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Chapter 1

Introduction

1.1 Importance of scheduling

Scheduling is crucial in various industries such as manufacturing and service
sectors. Companies have to operate their production systems efficiently and
produce goods or services by due date to satisfy the customers.

Given tasks to carry out and resources available to process the tasks, schedul-
ing problems are to determine the allocation of resources to tasks over time (see
e.g. [1–3]). A number of problems in real world, for example improvement of
production lines, gate assignments at an airport, etc., are scheduling problems.
Since theory of scheduling were historically developed in problems arising from
manufacturing, tasks and resources are usually called jobs and machines, re-
spectively.

The concept of scheduling is not new in human history, but the theory of
scheduling is comparably new. Some of the first publications in the research
literature were done by Johnson [4], Jackson [5] and Smith [6] in the mid-1950s.
Since then much research on a variety of scheduling problems have been done
(see e.g. [2, 3]).

1.2 Classification of scheduling problems

1.2.1 Job shops, flow shops, and parallel-machine models

Scheduling problems contain n jobs and m machines available to process the
jobs. The environment is called job shops. The thesis deals with some flow
shops and parallel-machine models, which are derived as special cases of job
shops. Flow shops and parallel-machine models are very prevalent in many
manufacturing industries.

We consider deterministic models, where the job data, such as processing
times and release dates, are known in advance.

In job shops, each job follows a predetermined route. A distinction is made
between job shops in which there are no duplicate machines and in which there
are duplicate machines.

In flow shops, each job follows the same route. Flow shops are a special case
of job shops without duplicate machines, where there is the only route for all
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jobs (see Figs. 1.1 and 1.3).

job → machine 1 → machine 2 → · · · → machine m → (completion)

Figure 1.1: The flow of jobs in flow shops

In parallel-machine models, each job has to be processed on any one of the
machines. Parallel-machine models are a special case of job shops with identical
(duplicate) machines, where each job require a single operation (see Figs. 1.2
and 1.3).

machine 1
++

job //
44

$$

machine 2 // (completion)

...

machine m

77

Figure 1.2: The flow of jobs in parallel-machine models

Job shops with
duplicate machines

no duplicate machines
��

one-stage

%%

Job shops

identical flow pattern
��

Flow shops

one-stage
��

Parallel-machine models

one machine

tt
Single-machine models

Figure 1.3: Relationships among job shops

1.2.2 Notations

We use the notation for scheduling problems suggested by Graham et al. [7]. A
triplet α|β|γ describes a problem, where α denotes the machine environment, β
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provides details of constraints, and γ describes the objective to be minimized.
α, β and γ considered in the thesis are as follows.

The machine environments in the α field are:

• Identical machines in parallel (Pm). There are m parallel identical
machines. Each job comes with one processing time and is processed on
any one of the m machines.

• Flow shop (Fm). There are m different machines in series. Each job
consists of m operations, each of which requires a different machine. All
jobs have to be processed on the first machine, then on the second machine,
and so on.

The constraints in the β field are:

• Release dates (rj). rj is the earliest time at which job j can be processed
(see e.g. [2]). Without rj in the field, all jobs are available at time zero.

• Starting times (si). si is the earliest time at which machine i can start
processing (see e.g. [8, 9]). Without si in the field, all machines are avail-
able at time zero.

The following constraints may appear only in flow shops.

• Permutation schedules (prmu). The same sequence of jobs is main-
tained between machines throughout (see e.g. [1, 2]).

• No-wait (no-wait). A job must be processed without waiting between
two successive machines (see e.g. [2, 10, 11]). Any no-wait schedule is a
permutation schedule.

• No-idle (no-idle). A machine must process a job without idling, i.e.,
without waiting for the next job (see e.g. [12, 13])

• Blocking (blocking). A completed job at a machine has to remain on the
machine until the downstream machine is available (see e.g. [2,10]). Here
suppose the First In First Out discipline, then any blocking schedule is a
permutation schedule.

• Busy (busy). A machine completing a job has to have the job until the
next job come (see e.g. [14]).

γ is the makespan (Cmax) or the total completion time (
∑
Cj), where Cj

denotes the completion time of job j. However, the case where γ itself is specified
means that the objective is arbitrary.

1.3 Summary of previous research on scheduling
problems

We review previous research on flow shops and a two-identical-parallel-machine
problem, which we examine in the thesis.
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1.3.1 Flow shops

Flow shop scheduling problems have been studied for several decades since John-
son’s paper [4] on the two-machine flow shop problem. They have many applica-
tions in production lines such as pharmaceutical and agro-food industries. Since
the late 1950s optimization procedures were applied to the problems. Linear
programming formulations [15,16], dynamic programming [17], and branch and
bound methods [18] were used. Meanwhile, heuristic methods were developed
due to computational difficulty [19].

In the about 1970s many theoretical research on flow shop problems has been
done ad hoc and some solvable cases were found. Burns and Rooker [20, 21],
Szwarc [22] and Achugbue and Chin [23] considered only three-machine flow
shops (F3). Though Nabeshima [24,25] and Gupta [26] studied m-machine flow
shops (Fm), the research needed complicated and laborious computations. On
the other hand, it was revealed that most of the problems are NP-hard [27–30].
Most probably no fast (i.e., polynomial-time) optimal algorithm exists. Many
heuristic approaches have been developed since then (see e.g. [31]).

As stated above a variety of methods were developed for solving flow shops.
They are grouped into three classes [32]:

• Efficient optimal methods: These find an optimal schedule in polyno-
mial time, i.e., its running time is bounded by a polynomial in the input
size. The class of problems which these methods can be applied to is
relatively narrow.

• Enumerative optimal methods: These also find an optimal schedule,
but typically involve a partial enumeration of the set of all possible sched-
ules, so its running time is not bounded by polynomial time. A lot of
mathematical programming formulations (linear programming, dynamic
programming, etc.), and branch and bound methods are included in this
class.

• Heuristic methods: These approximate an optimal solution with some
degree of closeness in polynomial time.

Nowadays heuristics methods are widely studied from practical point of view
[33,34].

1.3.2 A two-identical-parallel-machine problem

The two-identical-parallel-machine problem to minimize the makespan, P2||Cmax,
is equivalent to the number partitioning problem (NPP), which is to find a set
S′ ⊂ {1, ..., n} that minimize the discrepancy

∆ =

∣∣∣∣∣∣
∑
i∈S′

pi −
∑

i∈{1,...,n}\S′
pi

∣∣∣∣∣∣
for a given positive integer pi for i ∈ {1, ..., n}. The problem has important
applications such as VLSI chip production [35], choosing fair teams [36], etc. It
has been studied from different perspectives, from its solution with heuristics
or exact methods to statistical analyses.
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This decision version is known to be NP-complete [37], so the optimal prob-
lem is NP-hard.

A variety of heuristic algorithms have been developed. A greedy algorithm,
which sorts the given integers in decreasing order and assign each number to the
subset with the smaller sum, is simple and intuitive. The set differencing method
introduced by Karmarkar and Karp [38] is said to be the best polynomial-time
heuristics. Metaheuristics such as simulated annealing [39], genetic algorithm
[40,41], tabu search [42], etc. were applied to the problem.

There are several optimal algorithms that give exact solutions in exponential
time in n. The complete greedy algorithm and the complete Karmarkar-Karp
algorithm, which produces the optimal solution in O(2n), were developed by
Korf [43]. A better exponential time algorithm which takes O(n2n/2) time was
presented by Horowitz and Sahni [44]. A dynamic programming [28] solves the
problem in pseudo-polynomial time. This means that it runs in time polynomial
in the numeric value of the input (e.g., the sum of all given integers).

On the other hand, the solution structure has been studied based on the
notion and tools from statistical mechanics [45–49].

1.4 Max-plus algebra

This section reviews known results in max-plus algebra.

1.4.1 Definitions

We use the following notation:

0l = −∞,
1l = 0,

and
R̄ = R ∪ 0l .

For elements a, b ∈ R̄, we define the operations ⊕ and � by

a⊕ b = max[a, b]

and
a�b = a+ b.

Note that by definition for a ∈ R̄

a⊕ 0l = 0l ⊕ a = a

and
a�0l = 0l�a = 0l .

The first operator,⊕, is idempotent, commutative, associative and has a neutral
element 0l . The second operator,�, is commutative, associative, distributive on
⊕ and has a neutral element 1l.

The set R̄ with the operations ⊕ and � is called max-plus algebra or also
tropical algebra.
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Every element, except 0l , is invertible: the inverse of x is denoted by x−1 or 1l
x .

Note that in this thesis the two notations X
Y and X/Y have different meanings

and imply the quotient in max-plus algebra and the one in the conventional
algebra respectively. For example, 1

2 = 1− 2 = −1 and 1/2 = 0.5.
Powers can be introduced as

Aα =

{
αA, A, α ∈ R;

0l , A = 0l , α > 0,

where αA is the product of α and A in the conventional algebra. For α > 0 we
have

A < (≤)B ⇔ Aα < (≤)Bα

in max-plus algebra.

Definition 1.4.1. A semiring is a set R together with two binary operations
⊕R and �R such that

• ⊕R is associative, commutative, and has zero element 0lR;

• �R is associative, distributive over ⊕R, and has unit element 1lR;

• 0lR is absorbing for �R, that is, for a ∈ R, a�R 0lR = 0lR �R a = 0lR.

A commutative semiring is one whose multiplication is commutative. An idem-
potent semiring is one whose addition is idempotent, that is, for a ∈ R, a⊕Ra =
a.

Max-plus algebra is an idempotent and commutative semiring.

Lemma 1.4.2. Idempotency of ⊕ in max-plus algebra implies that every ele-
ment except for 0l does not have an additive inverse.

Proof. Suppose that a 6= 0l had an additive inverse b. Then we would have

a⊕ b = 0l .

Adding a to both sides from the left yields

a⊕ (a⊕ b) = a⊕ 0l

= a.

By associativity and idempotency of ⊕ we get

a = a⊕ (a⊕ b) = (a⊕ a)⊕ b = a⊕ b = 0l ,

which is a contradiction since a 6= 0l.

1.4.2 Link with nonnegative numbers in the conventional
algebra

Consider the equality
z = a�(b⊕ c)�d−1.
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Since
x⊕ y = max[x, y] = lim

ε→+0
ε log

(
ex/ε + ey/ε

)
and

x�y = x+ y = ε log
(
ex/εey/ε

)
,

the equality can be approximated by

ez/ε = ea/ε(eb/ε + ec/ε)e−d/ε.

By the exponential transformation max-plus algebra can be mapped to a
structure consisting of exponentials with the conventional addition and multi-
plication. This transformation maps 0l to 0 and 1l to 1. We can transform some
results from the conventional algebra to max-plus algebra. Note that there does
not exist an equivalent of the minus operator in max-plus algebra.

The relationship in the following table exists.

max-plus algebra the conventional algebra
(nonnegative, without subtraction)

Addition ⊕(max) +
Multiplication �(+) ·

Table 1.1: The relationship between max-plus algebra and the conventional
algebra

1.4.3 Matrices and vectors

Many features of linear algebra, such as eigenvalues, eigenvectors, the Cayley-
Hamilton theorem and so on, were reproduced in max-plus algebra in Cuning-
hame-Green [50,51], Straubing [52], Olsder et al. [53], Elsner and van den Driess-
che [54], Butkovič and Murfitt [55], Burkard and Butkovič [56,57], and Binding
and Volkmer [58]. We present only definitions here, since the features are not
used in this thesis.

The two operators ⊕ and � are extended to m × n matrices of elements of
R̄. The element of a matrix A ∈ R̄m×n in row i and column j is denoted by
(A)ij . The sum of matrices A,B ∈ R̄m×n is defined as

(A⊕B)ij = (A)ij ⊕ (B)ij

for all i, j. The product of A ∈ R̄m×l and B ∈ R̄l×n is defined as

(A�B)ij =

l⊕
k=1

(A)ik�(B)kj

for all i, j.
The standard orders, ≤ and ≥, of real numbers is also extended to matrices

(including vectors) componentwise, i.e., if A and B are of the same size then
A ≤ (≥)B means that (A)ij ≤ (≥)(B)ij for all i, j.
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Example 1.4.3. (
a b
c d

)
⊕
(
e f
g h

)
=

(
a⊕ e b⊕ f
c⊕ g d⊕ h

)
,

(
a b
c d

)
�

(
x
y

)
=

(
a�x⊕ b�y
c�x⊕ d�y

)
.

1.4.4 Polynomials

Consider a max-plus algebraic analogue of polynomials, which we call tropical
polynomials, or maxpolynomials. For tropical polynomials we use the notations
by Carlsson and Kalǐsnik [59].

Definitions

Definition 1.4.4. A tropical polynomial expression is a finite linear combination
of tropical monomial expressions:

p (x1, . . . , xN ) = a1�x
i11
1
� · · · �xi

1
N

N ⊕ · · · ⊕ am�x
im1
1
� · · · �xi

m
N

N ,

where a1, . . . , am are real numbers and iqp for p ∈ {1, . . . , N} and q ∈ {1, . . . ,m}
is an integer.

Definition 1.4.5. Tropical polynomials are the semiring of equivalence classes
of tropical polynomial expressions with respect to functional equivalence. In the
case of N variables we denote it by Trop[x1, . . . , xN ].

Example 1.4.6. Consider the two tropical polynomial expressions

x2
1 ⊕ x2

2 ⊕ x2
3 and x2

1 ⊕ x2
2 ⊕ x2

3 ⊕ x1�x2 ⊕ x1�x3 ⊕ x2�x3.

The two expressions are functionally equivalent, that is,

x2
1 ⊕ x2

2 ⊕ x2
3 = x2

1 ⊕ x2
2 ⊕ x2

3 ⊕ x1�x2 ⊕ x1�x3 ⊕ x2�x3

for all (x1, x2, x3) ∈ R̄3, since x1�x2 ≤ x2
1 ⊕ x2

2, x1�x3 ≤ x2
1 ⊕ x2

3 and x2�x3 ≤
x2

2⊕ x2
3. Therefore, the two expressions belong to the same tropical polynomial

(the same equivalence class).

Definition 1.4.7. A tropical polynomial p ∈ Trop
[
x

(1)
1 , ..., x

(1)
n , . . . , x

(r)
1 , ..., x

(r)
n

]
is r-symmetric if

p
(
x

(1)
1 , ..., x(1)

n , . . . , x
(r)
1 , ..., x(r)

n

)
= p

(
x

(1)
π(1), ..., x

(1)
π(n), . . . , x

(r)
π(1), ..., x

(r)
π(n)

)
for every permutation π ∈ Sn.

We use the definition especially in Appendix A.

Example 1.4.8. Let n = 3 and r = 2. Let us denote x(1) and x(2) by x and y,
respectively. The tropical polynomial

x2
1
�y2 ⊕ x2

1
�y3 ⊕ x2

2
�y1 ⊕ x2

2
�y3 ⊕ x2

3
�y1 ⊕ x2

3
�y2

is 2-symmetric.
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Polynomial equations

Cuninghame-Green [60] studied general equations between two univariate trop-
ical polynomials and presented an algorithm to determine the solutions.

We will first study the product form⊙
r=1,...,n

(Z ⊕ βr)er ,

where βr ∈ R̄ and er is an integer. The constants βr are called corners.

Theorem 1.4.9. Every univariate tropical polynomial P (Z) ∈ Trop [Z] pos-
sesses a product form P ′(Z) such that P (Z) = P ′(Z) for all Z ∈ R.

Example 1.4.10. Consider the tropical polynomial

1⊕ 2�Z ⊕ Z3.

The product form is
(Z ⊕−1)�(Z ⊕ 1)2.

Theorem 1.4.11. Let S be the solution set to the polynomial equation

P (Z) = Q(Z),

where P (Z) and Q(Z) are univariate tropical polynomials. Then every boundary
of S is a corner of P (Z)⊕Q(Z).

It is geometrically clear that S is the union of a finite number of closed
intervals.

We define tropical algebraic equations as a special case of the tropical poly-
nomial equations above. As a corollary of the theorem, it is revealed that trop-
ical algebraic equations have a rich mathematical structure: the solution set
is described explicitly under certain conditions and there is a relationship be-
tween the solutions and the coefficients of the equation through the elementary
symmetric tropical polynomials [61].

Definition 1.4.12. Let n be a positive integer. A tropical equation in the form{⊕m
k=0A2k�Z

n−2k =
⊕m−1

k=0 A2k+1�Z
n−(2k+1), n = 2m;⊕m

k=0A2k�Z
n−2k =

⊕m
k=0A2k+1�Z

n−(2k+1), n = 2m+ 1,
(1.1)

where A0 ∈ R and Ai ∈ R̄ for i ∈ {1, ..., n}, is called a tropical algebraic equation
of the n-th degree.

The equation is a tropicalization of the algebraic equation of the n-th degree

a0z
n − a1z

n−1 + a2z
n−2 − · · ·+ (−1)n−1an−1z + (−1)nan = 0,

a0z
n + a2z

n−2 · · · = a1z
n−1 + a3z

n−3 + · · · ,

where a0 6= 0.
We suppose hereinafter that A0 = 1l and Ai ∈ R for i ∈ {1, ..., n}.
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Corollary 1.4.13. Let n be an integer greater than 1. The equation (1.1) has
n distinct solutions if the inequalities

An
An−1

< · · · < A2

A1
< A1

hold. The solution set is {
An
An−1

, ...,
A2

A1
, A1

}
.

Definition 1.4.14. Given variables X1, X2, ..., Xn, the elementary symmetric
tropical polynomials Σ1, ...,Σn are defined as follows:

Σ1(X1, X2, ..., Xn) = X1 ⊕X2 ⊕ · · · ⊕Xn,

...

Σi(X1, X2, ..., Xn) =
⊕

1≤j1<j2<···<ji≤n

Xj1
�Xj2

� · · · �Xji ,

...

Σn(X1, X2, ..., Xn) = X1�X2� · · · �Xn.

See Appendix A for an extension of the elementary symmetric tropical poly-
nomials.

Corollary 1.4.15 (Vieta’s Formulas). Let n be an integer greater than 1. Sup-
pose that the inequalities

An
An−1

< · · · < A2

A1
< A1

hold. Let the n distinct solutions to the equation (1.1) be X1, X2, ..., Xn. Then
the following relations hold:

A1 = Σ1(X1, X2, ..., Xn),

...

Ai = Σi(X1, X2, ..., Xn),

...

An = Σn(X1, X2, ..., Xn).

Consider a geometric interpretation of the solutions of tropical algebraic
equations.

Let the left-hand side and right-hand side of the tropical algebraic equa-
tion (1.1) be denoted by Fl(Z) and Fr(Z) respectively. Then the equation is
equivalent to

Fl(Z)

Fr(Z)
= 1l = 0.

The solutions are the Z-intercepts of the graph of the function Fl(Z)
Fr(Z) . If the

assumption of Corollary 1.4.13 holds, then the slopes are 1 or -1 and all the
segments and half-lines cross the Z-axis (see Fig. 1.4).
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Figure 1.4: Graphs of the function Fl(Z)
Fr(Z) .

Example 1.4.16. Consider the tropical algebraic equation

Z4 ⊕ 16�Z2 ⊕ 14 = 9�Z3 ⊕ 17�Z

⇔ max [4Z, 2Z + 16, 14] = max [3Z + 9, Z + 17] (in the conventional algebra).

The assumption of Corollary 1.4.13 is satisfied and the solution set is {−3, 1, 7, 9}.
Let the solutions be X1, X2, X3, X4 in decreasing order. Then

Σ1(X1, X2, X3, X4) = X1 = 9,

Σ2(X1, X2, X3, X4) = X1�X2 = 9�7 = 16,

Σ3(X1, X2, X3, X4) = X1�X2�X3 = 9�7�1 = 17,

Σ4(X1, X2, X3, X4) = X1�X2�X3�X4 = 9�7�1�(−3) = 14.

