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Chapter 1

Introduction

1.1 Importance of Study on Mixed Traffic

Traffic jams are increasingly becoming a serious problem in worldwide owing to
the growth of the economies [1] and populations [2] in various countries. Although
widespread usage of motor vehicles enhances economic activity, and improves con-
venience and quality of life, many problems, such as air pollution, fuel depletion,
and economic losses, arise from traffic jams.

Homogeneous traffic flows, i.e., traffic flows comprising one type of vehicle,
have been modeled by many researchers. As reviewed in [3], there are several
types of models, e.g., microscopic follow-the-leader models, cellular automaton,
macroscopic traffic models, gas-kinetic traffic models, etc. The details of micro-
scopic models are reviewed in [4].

Although the differences between these models will be described in Section
3.1, insights obtained from these models have enabled researchers to discuss the-
ories for reducing of traffic jams without infrastructure construction, e.g., road
widening. For example, Nishi et al. proposed a theoretical framework called
“jam-absorption driving” [5], and suggested theoretical conditions to remove a
jam while not creating another jam because of the jam-absorption driving. This
theoretical framework was verified by Taniguchi et al. [6]. They successfully re-
moved a jam in a test circuit using human-driven cars, and the feasibility of jam
reduction without infrastructure construction was proven. Researchers have also
realized that traffic flow is stabilized when drivers refer multiple leaders and even
followers using these traffic models [7, 8, 9, 10, 11, 12].

In addition, researchers have focused on increasing road capacity through au-
tonomous vehicles and/or connected vehicles, although discussion has also been
presented from the safety perspective [13]. In an early work, Varaiya et al. pre-
sented a rough system architecture for an intelligent vehicle/highway system [14].
Hanebutte et al. provided a simulation framework for the intelligent vehicle/high-
way system as an autonomous intelligent cruise control [15]. Ferlis demonstrated
an automated highway system on l-15 in San Diego, CA [16]. In the demon-
stration, eight fully automated vehicles were driven in a tight formation, i.e., 6.5
m apart at a velocity of approximately 105 km/h. The demonstration showed
the feasibility of high traffic flow realized by automated systems. These days,
with the introduction of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications to the automated systems [17], the potential performance
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1. Introduction

of cooperative adaptive cruise control (CACC) for traffic flow is under discussion.
Naus et al. investigated the conditions for string stability in a system with CACC
vehicles and clarified that, under a velocity-dependent intervehicle spacing policy,
V2V wireless communication enabled small distance between vehicles maintain-
ing string stability [18]. Wang et al. introduced multi-anticipative adaptive cruise
control under cooperative control strategy and confirmed that, even when human
drivers were mixed into the traffic, smoother deceleration and responsive accelera-
tion which relate to traffic stability were realized [19]. Talebpour et al. examined
the effects of connected and autonomous vehicles and found that autonomous
vehicles were more effective than connected vehicles alone in the prevention of
shockwave propagation [20]. Ploeg et al. investigated the effectiveness of CACC
for the stable traffic using real passenger cars [21].

Regardless of whether the reduction of traffic jams is realized by human drivers
or CACC, the traffic jam reduction relying on the improvement of driving meth-
ods requires no or a small amount of infrastructure construction and contributes
to low-cost traffic improvement. Indeed, there are many types of problems re-
lated to driver education and autonomous technology, and jam reduction relying
on driving methods will not yield traffic flows that exceed road capacity. How-
ever, the feasibility of introducing jam reduction methods is worth investigating,
especially in developing countries where insufficient resources are allocated for
traffic improvement despite the increasing number of vehicles. Jam reduction re-
lying on driving methods will make the most of limited traffic resources in these
countries.

However, the traffic situation in some developing countries are totally differ-
ent from the traffic targeted by the models mentioned above. This is primarily
because of the various types of vehicles in traffic. We call traffic composed of
several types of vehicles as “mixed traffic.” For instance, Figure 1.1 shows mixed
traffic observed in Mumbai, India, in January 2017. Not only normal passen-
ger cars and trucks but also motorcycles, bicycles, and motorized three-wheelers
called auto-rickshaws were observed at a certain ratio. Hsu et al. investigated
the proportions of vehicle types in Taiwan, Malaysia, and Vietnam ,and clarified
the following [22]:

1. The number of utilized vehicles are increasing in these countries.

2. Mixed traffic occurs in Taiwan and Malaysia.

3. Motorcycles are dominant in traffic in Vietnam.

A portion of the statistics which they investigated in [22] is shown in Figure 1.2.

In order to introduce jam reduction by driving improvement in these devel-
oping countries, it is necessary to evaluate the effects of driving changes on jam
reduction. Therefore, as the first step of the evaluation, we definitely need to an-
alyze microscopic phenomena in current mixed traffic by modeling of such mixed
traffic.
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Figure 1.1: Mixed traffic observed in Mumbai, India.

(a) Case of Taiwan. (b) Case of Vietnam.

(c) Case of Malaysia.

Figure 1.2: Number of vehicles and their types in some Asian countries.

1.2 Previous Studies on Mixed Traffic

In mixed traffic, vehicles of different sizes and performance behave differently and
are supposed to cause “heterogeneity” of local density, velocities, accelerations,
and locations of each type of vehicle. This heterogeneity is the obstacle that
“uniform” traffic models cannot address. To tackle this heterogeneity, researchers
are adopting three types of approaches.

1. Analysis of driving behaviors according to physical values, i.e., velocity,
acceleration, deceleration, distance gap between vehicles, etc.

2. Analysis of driving behaviors based on parameters of mathematical models
which relate to driving behaviors, or analysis of macroscopic characteristics,
e.g., stability, relationship between the density and flow, etc., based on
simulations by fitted mathematical models

3. Increasing the number of vehicle types in consideration
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As an example of Approach 1, Sayer et al. clarified that drivers tend to have a
shorter distance gap, or space headway, between vehicles when following a heavy
vehicle (HV) than that when following a normal passenger car [23]. Sarvi mea-
sured the space and time headway in the car-following-car (C-C), car-following-
truck (C-T), and truck-following-car (T-C) cases and discovered different trends
[24]. Aghabayk et al. analyzed the characteristics of acceleration and reaction
time for the C-C, C-HV (car-following-heavy vehicle), HV-C, and HV-HV cases.
They also focused on the time and space headway. They found that the ten-
dencies for HV-C and C-HV cases were reversed at a velocity of 30 km/h. The
largest acceleration deviations were observed in the C-C case, followed in order by
C-HV, HV-C, and HV-HV [25]. All these studies considered the combination of
a leading vehicle (leader) and a following vehicle (follower) but classified vehicles
as either normal cars and trucks or heavy vehicles. Moreover, these studies did
not discuss the factors affecting these driving changes.

Although there are some studies on mixed traffic based on macroscopic mod-
els [26, 27]; here, we introduce studies based on microscopic models as examples
for Approach 2. Munigety et al. tried to replicate behavioral difference of various
types of vehicles using the spring-mass-damper model and investigated relation-
ship between the flow and velocity in the cases of homogeneous and mixed traffic
[28]. Based on the parameter changes of the car-following models, Ossen et al.
concluded that the desired time headway of a passenger car when following a truck
is smaller than that when following another passenger car. They also argued that
“robust” car-following is realized by trucks owing to their preference for constant
velocity [29]. Furthermore, Chen et al. insisted that a stop-and-go wave is atten-
uated because of the combination of HV-C [30]. They analyzed the parameters
of the asymmetric behavioral model [31] of the C-HV, C-C, and HV-C cases.
Mason et al. analyzed the stability of a system comprising normal passenger cars
and trucks using the optimal velocity model [32]. They confirmed that nonlinear
waves can be amplified or attenuated based on stability condition extended to a
multi-vehicle system. Yang et al. analyzed fundamental diagrams and stability
with changes in the parameters of the intelligent driver model [33]. They argued
that vehicle order in a platoon affects the propagation of a shockwave [34]. In
other words, the T-T combination amplified the shockwave, while the C-C combi-
nation attenuated it. The proportions of combinations, i.e., C-C, C-T, T-C, and
T-T, determined the fundamental diagrams. These studies also classified vehicles
into passenger cars and heavy vehicles. In addition, in some of these studies, it
was not confirmed sufficiently whether driving differences between these vehicles
were properly replicated. This can be attributed to the simplicity of models used
in the studies, or because the important driving differences to be replicated were
not chosen and the objective functions of model fitting referred only to the mean
squared error.

For Approach 3, researchers have tried to introduce small motorized vehicles
(e.g., motorcycles and motorized three-wheelers) and non-motorized vehicles (e.g.,
bicycles, carts, pedestrians, etc). In particular, the characteristic maneuvers of
motorcycles have attracted the attention of many researchers. Lee categorized the
unique behaviors of a motorcycle and proposed “oblique- and lateral-headway”
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and “longitudinal-headway” models to replicate the behaviors of motorcycles.
Their main focus was on passing and following behaviors with lateral movement
[35]. Wong et al. evaluated motorcycles based on a consideration of driving ag-
gressiveness and concluded that these motorcycles should be clearly distinguished
from other vehicles in microscopic models from the parameter perspective [36].
Shiomi et al. developed a microscopic model to replicate lane-free movements
frequently observed in the case of small vehicles [37]. Their model was based
on discrete choices for several objectives, e.g., current direction, destination, fol-
lowing other vehicles, collision avoidance, etc. From the estimated coefficients
for respective objective functions, they clarified the asymmetry of attentions be-
tween passenger cars and motorcycles. In contrast, Oketch focused on not only
motorcycles but also other non-motorized vehicles and pedestrians. He simulated
traffic with nine parameter-sets of vehicle types and fuzzy rules for lane changes.
The model included non-motorized vehicles and pedestrians. He confirmed the
consistency of this simulation with real traffic in Nairobi, Kenya [38].

1.3 Objective and Organization of the Thesis

As mentioned above, jam reduction by improvement of driving methods is ex-
pected to be an effective solution, especially for some developing countries that
can not allocate sufficient resources to traffic improvement. From the literature
review in Section 1.2, the flow of research on mixed traffic can be depicted as
Figure 1.3. While introducing various types of vehicles, researchers analyzed
driving differences and tried to adjust model parameters for the final objectives,
i.e., replication and clarification of microscopic phenomena in mixed traffic.

Figure 1.3: Flow of research on mixed traffic.
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In this flow, two questions are raised, and answering these questions is the
objective of this thesis.

1. What vehicle factors affect driving of respective vehicles?

2. Can we apply driving differences between each type of vehicles into existing
models by adjusting parameter values? If so, which parameters should be
adjusted to replicate the driving differences?

Answers to Question 1 will help us replicate microscopic phenomena in mixed
traffic currently observed in developing countries by taking many new types of
vehicles into consideration based on vehicle characteristics. It also helps us un-
derstand the vehicle factors that psychologically influence a human driver. Psy-
chological investigation based on this thesis will contribute to the development of
an autonomous driving strategy that is comfortable for drivers of various types
of vehicles. A comfortable autonomous driving strategy will be constantly es-
sential in the coming eras of completely automated vehicle traffic and half au-
tomated traffic, i.e., traffic comprising manual and autonomous driving vehicles.
Furthermore, even for current traffic in developed countries, the psychological in-
vestigation contributes to understanding driving trends for each type of vehicles.
Insights from the investigation can be utilized to foster the self-understanding of
drivers in safety training, etc.

Answering Question 2 will provide important parameters in existing models
to replicate driving differences between respective vehicles. It also clarifies the
performance limitations of models. In other words, we can identify features that
cannot be replicated by any parameter when a certain existing model is used.
Based on these insights, the limitations of macroscopic analysis of the traffic
with some existing models will be also clarified. Furthermore, clarifying the
performance of each parameter will be the basis for development of more accurate
models replicating microscopic behaviors in mixed traffic.

In order to answer Question 1, we focus on the driving of following vehicles
in a platoon comprising one leading vehicle and one following vehicle. In partic-
ular, by changing the vehicle types of leaders and followers, we develop multiple
regression models of follower driving, with explanatory variables that include
not only vehicle characteristics of leaders and followers but also their driving.
Multiple regression models with standardized variables enable us to evaluate the
effectiveness of various factors as well as determine the factors that are effective.

In order to answer Question 2, we compare trajectory features caused by
vehicle types in the experiments and by changing the values of parameters in
the models. By adjusting the lengths of time series in experiments and simula-
tions, we clarify the range at which characteristic trajectories were observed in
the observation and confirm whether the simulated trajectories were varied by
parameter changes in the characteristic ranges.

In this thesis, as with measurements in [39, 40, 41], we did not utilize field data,
but instead used trajectories recorded over a test circuit. This research method
was chosen since we were primarily aiming to find clear dependencies without
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having any disturbances, such as lane changes, that can affect the model. In ad-
dition, exploring the cause of driving changes in respective vehicle combinations,
which were not discussed in [39, 40, 41], is enabled by detailed information of on
respective vehicles utilized in our measurements.

In Chapter 2, we investigate the factors affecting follower driving. In Section
2.1, we observe the trajectories of platoons comprising two vehicles chosen among
motorcycles, normal passenger cars, and trucks using GPS antennas attached to
the respective vehicles in a test circuit. We also show the tendencies of observed
features of followers’ driving in respective vehicle combinations. In Section 2.2,
while introducing explanatory variables, i.e., characteristics of vehicles, we de-
velop and discuss regression models for respective followers’ driving to find the
dominant factors affecting driving behavior.

In Chapter 3, we introduce and select traffic models which we will investi-
gate before the comparison of observed trajectories and simulated trajectories in
Section 3.1. Then, we proceed with the comparison in Section 3.2. We describe
how to extract the characteristic trajectories of each vehicle from the observed
trajectories in Section 3.2.2. Features extracted from trajectories will be shown in
Section 3.2.3 On the other hand, trajectories simulated by several types of models
are introduced in Section 3.3. Finally, we compare the observed and simulated
trajectories based on features extracted from observed trajectories. In Chapter
5, we summarize and conclude discussions in the previous chapters.
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Chapter 2

Dependence of Driving
Characteristics on Vehicles and
Drivings in a Platoon

Abstract In order to investigate the effective factors on follower drivings, we
applied the multiple regression analysis and found that

1. the maximum velocity and acceleration of the following vehicle are mainly
affected by the drivings of the leading vehicle, and

2. the maximum deceleration, distance gaps when the platoons starts, the
maximum distance gap during a trial, and delay in maximum acceleration
timing are also affected by the vehicle characteristics of the leading and
following vehicles.

From these findings, it is possible to mention that the maximum velocity in the
car-following models need not to be modified by vehicle types.

In addition, psychological effects were implied in the maximum acceleration,
deceleration, and distance gaps. While some effects could be understood by safety
mind and comfortableness of the drivers, the other ones conflicted with the safety
mind.

Section 2.1 comprises experiment configuration, pretreatment for observed
data, introduction of focused features called driving characteristics in data, and
introduction of these row features. These row features are analyzed in Section
2.2 by the multiple regression analysis. As preparation for the analysis, we first
introduce the vehicle characteristics which can affect the driving characteristics.
Following variable selection from the perspectives of multi-collinearity and emer-
gence timings of the driving characteristics, we introduce obtained regression
models for each driving characteristics based on Akaike information criterion.
We have published these results in [42].
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2.1 Experiment

2.1.1 Experiment Configuration

To measure the dependence of the driving characteristics upon vehicles and their
drivings in a platoon, we observed the following behavior in platoons comprising
two vehicles: a leader and a follower. These vehicles were selected from motorcy-
cles, normal passenger cars, and trucks. The motorcycles were of the 50-cc-scooter
type, i.e., Suzuki’s Let’s G model and Let’s 4 model, two Honda’s TACT model,
one TACT basic model, and one Dio model. The normal passenger cars were
represented by a Toyota’s Corolla Axio while the trucks were the Isuzu Elf with
a container.

We conducted our experiment and data collection at a test course located at
the Japan Automobile Research Institute. The test course is comprised of several
types of courses including a straight course and a oval circuit as shown in Figure
2.1. In order to obtain a sufficient sample size, we conducted the same experiment
over two days. The straight course and the oval circuit were utilized on respective
days.

For the straight course shown in Figure 2.1, the first experiment was held
in December, 2015. The course configuration is shown in Figure 2.2a. The test
area is a straight road that includes a braking area. The start cone indicates
where the leader commences acceleration; the braking cone indicates where the
leader commences deceleration. The stop cone indicates where the leader stops.
We provided driving instructions to the leaders and followers, as shown in Figure
2.2b. The leaders were instructed to start their acceleration from the start cone
while imagining that they were driving on public roads as if commuting. After
reaching 60 km/h, they maintained a velocity of 60 km/h until they reached the
braking cone. We also instructed the leader to start braking from the braking
cone in order to stop at the stop cone with constant braking. The length of the
braking areas were set to 70 m and 116 m in order to vary the decelerations of
the leaders. On the other hand, we instructed followers only to follow the leaders
while imagining that they were commuting. Every 0.1 s, the positions of the re-
spective vehicles were recorded to an accuracy of 60 cm by GPS antennas, namely
Hemisphere A100, on top of the vehicles. The positions of the GPS antennas were
1.5 m, 2.2 m and 1.0 m from front bumpers of motorcycles, passenger cars, and
truck, respectively. Their positions were considered when calculating the vehicle
positions in Section 2.1.2. All measured data were recorded to tablets located at
respective vehicles.

For the oval circuit shown in Figure 2.1, the second experiment was held in
September, 2016. We divided the oval circuit into Sections A to I, as shown in
Figure 2.1. The sections marked in red arrows were used for measurement since
Section F and Section I include sags and small curves. Figure 2.3 shows the
internal configuration of each section. The braking cones and stop cones have
the same purpose as discussed above in Figure 2.2. The stop cone and line in
a section become start indication for the next section. In Table 2.1, the length
of test sections L and braking area Lb are listed. The driving instructions to
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leaders and followers were as for the previous experiment. We instructed leaders
to maintain a velocity of 50 km/h until they reached the braking cone because
of the curves and length limitation of the sections. In addition, we instructed
the leaders regarding the acceleration quickness as shown in Table 2.1 in order
to vary accelerations of the leaders. The lengths of the braking area were also
varied to obtain various deceleration data for the leaders.

In Table 2.2, the ages of all drivers are listed. They were all males and had at
least three years of driving experience of the vehicles which we assigned. Vehicles
which they drove respectively were indicated as the “driving vehicle” in Table
2.2. The designators MC, C, and T represent motorcycles, passenger cars, and
trucks, respectively. We called the drivers from TD1 to TD7 as the test drivers.
The drivers numbered from #8 to #15 were called the leading drivers. Note that
Driver #10 and Driver #11 are the same drivers to TD6 and TD7, respectively.

In Table 2.3, the tested combinations and trial numbers are listed. A total of
123 trajectories were collected over both days.

Figure 2.1: Test courses of the Japan Automobile Research Institute. The straight
course is denoted by the purple cross stripes and the oval circuit is marked by
the red and green arrows.

(a) A schematic of the test course. (b) Velocity profiles of a leader and
a follower.

Figure 2.2: Configuration of the experiment in December, 2015.
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Figure 2.3: Configuration of the test course used in the experiment in September,
2016.

Table 2.1: Lengths of the respective sections. Acceleration instructions and ex-
pected decelerations of the leaders are also indicated.

Section name
(acceleration instruction

to the leaders)
L (m)

Lb (m)
(expected deceleration

of the leaders)

A (Accelerate quickly) 467 82 (1.2 m/s2)

B (Accelerate quickly) 467 82 (1.2 m/s2)

C (Accelerate normally) 567 100 (1 m/s2)

D (Accelerate normally) 567 100 (1 m/s2)

E (Accelerate normally) 567 100 (1 m/s2)

G (Accelerate slowly) 681 196 (0.5 m/s2)

H (Accelerate slowly) 681 196 (0.5 m/s2)
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Table 2.2: Ages of drivers.

Name
Driving
vehicle Age

Experiment
day

Test driver
(follower)

TD1 MC 22

Dec., 2015TD2 C 22

TD3 T 35

TD4 C, T 43

Sep., 2016
TD5 C 37

TD6 MC 23

TD7 MC 54

Leading driver

#8 MC 23
Dec., 2015

#9 MC 22

#10 (TD6) MC 23
Sep., 2016

#11 (TD7) MC 54

#12 C 23 Dec., 2015

#13 C 44 Sep., 2016

#14 T 44 Dec., 2015

#15 T 42 Sep., 2016
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Table 2.3: Measured vehicle order and the number of measured trial.

Follower Leader
Experiment

day
Test driver
(follower)

Trial
number

Trial number
of combination

MC

MC
Dec., 2015 TD1 2

9
Sep., 2016 TD6 7

C
Dec., 2015 TD1 2

15
Sep., 2016 TD6 13

T
Dec., 2015 TD1 2

7
Sep., 2016 TD7 5

C

MC

Dec., 2015 TD2 2

15
Sep., 2016

TD4 6
TD5 7

C

Dec., 2015 TD2 2

18
Sep., 2016

TD4 6
TD5 10

T

Dec., 2015 TD2 2

24
Sep., 2016

TD4 10
TD5 12

T

MC
Dec., 2015 TD3 4

10
Sep., 2016 TD4 6

C
Dec., 2015 TD3 4

10
Sep., 2016 TD4 6

T
Dec., 2015 TD3 4

15
Sep., 2016 TD4 11
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2.1.2 Data Pretreatment

We applied linear interpolation to the position data measured from GPS antennas
because these positions had missing values. Due to the accuracy and interpola-
tion, the velocities and accelerations obtained from the position data were not
sufficiently smooth to obtain the driving characteristics. Therefore, using the
Python library package, pykalman, we applied a Kalman smoother to the veloc-
ities and differentiated the velocities to obtain the accelerations. The Kalman
smoother estimates time series data from all the observed data [43]. In Figure
2.4a, the observed positions for a certain measurement period are indicated by
blue dots. The velocities acquired from the differentiation of these positions are
indicated by blue dots in Figure 2.4b. There are constant velocities caused by
linear interpolation and discontinuous velocities caused by GPS accuracy. The
velocity smoothed by the Kalman smoother is shown by a red line in Figure
2.4b, and the position and acceleration calculated from the smoothed velocity
are shown by a red line in Figure 2.4a and 2.4c. The velocity became sufficiently
smooth to be differentiated and the positions calculated from the smoothed ve-
locities agreed well with their original values.

