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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Open queueing networks are very important queueing systems for the 

optimization of industrial activities in modern economy. Several significant 

applications of open queueing networks include computer networks, global logistic 

networks, production line system, supply chain networks, telecommunication system 

etc. Recently, because of the development of computational facilities, the remarkable 

trends for applying real data analytics to improve theoretical predictions of specific 

service queueing systems become more and more important. Therefore, successfully 

figuring out the theoretical system performance values of a queueing system through 

exact analysis or numerical analysis is a prerequisite to make the systems work more 

efficiently by real data analytics. Moreover, the theoretical results can be further 

validated and improved by real data analysis. 

Due to the development of computational power and storage technology of 

information systems many intractable problems in the past become feasible and 

applicable in recent years. The big data analytics and internet of things (IoT) are very 

important topics in the 21th century. Having deep understanding about the 

characteristic of performances of series configuration queueing systems is beneficial 

for further designing high efficient automated production systems. In addition, we can 

imagine that each service station in this kind of system can reflect its statuses of 

average service rate by applying IoT technology. Furthermore, based on the 

information of mean arrival rate, mean service rate of each service station and other 

important system parameters, it is expected to design a controlling center to make the 

queueing system work more efficiently and reflect real-time situation of operations. 

Therefore, quantitatively evaluating performance measures of this kind of system is a 

necessary prerequisite to make the system work smartly. 

    In this thesis, series configuration queueing systems with perfect service stations 

and the service stations subject to breakdowns and repairs are studied. This kind of 

the system is similar with the automated assembly lines in automobile industry. It is 

expected to apply our theoretical results to real cases in order to save operational costs 

of each automated assembly line. On the other hand, self-blocking system with 

infinite waiting capacity before the system is also investigated. Since the growth of 

population in cities and urbanization become significant recently, the insights of 

self-blocking queueing system can be applied to taxi cabs in metropolitan areas. We 

propose disposition strategies for the system work in better operational efficiency by 

setting system parameters based on the information of numerical simulations. 



 

2 
 

Traditional studies on queueing systems focused on deriving exact formula of 

related performance measures and steady-state probabilities. However, when the 

queuing systems become complex, it is almost impossible analyze problems in this 

way. Therefore, we adopt numerical methodologies to study the topics. The 

steady-state analyses of the systems are conducted by matrix-geometric method. We 

demonstrate that matrix-geometric method is a very powerful tool to study 

quasi-birth-death process, because we not only obtain the exact formula of stability 

conditions of the systems, but also evaluated related important performance measures 

consisted of steady-state probabilities. The information of the performance measures 

provides theoretical basis for real applications and benefit practitioners working in 

industries. Major contributions of the thesis are summarized as follows: 

we 1) constructed structure generator matrices of the series configuration systems, 2) 

derived stability conditions in exact forms consisting of system parameters, 3) 

evaluated numerical performance measures of the systems based on steady-state 

probabilities, 4) provided transient analysis and investigated dynamic properties for 

the series configuration systems, 5) proposed application insights of disposition 

strategies for the system working in high performance way. 

1.2 Literature Review 

The literature on the series configuration queueing system with blocking 

phenomena can be traced back to Hunt [1]. He studied four particular cases of service 

facilities in series including infinite storage space between stages, no storage space 

between stages, finite storage space between stages, and the case of the unpaced 

belt-production line. Avi-Itzhak et al. [2] investigated a queueing system consisting of 

a sequence of two service stations with infinite queue allowable before the first station 

and no queue allowable between the stations. They obtained the moment generating 

functions of the steady-state queueing times and the generating functions of the steady 

numbers of customers in the various parts of the system. Avi-Itzhak et al. [3] studied a 

queueing system with sequence stations following an ordered service type. They 

assumed the arrival process is arbitrary and the time to serve each customers at the 

working stations is regular. Altiok [4] presented an approximate method for the 

analysis of open networks of queues in tandem and with blocking phenomena. He 

evaluated the steady-state probabilities of the number of customers at each station 

