルは3種類とも前回の昇温時に比べ、塩化メチ ルでは22倍、臭化メチルで7倍、ヨウ化メチルで1.5倍もの濃度上昇を示した。

昇温温度を上げると活性化エネルギーが高いほど反応速度が上がるはずであ るから、活性化エネルギーは CH₄Cl > CH₅Br > CH₅I であることが示唆された。

6-4. ハロゲン化メチル類の大気中濃度

6-4-1 試料容器中の安定性と大気中濃度測定

前節で記述した通り、対流圏大気試料容器中でのハロゲン化メチル類の濃度 は、時間とともに変化する。しかし、濃度変化の速度と程度が許容範囲以内で あれば、大気中濃度の把握が可能である。そこで、二つ以上の容器に同時サン プリングした試料の測定値を相互にチェックし、濃度変化の時間スケールにつ いて検討した。

北海道・沖縄で採取された大気試料を採取から一週間以内に分析し、同時サ

ンプリングした試料同士の濃度を比較したところ、3成分ともに概ね良く一致 した。しかし、サンプリング1シリーズ(容器数10個以上)につき、数個程度 の容器で20%以上も異なる濃度を示した。バックグラウンド試料では、採取か ら測定までに数日はかかるため、時間スケール的には、容器によっては測定値 の保証はできないことがわかった。ただし、このような容器の割合は少なく、 その他の容器の測定値のぼらつきは小さいことから、特異な試料の分析値を排 除すれば、採取大気中の濃度を代表できると考えた。同じ地点における経時変 化や隣接地域での濃度の比較などを調べるには精度が不十分だが、地域や季節 ごとの大気中濃度は測定誤差を大きく上回る幅で変動するため問題にはならな いと判断した。

6-4-2 北海道および沖縄におけるハロゲン化メチル濃度

上記のように条件を揃えてから2年半に渡り、北海道および沖縄の海岸 (Figure 3-2) で採取された大気試料中の塩化メチル、臭化メチル、ヨウ化メ チルの濃度を Figure 6-6に示した。これらの大気中濃度は、北海道および沖縄 において大きく変動しており、海洋からの発生が寄与していることが示唆され る。2年半の観測では、CH₃C1:480~1200 pptv、CH₃Br:10~40 pptv、CH₃1:0.7 ~7 pptv の範囲の濃度変動が見られた。

Table 6-1に、現在までに報告されている観測値を示した。本研究による観 測値は、海岸域での報告値と概ねよく一致するが、塩化メチルの濃度が全体的 に少し低めである。ハロゲン化メチルのように、大気中寿命が比較的短く、発 生源が分散している化合物ではバックグラウンド濃度という概念は適当でない が、塩化メチルの大気中寿命は一年以上あるとされており、主要な放出源であ る海洋からの放出は定常的に起きていると考えられることから、全球レベルの 最低濃度が決まる。報告値からはそのレベルは500ppt 前後と思われるが、本研 究では、北海道や沖縄において、500pptv以下の大気中濃度が観測されており、 塩化メチルのキャリプレーションが低濃度側に若干シフトしている可能性が考 えられる。報告値の確度が絶対とも限らず、4%程度の誤差は変動幅に比べれ

126

Figure 6-6. Observed Atmospheric Concentrations of Methyl Halides

Researchers	Organization	Detector	Observed	1 ation (nami)	Location	Year
0		E GD	Concenti	ation (pptv)		
Singh et al. 1978	(SRI Internatinal)	ECD	CHICI	2200 800-3800	Lisbon Los Angeles	*
Singh et al. 1982	Atmos. Sci. Center, (SRI Internatinal)	ECD	CH ₅ Cl CH ₅ Br	670-960 40-300	U.S.cities	-
(1- a) 1002	Amore Oid Contra		CHA	1-4	Francis De 26 crons	
Singn et al. 1985	(SRI Internatinal)	ECD	CHiBr	033 23 2	Eastern Pacific (40°N- 32°S)	1981
Rasmussen et al. 1980	Oregon Graduate Center	ECD	CHPCI	620 780	(65°N-90°S) free troposphere boundary layer	1977/1978
Penkett et al., 1985	Atomic Energy Research	ECD	CH ₃ Br	15.4 10.6	Atlantic and Southern Oceans (50°N-75°S) Northern Hemisphere Southern Hemisphere	1982-1983
Rasmussen et al. 1982	Oregon Graduate Center	ECD	CH ₁	1-3 10-20 3.3	remote background coast Oregon urban sites	1980-1981
Khalil et al. 1993	Oregon Graduate Center	ECD	CH _s Br	10.7 8.0	Northern Hemisphere Southern Hemisphere	1983-1992
Cicerone et al. 1988	NCAR	ECD	CH _b Br	10-11	5 ground level sites	1984-1987
Atlas et al. 1993	NCAR	MS	CH ₃ Cl CH ₃ Br	631 14	Equatorial Pacific (15°N-10°S)	1990
Koppman et al. 1993	Institut für Atmosphärische Chemie	ECD	CH31 CH3C1	532	Atlantic (45°N-30°S) Northern Hemisphere Southern Hemisphere	1989
Lobert et al. 1995	Univ. Colorado, NOAA	MS	CH ₃ Br	11.1 8.5	Eastern Pacific(48°N-54°S) Northern Hemisphere Southern Hemisphere	1996
Moore, et al. 1996	Dalhousie univ.	MS	CH3CI	543 561	Pacific (40°N-40°S) Northern Hemisphere Southern Hemisphere	1995
Sudo 1996	Univ. Tokyo	ECD	CH ₃ Cl CH ₃ Br CH ₃ I CH ₃ Cl	525-1226 11-25 0.3-0.7 500-3000	Hokkaido, Japan (remote coast)	1996
			CH ₃ Br CH ₃ I	10-500 0.25-4.5	Tokyo, Japan (urban site)	1995
Lohert et al. 1997	Univ, Colorado, NOAA	ECD MS	CH3Br	8.3 8.5	Pacific ocean (78°S-54°S)	1996
Yokouchi 1997	NIES	MS	СНЫ	0.63 0.87	Western Pacific East/Southeast Asian seas	1992 1994
Wingenter et al. 1998	U.C.I.	ECD	CH₃Br	9.5 10.5 8,4	Global Average Northern Hemisphere Southern Hemisphere	1995
Grozko and Moore 1998	Dalhousie univ.	MS	CHaBr	11.4 8.3	Eastern Pacific Northern Hemisphere Southern Hemisphere	1995