The solutions are the Z-intercepts of the graph of the function Z4⊕16�Z2⊕14
9�Z3⊕17�Z

(see Fig. 1.5).

-Y = 1l = 0 Z

6Y

0
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@
@
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�
�

−3 1 7 9

Y = Z4⊕16�Z2⊕14
9�Z3⊕17�Z

Figure 1.5: Graph of the function Z4⊕ 16�Z2⊕ 14
9�Z3⊕ 17�Z .

Corollary 1.4.17. Let n be an integer greater than 1. If the inequalities

An
An−1

≤ · · · ≤ A2

A1
≤ A1

hold, then the solution set of the equation (1.1) is{
An
An−1

, ...,
A2

A1
, A1

}
,
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and the following hold:

A1 = Σ1(X1, X2, ..., Xn),

...

Ai = Σi(X1, X2, ..., Xn),

...

An = Σn(X1, X2, ..., Xn),

where X1, ..., Xn are the solutions (not necessarily distinct).

Example 1.4.18. Consider the tropical algebraic equation

Z5 ⊕ 14�Z3 ⊕ 22�Z = 7�Z4 ⊕ 21�Z2�23

⇔ max [5Z, 3Z + 14, Z + 22] = max [4Z + 7, 2Z + 21, 23]

(in the conventional algebra).

The assumption of Corollary 1.4.17 is satisfied and the solution set is {1, 1, 7, 7,
7}(= {1, 7}). Let the solutions be X1, X2, X3, X4, X5 in non-increasing order.
Then

Σ1(X1, X2, X3, X4, X5) = X1 = 7,

Σ2(X1, X2, X3, X4, X5) = X1�X2 = 7�7 = 14,

Σ3(X1, X2, X3, X4, X5) = X1�X2�X3 = 7�7�7 = 21,

Σ4(X1, X2, X3, X4, X5) = X1�X2�X3�X4 = 7�7�7�1 = 22,

Σ5(X1, X2, X3, X4, X5) = X1�X2�X3�X4�X5 = 7�7�7�1�1 = 23.

The solutions are the Z-intercepts of the graph of the function Z5⊕14�Z3⊕22�Z
7�Z4⊕21�Z2⊕23

(see Fig. 1.6). The solution Z = 1 has multiplicity 2 and so the graph touches,
but does not cross the Z-axis. The solution Z = 7 has multiplicity 3 and so the
graph crosses the Z-axis.

In general, if the multiplicity of a solution is odd, then the graph crosses the
Z-axis. If the multiplicity is even, then the graph only touches the Z-axis.

-Y = 1l = 0 Z

6Y

0

�
�
�@
@
@�
�
�
�
�
�

1
7

Y = Z5⊕14�Z3⊕22�Z
7�Z4⊕21�Z2⊕23

Figure 1.6: Graph of the function Z5⊕14�Z3⊕22�Z
7�Z4⊕21�Z2⊕23 .
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1.5 Background and motivation

As stated in Section 1.3, it was revealed that many scheduling problems, includ-
ing flow shops and parallel-machine models, are NP-hard, that is, computation-
ally intractable in the 1970s. Due to their computational complexity, most of
research have recently been devoted to (meta-) heuristics, not exact solutions.
In the marketplace companies tend to make schedules by empirical rule.

On the other hand, max-plus algebra, or tropical algebra, has been studied
from the 1960s. A number of pioneering articles concerning links with linear
algebra and analogues of algebraic equations were published. Note that max-
plus algebra has no additive inverse and computations in the algebra requires
different techniques.

To our knowledge, there are only a few papers concerning the application
of max-plus algebra to flow shops and two-identical-parallel-machine problems.
Max-plus algebra was applied to some flow shop problems [8, 9, 62,63].

Our aim is to develop the basic theory of scheduling by using good properties
of max-plus algebra. We investigate exact solutions of these problems. The
study is important from theoretical and practical point of view. Our methods
and results contribute to effectiveness in production systems as well as algorithm
design, since the problems have many applications in real world.

1.6 Outline of the thesis

This thesis is organized as follows. Main results are described in Chapters 2 and
3. We in Chapter 2 present a new framework for flow shops. Using the frame-
work, we present a new solvable condition. In Chapter 3 theoretical analysis
on a two-identical-parallel-machine problem based on polynomial equations in
max-plus algebra were presented. We show the mathematical structure of the
NP-complete problem. Finally, Chapter 4 is devoted to concluding remarks.
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Chapter 2

A New Framework for Flow
Shops

2.1 Introduction

Methods for solving flow shops, as stated in Subsection 1.3.1, are grouped into
three classes: efficient optimal methods, enumerative optimal methods, and
heuristic methods. Nowadays heuristics methods are widely studied from prac-
tical point of view.

We reconsider the boundary between efficient optimal methods and enu-
merative ones, armed with max-plus algebra. It is ideal to obtain an optimal
solution in polynomial time. In fact the cases where efficient optimal methods
can be applied are demanded in real world. Hence, our study is of not only
theoretical but also practical importance.

Section 2.2 introduces a basic flow shop problem. In Section 2.3, we present
an easily verified sufficient condition for an extension of Johnson’s rule. And
using max-plus algebra we give a simple proof of the theorem that Fm| no-wait
|Cmax can be formulated as a traveling salesman problem (TSP). We present
in Section 2.4 a new theoretical framework which associates a machine with a
matrix and is the dual of the existing approach based on job matrices. Using
the framework, we present a new solvable condition which is an extension of
known results. Moreover, we show duality relationships between some flow
shops. Section 2.5 is devoted to links with linear algebra. Finally, we summarize
this chapter in Section 2.6.

2.2 Problem formalization

A basic flow shop instance consists of m different machines, n jobs, and mn
nonnegative vales pi,j (i = 1, 2, ...,m; j = 1, 2, ..., n), where pi,j specifies the time
required by machine i for processing job j. Jobs flow from the first machine to
the last (m-th) machine. Let Ci,j be the completion time of job j at machine i.

Given a job sequence σ = (σ(1), σ(2), ..., σ(n)) for Fm|prmu, rj , si|γ, the
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completion time Ci,j can be computed through a set of recursive equations:

Ci,σ(k) = max[Ci−1,σ(k), Ci,σ(k−1)] + pi,σ(k) (i = 2, ...,m; k = 2, ..., n) (2.1a)

C1,σ(k) = max[rσ(k), C1,σ(k−1)] + p1,σ(k) (k = 2, ..., n) (2.1b)

Ci,σ(1) = max[Ci−1,σ(1), si] + pi,σ(1) (i = 2, ...,m) (2.1c)

C1,σ(1) = max[rσ(1), s1] + p1,σ(1). (2.1d)

2.3 Job matrices

2.3.1 Permutation flow shop problems

We give a new interpretation that an extension of Johnson’s rule is understood
as the magnitude relationship between the two products of two matrices and
present a sufficient condition for the extension.

The recursion relations (2.1) for Fm|prmu, si|γ are the following:

Ci,σ(k) =
(
Ci−1,σ(k) ⊕ Ci,σ(k−1)

)
�pi,σ(k) (i = 2, ...,m; k = 2, ..., n)

C1,σ(k) = C1,σ(k−1)�p1,σ(k) (k = 2, ..., n)

Ci,σ(1) =
(
Ci−1,σ(1) ⊕ si

)
�pi,σ(1) (i = 2, ...,m)

C1,σ(1) = s1�p1,σ(1)

Let

C ′j =


C1,j

C2,j

...
Cm,j

.
Then

C ′σ(n) = Jσ(n)� · · · �Jσ(1)�C
′
0, (2.2)

where

Jj =


p1,j 0l 0l · · · 0l
p1,j�p2,j p2,j 0l · · · 0l

...
. . .

...
p1,j� · · · �pm,j · · · pm,j

 and C ′0 =


s1

s2

...
sm

.
This formalism is the same as the one by Vo and Lenté [8, 9] based on the
research by Bouquard et al. [63]. Job j is associated with matrix Jj and we call
the matrices and the formalism job matrices and job representation, respectively.

The makespan is the m-th (maximum) component of the vector C ′σ(n)

Example 2.3.1. Consider an F2|prmu|Cmax with two jobs. Let the job se-
quence be (1, 2). Then the makespan C2,2 is obtained as follows:

C2,2 = p1,1 + max[p1,2, p2,1] + p2,2

= p1,1� (p1,2 ⊕ p2,1) �p2,2.

The Gantt chart is useful to understand a schedule. The chart displays the
allocation of machines with a time scale shown along the horizontal axis (see
Fig. 2.1).
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machine 1 p1,1 p1,2

machine 2 p2,1 p2,2

→ time

Figure 2.1: Gantt chart of a schedule of an F2|prmu|Cmax with two jobs

Theorem 2.3.2. [64] In an Fm|prmu|Cmax problem, if m(m− 1)/2 inequali-
ties:

min
i=l,..,k

[pl,j� · · · �pi−1,j�pi+1,j′� · · · �pk,j′ ]

≤ min
i=l,..,k

[pl,j′� · · · �pi−1,j′�pi+1,j� · · · �pk,j ]

(l = 1, ...,m− 1; k = l + 1, ...,m) (2.3)

hold for two adjacent jobs j and j′, then job j precedes job j′ in an optimal
sequence. If equality in all the inequalities holds, either ordering is possible.

Lemma 2.3.3. The inequalities (2.3) are equivalent with the inequality of job
matrices:

Jj′Jj ≤ JjJj′ .

Proof. Since

(Jj)kl =

{
pl,j� · · · �pk,j (k ≥ l)
0l (k < l)

,

(Jj′Jj)kl =

m⊕
i=1

(Jj′)ki�(Jj)il =

{ ⊕k
i=l pl,j� · · · �pi,j�pi,j′� · · · �pk,j′ (k ≥ l)

0l (k < l)
.

Then Jj′Jj ≤ JjJj′ means that

k⊕
i=l

pl,j� · · · �pi,j�pi,j′� · · · �pk,j′ ≤
k⊕
i=l

pl,j′� · · · �pi,j′�pi,j� · · · �pk,j (k ≥ l).

Multiplying both sides by (pl,j� · · · �pk,j�pl,j′� · · · �pk,j′)−1, we have

k⊕
i=l

(pi+1,j� · · · �pk,j�pl,j′� · · · �pi−1,j′)
−1

≤
k⊕
i=l

(pi+1,j′� · · · �pk,j′�pl,j� · · · �pi−1,j)
−1
.

Dividing both sides by the product of both sides this equals

(
k⊕
i=l

(pl,j� · · · �pi−1,j�pi+1,j′� · · · �pk,j′)−1

)−1

≤

(
k⊕
i=l

(pl,j′� · · · �pi−1,j′�pi+1,j� · · · �pk,j)−1

)−1

,
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which is equivalent to

min
i=l,...,k

[pl,j� · · · �pi−1,j�pi+1,j′� · · · �pk,j′ ]

≤ min
i=l,...,k

[pl,j′� · · · �pi−1,j′�pi+1,j� · · · �pk,j ] (k ≥ l). (2.4)

This is the same as the inequalities (2.3). Note that in the case k = l equality
always holds and

min[a, b, c, ...] =
(
a−1 ⊕ b−1 ⊕ c−1 ⊕ · · ·

)−1
.

We straightforwardly obtain the next corollary using Lemma 2.3.3.

Corollary 2.3.4. In an Fm|prmu|Cmax problem, if

Jj′Jj ≤ JjJj′ (2.5)

holds for two adjacent jobs j and j′, then job j precedes job j′ in an optimal
sequence. If equality in the inequality holds, either ordering is possible.

In the case m = 2,

Jj′Jj ≤ Jj′Jj
⇔ (Jj′Jj)21 ≤ (Jj′Jj)21

⇔ p1,j′�p2,j′�p1,j ⊕ p2,j′�p1,j�p2,j ≤ p1,j�p2,j�p1,j′ ⊕ p2,j�p1,j′�p2,j′

⇔
(
p−1

1,j ⊕ p
−1
2,j′

)−1

≤
(
p−1

1,j′ ⊕ p
−1
2,j

)−1

⇔ min[p1,j , p2,j′ ] ≤ min[p1,j′ , p2,j ].

This is the well-known Johnson’s rule [4], which satisfies the transitive property.
The derivation from job matrices in max-plus algebra was obtained by Bouquard
et al. [63]. Note that an F2||Cmax is reduced to an F2|prmu|Cmax (see e.g. [1]).

Example 2.3.5. Consider the F2||Cmax with five jobs as described in the fol-
lowing table.

Job j 1 2 3 4 5
p1,j 3 5 1 6 7
p2,j 6 2 2 6 5

The job sequence (3, 1, 4, 5, 2) is an optimal solution. Then the makespan is
24.

In general it is not easy to verify the inequality (2.5). We give a sufficient
condition which can be verified relatively easily.
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Theorem 2.3.6. Let m ≥ 3. If inequalities

min[pl,j , pl+1,j′ ] ≤ min[pl,j′ , pl+1,j ] (l = 1, ...,m− 1) (2.6)

hold, and from the two inequalities

min[pl,j , pl+1,j′ ] ≤ min[pl,j′ , pl+1,j ] and min[pl+1,j , pl+2,j′ ] ≤ min[pl+1,j′ , pl+2,j ]

for l = 1, ...,m− 2, one is strict, i.e., for l = 1, ...,m− 2, we have either

min[pl,j , pl+1,j′ ] ≤ min[pl,j′ , pl+1,j ] and min[pl+1,j , pl+2,j′ ] < min[pl+1,j′ , pl+2,j ]

or

min[pl,j , pl+1,j′ ] < min[pl,j′ , pl+1,j ] and min[pl+1,j , pl+2,j′ ] ≤ min[pl+1,j′ , pl+2,j ],

then
Jj′Jj ≤ JjJj′ , while Jj′Jj 6= JjJj′ .

We consider the inequality (2.4). Let the left-hand side and the right-hand
side of (2.4) be d̃k,l and dk,l, respectively. d̃k,l ≤ dk,l is equivalent to (Jj′Jj)k,l ≤
(JjJj′)k,l. We give some relations existing between d̃k,ls and dk,ls at first.

Lemma 2.3.7. Let

d̃k,l = min
i=l,...,k

[pl,j� · · · �pi−1,j�pi+1,j′� · · · �pk,j′ ]

and
dk,l = min

i=l,...,k
[pl,j′� · · · �pi−1,j′�pi+1,j� · · · �pk,j ] .

Then the followings hold:

d̃l+h,l�d̃l+k′,l+h = min
[
d̃l+k′,l, d̃l+h−1,l�pl+h,j′�pl+h,j�d̃l+k′,l+h+1

]
and

dl+h,l�dl+k′,l+h = min
[
dl+k′,l, dl+h−1,l�pl+h,j�pl+h,j′�dl+k′,l+h+1

]
for 1 ≤ l ≤ m− 2, 2 ≤ k′ ≤ m− l and 1 ≤ h ≤ k′ − 1.

Proof. d̃l+h,l and d̃l+k′,l+h imply

min

[
min

i=0,...,h−1
[pl,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+h−1,j′ ] �pl+h,j′ ,

pl,j� · · · �pl+h−1,j

]
and

min

[
pl+h+1,j′� · · · �pl+k′,j′ ,

pl+h,j� min
i=h+1,...,k′

[pl+h+1,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+k′,j′ ]
]
,
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respectively. Hence we have

d̃l+h,l�d̃l+k′,l+h

= min

[
min

i=0,...,h−1
[pl,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+h−1,j′ ] �pl+h,j′ ,

pl,j� · · · �pl+h−1,j

]
�min

[
pl+h+1,j′� · · · �pl+k′,j′ ,

pl+h,j� min
i=h+1,...,k′

[pl+h+1,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+k′,j′ ]
]

= min
[
d̃l+k′,l, d̃l+h−1,l�pl+h,j′�pl+h,j�d̃l+k′,l+h+1

]
.

Note that

d̃l+h−1,l = min
i=0,...,h−1

[pl,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+h−1,j′ ]

and

d̃l+k′,l+h+1 = min
i=h+1,...,k′

[pl+h+1,j� · · · �pl+i−1,j�pl+i+1,j′� · · · �pl+k′,j′ ] .

We can make a similar argument for dl+h,l�dl+k′,l+h

Lemma 2.3.8.

1. If
d̃l+h−1,l�pl+h,j′ < pl,j� · · · �pl+h−1,j (h = 1, ..., k′ − 1),

hold for some l (1 ≤ l ≤ m− 1) and k′ (2 ≤ k′ ≤ m− l + 1), then

d̃l+k′−1,l = pl+1,j′�pl+2,j′� · · · �pl+k′−1,j′ .

2. If

pl+h,j�d̃l+k′,l+h+1 < pl+h+1,j′� · · · �pl+k′,j′ (h = 1, ..., k′ − 1),

hold for some l (1 ≤ l ≤ m− 1) and k′ (2 ≤ k′ ≤ m− l + 1), then

d̃l+k′,l+1 = pl+1,j�pl+2,j� · · · �pl+k′−1,j .

Proof. (1) The assumptions mean that

d̃l+k′−2,l�pl+k′−1,j′ < pl,j�pl+1,j� · · · �pl+k′−3,j�pl+k′−2,j ,

d̃l+k′−3,l�pl+k′−2,j′ < pl,j�pl+1,j� · · · �pl+k′−3,j ,

...

d̃l+1,l�pl+2,j′ < pl,j�pl+1,j ,

d̃l,l�pl+1,j′ < pl,j .
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Using the inequalities, we obtain

d̃l+k′−1,l = min
[
d̃l+k′−2,l�pl+k′−1,j′ , pl,j� · · · �pl+k′−2,j

]
= d̃l+k′−2,l�pl+k′−1,j′

= min
[
d̃l+k′−3,l�pl+k′−2,j′ , pl,j� · · · �pl+k′−3,j

]
�pl+k′−1,j′

= d̃l+k′−3,l�pl+k′−2,j′�pl+k′−1,j′ = · · ·
= d̃l+2,l�pl+3,j′� · · · �pl+k′−1,j′

= min
[
d̃l+1,l�pl+2,j′ , pl,j�pl+1,j

]
�pl+3,j′� · · · �pl+k′−1,j′

= d̃l+1,l�pl+2,j′�pl+3,j′� · · · �pl+k′−1,j′

= min
[
d̃l,l�pl+1,j′ , pl,j

]
�pl+2,j′� · · · �pl+k′−1,j′

= d̃l,l�pl+1,j′�pl+2,j′� · · · �pl+k′−1,j′ = pl+1,j′�pl+2,j′� · · · �pl+k′−1,j′ .

(2) The assumptions mean that

pl+1,j�d̃l+k′,l+2 < pl+2,j′�pl+3,j′� · · · �pl+k′−1,j′�pl+k′,j′ ,

pl+2,j�d̃l+k′,l+3 < pl+3,j′� · · · �pl+k′−1,j′�pl+k′,j′ ,

...

pl+k′−2,j�d̃l+k′,l+k′−1 < pl+k′−1,j′�pl+k′,j′ ,

pl+k′−1,j�d̃l+k′,l+k′ < pl+k′,j′ .

Using the inequalities, we obtain

d̃l+k′,l+1 = min
[
pl+1,j�d̃l+k′,l+2, pl+2,j′� · · · �pl+k′,j′

]
= pl+1,j�d̃l+k′,l+2 = pl+1,j�min

[
pl+2,j�d̃l+k′,l+3, pl+3,j′� · · · �pl+k′,j′

]
= pl+1,j�pl+2,j�d̃l+k′,l+3 = · · ·
= pl+1,j�pl+2,j� · · · �pl+k′−1,j .