based on a specific method of decomposition where the total network is broken down 

into queues. Langaris et al. [5] provided a method to analyze the waiting time of a 

two-stage queueing system with blocking phenomena. They further considered the 

separation of the concepts between effective service time and the blocked time in the 

first service station. Papadopoulos et al. [6] developed an algorithm to model 

characteristics of production lines with no intermediate buffers. The marginal 
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probability distribution of the number of units in each machine, the mean queue 

length and the throughput of the system can be obtained by their method. Avi-Itzhak 

et al. [7] assumed the just-in-time input for a queueing system with no buffers 

between servers under the communication and the blocking schemes. They derived 

explicit expressions for residence times, departure times, equilibrium throughput and 

other performance measures for the case of equal service requirements at all servers. 

Akyildiz et al. [8] derived the exact equilibrium state probability distributions for 

two-station queueing networks with blocking-after-service mechanism. Avi-Itzhaket 

al. [9] generalized a queueing system under k-stage blocking. They discovered a result 

that for k > 1, the waiting times are not order-insensitive while the G/D/1 equivalence 

is maintained. 

    Mathematical analysis and related applications of matrix-geometric method was 

systematically studied by Neuts [10]. Gomez-Corral [11] applied a general theory on 

quasi-birth-and-death processes to study a special kind of queueing system with 

blocking and repeated attempts. Gomez-Corral [12] investigated a two-stage tandem 

queue with blocking under the presence of a secondary flow of disasters. He 

determined the stationary distribution at departure epochs by using spectral analysis 

and calculated the stationary distribution at an arbitrary time. Gomez-Corral [13] 

studied queueing networks with blocking under the assumption of input units follow 

Markovian Arrival Process and applied the general theory on Markov renewal 

processes of M/G/1-type in their analysis. Gomez-Corral et al. [14] considered a 

two-stage tandem G-queue with blocking, service requirements of phase type and 

arrivals of units and of signals. They further investigated the influence of several 

flows of signals on the performance evaluation of the queueing model through various 

probabilistic descriptors. Gomez-Corral et al. [15] studied the influence of the 

dependence between units and signals on the performance evaluation of the 

continuous-time Markov chain describing the state of the network at arbitrary times. 

Bierbooms et al. [16] developed approximate methods for fluid flow production lines 

with multi-server workstations and finite buffers. Their method is suitable for the 

estimations of characteristics of longer production lines. Bierbooms et al. [17] 

proposed an approximation method to determine the throughput and mean sojourn 

time of single server tandem queues with general service times and finite buffers by 

decomposition method. Zhou et al. [18] studied a two-stage tandem queueing network 

with Markovian arrival process inputs and buffer sharing. They discovered that the 

buffer sharing policy is more flexible when the inputs have large variant and are 

correlated. Hillier [19] considered the optimal design of unpaced assembly lines. He 

analyzed the joint optimization of both the allocation of workload and the allocation 

of buffer spaces simultaneously when the objective is to maximize the revenue from 
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throughput minus the cost of work-in-process inventory. Sakuma et al. [20] proposed 

Whitt’s approximation to obtain the stationary distribution of an assembly-like 

queueing system with generally distributed time-constraint. Shin et al. [21] developed 

an approximation method for throughput in tandem queues with multiple independent 

reliable servers at each stage and finite buffers between service stations. Hudson et al. 

[22] gave complete reviews for the topics about unbalanced unpaced serial production 

lines. Several unanswered questions about the performance of assembly line are 

described in this work. Sani and Daman [24] studied a M/G/2 queueing system with 

an exponential server and a general server under a controlled queue discipline. The 

steady state distribution for the number of customers in the system, mean waiting time, 

mean queue length and blocking probability for the queueing system are derived. 