(a) Time evolution of the position
data.

(b) Time evolution of the velocity
data.

(c) Time evolution of the accelera-
tion data.

Figure 2.4: Comparison of Kalman-smoothed and observed data.

In addition, we discuss distance gaps, i.e., distance between vehicles, in fol-
lowing sections. The distance gaps calculated from measured positions in the oval
circuit should be corrected because there are some sections containing curves. As
shown in Figure 2.5, we utilized the total trajectory length for the leader between
point P and Q. Where P is the nearest point to current front bumper of the fol-
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lower on the leader’s trajectory and Q is the real-time position of the rear bumper
of the leader. Since the corrected distance gaps contained some noise, we applied
FIR low-pass filter, which cut-off frequency was 0.67 Hz and tap number was 91.
Characteristic distance gaps discussed in following sections were collected from
the smoothed distance gaps.

Figure 2.5: Distance gap calculation in a corner.

2.1.3 Introduction of Driving Characteristics

As objective and explanatory variables of the regression analysis, we introduce
some characteristic values of the velocity and acceleration, as shown in Figure
2.6. Vmax is the maximum velocity while amax and amin are the maximum and
minimum accelerations, respectively. To determine the delay of the velocity tra-
jectories between a leader and a follower, we introduce εa, which represents the
time difference between the leader’s and follower’s amax values. These characteris-
tics were extracted from the smoothed data by the Kalman smoother as discussed
in Section 2.1.2.

We also introduce Sstart as the distance gap between rear bumper of the
leader’s vehicle and front bumper of the follower’s vehicle when both vehicles
are at their starting points. The Smax is the maximum distance gap when they
are moving. These characteristics related to the distance gaps were extracted
from the smoothed distance gap by the FIR low-pass filter as discussed in Sec-
tion 2.1.2.

Note that we utilize the superscripts of “f” and “l” to indicate followers and
leaders, respectively. For example, almax indicates the leader’s maximum acceler-
ation and V f

max indicates the follower’s maximum velocity. The εa and distance
gaps do not have these superscripts because they are determined by relationship
between the leader and the follower.
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(a) Driving characteristics deter-
mined on the velocity evolution.

(b) Driving characteristics deter-
mined on the acceleration evolution.

Figure 2.6: Schematics of the driving characteristics.

2.1.4 Driving Characteristics Measured in Various Vehi-
cle Combinations

In this section, we compare driving characteristics in various vehicle combinations.
In Figure 2.7, the V f

max values for each vehicle combination are shown by the
colored boxes. M, C and T stand for the motorcycle, car, and truck. The left
boxes marked in checkered pattern in Figure 2.7a indicate the average values of
three colored boxes on the right side of them. For example, the nearest blue
plaid box in Figure 2.7a indicates the average V f

max value when the motorcycle is
the follower. The outermost yellow boxes in Figure 2.7a show the average of all
the followers, motorcycles, cars, and trucks. For example, the center yellow box
indicates the average V f

max when the leader is the car. Figure 2.7b and 2.7c are
extracted views from Figure 2.7a. To compare the average V f

max value to the V l
max

value in each leader case, we plotted them in Figure 2.7c.
From Figure 2.7b, the V f

max value was the greatest when the follower was
the truck (p-value < 0.10 in Dunnett’s test). This implies that the trucks had
tendency to have higher velocity than other types of vehicles. On the other hand,
V f
max when the motorcycle was the leader was smaller than remaining cases shown

in Figure 2.7c (p-value < 0.005 in Dunnett’s test). As the yellow boxes and the
orange dotted line in Figure 2.7c obey similar trends, it is possible that V f

max is
affected by V l

max. This hypothesis is natural because the platoon is in the car-
following phase. Note that it is also possible that the yellow boxes in Figure 2.7c
will obey a certain trend because the followers are affected by the leader types.
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(a) V f
max for all vehicle combina-

tions.
(b) V f

max for each follower
case.

(c) Comparison of V f
max and V l

max

for each leader case.

Figure 2.7: The maximum velocities of followers, i.e., V f
max.

In Figure 2.8 and 2.9, afmax and afmin are shown for each vehicle combination.
The afmax value was the smallest value when the follower was the truck in Figure
2.8b. The p-values in Dunnett’s were less than 0.05. From Figure 2.8c, it can
be observed that afmax is not affected by leaders’ types. The p-value was 0.78
in one-way ANOVA. Since the plaid colored boxes in Figure 2.8b obey a similar
trend as with the dotted line in Figure 2.8c, the trucks may originally have a
smaller acceleration than the motorcycles and cars. This trend may be caused
by the weight of the trucks.

Regarding afmin, average values to respective followers, i.e., the plaid colored
boxes in Figure 2.9b did not have significant difference (p-value = 0.31 in one-way
ANOVA). On the other hand, in Figure 2.9c, afmin had the greatest value when
the leader was the car (p-value < 0.05 in Dunnett’s test) and had the same trends
to almin. Although this implies that afmin is affected from almin or from the vehicle
types of the leaders, the primary effects are still unclear. It will be clarified by
the multi-regression analysis in Section 2.2.2.
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(a) afmax for all vehicle combina-
tions.

(b) afmax for each fol-
lower case.

(c) Comparison of afmax and
almax for each leader case.

Figure 2.8: The maximum accelerations of followers, i.e., afmax.

(a) afmin for all vehicle combina-
tions.

(b) afmin for each fol-
lower case.

(c) Comparison of afmin and
almin for each leader case.

Figure 2.9: The maximum decelerations of followers, i.e., afmin.
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Based on the data shown in Figure 2.10b, we found that the values of Sstart

became small when the follower was the motorcycle (p-value < 0.001 in Dunnett’s
test). It would be because the following drivers on the motorcycles could percept
their vehicle size more easily than other types of vehicles. In Figure 2.10c, we did
not recognize a clear relationship between the leaders’ types (p-value = 0.14 in
one-way ANOVA).

(a) Sstart for all vehicle combina-
tions.

(b) Sstart for each fol-
lower case.

(c) Sstart for each leader case.

Figure 2.10: The distance gaps when the platoons start, i.e., Sstart.

From Figure 2.11b and 2.11c, we could find the values of Smax became small
when the follower was the motorcycle (p-value < 0.001 in Dunnett’s test) and
could not recognize a clear relationship between the leaders’ types (p-value =
0.60 in one-way ANOVA). Although these trends are similar to those of Sstart, we
are not sure if these trends were caused by the same factors of vehicles.

In Figure 2.12b, the εa value is the largest when the follower is the truck,
followed by the car and motorcycle. The p-values of less than 0.01 in Steel-Dwass’
test were obtained between the followers. From Figure 2.12c, The εa value was
the smallest when the leader was the truck. The p-value was less than 0.001 in
Dunnett’s test. These trends are natural because operational delays would be
small when the followers are agile or the leaders are unagile.

From driving characteristics in respective combinations, we observed several
trends of them and gave some guesses based on vehicle types. In Section 2.2.2,
we try to clarify the affecting factors of vehicles and drivings to respective driving
characteristics by multiple regression analysis.
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(a) Smax for all vehicle combina-
tions.

(b) Smax for each fol-
lower case.

(c) Smax for each leader case.

Figure 2.11: The maximum distance gaps in each trial, i.e., Smax.

(a) εa for all vehicle combinations. (b) εa for each follower
case.

(c) εa for each leader case.

Figure 2.12: Time delays between the maximum accelerations of leaders and
followers, i.e., εa.
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2.2. DETAILED FACTORS AFFECTING THE DRIVING
CHARACTERISTICS OF THE FOLLOWERS

2.2 Detailed Factors Affecting the Driving Char-

acteristics of the Followers

In Section 2.1.4, even when some characteristics appeared to be dependent upon
the vehicle type of a follower and a leader, these characteristics did not necessarily
follow the instinctive size order (i.e., the motorcycle, car, and truck). In other
words, we found no clear insight into what factors other than the instinctive order
of the motorcycle, passenger car, and truck would affect the respective driving
characteristics.

It is also possible that some driving characteristics of a leader and a follower
as well as both of their vehicle characteristics would affect the related driving
characteristics of a follower. Therefore, we applied multiple regression analysis
to the driving characteristics of the followers. The explanatory variables are the
driving characteristics of the leaders and followers, and the vehicle characteristics
related to the size and the engine performance.

In this section, we introduce several vehicle characteristics and select repre-
sentatives from the perspective of multi-collinearity. Then, we specify candidates
for the explanatory variables from the perspective of emergent timings. The can-
didates for the explanatory variables depend upon objective variables, i.e., target
driving characteristics. Finally, we develop and discuss multiple regression models
of the respective driving characteristics.

2.2.1 Introduction and Selection of Vehicle Characteris-
tics

To clarify the characteristics of each vehicle, we consider the features listed in
Table 2.4. We add passenger’s weight of 55 kg to the vehicle weight since the
total weight of a motorcycle changes drastically when carrying a rider. The weight
of 55 kg is the standard weight for the total weight of a vehicle full of passengers
as calculated by Japanese motor companies [44]. The top height is the total
height including a passenger, i.e., the same as the regular height in the case of a
passenger car and truck. We introduce this value because the observed height of a
leading motorcycle drastically changes when supporting a rider. It is also useful
to consider the riders’ eye height on the following motorcycles. In the case of
motorcycles, we calculate the top height as the seat height + 0.92 m based on the
age of riders in the experiment. The value of 0.92 m is the average seated height
of a Japanese male in their 20s to 50s between 2004 and 2006 [45]. Driver TD6
and TD7 and Drivers #8 and #9, who rode motorcycles in the experiments, were
their 20s to 50s. These characteristics of the leaders and followers are defined as
the explanatory variables for the multiple regression process with the exception
of the power-to-weight ratio (PWR) and torque-to-weight ratio (TWR) of the
leaders because the following drivers would not perceive these characteristics.

When we utilize multiple regression analysis, we should avoid the problem of
multicollinearity caused by the explanatory variables for which a high correlation
is observed. Variables having a correlation above 0.8 are bound by the black
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lines in Figure 2.13, from which we find that they are roughly classified into
three categories: vehicle height, vehicle size, and engine performance. From
these categories, we selected the top height, length, and PWR since they are less
correlated with the variables in other categories. These selected variables are
used in following multiple regression analysis as explanatory variables for vehicle
characteristics. Note that these three variables are the representatives of three
categories. For example, if the length is one of the explanatory variables of a
regression model in Section 2.2.2, the model does not directly indicate that the
length is the affecting factor, but indicates that vehicle size is the affecting factor.

Table 2.4: Definitions of vehicle characteristics and values for each vehicle. SD
stands for the standard deviation.

Name Meaning MC (average)

(SD)
C T

Width (m) Vehicle width
0.64

(0.030)
1.7 1.89

Length (m)
Vehicle

longitudinal length
1.67

(0.006)
4.3 4.9

Weight (kg)
Vehicle weight

+ one passenger (55 kg)
128
(5.4)

1145 2605

Height (m) Vehicle height
1.01

(0.022) 1.46 2.81

Top height (m)

Same to height
in case of C and T.

In case of MC,
seat height + 0.92 m.

1.62
(0.013) 1.46 2.81

Power-to-weight ratio
(PWR; kW/kg)

Max. power
divided by weight

0.028
(0.0056) 0.07 0.042

Torque-to-weight ratio
(TWR; N·m/kg)

Max. torque
divided by weight

0.036
(0.0109)

0.119 0.144

Figure 2.13: Relationship between vehicle characteristics. The black lines indicate
correlations above 0.8. Characteristics can be classified into three categories. The
red labels are representatives of these categories.
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2.2. DETAILED FACTORS AFFECTING THE DRIVING
CHARACTERISTICS OF THE FOLLOWERS

2.2.2 Multiple Regression Analysis of Driving Character-
istics

In this section, we apply the multiple regression analysis to the respective driving
characteristics of the followers. First, we clarify which characteristics would be
candidates for the explanatory variables. Then, we proceed with multiple re-
gression analysis of the respective driving characteristics. Based on the Akaike
information criterion (AIC) [46], we chose the best regression models for the re-
spective objective driving characteristics and discuss effective vehicle and driving
factors indicated by these models.

2.2.2.1 Candidates of explanatory variables for the respective driving
characteristics of followers

In Table 2.5, the candidate explanatory variables for multiple regression of re-
spective driving characteristics are listed. The designator “c” indicates that the
characteristic is a candidate of exploratory variables. The designator “—” means
that it is not the candidate.

In Table 2.5, the vehicle characteristics of the leaders include leader length and
top height. The leader PWR is not included because the follower cannot recognize
this parameter. Follower-vehicle characteristics include follower PWR as well as
length and top height since follower PWR would directly affect the follower’s
driving. The day of experiment and driver are dummy variables to remove effects
of experiment environment and drivers’ tendencies. Because driving tendency
of leading drivers are included in leaders’ driving characteristics, the dummy
variables for drivers are only to test drivers, i.e., TD1 to TD7. These vehicle
characteristics and dummy variables are candidates for the explanatory variables
for all objective driving characteristics.

Respective driving characteristics are affected by different variables due to
their emerging timing. Sstart would be affected by only the vehicle characteristics,
experiment days, and drivers because no driving sequence has yet been conducted.
The value εa is affected by Sstart as well as vehicle characteristics. The values
afmax, V

f
max, and Smax can be affected by Sstart, εa, a

l
max, and V l

max because the
following drivers seem to decide their velocity and acceleration based on their
leaders’ velocities and accelerations after a certain delay. Because the following
driver commences deceleration and stops finally after the maximum velocity V f

max

and the maximum distance gap Smax are observed, we can presume that afmin is
not affected by Sstart, a

l
max, or afmax.
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Table 2.5: Candidate characteristics for objective variables of multiple regression.
“c” indicates that the left characteristic is the candidate. “—” indicates that the
left characteristic is not the candidate.

Objective variables (analyzed driving char.)

Sstart εa afmax V f
max Smax afmin

C
an

d
id

at
e

of
ex

p
la

n
at

or
y

va
ri

ab
le

s

Sstart — c c c c —

εa — — c c c c

almax — — c c c —

V l
max — — c c c c

V f
max — — — — — c

afmax — — — — — —

Smax — — — — — c

almin — — — — — c

afmin — — — — — —

Leader vehicle char.

c
Follower vehicle char.

Experiment day

Driver
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CHARACTERISTICS OF THE FOLLOWERS

2.2.2.2 Interpretation of respective regression models

In this section, we calculate the partial regression coefficients for the best models
of the respective objective variables.

Models discussed in this section were chosen from the perspective of AIC [46].
AIC is calculated as follows.

AIC = −2 ln L̂+ 2k (2.1)

ln L̂ is the maximum value of log likelihood and k is the number of the parameters.
The value of AIC becomes small when the model fits to observed data well with
small number of parameters. Although we discuss the best model from the AIC
perspective, the high-ranking models, which AICs are neither equal nor larger
than the best AIC + 1.5 (∆AIC < 1.5), are also checked to confirm if trends of
parameter selection and signs of coefficients are not exceptional.

In Figure 2.14a and 2.14b, the best regression models for V f
max and afmax are

shown. Variables located at the starting points of arrows are explanatory vari-
ables. Variables located at the end point of the arrows are objective variables.
The numbers indicated next to or under the explanatory variables are partial
regression coefficients for respective variables. Symbols accompanied by the co-
efficients indicate the significance level. “♦” means that the significance level is
less than 0.001, “‡” means that it is less than 0.01, “†” means that it is less than
0.05, and “•” means that it is less than 0.1.

(a) The best multiple regression model for V f
max.

(b) The best multiple regression model for afmax.

Figure 2.14: The best models for followers’ velocity and acceleration from the
AIC perspective. These models are mainly affected from leaders’ drivings.
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V f
max in Figure 2.14a is determined primarily by V l

max and R2 = 0.80. Thus, the
yellow colored boxes and the orange line in Figure 2.7c exhibit the same trends.
In the car-following model, we need not change the parameters determining the
maximum velocity based on the vehicle types as long as the speed of a traffic
stream does not exceed the performance of each vehicle. For reference, we show
the non-standardized model below.

V f
max = 0.93V l

max + 0.16TH f − 0.20TD4 + 0.72 (2.2)

The units for the velocity, the top height are (m/s) and (m), respectively. As TD4

is the dummy variable for TD4 and take 0 or 1, we can conclude that the velocity
variation caused by TD4 was 0.20 m/s: when the TD4 was the following driver,
the follower velocity became 0.20 m/s smaller than the average of the other cases.

Regarding afmax shown in Figure 2.14b, the main factor which determines
afmax is almax. The value of R2 is 0.87. Indeed, the model also includes the
vehicle characteristics of a leader and a follower, the degree of effectiveness of
them is one third, at most. The model claims that the maximum acceleration of
followers is determined basically by the leaders’ acceleration but additionally by
the top heights of both the follower’s and leader’s vehicle, the followers’ engine
performance seems not to be important factor though. Regarding additional
effect from the followers’ height, the following drivers accelerate gently when the
following drivers’ eye point is high. It might be related to the comfortableness
when the drivers experience the acceleration. This tendency is consistent with the
plaid colored boxes in Figure 2.8b. Regarding additional effect from the leaders’
height, following drivers accelerate gently when the leader top height is low. The
model seems to replicate the situation that the height differences between yellow
colored boxes in Figure 2.8c are not as large as those of the leaders’ accelerations
shown in the orange dotted line. The non-standardized model of afmax is as follows.

afmax = 0.73almax − 0.024εa + 0.21TH l − 0.028Ll

− 0.23TH f + 0.33TD3 + 0.15TD6 − 0.18TD7 + 0.36 (2.3)

The units for the acceleration, εa and the length are (m/s2), (s) and (m), re-
spectively. Drivers TD3 and TD6 tended to have larger acceleration than other
drivers while Driver TD7 driving the motorcycle had smaller acceleration. Note
that this tendency was extracted from the data which other vehicle and driving
characteristics had been already extracted. For example, the maximum accel-
eration when the follower was the motorcycle became 0.18 m/s2 smaller than
expected one when the driver was TD7.

In Figure 2.15, we show the bar charts of regression coefficients included in
high-ranking regression models for V f

max and afmax. Each color bar indicates one
regression model. The models within ∆AIC < 1.5 are shown from left to right
in order of AIC ranking. In other words, the left most model is the best model
explained above. Each colored box represents explanatory variable. If a certain
explanatory variable has the positive regression coefficient, the colored box is
stacked above zero. If the coefficient is negative, the colored box is stacked under
zero. In both bar charts, although there are some variations in variable selection,
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we can confirm that the leaders’ velocity and acceleration are the main factors
affecting those of followers.

(a) The models for V f
max within

∆AIC < 1.5 from the best model.
(b) The models for afmax within
∆AIC < 1.5 from the best model.

Figure 2.15: The coefficients of high-ranking multiple regression models for the
velocity and acceleration.

Different from V f
max and afmax, the effectivenesses of vehicle characteristics are

as strong as almin in the high-ranking models of afmin shown in Figure 2.16a. TH l,
TH f , Ll, and afmin are included in most of the models. Figure 2.16b is the best
model from the AIC perspective. Although the value of R2 = 0.27, the trend of
the variable selection is not extraordinary when we compare the best model with
the others. The best model implies that the maximum deceleration becomes mild
when the leaders’ and followers’ heights are high. Height appearance and visibility
from the drivers’ seat would stimulate safety mind of drivers. On the other hand,
the model also implies that the deceleration becomes strong when the size of
the leading vehicle becomes large. We can argue that we should consider the
types of the following and leading vehicle when the parameters determining the
maximum deceleration are calculated. Note that, from the value ofR2, there is the
possibility that the randomness or other factors affect the followers’ deceleration.
If other characteristics of the vehicles affected, the effects occur as those by test
drivers of each vehicle. From this reason, the small value of R2 might be caused
the randomness of human operation. In any case, the affecting vehicle and driving
characteristics are as described above.
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(a) The models for afmin within
∆AIC < 1.5 from the best model.

(b) The best multiple regression model for afmin.

Figure 2.16: The best multiple regression model and the coefficients of high-
ranking models for afmin from the AIC perspective.

The non-standardized model of afmin is as follows.

afmin = 0.37almin+0.14TH l−0.057Ll+0.19TH f +0.25TD1−0.30TD3−1.1 (2.4)

The degree of effect from the drivers became bigger than the cases of the velocity
and acceleration. Driver TD1 seemed to have milder deceleration than those of
TD6 and TD7 when he drove the motorcycle. Driver TD3 tended to have larger
deceleration than TD4 when he drove the truck.

Regarding the distance gap at the starting point, i.e., Sstart, most of the high-
ranking models comprise Lf and Ll in Figure 2.17a. Although there are some
variations of models in same ranking, the alternating factors are “TDn” and
“experiment day (Exp. day)” which we are not discussing on. As an example of
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(a) The models for Sstart within
∆AIC < 1.5 from the best model.

(b) The best multiple regression model for Sstart.

Figure 2.17: The best multiple regression model and the coefficients of high-
ranking models for Sstart from the AIC perspective.

the best models, we show the leftmost model in Figure 2.17b (R2 = 0.57). We can
expect large distance gap with large following vehicles. This would be natural
from the safety perspective. However, we will also observe small distance gap
with large leading vehicles during stop. This might not be natural but sometimes
observed in real traffic. Regarding effects of drivers and experiment environment,
the non-standardized model is written as

Sstart = −0.18Ll + 1.2Lf + 3.9TD1 + 2.2TD2 + 1.2Exp. day − 0.63. (2.5)

The dummy variable “Exp. day” takes 0 or 1 to indicate when the experiments
were held. We can confirm that the effects of drivers and the environment exceed
the order of 1 m.