Table 6-1. Reported	observations of	methyl halides
---------------------	-----------------	----------------

ば問題にならないが、ハロゲン化メチルの観測値は、その放出源や消滅過程、 大気中挙動などを完全に明らかにするには圧倒的に不足しており、世界の観測 グループ同士でキャリブレーションを揃え、系統的に観測を行う必要があると 思われる。

6-4-3 季節変動

塩化メチル、臭化メチルの大気中寿命はそれぞれ1.6yrs、0.7~0.8yrs 程度 とされており(Koppeman et al. 1993, Lee-Taylor et al. 1998, Wingenter et al. 1998, Colman et al. 1998)、消滅過程として OH ラジカルによる分解 反応が支配的ならば、理論上は季節変動があるはずである。しかし、これらの 季節変動はこれまでにほとんど観測されていない。これは、放出源の季節変動、 OH ラジカルとの反応以外の消滅過程の寄与などの効果が大きいためと考えられ る(WMO 1995)。

臭化メチルについては、夏季の OH ラジカル濃度増加、海木中の求核置換反 応および木和反応の温度依存性、生物活動による土壌への取り込みの活発化な どにより、人為起源の影響がなければ夏低冬高の季節変動を示すと考えられる が、農業使用、バイオマス燃焼、森林火災などの人間活動は主に夏季に集中し ていることから、天然の季節変動をキャンセルする方向に働き、結果として、 変動幅は小さくなると考えられる。最近では、Alaska および New Zealand の海 洋上で、大気中濃度が±1ppt ほどの幅の夏低冬高の季節変動が観測されたとの 報告もある (Wingenter et al, 1998)。

一方、塩化メチルの季節変動は今のところ報告されていない。ヨウ化メチル に関しては、放出源である kelp hed で夏高冬低の季節変動が観測された例が あり (Singh 1977)、kelp からの放出は夏季に活発になると見られる。しかし、 ヨウ化メチルの大気中寿命は数日から数週間程度と短く、主要な消滅過程は光 分解であるから、放出源の近く以外では夏高冬低となるとは考えにくい。

本研究による北海道、沖縄で採取された大気試料の分析結果では、塩化メチ ル、ヨウ化メチルでは、春から夏にかけて、冬期に比べ高濃度が観測されたが、 臭化メチルの大気中濃度には季節変動は見られなかった (Figure 6-6)。

北海道、沖縄ともに大気試料は海岸で採取されたため、塩化メチル、ヨウ化 メチルを放出する海洋生物の活動が夏季に活発化するために春から夏に高濃度 が見られたと考えられる。一方、臭化メチルは農業や建造物の薫蒸などの人為 活動の寄与がより大きいために季節変動を捉えられなかったと考えられる。

6-4-4 森林火災によるハロゲン化メチルの放出

バイオマス燃焼には、焼畑、薪炭などの人間活動によるものと、東南アジア の熱帯林、アフリカのサバンナ、南米のアマゾン、高緯度の森林地帯などで発 生する森林火災とがあるが、バイオマス燃焼によるハロゲン化メチルの発生は、 1970年代から指摘されてきた (Lovelock 1975)。塩化メチルについては、当初 から煙霧中の濃度観測が行われ (Palmer 1976, Crutzen et al. 1979, Rasmussen et al. 1980)、全放出源のうちバイオマス燃焼が占める割合は25 ~50%と見積もられている (Andreae et al. 1996)。また、1990年代に入って からは、臭化メチルについても燃焼実験や観測が行われ (Andreae et al. 1993)、全放出源に占める割合は30%近いとされている (WM0 1995)。

東南アジアでは、乾期に森林火災が頻発する。特に、大規模なエルニーニョ 現象の見られた1997年にインドネシアのスマトラ及びカリマンタンで発生した 森林火災は、規模、期間の長さともに過去を凌ぎ、被害が拡大した。同年には 国内でも、インドネシア森林火災に関する研究の試みが活発化した。その一環 として同年9月に現地で2L 試料容器にグラブサンプリング法により採取された 大気試料を測定した。結果を Table 6-2に示す。大気試料は同年9月上旬に森 林火災の激しかったスマトラ島南部の Djanbi および Palembang の火災現場近 くで採取されたが、試料中のハロゲン化メチル濃度は大気中平均濃度のレベル に比べ、塩化メチルは約2~5倍、臭化メチルは約3~15倍、ヨウ化メチルは 約8~25倍もの高濃度を示した。これらの濃度は、これまでにアフリカやプラ ジルなどの草原や森林の火災で観測された濃度範囲に含まれる。絶対濃度は燃 旋地帯からの距離や風向きに大きく影響されるため、比較できないが、ハロゲ ン化メチル同士の放出比(Emission ratio)を、これまでの観測例よりまとめ られた平均放出比と比較すると、インドネシアでは塩化メチルに対する臭化メ チル、ヨウ化メチルの比が平均値の4~9倍近くも高かった(Table 6-2)。 これらハロゲン化メチル類の放出比は、燃えた植生中のハロゲン元素比や、燃 焼効率(バイオマス燃焼による塩化メチル、臭化メチルの放出は、完全燃焼時 よりも不完全燃焼時に活発であるとされており、一酸化炭素と二酸化炭素の比 から求めた燃焼度との相関が見出されている。今回、同時観測された一酸化炭 素率は低かったことから、完全燃焼性の高い燃焼だったと見られる。)などに よるが、インドネシアにおける臭化メチル、ヨウ化メチルの発生量が他の地域 の火災による発生に比べ、どの程度大きいのかを定量的に把握するためには、 今後さらに観測およびシミュレーション実験データを収集することが必要であ る。