Ramasamy et al. [25] presented the steady state analysis of a heterogeneous server 

queueing system, Geo/G/2. Services containing discrete in nature can be applied 

through their analysis in many areas of communication, telecommunications, business 

and computer systems. Tsai et al. [26-28] discussed series configuration queueing 

systems with four service stations. They proposed general disposition strategies of the 

system based on original inductions of this works. Tsai et al. [29] further extended the 

series configuration queueing system by considering the conditions of system 

breakdowns and repairs. The disposition strategies of this kind of queueing system are 

suggested according to their theoretical and numerical investigations. Baumann and 

Sandmann [30] studied multi-server tandem queues where both stations have a finite 

buffer and all services times are phase-type distributed. An exact computational 

analysis of various steady-state performance measures and numerical results are 

presented. Vinarskiy [31] considered a model of an open exponential queueing 

network which shares a common buffer of limited capacity. The performance 

evaluation method could be applied in queueing network design. 

We further cite surveys and bibliographies in this important topic by Perros 

[32-33], Onvural [34], Balsamo [35] and Hall et al. [36], two major monographs by 

Perros [37] and Balsamo et al. [38], and other special collections from journals 

[39-40]. Decomposition methods applied to study tandem queueing systems can be 

referred to Hillier et al. [41] and Perros et al. [42]. 

The summary of past research on the series configuration queueing systems is 

shown in Table 1. It is noted that most of the researches focused on studying the 

system consisting of two service stations by relaxing assumptions of Poisson arrivals 

or exponential service time, because of the complexity of the problem. Other 

researchers tried to figure the characteristics of the system which the queue between 

service stations is allowed. There were no related researches on the disposition 

strategies for the system with different service rates of the servers. 
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Table 1. Summary of past researches on series configuration queueing systems 

Author 

(Year) 

Stability 

conditions 

with different 

service rate 2, 

3, 4 servers 

Queue 

allowed 

between 

servers 

Queue 

not 

allowed 

between 

servers 

Relax 

Poisson 

arrival 

Relax 

exponential 

service time 

Disposition 

strategies 

Hunt 

(1956) 

2 and 3 

stations 

  x x x 

Avi-Itzhak et al. 

(1965) 

x x  x  x 

Avi-Itzhak et al. 

(1965) 

x  x   x 

Altiok (1982) x  x x x x 

Langaris et al. 

(1984) 

Study on 2 

stations 

 x x x x 

Papadopoulos et al. 

(1993) 

x x  x x  

Avi-Itzhak et al. 

(1993) 

x x   x x 

Akyildiz et al. 

(1994) 

Study on 2 

stations 

 x x x x 

Avi-Itzhak et al. 

(1995) 

x  x   x 

Gomez-Corral 

(2002) 

Study on 2 

stations 

 x   x 

Gomez-Corral 

(2002) 

Study on 2 

stations 

x    x 

Gomez-Corral 

(2002) 

Study on 2 

stations 

x    x 

Gomez-Corral 

(2006) 

Study on 2 

stations 

 x   x 

Gomez-Corral 

(2009) 

Study on 2 

stations 

 x   x 

Bierbooms et al. 

(2012) 

x  x x x x 

Bierbooms et al. 

(2013) 

x  x   x 
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Table 1. Summary of past researches on series configuration queueing systems 

Author 

(Year) 

Stability 

conditions 

with different 

service rate 2, 

3, 4 servers 

Queue 

allowed 

between 

servers 

Queue 

not 

allowed 

between 

servers 

Relax 

Poisson 

arrival 

Relax 

exponential 

service time 

Disposition 

strategies 

Zhou et al. (2013) Study on 2 

stations 

 x  x x 

Hillier 

(2013) 

x  x x  x 

Sakuma et al. 

(2014) 

x  x x  x 

Shin et al. 

(2014) 

Study on 2 

stations 

 x  x x 

Baumann et al. 

(2017) 

Study on 2 

stations 

 x   x 

Vinarskiy 

(2017) 

x  x  x x 

Tsai et al. 