Regarding the maximum distance gap during a trial, i.e., Smax, many high-
ranking models comprise positive coefficients for Sstart, εa, V

l
max, and P f . Negative

coefficients for TH l and almax are often comprised to these models too in Figure

29/163



2. Dependence of Driving Characteristics on Vehicles and Drivings in a Platoon

(a) The models for Smax within
∆AIC < 1.5 from the best model.

(b) The best multiple regression model for Smax.

Figure 2.18: The best multiple regression model and the coefficients of high-
ranking models for Smax from the AIC perspective.

2.18a. From the best model shown in Figure 2.18b (R2 = 0.61), we can observe
the situation that the drivers apt to have short distance gap if the height of leading
vehicles becomes high although they tend to keep large distance gap because their
vehicle has good engine performance. These behaviors are conflicting from the
safety perspective but some drivers would come closer when the leading vehicle
is the motorcycle or the truck in the real traffic. The non-standardized model is
written as

Smax = 1.0Sstart−2.0almax+1.9εa+3.4V l
max+350P f−2.3TH l−9.7TD2+6.7TD4−33

(2.6)
Similar to Sstart, we confirmed the effects of order of 1 m from drivers. Drivers
on the passenger car tended to have variety distance gaps during trials.

Regarding the delay of the maximum acceleration timing (εa), high-ranking
models are shown in Figure 2.19a. Three of four best models have the positive
coefficient for Lf . All of them have the negative coefficient for TH l. The coefficient
for P f is ambiguous. The model shown in Figure 2.19b is the leftmost model in
Figure 2.19a. The value of R2 = 0.21. We cannot say that the model has
sufficient performance, and it seemed to be caused by the randomness of the
operation, which is the same reason of the randomness observed in afmin. From
the trends of selected parameters in Figure 2.19a, regarding effects of the vehicle
and driving characteristics, it is implied that the acceleration delay depends not
on the distance gap at the start point but only vehicle characteristics. Regarding
effects of drivers, there were no effects and the non-standardized model is written
as

εa = −0.45TH l + 0.66Lf − 0.19P f + 0.96. (2.7)
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(a) The models for εa within
∆AIC < 1.5 from the best model.

(b) The best multiple regression model for εa from
the AIC perspective.

Figure 2.19: The best multiple regression model and the coefficients of high-
ranking models for εa from the AIC perspective.

From the discussion above, we found that driving characteristics of leaders
were the dominant factor affecting followers’ velocity and acceleration. On the
other hand, the followers’ deceleration, delay of acceleration and distance gaps
were also affected by vehicle characteristics of leaders and followers. In partic-
ular, although the followers’ acceleration is affected mainly by those of leaders,
one third of effect comes from vehicle characteristics related vehicle heights. In
addition, we could also find that conflicting behaviors from the safety perspective
in distance gaps. The drivers apt to have short distance gap when the leading
vehicle is large or high. Investigation of this conflicting behavior would belong to
the category of psychology of drivers.
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Chapter 3

Replicability of Car-Following
Models toward Driving
Trajectories of Different
Following Vehicles

Abstract In this chapter, we investigate the parameters of selected car-following
models that can replicate the characteristic trajectories of each following vehicle.
We call trajectories of each following vehicle characteristic leaves. Regarding
features of characteristic leaves observed in the experiment, we discovered the
following:

(A) The distance gap in front of the motorcycles is smaller than that of the cars
and trucks when the vehicles travel in the steady velocity, i.e., in a steady
phase.

(B) The distance gap in front of the trucks is smaller than that of the cars in
the early deceleration phase.

(C) The velocity difference of the motorcycles is more stable than that of the
cars and trucks in the steady phase and the deceleration phase.

(D) The magnitude of the velocity difference of the trucks is smaller than that
of the cars at the beginning of the acceleration phase and in the latter
deceleration phase.

(E) The magnitude of followers’ acceleration in the early deceleration phase
increases in cases of trucks than in cases of the cars.

(F) The trucks have their acceleration peaks in the latter acceleration phase.

(G) The cars have larger acceleration change in the acceleration phase than the
trucks do.

(H) Variation of the velocity difference and followers’ acceleration caused by
vehicle types were not observed in the initial waiting, steady, and stopping
phases.

These features should be replicated by the car-following models.
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Regarding the replicability of the models, as long as we investigated, the
current car-following models do not have sufficient capability for the replication of
the behavioral difference of various types of vehicles. We discovered the following:

(a) In the case of the optimal velocity (OV) model, the vehicle length Lf and Ll

can be used for only the adjustment for the distance gap while we can choose
arbitrarily from Vm, m, and ∆ for the replication of the distance gap and
the acceleration. Features of followers’ acceleration cannot be replicated
perfectly by the OV model without limitation of the parameter range.

(b) In the case of the full velocity difference (FVD) model, it would be prefer-
able to utilize ∆s for the replication of the distance gap because it perfectly
replicates the features of the distance gap. In the case of followers’ accelera-
tion, we have no choice other than β. However, we need to be aware that β
will affect the velocity difference simultaneously. For the velocity difference,
we need to use Vm to keep the fitting independence of each physical value.

(c) In the case of the intelligent driver (ID) model, all the features of the dis-
tance gap can be replicated by all the parameters except for Lf and Ll. In
order to assign each parameter to different physical values, it is preferable
to assign Vm to the acceleration. Assigning smin to the velocity difference
is preferable from the perspective of the independence of physical values.
Features of the velocity difference cannot be replicated perfectly by the ID
model.

(d) In the case of the Gazis-Herman-Rothery (GHR) model, every parameters
except for T have the ability to replicate the features of the distance gap
without any shift and the unnecessary features. These parameters can also
replicate some of the features in the velocity difference. However none of
the parameters in the GHR model has the ability to replicate the features
in followers’ acceleration.

Through the model investigation, we did not find any parameters replicating the
differences in all of the distance gap, velocity difference, and followers’ acceleration
caused by vehicle changes. Furthermore, each parameter caused unnecessary
features in some physical values. Although features in the distance gaps can
be replicated by some parameters in the models, respective models are weak in
different physical values regarding the feature replication.

We first provide an overview of traffic models and select car-following models
focused on in Section 3.1. Then, we extract characteristic trajectories from ob-
served time series using decision tree analysis based on the “shapelet” in Section
3.2. The characteristic trajectories in Item (A) to (H) were obtained by this de-
cision tree analysis. In Section 3.3, we simulate follower behaviors with changing
parameters of selected models. Simulation setting and rough features in simu-
lated trajectories are introduced. Finally, in Section 3.4, we compare the observed
and simulated trajectories if the simulated trajectories can cause variations in the
series at where the characteristic trajectories, i.e., shapelets, are observed. The
findings mentioned at Item (a) to (d) are explained in Section 3.4.
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Different Following Vehicles

3.1 Introduction of Traffic Models

3.1.1 Classification of Traffic Models

As we mentioned in Section 1.1, many traffic models have been proposed by dif-
ferent researchers [3, 4]. They had various kinds of motivations for developing
the models, including estimating of traffic capacity in a certain road network to
contribute to urban design, optimal lane numbers and junction design of free
ways, optimization of traffic signal control, development of autonomous driving,
detailed replication of traffic phenomena (e.g., traffic jams, etc.), physical inves-
tigation of traffic phenomena, extension to mathematical problems, replication
of vehicle movement, and psychological analysis of drivers. The examples men-
tioned above are arranged from macroscopic to microscopic. That is, there are
models replicating phenomena observed in road network layers, traffic flow in one
road section, inter-vehicle influence, kinetic movement of one vehicle, and even
the psychology of a single driver.

As our objective is to properly replicate the phenomena in mixed-traffic flow
by models that reflect driving differences between vehicle types, our main focus
must not be on models of road network layers, vehicle kinetic movement, or a
single driver. There are three types of models that represent traffic flow and
inter-vehicle influence: hydrodynamic models, car-following models, and cellular
automaton models.

3.1.1.1 Outlines of hydrodynamic models

Figure 3.1a is the schematic representation of hydrodynamic models. Imagine
that there are two connected road sections filled with vehicles. For some reasons
(e.g., road works), the vehicles cannot proceed with sufficient velocity owing to
the high density in the downstream section but they can proceed smoothly until
they reach a certain point; hence, there is a boundary of the density and the
velocity. As the vehicles cannot go out of the sections, Equation 3.1, i.e., the
continuity equation, is established.

∂ρ

∂t
+
∂ρv

∂x
=
∂ρ

∂t
+
∂Q

∂x
= 0 (3.1)

where the traffic flow Q = ρv and x is the position in the road sections.
In particular, Lighthill-Whitham-Richards (LWR) model [47, 48] assumes that

the velocity statically corresponds to the density, as shown in Figure 3.1b. This
assumption means that Q and ρ are locally equilibrium and models applying this
assumption are called models “without dynamic velocity.” Using

∂Q

∂x
=

dQ(ρ)

dρ
· ∂ρ
∂x
, (3.2)

we can transform Equation 3.1 as

∂ρ

∂t
+

dQ(ρ)

dρ
· ∂ρ
∂x

= 0 (3.3)
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The coefficient for ∂ρ/∂x, i.e., dQ/dρ, is the slope in the figure of ρ vs. Q and
indicates the velocity of the boundary where the density and velocity are changed.
Therefore, as shown in Figure 3.1c, we can calculate the boundary velocity with
the flows in different density sections. In the case of Figure 3.1c, the boundary
moves from downstream to upstream of the traffic because the slop is negative.

(a) Each section represents road section filled by ve-
hicles with the velocity of v at the density of ρ.

(b) An example of relation
between the density and
the velocity.

(c) An example of relation be-
tween the density and the ve-
locity.

Figure 3.1: Schematics of the hydrodynamic models.

Although the LWR model succeeds in replicating traffic break-down caused
by lack of traffic capacity, each vehicle in the traffic flow experiences unrealistic
or discontinuous acceleration. In order to replicate traffic wave growth and traffic
instability, local acceleration, i.e., the acceleration that each vehicle experiences
at a certain time and location should be defined by the local density, velocity,
and their gradients. That is

dV (x, t)

dt
= A [V (x, t), ρ(x, t)] (3.4)

where V is the local velocity. Payne and Whitham introduced the relationship

dV (x, t)

dt
=
Ve(ρ)− V

τ
+
V ′e (ρ)

2ρτ
· ∂ρ
∂x

(3.5)

35/163



3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

where Ve is local equilibrium velocity, V ′e = ∂Ve/∂x. By substituting V to v in
Equation 3.1, they obtained a continuity equation that considers the speed adap-
tation by a driver, traffic pressure related to drivers’ anticipation, and velocity
variance of vehicles[49, 50]. In addition, other models, including diffusion term,
etc., have been proposed by other researchers: Kerner-Konhäuser (KK) model
[51] and gas-kinetic-based traffic (GKT) model [52].

3.1.1.2 Outlines of car-following models

Target models in the second category consider inter-vehicle influence and are
called car-following models. The car-following models define the velocity or ac-
celeration of the vehicle following the leading vehicles using the velocity, velocity
difference, distance between vehicles, etc. In Figure 3.2, the accelerations of Ve-
hicles #2 and #3, i.e., a2 and a3, respectively, are defined by their velocities v,
distances from the leading vehicle s, velocity differences, etc. The acceleration
of Vehicle #3 is greater than that of Vehicle #2 as s3 > s2. Because the car-
following models depict movements of respective vehicles, the parameters for each
vehicle can be defined separately. If the formulation includes the physical values
of multiple leaders, we can even reflect the effects of multiple leaders [53, 54]. The
car-following models have the potential to replicate vehicle movements accurately
because time and space in the models are not discrete but continuous. Detailed
categorization is described in Section 3.1.2.

Figure 3.2: Schematics of the car-following models.

3.1.1.3 Outlines of cellular automaton models

The third category consists of cellular automaton (CA) models. As shown in
Figure 3.3, time and space are discretized in the CA models. Each vehicle decides
whether to go forward or not based on a “rules.” For example, “if the leading
vehicle occupies the cell right in front of where the vehicle is, the vehicle keeps
its current position; otherwise, it moves on to the cell right in front of it.” This
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rule is called Rule 184 and is formulated as

xα(t+ 1) = xα(t) + vα(t) (3.6)

vα(t) =

{
1 (xα−1(t)− xα(t) > 1)

0 (otherwise)
(3.7)

where α is vehicle number. Indeed, detailed replication of traffic phenomena is
difficult for CA models. We can observe various traffic phenomena (e.g., occur-
rence and growth of the traffic jam, propagation of the traffic wave, etc.) based
on introduced rules which are easily extended [55]. In addition, owing to simple
modeling of particles, CA models can be applied to various kinds of systems,
including transfer of objects, information, and states (e.g., a swarm of ants [56],
molecular motor proteins [57], stock trading system [58], etc).

Figure 3.3: Schematics of the cellular automaton models.

In following analysis, we focus on the car-following models. Although the
hydrodynamic models and the CA models are representations of traffic flow and
inter-vehicle influence, these models have disadvantages when replicating mixed
traffic. With the hydrodynamic models, we cannot investigate the internal struc-
ture of traffic. With CA models, we cannot replicate detailed behaviors of each
vehicle. On the other hand, the car-following models can calculate the behaviors
of vehicles in continuous time and space. Vehicle characteristics can be reflected
in the parameters of each vehicle. Although the calculation costs of the car-
following models are higher compared to other models, the car-following model is
the best method to replicate mixed traffic based on behavioral differences between
types of vehicles.
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3.1.2 Introduction of Car-Following Models

In this section, we introduce some car-following models and choose models to
investigate in the following analysis. The car-following models are roughly cate-
gorized as follow:

1. a(t) = f(t): the acceleration of a vehicle at a certain time is determined by
physical values at that time.

2. a(t+T ) = f(t): the acceleration of a vehicle at a certain time is determined
by the physical values of time delay T .

3. v(t+T ) = f(t): the velocity of a vehicle at a certain time is determined by
the physical values of time delay T .

4. Action point model

5. Fuzzy logic-based model

Pipes introduced the first car following model [59] formulated as

a(t) = A ·∆v(t) (3.8)

where A is a constant and ∆v is the velocity distance, i.e., vl−vf ; the superscripts
indicate the leader and follower, respectively. This model is categorized as Item
1. In order to replicate the traffic instability, Chandler et al. introduced the time
delay T and formulated the acceleration as [60]

a(t+ T ) = A ·∆v(t). (3.9)

This model is categorized as Item 2. Newell et al. introduced optimal velocity
Vopt(h) and formulated the velocity as [61]

v(t+ T ) = Vopt(h(t)). (3.10)

The optimal velocity is a monotonically increasing function and the limit of
Vopt(h) as the headway distance h approaches infinity is equal to the maximum
velocity. Figure 3.4 shows an example of the optimal velocity function. This
model is categorized as Item 3.

Figure 3.4: An example of the optimal velocity function.
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Based on these elementary car-following models, researchers developed various
kinds of models. For Item 1, Bando et al. proposed an optimal velocity (OV)
model for the acceleration formulated as [62]

a(t) = A {Vopt(h(t))− v(t)} . (3.11)

The OV model was derived from Taylor expansion of Newell’s model, which is
often utilized for mathematical investigations of the traffic models because it does
not include time delay T . Note that if we apply Taylor expansion again, we can
obtain the OV model formulating not the acceleration but the jerk [63]. Bando
et al. also presented the OV model by considering the length of a vehicle [64].

Jiang et al. extended the OV model as [65]

a(t) =
Vopt(h(t))− v(t)

τ
+ γ∆v(t) (3.12)

where τ is constant and speed adaptation time of a driver, and γ is a constant.
This model is called the full velocity difference (FVD) model. Equation 3.12
takes the velocity difference into account. When the value of ∆v is large, the
acceleration also becomes large. This model seems more suitable than the OV
model to replicate more realistic propagation of traffic waves.

The intelligent driver (ID) model proposed by Treiber et al. is another varia-
tion of Item 1 [33]. The formulation of the ID model is

a(t) = A

[
1−

(
v(t)

Vm

)δ
−
(
s∗(v(t),∆v(t))

s(t)

)2
]

(3.13)

where Vm is the maximum velocity and A is the maximum acceleration. s is the
distance gap, i.e., the space distance between the leading vehicle and the following
vehicle, which is the headway distance minus the vehicle length. s∗ is the desired
distance gap determined by the velocity on its own and the velocity difference
between the leading vehicle. The desired distance gap s∗ is determined as

s∗(v(t),∆v(t)) = smin + max

(
0, v(t)T +

v(t)∆v(t)

2
√
AB

)
(3.14)

where smin is the minimum distance gap when the vehicle stops, and T is the
preferable time gap when the vehicle travels at the velocity of v. B is the com-
fortable deceleration. When the vehicle is rapidly approaching an obstacle (e.g.,
a traffic signal), the model produces sufficient deceleration for it to stop. The
deceleration approaches B after covering enough distance to stop in front of the
obstacle. The ID model can produces more realistic acceleration than the OV
model, and its parameters have physical meanings. Therefore, the ID model is of-
ten utilized for realistic traffic analysis even for mixed traffic [34], as we mentioned
in Section 1.2.

Another example of Item 3 is the Gipps’ model [66]. The simplified formula-
tion introduced in [67] is as follows.

v(t+ T ) = min
[
v(t) + AT, Vm, vsafe(s(t), v

l(t))
]

(3.15)
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The first and second terms in the minimization regimes indicate that the vehicle
accelerates at the acceleration of A if the vehicle’s velocity does not reach the
maximum velocity of Vm. When the safe speed vsafe determined by the distance
gap and leader’s velocity v is less than the first and second terms, the velocity is
adjusted to the value of vsafe. The safe speed vsafe is the speed to avoid collision
with a fixed deceleration parameter B. Because of its simplicity, the Gipps’
model is utilized in some commercial simulators. Although both the Gipps’ model
and the ID model consider the driving strategies of drivers and produce realistic
acceleration and deceleration ranges, the transition of acceleration, stable velocity,
and deceleration phases are toggled in the Gipps’ model. Therefore, the Gipps’
model seems to be unsuitable to replicate the detailed following behaviors of
various types of vehicles.

For Item 2, there is a large group of models called “GHR” models named
after Gazis, Herman and Rothery. The review article presented by Brackstone
introduces the history of GHR models [4]. GHR models originated from Chan-
dler’s model [60] and [68], in which the sensitivity parameter is a just constant
A, as shown in Equation 3.9. The improved models mentioned below have the
sensitivity parameter of

A(t) =
Cvm(t)

hk(t− T )
(3.16)

and the model equation is written as

a(t+ T ) = A(t+ T ) ·∆v =
Cvm(t+ T )

hk(t)
∆v(t) (3.17)

where C is a constant, and k and m are exponents for the headway distance and
velocity, respectively. First, Herman et al. proposed that the sensitivity constant
decreased when the headway distance increased: they introduced the model with
k = 1 and m = 0 [69]. Edie proposed that the necessity of introducing velocity
dependence to the sensitivity constant, i.e., k = 1 and m = 1 [70]. Gazis et al.
applied Edie’s approach and proposed the general formulation of GHR model of
Equation 3.17. They investigated macroscopic relationship between the flow and
density in combinations of k and m, and found favorable combinations of k and
m from 18 experiment samples [71]. Based on their study, many researchers tried
to determine the best combinations of k and m [72, 73, 74, 75, 76, 77]. From
the research by Ceder et al., dividing parameters in congested and non-congested
phases, or acceleration and deceleration phases, became main stream of param-
eter fitting. Through various methods of observations (e.g., aerial observation,
stationary video recording, etc.), they increased sample numbers to obtain better
parameter combinations. Although the parameters in GHR models are difficult
to interpret physically, currently GHR models are frequently used in the field of
traffic engineering owing to their performance of traffic replication.

The other variation of Item 2 is the Helly model [78], which is generally
formulated as

a(t+ T ) = C1∆v(t) + C2 {h(t)−D(t+ T )} (3.18)
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where D is desired following distance [4] formulated as

D(t+ T ) = α + βv(t) + γa(t). (3.19)

Models categorized as this item are also called linear models because the formu-
lation of Helly model is linear. As the formulation is linear, the concept of control
engineering can be easily applied to the Helly model.

Although simulated drivers in the models mentioned above react to given
physical environment continuously, real drivers cannot perceive small variations
of physical values or variations occurring far away from their present location.
After recognizing variations of physical values, i.e., after the variation exceeds
some threshold, the drivers finally take action. With the introduction of the
concept of “action point,” many types of the action point models categorized as
Item 4 have been developed, and they are even utilized for commercial traffic
simulators. Michaels first introduced the concept of the action point [79]. His
idea is as follows. The driver can perceive the approach of the leading vehicle
according to the change in the visual angle of the leading vehicle. Once the rate
of change exceeds a threshold, the driver decelerates until the relative velocity
is no longer recognized. Other examples of action points are, the threshold for
perception of closing or opening [4], and acceptable maximum and minimum gaps
in the car-following regime [67]. It is noted in [4] that the validity of action point
models has not been evaluated completely. The reason is that it is difficult to
prove the validity of respective thresholds and action points, even when the whole
simulation works properly.

The models categorized as Item 5 utilize fuzzy logic. That is, the drivers
simulated by these models calculate the degree of “terms.” For example, drivers
will recognize “slow” when the velocity is 10 km/h. The “membership function”
of “slow” becomes 1 and that of “fast” becomes 0. The membership function
indicates the degree of truth of the “term” by its value from 0 to 1. When
the velocity is 100 km/h, the drivers will recognize “fast” and the membership
functions of slow and fast become 0 and 1, respectively. Once the drivers judge
which “terms” are most likely to be true, the drivers perform their action based
on “fuzzy-logic,” e.g., “IF slow AND headway is far, THEN accelerate.” The
first research that applied this approach was conducted by Kikuchi et al. [80].
Regarding this category of models, it was also noted in [4] that the calibration of
membership sets has not been sufficient.