6-5. ハロゲン化メチル類の高度分布

CFC 類や HCFC 類の高度分布については5章に記述した。同一試料中のハロゲ ン化メチル濃度も同時測定したが、測定上の問題が解決されなかったため、5 章に含めなかった。ここではまず観測結果を示し、その解釈については次節に 記す。

6-5-1 観測されたハロゲン化メチル類の高度分布

1997年から1998年にかけて、三陸、キルナ、南極上空において観測されたハ ロゲン化メチル類の高度分布を Figure 6-7、 Figure 6-8、 Figure 6-9、 Figure 6-10、 Figure 6-11に示す。観測されたハロゲン化メチルの高度分布 は、高度20km 以上で高度による混合比の減少が小さかった。1997年3月のキル ナ、1998年5月の三陸では増加さえ見られた。塩化メチルは高度20km 以上にお いても鉛直方向にほぼ均一に15~60pptv 程度で分布し、臭化メチルは高度20km までは減少するもののそれ以上の高度では減少せず、1~2.5pptv ほどが観測さ れた。

Species	Concentration observed in Indonesia (pptv)	Ambient Concentration* (pptv)
Methyl Chloride	1585 - 3489	600
Methyl Bromide	56 - 227	15
Methyl Iodide	12 - 39	1.5

Table 6-2. Methyl halide emissions from Indonesian forest fires

	Emission Ratio ^b , observed in Indonesia $\times 10^{-3}$	Global Mean Emission Ratio ⁸ , $\times 10^{-3}$	
∆ CH₃Br/∆CH₃Cl	41-73	8.5	
Δ CH3I/ΔCH3Cl	11-24	2.6	

	Correlation factor ^d r ²
CH3Cl - CH3Br	0.997
CH3Br - CH3I	0.612
CH3I - CH3Cl	0.667

a. Ambient concentraions are based on data from this study and WMO report (1995). These values are used to calculate the emission ratios.

b. The molar emission ratios are calculated as folows:

 $\Delta \ CH_3Br/\Delta \ CH_3Cl = [(\ CH_3Br)_{smoke} - (\ CH_3Br)_{Ambiens}] \swarrow [(\ CH_3Cl)_{smoke} - (\ CH_3Cl)_{Ambiens}]$

c. The mean emission ratios for all biomass buning are estimated by Andreae et al (1993) .

d. Note that the small sample number (N=3) does not permit a statistically valid regression calculation.

Figure6-8. Observed vertical profiles of methyl halides over Sanriku (39°N) on 3 September 1998. The surface concentrations are the average concentrations obtained by samples collected in Hokkaido (42-45°N).

Figure 6-10. Observed vertical profiles of methyl halides over Kiruna on 18 March, 1997

Figure 6-11. Observed vertical profiles of methyl halides over Syowa station on 3 January, 1998. The surface concentrations are obtained by samples collected at the station on the day.

6-5-2 観測されたハロゲン化メチル類の高度分布の解釈

成層圏におけるハロゲン化メチル類の高度分布の観測例としては、ドイツの グループによる気球実験によるものがあるが (Penkett et al. 1980, Fabian et al. 1981, 1994, 1996, Lal et al. 1994, Kourtidis et al. 1998) 、い ずれの例でも20km 以上の高度で混合比は単調減少し、30km 以上では検出され ていない。

光分解、0H ラジカルとの反応、拡散を考慮した一次元モデルの計算結果を Figure 6-12に示す(Robbins 1976)。塩化メチル、臭化メチルの光分解速度は、 光吸収断面積の測定値およびオゾンと酸素の分布を考慮して計算した緯度30°、 太陽天長角60°における日射フラックスから、高度ごとに計算された。反応速度 の測定値と 0H 濃度分布の計算値より、臭化メチルの 0H ラジカルとの反応定数 は、塩化メチルに比べ10%低くなる。計算に用いられた反応速度定数などのパ ラメータは当時から更新されているため、最近の値(JPL 1997)と比較したが、 データの更新による計算結果への影響は僅かであり、全体の傾向はほとんど変 わらないと考えられた。

拡散は K/H² (K:渦拡散係数、H:スケールハイト) で表される。この計算に よると、対流圏では拡散が支配的であり、成層圏下部では 0H ラジカルとの反 応による分解の寄与が増加し、25km 以上からは光分解が支配的になる。この一 次元モデルにより計算された両化合物の定常状態の混合比(地表濃度からの相 対比)をFigure 6-13に示した(Robbins 1976)。

今回観測されたハロゲン化メチルの高度分布は、Figure 6-13に示したよう な理論的な高度分布とはかなり異なっていた。高度20km 付近までの減少は計算 値よりも急激であり、逆に高度25km 以上では計算値のように単調減少せず、増 加さえ見られた。このような傾向は、1995年6月に行われた三陸気球実験の採 取試料の ECD による測定結果でも見られており、測定法に起因するものではな い。試料容器中でハロゲン化メチルの汚染が生じている可能性は否定できない が、6章の6-3-6に記したように、常温で保存された場合、半年経過後でも、 汚染は、約1000torrの窒素中、塩化メチル4pptv以下、臭化メチル0.2pptv以

Figure 6-12. Calculated loss rates for CHACI and CH3Br by photodissociation, reaction with OH, and diffusion as a function of altitude. Photodissociation rates for solar zenith angle of 60° at 30° latitude. (Robbins, 1976)