Proof of Theorem 2.3.6. We show that for l = 1, ...,m and k′ = 0, 1, ...,m− l,

d̃l+k′,l ≤ dl+k′,l (k′ = 0, 1), (2.7a)

d̃l+k′,l < dl+k′,l (k′ = 2, 3, ...). (2.7b)

In the case k′ = 0, since d̃l,l = dl,l = 1l (= 0), the statement (2.7a) is true.

In the case k′ = 1, since d̃l+1,l and dl+1,l are just the right-hand side and the
left-hand side of the assumption (2.6) of this theorem, the statement (2.7a) is
true.

We show the statement (2.7b) by induction on k′. When k′ = 2, suppose
that d̃l+2,l ≥ dl+2,l. From the two assumptions of the theorem, we obtain

d̃l+1,l�d̃l+2,l+1 < dl+1,l�dl+2,l+1 (l = 1, . . . ,m− 2). (2.8)
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Note that from the latter assumptions of this theorem equality does not hold.
By Lemma 2.3.7 the inequality (2.8) is equivalent to

min
[
d̃l+2,l, d̃l,l�pl+1,j′�pl+1,j�d̃l+2,l+2

]
< min [dl+2,l, dl,l�pl+1,j�pl+1,j′�dl+2,l+2] .

Since d̃l+2,l ≥ dl+2,l, it is necessary that the inequality

d̃l,l�pl+1,j′�pl+1,j�d̃l+2,l+2 < d̃l+2,l

holds. The left-hand side equals pl+1,j′�pl+1,j , so the substitution

d̃l+2,l = min [pl+1,j′�pl+2,j′ , pl,j�pl+2,j′ , pl,j�pl+1,j ]

reduces this inequality to

pl+1,j < pl+2,j′ ,

pl+1,j′�pl+1,j < pl,j�pl+2,j′ ,

pl+1,j′ < pl,j .

Using the third and first inequalities and the inequality (2.7a), we obtain

d̃l+1,l = min [pl+1,j′ , pl,j ] = pl+1,j′ ≤ dl+1,l, (2.9a)

d̃l+2,l+1 = min [pl+2,j′ , pl+1,j ] = pl+1,j ≤ dl+2,l+1, (2.9b)

where either of the two inequalities is strict. On the other hand, the definitions
of dl+1,l, dl+2,l+1 imply that

dl+1,l = min [pl+1,j , pl,j′ ] ≤ pl+1,j (2.10a)

dl+2,l+1 = min [pl+2,j , pl+1,j′ ] ≤ pl+1,j′ . (2.10b)

The inequalities (2.9) and (2.10) cannot hold simultaneously. Therefore, d̃l+2,l <
dl+2,l.

When k′ > 2, assume that d̃l+i,l < dl+i,l for i = 2, ..., k′ − 1, which are the

induction hypotheses. We show that d̃l+k′,l < dl+k′,l. Suppose that

d̃l+k′,l ≥ dl+k′,l.

From the induction hypotheses, we obtain

d̃l+h,l�d̃l+k′,l+h < dl+h,l�dl+k′,l+h (h = 1, . . . , k′ − 1; l = 1, . . . ,m− k′).
(2.11)

Note that either of d̃l+h,l < dl+h,l and d̃l+k′,l+h < dl+k′,l+h holds since either
of h and k′ − h is greater than one. By Lemma 2.3.7 the inequality (2.11) is
equivalent to

min
[
d̃l+k′,l, d̃l+h−1,l�pl+h,j′�pl+h,j�d̃l+k′,l+h+1

]
< min

[
dl+k′,l, dl+h−1,l�pl+h,j�pl+h,j′�dl+k′,l+h+1

]
.
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Since d̃l+k′,l ≥ dl+k′,l, it is necessary that the inequality

d̃l+h−1,l�pl+h,j′�pl+h,j�d̃l+k′,l+h+1 < d̃l+k′,l

holds. The substitution

d̃l+k′,l = min
[
d̃l+h−1,l�pl+h,j′�pl+h+1,j′� · · · �pl+k′,j′ ,

pl,j� · · · �pl+h−1,j�pl+h+1,j′� · · · �pl+k′,j′ ,

pl,j� · · · �pl+h−1,j�pl+h,j�d̃l+k′,l+h+1

]
,

reduces this inequality to

pl+h,j�d̃l+k′,l+h+1 < pl+h+1,j′� · · · �pl+k′,j′ ,
d̃l+h−1,l�pl+h,j′�pl+h,j�d̃l+k′,l+h+1 < pl,j� · · · �pl+h−1,j�pl+h+1,j′� · · · �pl+k′,j′ ,

d̃l+h−1,l�pl+h,j′ < pl,j� · · · �pl+h−1,j .

Each assumption of Lemma 2.3.8 is satisfied by the third and first inequalities,
so we have

d̃l+k′−1,l = pl+1,j′�pl+2,j′� · · · �pl+k′−1,j′ ,

d̃l+k′,l+1 = pl+1,j�pl+2,j� · · · �pl+k′−1,j .

From these and the induction hypotheses, it follow that

pl+1,j′� · · · �pl+k′−1,j′ = d̃l+k′−1,l < dl+k′−1,l, (2.12a)

pl+1,j� · · · �pl+k′−1,j = d̃l+k′,l+1 < dl+k′,l+1. (2.12b)

On the other hand, the definitions of dl+k′−1,l and dl+k′,l+1 imply that

dl+k′−1,l ≤ pl+1,j� · · · �pl+k′−1,j , (2.13a)

dl+k′,l+1 ≤ pl+1,j′� · · · �pl+k′−1,j′ . (2.13b)

From the inequalities (2.12) and (2.13), we obtain

pl+1,j′� · · · �pl+k′−1,j′ < dl+k′−1,l ≤ pl+1,j� · · · �pl+k′−1,j

< dl+k′,l+1 ≤ pl+1,j′� · · · �pl+k′−1,j′ ,

which is a contradiction. The proof is completed.

The assumptions (2.6) of the theorem are correspondent to the magnitude
relationship between the subdiagonal entries of Jj′Jj and JjJj′ .The reason is as
follows: for i = 1, ...,m− 1

(Jj′Jj)i+1,i ≤ (JjJj′)i+1,i

⇔ pi,j�pi,j′�pi+1,j′ ⊕ pi,j�pi+1,j�pi+1,j′ ≤ pi,j′�pi,j�pi+1,j ⊕ pi,j′�pi+1,j′�pi+1,j

⇔ (pi+1,j)
−1 ⊕ (pi,j′)

−1 ≤ (pi+1,j′)
−1 ⊕ (pi,j)

−1

⇔
(
(pi,j)

−1 ⊕ (pi+1,j′)
−1
)−1 ≤

(
(pi,j′)

−1 ⊕ (pi+1,j)
−1
)−1

.

The subdiagonal entries play an important role in the magnitude relationship
between the job matrices.
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2.3.2 No-wait flow shop problems

We reformulate the flow shop problems under no-wait condition using the job
matrices, which is presented in [8], and give a new simple proof of the well-known
theorem that the flow shop makespan problem with the no-wait condition can
be formulated as a TSP [65].

No-wait processes are seen in the production of steel, in the plastic molding,
in the chemical industry and so on, due to the temperature or other character-
istics of the material [10].

Proposition 2.3.9. [8] The makespan of a job sequence σ = (σ(1), ..., σ(n))
in Fm|no-wait, si|Cmax is the m-th (maximum) component of the vector:

C ′σ(n) = Jσ(n)� · · · �Jσ(1)�C
′
0, (2.14)

where

Jj =


p1,j 1l (p2,j)

−1 · · · (p2,j�p3,j� · · · �pm−1,j)
−1

p1,j�p2,j p2,j 1l · · · (p3,j� · · · �pm−1,j)
−1

p1,j�p2,j�p3,j p2,j�p3,j p3,j · · ·
...

. . .
...

p1,j� · · · �pm,j · · · pm,j


and

C ′0 =


s1

s2

...
sm

.
Proof. Under no-wait condition, the recursion relations are the following:

Ci,σ(k) = Ci−1,σ(k)�pi,σ(k) (i = 2, ...,m; k = 1, 2, ..., n)

C1,σ(k) =

(
m⊕
i=1

Ci,σ(k−1)�
(
p1,σ(k)� · · · �pi−1,σ(k)

)−1

)
�p1,σ(k) (k = 2, ..., n)

C1,σ(1) =

(
m⊕
i=1

si�
(
p1,σ(1)� · · · �pi−1,σ(1)

)−1

)
�p1,σ(1).

In max-plus algebra, this reads the given formula (2.14).

The next lemma is used in the proof of the following theorem.

Lemma 2.3.10. Let

v =


p1

p1�p2

...
p1� · · · �pm

 and u =
(

1l p−1
1 . . . (p1� · · · �pm−1)−1

)
,
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then

v�u =


p1 1l p−1

2 · · · (p2�p3� · · · �pm−1)−1

p1�p2 p2 1l · · · (p3� · · · �pm−1)−1

p1�p2�p3 p2�p3 p3 · · ·
...

. . .
...

p1� · · · �pm · · · pm

.

Proof. Straightforward.

We provide a new simple proof of the next known theorem.

Theorem 2.3.11. [65] An Fm|no-wait|Cmax problem can be formulated as a
Traveling Salesman Problem (TSP), of which the intercity costs are

δj,j′ =

m⊕
i=1

p1,j� · · · �pi−1,j�pi,j� (p1,j′� · · · �pi−1,j′)
−1

(j, j′ = 1, ..., n),

δj,0 = p1,j� · · · �pm,j (j = 1, ..., n),

δ0,j = 1l (= 0) (j = 1, ..., n).

Proof. We consider the case si = 1l in the formula (2.14) of Proposition 2.3.9.
Thus we have

C ′σ(n) = Jσ(n)�Jσ(n−1)� · · · �Jσ(2)�Jσ(1)�C
′
0.

By Lemma 2.3.10 this equals

(vσ(n)�uσ(n))�(vσ(n−1)�uσ(n−1))� · · · �(vσ(2)�uσ(2))�(vσ(1)�uσ(1))�C
′
0

=vσ(n)�(uσ(n)�vσ(n−1))� · · · �(uσ(3)�vσ(2))�(uσ(2)�vσ(1)),

where

vj =


p1,j

p1,j�p2,j

...
p1,j� · · · �pm,j

 and uj =
(

1l p−1
1,j . . . (p1,j� · · · �pm−1,j)

−1
)
.

We can rewrite it as

vσ(n)�δσ(n−1),σ(n)� · · · �δσ(2),σ(3)�δσ(1),σ(2),

since δj,j′ = uj′�vj . The makespan is

δσ(n),0�δσ(n−1),σ(n)� · · · �δσ(2),σ(3)�δσ(1),σ(2)�δ0,σ(1).

Therefore, this makespan problem can be recast as a TSP.

The proof is even simpler than the known one. This shows how useful the
formulation based on max-plus algebra is.
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2.3.3 Blocking flow shop problems

We present the job matrix of the flow shop problems under blocking condition,
which is used to show a duality relationship in Section 2.4. This formulation is
new.

The blocking environment is a lack of storage capacity between machines.

Proposition 2.3.12. The makespan of a job sequence σ = (σ(1), ..., σ(n)) in
Fm|blocking, si|Cmax is the m-th (maximum) component of the vector:

C ′σ(n) = Jσ(n)� · · · �Jσ(1)�C
′
0, (2.15)

where

Jj =


p1,j 1l 0l · · · 0l
p1,j�p2,j p2,j 1l · · · 0l
p1,j�p2,j�p3,j p2,j�p3,j p3,j · · · 0l

...
. . .

...
p1,j� · · · �pm,j · · · pm,j

 and C ′0 =


s1

s2

...
sm

.

Proof. Under blocking condition, the recursion relations are the following:

Cm,σ(k) =
(
Cm,σ(k−1) ⊕ Cm−1,σ(k)

)
�pm,σ(k) (k = 2, ..., n)

Ci,σ(k) =
(
Ci,σ(k−1) ⊕ Ci−1,σ(k)

)
�pi,σ(k) ⊕ Ci+1,σ(k−1)

(i = 2, ...,m− 1; k = 2, ..., n)

C1,σ(k) = C1,σ(k−1)�p1,σ(k) ⊕ C2,σ(k−1) (k = 2, ..., n)

Cm,σ(1) =
(
sm ⊕ Cm−1,σ(1)

)
�pm,σ(1)

Ci,σ(1) =
(
si ⊕ Ci−1,σ(1)

)
�pi,σ(1) ⊕ si+1 (i = 2, ...,m− 1)

C1,σ(1) = s1�p1,σ(1) ⊕ s2.

Here Ci,j means the time at which machine i releases completed job j. In
max-plus algebra, this reads the given formula (2.15).

2.4 Machine matrices

2.4.1 Flow shop problems

We present a new framework for flow shop problems. The framework is the
dual of the job representation (2.2). We identify a duality relationship between
permutation flow shops and present a new solvable condition which includes two
known conditions in m-machine permutation flow shops.

The recursion relations (2.1) for Fm|prmu, rj |γ are the following:

Ci,σ(k) =
(
Ci−1,σ(k) ⊕ Ci,σ(k−1)

)
�pi,σ(k) (i = 2, ...,m; k = 2, ..., n)

C1,σ(k) =
(
rσ(k) ⊕ C1,σ(k−1)

)
�p1,σ(k) (k = 2, ..., n)

Ci,σ(1) = Ci−1,σ(1)�pi,σ(1) (i = 2, ...,m)

C1,σ(1) = rσ(1)�p1,σ(1)
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Let

Cσ
i =


Ci,σ(1)

Ci,σ(2)

...
Ci,σ(n)

.
be the completion time vector of a job sequence σ = (σ(1), ..., σ(n)) at machine
i. Then

Cσ
m = Mσ

m
� · · · �Mσ

1
�Cσ

0 , (2.16)

where

Mσ
i =


pi,σ(1) 0l 0l · · · 0l
pi,σ(1)�pi,σ(2) pi,σ(2) 0l · · · 0l

...
. . .

...
pi,σ(1)� · · · �pi,σ(n) · · · pi,σ(n)


and

Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.
Machine i is associated with the matrix Mσ

i and we call the matrices and
the formalism machine matrices and machine representation.

The makespan is the n-th (maximum) component of the vector Cσ
m and the

total completion time is the product (sum in the conventional algebra) of all
the components of the the vector Cσ

m, i.e.,

Cm,σ(1)�Cm,σ(2)� · · · �Cm,σ(n) = Cm,1�Cm,2� · · · �Cm,n.

Let Cmax(σ, r, α; [M1, ...,Mm], s, β) denote the makespan of a sequence σ of
jobs with the release dates r computed under the assumption of permutation
schedules in machine environment M1, ...,Mm with the starting times s and the
constraints α on jobs and β on machines. r, α, s and/or β may not be denoted.

For a given job sequence σ, define n artificial machines M̄σ(1), M̄σ(2) ,...,
M̄σ(n) in series, nm artificial processing times p̄k,l = pl,k (k = 1, . . . , n; l =
1, . . . ,m) and n artificial starting times s̄σ(1) = rσ(1), s̄σ(2) = rσ(2),..., s̄σ(n) =
rσ(n). Define also a sequence id = (1, 2, ...,m) of m artificial jobs and m artificial
release dates r̄1 = s1, r̄2 = s2 ,..., r̄m = sm.

Theorem 2.4.1 (A duality relationship between flow shops). For every job
sequence σ in Fm|prmu, si|Cmax and Fm|prmu, rj |Cmax,

Cmax(σ; [M1, ...,Mm], s) = Cmax(id, r̄; [M̄σ(1), ..., M̄σ(n)]); (2.17a)

Cmax(σ, r; [M1, ...,Mm]) = Cmax(id; [M̄σ(1), ..., M̄σ(n)], s̄). (2.17b)

Proof. Note that the formulas (2.2) and (2.16) are similar.
The job representation (2.2) of an Fm|prmu, si|Cmax can be interpreted as

the machine representation of the Fm|prmu, rj |Cmax of a job sequence id =
(1, 2, ...,m) with machine series M̄σ(1), M̄σ(2) ,..., M̄σ(n) and release dates r̄1 =
s1, r̄2 = s2 ,..., r̄m = sm. Hence, the equality (2.17a) holds.
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On the other hand, the machine representation (2.16) of an Fm|prmu,
rj |Cmax can be interpreted as the job representation of the Fm|prmu, si|Cmax

of a job sequence id = (1, 2, ...,m) with machine series M̄σ(1), M̄σ(2) ,..., M̄σ(n)

and starting times s̄σ(1), ..., s̄σ(n). Hence, the equality (2.17b) holds.

This theorem implies that the machine representation is the dual of the job
representation.

The existing approaches based on max-plus algebra can be applied to only
permutation schedules, but this framework is not limited to permutation sched-
ules and the first one which can deal with non-permutation flow shop problems
based on max-plus algebra. It is possible that the framework give a clue to tackle
non-permutation flow shop problems. In Fm||Cmax (m ≥ 4), non-permutation
schedules must be considered (see e.g. [1]).

For example, suppose that there are two jobs in an F4||Cmax. Consider the
schedule which has the job sequence (1, 2) on machines 1 and 2, and the one
(2, 1) on machines 3 and 4. Then(

C4,2

C4,1

)
=

(
p4,2 0l
p4,2�p4,1 p4,1

)
�

(
0l p3,2

p3,1 p3,1�p3,2

)
�

(
p2,1 0l
p2,1�p2,2 p2,2

)
�

(
p1,1 0l
p1,1�p1,2 p1,2

)
�

(
1l
1l

)
.

Moreover, in terms of fluid dynamics, we may say that the job representation
is Lagrange type since the representation pays attention to the flow of jobs. On
the other hand, the machine representation is Euler type since the representation
observes jobs from fixed machines.

The next theorem is important and used to prove the main theorem.

Theorem 2.4.2. For an integer l ≥ 2, let

Ai =


ai,1 0l 0l · · · 0l
ai,1�ai,2 ai,2 0l · · · 0l

...
. . .

...
ai,1� · · · �ai,l · · · ai,l


and Ai′ defined similarly, with the condition min1≤k≤l[ai,k] ≥ max1≤k≤l[ai′,k],
then

Ai�Ai′ = Ai�D(Ai′) and Ai′�Ai = D(Ai′)�A,

where D(Ai) is the diagonal matrix composed of diagonal entries of Ai, i.e.,

D(Ai) =


ai,1 0l 0l · · · 0l
0l ai,2 0l · · · 0l
0l 0l ai,3 · · · 0l
...

. . .
...

0l 0l 0l · · · ai,l

.

Proof. Since

(Ai)αβ =

{
0l (α < β)
ai,β� · · · �ai,α (α ≥ β)

,
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(Ai�Ai′)αβ

=

l⊕
γ=1

(Ai)αγ�(Ai′)γβ =

{
0l (α < β)⊕α

γ=β ai,γ� · · · �ai,α�ai′,β� · · · �ai′,γ (α ≥ β)
.

When min1≤k≤l[ai,k] ≥ max1≤k≤l[ai′,k],

(Ai�Ai′)αβ =

{
0l (α < β)
ai,β� · · · �ai,α�ai′,β (α ≥ β)

.

Therefore,
(Ai�Ai′)αβ = (Ai)αβ�ai′,β = (Ai�D(Ai′))αβ .

The proof of Ai′�Ai is similar.

The next theorem is our new result. It is difficult to discover the theo-
rem without using max-plus algebra. The theorem is a fruit of the algebraic
modelization.