From the models mentioned above, we chose Items 1 and 2, and investigated
the ability of their parameters to replicate vehicle difference. The important
reasons why we chose these models are because of the number of parameters
to consider and the clear dependence of physical values on these parameters.
Furthermore, in these categories, there are major models for current physical and
engineering traffic analysis. We chose the OV model, FVD model, ID model,
Helly model, and GHR model. These models are roughly arranged from models
frequently used in physics field to ones frequently used in engineering field. By
choosing these models, we aim to contribute to both the physical and engineering
fields.
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3.2 Features in Observed Trajectories of Differ-

ent Following Vehicles

3.2.1 Idea of Analysis

One of the main objectives of this thesis is finding suitable models to replicate
driving differences of each vehicle and finding parameters to replicate these dif-
ferences in respective models, as described in Section 1.3. We need to compare
the relationships between physical values of the models and the observation data
with changing model parameters or vehicle characteristics. As the car-following
models chosen in Section 3.1.2 define the dependence of the acceleration on the
velocity, velocity difference, and distance gap or headway distance, the relation-
ships to be investigated are those between the accelerations and other physical
values, i.e., the velocity, velocity difference, etc. Figure 3.5 shows the idea of
the analysis conducted in Section 3.2 to 3.4. Imagine that we have one green
trajectory describing the relationship between the velocity and acceleration. By
changing vehicle type, i.e., vehicle characteristics, we obtain other green trajec-
tories. On the other hand, we obtained red-dotted trajectories from simulations
that change one parameter of some models. If the trends of green trajectories
obtained from observations and those of red-dotted trajectories obtained from the
simulations are consistent, as shown in Figure 3.5, we can say that the parameter
can replicate the trajectory difference caused by vehicle types. Furthermore, we
can also conclude that the model can perform the replication of vehicle differ-
ence. Therefore, we need to extract the characteristic trajectories of each vehicle
type and confirm whether the dependence of parameter adjustments on trajectory
variations is consistent with that of observations.

Figure 3.5: A schematic of the analysis. Trends of trajectories when a parameter
in a model is changed should be consistent with those of trajectories when a
vehicle characteristic is varied.
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3.2.2 Data Processing Method

We apply a method of machine learning method to extract the characteristics of
the observed trajectories as we can obtain quantitative standards to check if the
trajectories are similar or not. If we obtain some standards to distinguish which
trajectories were observed from which vehicles, we can utilize the standards as
features in the trajectories of each vehicle. As the trajectories are labeled by
vehicle type, the problem that we tackle here is the classification with supervised
learning. Methods and examples to solve this problem are as follows.

1. Clustering:

k-nearest neighbor (kNN) [81, 82]

2. Regression:

linear regression, logistic regression [83], support vector machine [84, 85]

3. Tree:

decision tree [86, 87, 88], random forest [89]

4. Artificial neural network:

perceptron [90], convolutional neural network (CNN) [91]

5. Bayes:

naive Bayes [92, 93, 94]

Clustering by k-nearest neighbor (kNN) first calculates the centroids of each
physical value in each category. The classifier of the kNN classifies a data to the
category in which the centroid is the nearest to the data.

The classifier of regression methods divides data into two regions with a given
regression function. The support vector machine (SVM) also divides data into
regions using the maximum-margin hyperplane. The SVM can classify complex
data on multidimensional space with kernel functions.

A decision tree categorizes data into each labeled group using multi-layered
standards for classification or decision rules. A random forest is a kind of en-
semble methods that uses small trees generated from selected data groups. It
is widely held that the classification performance of random forests is high but
understanding the learning results, i.e., how the random forest classifies the data,
is more difficult compared to kNN, regression methods, and decision trees.

An artificial neural network is a classifier inspired by the neural system of the
brain. Currently, this method is often utilized for the classification of images or
big data, which are not divided linearly [95, 96].

A naive Bayes classifier is based on Bayes’ theorem and calculates the posterior
probability if certain data belong to a certain category. Assuming the indepen-
dence of a stochastic variable in the plausibility, the Bayes classifier simplifies
plausibility and obtains the posterior probability.

In this thesis, we clarify the features of the trajectories of each vehicle and
confirm if some car-following models can replicate these features. The readability
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of learning results, i.e., how easily one can interpret the rule based on which the
classifier distinguishes data, is an important element when developing a classifier.
The decision tree is one of the best methods from the readability perspective.
Therefore, we try to develop a decision tree for the observed trajectories in Section
3.2.3.

In Section 3.2.2.1, we introduce the developing method of trees based on
characteristic trajectories. In Section 3.2.2.2, we consider some problems of our
observed trajectories in order to apply the method introduced in Section 3.2.2.1.
To overcome these problems, we apply “dynamic time warping” in Section 3.2.2.3.

3.2.2.1 Decision-tree classification of series data based on distance to
shapelets

The basic decision tree learns from data with scalar variable sets and grows itself
until the termination condition is satisfied. Ye et al. proposed a method to
develop a decision tree from series data, e.g., time series or shapes on a two-
dimensional plane [97]. This method has been utilized in some researches to
extract characteristics from time series [98, 99]. Ye et al. used the classification
of leaves as an example in their paper [97]. That is, they tried to classify the leaves
of two different plants, which included color difference, insect-bite damages, etc.,
according to their shapes.

Imagine that one classifies leaves shown in Figure 3.6. Humans easily recog-
nize that the shape marked by a red line around a stalk is an essential clue to
distinguish leaves. When the leaf shape is deployed on a one-dimensional plane,
the red line is plotted as shown in Figure 3.7. The center of gravity of the leaf
is indicated as Point G in Figure 3.6. The angle around Point G is θ and the
distance from G is r in Figure 3.6 and 3.7.

Figure 3.6: Schematics of leaves for classification.

44/163



3.2. FEATURES IN OBSERVED TRAJECTORIES OF DIFFERENT
FOLLOWING VEHICLES

Figure 3.7: Schematics of leaf shape expanded into one-dimensional space.

Then, we choose other leaves from Plant A and Plant B and compare the most
similar sub-trajectories. The examples are shown in Figure 3.6 by a blue dashed
line and a green chain line. These lines in Figure 3.8 are the deployed shapes
on the one-dimensional plane. We can recognize clearly that the error from the
red line of the trajectory for Plant A (the blue dashed line) is smaller than that
of the trajectory for Plant B (the green chain line). Ye et al. named this most
significant characteristic red line a “shapelet” and proposed the development of
a decision tree based on errors from these shapelets.

Figure 3.8: Comparisons of the shapelet and trajectories of leaves A and B.

A flowchart of their approach is shown in Figure 3.9. When the algorithm
starts, it generates shapelet candidates, i.e., it extracts all the sub-elements from
all data series in non-divided original datasets or groups. For these all sub-
elements, it calculates the gain, dosp, divided groups, and a margin between the
new divided groups. The gain is the information gain calculated from information
entropies of the original data group and data groups divided by one node. When
the information gain increases, one can say that the node dividing the original
group reduces the degree of mixture of types in divided groups. The information
gain is calculated as

gain = H(D)− {f(D, d1) ·H(d1) + f(D, d2) ·H(d2)} (3.20)
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where D is the dataset in the original group and, d1 and d2 are the datasets in
the divided groups. H is the function for the information entropy from datasets
and f is the weight function written as

H(D) = −
∑
type

ntype
ND

log
ntype
ND

(3.21)

f(D, d) =
Nd

ND

, (3.22)

where ND and Nd are the number of data series in D and d, and ntype is the
number of data series of each labeled type. In our case, type consists of the
motorcycles (MC), cars (C), and trucks (T). The value of dosp is the “distance”
threshold where the original dataset is divided into two groups. The concept of
“distance” is explained later. The margin of the two divided groups is written as

margin = δ2 − δ1 (3.23)

where δ1 and δ2 are the averaged distances of datasets divided into d1 and d2,
respectively. The trials in Group d1 are within the threshold of dOSP and those
in d2 are out of it. When the margin becomes large, the average distance of d2
is far from the shapelet candidate, and the average distance of d1 is close to the
candidate.

The calculation sequence for obtaining gain, etc, consists of the sub-sequence
shown on the right side in Figure 3.9. For all data series in the dataset, it
calculates the “distance” between the candidate and data series. Although the
lengths of the candidate and data series are different, we can find the minimum
error value, i.e.,

distance = min

{
lc∑
i=1

|Seriesi+j − Candidatei|

}
(j = 1, 2, · · · , ls − lc) (3.24)

where ls and lc are the length of the data series and the candidate, respectively.
The distance is the minimum error between the data series and candidate, which
we compared in Figure 3.8. After sorting the data series based on these distances,
the algorithm searches for the optimal split point to divide the original dataset.

In Figure 3.10, an example of a sorted list and division procedure is shown.
Imagine that the algorithm chooses a threshold distance dividing the data series
as dsp. Then, it can calculate the information gain by Equation 3.20, and simul-
taneously obtain the margin. By changing the value of dsp, it can find the optimal
split point dosp where it obtains the best gain. If there are several split points
in which the gains are the same, the algorithm chooses the split point with the
largest margin.
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Figure 3.9: The flowchart of decision tree construction with shapelets.

Figure 3.10: Calculated values when the optimal split point is searched.
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After recording the best gain, the main sequence checks if the obtained best
gain is better than the previous best gain. It also checks whether the obtained
margin is greater than the previous largest margin. If both conditions are sat-
isfied, then the main sequence records the shapelet candidate, gain, and margin
realized with the candidate, and the optimal split point dosp for division of the
group. The algorithm finds the candidate that divides the original group with
the best gain and the best margin. This candidate is called the “shapelet” and
it provides one node in the decision tree dividing the original data. By applying
this sequence continuously, we can develop the decision tree for the data series.

Ye et al. [97] considered that the gain was more important compared to the
margin in the original algorithm and selected the shapelet with the better gain
even when it had the worse margin. However, if we applied this manner of selec-
tion, we obtained shapalets with so small margin that we could not distinguish
difference between the divided groups. Therefore, we searched for the shapelet
with both the best gain and the best margin.

In our analysis, we applied some limitations to the original algorithm. We
extracted not all the sub-elements from the dataset but sub-elements with fixed
lengths; the index lengths of them were from 22 to 724. The index of the data
series will be introduced in following sections. The lengths of 724 and 22 corre-
spond to the half of and 1/64 of the series length, respectively. While doubling
the length of the sub-element from 22 to 724, we extracted sub-elements. We also
added some conditions to avoid over-fitting. We limited the minimum number of
trials included in a node to eight. If the number of trials became less than 16, we
did not add deeper decision rules to the node. When one type of vehicle occupies
more than 90 % of a node, we also did not add deeper decision rules to the node.

3.2.2.2 Application of the shapelet analysis to the observed trajecto-
ries

A decision tree that classifies data based on the series or the two-dimensional
shapes can be realized by the method proposed by Ye et al. In the case of the
two-dimensinal shape, it requires deployment of the shape on one-dimensional
space. In the example of the leaves, the angle θ around the gravity point G
is utilized for deployment in Section 3.2.2.1. However, it is difficult to apply
the angle θ to our observed trajectories. Figure. 3.11 is an example of observed
trajectories. If we try to get distances from the center of gravity of each trajectory,
the deployed one-dimensional series will have multiple values for the same θ.

One simple approaches to tackle this problem is to deploy trajectories based
on observed time. However, we again face a problem: each observed trajectory
has different lengths and respective phenomena (i.e., acceleration, deceleration,
etc.) occur for different durations in each trajectory. In other words, even when
we have the same two trajectories on the distance gap vs. acceleration plane,
the series deployed on one-dimensional planes (time vs. distance gap and time
vs. acceleration planes) based on time can be different. In order to realize the
basic idea introduced in Section 3.2.1, we need a common index for each series.
In Section 3.2.2.3, we introduce the method to obtain the common index.
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Figure 3.11: An example of observed trajectories. The following vehicle was the
car and the leading vehicle was the truck.

3.2.2.3 Dynamic Time Warping

Dynamic time warping (DTW) was first proposed by Bellman et al. [100]. Imag-
ine that there are two time series a and b, as shown in Figure 3.12a, and the
time index for Series a is counted by i and that of Series b is counted by j. The
time intervals for respective indices are the same. Assume that the maximum i
and j are 8 and 10, respectively. That is, Series b is longer than Series a. As
shown in Figure 3.12a, not only series lengths but also timing of the emergence
of similar phenomena and their shapes are somewhat different. We try to assign
the common index k by selecting sampling points where similar phenomena are
observed in Series a and b. In Figure 3.12b, we locate a purple box k = 0 at
(i, j) = (0, 0). For the next index, we assign k = 1 to (i, j) = (0, 1) because the
value has already increased at i = 1 in Series a; both series start increasing from
k = 1. As similar phenomena occur in both series for a while, we can proceed
until (i, j, k) = (4, 5, 5). We again have to assign multiple indices for i = 4 be-
cause the length of the decreasing phase of Series b is longer than that of Series
a. Although shapes of the bottom of the concave parts are somewhat different,
we assign one index for (i, j) = (6, 8) because we can assume that both parts are
roughly in the same phase. Through such manipulation, we can assign the com-
mon index to two series and obtain the sets of (i, j, k) as shown in Figure 3.12b,
called a “warping path.” In the algorithm, the warping path is to be searched
greedily to minimize

K∑
k=0

dk (dk = |aik − bjk |) (3.25)

where K is the maximum k, and iκ and jκ are i and j when k = κ, respectively.
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(a) Assigned common index k for each series. (b) An example of the warping path.

Figure 3.12: Schematics of the DTW.

We can acquire the common index for two series by DTW. However, we need
to compare all the observed and simulated trajectories. In other words, the
lengths of all the trajectories need to be adjusted to that of a certain reference
series, as shown in Figure 3.13. The same length of indices for all series can be
obtained with a reference series whose length is sufficiently longer than those of
observed and simulated series. As reference signal, we applied a series for the
velocity shown in Figure 3.14. It has sufficiently longer length than the observed
and simulated series. All the observed and simulated series are to be assigned a
new index k based on the comparison between the reference velocity and their
velocities. In the range k = (0, 249), the velocity of the reference series Vref is 0.
In the range k = (250, 1349), the velocity of the reference series follows

Vref =
Vmax

2
[1− cos {2π/Tref(k − 250)}] (3.26)

where Tref = 1100 and Vmax = 13.3(m/s), which is the averaged maximum velocity
of the observed series.

One of the reasons why we applied this series is that when the reference series
has a constant area at the top of the velocity, the maximum value affected the
assigned index of each series. Another reason is signal smoothness. Of course,
smooth velocity series is more similar to the observed series than a series like a
trapezoid, which are not differentiable. Furthermore, we can define the early or
latter phases of the acceleration and deceleration based on whether the series is
convex or concave. Basically, we assume that the concave region in the accelera-
tion phase is the early acceleration phase, the convex region in the acceleration
phase is the latter acceleration phase, the convex region in the deceleration phase
is the early deceleration phase and the concave region in the deceleration phase
is the latter deceleration phase. Because the observed and simulated series have
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steady phase while maintaining constant velocity, we assume that the initial range
where the velocity is less than 10 % of the maximum value are the waiting or
stopping phase, In addition, we also assume that the the range where the veloc-
ity is more than 90 % of the maximum value is the steady phase. Specifically,
we assume the range of k = (0, 362) as the waiting phase (W), k = (363, 524)
as the early acceleration phase (EA), k = (525, 686) as the latter acceleration
phase (LA), k = (687, 912) as the steady phase (ST), k = (913, 1074) as the early
deceleration phase (ED), k = (1075, 1237) as the latter deceleration phase (LD)
and k = (1238, 1449) as the stopping phase (SP).

Figure 3.13: Schematics of index assignment to the reference series.

Figure 3.14: The reference series for DTW. The observed and simulated series
were assigned new index k based on the velocity comparison with this series.

Even if we prepared sufficient length of the reference series, the DTW algo-
rithm assigned multiple common index k to a few sampling points of the ob-
served and simulated series to minimize Equation 3.25. Therefore, we restricted
the algorithm from assigning multiple k to the observed and simulated series; we
restricted the horizontal movement on the warping path when assuming j as k in
Figure 3.12b. Figure 3.15 is an example of the DTW process toward an observed
velocity series. Note that our program was developed based on the program in-
troduced in [101]. We confirmed that all the series were adjusted to the length
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of the reference series. Note that, when we develop the decision tree, we did
not calculate the distance between the shapelet candidate and the sub-series all
over the index k as written in Equation 3.24 but only between the candidate and
the sub-series on the same index range. It is because DTW algorithm adjusts
the positions of the similar phenomena. We need not to shift the range for the
distance calculation to search the similar sub-series.

(a) An example of the warping path. The path is
depicted by the red line. The depth of blue indicates
dk in Equation 3.25.

(b) Matched index set between the observed series
and the reference series. The green line is the ob-
served series and the blue line is the reference series.
Each sampling point of the observed series is bound
to the assigned point of the reference series by a gray
line.

Figure 3.15: An example of DTW process.
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3.2.3 Characteristic Leaves of Different Following Vehi-
cles: Features in Observed Trajectories

In this section, we apply the decision tree analysis based on the shapelet toward
the observed series processed by DTW. In following discussion, we call the tra-
jectories shown in Figure 3.11 as characteristic leaves, after the example given
by Ye et al. We investigate the features of the characteristic leaves for respective
following vehicles. In Table 3.1, we listed the trials utilized the analysis. Because
we instructed different steady velocity in the experiments held in December, 2015
and September, 2016, we could not treat them as one dataset. In the following
analysis, we focus on the data obtained in September, 2016. Some of the observed
data were removed because they did not contain sufficient data at the end of the
trials when the followers were stopping.

Table 3.1: Utilized trials for the decision tree analysis with the shapelets.

Follower Leader
Experiment

day
Test driver
(follower)

Trial
number

Trial number
of combination

MC

MC

Sep., 2016

TD6 7

25C TD6 13

T TD7 5

C

MC

Sep., 2016

TD4 1

34

TD5 6

C
TD4 6
TD5 7

T
TD4 11
TD5 3

T

MC

Sep., 2016

TD4 6

20C TD4 6

T TD4 8

3.2.3.1 Features in averaged characteristic leaves

Before we proceed with the decision tree analysis, we refer to the “averaged”
characteristic leaves in the case of each follower type. Figures 3.16, 3.17, and 3.18
are the averaged characteristic leaves in the case of each follower type. Physical
values, i.e., the distance gap s, follower velocity v, velocity difference ∆v, and
follower acceleration a, at the same indices of all the series processed by DTW
were averaged. The averaged characteristic leaves in the case of each follower
(the motorcycles, cars, and trucks) are indicated by a blue, orange, and black
solid line. The gray solid line indicates the averaged trajectory over all observed
series. Dashed lines of each color indicate averaged value ± standard error for
each follower type.
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From Figure 3.16, we can confirm that the characteristic leaf of the motor-
cycles is smaller than those of other followers from the distance gap perspective.
This feature will be detected by the decision tree analysis. In Figure 3.17, we can-
not find any obvious features for v direction. Regarding the follower a direction,
we find small separations in the case of the truck in the acceleration and deceler-
ation phase. In Figure 3.17, we find that the leaf in the case of the motorcycle is
smaller than those of others in ∆v direction. Furthermore, the shape difference
between the cars and trucks is also visible. These features are also expected to
be found by the tree analysis.

Figure 3.16: Trajectory for each following vehicle on the distance gap and follower
acceleration plane. Averaged data over the same indices on DTW series are
shown. Dashed lines indicate the standard error of each case.

Figure 3.17: Trajectory for each following vehicle on the follower velocity and
follower acceleration plane. Averaged data over the same indices on DTW series
are shown. Dashed lines indicate the standard error of each case.
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Figure 3.18: Trajectory for each following vehicle on the velocity difference and
follower acceleration plane. Averaged data over the same indices on DTW series
are shown. Dashed lines indicate the standard error of each case.

From Figure 3.19 to 3.22, we indicate the evolutions of each physical value
on the common index k in order to clarify whether the difference of the physical
values with the different followers is universal among drivers. Because there were
two drivers who were led by all the types of the leaders only for the following cars,
we compared the averaged series of TD4 and TD5, who drove the cars, to the
averaged series of the motorcycles and trucks. Imagine that a green line in Figure
3.19 for TD4, who drove the cars, is smaller than a blue line for the motorcycles,
and a purple line for TD5, who also drove the cars, is greater than the blue line
in some index range. If such a case, we cannot conclude that a shapalet located
in the range is applicable to all the drivers. For example, in the lower figure
in Figure 3.19, the green and the purple lines hold the black line between them
roughly in the range 650 ≤ k ≤ 850. If we obtain the shapelet in the range to
divide trials of the cars and trucks, the shapelet cannot be utilized. In Figure
3.20 for followers’ velocity, we cannot confirm clear inversion of the magnitudes.
In the lower figure in Figure 3.21 for the velocity difference, we confirmed the
inversion of the magnitude at around k = 450 and 650. If we obtain the shapelet
around here to divide trials of the cars and trucks, it can not be used. In the
upper figure in Figure 3.22 for followers acceleration, we observe the inversion
in the range 400 ≤ k ≤ 500. The shapelet in the range can not be utilized for
the division between the motorcycles and cars. On the other hand, in the lower
figure in Figure 3.22, we observe the inversion in the range 550 ≤ k ≤ 650. The
shapelet in this range can not be used to divide trials of the trucks and cars.
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Figure 3.19: Comparison of the distance gap on the common index k in the cases
of the motorcycles and cars, and trucks and cars.

Figure 3.20: Comparison of followers’ velocity on the common index k in the
cases of the motorcycles and cars, and trucks and cars.
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Figure 3.21: Comparison of the velocity difference on the common index k in the
cases of the motorcycles and cars, and trucks and cars.

Figure 3.22: Comparison of followers’ acceleration on the common index k in the
cases of the motorcycles and cars, and trucks and cars.

57/163



3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

3.2.3.2 Features of the characteristic leaves from the perspective of
the distance gap

In this section, we develop a decision tree for the distance gap using the algo-
rithms introduced in Section 3.2.2 for extracting characteristic features, i.e., the
shapelets, observed in the distance gaps of each following vehicle.