下であった。実際の気球実験による採取試料は採取後、半年以内に測定してお り、しかも試料量(圧力)も20倍近いことから、汚染の可能性を見積もっても それぞれ0.2、0.01 pptv 以下となり、影響があったとしても測定誤差範囲に十 分収まる程度である。ただし、6-3-5に記したように、ステンレス内壁の酸化 によりハロゲン化メチルの発生が促進されているとすれば、成層圏で試料採取 の際に同時に取り込まれる ppm レベルのオゾンの影響により、塩化メチル、臭 化メチルによる汚染が促進されている可能性もある。成層圏オブン混合比の Maximum は高度約35km 付近であるから、高度20km 以上でハロゲン化メチル類が 高濃度で検出される現象と一致しており、オブン濃度と生成するハロゲン化メ チル濃度との間に相関があれば、高高度で高度とともに濃度増加が見られたこ との説明がつく。この現象が、ステンレス表面のオゾン酸化によるものかどう かを確かめるには、成層圏試料採取用容器を用いたオゾン添加実験や、添加オ ゾン濃度とハロゲン化メチルの発生量との相関を調べる実験などを行う必要が ある。

一方、観測された高度分布が試料採取法や測定法の影響を受けず、実際の大 気中濃度分布を示しているとして、大気循環のダイナミクスや光化学過程から 説明するためには、理論の前提となっている条件を否定するか、特殊な条件を 設定する必要がある。しかし、高度25km以上における臭化メチルの寿命などを 考えると、光吸収断面積や日射のフラックスなどの誤差を最大限に見積もって も観測された高濃度を説明するのは困難であった。しかも、高高度側での混合 比の増加を説明するには対流圏起源の大気の成層圏上部からの流入を考える必 要があり、光分解係数の大きな成層圏中部から上部を通る輸送経路では、輸送 の間に光分解を受けるため、輸送速度がかなり大きくなければならない。一般 に、移流(平均子午面循環による流れ)の速度は、冬の成層圏で〜1m/s と言わ れており、低緯度域から極域まで輸送されるのに一年以上かかることになる。

一方、成層圏における寿命は、J値(JPL 1997)から逆算したところ、奥化 メチルと光吸収断面積が同程度の四塩化炭素で一週間以下、塩化メチルより若 干光分解しやすい CFC-12で半年以下であり、成層圏への大気の流入が低緯度域 でのみ起きていると考えると、高濃度を保ったまま高緯度域に輸送されると考 えるのには無理がある。ただし、これらの議論はあくまでも平均的な循環 (mean circulation)に基づいており、イベント的に速い輸送や中・高緯度域 における対流圏大気の成層圏への流入が起きている可能性がは残されている。

近年、気象力学方面からの認識では、赤道域における上昇流と中高緯度にお ける下降流の作り出す大規模な子午面循環だけでなく、より小規模な現象によ る対流圏・成層圏交換が起きている可能性が高いとされる。また、空気塊は断 熱保存量である温位によって動きを限定されるため、平均的には温位面に沿っ て動くと考えられるが、360K前後の温位面は圏界面を横切っていることから、 この領域では、中高緯度下部成層圏と熱帯対流圏との交換が起こりやすくなっ ていると考えられている (Figure 6-14, Holton et al. 1995)。また、赤道 域における積雲対流や中高緯度における tropopause folding、大気重力波の砕 波、ジェット気流などのように、より小規模な対流や波動擾乱による対流圏・ 成層圏大気交換の重要性に注目が集まりつつある。

これらから判断すると、中部成層圏において観測されたハロゲン化メチルの 高い混合比は、対流圏大気の成層圏への流入は低緯度で起きるという従来の大 気循環では説明できないが、中高緯度における非定常的な大気交換過程の存在 を示唆するものかもしれない。試料容器内での生成による影響を否定できてい ない現段階においては明確な解釈を与えることはできないが、中部成層圏にお ける混合比が実際に高いとすれば、新たな大気循環過程を提案するきっかけと なる。容器の問題の解決に向け、さらに試料容器のストアリング実験を進める ことが必要である。

結び.

本研究では、低温濃縮/ガスクロマトグラフ(GC)/質量分析計(MS)による大気中微量ハロカーボン類の大気中濃度の高感度・高精度測定法を開発し、代替フロン類のpptv(10⁻¹²)レベルの大気中バックグラウンド濃度の検出・定量に成功したほか、HFC、HCFC、CFC、ハロン、ハロゲン化メチルなど、オブン層破壊や地球温暖化に影響を及ぼすハロカーボン類14種の同時測定を可能にした。

この測定法を用いて、過去に採取されて保存されているバックグラウンド大 気試料から最近の大気試料までの分析を行い、近年生産・消費が増加している 代替フロンのHFC-134a (CH₂FCF_a)、HCFC-141b (CH₃CC1_aF)、HCFC-142b (CH₄CC1F_a) の対流圏大気中濃度の1998年までの経年変化を世界で初めて明らかにした。 ・HFC-134aとHCFC-141bは、1994年から1997年にかけて、それぞれ年率83%およ び63%と指数関数的な増加を示した。この増加率は生産量の統計値を用いて、 2-BOXモデルにより計算した大気中濃度の増加率と一致した。これらの代替フ ロンが、生産・消費の急成長に伴い、大気中への放出も急増していることが明 らかになった。

・HCFC-142bは、1994年から1997年にかけて、大気中濃度増加率が年率20%であ り、近年、増加傾向が鈍化していることが明らかになった。観測された大気中 濃度と計算値との間に、2倍以上もの違いがあったことから、計算に使用した 数値のうち、Midgleyらにより推定された放出量に問題があることが考えられ た。硬質断熱材の発泡用途に用いられたHCFC-142b は、Midgleyらによる見積 もりよりも短期間のうちに大気中に放出されていると考えられる。

また、北極圏、日本、南極において採取された成層圏大気試料を分析し、成 層圏におけるハロカーボン類の高度分布を明らかにした。これらの観測により、 衛星観測や気象データの分解能では捉えられない成層圏大気の微細な構造を捉 えることができた。 初夏の三陸上空では、2~3km程度の薄い大気の層が積み重なった微細な構造 が観測され、中部成層圏では鉛直方向の拡散が起こりにくいことが実際に証明 された。

・北極圏キルナの冬期における成層圏極渦内では、ハロカーボン類の混合比は
一様に低かった。これは、冬季の極域における大気の断熱圧縮と、下降流の影響を受けていると考えられた。