Theorem 2.4.3. In an Fm|prmu|Cmax problem, if

max
j

[pi,j ] ≤ min
j

[pi+1,j ] (1 ≤ i ≤ g − 1), (2.18)

min
j

[pi,j ] ≥ max
j

[pi+1,j ] (g ≤ i ≤ f − 1), (2.19)

max
j

[pi,j ] ≤ min
j

[pi+1,j ] (f + 1 ≤ i ≤ h− 1), (2.20)

min
j

[pi,j ] ≥ max
j

[pi+1,j ] (h ≤ i ≤ m− 1) (2.21)

hold for f, g, h (g < h; g, h = 1, ...,m; f = g, ..., h− 1), then an optimal sequence
is obtained in polynomial time.

Proof. Since there is no release date rj , we may suppose that Cσ
0 = (1l 0l · · · 0l)T

in the formula (2.16). Using the assumptions (2.18), (2.19), (2.20), (2.21) and
Theorem 2.4.2, we have the completion vector of machine m for a job sequence
σ as follows:

Cσ
m = Mσ

m
� · · · �Mσ

h · · · �Mσ
g · · · �Mσ

1
�Cσ

0

= D(Mσ
m)� · · · �D(Mσ

h+1)�Mσ
h
�D(Mσ

h−1)� · · · �D(Mσ
g+1)

�Mσ
g
�D(Mσ

g−1)� · · · �D(Mσ
1 )�Cσ

0 .

Hence,

Cmax(σ; [M1, . . . ,Mm]) = pm,σ(n)� · · · �ph+1,σ(n)

�(Mσ
h
�D(Mσ

h−1)� · · · �D(Mσ
g+1)�Mσ

g )n,1�pg−1,σ(1)� · · · �p1,σ(1).

Here let qj = pg+1,j� · · · �ph−1,j . Then

(Mσ
h
�D(Mσ

h−1)� · · · �D(Mσ
g+1)�Mσ

g )n,1

=
(
ph,σ(1)� · · · �ph,σ(n) · · · ph,σ(n−1)�ph,σ(n) ph,σ(n)

)
�


qσ(1)

qσ(2)

. . .

qσ(n)

�

pg,σ(1)

pg,σ(1)�pg,σ(2)

...
pg,σ(1)� · · · �pg,σ(n)

.
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Since we can rewrite the diagonal matrix as

(
qσ(1)� · · · �qσ(n)

)−1
�


qσ(1)� · · · �qσ(n)

qσ(2)� · · · �qσ(n)

. . .

qσ(n)



�


qσ(1)

qσ(1)�qσ(2)

. . .

qσ(1)� · · · �qσ(n)

,
we obtain

(Mσ
h
�D(Mσ

h−1)� · · · �D(Mσ
g+1)�Mσ

g )n,1

=
(
qσ(1)� · · · �qσ(n)

)−1

�
(
ph,σ(1)�qσ(1)� · · · �ph,σ(n)�qσ(n) · · ·
ph,σ(n−1)�qσ(n−1)�ph,σ(n)�qσ(n) ph,σ(n)�qσ(n)

)
�


pg,σ(1)�qσ(1)

pg,σ(1)�qσ(1)�pg,σ(2)qσ(2)

...
pg,σ(1)�qσ(1)� · · · �pg,σ(n)�qσ(n)


= (qσ(1)� · · · �qσ(n))

−1�Cmax(σ; [M̃g, M̃h]),

where artificial machines M̃g and M̃h have the processing times pg,j�qj and
qj�ph,j , respectively. The factor (qσ(1) � · · · �qσ(n))

−1 is independent of σ.
Denote an optimal sequence for the two artificial machines alone by τ =

(j1, . . . , jn). For each k, l (k 6= l; k, l = 1, ..., n), let τk,l = (jk, j1, ..., jn, jl) be a
job sequence obtained from the sequence τ only by shifting k-th job jk to the
top and l-th job jl to the end.

Considering the job representation of the two-machine flow shop problem,
for every job sequence σ we obtain

Cmax(σ; [M̃g, M̃h]) ≥ Cmax(τσ(1),σ(n); [M̃g, M̃h]).

Therefore,

Cmax(σ; [M1, ...,Mm]) ≥ Cmax(τσ(1),σ(n); [M1, ...,Mm]).

This means that an optimal sequence is included in n(n − 1) job sequences
τk,l.

The case (g = 1 and h = m) and the case g = h − 1 are in [24] and [25],
respectively.

Example 2.4.4. Consider the F6|prmu|Cmax with five jobs as described in the
following table.

The assumptions of Theorem 2.4.3 are satisfied (g = 2, f = 3, h = 5).
Step 1
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Job j 1 2 3 4 5
p1,j 4 5 9 8 1
p2,j 14 12 12 15 10
p3,j 4 8 2 6 7
p4,j 10 2 8 7 8
p5,j 14 16 17 14 18
p6,j 10 5 8 6 13

Job j 1 2 3 4 5
p̃1,j (product of machines 2-4) 28 22 22 28 25
p̃2,j (product of machines 3-5) 28 26 27 27 33

Consider the artificial F2||Cmax with five jobs as described in the following
table.

The job sequence τ = (2, 3, 5, 1, 4) is one of optimal solutions.
Step 2

Compute the makespans for all the job sequences that are obtained from τ
by shifting a job to the top and another job to the end (20 sequences such as
(1, 3, 5, 4, 2), (1, 2, 5, 4, 3) and so on.). We obtain the job sequence (5, 3, 1, 4, 2)
that minimize the makespan.

2.4.2 No-idle flow shop problems

We present the machine matrix of the flow shop problems under no-idle con-
dition. By this formulation, we can easily show a duality relationship between
“no-wait” and “no-idle” constraints and calculate the total completion time in
permutation flow shops.

The no-idle condition is especially important when the using cost of a ma-
chine determined by the actual time consumption is very high.

Proposition 2.4.5. The makespan of a job sequence σ = (σ(1), ..., σ(n)) in
Fm|prmu, no-idle, rj |Cmax is the n-th (maximum) component of the vector:

Cσ
m = Mσ

m
� · · · �Mσ

1
�Cσ

0 , (2.22)

where

Mσ
i

=


pi,σ(1) 1l (pi,σ(2))

−1 · · · (pi,σ(2)� · · · �pi,σ(n−1))
−1

pi,σ(1)�pi,σ(2) pi,σ(2) 1l · · ·
...

. . .
...

pi,σ(1)� · · · �pi,σ(n) · · · pi,σ(n)


and

Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.
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Proof. Under no-idle condition and the assumption of permutation schedules,
the recursion relations are the following:

Ci,σ(k) = Ci,σ(k−1)�pi,σ(k) (i = 1, 2, ...,m; k = 2, ..., n)

Ci,σ(1) =

(
n⊕
k=1

Ci−1,σ(k)�
(
p1,σ(1)� · · · �p1,σ(k−1)

)−1

)
�pi,σ(1) (i = 2, ...,m)

C1,σ(1) =

(
n⊕
k=1

rσ(k)�
(
p1,σ(1)� · · · �p1,σ(k−1)

)−1

)
�p1,σ(1).

In max-plus algebra, this reads the given formula (2.22).

Theorem 2.4.6 (A duality relationship between “no-wait” and “no-idle” con-
straints). For every job sequence σ in Fm|no-wait, si|Cmax and Fm|prmu, no-
idle, rj |Cmax,

Cmax(σ,no-wait; [M1, ...,Mm], si) = Cmax(id, r̄; [M̄σ(1), ..., M̄σ(n)],no-idle);

Cmax(σ, rj ; [M1, ...,Mm],no-idle) = Cmax(id,no-wait; [M̄σ(1), ..., M̄σ(n)], s̄).

Proof. Note that the formula (2.14) of Proposition 2.3.9 and the formula (2.22)
of Proposition 2.4.5 are similar.

The proof is obtained similarly as in Theorem 2.4.1.

The case without si and rj has been studied in [14].
The next theorem is also a fruit of the machine representation.

Theorem 2.4.7. The total completion time of a job sequence σ in Fm|prmu, no-
idle|

∑
Cj is(

Cmax(σ; [M1,M2])�
(
p2,σ(1)� · · · �p2,σ(n)

)−1
� · · ·

�Cmax(σ; [Mm−1,Mm])�
(
pm,σ(1)� · · · �pm,σ(n)

)−1
)n

�pnm,σ(1)
�pn−1
m,σ(2)

� · · · �pm,σ(n).

Proof. We consider the case rj = 1l in the formula (2.22) of Proposition 2.4.5.
Similarly as in Lemma 2.3.10,

Mσ
i = ṽσi �ũ

σ
i ,

where

ṽσi =


pi,σ(1)

pi,σ(1)�pi,σ(2)

...
pi,σ(1)� · · · �pi,σ(n)


and

ũσi =
(

1l p−1
i,σ(1) . . . (pi,σ(1)� · · · �pi,σ(n−1))

−1
)
.

Then

ũσi+1
�ṽσi = Cmax(σ; [Mi,Mi+1])�

(
pi+1,σ(1)� · · · �pi+1,σ(n)

)−1
.
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Hence,

Cσ
m = Mσ

m
�Mσ

m−1
� · · · �Mσ

2
�Mσ

1
�Cσ

0

= (ṽσm�ũ
σ
m) �

(
ṽσm−1

�ũσm−1

)
� · · · � (ṽσ2�ũ

σ
2 ) �ṽσ1

= ṽσm�
(
ũσm�ṽ

σ
m−1

)
� · · · � (ũσ3�ṽ

σ
2 ) � (ũσ2�ṽ

σ
1 )

=


pm,σ(1)

pm,σ(1)�pm,σ(2)

...
pm,σ(1)� · · · �pm,σ(n)


�

(
Cmax(σ; [M1,M2])�

(
p2,σ(1)� · · · �p2,σ(n)

)−1
� · · ·

�Cmax(σ; [Mm−1,Mm])�
(
pm,σ(1)� · · · �pm,σ(n)

)−1
)
.

The total completion time is the product (sum in the conventional algebra) of
all the components of the vector Cσ

m.

2.4.3 Busy flow shop problems

We present the machine matrix of the flow shop problems under busy condi-
tion. By this formulation, we can easily show a duality relationship between
“blocking” and “busy” constraints.

Proposition 2.4.8. The makespan of a job sequence σ = (σ(1), ..., σ(n)) in
Fm|prmu, busy, rj |Cmax is the n-th (maximum) component of the vector:

Cσ
m = Mσ

m
� · · · �Mσ

1
�Cσ

0 , (2.23)

where

Mσ
i =


pi,σ(1) 1l 0l · · · 0l
pi,σ(1)�pi,σ(2) pi,σ(2) 1l · · · 0l
pi,σ(1)�pi,σ(2)�pi,σ(3) pi,σ(2)�pi,σ(3) pi,σ(3) · · · 0l

...
. . .

...
pi,σ(1)� · · · �pi,σ(n) · · · pi,σ(n)


and

Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.
Proof. Under busy condition and the assumption of permutation schedules,
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the recursion relations are the following:

Ci,σ(n) =
(
Ci−1,σ(n) ⊕ Ci,σ(n−1)

)
�pi,σ(n) (i = 2, ...,m)

Ci,σ(k) =
(
Ci−1,σ(k) ⊕ Ci,σ(k−1)

)
�pi,σ(k) ⊕ Ci,σ(k+1)

(i = 2, ...,m; k = 2, ..., n− 1)

Ci,σ(1) = Ci−1,σ(1)�pi,σ(1) ⊕ Ci,σ(2) (i = 2, ...,m)

C1,σ(n) =
(
rσ(n) ⊕ C1,σ(n−1)

)
�p1,σ(n)

C1,σ(k) =
(
rσ(k) ⊕ C1,σ(k−1)

)
�p1,σ(k) ⊕ rσ(k+1) (k = 2, ..., n− 1)

C1,σ(1) = rσ(1)�p1,σ(1) ⊕ rσ(2).

In max-plus algebra, this reads the given formula (2.23).

Theorem 2.4.9 (A duality relationship between “blocking” and “busy” con-
straints). For every job sequence σ in Fm|blocking, si|Cmax and Fm|prmu,
busy, rj |Cmax,

Cmax(σ, blocking; [M1, ...,Mm], si) = Cmax(id, r̄; [M̄σ(1), ..., M̄σ(n)], busy);

Cmax(σ, rj ; [M1, ...,Mm], busy) = Cmax(id, blocking; [M̄σ(1), ..., M̄σ(n)], s̄).

Proof. Note that the formula (2.15) of Proposition 2.3.12 and the formula
(2.23) of Proposition 2.4.8 are similar.

The proof is obtained similarly as in Theorems 2.4.1 and 2.4.6.

The case without si and rj has been studied in [14].

2.5 Links with linear algebra

2.5.1 Background of Theorem 2.3.6

Readers may think that Theorem 2.3.6 is not natural, but the theorem is con-
jectured from the next proposition in linear algebra.

Proposition 2.5.1. For an integer l ≥ 2 and positive numbers xk, yk(k =
1, ..., l), let

X =


x1 0 0 · · · 0
x1x2 x2 0 · · · 0

...
. . .

...
x1 · · ·xl · · · xl

 and Y =


y1 0 0 · · · 0
y1y2 y2 0 · · · 0

...
. . .

...
y1 · · · yl · · · yl

.
If (

x−1
k + y−1

k+1

)−1 ≤
(
y−1
k + x−1

k+1

)−1
(k = 1, ..., l − 1), (2.24)

then Y X ≤ XY .
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Proof.

X−1Y −1 =


x−1

1 0 0 · · · 0
−1 x−1

2 0 · · · 0
0 −1 x−1

3 · · · 0
...

. . .
...

0 0 0 · · · x−1
l




y−1

1 0 0 · · · 0
−1 y−1

2 0 · · · 0
0 −1 y−1

3 · · · 0
...

. . .
...

0 0 0 · · · y−1
l



=



x−1
1 y−1

1 0 0 · · · 0
−y−1

1 − x−1
2 x−1

2 y−1
2 0 · · · 0

1 −y−1
2 − x−1

3 x−1
3 y−1

3 · · · 0
0 1 −y−1

3 − x−1
4 · · · 0

...
. . .

...
0 0 0 · · · x−1

l y−1
l


.

Therefore, if

−y−1
k − x

−1
k+1 ≥ −x

−1
k − y

−1
k+1 (k = 1, ..., l − 1),

i.e., (
x−1
k + y−1

k+1

)−1 ≤
(
y−1
k + x−1

k+1

)−1
(k = 1, ..., l − 1),

then
X−1Y −1 ≥ Y −1X−1.

Since X−1Y −1 − Y −1X−1 ≥ 0, X ≥ 0 and Y ≥ 0,

XY (X−1Y −1 − Y −1X−1)Y X = XY − Y X ≥ 0.

Substituting adding and multiplying with ⊕ and � in the assumption (2.24),
we obtain min[xk, yk+1] ≤ min[yk, xk+1], which is correspondent to the inequal-
ity (2.6). To our knowledge, we do not know if the proposition is new or known,
but we identified a link between the proposition and the condition in m-machine
permutation flow shop problems. In fact, we conjectured Theorem 2.3.6 by con-
sidering a max-algebraic analogue of the proposition. We could not have found
the theorem without using max-plus algebra. We, however, cannot prove the
theorem similarly with the proposition since an additive inverse is not defined
in max-plus algebra.

2.5.2 Problems in linear algebra

In Sections 2.3 and 2.4 a variety of flow shop problems are represented as min-
imizing the maximum component of a vector in max-plus algebra. Due to the
relationship between max-plus algebra and the conventional algebra, there exist
problems in linear algebra that are correspond to flow shop problems. We here
present the problems. If the problems were solved, the methods for the solutions
would be applied to flow shop problems, i.e., NP-hard problems for m ≥ 3.

In this subsection, let xi,j , si, rj for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} be real
numbers larger than or equal to 1.
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The problem that corresponds to Fm|prmu, si|Cmax

Problem 2.5.2. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ(n) · · ·Xσ(1)C
′
0,

where

Xj =


x1,j 0 0 · · · 0
x1,jx2,j x2,j 0 · · · 0

...
. . .

...
x1,j · · ·xm−1,j xm−1,j 0
x1,j · · ·xm−1,jxm,j · · · xm,j

 and C ′0 =


s1

s2

...
sm

.

For p ≥ 1, the p-norm ||V ||p of the vector V = (v1, v2, . . . , vm) is

(|v1|p + |v2|p + · · ·+ |vm|p)1/p
.

Since the components of the vector are sorted in increasing order, minimizing
the p-norm of the vector is correspondent to minimizing the m-th (maximum)
component in flow shops.

In the case without the starting times (si) of machines, we may set C ′0 =
(1, 0, . . . , 0)T . The cases of the following problems are similar.

The problem that corresponds to Fm|no-wait, si|Cmax

Problem 2.5.3. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ(n) · · ·Xσ(1)C
′
0,

where

Xj =


x1,j 1 x−1

2,j · · · (x2,jx3,j · · ·xm−1,j)
−1

x1,jx2,j x2,j 1 · · · (x3,j · · ·xm−1,j)
−1

x1,jx2,jx3,j x2,jx3,j x3,j · · ·
...

. . .
...

x1,j · · ·xm,j · · · xm,j


and

C ′0 =


s1

s2

...
sm

.

The problem that corresponds to Fm|blocking, si|Cmax

Problem 2.5.4. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ(n) · · ·Xσ(1)C
′
0,
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where

Xj =


x1,j 1 0 · · · 0
x1,jx2,j x2,j 1 · · · 0

...
. . .

...
x1,j · · ·xm−1,j · · · xm−1,j 1
x1,j · · ·xm−1,jxm,j · · · xm,j


and

C ′0 =


s1

s2

...
sm

.

The problem that corresponds to Fm|prmu, rj |Cmax

Problem 2.5.5. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ
m · · ·Xσ

1 C
σ
0 ,

where

Xσ
i =


xi,σ(1) 0 0 · · · 0
xi,σ(1)xi,σ(2) xi,σ(2) 0 · · · 0

...
. . .

...
xi,σ(1) · · ·xi,σ(n) · · · xi,σ(n)

 and Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.
Since the components of the vector are sorted in increasing order, minimizing

the p-norm of the vector is correspondent to minimizing the n-th (maximum)
component in flow shops.

In the case without the release times (rj) of jobs, we may set Cσ
0 = (1, 0, . . . , 0)T .

The cases of the following problems are similar.

The problem that corresponds to Fm|prmu, no-idle, rj |Cmax

Problem 2.5.6. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ
m · · ·Xσ

1 C
σ
0 ,

where

Xσ
i =


xi,σ(1) 1 x−1

i,σ(2) · · · (xi,σ(2) · · ·xi,σ(n−1))
−1

xi,σ(1)xi,σ(2) xi,σ(2) 1 · · ·
...

. . .
...

xi,σ(1) · · ·xi,σ(n) · · · xi,σ(n)


and

Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.
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The problem that corresponds to Fm|prmu, busy, rj |Cmax

Problem 2.5.7. Find a permutation σ ∈ Sn for minimizing the p-norm of the
vector

Xσ
m · · ·Xσ

1 C
σ
0 ,

where

Xσ
i =



xi,σ(1) 1 0 · · · 0

xi,σ(1)xi,σ(2) xi,σ(2) 1 · · ·
...

...
. . .

xi,σ(1) · · ·xi,σ(n−1) · · · xi,σ(n−1) 1
xi,σ(1) · · ·xi,σ(n−1)xi,σ(n) · · · xi,σ(n)


and

Cσ
0 =


rσ(1)

rσ(2)

...
rσ(n)

.

2.6 Summary

We presented a new solvable condition in m-machine permutation flow shop
problems. This is derived using a new framework, the machine representation,
and difficult to derive without max-plus algebra. The result enables us to easily
obtain an optimal job sequence in more complicated production lines.

The new framework associates a machine with a matrix and is the dual of
the existing max-plus approach associating a job with a matrix by Bouquard et
al. The framework is the first one which can deal with non-permutation flow
shop problems based on max-plus algebra. Moreover, using the framework, we
provided new simple proofs of some known results such as duality relationships
between some flow shops and the reduction of a no-wait flow shop to a traveling
salesman problem (TSP).