As we mentioned in Section 3.2.2, we terminated the tree development and
did not add deeper decision rules when one type of the vehicles occupies more
than 90 % in a node in order to avoid over-fitting. We also did not add the new
nodes when the node has less than 16 trials. That is, if the node is occupied less
than 90 % by one type of the vehicles and has as many as or more than 16 trials,
we try to add new deeper nodes. On the other hand, when we have a node which
cannot be added new nodes because of the number of the trials but is occupied
by less than 75 % by one type of the vehicles, we do not utilize the decision rule
for the classification because of the lack of the performance.

Figure 3.23 is the decision tree for the distance gap. The tables show the
number of vehicles that belong to each node of the tree. The number of vehicles
are shown in the column “#.” The percentages occupied by each vehicle in each
node are shown in the column “% in group.” The ratios of the number of vehicles
in each node to the total number of each vehicle are shown in the column “%
in type.” The decision rules based on the extracted shapelets are numbered as
“DRn.” Each DR divides trials in the upper node into two nodes located on the
left and right sides. The trials in the divided node directed by a blue arrow are
trials whose trajectories are within of the range determined by the shapelet and
dOSP. The remaining trials are divided into the node directed by a red arrow. The
obtained gains, dOSP, and margins are shown below the DRs. For example, DR1
extracts 20 trials for the motorcycles, which correspond to 80 % of all motorcycle
trials. In addition, “% in group” for the motorcycles becomes 100 % as the
divided group comprises only the motorcycle trials. We denote “MC” next to the
table because we can regard the node extracted by DR1 as for the motorcycles
owing to the high occupancy ratio of the motorcycle.

From Figure 3.24 to 3.29, the shapelets utilized for each DR are shown. The
shapelet used for DR1 is shown in Figure 3.24. Figure 3.24a shows the obtained
shapalet by a red line. Because dOSP is the averaged distance which the extracted
trajectories should be within, the values of the shapelet series ±dOSP are the
averaged range in which these trajectories are included. This range is indicated
by the dashed lines. The distance gaps for the motorcycles, cars, and trucks
on the DTW index k are depicted by the blue dots, orange dots, and black
dots, respectively. The horizontal dashed lines indicate the respective phases,
i.e., from k = 0, the waiting phase, early acceleration phase, latter acceleration
phase, steady phase, early deceleration phase, latter deceleration phase, and the
stopping phase, respectively.
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Figure 3.23: The decision tree for the distance gap based on the shapelet analysis.
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Figure 3.24b is the averaged characteristic leaves on the plane of the distance
gap and followers’ acceleration. The data points corresponding to the range of the
shapelet index are emphasized by the bold lines for the reference. We conclude
that DR1 is the decision rule to divide the motorcycles using the distance gap
during the steady phase (k = 748 to 769) from Figure 3.24a. We can confirm the
obvious difference in the distance gap between the motorcycles and other vehicles
in Figure 3.24b.

On the other hand, DR2 in Figure 3.25 extracts the remaining motorcycles
but the extracted node also includes some cars and trucks. We conclude that
DR2 does not have the ability to divide trials into specific following vehicle cases.

From DR3, the problem almost becomes the classification of trials for the cars
and trucks. DR3 utilizes the shapelet located in the early deceleration phase in
Figure 3.26a and extracts the truck trials. DR3 claims that the distance gap of
trucks is smaller than that of cars in the early deceleration phase. We can confirm
this trend in Figure 3.26b.

Owing to the degree of mixture, we cannot utilize DR4 in extracting the cars
trials.

DR5 and DR6 are located in the early deceleration phase, as shown in Figure
3.28a and 3.29a, and they claim that the distance gap in the early deceleration
phase becomes larger in the case of cars than that of trucks.

Through the discussion above, we determined the following logical formulas:

PMC ⊆ DR1 (Pall) (3.27)

PC ⊆
{

DR5
(
DR4

(
DR3

(
DR2

(
DR1 (Pall)

))))}
∨
{

DR6
(
DR5

(
DR4

(
DR3

(
DR2

(
DR1 (Pall)

)))))}
(3.28)

PT ⊆ DR3
(
DR2

(
DR1 (Pall)

))
(3.29)

where Pall is all the trial populations and PMC, PC, and PT are the trial popula-
tions for the motorcycles, cars, and trucks, respectively. The logical expression
DR(P ) refers to the remaining population that the decision rule DR extracted
from the original population. Based on these logical formulas, the shapelet com-
binations essential for the classification are plotted in Figure 3.30. We call this
diagram a logic diagram of shapelets. The blue areas filled with diagonal lines, the
orange areas, and the black areas filled with horizontal lines show the shapelets
for the motorcycles, passenger cars, and trucks, respectively. This figure shows
that, for example, the series of distance gaps for the cars which are extracted
by the decision tree, pass all areas on different indices filled in orange. If there
are two areas on the same index, the series extracted by the decision tree passes
either of them. There are two logic diagrams since there are two logical formulas
for the cars. In both cases, we can insist that distance gap of the motorcycles
is smaller than those of the others at around k = 750 (the steady phase), and
distance gaps of the cars and trucks differ by around k = 1000 (the early decel-
eration phase). These features need to be replicated by the car-following models
for the replication of mixed traffic.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.24: The shapelet for the distance gap assigned to DR1. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.25: The shapelet for the distance gap assigned to DR2. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.26: The shapelet for the distance gap assigned to decision rule DR3.
Blue, orange, and black lines show the trajectories when the followers were the
motorcycles, cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.27: The shapelet for the distance gap assigned to decision rule DR4.
Blue, orange, and black lines show the trajectories when the followers were the
motorcycles, cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.28: The shapelet for the distance gap assigned to decision rule DR5.
Blue, orange, and black lines show the trajectories when the followers were the
motorcycles, cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.29: The shapelet for the distance gap assigned to decision rule DR6.
Blue, orange, and black lines show the trajectories when the followers were the
motorcycles, cars, and trucks, respectively.
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Figure 3.30: The logic diagram of shapelets for the distance gap. The blue areas
filled by diagonal lines show the shapelets for the motorcycles. The orange areas
show ones for the passenger cars. The black areas filled by horizontal lines show
ones for the trucks.

3.2.3.3 Features in the characteristic leaf from the perspective of the
velocity difference

We obtained the decision tree for the velocity difference as shown in Figure 3.31

DR1 extracts most of the motorcycle trials. It utilizes the shapelet covering
both the early and latter deceleration phases, as shown in Figure 3.32a. The de-
cision rule claims that the motorcycles tend to have smaller velocity difference in
the deceleration phases compared to other vehicles. This trends can be recognized
in Figure 3.32b.

Owing to the degree of mixture, DR2 can not be utilized as a decision rule.

DR3 extracted the car trials perfectly. It detects the high velocity difference
when the vehicle starts accelerating, as shown in Figure 3.34a. The cars tended
to have larger velocity difference at the beginning of the acceleration phase. In
other words, the drivers of the cars did not start accelerating until the velocity
difference became larger than when they were in the trucks.

The decision rule DR4 focuses on the latter deceleration phase, as shown in
Figure 3.35a. It extracts the truck trials which have the smaller magnitudes of
the velocity difference than those of cars, i.e., the trucks had the larger velocity
difference, including the sign that cars make in the latter deceleration phase.
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Figure 3.31: The decision tree for the velocity difference based on the shapelet
analysis.
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DR5 cannot be used for classification because of poor performance. The
shapelet is indicate in Figure 3.36a.

The deepest decision rule DR6 detects the car trials perfectly by focusing on
the velocity difference at the beginning of the acceleration as DR3. The shapelet
is shown in Figure 3.37a The trend which DR6 claims is the same as DR3, i.e., the
passenger cars tend to have larger velocity difference than trucks at the beginning
of acceleration.

From Figure 3.31, the logical formulas for populations of respective vehicles
are written as follows.

PMC ⊆ DR1 (Pall) (3.30)

PC ⊆ DR3
(
DR2

(
DR1 (Pall)

))
∨
{

DR6
(
DR5

(
DR4

(
DR3

(
DR2

(
DR1 (Pall)

)))))}
(3.31)

PT ⊆ DR4
(
DR3

(
DR2

(
DR1 (Pall)

)))
(3.32)

The logic diagram of shapelets for the velocity difference is shown in Figure 3.38.
The most prominent feature is the stable evolution of the velocity difference by
the motorcycles in the range k = 905 to 1266.

In the classification of cars and trucks, we need to focus on the beginning of
the acceleration, i.e., k = 300 to 400 to detect cars. Some of cars tend to have the
larger acceleration than the trucks do. When we focus on the range k = 1100,
i.e., the latter deceleration phase, we can pick up the truck trials; the trucks tend
to have smaller magnitude of velocity difference than cars. When we consider
the replication performance of the car-following models, we need to confirm the
behaviors when k = 300 to 400, k = 1100 and stability at k = 900 to 1300.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.32: The shapelet for the velocity difference assigned to DR1. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.33: The shapelet for the velocity difference assigned to DR2. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.34: The shapelet for the velocity difference assigned to DR3. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.35: The shapelet for the velocity difference assigned to DR4. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.36: The shapelet for the velocity difference assigned to DR5. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.

68/163



3.2. FEATURES IN OBSERVED TRAJECTORIES OF DIFFERENT
FOLLOWING VEHICLES

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.37: The shapelet for the velocity difference assigned to DR6. Blue,
orange, and black lines show the trajectories when the followers were the motor-
cycles, cars, and trucks, respectively.

Figure 3.38: The logic diagram of shapelets for the velocity difference. The blue
areas filled by diagonal lines show the shapelets for the motorcycles. The orange
areas show ones for the passenger cars. The black areas filled by horizontal lines
show ones for the trucks.
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3.2.3.4 Features of the characteristic leaf from the perspective of the
followers’ velocity

We obtained the decision tree for followers’ velocity difference as shown in Figure
3.39

DR1 extracts part of truck trials. From Figure 3.40a DR1 seems to detect the
rapid deceleration of the trucks in the early deceleration phase.

DR2 extracts trials with larger velocity at the end of the steady phase, as
shown in Figure 3.41. Neither the extracted node nor the remaining nodes are
the terminated nodes supplying obvious classification, and deeper decision rules
are required.

DR3 divides the trials which increases the velocity from the end of the accel-
eration phase to the beginning of the steady phase. It removes the car trials by
detecting increase in velocity at the end of the latter acceleration phase and the
beginning of the steady phase.

DR4 also removes the motorcycle trials. It focuses on the velocity in the early
acceleration phase, as shown in Figure 3.43. The rule achieved perfect extraction
for the motorcycles, and the obtained margin was small, i.e., 0.31 m/s. Because
of this smallness, we decided not to use DR4 for the classification. A criterion was
5 % of the maximum value of the averaged series of all the series. This criterion is
the same to a criterion which to find the location where the series are not varied.
The reasons will be explained in detail in Section 3.2.4.

DR5 detects the truck trials by removing trials with the oscillation of the
velocity in the steady phase. It detects trials which have relatively large and
stable velocities, as shown in Figure 3.44.

DR6 extracts trials in which the velocity in the early deceleration phase passes
in a certain range, as shown in Figure 3.44a. From Figure 3.44b, we concluded
that DR6 detects the large variations in velocity from k = 957 to 978 in the case
of cars.

Although the deepest rule DR7 focuses on stable velocity at the steady phase,
its classification performance was not sufficient. Therefore, we decided not to use
DR7 for the classification.

The logic formulas for followers’ velocity can be written as

PC ⊆ DR3
(
DR2

(
DR1 (Pall)

))
∨DR6

(
DR4

(
DR2

(
DR1 (Pall)

)))
(3.33)

PT ⊆ DR1 (Pall)

∨DR5
(
DR3

(
DR2

(
DR1 (Pall)

)))
. (3.34)

We could neither obtain the logic formula for the motorcycles nor display the
shapelets for the motorcycle on the logic diagram of the shapelets shown in Figure
3.47. This is because there was no decision rule to extract the motorcycle trials
obviously in the tree shown in Figure 3.39. Although the diagrams are complex,
we concluded that the passenger cars tend to have smooth transfer from the
latter acceleration phase to the steady phase, while the some trucks increase
their velocity from the latter acceleration phase to the steady phase. On the other
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hand, from the end of the steady state to the beginning of the early deceleration
phase, the cars tend to maintain high velocity while some trucks decrease the
velocity quickly. We need to focus on the index k range from 630 to 810 and
from 855 to 978 if the simulated series varied their rates of change. Furthermore,
these features are expected to be observed in the feature analysis of followers’
acceleration conducted in Section 3.2.3.5.

Figure 3.39: The decision tree for followers’ velocity based on the shapelet anal-
ysis.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.40: The shapelet for followers’ velocity assigned to DR1. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.41: The shapelet for followers’ velocity assigned to DR2. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.42: The shapelet for followers’ velocity assigned to DR3. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.43: The shapelet for followers’ velocity assigned to DR4. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.44: The shapelet for followers’ velocity assigned to DR5. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.

(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.45: The shapelet for followers’ velocity assigned to DR6. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves for each
following vehicle. Bold area indicates where
the shapelet is.

Figure 3.46: The shapelet for followers’ velocity assigned to DR7. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.

Figure 3.47: The logic diagram of shapelets for followers’ velocity. The blue areas
filled by diagonal lines show the shapelets for the motorcycles. The orange areas
show ones for the passenger cars. The black areas filled by horizontal lines show
ones for the trucks.
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3.2.3.5 Features of the characteristic leaf from the perspective of the
followers’ acceleration

We obtained the decision tree for followers’ acceleration as shown in Figure 3.48
DR1 detects the trials which have large acceleration in the early acceleration

phase as shown in Figure 3.49. The extracted node has more trials of cars than
of the motorcycles; it was decided that this decision rule will not be utilized for
the classification from the perspective of the classification performance.

DR2 also focuses on large acceleration in the early acceleration phase, as
shown in Figure 3.50 and extracts rather more trials of cars than of the other
vehicles. However, for the same reason as DR1, it was decided that this decision
rule will be utilized as only the intermediate decision rule for the deeper ones.

From DR3 shown in Figure 3.51, we can find that the car trials tend to
have smaller acceleration during the latter acceleration phase than those of the
others. However, it utilizes the series around k = 600 where we implied that the
shapelet here would not be universal among drivers from Figure 3.22. Therefore,
we decided to remove this decision rule from the classification.

On the other hand, DR4 can be regarded as the rule for classification of the
trucks. As shown in Figure 3.52, it covers the early acceleration phase to the early
deceleration phase and claims that the truck trials tend to have both increased
acceleration in the latter acceleration phase and quick rise of the deceleration.
This shapelet grasps the features mentioned in Section 3.2.3.4.

The terminated nodes by DR5 and DR6 shown in Figure 3.53 and 3.54, re-
spectively, which are focusing on the acceleration phase, cannot be utilized for
the classification because of the performance in extraction. However, they can be
followed by new nodes as they have sufficient number of trials in the other nodes.

Following DR7, which is shown in Figure 3.55a and the deepest decision rule,
has the perfect performance for the classification. It claims that the cars trials
have the acceleration remaining in the latter acceleration phase. However, it
utilizes the acceleration around k = 600 where the tendency is not universal
among drivers from Figure 3.22. Because the left node divided by DR6 has
sufficient performance for the classification, we decided to use not DR7 but DR6
for extraction of the car trials. DR6 claims that the cars tend to have larger
acceleration change from the early acceleration phase to the end of the latter
acceleration phase than the trucks. This tendency is universal among drivers in
Figure 3.22.

Through the discussions above, the logical formulas can be written as

PC ⊆ DR6
(
DR5

(
DR4

(
DR2

(
DR1 (Pall)

))))
(3.35)

PT ⊆ DR4
(
DR2

(
DR1 (Pall)

))
. (3.36)

The logic diagram is depicted in Figure 3.56 from these formulas. First,
the shapelet covering both the acceleration phase and deceleration phase can be
utilized for classification of the trucks. On the other hand, the car trials tend to
have larger acceleration change from the early acceleration phase to the end of
the latter acceleration phase than those of the others.
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Figure 3.48: The decision tree for followers’ acceleration based on the shapelet
analysis.
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From the discussion above, the deceleration in the early deceleration phase in
the range k = 1000 to 1100 should be varied by the parameters in the car-following
models. The acceleration peak should be located at the latter acceleration phase
in the case of the trucks. In addition, the difference of the acceleration change
covering whole the acceleration phase needs to be replicated. In Figure 3.57,
we show two cases of characteristic accelerations of the cars and trucks, and
their difference. When the car trials have their acceleration peak in the early
acceleration phase, the difference of these accelerations will have sign alternation
in the acceleration phase, as shown in Figure 3.57a. When the car trials have
their peak of the acceleration in the latter acceleration phase as the trucks, the
difference of the accelerations will not have sign alternation. In both cases, the
sign in the early deceleration phase and major sign in the acceleration phase need
to be the same.

Because the features extracted from the acceleration have the same meanings
as the features of the velocity discussed in Section 3.2.3.4, we decided not to dis-
cuss the replicability of the velocity but to discuss replicability of the acceleration
in Section 3.4.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.49: The shapelet for followers’ velocity assigned to DR1. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.50: The shapelet for followers’ velocity assigned to DR2. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.51: The shapelet for followers’ velocity assigned to DR3. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.52: The shapelet for followers’ velocity assigned to DR4. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.53: The shapelet for followers’ velocity assigned to DR5. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.54: The shapelet for followers’ velocity assigned to DR6. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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(a) The obtained shapelet on the index k.
A red solid line indicates the shapelet. Red
dashed lines indicate the range for the group
selection.

(b) The averaged characteristic leaves on the
gap distance and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

(c) The averaged characteristic leaves on the
velocity difference and the acceleration plane
for each following vehicle. Bold area indicates
where the shapelet is.

(d) The averaged characteristic leaves on fol-
lowers’ velocity and the acceleration plane for
each following vehicle. Bold area indicates
where the shapelet is.

Figure 3.55: The shapelet for followers’ velocity assigned to DR7. Blue, orange,
and black lines show the trajectories when the followers were the motorcycles,
cars, and trucks, respectively.
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Figure 3.56: The logic diagram of shapelets for followers’ acceleration. The blue
areas filled by diagonal lines show the shapelets for the motorcycles. The orange
areas show ones for the passenger cars. The black areas filled by horizontal lines
show ones for the trucks.

(a) When the trial of cars has accel-
eration peak at the early acceleration
phase.

(b) When the trial of cars has accel-
eration peak at the latter acceleration
phase.

Figure 3.57: Schematics of the accelerations of the cars and trucks, and their
difference. The abbreviations of EA, LA, ST, ED indicate the phases, i.e., the
early acceleration phase, the latter acceleration phase, the steady phase and the
early deceleration phase, respectively.
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3.2.4 Acceptable Variability and Fixed Ranges in Trajec-
tories for Different Following Vehicle

In Section 3.2.3, we investigated features of the characteristic leaves by the
shapelets. The simulated series calculated by different parameters need to be
varied basically in the index ranges of the shapelets. In contrast, we can presume
that there are index ranges where the series should not be varied by parameter
change. We call this index range as a “fixed range.” Furthermore, even if the
variation is acceptable in a certain range of the indices, it is preferable that the
acceptable magnitude of variation is recognized. The acceptable magnitude of a
certain index range will be determined by comparison of the degree of variation
in the range under discussion and other index ranges.

In this section, we first introduce the “local maximum margin” indicating the
acceptable degree of variation. We also introduce the “local maximum gain.”
We can search the fixed ranges using both the local maximum margin and local
maximum gain. The acceptable degrees of variation and the fixed ranges for the
distance gap, the velocity difference, and the acceleration will be introduced at
the end of this section.

In the development of the decision tree based on the shapelets, we divided
the data series into two nodes based on the best gain and margin obtained with
a certain shapelet. The divided series can be regarded as two series replicated by
two different values of a certain parameter of the car-following model. The dif-
ference in a certain index range between series replicated by different parameters
corresponds to the best margin because the best margin is the difference between
the averaged distances of two divided nodes from the shapelet. Therefore, the
trend of the magnitude of variation for each index needs to follow that of the best
margin for each index.

To obtain the best margin for each index, we introduce the “local maximum
margin,” which is the best margin obtained by the shapelets with minute length.
In other words, for every index, we try to divide all observed series by small
shapelets on these indices and search the best margins for every indices. Here,
we determined the length of minute shapelets as 22, which is the minimum length
of shapelets that we applied in the decision tree analysis in Section 3.2.3.

Furthermore, we can imagine that the variations of replicated series in a cer-
tain index range are not acceptable if the observed series are not apparently
divided into two nodes or if the margin between two nodes is too small even if
the series are clearly divided. As we have already introduced the local maximum
margin indicating the acceptable magnitude of variation on every index; we also
introduced the local maximum gain by these minute shapelets in the same man-
ner. That is, the local maximum gain is the best gain obtained by the minute
shapelets on every index with which we try to divide all series into two nodes.

Figure 3.58 to 3.60 indicates the local maximum margins and the local max-
imum gains for the distance gap, the velocity difference, and followers’ accelera-
tion, respectively. For the fixed ranges, we determined the margin threshold of
5 % of the maximum value of the average of all the series. We also determined
the gain threshold of 0.09. These thresholds are depicted by red dashed lines in
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each figure. Note that this gain threshold corresponds to situation that six tri-
als for the motorcycles are extracted from the original dataset to a new divided
node, while six trials for the cars are extracted to the other divided node. The
remaining trials are equally distributed to both the nodes.

Regarding the distance gap, we could not find any point less than the thresh-
olds, i.e., there are no fixed ranges in Figure 3.58. We can conclude that the
magnitude of variation of the waiting and stopping phases should be smaller
than the other phases from the local maximum margin in Figure 3.58a.