・夏の南極昭和基地上空では、大気中ハロカーボン類の混合比の高度変化は小 さかった。これは、夏半球の成層圏における速い大気の輸送と、一ヶ月ほど前 の極渦崩壊に伴う上空大気の混合などの作用によると思われる。

同測定法により、大気中挙動に未解明の点の多いハロゲン化メチル類(塩化 メチル、臭化メチル、ヨウ化メチル)の大気中濃度の測定も行った。また、こ れらの分析上の問題点についても検討した。

・東京、北海道、沖縄、インドネシアで採取された対流圏大気試料を測定し、 得られた大気中濃度より、ハロゲン化メチルは海洋や森林火災などから発生す るが、臭化メチルでは人間活動による放出の寄与も大きいことが示唆された。

・内壁に特殊処理を施さないステンレススチール容器内で保存された試料中で、 ハロゲン化メチル類濃度の上昇が見られることから、ステンレススチール容器 内でのハロゲン化メチル類濃度の安定性について、シミュレーション実験を 行って検討した。その結果、この現象はハロゲン化メチルの容器内壁への吸 着・脱着過程によるものではなく、ステンレススチールから何らかの形でハロ ゲン化メチルが発生していると考えられた。この問題に関しては、さらにその 機構の解明を行う必要がある。

・成層圏大気試料を分析し、成層圏におけるハロゲン化メチルの高度分布を明 らかにした。高度25km以上の中部成層圏において観測されたハロゲン化メチルの混合比は、対流圏大気の成層圏への流入の大部分は低緯度で起きるという従 来の大気循環では説明できないが、中高緯度における非定常的な大気交換過程 の存在を示唆している可能性もある。

参考文献

- AFEAS, "Production, Sales and Atmospheric Release of Fluorocarbons through 1995", (1997).
- AFEAS, "Production, Sales and Atmospheric Release of Fluorocarbons through 1996", (1998).
- 3 Andreae M.O., G. Helas, S. Manø, G. Schebeske, D. Scharffe, E. Atlas, A. de Kock, W. H. Pollock, R. Koppmann, and J. Rudolph, Methyl halide emissions from savanna fires in southern Africa, *EOS Transactions AGU*, 74 (43), 117 (1993)
- 4 Andreae M.O., E. Atlas, G. W. Harris, G. Helas, A. de Kock, R. Koppmann, W. Maenhaut, S. Manø, W. H. Pollock, J. Rudolph, D. Scharffe, G. Schebeske, and M. Welling, Methyl halide emissions from savanna fires in southern Africa, J. Geophys. Res., 101, 23603 (1996)
- Andrews D. G., J. R. Holton, and C. B. Leovy, "Middle Atmosphere Dynamics", Academic Press, New York (1987)
- Aoki S., T. Nakazawa, H. Honda, N. Yajima, T. Machida, S. Sugawara, K. Kawamura, and S. Yoshimura, CO₂, CH₄, and N₂O Concentrations and δ¹³C in CO₂ and CH₄ in the Scandinavia and Japan, Proceedings of 21st ISTS, Omiya, (1998)
- Atlas, E., W. Pollock, J. Greenberg, L. Heidt, and A. M. Thompson, Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean During Saga 3, *J. Geophys. Res.*, 98, 16933 (1993)
- Bauer R., A. Engel, H. Franken, E. Klein, G. Kulessa, C. Schiller, U. Schmidt, R. Borchers, and J. Lee, Monitoring the vertical structure of the Arctic polar vortex over northern Scandinavia during EASOE: Regular N₂O profile observations, *Geophys. Res. Lett.*, 21, 1211 (1994)
- Brasseur, G. and S. Solomon, "Aeronomy of the Middle Atmosphere", Reidel, Dordrecht, Netherlands (1984)
- 10 陳立民、超微量フロン・ハロンの大気中分布と変動および挙動に関する研究、東京大学大学院理学系研究科 学位論文 (1995)
- Cicerone R. J., L. E. Heidt, and W. H. Pollock, Measurements of atmospheric methyl bromide and bromoform, J. Geophys. Res., 93, 3745 (1988)
- Colman J. J., D. R. Blake, and F. S. Rowland, Atmospheric residence time of CH₃Br estimated from the Junge spatial variability relation, *Science*, 281, 392 (1998)
- Crutzen P. J., L. E. Heidt, J. P. Krasnec, W. H. Pollock, and W. Seiler, Biomass burning as a source of atmospheric gases CO, H₂, N₂O, NO, CH₁Cl and COS, *Nature*, 282, 253 (1979)

- Elkins J. W., T. M. Thompson, T. H. Swanson, J. H. Butler, B. D. Hall, S. O. Cummings, D. A. Fisher, and A. G. Raffo, Decrease in the grouth rates of atmospheric chlorofluorocarbons 11 and 12, *Nature*, 364, 780 (1993)
- England M. H., Using chlorofluorocarbons to asses ocean climate models, *Geophys. Res. Lett.*, 22, 3051 (1995)
- Fabian P., R. Borchers, S. A. Penkett, and N. J. D. Prosser, Halocarbons in the stratosphere, *Nature*, 294, 733 (1981)
- 17 Fabian P., R. Borchers, and K. Kourtidis, Bromine-containing source gases during EASOE, *Geophys. Res. Lett.*, 21, 1219 (1994)
- Fabian P., R. Borchers, R. Leifer, B. H. Subbaraya, S. Lal, and M.J. Boy, Global stratospheric distribution of halocarbons, *Atmos. Environ.*, 30, 1787 (1996)
- Fenn, W. A., S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothman, E. P. Shettle, and F. E. Volz, "Handbook of Geophysics and the Space Environment", Air Force Geophysics Laboratory, Bedford (1985)
- Foulger B. E. and P. G. Simmonds, Drier for field use in the determination of trace atmospheric gases, *Anal. Chem.*, 51, 1089 (1979)
- 21.藤原正智、「中層大気研究の歴史と成層圏・対流圏交換問題」、SOWER Meeting 資料 (1998)
- Goldan P. D., W. C. Kuster, D. L. Albitton, and A. L. Schmeltekopf, Stratospheric CFCl₃, CF₂Cl₂, and N₂O height profile measurements at several latitudes, *J. Geophys. Res.*, 85, 413 (1980)
- 23 Grimsrud E. P. and R. A. Rasmussen, The analysis of chlorofluorocarbons in the troposphere by gas chromatography-mass spectrometry, *Atmos. Environ.*, 9, 1010 (1975)
- 24 Groszko W. and R. M. Moore, Ocean-atmosphere exchange of methyl bromide NW Atlantic and Pacific Ocean studies, J. Geophys. Res., 103, 16737 (1998)
- 25. 廣田勇、「グローバル気象学」、東京大学出版会(1992)
- 26.本田秀之、皆川博幸、伊藤富造、「クライオサンプリング法による成層圏 大気試料採取装置の開発」、宇宙科学研究所報告、特集第20号 (1987)
- Honda H., S. Aoki, T. Nakazawa, S. Morimoto, and N. Yajima, Cryogenic air sampling system for measurements of the concentrations of stratospheric trace gases adn their isotopic ratios over Antarctica, J. Geomag Geoelectr., 48, 1145 (1996)
- Hyver K. J. and Sandra P., 細川秀治訳、「キャピラリ ガスクロマトグラ フィー」第3版横河アナリティカルシステムズ株式会社 (1994)
- IPCC, "Climate Change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios", Cambridge Univ., (1995)
- 30 IPCC, "Climate change 1995 : the science of climate change ", Cambridge Univ.,