We investigated links with linear algebra. We presented a sufficient condition
for an extension of Johnson’s rule by considering a max-plus algebraic analogue
of a proposition in linear algebra, and the problems in linear algebra that are
correspondent to some flow shop problems.

Max-plus algebra is very useful for flow shop problems. We expect that the
two dual frameworks based on max-plus algebra contribute to the development
of the theory of flow shops, especially non-permutation flow shops. It is a future
problem to formalize various flow shop problems, including stochastic models, in
the job representation and/or the machine representation and to analyze them.
Furthermore, since there exist a lot of results in linear algebra, it is also an
interesting problem to investigate the application of the results to flow shop
problems.
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Chapter 3

Theoretical Analysis on a
Two-identical-parallel-
machine
Problem

3.1 Introduction

The two-identical-parallel-machine problem to minimize the makespan, P2||Cmax,
which is equivalent to the number partitioning problem (NPP), is to find a set
S′ ⊂ {1, ..., n} that minimize the discrepancy

∆ =

∣∣∣∣∣∣
∑
i∈S′

pi −
∑

i∈{1,...,n}\S′
pi

∣∣∣∣∣∣
for a given positive integer pi for i ∈ {1, ..., n}. This decision version is known
to be NP-complete, so the problem is NP-hard.

A variety of heuristic algorithms as well as optimal algorithms have been
developed. On the other hand, the solution structure has been studied based
on the notion and tools from statistical mechanics. We examine the solution
structure directly using max-plus algebra.

Example 3.1.1. Consider the P2||Cmax with ten jobs as described in the fol-
lowing table.

Job j 1 2 3 4 5 6 7 8 9 10
pj 2 2 3 4 4 5 7 8 9 10

The minimum of the discrepancy is 0, since letting S′ = {1, 3, 6, 7, 10} (with
underlines in the table) the makespan is 27. This is easy to solve.

Next consider the P2||Cmax with ten jobs as described in the following table.

Job j 1 2 3 4 5 6 7 8 9 10
pj 50 61 307 336 495 630 633 760 946 960
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The minimum of the discrepancy is also 0, but it is not easy to find the
optimal subset S′ = {1, 7, 9, 10} (with underlines in the table).

Hereinafter we refer to P2||Cmax as the NPP.
Section 3.2 is devoted to the proof of a proposition which is necessary for

theoretical analysis. In Section 3.3 we show that the decision version of the NPP
is equivalent to deciding whether one of given integers p1, . . . , pn is a solution of
a tropical algebraic equation with coefficients composed of other integers. For
n up to 6 we derive concretely and explicitly the equation and its solution set.
Moreover, we consider the balanced NPP (BalNPP), where the difference of
cardinalities of two subsets is at most one. Finally, we summarize this chapter
in Section 3.4.

3.2 Preliminaries

We prove a proposition which is useful for computations in theoretical analysis.
Moreover, we present a simple procedure to write every symmetric tropical
polynomial in terms of the elementary symmetric ones. Carlsson and Kalǐsnik
[59] showed the fact, but did not present the algorithm.

Proposition 3.2.1. Let n be a positive integer and let ai and bi be nonnegative
numbers for i ∈ {1, ..., n}. A necessary and sufficient condition that

Xa1
1
� · · · �Xan

n ≤ X
b1
1
� · · · �Xbn

n

for any nonnegative numbers X1, . . . , Xn such that X1 ≥ · · · ≥ Xn is that the
followings hold:

a1 ≤ b1,
...

a1� · · · �an ≤ b1� · · · �bn.

Proof. The necessity of the condition is obvious.
We prove the sufficiency by induction on n. The base case n = 1 is straight-

forward. Assume that for n − 1(≥ 1) the condition is sufficient. If an ≤ bn,
then

Xb1
1
� · · · �Xbn−1

n−1
�Xbn

n

Xa1
1
� · · · �Xan−1

n−1
�Xan

n
≥ 1l�

Xbn
n

Xan
n

(by induction assumption)

≥ 1l.

If an > bn, then

Xb1
1
� · · · �Xbn−1

n−1
�Xbn

n

Xa1
1
� · · · �Xan−1

n−1
�Xan

n
≥
Xb1

1
� · · · �Xbn−1

n−1
�Xbn

n−1

Xa1
1
� · · · �Xan−1

n−1
�Xan

n−1

=
Xb1

1
� · · · �Xbn−1

�bn
n−1

Xa1
1
� · · · �Xan−1�an

n−1

≥ 1l (by induction assumption).

The proof is complete.
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Simplifying symmetric tropical polynomials by using the proposition and
substituting Σ1,

Σ2

Σ1
, ..., Σn

Σn−1
for X1, X2, . . . , Xn respectively, we get expres-

sions of the tropical polynomials in terms of the elementary symmetric ones.

Example 3.2.2. Consider the symmetric tropical polynomial

X3
1
�X2�X3 ⊕X1�X

3
2
�X3 ⊕X1�X2�X

3
3 ⊕X2

1
�X2

2
�X2

3 .

Suppose that X1 ≥ X2 ≥ X3. Then the polynomial equals X3
1
�X2�X3 ⊕

X2
1
�X2

2
�X2

3 . By substituting Σ1,
Σ2

Σ1
, Σ3

Σ2
for X1, X2, X3 respectively, we can

rewrite it as follows:

Σ3
1
�

Σ2

Σ1

�
Σ3

Σ2
⊕ Σ2

1
�

(
Σ2

Σ1

)2

�

(
Σ3

Σ2

)2

= Σ2
1
�Σ3 ⊕ Σ2

3.

3.3 Theoretical analysis based on max-plus al-
gebra

We show that the decision version of the NPP is reduced to solving a tropical
algebraic equation, and derive concretely and explicitly the equation and the
solution set for n up to 6 as examples.

The problem is to decide whether there is a set S′ ⊂ {1, ..., n} such that

∑
i∈S′

pi =
∑

i∈{1,...,n}\S′
pi =

(
n∑
i=1

pi

)
/2 (3.1)

for a given positive integer pi for i ∈ {1, ..., n}. The case S′ = ∅ or S′ =
{1, . . . , n} clearly does not satisfy the condition (3.1). Our strategy is to inves-
tigate whether the minimum of

max

∑
i∈S′

pi,
∑

i∈{1,...,n}\S′
pi

 (3.2)

among all possible subsets equals (
∑n
i=1 pi) /2. Using max-plus algebra we

rewrite the expression (3.2) as

pa11
� · · · �pann ⊕ p

1−a1
1

� · · · �p1−an
n ,

where ai ∈ {0, 1}. We may assume that a1 = 1 and thus it is sufficient to
consider (2n−1 − 1) subsets. The minimum C is defined as follows:

C (p1, . . . , pn) = min [p1 ⊕ p2� · · · �pn, p1�p2 ⊕ p3� · · · �pn, . . .] .

Since the identity

min[x1, x2, . . . , xM ] =
ΣM (x1, x2, . . . , xM )

ΣM−1(x1, x2, . . . , xM )

holds, where Σi is the elementary symmetric tropical polynomial, the minimum
C can be expressed as the ratio of two tropical polynomials N and D, that is,

C (p1, . . . , pn) =
N (p1, . . . , pn)

D (p1, . . . , pn)
.
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After all, the problem is reduced to solving the equation

N (p1, . . . , pn)

D (p1, . . . , pn)
= (p1� · · · �pn)

1/2

⇔ N (p1, . . . , pn)
2

D (p1, . . . , pn)
2 = p1� · · · �pn

⇔ N
(
p2

1, . . . , p
2
n

)
= p1� · · · �pn�D

(
p2

1, . . . , p
2
n

)
. (3.3)

Note that the Frobenius identity holds for all powers n: (A⊕ B)n = An ⊕ Bn.
In fact, this equation is a tropical algebraic equation we defined. Squaring both
sides plays an important role as we show in the next proposition.

Proposition 3.3.1. The equation (3.3) is a tropical algebraic equation in p1 of
at most the (2n − 2)-th degree.

Proof. Let L = 2n−1 − 1. It is sufficient to consider L subsets, so we have

N (p1, . . . , pn) = ΣL =
⊙

a2,...,an∈{0,1}
(a2,...,an)6=(1,...,1)

(
p1�p

a2
2
� · · · �pann ⊕ p

1−a2
2

� · · · �p1−an
n

)
.

N is thus rewritten as
L⊕
k=0

Nk(p2, . . . , pn)�pL−k1 ,

where Nk is a tropical polynomial. Similarly we have

D (p1, . . . , pn) = ΣL−1 =

L−1⊕
k=0

Dk(p2, . . . , pn)�pL−1−k
1 ,

where Dk is a tropical polynomial. Therefore, the equation (3.3) is as follows:

L⊕
k=0

Nk
(
p2

2, . . . , p
2
n

)
�p2L−2k

1 = p1� · · · �pn�
L−1⊕
k=0

Dk

(
p2

2, . . . , p
2
n

)
�p2L−2−2k

1

⇔
L⊕
k=0

Nk
(
p2

2, . . . , p
2
n

)
�p2L−2k

1 =

L−1⊕
k=0

D′k
(
p2

2, . . . , p
2
n

)
�p

2L−(2k+1)
1 ,

where D′k = p2� · · · �pn�Dk. The equation is a tropical algebraic equation of
the 2L-th degree. The proof is complete.

Without loss of generality we may assume that p1 ≥ p2 ≥ · · · ≥ pn. As
examples we derive concretely and explicitly the tropical algebraic equation
and the solution set for n up to 6, but the tropical algebraic equations can be
computed automatically for n lager than 6. In order to express the equations in
terms of the elementary symmetric tropical polynomials, let si = Σi (p1, . . . , pn)
for i ∈ {1, . . . , n}.

The multiplication sign � is omitted hereafter.
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3.3.1 The case n = 2

Since
C(p1, p2) = p1 ⊕ p2,

we have the equation
p2

1 ⊕ p2
2 = p1p2,

which can be regarded as a tropical quadratic equation in p1. Simplifying the
equation using Proposition 3.2.1 we get

p1 = p2. (3.4)

The solution set is
{p2} .

This implies that it is sufficient to consider only the partition:

({p1}, {p2}).

Expressing the equation (3.4) in terms of the elementary symmetric tropical
polynomials we have the equation

s2
1 = s2.

3.3.2 The case n = 3

Since

C(p1, p2, p3) = min[p1 ⊕ p2p3, p2 ⊕ p1p3, p3 ⊕ p1p2]

=
p2p3p

3
1 ⊕ p2

2p
2
3p

2
1 ⊕

(
p3

2p3 ⊕ p2p
3
3

)
p1 ⊕ p2

2p
2
3

p2p3p2
1 ⊕ (p2

2p3 ⊕ p2p2
3) p1 ⊕ p2

2p3 ⊕ p2p2
3

,

we have the equation

p2
2p

2
3p

6
1 ⊕ p4

2p
4
3p

4
1 ⊕

(
p6

2p
2
3 ⊕ p2

2p
6
3

)
p2

1 ⊕ p4
2p

4
3

= p3
2p

3
3p

5
1 ⊕

(
p5

2p
3
3 ⊕ p3

2p
5
3

)
p3

1 ⊕
(
p5

2p
3
3 ⊕ p3

2p
5
3

)
p1,

which can be regarded as a tropical algebraic equation of the sixth degree in p1.
The equation is reduced to

p2
2p

2
3p

4
1 ⊕ p4

2p
4
3p

2
1 ⊕

(
p6

2p
2
3 ⊕ p2

2p
6
3

)
= p3

2p
3
3p

3
1 ⊕

(
p5

2p
3
3 ⊕ p3

2p
5
3

)
p1,

since pi is positive. Moreover, simplifying the equation using Proposition 3.2.1
we get

p2
1 ⊕ p2

2p
2
3 = (p2p3) p1. (3.5)

This can be regarded as a tropical quadratic equation in p1. The assumption of
Corollary 1.4.17 is satisfied and the solution set is

{p2p3} .

This implies that it is sufficient to consider only the partition:

({p1}, {p2, p3}).

Expressing the equation (3.5) in terms of the elementary symmetric tropical
polynomials we have the equation

s4
1 ⊕ s2

3 = s2
1s3.
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3.3.3 The case n = 4

The minimum C is as follows:

C(p1, p2, p3, p4) = min[p1 ⊕ p2p3p4, p1p2 ⊕ p3p4, p1p3 ⊕ p2p4,

p1p2p3 ⊕ p4, p1p4 ⊕ p2p3, p1p2p4 ⊕ p3, p1p3p4 ⊕ p2].

Simplifying this using Proposition 3.2.1 we get

C(p1, p2, p3, p4) =
p2

1 ⊕ p1p2p3p4 ⊕ p2
2p

2
3

p1 ⊕ p2p3
.

Therefore, we have the equation

p4
1 ⊕ p2

1

(
p2

2p
2
3p

2
4

)
⊕ p4

2p
4
3 = p3

1 (p2p3p4)⊕ p1

(
p3

2p
3
3p4

)
. (3.6)

This can be regarded as a tropical quartic equation in p1. The assumption of
Corollary 1.4.17 is satisfied and the solution set is{

p2p3p4, p2p3p
−1
4

}
.

This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4}), ({p1, p4}, {p2, p3}).

Table 3.1 shows the solutions. The solutions to the BalNPP are straightfor-
wardly obtained from these solutions (Table 3.2).

Rank in Solution
decreasing order

1 p2p3p4

2 p2p3p
−1
4

Table 3.1: The solutions to the NPP (n = 4)

Rank in Solution
decreasing order

1 p2p3p
−1
4

Table 3.2: The solution to the BalNPP (n = 4)

Expressing the equation (3.6) in terms of the elementary symmetric tropical
polynomials we have the equation

s8
1 ⊕ s4

1s
2
4 ⊕ s4

3 = s6
1s4 ⊕ s2

1s
2
3s4.

3.3.4 The case n = 5

The minimum C is as follows:

C(p1, p2, p3, p4, p5) = min[p1 ⊕ p2p3p4p5, . . . , p1p3p5 ⊕ p2p4, p1p4p5 ⊕ p2p3].
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Simplifying this using Proposition 3.2.1 we get

C(p1, p2, p3, p4, p5) =
N(p1, p2, p3, p4, p5)

D(p1, p2, p3, p4, p5)
,

where

N =p5
1 ⊕ p4

1p2p3p4p5 ⊕ p3
1p

2
2p

2
3p

2
4 ⊕ p2

1p
3
2p

3
3p4p5 ⊕ p1p

4
2p

4
3

⊕ p1p
4
2p

2
3p

2
4p

2
5 ⊕ p3

2p
3
3p

3
4p

3
5,

D =p4
1 ⊕ p3

1p2p3p4 ⊕ p2
1p

2
2p

2
3p4 ⊕ p1p

3
2p

3
3 ⊕ p1p

3
2p

2
3p4p5 ⊕ p3

2p
2
3p

2
4p

2
5.

Therefore, we have the equation

p10
1 ⊕ p8

1

(
p2

2p
2
3p

2
4p

2
5

)
⊕ p6

1

(
p4

2p
4
3p

4
4

)
⊕ p4

1

(
p6

2p
6
3p

2
4p

2
5

)
⊕ p2

1

(
p8

2p
8
3 ⊕ p8

2p
4
3p

4
4p

4
5

)
⊕ p6

2p
6
3p

6
4p

6
5

=p9
1 (p2p3p4p5)⊕ p7

1

(
p3

2p
3
3p

3
4p5

)
⊕ p5

1

(
p5

2p
5
3p

3
4p5

)
⊕ p3

1

(
p7

2p
7
3p4p5 ⊕ p7

2p
5
3p

3
4p

3
5

)
⊕ p1

(
p7

2p
5
3p

5
4p

5
5

)
. (3.7)

This can be regarded as a tropical algebraic equation of the tenth degree in p1.
When p3 ≤ p4p5, the assumption of Corollary 1.4.17 is satisfied and the

solution set is{
p2p3p4p5, p2p3p4p

−1
5 , p2p3p

−1
4 p5, p2p

−1
3 p4p5, p

−1
2 p3p4p5

}
.

This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4, p5}), ({p1, p5}, {p2, p3, p4}), ({p1, p4}, {p2, p3, p5}),
({p1, p3}, {p2, p4, p5}), ({p1, p2}, {p3, p4, p5}).

When p3 > p4p5, the assumption is not satisfied, but considering the graph
of the function N2(p1p2p3p4p5D

2)−1 we easily obtain the solution set{
p2p3p4p5, p2p3p4p

−1
5 , p2p3p

−1
4 p5, p2p3p

−1
4 p−1

5

}
.

This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4, p5}), ({p1, p5}, {p2, p3, p4}),
({p1, p4}, {p2, p3, p5}), ({p1, p4, p5}, {p2, p3}).

Table 3.3 shows the solutions. The solutions to the BalNPP are straightfor-
wardly obtained from these solutions (Table 3.4).

Expressing the equation (3.7) in terms of the elementary symmetric tropical
polynomials we have the equation

s16
1 ⊕ s12

1 s
2
5 ⊕ s8

1s
4
4 ⊕ s4

1s
4
3s

2
5 ⊕ s8

3 ⊕ s4
2s

4
5 ⊕ s6

5

= s14
1 s5 ⊕ s10

1 s
2
4s5 ⊕ s6

1s
2
3s

2
4s5 ⊕ s2

1s
6
3s5 ⊕ s2

1s
2
2s

2
3s

3
5 ⊕ s2

2s
5
5.
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Rank in Solution
decreasing order p3 ≤ p4p5 p3 > p4p5

1 p2p3p4p5

2 p2p3p4p
−1
5

3 p2p3p
−1
4 p5

4 p2p
−1
3 p4p5 p2p3p

−1
4 p−1

5

5 p−1
2 p3p4p5 −

Table 3.3: The solutions to the NPP (n = 5)

Rank in Solution
decreasing order p3 ≤ p4p5 p3 > p4p5

1 p2p3p4p
−1
5

2 p2p3p
−1
4 p5

3 p2p
−1
3 p4p5 p2p3p

−1
4 p−1

5

4 p−1
2 p3p4p5 −

Table 3.4: The solutions to the BalNPP (n = 5)

3.3.5 The case n = 6

The minimum C is as follows:

C(p1, p2, p3, p4, p5, p6)

= min[p1 ⊕ p2p3p4p5p6, . . . , p1p4p6 ⊕ p2p3p5, p1p5p6 ⊕ p2p3p4].