From Figure 3.59a, we can claim that the variation of the velocity difference in
the steady phase should be smaller than in the acceleration and the deceleration
phases. In addition, there are some ranges below the thresholds in Figure 3.59,
i.e., k ≤ 230 and 1254 ≤ k for the margin, and 748 ≤ k ≤ 769 in the gain.
Variation of the series is not acceptable in these ranges.

Regarding the acceleration, the magnitude of variation in the waiting, stop-
ping, and steady phases need to be suppressed when they are compared with
the acceleration and the deceleration phases from Figure 3.60a. Plus, the ranges
k ≤ 263, 1309 ≤ k ≤ 1341 in the margin, and 825 ≤ k ≤ 835 in the gain need
to be fixed ranges from Figure 3.60 as the margin and the gain are below the
thresholds.

(a) The local maximum margin and
the margin threshold.

(b) The local maximum gain and the
gain threshold.

Figure 3.58: The local maximum margin and gain for the gap distance.

(a) The local maximum margin and
the margin threshold.

(b) The local maximum gain and the
gain threshold.

Figure 3.59: The local maximum margin and gain for the velocity difference.
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(a) The local maximum margin and
the margin threshold.

(b) The local maximum gain and the
gain threshold.

Figure 3.60: The local maximum margin and gain for followers’ acceleration.

From the discussions in Section 3.2.3 and 3.2.4, we obtained the features in
observed characteristic leaves, as listed in Table 3.2 and 3.3. The abbreviations
of MC, C, and T stand for the motorcycles, cars, and trucks, respectively. The
abbreviations of W, A, EA, LA, ST, D, ED, LD, SP indicate phases, i.e., the
waiting phase, whole acceleration phase, early acceleration phase, latter accel-
eration phase, steady phase, whole deceleration phase, early deceleration phase,
latter deceleration phase and stopping phase, respectively. The abbreviations of
acc. and dec. stand for the acceleration and deceleration. We investigate whether
the respective car-following models can replicate these features by changing pa-
rameters of them in following sections.

Table 3.2: Extracted features of the characteristic leaves from the shapelets.
The abbreviations of MC, C, and T stand for the motorcycles, cars, and trucks,
respectively. The abbreviations of W, A, EA, LA, ST, D, ED, LD, SP indicate the
respective phases. The abbreviations of acc. and dec. stand for the acceleration
and deceleration, respectively.

MC C & T

Distance gap Smaller than
the others @ ST T<C @ ED

Velocity difference Small variation
@ ST & D

T<C @ beginning A,
C<T @ LD

Acceleration None
C>T@ ED, peak of T @ LA,
C>T (acc. change) @ A

Table 3.3: Located positions of the fixed ranges in respective physical values.

Position of fixed range

Distance gap None

Velocity difference W, ST, SP

Acceleration W, ST, SP
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3.3 Simulated Car-Following Behaviors accom-

panied by Variable Change

In this section, we simulate followers’ behaviors, i.e., the characteristic leaves
while varying parameters of the respective car-following models introduced in
Section 3.1.2.

3.3.1 Simulation Setting

The platoon simulated in this section also comprises two vehicles, i.e., the leader
and the follower, as in the experiment. While giving a fixed velocity configura-
tion of the leader, we obtained various car-following behaviors under parameter
change. The velocity configuration given to the leader is shown in Figure 3.61.
The leader accelerates at alsimmax = 1 m/s2 until it reaches the maximum veloc-
ity of V l

simmax = 15 m/s. The leader maintains a steady velocity of V l
simmax for

Tconst = 30 s, and then starts deceleration of alsimmin = −1 m/s2. When the leader
stops, the simulation continues for Twait = 30 s.

Figure 3.61: Velocity configuration of the leading vehicle in the simulation.

Regarding the OV model, although Bando et al. did not take the vehicle
lengths into account in OV model formulation [62], Bando et al. presented the
OV model considering the vehicle lengths afterwards [64]. Assuming hmin as the
minimum headway distance, the model can be written as

a(t) = A {Vopt(h(t))− v(t)} (3.37)

Vopt(h) = Vm
tanh {m(h−∆)} − tanh {m(hmin −∆)}

1− tanh {m(hmin −∆)}
. (3.38)

Note that we added a term to the denominator of function Vopt to treat Vm as
the realizable velocity as in other models. Bando et al. provided fitted values of
parameters based on the car-following experiment on the Chuo motorway. The
parameters which we applied are listed in Table 3.4. Note that Vm, smin, Lf and
Ll are equalized to those of other models for comparison. The value of hmin is
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calculated as smin + (Ll + Ll)/2; the lengths of both leaders and followers are
considered in the headway distance. By varying these parameters, we obtained
trajectories responding parameter variations in Section 3.3.2. When we investi-
gated the response of the characteristic leaves to a certain parameter, we varied
the focusing parameter from 50 % to 150 % of the “center value when varied” in
Table 3.4, at the step of 10 %. On the other hand, we fixed the other parameter
values as “standard value” in Table 3.4.

Table 3.4: Parameters of the OV model.

Standard value Center value when varied

Vm 15.0 m/s 15.0 m/s

m 0.086 0.086

smin 0.0 m 10.0 m

Lf(Ll) 4.0 m 4.0 m

∆ 25.0 m 25.0 m

A 2.0 2.0

The parameters of the FVD model were obtained from [67] and formulations
are written as

a(t) =
Vopt(s(t))− v(t)

τ
+ γ∆v(t) (3.39)

Vopt(s) = Vm
tanh (s/∆s− β) + tanhβ

1 + tanhβ
. (3.40)

Table 3.5 lists the parameter sets. As smin is excluded from the model formulation,
we basically set smin = 0 and located leaders and followers, where the distance
gap s = 0 at the start of the simulation trials. This is the reason why we basically
fixed smin = 0 in the simulations for the OV model.

Table 3.5: Parameters of the FVD model.

Standard value Center value when varied

Vm 15.0 m/s 15.0 m/s

∆s 8.0 m 8.0 m

β 1.5 1.5

smin 0.0 m 10.0 m

Lf(Ll) 4.0 m 4.0 m

τ 0.65 s 0.65 s

γ 0.6 /s 0.6 /s
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Regarding the ID model, the formulation is written as Equation 3.13 and
3.14. The parameters of the ID model were obtained from [67] and listed in
Table 3.6. The reason why we applied the small value of 0.01 m instead of zero
for the standard value of smin is to avoid the negative infinite acceleration. The
ID model contains s as a denominator in Equation 3.13.

Table 3.6: Parameters of the ID model.

Standard value Center value when varied

Vm 15.0 m/s 15.0 m/s

δ 4 4

T 1.0 s 1.0 s

smin 0.01 m 10.0 m

Lf(Ll) 4.0 m 4.0 m

A 1.0 m/s2 1.0 m/s2

B 1.5 m/s2 1.5 m/s2

Although the original formulation of the Helly model is written as Equation
3.18 and 3.19, We utilized the model presented by Xing in 1995 [102]. The
formulation was based on a simplified GHR model [4] and is integrated into the
Helly model as

a(t) = α∆v(t− T1) + β {h(t− T2)−D (v(t− T2))} (3.41)

D (v(t)) = γ + δv(t). (3.42)

The parameters of this model are listed in Table 3.7.

Table 3.7: Parameters of the Helly model.

Standard value Center value when varied

α 0.5 /s 0.5 /s

β 0.05 /s2 0.05 /s2

γ 7.0 m 7.0 m

δ 0.5 s 0.5 s

T1 0.83 s 0.83 s

T2 3.43 s 3.43 s

smin 0.0 m 10.0 m

Lf(Ll) 4.0 m 4.0 m
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The parameters of GHR model are listed in Table 3.8, which were introduced
in the review paper [4] as one of reliable fitting results. These values correspond
to those of the model presented by Herman et al. [69]. In order to keep the model
formulation similar to the model which Herman et al. presented, we fixed k = 1
and m = 0.

Table 3.8: Parameters of the GHR model.

Standard value Center value when varied

C 6.035 m/s 6.035 m/s

m 0 Fix

k 1 Fix

T 1.2 s 1.2 s

smin 0.0 m 10.0 m

Lf(Ll) 4.0 m 4.0 m

3.3.2 Characteristic Leaves of Respective Car-Following
Models

In this section, we introduce the simulated characteristic leaves for each parameter
value. The leaves for respective values are represented by different colors. From
50 % to 150 % of the center value, the line colors are gradually changed from blue
to red. The leaf by 100 % of the center value is represented by white lines. All
simulations were calculated by the Euler method at intervals of 0.01 s because
some of the models included time delay. Although the OV model, Helly model
and GHR model determine the relationship between the headway distance and
the acceleration, we investigated the distance gap in these models because the
features of the characteristic leaves of the distance gap were extracted for the
comparison. Note that, in this thesis, the relation between the distance gap s
and the headway distance h was determined as h = s− (Lf +Ll)/2. The distance
gap is the distance between the rear bumper of the leading vehicle and the front
bumper of the following vehicle. The headway distance is the distance between
the centers of the leading and following vehicles.

3.3.2.1 Optimal Velocity Model

Figure 3.62 to 3.67 are the characteristic leaves on the plane of followers’ velocity
vs. followers’ acceleration, and the distance gap and followers’ acceleration when
the parameters Vm, m, smin, Lf or Ll, ∆, and A are varied, respectively. In Figure
3.62, one characteristic leaf cannot go around completely owing to the lack of the
velocity. We can observe the velocity variations in Figure 3.62a when Vm is less
than the maximum velocity of the leaders. We also confirm the variation of the
distance gap at the steady phase in Figure 3.62b.
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Figure 3.62: Response of the characteristic leaf to the variation of Vm.

Figure 3.63: Response of the characteristic leaf to the variation of m.

In Figure 3.64b, there seem to be no variation of the distance gap at the
steady phase though the initial distance gaps are varied by the change of smin.

Figure 3.64: Response of the characteristic leaf to the variation of smin.
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From Figure 3.65, the variation of Lf and Ll in the OV model does not seem
to significantly affect the characteristic leaf.

Figure 3.65: Response of the characteristic leaf to the variation of Lf(Ll).

In Figure 3.66, we can observe the unnecessary acceleration variation with
parameter variation.

Figure 3.66: Response of the characteristic leaf to the variation of ∆.
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As parameter A is response sensitivity, it does not affect values in the steady
phase, as shown in Figure 3.67.

Figure 3.67: Response of the characteristic leaf to the variation of A.

3.3.2.2 Full Velocity Difference Model

From Figure 3.68 to 3.74, we show the response of characteristic leaves to the
parameter variation in the FVD model. When we compared them to those of the
OV model, the leaves had complex shapes. It seemed to be the effect of the term
of γ∆v added to the OV model.

Figure 3.68: Response of the characteristic leaf to the variation of Vm.
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Figure 3.69: Response of the characteristic leaf to the variation of ∆s.

Figure 3.70: Response of the characteristic leaf to the variation of β.

Figure 3.71: Response of the characteristic leaf to the variation of smin.
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Figure 3.72: Response of the characteristic leaf to the variation of Lf(Ll).

Figure 3.73: Response of the characteristic leaf to the variation of τ .

Figure 3.74: Response of the characteristic leaf to the variation of γ.
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3.3.2.3 Intelligent Driver Model

In the simulation of the ID model, we assumed the velocity in the range −1 ×
10−5 < v < 0 m/s as zero. This is because, in the program language Python, the
negative computation error disabled the power of a decimal, which is included in
the term of (v/Vm)δ. We confirmed that the calculation had ignorable differences
in cases with and without this condition when the exponents were the natural
numbers. In addition, some simulation results diverged when the followers ended
their deceleration owing to the overtaking accompanied by small fluctuations in
the acceleration. We did not utilize for the analysis data after the divergence if
the overtaking occurred.

Figure 3.75: Response of the characteristic leaf to the variation of Vm.

Figure 3.76: Response of the characteristic leaf to the variation of δ.
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Figure 3.77: Response of the characteristic leaf to the variation of T .

Figure 3.78: Response of the characteristic leaf to the variation of smin.

Figure 3.79: Response of the characteristic leaf to the variation of Lf(Ll).
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Figure 3.80: Response of the characteristic leaf to the variation of A.

Figure 3.81: Response of the characteristic leaf to the variation of B.

3.3.2.4 Helly Model

From Figure 3.82 to 3.89, we show the response of the characteristic leaves to
the variation of respective parameters in the Helly model. The shapes of the
characteristic leaves are totally different from the observed ones shown in Figure
3.16 to 3.18. Concerning the velocity difference ∆v vs. followers’ acceleration,
the acceleration starts decreasing after ∆v becomes less than zero. Because of
this behavior, we observe the overshooting of the distance gap before the follower
starts traveling in the steady velocity.

In Figure 3.90, we plotted the values of each term in the Helly model and
leaders’ velocity vl. The blue and green dashed lines show the values of each
term in the Helly model. The red line indicates follower’s acceleration and the
black one indicates the velocity of the leader. We can observe that the peaks of
the acceleration and deceleration are maintained steady values until the slopes of
leader’s velocity, i.e., leader’s acceleration is changed. Actual drivers would relax
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the acceleration gradually when the velocity becomes high. In fact, such behavior
can be seen in the characteristic leaves obtained from the experiments. Although
we can confirm that the steady acceleration and deceleration are caused by the
conflict of the two terms in the Helly model, it is easily assumed that changing
the ratio of α and β will cause other problems because it would be different to
which term the drivers are sensitive in various situations. In other words, the
linearity of the Helly model is not suitable to simulate the stop-and-go pattern,
which we are discussing in this thesis. It seems to be preferable to apply the Helly
model with limitation of the velocity range, etc. From this reason, we remove the
Helly model from the comparison of the simulated and the observed characteristic
leaves.

Figure 3.82: Response of the characteristic leaf to the variation of α.

Figure 3.83: Response of the characteristic leaf to the variation of β.
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Figure 3.84: Response of the characteristic leaf to the variation of γ.

Figure 3.85: Response of the characteristic leaf to the variation of δ.

Figure 3.86: Response of the characteristic leaf to the variation of T1.
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Figure 3.87: Response of the characteristic leaf to the variation of T2.

Figure 3.88: Response of the characteristic leaf to the variation of smin.

Figure 3.89: Response of the characteristic leaf to the variation of Lf(Ll).
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Figure 3.90: Evolution of the respective terms in the Helly model and the velocity
of the leader.

3.3.2.5 Gazis-Herman-Rothery Model

Figure 3.91 to 3.94 indicate the response of the characteristic leaves to the vari-
ation of the parameters in GHR model. Note that we terminated the simulation
when the follower had the negative velocity when they tried to stop in front of the
leader. Because GHR model refers not to the distance gap but to the headyway
distance at their denominator, the distance gap can be negative value.

Except for the variation of smin shown in Figure 3.93, we observed oscillation
of the acceleration in the acceleration phase in some parameter range.

Figure 3.91: Response of the characteristic leaf to the variation of C.
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Figure 3.92: Response of the characteristic leaf to the variation of T .

Figure 3.93: Response of the characteristic leaf to the variation of smin.

Figure 3.94: Response of the characteristic leaf to the variation of Lf(Ll).
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3.4 Comparison of Observed and Simulated

Characteristic Leaves

In this section, we compare the observed and simulated characteristic leaves from
the perspective of each physical value, i.e., the distance gap, the velocity difference
and followers’ acceleration. We have already clarified the preferable index ranges
of simulated series to be varied based on the positions of shapelets in Section
3.2.3. On the other hand, the fixed ranges and trends of the series variation
have also been discussed in Section 3.2.4. With processing of simulated series by
the DTW, we can compare the observed and simulated series on the same index
k. In following discussion, we investigate the simulated series processed by the
DTW. Furthermore, because we focus on the variation of simulated series with
the parameter change, we compare the differences between simulated series of
some sets of two parameters, the position of the shapelets, fixed ranges and the
trends of the local maximum margin on the common index k.

Note that we applied the reference signal shown in Figure 3.14 shifted to 150
steps earlier for DTW process because the leaders start acceleration as soon as the
simulation starts. After getting shifted index, we corrected the observed index,
i.e., just added the initial state for 150 steps to the DTW series to make them
comparable to the observed leaves.

3.4.1 Optimal Velocity Model

3.4.1.1 For variation of parameter Vm

In this section, we discuss on the replicability performance of the parameter Vm
in the OV model. We show the logic diagrams of the shapelets, the trends of
the local maximum marginm and differences between a certain set of two series
calculated by different Vm in Figure 3.95. We call this type of figure as trend
diagrams. Figure 3.95a shows the distance gap, and Figure 3.95b shows followers’
acceleration. Although we simulated the parameter range of 50 % to 150 % of the
center values, we picked the series differences between 90 % and 50 %, 120 % and
80 %, and 150 % and 110 % as representatives. These differences are depicted
by a blue, green, and red line, respectively. For example, the blue line at index
k = 1000 in Figure 3.95a represents the gap distance simulated by 90 % of the
center value of Vm minus the one simulated by 50 % of the center Vm at the index
k = 1000. The values of differences are indicated by the second axis of the figure.
The local maximum margin is indicated by the black line in each figure and the
first axis of the figure. Note that the values of the margin are multiplied to read
easily. The manner of display of the logic diagram of the shapelet is the same to
that of in Section 3.2.3.

From Figure 3.95a, we can find that the variation of Vm was able to replicate
the variation of the distance gap at k = 750 and 1000 as the green and blue
lines apparently have non-zero values on these indices. Furthermore, the trends
of the local maximum margin and these series differences are similar, especially
in the case of 120 % and 80 %, although their signs are opposite. Therefore, we
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conclude that the parameter Vm in the specific range can replicate the variation
of the distance gap depending on the type of following vehicle. The reason why
Vm can replicate the variation of the distance gap is that it limits the maximum
velocity of the follower. If we apply Vm < V l

max, the distance gap can be lengthen
in the steady phase.

For Figure 3.95b, we need to check the fixed ranges. We could not find non-
zero values in the series differences at the suggested fixed ranges, i.e., k ≤ 263,
825 ≤ k ≤ 835, and 1309 ≤ k ≤ 1341. Then, we conducted the comparison
between shapelet positions and series differences. Regarding the characteristic
shapelet for the trucks at k = 1000 to 1100, the combinations shown by the
green and blue lines seem to have the potential to replicate. On the other hand,
the difference covering whole the acceleration phase is not observed, although
inverted sign difference in the latter acceleration phase (k = 600) is observed.
Parameter Vm will replicate only the acceleration peak of the trucks in the latter
acceleration phase but will not replicate the large acceleration change of the cars.

From the discussion above, we concluded that the parameter Vm can partly
replicate the variation of followers’ acceleration. One problem is that there is
a limited range of parameters. We need to select Vm less than the maximum
velocity of the leader. In addition, we cannot replicate the large acceleration
variation observed in the cases of cars.

3.4.1.2 For variation of parameter m

Figure 3.96 shows the trend diagrams for the variation of parameter m. From
Figure 3.96a, we confirmed that the replicability around shapelets is guaranteed.
However, the series differences reverse their signs at k = 400 and 1200. This
means that we need to compensate for the inverse trends of the distance gap at
the early acceleration phase and latter deceleration phase when we adjust the
distance gap around the shapelets by m. Regarding acceleration, there seems to
be no problem with the fixed ranges from Figure 3.96b. Focusing on the series
differences, we can confirm that the rough trends are consistent with the local
maximum margin and trends shown in Figure 3.57 but there is large inversion
of the sign at k = 1000. We conclude that the parameter m has the ability
to replicate rough trends of the acceleration and is partly appropriate for the
replication of the distance gap. The distance gap in the early acceleration phase
and the latter deceleration phase will have opposite tendencies. Besides, there
will be some unnecessary features in the acceleration.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.95: Evolution of the shapelets, the local maximum margin and difference
between simulated series with the variation of parameter Vm.

109/163



3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.96: Evolution of the shapelets, the local maximum margin and difference
between simulated series with the variation of parameter m.
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3.4.1.3 For variation of parameter smin

Figure 3.97 shows the trend diagrams for the variation of parameter smin. Param-
eter smin is not appropriate to replicate the trend of the distance gap because the
series differences in Figure 3.97a increase in the both the waiting and stopping
phases, i.e., at k = 0 and 1499 than at the place of the shapelets. We should
use smin only to adjust the initial distance gap before the acceleration phase and
after the stopping phase. In Figure 3.97b, we observed non-zero values of series
differences at the fixed ranges of 1309 ≤ k ≤ 1341. We can conclude that smin

causes unnecessary acceleration variation at the beginning of the stopping phase.
Furthermore, because the sign alternation in the acceleration phase is too early,
the acceleration peak will occur not in the latter acceleration phase but earlier
phase.

3.4.1.4 For variation of parameter Lf or Ll

Figure 3.98 shows the trend diagrams for the variation of parameter Lf or Ll. We
can conclude that Lf and Ll can replicate the trends of the distance gap from
Figure 3.98a but there are some difference of increasing and decreasing timings.
We observed the small variations of the acceleration differences at the fixed ranges
in Figure 3.98b. Furthermore, the series differences similar to k = 1050 were
observed at k = 1250. The sign alternation at k = 300 is also inconsistent with
the required difference. Adjustment of Lf or Ll will cause unnecessary variations
of the acceleration and the deceleration.

3.4.1.5 For variation of parameter ∆

Figure 3.99 shows the trend diagrams for the variation of parameter ∆. We can
claim that ∆ has the replication performance around the shapelets but the series
differences maintain the non-zero values in both the waiting and stopping phases.
Although the series differences becomes zero at the beginning and end of the series
in Figure 3.66, the differences remain longer than the observed margin. The series
differences for the acceleration shown in Figure 3.99b change their values at the
fixed ranges at the beginning of the stopping phase. Except for it, the trends
of the series difference follow the required difference when we choose 150 % −
110 %, i.e., the red line. We conclude that ∆ is somewhat proper parameter to
replicate the trends of the acceleration.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.97: Evolution of the shapelets, the local maximum margin and difference
between simulated series with the variation of parameter smin.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.98: Evolution of the shapelets, the local maximum margin and difference
between simulated series with the variation of parameter Lf or Ll.