(1996)

- 31. 伊藤富造、矢島信之、本田秀之、巻出義紘、中澤高清、酒井均、「クライ オ・サンプリングで地球大気を探る」、伊藤富造先生退官記念会(1991)
- JPL, "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling", 12, Jet Propulsion Laboratory (NASA) (1997)
- 33 Kanzawa, H., C. Camy-Peyret, Y. Kondo, and N. Papineau, "Implementation and first scientific results of the ILAS validation balloon campaign at Kiruna-ESRANGE in February - March 1997", Proceedings of 13th ESA SP-397, öland, Sweden, (1997)
- 34. 河本望、塩谷雅人、南半球冬季局渦内における下降速度の見積もり、日本 気象学会1998年春季大会講演予稿集、21 (1998)
- 35 Kelly T.J. and M. W. Holdren, Applicability of canisters for sample storage in the determination of hazardous air pollutants, *Atmos. Environ.*, 29, 2595 (1995)
- Khalil M. A. K., R.A.Rasmussen, and R. Gunawardena, J. Geophys. Res., 98, 2887 (1993)
- 37. 国立極地研究所編、「南極の科学9資料編」、古今書院、(1998)
- Koppman R., F. J. Johnsen, C. Plass-Dülmer, and J. Rudolph, Distribution of metylchloride, dichloromethane, trichloroethene and tetrachloroethene over the north and south atlantic, *J. Geophys. Res.*, 98, 20517 (1993)
- Kourtidis K., R. Borchers, and P. Fabian, Vertical distribution of methyl bromide in the stratosphere, *Geophys. Res. Lett.*, 25, 505 (1998)
- Lal S., R. Borchers, P. Fabian, P. K. Patra, and B. H. Subbaraya, Vertical distribution of methyl bromide over Hyderabad, India, *Tellus*, 46B, 373 (1994)
- Lee-Taylor J. M., Doney S. C., Brasseur G. P., A global three-dimensional atmosphere-ocean model of methyl bromide distributions, *J. Geophys. Res.*, 103, 16039 (1998)
- Lobert J. M., J. H. Butler, S. A. Montzka, L. S. Geller, R. C. Myers, and J. W. Elkins, A net sink for atmospheric CH₃Br in the East Pacific Ocean, *Science*, 267, 1002 (1995)
- Lobert J. M., S. A. Yvon-Lewis, J. H. Butler, S. A. Montzka, and R. C. Myers, Undersaturation of CH₃Br in the Southern Ocean, *Geophys. Res. Lett.*, 24, 171 (1997)
- Lovelock J. E., Atmospheric fluorine compounds as indicators of air movements, Nature, 230, 379 (1971)
- Lovelock J. E., Halogenated Hydrocarbons in and over the Atlantic, *Nature*, 241, 194 (1973)
- 46. Lovelock J. E., Natural halocarbons in the air and in the sea, Nature, 256, 193

(1975)

- Makide Y., A. Yokohata, Y. Kubo, and T. Tominaga, Atmospheric Concentrations of Halocarbons in Japan in 1979-1986, Bull. Chem. Soc. Jpn, 60, 571 (1987)
- 48. 巻出義紘、金井豊、富永健、大気中ハロカーボン類の超微量分析、日本化 学会誌、351 (1981)
- 49. 巻出義紘、陳立民、富永健、中沢高清、本田秀之、平成3年度"大気球シンポジウム" (1991)
- 50. 巻出義紘、豊田栄、須藤重人、白井知子、三好猛雄、谷本浩志、富永健、 本田秀之、平成7年度"大気球シンポジウム" (1995)
- Mahlman J. D., Dynamics of transport processes in the upper troposphere, *Science*, 276, 1079 (1997)
- Midgley P. M. and D. A. Fisher, The production and release to the atmosphere of chlorodifluoromethane (HCFC-22), *Atmos. Environ.*, 27A, 2215 (1993)
- Midgley P. M. and A. McCulloch, Estimated national release to the atmosphere of chlorodifluoromethane (HCFC-22) during 1990, *Atmos. Environ.*, 31, 809 (1997)
- Molina M. J. and F. S. Rowland, Stratospheric sink for chlorofluoro-methanes: chlorine atom-catalyseddestruction of ozone, *Nature*, 249, 810 (1974)
- Montzka S. A., R. C. Myers, J. H. Butler, J. W. Elkins and S. O. Cummings, Global tropospheric distribution and calibration scale of HCFC-22, *Geophys. Res. Lett.*, 20, 703 (1993)
- Montzka S. A., R. C. Myers, J. H. Butler and J. W. Elkins, Early trends in the global tropospheric abundance of hydrochlorofluorocarbon-141b and 142b, *Geophys. Res. Lett.*, 21, 2483 (1994)
- Montzka S. A., J. H. Butler, S. Yvon, A. D. Clarke, A. H. Goldstein, J. Lobert, and L. T. Lock, Difficulties associated with measuring atmospheric levels of methyl bromide and other methyl halides, *EOS*, 76, 160 (1995)
- Montzka S. A., R. C. Myers, J. H. Butler, J. W. Elkins, L. T. Lock, A. D. Clarke, and A. H. Goldstein, Observations of HFC-134a in the remote troposphere, *Geophys. Res. Lett.*, 23, 169 (1996)
- Montzka S. A., J. H. Butler, R. C. Myers, T. M. Thompson, T. H. Swanson, A. D. Clarke, A. H. Goldstein, L. T. Lock, and J. W. Elkins, Decline in the tropospheric abundance of halogen from halocarbons implications for stratospheric ozone depletion, *Science*, 272, 1318 (1996)
- 60. Montzka S. A., private communicaton (1997)
- Moore R. M., W. Groszko, and S. J. Niven, Ocean-atmosphere exchange of methyl chloride: Results from NW Atlantic and Pacific Ocean studies, J. Geophys. Res., 101, 28529 (1996)