Simplifying this using Proposition 3.2.1 we get

C(p1, p2, p3, p4, p5, p6) =
N(p1, p2, p3, p4, p5, p6)

D(p1, p2, p3, p4, p5, p6)
,

where

N =p10
1 ⊕ p9

1p2p3p4p5p6 ⊕ p8
1p

2
2p

2
3p

2
4p

2
5 ⊕ p7

1p
3
2p

3
3p

3
4p5p6

⊕ p6
1(p4

2p
4
3p

4
4 ⊕ p4

2p
4
3p

2
4p

2
5p

2
6)⊕ p5

1(p5
2p

5
3p

3
4p5p6 ⊕ p5

2p
3
3p

3
4p

3
5p

3
6)

⊕ p4
1(p6

2p
6
3p

2
4p

2
5 ⊕ p6

2p
4
3p

4
4p

2
5p

2
6 ⊕ p4

2p
4
3p

4
4p

4
5p

4
6)

⊕ p3
1(p7

2p
7
3p4p5p6 ⊕ p7

2p
5
3p

3
4p

3
5p6 ⊕ p5

2p
5
3p

5
4p

3
5p

3
6)

⊕ p2
1(p8

2p
8
3 ⊕ p8

2p
6
3p

2
4p

2
5p

2
6 ⊕ p8

2p
4
3p

4
4p

4
5 ⊕ p6

2p
6
3p

4
4p

4
5p

2
6)

⊕ p1(p7
2p

7
3p

3
4p

3
5p

3
6 ⊕ p7

2p
5
3p

5
4p

5
5p6)⊕ p6

2p
6
3p

6
4p

6
5,

D =p9
1 ⊕ p8

1p2p3p4p5 ⊕ p7
1p

2
2p

2
3p

2
4p5 ⊕ p6

1(p3
2p

3
3p

2
4p5p6 ⊕ p3

2p
3
3p

3
4)

⊕ p5
1(p4

2p
3
3p

2
4p

2
5p

2
6 ⊕ p4

2p
4
3p

3
4 ⊕ p4

2p
4
3p

2
4p5p6)

⊕ p4
1(p4

2p
3
3p

3
4p

3
5p

3
6 ⊕ p5

2p
4
3p

3
4p5p6 ⊕ p5

2p
5
3p

2
4p5 ⊕ p5

2p
3
3p

3
4p

2
5p

2
6)

⊕ p3
1(p5

2p
4
3p

4
4p

2
5p

2
6 ⊕ p6

2p
5
3p

2
4p

2
5 ⊕ p6

2p
6
3p4p5 ⊕ p6

2p
4
3p

3
4p

2
5p6 ⊕ p4

2p
4
3p

4
4p

3
5p

3
6)

⊕ p2
1(p6

2p
5
3p

3
4p

3
5p6 ⊕ p7

2p
6
3p4p5p6 ⊕ p7

2p
7
3 ⊕ p7

2p
4
3p

3
4p

3
5 ⊕ p7

2p
5
3p

2
4p

2
5p6

⊕ p5
2p

5
3p

4
4p

3
5p

2
6)

⊕ p1(p7
2p

6
3p

2
4p

2
5p

2
6 ⊕ p7

2p
4
3p

4
4p

4
5 ⊕ p6

2p
5
3p

4
4p

4
5p6 ⊕ p6

2p
6
3p

3
4p

3
5p

2
6)⊕ p6

2p
5
3p

5
4p

5
5.
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Therefore, we have the equation

q0p
20
1 ⊕ q2p

18
1 ⊕ q4p

16
1 ⊕ q6p

14
1 ⊕ q8p

12
1 ⊕ q10p

10
1

⊕ q12p
8
1 ⊕ q14p

6
1 ⊕ q16p

4
1 ⊕ q18p

2
1 ⊕ q20

=q1p
19
1 ⊕ q3p

17
1 ⊕ q5p

15
1 ⊕ q7p

13
1 ⊕ q9p

11
1 ⊕ q11p

9
1

⊕ q13p
7
1 ⊕ q15p

5
1 ⊕ q17p

3
1 ⊕ q19p1, (3.8)

where

q0 = 1l,

q1 = p2p3p4p5p6,

q2 = p2
2p

2
3p

2
4p

2
5p

2
6,

q3 = p3
2p

3
3p

3
4p

3
5p6,

q4 = p4
2p

4
3p

4
4p

4
5,

q5 = p5
2p

5
3p

5
4p

3
5p6,

q6 = p6
2p

6
3p

6
4p

2
5p

2
6,

q7 = p7
2p

7
3p

5
4p

3
5p

3
6 ⊕ p7

2p
7
3p

7
4p5p6,

q8 = p8
2p

8
3p

8
4 ⊕ p8

2p
8
3p

4
4p

4
5p

4
6,

q9 = p9
2p

7
3p

5
4p

5
5p

5
6 ⊕ p9

2p
9
3p

7
4p5p6 ⊕ p9

2p
9
3p

5
4p

3
5p

3
6,

q10 = p10
2 p

10
3 p

6
4p

2
5p

2
6 ⊕ p10

2 p
6
3p

6
4p

6
5p

6
6,

q11 = p9
2p

7
3p

7
4p

7
5p

7
6 ⊕ p11

2 p
9
3p

7
4p

3
5p

3
6 ⊕ p11

2 p
11
3 p

5
4p

3
5p6 ⊕ p11

2 p
7
3p

7
4p

5
5p

5
6,

q12 = p12
2 p

12
3 p

4
4p

4
5 ⊕ p12

2 p
8
3p

8
4p

4
5p

4
6 ⊕ p8

2p
8
3p

8
4p

8
5p

8
6,

q13 = p11
2 p

9
3p

9
4p

5
5p

5
6 ⊕ p13

2 p
11
3 p

5
4p

5
5p6 ⊕ p13

2 p
13
3 p

3
4p

3
5p6 ⊕ p13

2 p
9
3p

7
4p

5
5p

3
6 ⊕ p9

2p
9
3p

9
4p

7
5p

7
6,

q14 = p14
2 p

14
3 p

2
4p

2
5p

2
6 ⊕ p14

2 p
10
3 p

6
4p

6
5p

2
6 ⊕ p10

2 p
10
3 p

10
4 p

6
5p

6
6,

q15 = p13
2 p

11
3 p

7
4p

7
5p

3
6 ⊕ p15

2 p
13
3 p

3
4p

3
5p

3
6 ⊕ p15

2 p
15
3 p4p5p6 ⊕ p15

2 p
9
3p

7
4p

7
5p6

⊕ p15
2 p

11
3 p

5
4p

5
5p

3
6 ⊕ p11

2 p
11
3 p

9
4p

7
5p

5
6,

q16 = p16
2 p

16
3 ⊕ p16

2 p
12
3 p

4
4p

4
5p

4
6 ⊕ p16

2 p
8
3p

8
4p

8
5 ⊕ p12

2 p
12
3 p

8
4p

8
5p

4
6,

q17 = p15
2 p

13
3 p

5
4p

5
5p

5
6 ⊕ p15

2 p
9
3p

9
4p

9
5p6 ⊕ p13

2 p
11
3 p

9
4p

9
5p

3
6 ⊕ p13

2 p
13
3 p

7
4p

7
5p

5
6,

q18 = p14
2 p

14
3 p

6
4p

6
5p

6
6 ⊕ p14

2 p
10
3 p

10
4 p

10
5 p

2
6,

q19 = p13
2 p

11
3 p

11
4 p

11
5 p6,

q20 = p12
2 p

12
3 p

12
4 p

12
5 .

This can be regarded as a tropical algebraic equation of the twentieth degree
in p1. We can identify that qi+1

qi
≤ qi

qi−1
for i = 1, 2, ..., 15, 16 and qi+1

qi
= qi

qi−1

for i = 1, 3, 5, ..., 13, 15
When p3p6 ≤ p4p5, the assumption of Corollary 1.4.17 is satisfied, that is,

qi+1

qi
≤ qi

qi−1
for i = 17, 18, 19 and the solution set is{

p2p3p4p5p6, p2p3p4p5p
−1
6 , p2p3p4p

−1
5 p6, p2p3p

−1
4 p5p6, p2p

−1
3 p4p5p6,

p−1
2 p3p4p5p6, p2p3p4p

−1
5 p−1

6 , p2p3p
−1
4 p5p

−1
6 , p2p

−1
3 p4p5p

−1
6 , p−1

2 p3p4p5p
−1
6

}
.
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This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4, p5, p6}), ({p1, p6}, {p2, p3, p4, p5}), ({p1, p5}, {p2, p3, p4, p6}),
({p1, p4}, {p2, p3, p5, p6}), ({p1, p3}, {p2, p4, p5, p6}), ({p1, p2}, {p3, p4, p5, p6}),
({p1, p5, p6}, {p2, p3, p4}), ({p1, p4, p6}, {p2, p3, p5}), ({p1, p3, p6}, {p2, p4, p5}),
({p1, p2, p6}, {p3, p4, p5}).

Note that qi+1

qi
= qi

qi−1
for i = 17, 19.

When p3p6 > p4p5, the assumption is not satisfied. Considering the graph
of the function N2(p1p2p3p4p5p6D

2)−1 we easily obtain the solution set. If
p3p6 > p4p5 and p3 ≤ p4p5p6, then qi+1

qi
≤ qi

qi−1
for i = 17 and the solution set is{

p2p3p4p5p6, p2p3p4p5p
−1
6 , p2p3p4p

−1
5 p6, p2p3p

−1
4 p5p6, p2p

−1
3 p4p5p6,

p−1
2 p3p4p5p6, p2p3p4p

−1
5 p−1

6 , p2p3p
−1
4 p5p

−1
6 , p2p3p

−1
4 p−1

5 p6

}
.

This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4, p5, p6}), ({p1, p6}, {p2, p3, p4, p5}), ({p1, p5}, {p2, p3, p4, p6}),
({p1, p4}, {p2, p3, p5, p6}), ({p1, p3}, {p2, p4, p5, p6}), ({p1, p2}, {p3, p4, p5, p6}),
({p1, p5, p6}, {p2, p3, p4}), ({p1, p4, p6}, {p2, p3, p5}), ({p1, p4, p5}, {p2, p3, p6}).

Note that q18
q17

= q17
q16

. If p3 > p4p5p6, then the solution set is{
p2p3p4p5p6, p2p3p4p5p

−1
6 , p2p3p4p

−1
5 p6, p2p3p

−1
4 p5p6,

p2p3p4p
−1
5 p−1

6 , p2p3p
−1
4 p5p

−1
6 , p2p3p

−1
4 p−1

5 p6, p2p3p
−1
4 p−1

5 p−1
6

}
.

This implies that it is sufficient to consider only the partitions:

({p1}, {p2, p3, p4, p5, p6}), ({p1, p6}, {p2, p3, p4, p5}), ({p1, p5}, {p2, p3, p4, p6}),
({p1, p4}, {p2, p3, p5, p6}), ({p1, p5, p6}, {p2, p3, p4}), ({p1, p4, p6}, {p2, p3, p5}),
({p1, p4, p5}, {p2, p3, p6}), ({p1, p4, p5, p6}, {p2, p3}).

Tables 3.5, 3.6, and 3.7 show the solutions for the cases p3p6 ≤ p4p5, (p3p6 >
p4p5, p3 ≤ p4p5p6), and p3 > p4p5p6, respectively. Note that we write i2...ik

ik+1...in

for
pi2 ···pik
pik+1

···pin
. The solutions to the BalNPP are straightforwardly obtained from

these solutions (Table 3.8).
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Rank in Solution
decreasing order p5p6 ≤ p4 p4 ≤ p5p6

1 23456
2 2345

6

3 2346
5

4 234
56

2356
4

5 2356
4

234
56

6 235
46

7 236
45

8 23
456

Table 3.7: The solutions to the NPP (n = 6, p3 > p4p5p6)

Rank in Solution
decreasing order p3p6 ≤ p4p5 p3p6 > p4p5,

1 p2p3p4p
−1
5 p−1

6

2 p2p3p
−1
4 p5p

−1
6

3 p2p
−1
3 p4p5p

−1
6 p2p3p

−1
4 p−1

5 p6

4 p−1
2 p3p4p5p

−1
6 −

Table 3.8: The solutions to the BalNPP (n = 6)

Expressing the equation (3.8) in terms of the elementary symmetric tropical
polynomials we have the equation

s32
1 ⊕ s28

1 s
2
6 ⊕ s24

1 s
4
5 ⊕ s20

1 s
4
4s

2
6 ⊕ s16

1 s
8
4 ⊕ s16

1 s
4
3s

4
6 ⊕ s12

1 s
4
3s

4
4s

2
6 ⊕ s12

1 s
4
2s

6
6

⊕ s8
1s

8
3s

4
5 ⊕ s8

1s
4
2s

4
4s

4
6 ⊕ s12

1 s
8
6 ⊕ s8

1s
4
4s

6
6 ⊕ s4

1s
12
3 s

2
6 ⊕ s4

1s
4
2s

4
3s

4
5s

2
6 ⊕ s4

1s
4
3s

4
5s

4
6

⊕ s16
3 ⊕ s4

2s
8
3s

4
6 ⊕ s8

2s
8
5 ⊕ s8

3s
6
6 ⊕ s4

2s
8
5s

2
6 ⊕ s12

5

=s30
1 s6 ⊕ s26

1 s
2
5s6 ⊕ s22

1 s
2
4s

2
5s6 ⊕ s18

1 s
2
3s

2
4s

3
6 ⊕ s18

1 s
6
4s6 ⊕ s14

1 s
2
2s

2
3s

5
6 ⊕ s14

1 s
2
3s

6
4s6

⊕ s14
1 s

4
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2
4s

3
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1 s
2
2s

7
6 ⊕ s10
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2
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2
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4
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3
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1 s
6
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2
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2
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4
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2
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5
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2
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7
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1s

2
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4
4s

5
6 ⊕ s6

1s
2
2s

6
3s

4
5s6 ⊕ s6

1s
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3 s

2
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4
2s

2
3s

2
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2
5s

3
6 ⊕ s6

1s
2
3s

2
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2
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5
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1s

2
2s

4
3s

4
5s

3
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1s
2
2s
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3 s

3
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1s
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1s
6
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2
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6
5s6 ⊕ s2
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4
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6
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2
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3
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2
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2
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6
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3
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6
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2
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5
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8
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5
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8
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10
5 s6.

3.4 Summary

We found that tropical algebraic equations are useful in theoretical studies in
the NPP. The decision version of the NPP, which is NP-complete, is equivalent
to deciding whether one of given integers is a solution of a tropical algebraic
equation with coefficients composed of other integers.

Our new approach gives all possible partitions such that the two sums are
equal. The computations are simple but cumbersome. In fact, we get a tropical
algebraic equation of the forty-fourth degree in p1 for n = 7. It is laborious
to derive the equation and the solution set for larger n. We also obtained
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expressions for the equations in terms of the elementary symmetric tropical
polynomials. Through the expressions the theory of algebraic geometry may be
applied to the problem.

Furthermore, our approach provides a new view point for the P versus NP
problem. The cardinality of the solution set seems to be O(2n). Since the
solutions are sorted, by the binary search algorithm it is determined whether
one of given integers is equal to a solution of the equation in polynomial steps.
Therefore, if a solution set (a column in the table) concerned is specified in
polynomial time, it is expected that P equals NP.

For the optimal version of the NPP we need to consider the graph of the
function derived from the equation, so the optimal NPP is more difficult. This
is a future problem.
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Chapter 4

Conclusion

In this thesis, the new methods to tackle flow shops and a two-identical-parallel-
machine problem based on max-plus algebra were presented.

First, we presented a new framework for flow shops. The framework, the
machine representation, which associates a machine with a matrix is the dual of
the existing approach associating a job with a matrix by Bouquard et al. and
the first one which can deal with non-permutation flow shops based on max-plus
algebra. Using the framework we found a new solvable condition in m-machine
permutation flow shop problems to minimize makespan (Fm|prmu|Cmax), which
is an extension of known results. The result implies that an optimal job sequence
is easily obtained in more complicated production lines. And we provided new
simple proofs of some known results such as the duality between no-wait and no-
idle constraints and the reduction of a no-wait flow shop to a traveling salesman
problem. Moreover, we found a sufficient condition for an extension of Johnson’s
rule by considering a max-plus algebraic analogue of a proposition in linear
algebra and presented the problems in linear algebra that correspond to some
flow shops.

Max-plus algebra is very useful for flow shop problems. We expect that the
two dual frameworks based on max-plus algebra contribute to the development
of the theory of flow shops, especially non-permutation flow shops. It is a
future problem to formalize various flow shops, including stochastic models, in
the job representation and/or the machine representation and to analyze them.
Furthermore, since there exist a lot of results in linear algebra, it is also an
interesting problem to investigate the application of the results to flow shop
problems.

Secondly, we presented a new approach to reveal the mathematical structure
of the decision version of the two-identical-parallel-machine problem, or the
number partition problem (NPP), which is NP-complete. We showed that the
problem is equivalent to deciding whether one of given integers is a solution of
a tropical algebraic equation with coefficients composed of other integers. Our
approach gives all possible partitions such that the two sums are equal. The
computations are simple but cumbersome. In fact, we get a tropical algebraic
equation of the forty-fourth degree in p1 for n = 7. It is laborious to derive the
equation and the solution set for larger n. We also obtained expressions for the
equations in terms of the elementary symmetric tropical polynomials. Through
the expressions the theory of algebraic geometry may be applied to the problem.
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Furthermore, our approach provides a new view point for the P versus NP
problem. The cardinality of the solution set seems to be O(2n). Since the
solutions are sorted, by the binary search algorithm it is determined whether
one of given integers is equal to a solution of the equation in polynomial steps.
Therefore, if a solution set (a column in the table) concerned is specified in
polynomial time, it is expected that P equals NP.

Our methods and results are important from theoretical and practical point
of view. It can be expected that the development of our methods will generate
new results and contribute to higher efficiency in production systems in the
future.
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Appendix A

An Extension of the
Elementary Symmetric
Tropical Polynomials

A.1 Introduction

We consider r-symmetric tropical polynomials in nr variables. We define basic
r-symmetric tropical polynomials based on Matsui [66]. The basic polynomials
are tropicalizations of the symmetric polynomials presented by Weyl [67] and
a part of the elementary r-symmetric tropical polynomials defined by Carlsson
and Kalǐsnik [59].

The basic 2-symmetric tropical polynomials are not independent and many
inequalities between the polynomials hold. Using the inequalities we show that
the basic 2-symmetric polynomials give coordinates on R2n/Sn (Theorem A.3.4).
This result is better than the one by Carlsson and Kalǐsnik. Moreover, for
vectors such that at least a vector (Proposition A.4.1) or a difference vector
(Proposition A.4.2) has distinct components, the basic polynomials separate
orbits even for r ≥ 3.
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A.2 Definition of basic r-symmetric tropical poly-
nomials

In order to define basic r-symmetric tropical polynomials we prepare the forms:

Φ1

(
u(α1)

)
=
⊕
k1

u
(α1)
k1

,

Φ2

(
u(α1), u(α2)

)
=
⊕
k1 6=k2

u
(α1)
k1

�u
(α2)
k2

,

Φ3

(
u(α1), u(α2), u(α3)

)
=

⊕
k1,k2,k3 all 6=

u
(α1)
k1

�u
(α2)
k2

�u
(α3)
k3

,

...

Φn

(
u(α1), u(α2), . . . , u(αn)

)
=

⊕
k1,k2,...,kn all 6=

u
(α1)
k1

�u
(α2)
k2

� · · · �u(αn)
kn

,

where u(α) =
(
u

(α)
1 , u

(α)
2 , . . . , u

(α)
n

)t

.

Definition A.2.1. Let x(1), . . . , x(r) be n-dimensional vectors of variables.

The basic r-symmetric tropical polynomials in nr variables x
(1)
1 , . . . , x

(1)
n , . . . ,

x
(r)
1 , . . . , x

(r)
n are defined by the formulas

Φ0,

Φ1

(
x(α1)

)
, α1 = 1, . . . , r,

...

Φl

(
x(α1), . . . , x(αl)

)
, α1, . . . , αl = 1, . . . , r,

...

Φn

(
x(α1), x(α2), . . . , x(αn)

)
, α1, α2, . . . , αn = 1, . . . , r,

where Φ0 = 1l(= 0).

The basic r-symmetric tropical polynomials are tropicalizations of the typical
basic invariants in Weyl’s book [67].

Example A.2.2. Let r = 1 and let us write x instead of x(1). The basic
1-symmetric tropical polynomials are as follows:

Φ0 = 1l,

Φ1 (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn,
Φ2 (x, x) = x1�x2 ⊕ x1�x3 ⊕ · · · ⊕ xn−1�xn,

...

Φn (x, x, . . . , x) = x1�x2� · · · �xn.
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These are the same as the elementary symmetric tropical polynomials defined
by Carlsson and Kalǐsnik [59] except for Φ0.