(2016, 2017) 

 x  x x  

 

 Abate and Whitt [43] presented an approximation method to investigate the 

transient behavior of M/M/1 queueing system. The method can help determine 

whether steady-state descriptions are reasonable or not in the condition that the arrival 

and service rates are nearly constant over time interval. Abate and Whitt [44] showed 

how Laplace transform analysis can obtain insights about transient behavior of the 

M/M/1 queueing system. They further determined the asymptotic behavior of the 

system through a transform factorization. Bertsimas and Nakazato [45] investigated 

queueing systems with the class of mixed generalized Erlang distributions. They 

found simple closed form expressions for the Laplace transforms of the queue length 

distribution and the waiting time distribution. Abate and Whitt [46] gave the 

time-dependent moments of the workload process in the M/G/1 queue. They obtained 

results for the covariance function of the stationary workload process. Various 

time-dependent characteristics described in terms of the steady-state workload 

distribution are demonstrated. Choudhury et al. [47] proposed an algorithm for 

numerically inverting multidimensional transforms. This method can be applied to 

both continuous variables and discrete variables transformations. They applied the 

method to invert the two-dimensional transforms of the joint distribution of the 
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duration of a busy period, the number served in the busy period, time-dependent 

transient queue-length and workload distributions in the M/G/1 queue. Kaczynski et al. 

[48] derived the exact distribution of the nth customer’s mean waiting time in the 

system in an M/M/s system with k customers initially present. Algorithms for 

evaluating the covariance between mean waiting time in the system and for an M/M/1 

with k customers at beginning of the state of the system was developed. Kim and 

Whitt [49] showed that the bias of the steady-state Little’s law can be estimated and 

reduced by applying time-varying Little’s law. Kim and Whitt [50] advocated a 

statistical approach to study characteristics of Little’s law for queueing systems with 

non-stationary distributions. They presented their theoretical analysis with data from a 

call center and simulation experiments. Tsai et al. [51] investigated the transient 

analysis of series configuration system consisting of two service stations by 

Runge-Kutta method. Dynamic performance measures are evaluated numerically. 

Fitting equations describing the dynamic properties of the system are provided.  

 Neuts and Lucantoni [52] have first considered a queueing system with N servers 

subject to breakdowns and repairs by means of Markovian chain. They discussed the 

stationary distributions of various waiting times and presented the effect of utilizing 

interactive computation in answering questions on the behavior, design and control of 

certain service systems. Papadopoulos and Heavey [53] reviewed the works about the 

design and analysis of manufacturing system by queueing networks. Gray, Wang and 

Scott [54] discussed a queueing model with multiple-vacation and server breakdowns. 

Thomas, Thornley and Zatschler [55] developed an iterative method to deal with a 

class of open queueing networks with server breakdowns. Chakka, Ever and 

Gemikonakli [56] presented a multi-node open network with heterogeneous nodes and 

finite sized buffers. An approximated model based on an IPP departure process was 

developed. Chakka, Ever and Gemikonakli [57] subsequently analyzed the modeling 

of joint-state for open queueing networks with breakdowns, repairs and finite buffers.  

Neuts [58] presented a series system with a finite intermediate waiting room. He 

demonstrated that this system can be studied in terms of an imbedded semi-Markov 

process. Brandwajn and Jow [59] described an approximation method for a tandem 

queue with blocking caused by finite buffers between servers. Vuuren et al. [60] 

conducted performance analysis for multi-server tandem queues with finite buffers 

and blocking. Ke and Tsai [61] investigated self-blocking system with infinite queue 

setting in front of the system. They derived exact formula of stability conditions and 

proposed disposition strategies for the system working in better operations which can 

be applied to gasoline stations in metropolitan areas. Tsai et al. [62] further extends 

the works of Ke and Tsai [61] for the self-blocking system consisting of three service 

stations. The study suggested that the results can be applied to taxi cabs. 
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1.3 Organization of the Thesis 

In this thesis, we first study steady-state performance analysis of series 

configuration system consisting of two, three and four service stations with blocking 

phenomena due to there are no waiting space between each service station. Exact 

stability conditions for the systems with heterogeneous service rates are derived. 