- NOAA/CMDL, ftp data archive of NOAA/CMDL (URL: ftp://ftp.cmdl.noaa.gov /noah/hcfcs/hcfc142b/142b_ms.dat), updated on 4/14/1998
- Notholt J., G. Toon, F. Stordal, S. Solberg, N. Schmidbauer, E. Becker, A. Meier, and B. Sen, Seasonal variations of atmospheric trace gases in the high Arctic at 79°N, J. Geophys. Res., 102, 12855 (1997)
- O'Dorherty S. J., P. G. Simmonds, and G. Nickless, Analysis of replacement chlorofluorocarbons using carboxen microtraps for isolation and preconsentration in gas chromatography-mass spectrometry, *J. Chromatogr.*, 657, 123 (1993)
- 65 Oram D. E., C. E. Reeves, S. A. Penkett, and P. J. Fraser, Measurements of HCFC-142b and HCFC-141b in the Cape Grim air archive:1978-1993, *Geophys. Res. Lett.*, 22, 2741 (1995)
- Oram D. E., C. E. Reeves, W. T. Sturges and S. A. Penkett, Recent tropospheric growth rate and distribution of HFC-134a (CF₃CH₂F), *Geophys. Res. Lett.*, 23, 1949 (1996)
- 67 小倉義光、「一般気象学」、東京大学出版会(1985)
- 68. Palmer T. Y., Combustion sources of atmospheric chlorine, Nature, 263, 44 (1976)
- Penkett S. A., R. G. Derwent, P. Fabian, R. Borchers, and U. Schmidt, Methyl chloride in the stratosphere, *Nature*, 283, 58 (1980)
- 70 Penkett S. A., B. M. R. Jones, M. J. Rycroft, and D. A. Simmons, An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, *Nature*, **318**, 550 (1985)
- Plumb R. A., A "tropical pipe" model of stratospheric transport, J. Geophys. Res., 101, 3957
- Pollock W. H., L. E. Heidt, R. A. Lueb, J. F. Vedder, M. J. Mills, and S. Solomon, On the age of stratospheric air and Ozone Depletion Potentials in polar regions, *J. Geophys. Res.*, 97, 12993 (1992)
- Rasmussen R. A., L. E. Rasmussen, M. A. K. Khalil, and R. W. Dalluge, Concentration distribution of methyl chloride in the atmosphere, *J. Geophys. Res.*, 85, 7350 (1980)
- Rasmussen R. A. and M. A. K. Khalil, Interlaboratory comparison, preparation, and stability of dichlorofluoromethane samples and standards, *Anal. Chem.*, 55, 1834 (1983)
- Robbins D. E., Photodissociation of methyl chloride and methyl bromide, *Geophys. Res. Lett.*, 3, 213 (1976)
- Schauffler S. M., W. H. Pollock, E. L. Atlas, L. E. Heidt, and J. S. Daniel, Atmospheric distributions of HCFC141b, *Geophys. Res. Lett.*, 22, 819 (1995)
- 77 Schmidt U., R. Bauer, A. Kheldim, E. Klein, G. Kulessa, and C. Schiller, Profile

observations of long-lived trace gases in the arctic vortex, Geophys. Res. Lett., 18, 767 (1991)