Example A.2.3. Let n = 3 and r = 3, and let us write x, y, z instead of
x(1), x(2), x(3), respectively. The basic 3-symmetric tropical polynomials are as
follows:

Φ0 = 1l,

Φ1 (x) = x1 ⊕ x2 ⊕ x3,

Φ1 (y) = y1 ⊕ y2 ⊕ y3,

Φ1 (z) = z1 ⊕ z2 ⊕ z3,

Φ2 (x, x) = x1�x2 ⊕ x1�x3 ⊕ x2�x3,

Φ2 (y, y) = y1�y2 ⊕ y1�y3 ⊕ y2�y3,

Φ2 (z, z) = z1�z2 ⊕ z1�z3 ⊕ z2�z3,

Φ2 (x, y) = x1�y2 ⊕ x1�y3 ⊕ x2�y1 ⊕ x2�y3 ⊕ x3�y1 ⊕ x3�y2,

Φ2 (x, z) = x1�z2 ⊕ x1�z3 ⊕ x2�z1 ⊕ x2�z3 ⊕ x3�z1 ⊕ x3�z2,

Φ2 (y, z) = y1�z2 ⊕ y1�z3 ⊕ y2�z1 ⊕ y2�z3 ⊕ y3�z1 ⊕ y3�z2,

Φ3 (x, x, x) = x1�x2�x3,

Φ3 (y, y, y) = y1�y2�y3,

Φ3 (z, z, z) = z1�z2�z3,

Φ3 (x, x, y) = x1�x2�y3 ⊕ x1�x3�y2 ⊕ x2�x3�y1,

Φ3 (x, x, z) = x1�x2�z3 ⊕ x1�x3�z2 ⊕ x2�x3�z1,

Φ3 (y, y, x) = y1�y2�x3 ⊕ y1�y3�x2 ⊕ y2�y3�x1,

Φ3 (y, y, z) = y1�y2�z3 ⊕ y1�y3�z2 ⊕ y2�y3�z1,

Φ3 (z, z, x) = z1�z2�x3 ⊕ z1�z3�x2 ⊕ z2�z3�x1,

Φ3 (z, z, y) = z1�z2�y3 ⊕ z1�z3�y2 ⊕ z2�z3�y1,

Φ3 (x, y, z) = x1�y2�z3 ⊕ x1�y3�z2 ⊕ x2�y1�z3 ⊕ x2�y3�z1

⊕ x3�y1�z2 ⊕ x3�y2�z1.

Proposition A.2.4. Let x(1) =
(
x

(1)
1 , ..., x

(1)
n

)t

, . . . , x(r) =
(
x

(r)
1 , ..., x

(r)
n

)t

and

l be an integer between 1 and n. The basic r-symmetric tropical polynomials in
nr variables can be written in terms of those in (n− 1)r variables as follows:

Φl

(
x(α1), . . . , x(αl)

)
= Φl

(
x′(α1), . . . , x′(αl)

)
⊕
⊕

1≤j≤l

x(αj)
n

�Φl−1

(
x′(α1), . . . , x′(αj−1), x′(αj+1), . . . , x′(αl)

)
,

where x′(α) =
(
x

(α)
1 , . . . , x

(α)
n−1

)t

and Φn
(
x′(α1), . . . , x′(αn)

)
= 0l .

Proof. By definition we have

Φl

(
x(α1), . . . , x(αl)

)
=

⊕
k1,...,kl all 6=

x
(α1)
k1

� · · · �x(αl)
kl

. (A.1)

56



For 1 ≤ l ≤ n− 1 we can rewrite this as⊕
k1,...,kl≤n−1

and all 6=

x
(α1)
k1

� · · · �x(αl)
kl

⊕
⊕

1≤j≤l

⊕
k1,...,kj−1,kj+1,...,kl≤n−1

and all 6=

x
(α1)
k1

� · · · �x(αj−1)
kj−1

�x(αj)
n

�x
(αj+1)
kj+1

� · · · �x(αl)
kl

,

which equals

Φl

(
x′(α1), . . . , x′(αl)

)
⊕
⊕

1≤j≤l

x(αj)
n

�Φl−1

(
x′(α1), . . . , x′(αj−1), x′(αj+1), . . . , x′(αl)

)
.

For l = n we can rewrite the right-hand side of the formula (A.1) as⊕
1≤j≤n

⊕
k1,...,kj−1,kj+1,...,kn≤n−1

and all 6=

x
(α1)
k1

� · · · �x(αj−1)
kj−1

�x(αj)
n

�x
(αj+1)
kj+1

� · · · �x(αn)
kn

,

which equals⊕
1≤j≤n

x(αj)
n

�Φn−1

(
x′(α1), . . . , x′(αj−1), x′(αj+1), . . . , x′(αn)

)
.

These complete the proof.

Let us introduce a notation for the basic r-symmetric tropical polynomials.
We write bq1,q2,...,qr

(
x(1), . . . , x(r)

)
(or simply bq1,q2,...,qr when the arguments

are clear from the context) instead of

Φk

(
x(1), . . . , x(1)︸ ︷︷ ︸, x(2), . . . , x(2)︸ ︷︷ ︸, . . . , x(r), . . . , x(r)︸ ︷︷ ︸

)
,

q1 q2 qr

where q1 + q2 + · · · + qr = k and the index qα for α ∈ {1, . . . , r} indicates the
number of arguments x(α). For example, we write b2,1,0(x(1), x(2), x(3)) instead
of Φ3

(
x(1), x(1), x(2)

)
.

Corollary A.2.5. Let x = (x1, . . . , xn)
t
, y = (y1, . . . , yn)

t
, and p and q be

integers. The basic 2-symmetric tropical polynomials bp,q in 2n variables can be
written in terms of those b′r,s in 2(n− 1) variables x1, . . . , xn−1, y1, . . . , yn−1 as
follows:

bp,q = b′p,q ⊕ xn�b′p−1,q ⊕ yn�b′p,q−1,

where by definition bp,q = 0l when p < 0, q < 0 or p+ q > n.

Proof. For p and q such that p ≥ 0, q ≥ 0 and p + q ≤ n, straightforward by
Proposition A.2.4.

If p < 0, q < 0 or p+ q > n, then both sides are 0l .
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A.3 Properties of basic 2-symmetric tropical poly-
nomials

Let r = 2 in this section. We present inequalities between the basic 2-symmetric
tropical polynomials. Using the inequalities, we show that the basic polynomials
give coordinates on R2n/Sn, which is the main result in this paper.

Proposition A.3.1. Let n ≥ 1, p and q be integers, and bp,q be the basic 2-
symmetric tropical polynomial in 2n variables. Then the following inequalities
hold:

bp,q−1�bp−1,q ≥ bp,q�bp−1,q−1, (A.2a)

bp,q�bp,q−1 ≥ bp+1,q−1�bp−1,q, (A.2b)

bp,q�bp−1,q ≥ bp−1,q+1�bp,q−1. (A.2c)

Proof. Let 2n variables be denoted by (x, y), where x = (x1, . . . , xn)
t
, y =

(y1, . . . , yn)
t
. By exchanging the roles of x and y in the inequality (A.2b) we

obtain the inequality (A.2c). Therefore, we show that the inequalities (A.2a)
and (A.2b) hold.

We will prove the inequalities by induction on n. The base case is n = 1.
For p and q such that p ≤ 0, q ≤ 0 or p + q > 1, that is, any integers p and q,
the right-hand sides of (A.2a) and (A.2b) are 0l , so the two inequalities hold.

Now assume that the proposition is true for n− 1, that is,

b′p,q−1
�b′p−1,q ≥ b′p,q�b′p−1,q−1, (A.3a)

b′p,q�b
′
p,q−1 ≥ b′p+1,q−1

�b′p−1,q, (A.3b)

b′p,q�b
′
p−1,q ≥ b′p−1,q+1

�b′p,q−1,

where each b′ means the basic 2-symmetric tropical polynomial in 2(n − 1)
variables. Using the inequalities we prepare some inequalities. Replacing p by
p− 1 in the inequalities (A.3), we can write the inequalities in the forms

b′p−1,q−1
�b′p−2,q ≥ b′p−1,q

�b′p−2,q−1, (A.4a)

b′p−1,q
�b′p−1,q−1 ≥ b′p,q−1

�b′p−2,q, (A.4b)

b′p−1,q
�b′p−2,q ≥ b′p−2,q+1

�b′p−1,q−1. (A.4c)

Similarly replacing q by q − 1 in the inequalities (A.3) we have

b′p,q−2
�b′p−1,q−1 ≥ b′p,q−1

�b′p−1,q−2, (A.5a)

b′p,q−1
�b′p,q−2 ≥ b′p+1,q−2

�b′p−1,q−1, (A.5b)

b′p,q−1
�b′p−1,q−1 ≥ b′p−1,q

�b′p,q−2. (A.5c)

Multiplying (Adding in the conventional algebra) up the two inequalities (A.3a)
and (A.4a), (A.3b) and (A.4b), (A.3a) and (A.5a), (A.3a) and (A.3b), (A.4a)
and (A.4b), (A.5a) and (A.5c), (A.5b) and (A.5c), and (A.4b) and (A.5b), we
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obtain

b′p,q−1
�b′p−2,q ≥ b′p,q�b′p−2,q−1, (A.6a)

b′p,q�b
′
p−1,q−1 ≥ b′p+1,q−1

�b′p−2,q, (A.6b)

b′p,q−2
�b′p−1,q ≥ b′p,q�b′p−1,q−2, (A.6c)

b′2p,q−1 ≥ b′p+1,q−1
�b′p−1,q−1, (A.6d)

b′2p−1,q−1 ≥ b′p,q−1
�b′p−2,q−1, (A.6e)

b′2p−1,q−1 ≥ b′p−1,q
�b′p−1,q−2, (A.6f)

b′2p,q−1 ≥ b′p+1,q−2
�b′p−1,q, (A.6g)

b′p−1,q
�b′p,q−2 ≥ b′p+1,q−2

�b′p−2,q. (A.6h)

Now let us consider the inequality (A.2a). It follows from Corollary A.2.5
that

bp,q−1�bp−1,q

=
(
b′p,q−1 ⊕ xn�b′p−1,q−1 ⊕ yn�b′p,q−2

)
�
(
b′p−1,q ⊕ xn�b′p−2,q ⊕ yn�b′p−1,q−1

)
= b′p,q−1

�b′p−1,q ⊕ xn�
(
b′p,q−1

�b′p−2,q ⊕ b′p−1,q−1
�b′p−1,q

)
⊕ yn�

(
b′p,q−1

�b′p−1,q−1 ⊕ b′p,q−2
�b′p−1,q

)
⊕ x2

n
�b′p−1,q−1

�b′p−2,q

⊕ y2
n
�b′p,q−2

�b′p−1,q−1 ⊕ xn�yn�
(
b′2p−1,q−1 ⊕ b′p,q−2

�b′p−2,q

)
, (A.7a)

and

bp,q�bp−1,q−1

=
(
b′p,q ⊕ xn�b′p−1,q ⊕ yn�b′p,q−1

)
�
(
b′p−1,q−1 ⊕ xn�b′p−2,q−1 ⊕ yn�b′p−1,q−2

)
= b′p,q�b

′
p−1,q−1 ⊕ xn�

(
b′p,q�b

′
p−2,q−1 ⊕ b′p−1,q−1

�b′p−1,q

)
⊕ yn�

(
b′p,q−1

�b′p−1,q−1 ⊕ b′p,q�b′p−1,q−2

)
⊕ x2

n
�b′p−1,q

�b′p−2,q−1

⊕ y2
n
�b′p,q−1

�b′p−1,q−2 ⊕ xn�yn�
(
b′p,q−1

�b′p−2,q−1 ⊕ b′p−1,q
�b′p−1,q−2

)
.

(A.7b)

The expressions (A.7a) and (A.7b) are tropical polynomials of xn and yn. By
comparing the coefficients of 1l, xn, yn, x

2
n, y

2
n, xn�yn in both expressions, we

observe that all the coefficients of (A.7a) are greater than or equal to those of
(A.7b), because (A.3a), (A.6a), (A.6c), (A.4a), (A.5a), (A.6e), and (A.6f) hold.
Hence, the inequality (A.2a) holds.

Let us consider the inequality (A.2b). We similarly have

bp,q�bp,q−1

= b′p,q�b
′
p,q−1 ⊕ xn�

(
b′p,q�b

′
p−1,q−1 ⊕ b′p−1,q

�b′p,q−1

)
⊕ yn�

(
b′p,q�b

′
p,q−2 ⊕ b′2p,q−1

)
⊕ x2

n
�b′p−1,q

�b′p−1,q−1

⊕ y2
n
�b′p,q−1

�b′p,q−2 ⊕ xn�yn�
(
b′p−1,q

�b′p,q−2 ⊕ b′p,q−1
�b′p−1,q−1

)
, (A.8a)

bp+1,q−1�bp−1,q

= b′p+1,q−1
�b′p−1,q ⊕ xn�

(
b′p+1,q−1

�b′p−2,q ⊕ b′p−1,q
�b′p,q−1

)
⊕ yn�

(
b′p+1,q−1

�b′p−1,q−1 ⊕ b′p+1,q−2
�b′p−1,q

)
⊕ x2

n
�b′p,q−1

�b′p−2,q

⊕ y2
n
�b′p+1,q−2

�b′p−1,q−1 ⊕ xn�yn�
(
b′p+1,q−2

�b′p−2,q ⊕ b′p,q−1
�b′p−1,q−1

)
.

(A.8b)
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By comparing the coefficients of 1l, xn, yn, x
2
n, y

2
n, xn�yn, we observe that all the

coefficients of (A.8a) are greater than or equal to those of (A.8b), because (A.3b),
(A.6b), (A.6d), (A.6g), (A.4b), (A.5b), and (A.6h) hold. Hence, the inequality
(A.2b) holds, completing the proof.

Corollary A.3.2. Let n ≥ 1, p and q be integers, and bp,q be the basic 2-
symmetric tropical polynomial in 2n variables. Then the following inequalities
hold:

b2p,q−1 ≥ bp+1,q−1�bp−1,q−1, (A.9a)

b2p−1,q ≥ bp−1,q+1�bp−1,q−1, (A.9b)

b2p,q ≥ bp+1,q−1�bp−1,q+1, (A.9c)

b3p−1,q ≥ bp,q�bp−2,q+1�bp−1,q−1, (A.9d)

b3p,q−1 ≥ bp,q�bp+1,q−2�bp−1,q−1, (A.9e)

bp,0�b0,1 ≥ bp,1, (A.9f)

b0,q�b1,0 ≥ b1,q. (A.9g)

Proof. Let 2n variables be denoted by (x, y), where x and y are n-dimensional
column vectors. By exchanging the roles of x and y in the inequalities (A.9a),
(A.9d) and (A.9f), we obtain the inequalities (A.9b), (A.9e) and (A.9g), re-
spectively. Therefore, we show that the inequalities (A.9a), (A.9c), (A.9d) and
(A.9f) hold.

First we prove the inequalities (A.9a) and (A.9c). Multiplying (Adding in
the conventional algebra) up the two inequalities (A.2a) and (A.2b), and (A.2b)
and (A.2c), we obtain them.

Next we prove the inequality (A.9d). Replacing p by p− 1 in the inequality
(A.9c), we have

b2p−1,q ≥ bp,q−1�bp−2,q+1.

Multiplying up this and the inequality (A.2a), we obtain it.
Finally we prove the inequality (A.9f). If p < 0 or p ≥ n, then the right-hand

side is equal to 0l , so the inequality holds. Consider the inequalities obtained by
letting q = 1 in the inequality (A.2a) for p between 0 and (n− 1). Multiplying
up the inequalities

bp,0�XXXbp−1,1 ≥ bp,1����bp−1,0,

���bp−1,0�
XXXbp−2,1 ≥XXXbp−1,1����bp−2,0,

...

�
�b2,0�ZZb1,1 ≥ZZb2,1���b1,0,

�
�b1,0�b0,1 ≥ZZb1,1�b0,0,

we have bp,0�b0,1 ≥ bp,1�b0,0 = bp,1.

In order to prove our main theorem, we prepare the next proposition.
Hereinafter we use + or − instead of �.

Proposition A.3.3. Let

z ⊕ a1 = c1, . . . , z ⊕ am = cm
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be equations in z. If z ≥ aj for some j ∈ {1, . . . ,m}, then

z = min[c1, . . . , cm].

Proof. Since z ≤ ci for every i ∈ {1, . . . ,m}, we have z ≤ min[c1, . . . , cm].
Suppose that z ≥ aj for some j ∈ {1, . . . ,m}. Then z = cj and we have
min[c1, . . . , cm] ≤ cj = z. Therefore, we obtain z = min[c1, . . . , cm].

Note that if mz ≥ a1 + · · ·+ am, where mz is the product of m and z in the
conventional algebra, then the assumption of Proposition A.3.3 is satisfied.

Theorem A.3.4. Let p and q be integers and bp,q be the basic 2-symmetric
tropical polynomial in 2n variables. Let x, y, x̄, ȳ be n-dimensional vectors, and
[(x, y)] and [(x̄, ȳ)] be two orbits under the row permutation action on R2n. If

bp,q(x, y) = bp,q(x̄, ȳ)

for every p and q, then
[(x, y)] = [(x̄, ȳ)].

Proof. Let x = (x1, . . . , xn)
t
, y = (y1, . . . , yn)

t
, x̄ = (x̄1, . . . , x̄n)

t
, and ȳ =

(ȳ1, . . . , ȳn)
t
, such that bp,q(x, y) = bp,q(x̄, ȳ) for every p and q. Suppose that

x1 ≥ x2 ≥ · · · ≥ xn, x̄1 ≥ x̄2 ≥ · · · ≥ x̄n, if xi = xi+1 for some i ∈ {1, . . . , n−1},
then yi ≤ yi+1 and if x̄i = x̄i+1 for some i ∈ {1, . . . , n− 1}, then ȳi ≤ ȳi+1. We
will prove that x = x̄ and y = ȳ.

We use induction on n. When n = 1, we have

x1 = b1,0(x, y) = b1,0(x̄, ȳ) = x̄1,

y1 = b0,1(x, y) = b0,1(x̄, ȳ) = ȳ1.

Hence, the theorem is true.
Now assume that the theorem is true for n − 1. First we show that x1 =

x̄1, x2 = x̄2, . . . , xn = x̄n. Applying b1,0, we get x1 = x̄1. Applying b2,0, we get
x1 + x2 = x̄1 + x̄2, and from here x2 = x̄2 and so on. Finally, applying bn,0
yields xn = x̄n.

Let s = max {i ∈ {1, . . . , n} : bi−1,1 = bi−1,0 + b0,1}. Next we show that

ys = b0,1 = ȳs.

To do so, we show that
⊕

s≤k≤n yk = b0,1 at first. When s = 1, this is obvious.
Suppose that s ≥ 2. By definition of bp,q we have

bs−1,1 =
⊕

k1,...,ks all 6=

(
xk1 + · · ·+ xks−1

+ yks
)
.

Using the ordering of x we rewrite it asx1 + . . .+ xs−1 +
⊕
s≤k≤n

yk

⊕ ⊕
1≤k≤s−1

(x1 + · · ·+ xk−1 + xk+1 + · · ·xs + yk) .

On the other hand, by definition of s we have

bs−1,1 = bs−1,0 + b0,1 = x1 + . . .+ xs−1 + b0,1.
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Therefore, the following holds:x1 + . . .+ xs−1 +
⊕
s≤k≤n

yk


⊕

⊕
1≤k≤s−1

(x1 + · · ·+ xk−1 + xk+1 + · · ·xs + yk)

= x1 + . . .+ xs−1 + b0,1.

If
⊕

s≤k≤n yk < b0,1, then⊕
1≤k≤s−1

(x1 + · · ·+ xk−1 + xk+1 + · · ·xs + yk) = x1 + . . .+ xs−1 + b0,1.