113/163



3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.99: Evolution of the shapelets, the local maximum margin and difference
between simulated series with the variation of parameter ∆.
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3.4.1.6 For variation of parameter A

Figure 3.100 shows the trend diagrams for the variation of parameter A. From
Figure 3.100a, parameter A seems to cause unnecessary variation of the distance
gap at the acceleration phases and did not replicate necessary variation at k =
750. Indeed, there are chances to replicate the trend at k = 1000, but the
trends of the series differences and the local maximum margin are totally different.
Therefore, we conclude that A is not a proper parameter for replication of the
distance gap. Regarding the acceleration shown in Figure 3.100b, the major
signs in the acceleration phase and the deceleration phase are opposite; the series
differences are not consistent with the required tendency. Therefore, we conclude
that A is not a proper parameter to replicate the change of the distance gap and
followers’ acceleration accompanied by vehicle change.

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.100: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter A.
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3.4.1.7 Summary: The replication performance of the OV model

In summary, we obtained the comparison results as listed in Table 3.9 and 3.10.
By bold characters, we noted the evaluation of each parameter. The evaluation
was conducted from four perspectives.

1. Did we need to select proper parameter range for the replication?: Yes or
No.

2. Were all the observed features replicated?: All features, part of the features,
or none of the features.

3. Were the replicated features located at the required index?: Yes or No, or
they were shifted.

4. Were any unnecessary features caused?: Yes or No.

For the respective evaluation items, we prepared corresponding sub-sentences and
connected them.

1. For all parameter (param.) range, or For some param. range,

2. fully replicable, partly replicable or no necessary variation

3. with (w/) or without (w/o) shift

4. with (w/) or without (w/o) unnecessary features (UF).

From Table 3.9 and 3.10, we found that there are four parameters, i.e., Vm,
m, Lf(Ll), and ∆, which can replicate the features of the distance gap. Three
parameters replicating the features of followers’ acceleration are Vm, m, and ∆.
Note that each parameter replicates the features with at least one of the shift
and the unnecessary features or has limitation on parameter selection. That is,
we need to conclude that the OV model can not perfectly replicate the features
of the characteristic leaves of the respective vehicles. We added problems to be
caused with the adjustment of each parameter in Table 3.9 and 3.10. If we try to
replicate the features of each physical value using different parameters, Lf and Ll

can be used only for the distance gap. One can arbitrarily choose the dedicated
parameters from Vm, m, ∆.

116/163



3.4. COMPARISON OF OBSERVED AND SIMULATED
CHARACTERISTIC LEAVES

Table 3.9: Replicablity of respective parameters in the OV model for the distance
gap of various following vehicles.

Distance gap

Vm For some param. range, fully replicable w/o shift w/o UF.

m

Replicable around shapelets. Inversed trends observed at
k = 400, 1200 (EA & LD)

For all param. range, fully replicable w/o shift w/ UF.

smin
Large difference occur at W & SP.
For all param. range, no necessary variation, w/UF.

Lf(Ll) For all param. range, fully replicable w/ shift w/o UF.

∆
Non-zero values remain at W & SP.
For all param. range, fully replicable w/ shift w/ UF.

A

Unnecessary variation at A. Not replicate variation at k=750.
Trend totally different.
For all param. range, no necessary variation, w/ UF.

Table 3.10: Replicablity of respective parameters in the OV model for followers’
acceleration of various following vehicles.

Followers’ acceleration

Vm

For some param. range, partly replicable w/o shift w/o UF.

Need to choose less than V l
max.

Unable to replicate large acc change of cars.
Only replicate the acc. peak of truck in LA.

m
Sign alternation observeded in ED.
For all param. range, partly replicable w/ shift w/UF.

smin

Non-zero value at fixed range. Unnecessary acc. at beginning of SP.
Peak position shifted.
For all param. range, no neccesary variation, w/ UF.

Lf(Ll)
Small variation at fixed ranges. Unnecessary features in A and D.
For all param. range, no necessary variation, w/ UF.

∆

Variation at fixed range at SP.
Rough trend replicated.
For some param. range, partly replicable w/o shift w/ UF.

A
Major trends are opposite in acc. and dec.
For all param. range, no necessary variation, w/ UF.
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3.4.2 Full Velocity Difference Model

3.4.2.1 For variation of parameter Vm

Figure 3.101 shows the trend diagrams for the variation of parameter Vm. In
Figure 3.101a, we confirm that the variations of the distance gap are roughly
located where the shapelets are, as well as that the trends of the series differences
follow that of the local maximum margin in the cases of the blue and green lines.
However, in the case of the blue line, the series difference in the stopping phase
has non-zero values. We need to choose a certain range of Vm for replication
of the variation of the distance gap. Regarding the velocity difference shown in
Figure 3.101b, the green and blue lines have non-zero values at the fixed ranges
in the stopping phase and steady phase. If we choose the green line, the large
velocity difference of the trucks at k = 1100 will be replicated. Parameter Vm in
a certain range can replicate part of the features with unnecessary fluctuations at
the fixed ranges. Regarding the acceleration, the trends of the series differences
are different from the required ones, although the fluctuations are almost zero at
the fixed ranges. We conclude that Vm cannot replicate the variations in followers’
acceleration.

3.4.2.2 For variation of parameter ∆s

Figure 3.102 shows the trend diagrams for the variation of parameter ∆s. From
Figure 3.102a, ∆s seems to replicate the variation of the distance gap at the
shapelet positions. In addition, the trends of the series differences follow those of
the local maximum margin. We conclude that ∆s is an appropriate parameter for
the replication of the trends of the distance gap. When we focus on the velocity
difference shown in Figure 3.102b, the series differences seem to be varied at the
index shifted from where the shapelets are. Furthermore, the series differences
have non-zero values at the fixed range in the stopping phase. If we adjust ∆s
to fit the velocity difference, we need to ignore these shifts and fluctuations.
Regarding followers’ acceleration shown in Figure 3.102c, we observed the totally
different trends of the series differences from the local maximum margin and
shapelets. The variation of ∆s will cause a problem in the evolution of followers’
acceleration.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.101: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter Vm.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.102: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter ∆s.
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3.4.2.3 For variation of parameter β

Figure 3.103 shows the trend diagrams for the variation of parameter β. From Fig-
ure 3.103a, β seems to replicate the variation of the distance gap at the shapelets.
However, unnecessary variation of the distance gap will also occur at the begin-
ning of the acceleration phase and the end of the deceleration phase. In Figure
3.103b, we observed a shifted peak of the series differences at k = 450 and 1230.
In addition, we also observed small perturbations at k = 1300 where the fixed
range is. Although β replicates the rough trends of the observed series on the k
vs. ∆v plane, there are some different points which we need to be aware of, i.e.,
there are shifted peaks and unnecessary variaton at the fixed range in stopping
phase. For followers’ acceleration shown in Figure 3.103c, we observed the large
peak of the series differences at the fixed ranges at k = 1300. Furthermore, we
also observed the large oscillation at around k = 400 which is not insistent to the
trend of the local maximum margin. Although parameter β has ability to repli-
cate followers’ acceleration difference between the vehicle types with the timing
shift, it seriously causes unnecessary features.

3.4.2.4 For variation of parameter smin

Figure 3.104 shows the trend diagrams for the variation of parameter smin. In
any of the figures in Figure 3.104, we could not find any capability of smin to
replicate the variation trends of the distance gap, the velocity difference and
followers’ acceleration. It can be said that smin affects only the initial behavior
of the vehicle from Figure 3.71.

3.4.2.5 For variation of parameter Lf or Ll

Figure 3.105 shows the trend diagrams for the variation of parameter Lf or Ll.
Note that the magnitudes of the secondary axes are in the order of 10−12 to 10−10,
which we can not recognize on the characteristic leaves. It is obvious that Lf and
Ll do not affect the behavior of the vehicle in the FVD model. This phenomenon
can also be confirmed in Figure 3.72.

3.4.2.6 For variation of parameter τ

Figure 3.106 shows the trend diagrams for the variation of parameter τ . Regard-
ing the distance gap shown in Figure 3.106a, the series differences alter their signs
several times. In addition, the signs of the series differences where the shapelets
exist are inconsistent with the required ones. The trends of the series differences
are not consistent with those of the local maximum margin and the shapelets.
The adjustment of τ will have a negative effect on the desired variation of the
distance gap. In the case of the velocity difference in Figure 3.106b, we can-
not conclude that the series differences are consistent with the trend diagram.
These contain the alternation of their signs in the acceleration and deceleration
phases. For the followers’ acceleration shown in Figure 3.106c, τ seems not to
have capability for replication of the variation in followers’ acceleration similar
to the distance gap and the velocity difference. The series differences contain
unnecessary sign alternations and peaks.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.103: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter β.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.104: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter smin.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.105: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter Lf or Ll.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.106: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter τ .
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3.4.2.7 For variation of parameter γ

Figure 3.107 shows the trend diagrams for the variation of parameter γ. The
trends of the series differences in any trend diagrams are similar to those for
parameter τ shown in Figure 3.106. Same as τ , γ has no capability to replicate
the difference in the distance gap and the velocity difference caused by the vehicle
types, while it can realize only the large deceleration of the trucks. Regarding
the acceleration, similar to τ , we will have multiple alternations of the trends if
we try to replicate the variation in followers’ acceleration with γ.

3.4.2.8 Summary: The replication performance of the FVD model

We summarize the results of the comparison from Table 3.11 to 3.13. Let us con-
sider the parameter selection for the fitting to keep the independence of physical
values replicated by the selected parameters. In the other words, we would like to
assign specific parameters for the replication of the features in a specific physical
value. For the distance gap, it would be preferable to utilize ∆s because it repli-
cates the features of the distance gap without the shift or unnecessary features.
In the case of followers’ acceleration, we have no choice other than β. However,
we need to be aware that β will affect the velocity difference simultaneously. For
the velocity difference, we need to use Vm to keep the fitting independence of each
physical value.

Table 3.11: Replicablity of respective parameters in the FVD model for the dis-
tance gap of various following vehicles.

Distance gap

Vm
For some param range, fully replicable w/o shift w/o UF.
Need to choose a certain range of Vm

∆s For all param. range, fully replicable w/o shift w/o UF.

β
For all param range, fully replicable w/ shift w/ UF.
Unnecessary variation at beginning of A and end of SP.

smin
For all param. range, no necessary variation w/ UF.
Affect only W and EA. Different trend.

Lf(Ll) No effect.

τ
Sign alternation at shapelet positions. Different trend.
For all param. range, no necessary variation w/ UF.

γ For all param. range, no necessary variation w/ UF similar to τ .
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.107: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter γ.

127/163



3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

Table 3.12: Replicablity of respective parameters in the FVD model for the ve-
locity difference of various following vehicles.

Velocity difference

Vm
Fluctuation at fixed range & different trend to margin are observed.
For some param. range, partly replicable w/o shift w/ UF.

∆s
Replicable to trend with shift.
Variation at SP.
For all param. range, fully replicable w/ shift w/ UF.

β

Unnecessary variation at fixed range in SP.
Shifted peaks.
For all param. range, fully replicable w/ shift w/ UF.

smin
For all param. range, no necessary variation w/ UF.
Affect only W and EA. Different trend.

Lf(Ll) No effect.

τ
Sign alternation in A and D.
For all param. range, no necessary variation w/ UF.

γ For all param. range, no necessary variation w/ UF similar to τ .

Table 3.13: Replicablity of respective parameters in the FVD model for followers’
acceleration of various following vehicles.

Followers’ acceleration

Vm
Totally different trend.
For all param range, no necessary variation w/ UF.

∆s
Totally different trend.
For all param. range, no necessary variation, w/ UF.

β

Fluctuation at fixed ranges.
Serious large peak at around k = 400 and 1300 (EA & SP).

For all param. range, fully replicable w/ shift w/ UF.

smin
For all param. range, no necessary variation w/ UF.
Affect only W and EA. Different trend.

Lf(Ll) No effect.

τ
Unnecessary sign alternations and peaks in acc. or dec.
For all param. range, partly replicable w/o shift w/ UF.

γ
Unnecessary feature in acc. or dec.
For all param. range, no necessary variation w/ UF similar to τ .
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3.4.3 Intelligent Driver Model

As we mentioned in Section 3.3.2.3, some simulations diverged at the end of the
simulation. In the following comparisons, we utilized only the data before the
divergence.

3.4.3.1 For variation of parameter Vm

Figure 3.108 shows the trend diagrams for the variation of parameter Vm. As
shown in Figure 3.108a, Vm seems to have sufficient ability to replicate the differ-
ence in the distance gap around the shapelets and follow the trends of the local
maximum margin. However, we need to note that it is required to choose Vm
less than the maximum velocity of the leader. Regarding the velocity difference
shown in Figure 3.108b, Vm causes unnecessary deviation at the fixed ranges of
748 ≤ k ≤ 769, i.e., in the steady phase, and cannot replicate the variation in the
early acceleration phase. For the followers’ acceleration, if we choose the proper
combinations of the parameters, i.e., 120 % − 80 %, Vm can replicate the large
deceleration of the trucks around the shapelet. However, the large acceleration
of the cars cannot be replicated. Besides, it again requires the selection of the
smaller Vm than the maximum velocity of the leader.

3.4.3.2 For variation of parameter δ

Figure 3.109 shows the trend diagrams for the variation of parameter δ. From
Figure 3.109a, we can conclude that δ replicate the variation of the distance gap
accompanied by the change in vehicle type, although series difference decreases
earlier than the local maximum margin. When we focus on the trend diagram
for the velocity difference in Figure 3.109b, we find that the variation in the
deceleration phase can be replicated by δ. However, in the range 400 ≤ k ≤ 800,
we observe unnecessary variation in the velocity difference. In the trend diagram
for the acceleration shown in Figure 3.109c, we observed unnecessary variation
at k = 1200. Although the major signs of the series differences are the same in
the acceleration phase and the deceleration phase, we confirm shifts of the series
differences from the local maximum margin.

3.4.3.3 For variation of parameter T

Figure 3.110 shows the trend diagrams for the variation of parameter T . Param-
eter T also has the ability to replicate the variation of the distance gap as shown
in Figure 3.110a. In Figure 3.110b, we can confirm that none-zero values of series
differences still remain at the fixed range of 1254 ≤ k and the trend of the series
difference varies from that of the local maximum margin in the acceleration phase.
Although the basic trends in the acceleration phase and deceleration phase are
consistent with the experiments, the timings of features are shifted. From Figure
3.110c, we can observe the totally different trend of the series difference, especially
at the beginning of the stopping phase.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.108: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter Vm.
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3.4. COMPARISON OF OBSERVED AND SIMULATED
CHARACTERISTIC LEAVES

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.109: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter δ.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.110: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter T .
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3.4.3.4 For variation of parameter smin

Figure 3.111 shows the trend diagrams for the variation of parameter smin. Re-
garding the distance gap, smin achieved the significant difference at the steady
phase compared to the waiting and stopping phases in Figure 3.111a, although
the decreasing timing is early. For the velocity difference shown in Figure 3.111b,
although small perturbation occurred at the fixed ranges in the stopping phases,
rough trends of the local maximum margin were captured by the series differ-
ences. As long as we understand, the largest difference in the acceleration phase
occurs not in the early acceleration phase but latter acceleration phase. On the
other hand, when confirming the trend diagram for the followers’ acceleration, we
face the series differences totally different from trends observed in the experiment.
In particular, it significantly affects the acceleration from the latter deceleration
phase.

3.4.3.5 For variation of parameter Lf or Ll

Figure 3.112 shows the trend diagrams for the variation of parameter Lf or Ll. As
shown in Figure 3.79, the parameters Lf and Ll do not affect the characteristic
leaves. This is because the ID model refers to the distance gap from which the
effects of the vehicle length are removed. Although the series differences in Figure
3.112 seem to have non-zero values, their values are small.

3.4.3.6 For variation of parameter A

Figure 3.113 shows the trend diagrams for the variation of parameter A. From
Figure 3.113a, we can confirm that A replicates the characteristic variation of the
distance gap with the small shift of the variation timing. Regarding the velocity
difference, although there is small perturbation at the fixed ranges at k = 750
and the peak timings of the series differences are shifted from those of the local
maximum margin, it is implied that A can replicate the rough features observed
in the velocity difference. On the other hand, for the followers’ acceleration
shown in Figure 3.113c, respective series differences showed different trends. In
the cases of the green and the red lines, their trends follow the required ones
including the sign inversion in the latter acceleration phase, which corresponds
to the acceleration peak of the trucks. Note that the magnitude of the series
differences are larger in the latter deceleration phase than the magnitude in the
early deceleration phase. Although we need to be aware of some shifts and the
parameter range, parameter A has the ability to replicate the differences.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.111: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter smin.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.112: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter Lf or Ll.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.113: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter A.
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3.4.3.7 For variation of parameter B

Figure 3.114 shows the trend diagrams for the variation of parameter B. Regard-
ing the distance gap in Figure 3.114a, we observed turnover of the sign in each
series difference at k = 1000. For the velocity difference shown in Figure 3.114b,
although rough trends of the shapelets and the local maximum margin are cap-
tured, we observe timing differences of the peaks, sign inversions in the latter
deceleration phase, and perturbations at the fixed range. Because the parameter
B is related to the comfortable deceleration magnitude as mentioned in Section
3.1.2, we can observe the variations mainly in the deceleration phase. However,
the difference peaks were observed at 1200 ≤ k ≤ 1300 where the local maximum
margin decreases its value from the early deceleration phase. Although the de-
celeration difference in the early deceleration phase can be replicated, we need to
be patient with the variation in the latter deceleration phase when we adjust the
parameter B to control the deceleration magnitude.

3.4.3.8 Summary: The replication performance of the ID model

From Table 3.14 to 3.16, we summarized the results of the comparison for each
parameter in the ID model. From Table 3.14, most of the parameters except
for Lf and Ll have the ability to replicate all the features of the distance gap.
In particular, T seems to be the best parameter to replicate the features in the
distance gap as it does not cause any shifts or unnecessary features. Regarding the
followers’ acceleration in Table 3.16, although there is a limitation for the range,
it would be a choice to adjust Vm for the replication of the features in followers’
acceleration. This is because we cannot keep the independence between physical
values if we choose δ, A, or B, which affect the other physical values. Regarding
the velocity difference in Table 3.15, it would be preferable to choose smin from the
perspective of the independence. We also need to be aware that all the features in
the velocity difference cannot be replicated by any parameters in the ID model.

Table 3.14: Replicablity of respective parameters in the ID model for the distance
gap of various following vehicles.

Distance gap

Vm
For some param. range, fully replicable w/o shift w/o UF.

Vm less than V l
max is required.

δ For all param. range, fully replicable w/ shift w/o UF.

T For all param. range, fully replicable w/o shift w/o UF.

smin For all param. range, fully replicable w/ shift w/o UF.

Lf(Ll) No effect.

A For all param. range, fully replicable w/ shift w/o UF.

B
Sign alterntion at k = 1000 (ED).
For all param. range, fully replicable w/ shift w/ UF.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.114: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter B.
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Table 3.15: Replicablity of respective parameters in the ID model for the velocity
difference of various following vehicles.

Velocity difference

Vm

Unnecessary variation at fixed range at ST.
Unnable to replicate variation in EA.
For all param. range, no necessary variation w/ UF.

δ
Variation in D replicated. Unnecessary variation in 400-800 (A & ST).

For all param. range, partly replicable w/o shift w/ UF.

T

Difference remains at fixed range 1254 ≤ k (SP). Different trend in A.
Basic trend is consistent but feature timing shifted.
For all param. range, partly replicable w/ shift w/ UF.

smin

Small perturbation in fixed range at SP.
Trend roughly replicated. Acc. difference appears not in EA but LA.
For all param. range, partly replicable w/ shift w/ UF.

Lf(Ll) No effect.

A

Small perturbation at fixed range k = 750 (ST).
Peak timing shifted. Trend roughly replicated.
For some range of param, partly replicable w/ shift w/o UF.

B

Trend roughly replicated. Small perturbation at fixed range.
Sign inverstion in LD. Timing shift of peaks.
For all param. range, partly replicable w/ shift w/ UF.

Table 3.16: Replicablity of respective parameters in the ID model for followers’
acceleration of various following vehicles.

Followers’ acceleration

Vm

With proper Vm, shapelet of truck replicated in dec.

Vm less than V l
max required. Unnable to replicate large acc. of cars.

For some param. range, partly replicable w/o shift w/ UF.

δ

Unnecessary variation at k = 1200 (LD).
Rough trends replicated but shifted.
For all param. range, fully replicable w/ shift w/ UF.

T
Totally different especially at beginning of SP.
For all param. range, no necessary variation w/ UF.

smin For all param. range, no necessary variation w/ UF

Lf(Ll) No effect.

A For some param. range, fully replicable w/ shift w/ UF.

B
Dec. difference in ED replicated. Remaining variation in LD.
For all param. range, partly replicable w/o shift w/ UF.
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Different Following Vehicles

3.4.4 Gazis-Herman-Rothery Model

In this section, we discuss the replicability of the GHR model to observed features
of the characteristic leaves. Before we proceed with the comparison, we note that
the series after the velocity became less than zero were removed. In addition, the
common index k = 0 was not assigned to the first index of the simulated series,
but assigned to the index corresponding to the simulation time t > 0. However,
the simulation time assigned k = 0 was before the follower started to move, i.e.,
almost the initial state. Therefore, we decided to proceed with the comparison
using these DTW series.

3.4.4.1 For variation of parameter C

Figure 3.115 shows the trend diagrams for the variation of parameter C. As
long as we focus on the series differences before the velocity becomes less than
zero, parameter C seems to have the ability to replicate the variation around the
shapelets in Figure 3.115a. The trends of the series differences are also consistent
with those of the local maximum margin.

As for the velocity difference shown in Figure 3.115b, the series differences
become almost zero except for the combination 90 % − 50 %. However, although
the rough trends of the series differences follow those of the local maximum mar-
gin, the peaks of the variation are observed not in the early acceleration phase
and the latter deceleration phase but in the latter acceleration phase and the
early deceleration phase. We need to be aware of these shifts when we fit the
velocity difference with parameter C.