- 78 Schmidt U., R. Bauer, A. Engel, R. Borchers and J. Lee, The variation of available chlorine, Cl_y, in the Arctic polar vortex during EASOE, *Geophys. Res. Lett.*, 21, 1215 (1994)
- Schoeberl M.R. and P. A. Newman, A multiple-level trajectory analysis of vortex filaments, J. Geophys. Res., 100, 25801 (1995)
- 80. 白井知子、大気中微量低沸点ハロカーボン類のGC/MSによる測定法、 修士論文、東京大学理学系研究科 (1996)
- Shirai T. and Y. Makide, Rapidly increasing concentrations of CFC alternatives (HFC-134a, HCFC-141b, and HCFC-142b) in the atmosphere as observed in Hokkaido and Antarctica, *Chemistry Letters*, 357 (1998)
- 82 Simmonds P. G., S. J. O'Dorherty, G. Nickless, and G. A. Sturrock, Automated gas chromatograph/mass spectrometer for routine atmospheric field measurements of the CFC replacement compounds, the hydrofluorocarbons and hydrochlorofluorocarbons, *Anal. Chem.*, 67, 717 (1995)
- 83. Simmonds P. G., S. J. O'Dorherty, J. Huang, R. Prinn, R. G. Derwent, D. Ryall, G. Nickless, and D. Cunnold, Calculated trends and the atmospheric abundance of 1,1,1,2-tetrafluoroethane, 1,1-dichloro-1-fluoroethane, and 1-chloro-1,1-difluoroethane using automated in-situ gas chromatography-mass spectrometry measurements recorded at Mace Head, Ireland, from October 1994 to March 1997, J. Geophys. Res., 103, 16029 (1998)
- Singh H. B., L. J. Salas, H. Shigeishi, and A.Crawford, Urban-nonurban relationships of halocarbons, SF₆, N₂O, and other atmospheric trace constituents, *Atmos. Environ.*, 11, 819 (1977)
- Singh H. B., L. J. Salas, H. Shigeishi, and A. H. Smith, Fate of halogenated compounds in the atmosphere, *Publ. EPA-600/3-78-017*, EPA, N. C., (1978)
- Singh H. B., L. J. Salas, and R. E. Stiles, Distribution of selected gaseous organic mutagens and suspect carcinogens in ambient air, *Environ. Sci. Technol.*, 16, 872 (1982)
- Singh H. B., L. J. Salas, and R. E. Stiles, Methyl halides in and over the Eastern Pacific (40°N-32°S), J. Geophys. Res., 88, 3684 (1983)
- Singh H. B., and M. Kanakidou, An investigation of the atmospheric sources and sinks of methyl bromide, *Geophys. Res. Lett.*, 20, 133 (1993)
- Solomon S., R. R. Garcia, and A. R. Ravishankara, On the role of iodine in ozone depletion, J. Geophys. Res., 99, 20491 (1994)
- 90 Sturrock G. A., P. G. Simmonds, G. Nickless, and D. Zwiep, Analysis of

chlorofluorocarbon replacement compounds by capillary gas chromatography, J. Chromatogr., 648, 423

- 91. 須藤 重人、大気中の奥化メチルおよび塩化メチル、ヨウ化メチルの濃度 測定に関する研究、東京大学大学院理学系研究科 学位論文(1996)
- 92. ステンレス協会編、「ステンレスの初歩」第5版 (1997)
- 93. 高市 侃、代替フロンの開発はいま、化学 51, 362 (1996)
- 94. 富永 健、巻出 義紘、F. S. Rowland、「フロン 地球を蝕む物質」,東京 大学出版会 (1990)
- 95. 豊田 栄、大気中のハロカーボン濃度自動測定法に関する研究、東京大学 大学院理学系研究科 学位論文(1996)
- Trenberth K. E. and C. J. Guillemot, The Total Mass of the Atmosphere, J. Geophys. Res., 99, 23079 (1994)
- 97. Wayne R. P., Chemistry of Atmospheres 2nd edition, Clarendon Press, Oxford (1991)
- 98. WMO, Scientific Assessment of Ozone Depletion: 1994., Report No. 37 (1995)
- 99. Woodbridge E. L., J. W. Elkins, D. W. Fahey, L. E. Heidt, S. Solomon, T. J. Baring, T. M. Gilpin, W. H. Pollock, S. M. Schauffler, E. L. atlas, M. Leowenstein, J. R. Podolske, C. R. Webster, R. D. May, J. M. Gilligan, S. A. Montzka, K. A. Boering, and R. J. Salawitch, Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE2, *J. Geophys. Res.*, 100, 3057 (1995)
- 100.横畑彰人、大気中のハロカーボン類およびメタンの精密分析と挙動に関す る研究、東京大学大学院理学系研究科 学位論文(1985)
- 101. Yokouchi Y., H. Mukai, H. Yamamoto, A. Otsuki, C. Saitoh, and Y. Nojiri, Distribution of methyl iodide, bromoform, and dibromomethane over the ocean (east and southeast Asian seas and the western Pacific), J. Geophys. Res., 102, 8805 (1997)

謝辞

本研究を行うにあたり、丁寧にご指導いただきました巻出義紘教授(東大アイソ トープ総合センター)に心から感謝致します。

また、多岐に渡り、ご助言、ご協力を頂いた富永健名誉教授(東大理学系研究科)、 山田康洋助教授(東京理科大学)、久保謙哉助手(東大理学系研究科)、森岡正名博 士(東大アイソトープ総合センター)に謹んで感謝致します。

大気中微量成分測定の基礎を教えて下さり、在学中はもとより中国へ帰国されてか らも助言、励ましを頂いた陳立民教授(復旦大学物理二系)に厚く感謝致します。

実験上のあらゆることに快く相談に乗って下さった須藤重人博士(現科学技術振興 財団)、高橋嘉夫博士(現広島大助手)、豊田栄博士(現科学技術振興財団)、同期 として励まし合うことのできた尾崎卓郎氏、大気試料採取などに協力して頂いた三好 猛雄氏、平林幹啓氏をはじめとする巻出研究室の諸氏にお礼申し上げます。

南半球の大気試料採取にご協力いただいた南極観測隊気水圏班の方々に感謝いたします。

大気球による成層圏大気試料採取にあたり、ご協力を頂きました矢島信之教授(文 部省宇宙科学研究所)および本田秀之氏(同)、中沢高清教授(東北大学理学部)、 青木周司助教授(同)、橋田元博士(極地研)、森本真司博士(同)、山内恭博士 (同)、岡野章一博士(同)、神沢博研究室長(環境研)、町田敏暢博士(同)、菅 原敏博士(宮城教育大)、宇宙科学研究所気球班の皆様並びに三陸大気球観測所の皆 様に厚くお礼申し上げます。

大規模な大気観測プロジェクトを見学させて頂いたF. S. Rowland教授、D. R. Blake教授(カリフォルニア大学アーバイン校)とスタッフの方々に深く感謝いたします。

北極上空の渦位図を提供して下さった中根英昭上席研究官(環境研)、バックトラ ジェクトリー解析データベースを利用させて頂いた藤沼安康実研究管理官(同)に深 く感謝いたします。

インドネシア試料を採取して頂いた鶴田治雄研究官(農環技研)に感謝いたします。 地球物理学の観点からのご意見を頂いた、藤原正智氏(東京大学理学部)、内藤陽 子氏(京都大学理学部)に感謝いたします。