Hence, for some l ∈ {1, . . . , s− 1}

x1 + · · ·+ xl−1 + xl+1 + · · ·xs + yl = x1 + . . .+ xs−1 + b0,1,

and, thus, xs + yl = xl + b0,1, which implies xl = xl+1 = · · · = xs and yl = b0,1
since xs ≤ xl and yl ≤ b0,1. It follows from this and the ordering of y that
ys = b0,1, which a contradiction. Thus,

⊕
s≤k≤n yk = b0,1. If ys < b0,1, then⊕

s+1≤k≤n yk = b0,1 and we observe that

bs,1 =

x1 + · · ·+ xs +
⊕

s+1≤k≤n

yk


⊕
⊕

1≤k≤s

(x1 + · · ·+ xk−1 + xk+1 + · · ·xs+1 + yk)

= x1 + · · ·+ xs + b0,1.

This contradicts the definition of s. Therefore, we get ys = b0,1. A similar
argument proves that ȳs = b0.1. We conclude that ys = b0.1 = ȳs.

Let x′, y′, x̄′, ȳ′ be the (n−1)-dimensional vectors obtained from x, y, x̄, ȳ by
removing the s-th component respectively. Finally in order to use the induction
hypothesis we show that

bp,0(x′, y′) = bp,0(x̄′, ȳ′), 1 ≤ p ≤ n− 1, (A.10a)

bp,q(x
′, y′) = bp,q(x̄

′, ȳ′), p ≥ 1, q ≥ 1, p+ q ≤ n− 1, (A.10b)

b0,q(x
′, y′) = b0,q(x̄

′, ȳ′), 1 ≤ q ≤ n− 1. (A.10c)

We at first show that

bp,0(x′, y′) = min [bp,0(x, y), bp+1,0(x, y)− xs] , 1 ≤ p ≤ n− 1, (A.11a)

bp,q(x
′, y′) = min [bp,q(x, y), bp+1,q(x, y)− xs, bp,q+1(x, y)− ys] ,

p ≥ 1, q ≥ 1, p+ q ≤ n− 1, (A.11b)

b0,q(x
′, y′) = min [b0,q(x, y), b0,q+1(x, y)− ys] , 1 ≤ q ≤ n− 1. (A.11c)

Let us write b′p,q instead of bp,q(x
′, y′). We show the formula (A.11a). By

Corollary A.2.5 we have

bp,0 = b′p,0 ⊕
(
b′p−1,0 + xs

)
, 1 ≤ p ≤ n,

bp+1,0 − xs = b′p,0 ⊕
(
b′p+1,0 − xs

)
, 0 ≤ p ≤ n− 1,
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which are equations in b′p,0. We claim that the assumption of Proposition A.3.3
is satisfied. We observe that(

b′p−1,0 + xs
)

+
(
b′p+1,0 − xs

)
= b′p−1,0 + b′p+1,0 ≤ 2b′p,0.

The inequality is obtained by letting q = 1 in the inequality (A.9a). Hence, by
Proposition A.3.3, we have the formula (A.11a). By exchanging the role of x
and y in the formula (A.11a) we obtain the formula (A.11c). Next we show the
formula (A.11b). By Corollary A.2.5 we have

bp,q = b′p,q ⊕
(
b′p−1,q + xs

)
⊕
(
b′p,q−1 + ys

)
, p ≥ 0, q ≥ 0, p+ q ≤ n,

bp,q+1 − ys = b′p,q ⊕
(
b′p,q+1 − ys

)
⊕
(
b′p−1,q+1 + xs − ys

)
,

p ≥ 0, q ≥ 0, p+ q ≤ n− 1,

bp+1,q − xs = b′p,q ⊕
(
b′p+1,q − xs

)
⊕
(
b′p+1,q−1 + ys − xs

)
,

p ≥ 0, q ≥ 0, p+ q ≤ n− 1,

which are equations in b′p,q. We claim that the assumption of Proposition A.3.3
is satisfied. Suppose that the assumption is not satisfied, that is, for p ≥ 1, q ≥
1, p+ q ≤ n− 1,

b′p,q <
(
b′p−1,q + xs

)
⊕
(
b′p,q−1 + ys

)
, (A.12a)

b′p,q <
(
b′p,q+1 − ys

)
⊕
(
b′p−1,q+1 + xs − ys

)
, (A.12b)

b′p,q <
(
b′p+1,q − xs

)
⊕
(
b′p+1,q−1 + ys − xs

)
. (A.12c)

We can eliminate ys by writing the two inequalities (A.12b) and (A.12c) in the
forms:

b′p+1,q−1 + ys + b′p,q <
(
b′p,q+1 + b′p+1,q−1

)
⊕
(
b′p+1,q−1 + b′p−1,q+1 + xs

)
,

xs + 2b′p,q <
(
b′p,q + b′p+1,q

)
⊕
(
b′p+1,q−1 + ys + b′p,q

)
.

Eliminating xs similarly, we thus obtain the two inequalities

xs + 2b′p,q <
(
b′p,q + b′p+1,q

)
⊕
(
b′p,q+1 + b′p+1,q−1

)
⊕
(
b′p+1,q−1 + b′p−1,q+1 + xs

)
,

ys + 2b′p,q <
(
b′p,q + b′p,q+1

)
⊕
(
b′p+1,q + b′p−1,q+1

)
⊕
(
b′p+1,q−1 + b′p−1,q+1 + ys

)
.

Since the inequality (A.9c) holds, we can neglect the third term in the right-hand
side of each inequality. Hence, we have

xs + 2b′p,q <
(
b′p,q + b′p+1,q

)
⊕
(
b′p,q+1 + b′p+1,q−1

)
,

ys + 2b′p,q <
(
b′p,q + b′p,q+1

)
⊕
(
b′p+1,q + b′p−1,q+1

)
.

Using the inequalities we can eliminate xs and ys from (A.12a) and obtain the
inequality

3b′p,q <
(
b′p,q + b′p+1,q + b′p−1,q

)
⊕
(
b′p,q+1 + b′p+1,q−1 + b′p−1,q

)
⊕
(
b′p,q + b′p,q+1 + b′p,q−1

)
⊕
(
b′p+1,q + b′p−1,q+1 + b′p,q−1

)
.

Since (A.9a), (A.9e), (A.9b) and (A.9d) hold, the inequality does not hold.
This is a contradiction, so the assumption of Proposition A.3.3 is satisfied and
by Proposition A.3.3 we have the formula (A.11b).
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We similarly have for x̄′, ȳ′

bp,0(x̄′, ȳ′) = min [bp,0(x̄, ȳ), bp+1,0(x̄, ȳ)− x̄s] , 1 ≤ p ≤ n− 1, (A.13a)

bp,q(x̄
′, ȳ′) = min [bp,q(x̄, ȳ), bp+1,q(x̄, ȳ)− x̄s, bp,q+1(x̄, ȳ)− ȳs] ,

p ≥ 1, q ≥ 1, p+ q ≤ n− 1, (A.13b)

b0,q(x̄
′, ȳ′) = min [b0,q(x̄, ȳ), b0,q+1(x̄, ȳ)− ȳs] , 1 ≤ q ≤ n− 1. (A.13c)

Hence the equalities (A.10) hold.
By the induction hypothesis, we have x′ = x̄′ and y′ = ȳ′. Therefore, x = x̄

and y = ȳ, which complete the proof.

By Theorem A.3.4 it is clear that the basic 2-symmetric tropical polynomials
give coordinates on R2n/Sn.

Example A.3.5. Let n = 4 and x = (2, 1, 1, 0)t, y = (2, 2, 3, 1)t. Then

b1,0(x, y) = 2, b0,1(x, y) = 3,

b2,0(x, y) = 3, b1,1(x, y) = 5, b0,2(x, y) = 5,

b3,0(x, y) = 4, b2,1(x, y) = 6, b1,2(x, y) = 7, b0,3(x, y) = 7,

b4,0(x, y) = 4, b3,1(x, y) = 6, b2,2(x, y) = 7, b1,3(x, y) = 8, b0,4(x, y) = 8.

To the contrary, we show how the orbit is determined by the values of the
basic 2-symmetric tropical polynomials according to the proof of Theorem A.3.4.
Suppose that x1 ≥ x2 ≥ x3 ≥ x4 and if xi = xi+1 for some i ∈ {1, 2, 3}, then
yi ≤ yi+1. First we obtain

x1 = b1,0 = 2, x2 = b2,0−b1,0 = 1, x3 = b3,0−b2,0 = 1, x4 = b4,0−b3,0 = 0.

We observe that

s = max {i ∈ {1, 2, 3, 4} : bi−1,1 = bi−1,0 + b0,1} = 3,

since b2,1 = b2,0 + b0,1 and b3,1 < b3,0 + b0,1. Hence, (x3, y3) = (1, b0,1) = (1, 3).
Let x′ = (2, 1, 0)t, y′ = (2, 2, 1)t. Then

b1,0(x′, y′) = min[b1,0(x, y), b2,0(x, y)− x3] = 2,

b0,1(x′, y′) = min[b0,1(x, y), b0,2(x, y)− y3] = 2,

b2,0(x′, y′) = min[b2,0(x, y), b3,0(x, y)− x3] = 3,

b1,1(x′, y′) = min[b1,1(x, y), b2,1(x, y)− x3, b1,2(x, y)− y3] = 4,

b0,2(x′, y′) = min[b0,2(x, y), b0,3(x, y)− y3] = 4,

b3,0(x′, y′) = min[b3,0(x, y), b4,0(x, y)− x3] = 3,

b2,1(x′, y′) = min[b2,1(x, y), b3,1(x, y)− x3, b2,2(x, y)− y3] = 4,

b1,2(x′, y′) = min[b1,2(x, y), b2,2(x, y)− x3, b1,3(x, y)− y3] = 5,

b0,3(x′, y′) = min[b0,3(x, y), b0,4(x, y)− y3] = 5.

Therefore, the rest is reduced to the case n = 3.
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A.4 Properties of basic r-symmetric tropical poly-
nomials

We present special cases for r ≥ 3 where the basic r-symmetric tropical poly-
nomials separate orbits.

Proposition A.4.1. Let r ≥ 3 and there be r n-dimensional vectors, at least
one of which has distinct components. Then the basic r-symmetric tropical
polynomials separate orbits.

Proof. Let r n-dimensional vectors be denoted by x(1), x(2), . . . , x(r). Suppose

that the components of the vector x(1) are all distinct and that x
(1)
1 > x

(1)
2 >

· · · > x
(1)
n . We will show that

(
x(1), x(2), . . . , x(r)

)
is uniquely determined by

the values of the basic r-symmetric tropical polynomials.
By Theorem A.3.4 we obtain

(
x(1), x(2)

)
. Similarly we obtain

(
x(1), x(3)

)
,

. . . ,
(
x(1), x(r)

)
. Since all the components of x(1) are distinct, we can uniquely

merge
(
x(1), x(2)

)
, . . . ,

(
x(1), x(r)

)
by x(1) and obtain

(
x(1), x(2), . . . , x(r)

)
.

Proposition A.4.2. Let r ≥ 3 and there be r n-dimensional vectors, such that
at least one of the differences of all pairs of these vectors has distinct compo-
nents. Then the basic r-symmetric tropical polynomials separate orbits.

Proof. Let r n-dimensional vectors be denoted by x(1), x(2), . . . , x(r). Suppose
that the components of the vector x(2) − x(1) are all distinct. We will show
that

(
x(1), x(2), . . . , x(r)

)
is uniquely determined by the values of the basic r-

symmetric tropical polynomials bq1,q2,...,qr
(
x(1), x(2), . . . , x(r)

)
.

First we show that each bp1,...,pr−1

(
x(2) − x(1), . . . , x(r) − x(1)

)
is written in

terms of the basic polynomials bq1,q2,...,qr
(
x(1), x(2), . . . , x(r)

)
.

Let q1 + q2 + · · ·+ qr = n. Then by definition we have

bq1,q2,...,qr

(
x(1), x(2), . . . , x(r)

)
− bn,0,...,0

(
x(1), x(2), . . . , x(r)

)
=
⊕
σ∈Sn

(
x

(1)
σ(1) + · · ·+ x

(1)
σ(q1) + x

(2)
σ(q1+1) + · · ·+ x

(2)
σ(q1+q2) + · · ·

+x
(r)
σ(q1+···+qr−1+1) + · · ·+ x

(r)
σ(n)

)
−
(
x

(1)
1 + x

(1)
2 + · · ·+ x(1)

n

)
=
⊕
σ∈Sn

(
x

(2)
σ(q1+1) − x

(1)
σ(q1+1) + · · ·+ x

(2)
σ(q1+q2) − x

(1)
σ(q1+q2) + · · ·

+x
(r)
σ(q1+···+qr−1+1) − x

(1)
σ(q1+···+qr−1+1) + · · ·+ x

(r)
σ(n) − x

(1)
σ(n)

)
,

since x
(1)
1 + x

(1)
2 + · · ·+ x

(1)
n = x

(1)
σ(1) + x

(1)
σ(2) + · · ·+ x

(1)
σ(n). Hence, we obtain the

formula

bq2,...,qr

(
x(2) − x(1), . . . , x(r) − x(1)

)
= bq1,q2,...,qr

(
x(1), x(2), . . . , x(r)

)
− bn,0,...,0

(
x(1), x(2), . . . , x(r)

)
.

Using the formula and Proposition A.4.1 we obtain
(
x(2) − x(1), . . . , x(r) − x(1)

)
,

since the components of the vector x(2) − x(1) are all distinct.
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On the other hand, we obtain
(
x(1), x(2)

)
from bq1,q2,0,...,0

(
x(1), x(2), . . . , x(r)

)
.

Thus we get
(
x(1), x(2) − x(1)

)
. Since all the components of x(2) − x(1) are dis-

tinct, we can uniquely merge
(
x(1), x(2) − x(1)

)
and

(
x(2) − x(1), . . . , x(r) − x(1)

)
by x(2) − x(1). Therefore, we get

(
x(1), x(2) − x(1), . . . , x(r) − x(1)

)
and thus(

x(1), x(2), . . . , x(r)
)
.

A.5 Discussion

We defined the basic r-symmetric tropical polynomials and showed that the
basic 2-symmetric tropical polynomials give coordinates on R2n/Sn. Moreover,
we presented special cases where the basic polynomials separate orbits even for
r ≥ 3.

The basic 2-symmetric tropical polynomials separate orbits more efficiently
than the elementary 2-symmetric tropical polynomials defined by Carlsson and
Kalǐsnik [59] in the sense that the set of the basic polynomials is a proper subset
of the set of the elementary polynomials. In addition, Carlsson and Kalǐsnik
alleged that the elementary polynomials generate the r-symmetric tropical ra-
tional functions, but the proof is false, because the authors made a mistake in
page 3626, line 7 (by replacing ⊕ with �).

It is interesting to investigate whether the basic polynomials separate orbits
for r ≥ 3 in general and whether they are generators for the set of r-symmetric
tropical rational functions. It would be suitable to call the basic polynomials
elementary depending on the results.
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[9] N.-V. Vo and C. Lenté, “From maxplus algebra to general lower bounds
for the total weighted completion time in flowshop scheduling problems,”
Lecture Notes in Management Science, vol. 6, pp. 128–137, 2014.

[10] N. G. Hall and C. Sriskandarajah, “A survey of machine scheduling prob-
lems with blocking and no-wait in process,” Operations Research, vol. 44,
no. 3, pp. 510–525, 1996.

[11] S. S. Reddi and C. V. Ramamoorthy, “On the flow-shop sequencing problem
with no wait in process,” Operational Research Quarterly, pp. 323–331,
1972.

[12] I. Adiri and D. Pohoryles, “Flowshop/no-idle or no-wait scheduling to min-
imize the sum of completion times,” Naval Research Logistics Quarterly,
vol. 29, no. 3, pp. 495–504, 1982.

67



[13] J. Kamburowski, “More on three-machine no-idle flow shops,” Computers
and Industrial Engineering, vol. 46, no. 3, pp. 461–466, 2004.

[14] P. J. Kalczynski and J. Kamburowski, “On no-wait and no-idle flow
shops with makespan criterion,” European Journal of Operational Research,
vol. 178, no. 3, pp. 677–685, 2007.

[15] H. M. Wagner, “An integer linear-programming model for machine schedul-
ing,” Naval Research Logistics Quarterly, vol. 6, pp. 131–140, 1958.

[16] E. H. Bowmann, “The schedule-sequencing problem,” Operations Research,
vol. 7, pp. 621–624, 1959.

[17] B. D. Corwin and A. O. Esogbue, “Two machine flow shop scheduling
problems with sequence dependent setup times: A dynamic programming
approach,” Naval Research Logistics Quarterly, vol. 21, no. 3, pp. 515–524,
1974.

[18] E. Ignall and L. Schrage, “Application of the branch and bound technique
to some flow-shop scheduling problems,” Operations Research, vol. 13,
pp. 400–412, 1965.

[19] D. S. Palmer, “Sequencing jobs through a multi-stage process in the mini-
mum total time–a quick method of obtaining a near optimum,” Operational
Research Quarterly, vol. 16, pp. 101–107, 1965.

[20] F. Burns and J. Rooker, “Johnson’s three-machine flow-shop conjecture,”
Operations Research, vol. 24, no. 3, pp. 578–580, 1976.

[21] F. Burns and J. Rooker, “Three-stage flow-shops with recessive second
stage,” Operations Research, vol. 26, no. 1, pp. 207–208, 1978.

[22] W. Szwarc, “Optimal two-machine orderings in the 3 x n flow-shop prob-
lem,” Operations Research, vol. 25, no. 1, pp. 70–77, 1977.

[23] J. O. Achugbue and F. Y. Chin, “Complexity and solutions of some three-
stage flow shop scheduling problems,” Mathematics of Operations Research,
vol. 7, no. 4, pp. 532–544, 1982.

[24] I. Nabeshima, “The order of n items processed on m machines. (II),” Jour-
nal of the Operations Research Society of Japan, vol. 4, pp. 1–8, 1961.

[25] I. Nabeshima, “Notes on the analytical results in flow shop scheduling: part
1 and 2,” Reports of the University of Electro-Communications, vol. 27,
no. 2, pp. 245–257, 1977.

[26] J. N. D. Gupta, “Optimal schedules for special structure flowshops,” Naval
Research Logistics Quarterly, vol. 22, no. 2, pp. 255–269, 1975.

[27] M. R. Garey, D. S. Johnson, and R. Shthi, “The complexity of flowshop
and jobshop scheduling,” Mathematics of Operations Research, vol. 1, no. 2,
pp. 117–129, 1976.

[28] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to
the theory of NP-completeness. San Francisco, L. A.: Freeman, 1979.

68



[29] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of
machine scheduling problems,” Annals of Discrete Mathematics, vol. 1,
pp. 343–362, 1977.

[30] T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: complexity
and approximation,” Operations Research, vol. 26, no. 1, pp. 36–52, 1978.

[31] R. Ruiz and C. Maroto, “A comprehensive review and evaluation of per-
mutation flowshop heuristics,” European Journal of Operational Research,
vol. 165, pp. 479–494, 2005.

[32] B. L. MacCarthy and J. Liu, “Addressing the gap in scheduling research:
a review of optimization and heuristic methods in production scheduling,”
International Journal of Production Research, vol. 31, no. 1, pp. 59–79,
1993.

[33] F. L. Rossi, M. S. Nagano, R. Fernandes, and T. Neto, “Evaluation of high
performance constructive heuristics for the flow shop with makespan mini-
mization,” The International Journal of Advanced Manufacturing Technol-
ogy, pp. 125–136, 2016.

[34] J. Dubois-lacoste, F. Pagnozzi, and T. Stützle, “An iterated greedy algo-
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