Regarding the followers’ acceleration shown in Figure 3.115c, although the
fixed ranges in the waiting phase and the steady phase are replicated, the series
differences are varied at fixed range in the stopping phase, which is directed to
the negative velocity. Furthermore, we observe several alternations of the signs
in the acceleration phase. The major signs in the acceleration phase and the
deceleration phase cannot be compared. We conclude that parameter C does not
replicate the observed features and causes unnecessary variations in the followers’
acceleration.

3.4.4.2 For variation of parameter T

Figure 3.116 shows the trend diagrams for the variation of parameter T . The
trends of the series differences observed in Figure 3.116 are totally different from
those of the local maximum margin. Although the time delay T seems to be
the crucial parameter replicating response time of respective vehicles, we need to
conclude that the variation of T does not replicate the vehicle differences.

140/163



3.4. COMPARISON OF OBSERVED AND SIMULATED
CHARACTERISTIC LEAVES

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.115: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter C.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.116: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter T .
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3.4.4.3 For variation of parameter smin

Figure 3.117 shows the trend diagrams for the variation of parameter smin. Re-
garding the distance gap shown in Figure 3.117a, parameter smin seems to repli-
cate the trends of the distance gap similar to parameter C.

As for the velocity difference, the series differences decrease where the fixed
ranges are. However, although the trends of the series differences are roughly
consistent with the local maximum margin, the positions of the peaks of the
series differences are different from where the shapelets exist. We conclude that
parameter smin can replicate the rough trends of the variation but its performance
for the replication is not high.

Regarding the followers’ acceleration shown in Figure 3.117c, even when we
ignore the acceleration directed to the negative velocity after k = 1000, the
variation trends of the series difference are totally different from those of the
local maximum margin. We need to conclude that parameter smin does not have
any ability to replicate the variation in followers’ acceleration when the following
vehicles are changed.

3.4.4.4 For variation of parameterLf or Ll

Figure 3.118 shows the trend diagrams for the variation of parameter Lf or Ll.
From Figure 3.118a, we can conclude that Lf and Ll have the ability for replication
of the distance gap in the cases of various vehicles. The series differences capture
the variations at where the shapelets are and the trends of the local maximum
margin.

Regarding the velocity difference shown in Figure 3.118b, we observed the
large oscillations at the fixed ranges in the stopping phase (1254 ≤ k), although
we could see the variation in the range 900 ≤ k ≤ 1200 where the shapelets were
observed. In addition, the sign alternations in the acceleration phase 300 ≤ k ≤
700 and few variation in 300 ≤ k ≤ 400 were observed. The variation in the
velocity difference caused by the vehicle change cannot be replicated properly by
parameter Lf and Ll.

Regarding the followers’ acceleration, we cannot observe significant trends of
the series differences except for the acceleration directed to the negative veloc-
ity after k = 1100. Parameter Lf and Ll cannot replicate the variation of the
followers’ acceleration.
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3. Replicability of Car-Following Models toward Driving Trajectories of
Different Following Vehicles

(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.117: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter smin.
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(a) Evolution on index k vs. the distance gap plane.

(b) Evolution on index k vs. the velocity difference
plane.

(c) Evolution on index k vs. the followers’ accelera-
tion plane.

Figure 3.118: Evolution of the shapelets, the local maximum margin and differ-
ence between simulated series with the variation of parameter Lf or Ll.
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Different Following Vehicles

3.4.4.5 Summary: The replication performance of the GHR model

From Table 3.17 to 3.19, we summarized the results of the comparison for each
physical value and parameter. For the distance gap in Table 3.17, every parame-
ters except for T have the ability to replicate the features without any shift and
the unnecessary features. Regarding the velocity difference, these parameters,
i.e., C, smin, Lf and Ll have the ability to replicate some of the features. How-
ever, none of the parameters in the GHR model has capability for the replication
of the variation in followers’ acceleration. We conclude that the GHR model, in
particular the model presented by Herman et al. [69] cannot be utilized for the
analysis of mixed traffic including microscopic investigation from the acceleration
perspective.

Table 3.17: Replicablity of respective parameters in the GHR model for the
distance gap of various following vehicles.

Distance gap

C For all param. range, fully replicable w/o shift w/o UF.

T For all param. range, no necessary variation w/ UF.

smin For all param. range, fully replicable w/o shift w/o UF.

Lf(Ll) For all param. range, fully replicable w/o shift w/o UF.

Table 3.18: Replicablity of respective parameters in the GHR model for the
velocity difference of various following vehicles.

Velocity difference

C
For some param. range, partly replicable w/ shift w/ UF.

Combination of 90-50% is not applicable. Peak position different.

T For all param. range, no necessary variation w/ UF.

smin
For all param. range, partly replicable w/ shift w/ UF.
Trends roughly replicated. Peak position different.

Lf(Ll)
For all param. range, partly replicable w/o shift w/ UF.
Unnecessary sign alternation observed.
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Table 3.19: Replicablity of respective parameters in the GHR model for followers’
acceleration of various following vehicles.

Followers’ acceleration

C
Variation directed to negative velocity & sign oscillation in A observed.
For all param. range, no necessary variation w/ UF.

T For all param. range, no necessary variation w/ UF.

smin
For all param. range, no necessary variation w/ UF.
Only small effect.

Lf(Ll)
For all param. range, no necessary variation w/ UF.
Only small effect.
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Chapter 4

Discussions

4.1 Characteristic Behaviors of Respective Ve-

hicles and Their Causes

In this section, we integrate the results obtained in Chapter 2 and 3. A multiple
regression analysis was used to clarify that the height of the following vehicles
affected their acceleration and deceleration. This tendency implied that drivers
prefer the similar magnitudes for the pitching direction jerk when they drive dif-
ferent vehicles. On the other hand, the magnitudes of the acceleration and decel-
eration increased with the size of leading vehicles. Furthermore, the operational
delay of followers decreased when the height of the leading vehicles increased.
These tendencies implied that followers’ response to the driving behaviors of the
leading vehicles was improved by the better visibility of the leaders. In addition,
large leaders caused shorter distance gaps. The following drivers could uninten-
tionally approach the leaders as a result of carelessness; they could assume that
they were still safe if they approached the leader because they could recognize
the small deceleration of the leader.

Based on the decision tree for the distance gap, we clarified that motorcycles
have a small distance gap in the steady phase. The riders would approach the
leaders because they assume that motorcycles are agile. The trucks had smaller
distance gaps than the cars in the early deceleration phase. This was because of
the delay in the deceleration, i.e., inertia of the trucks.

Regarding the velocity difference, the motorcycles had a smaller velocity dif-
ference than the other vehicles in the steady and deceleration phases. This was
because the motorcycles could adjust their behavior to the leaders as a result
of their small inertia. At the beginning of the acceleration phase, the velocity
difference of the cars was larger than that of the trucks. This meant that the re-
sponse of the cars to the leaders’ acceleration was slow. In addition, the velocity
difference of the trucks was larger than that of the cars in the latter deceleration
phase. This meant that the trucks finished their deceleration earlier than the
cars. These tendencies implied that the drivers compensated for the slowness of
the trucks by their response speed.

In the acceleration, we observed timing difference of the peak between the cars
and trucks, and small decelerations of the cars in the early deceleration phase.
These characteristics could be explained by the carelessness of the car drivers.
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Based on these interpretations, the drivers’ recognition of the agility of a
vehicle affected the distance gap and timings of the acceleration and deceleration.
At the same time, the visibility of the leaders affected the distance gap. The
drivers of motorcycles could adjust their driving to the leaders but tended to
have short distance gaps because of their recognition of their agility. The drivers
of trucks compensated for the slowness of their vehicles by their response speed.
In particular, they tended to act safely when they were in the deceleration phase.
The drivers of cars tended to be careless in reaction to the behaviors of the
leaders because of their confidence in their agility. This tendency resulted in
large magnitudes for the acceleration and deceleration.

Based on these ideas, we theorize that the auto-rickshaws would have a short
distance gap, and the distance gap behind them would be short. We also the-
orize that electric normal passenger cars would have large magnitudes for their
acceleration and deceleration as a result of the drivers’ carelessness. In addition,
electric cars might have short distance gaps because they have quick acceleration
like motorcycles. There is a possibility that the electric cars might not show this
quick acceleration because the drivers could prefer similar jerks on each vehicle
they drive.

4.2 Proposals Based on Investigations

4.2.1 Improvement of Car-Following Models

We presented the main factors affecting the followers’ driving in Section 4.1.
There were the drivers’ recognition of their vehicles’ agility and the visibility of
the leaders. These factors affect the respective vehicles in different phases and
timings. Therefore, we propose that a model with asymmetric parameters for
each phase would replicate the characteristic behaviors of the respective vehicles
in mixed traffic. In other words, the model for mixed traffic should have terms
for the steady state, action-starting state, controlling state, and action-finishing
state. In the steady state, vehicles stand still or travel at a steady velocity.
In this state, they have achieved their targets for the velocity, distance gap,
etc. In the action-starting state, the drivers receive stimulation to start their
operation. We need some parameters indicating the response time and threshold
for this stimulation. In the controlling state, the drivers control their vehicles
based on their attitude toward safety, their driving preference, the behaviors of
the leaders, etc. In the action-finishing state, the drivers smoothly finish their
control and transfer to the steady state. Model parameters for each state or term
are necessary, but these parameters should be affected by the drivers’ recognition
of their vehicles’ agility and the visibility of the leaders.
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4. Discussions

4.2.2 Jam Reduction for Mixed Traffic in Developing Coun-
tries

In general, traffic jams are caused by delays in drivers’ responses and short dis-
tance gaps. A traffic jam grows because of a lack of acceleration at its head. We
expect that these causes could be reduced by controlling of the drivers’ recognition
and visibility of the leaders.

A “staggered formation” of motorcycles would be one solution to realize large
distance gaps. Figure 4.1 shows a schematic of such a staggered formation. Re-
spective motorcycles shift their traveling lines from the nearest leader and follow
the next-nearest leader. This formation can realize a high density with the large
distance gaps and is already popular with riders. However, promoting this forma-
tion through driver education, traffic signs, etc. could prevent both the occurrence
and growth of traffic jams.

Figure 4.1: A schematic of staggered formation of motorcycles.

Large distance gaps would also be promoted if it becomes difficult to measure
the distance gaps from the leaders. Displaying a visual pattern such as an optical
illusion on the backs of trucks would be one solution. In addition, brake lights
mounted on the top of a vehicle in the back might produce a shorter distance
gap. Improving of such safety equipment could help to reduce traffic jams.

On the other hand, in order to improve the response speed through agility
recognition, we need to reduce the acceleration and deceleration performances of
cars at the beginning of the acceleration and deceleration. The suspension setting
and the engine control could be used to control the jerk that drivers experience.

The market penetration of electric vehicles will increase in the near future,
even in developing countries. However, as we discussed in Section 4.1, it is not
clear whether electric vehicles can reduce traffic jams. Their quick acceleration
might cause short distance gaps and drivers’ carelessness.
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4.2.3 Jam Reduction Method for Mixed Traffic Compris-
ing Manual and Autonomous Driving Vehicles: Crowd
Optimization with Emergent Formation-Control

In Section 4.2.2, we proposed some ideas to reduce traffic jams of current mixed
traffic. On the other hand, the reduction of traffic jams involving autonomous
driving vehicles is being investigated by many researchers, as we mentioned in
Section 1.1. In a few decades, autonomous driving vehicles will be introduced in
mixed traffic.

Driving strategies for the distance gap, acceleration, etc. will be the main
factors to reduce traffic jams involving autonomous driving vehicles. However, if
an autonomous driving strategy also considers and utilizes the characteristics of
respective manual driving vehicles, jam reduction will be more efficient, and the
comfort of all the drivers will also be improved.

For example, most motorcycles will be manually operated in such an era.
Although autonomous driving motorcycles are being developed, they will not be
very popular because the autonomous driving technology does not contribute
to the convenience, comfort, and riding pleasure of motorcycles. If autonomous
driving vehicles do not isolate each motorcycle in a traffic stream, it will be
possible to promote the staggered formation proposed in Section 4.2.2.

We demonstrated various driving changes caused by a combination of vehicles
in this thesis. If an autonomous driving strategy controls the order and formation
of vehicles, manual driving vehicles will show the preferable characteristics needed
for jam reduction. Furthermore, the order and formation of the vehicles can
realize a safer and more comfortable traffic stream, which will relieve all the
drivers from any unnecessary strain caused by mixed traffic.

This idea can be rephrased in a more general description: crowd optimization
with emergent formation-control. Imagine that there is a self-driving particle
system. If we change the characteristics of a portion of the particles, this will
affect the entire system, i.e., the formation and configuration of the particles will
be changed. Such an environmental change will affect other particles and change
their characteristics. If we control these chained effects, we can control the state
of the system, i.e., the macroscopic behavior of the crowd of the particles. We
expect this concept to be utilized for other crowd systems, as well as for vehicle
traffic.
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Chapter 5

Conclusions

To address the traffic jam which has become a serious and worldwide problem, the
effectiveness of the jam reduction relying on the improvement of driving methods
has been confirmed by many researchers. This approach for jam reduction is
effective especially in the developing countries as well as in developed countries
because it does not require the allocation of a huge amount of resources for
infrastructure improvement. However, mixed traffic, which comprises many types
of vehicles in these developing countries, shows phenomena different from uniform
traffic owing to its heterogeneity, and has recently attracted the interest of many
researchers.

In this thesis, we clarified the difficulty of replicating the behavioral changes
of various types of vehicles in mixed traffic with variable adjustments of existing
car-following models. It was also proposed that the engine performance of the
following vehicles need to be taken into account as well as the vehicle height,
weight, and length of the leading and following vehicles when we replicate the
behavioral differences of various types of vehicles. Based on these insights, it was
implied that the environmental factors that drivers received from the leading and
their vehicles, i.e., drivers’ recognition of their vehicles’ agility and the visibility of
the leaders, mainly affected the followers’ driving. Because these factors affect the
respective drivers in different phases and timings, a model for mixed traffic should
have asymmetric parameters for each operation phase. Furthermore, we discussed
jam reduction methods for not only current mixed traffic but also future mixed
traffic comprising manual and autonomous driving vehicles. In this discussion,
we proposed a concept of “crowd optimization with emergent formation-control.”

In Chapter 2, we first conducted a series of car-following experiments in a
test circuit with motorcycles, passenger cars, and trucks in order to obtain all
the behaviors of known vehicles in the acceleration, steady driving, and deceler-
ation phases. Because we obtained all the vehicle and driving characteristics of
the leading and following vehicles, we were able to analyze the behaviors of the
following vehicles by the multiple regression analysis. Our experiment with the
motorcycles was enabled by the miniaturization of the data recording devices,
i.e., tablets.
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Through the analysis of the experimental results, in Chapter 2, we found that

1. the maximum velocity and acceleration of the following vehicles are mainly
affected by the driving of the leading vehicle, and

2. the maximum deceleration, distance gaps when the platoons starts, the
maximum distance gap during a trial, and delay in maximum acceleration
timing are also affected by the vehicle characteristics of the leading and
following vehicles.

In Chapter 3, we determined the characteristic behaviors of the respective
vehicles through all the procedures, from the acceleration to deceleration, i.e.,
the characteristic leaves. By the dynamic time warping and the decision tree
learning based on the shapelets, we were able to extract the features of these
characteristic leaves and compared them to those caused by the variation of car-
following model parameters. With this approach, we investigated the responses of
the car-following models under the transient phases, which are ignored in the error
minimization of the macroscopic values (e.g., the flow) and of the acceleration
over the whole observed time range.

Based on the comparison of the observed characteristic leaves of three types
of vehicles and simulated characteristic leaves varied by the car-following model
parameters, we clarified desired and unnecessary features replicated and caused by
the parameter variation. From these results, we made the following conclusions:

1. There are no parameters in the investigated car-following models that can
replicate the differences observed in all the distance gaps, velocity differ-
ences, and followers’ acceleration when we change the types of the followers.

2. Although features in the distance gap can be replicated by some parame-
ters in the models, respective models are weak in different physical values
regarding the feature replication.

In Chapter 4, we integrated the results obtained in Chapter 2 and 3, and
concluded that the drivers’ recognition of their vehicles’ agility and the visibility
of the leaders were the main factors affecting the followers’ driving. We also
proposed formulation of a car-following model replicating mixed traffic and jam
reduction methods for current and future mixed traffic. Through the discussion,
we reached a concept of crowd optimization with emergent formation-control,
which can be utilized for other crowd systems, as well as for vehicle traffic.

Regarding future works and prospects, it will be easy to estimate the driving
characteristics of the new types of vehicles introduced in the consideration of
mixed traffic based on our regression models. On the other hand, for the param-
eters determining the maximum deceleration, minimum and maximum distance
gaps and the operational delay, we need to take the vehicle height and engine
performance into account. In addition, it was suggested that the conflicting be-
haviors in the distance gaps need to be thoroughly investigated for better under-
standing of the psychological aspects of the drivers in relation to safety training,
comfortable autonomous driving, etc.
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5. Conclusions

It was implied that when we focus on the transient phenomena, there is the
possibility that errors are included in the discussions based on the existing car-
following models. Therefore, it is necessary to propose and validate new car-
following models that accurately replicate the differences in the velocity difference
and the acceleration of various types of vehicles. The detailed discussion regarding
the replication performance of each parameter will be the basis of new models
replicating driving behaviors in mixed traffic.

While we removed the effects of individual drivers in the regression analysis
by dummy variables, we could not perfectly remove these effects in the analysis
based on the characteristic leaves. Because it needs a huge number of trials with
many subjects and types of vehicles in order to ignore the individual tendencies,
some data processing method removing these effects from time series will make our
discussion more accurate. On the other hand, if we obtain the characteristic leaves
in real traffic of various countries, the difference between them, i.e., tendencies of
drivers in respective countries, will be clarified by our method.

Furthermore, in order to realize the concept of crowd optimization with emer-
gent formation-control in vehicle traffic, we need to investigate the order and
formation of vehicles in current mixed traffic.

In this thesis, we analyzed and discussed variations in the driving of the
following drivers on various types of vehicles from the perspectives of phenom-
ena, causes, and replication. The first contribution of this thesis is capturing
that drivers’ recognition of their vehicles’ agility and the visibility of the lead-
ers mainly affect the followers’ driving in different phases and timings. The other
contributions are the proposals for model formulation and jam reduction methods
for mixed traffic. Based on our research, we hope that studies on mixed traffic in
developing countries, on safety driving, on jam reduction for heterogeneous traf-
fic, and on comfortable autonomous driving under various market penetration
rates of the autonomous vehicles will be advanced in the future.
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ihiro Shibata, and Yūki Sugiyama. Phenomenological study of dynamical
model of traffic flow. Journal de Physique I, 5(11):1389–1399, 1995.

[65] Rui Jiang, Qingsong Wu, and Zuojin Zhu. Full velocity difference model
for a car-following theory. Physical Review E, 64(1):017101, 2001.

[66] Peter G Gipps. A behavioural car-following model for computer simulation.
Transportation Research Part B: Methodological, 15(2):105–111, 1981.

[67] Martin Treiber and Arne Kesting. Traffic Flow Dynamics. Springer, 2013.

[68] Eiji Kometani and Tsuna Sasaki. On the stability of traffic flow (report-I).
J. Oper. Res. Soc. Japan, 2(1):11–26, 1958.

[69] Robert Herman and Renfrey B Potts. Single lane traffic theory and experi-
ment. In Proceedings Symposium on Theory of Traffic Flow, pages 120–146.
Elsevier, 1959.

[70] Leslie C Edie. Car-following and steady-state theory for noncongested traf-
fic. Operations research, 9(1):66–76, 1961.

[71] Denos C Gazis, Robert Herman, and Richard W Rothery. Nonlinear follow-
the-leader models of traffic flow. Operations research, 9(4):545–567, 1961.

[72] Adolf D May Jr and EM Harmut. Non-integer car-following models. High-
way Research Record, (199), 1967.

[73] MP Heyes and R Ashworth. Further research on car-following models.
Transportation Research, 6(3):287–291, 1972.

[74] Joseph Treiterer and Jeffrey Myers. The hysteresis phenomenon in traffic
flow. Transportation and traffic theory, 6:13–38, 1974.

[75] Avishai Ceder and Adolf D May. Further evaluation of single-and two-
regime traffic flow models. Transportation Research Record, (567), 1976.

160/163



BIBLIOGRAPHY

[76] Maurice Aron. Car following in an urban network: simulation and experi-
ments. Planning And Transport Research and Computation, 1988.

[77] H Ozaki. Reaction and anticipation in the car-following behavior. Trans-
portation and traffic theory, 12:349–366, 1993.

[78] Walter Helly. Simulation of bottlenecks in single-lane traffic flow. In Proc.
Symposium on Theory of Traffic Flow, 1959, pages 207–238. Research Lab-
oratories, 1959.

[79] RM Michaels. Perceptual factors in car following. In Proceedings of the
2nd International Symposium on the Theory of Road Traffic Flow (London,
England), OECD, 1963.

[80] Shinya Kikuchi and Partha Chakroborty. Car-following model based on
fuzzy inference system. Transportation Research Record, pages 82–82, 1992.

[81] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric
discrimination: consistency properties. Technical report, California Univ
Berkeley, 1951.

[82] Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[83] Jan Salomon Cramer. The origins of logistic regression. 2002.

[84] Vladimir Vapnik. Pattern recognition using generalized portrait method.
Automation and remote control, 24:774–780, 1963.

[85] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152. ACM, 1992.

[86] Earl B Hunt, Janet Marin, and Philip J Stone. Experiments in induction.
1966.

[87] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

[88] Wei-Yin Loh. Fifty years of classification and regression trees. International
Statistical Review, 82(3):329–348, 2014.

[89] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[90] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.
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