General disposition strategies for increasing efficiency of the system are proposed 

through the results of simulations. In Chapter 3, we investigate transient analysis for 

the system with two service stations. Important performance measurements are 

estimated by transient state probabilities. The results of simulations show that the 

disposition strategies for improving operational efficiency of the system are consistent 

in our proposition for the steady-state analysis of the system. In Chapter 4, we 

consider the system performance subject to breakdowns and repairs. This kind of 

problems is very important and applicable in real assembly line. Breakdown rate and 

repair rate of servers are introduced to evaluate related performance measures. 

Stability conditions are consistent with numerical results. Disposition strategies for 

increasing operational efficiency of the system are suggested. In Chapter 5, general 

disposition strategy of self-blocking queueing system is studied. Exact stability 

conditions of this kind of system with three service stations are derived. We expect 

that the suggested disposition strategy can be applied in taxi cabs with large capacity 

of queue in the system. Chapter 6 presents experimental results for the series 

configuration system with two service stations. We calculate mean waiting time in the 

queue through real data collected from the experiments in order to validate the 

concepts that different disposition strategies will cause different operational efficiency 

for the series configuration system. The stability conditions of the system are also 

tested through the experiments. Chapter 7 concludes all works in the thesis and 

suggests possible research topics in the future. 
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CHAPTER 2 

PERFORMANCE ANALYSIS OF SERIES CONFIGURATION SYSTEM 

WITH PERFECT SERVICE STATIONS 

 

2.1 Preface 

Open queueing networks with no buffers among service stations arranged in 

series form are popular queueing systems in automobile production line and 

manufacturing industries. The production costs in this kind of business activities are 

huge, because of inefficient operational procedures. A manufacturing company always 

contains many production line systems in their factory. If the efficiency of the 

automatic production systems could be increased by disposing better production 

strategies in each production line, the production costs can be saved remarkably.  

In this work, we try to propose disposition strategies for this kind of system in 

order to increase the operational efficiency of the system (i.e. reducing mean waiting 

time of the components in the system) based on numerical simulations of steady-state 

analysis. We provide theoretical steady-state analysis for the system consisting of two, 

three and four service stations. Several important performance measures are 

investigated for the system with different service rate of the each server. For the 

simplicity of formulation, the service stations in the system are assumed to be perfect 

working stations which mean that the server can work continuously without any 

problem regarding breakdowns. The service discipline of the system requires 

customers (or components) to enter the system in order. A customer should enter the 

first server of the system to receive the service, then goes into the second server after 

complete its service in the first station and so on. We define the complete service as 

after a customer complete all services in each server, the customer can leave the 

system from the terminal server. 

 

 Problem Formulation 

The queueing system consists of independent service stations in series 

configuration and operates simultaneously. Figure 1 shows the series configuration 

system with four servers. Poisson arrival process with mean arrival rate   is 

assumed. The time to serve a customer in each station follows exponentially 

distributed with mean service time 
1


. A complete service means that customers enter 

all of the service stations in order, and finish the services in each service station. 

There are no queues (buffers) among service stations, so that blocking phenomena 

would happen in this kind of the system. The phenomenon called blocking after 

service happens in the case that a customer completes the service in a service station, 



 

10 
 

but another customer in the next station has not finished the service yet. The customer 

who completed the service is blocked by the customer who is still receiving the 

service located next station. An infinite capacity queue is allowed in front of the first 

service station. In addition, only one customer can enter each service station at a time 

and the service rate is independent of the number of customers. The service of the 

system obeys the first come first serve (FCFS) discipline. 

 

 

Figure 1. Series configuration queueing system with four service stations. 

 

2.1.1 Contributions and Outline 
Major theoretical results in this chapter including 1) developing steady-state 

structured generator matrix of the system consisting of two, three and four service 

stations, 2) deriving stability conditions for the system with two, three and four 

service stations in exact form, 3) evaluating the steady-state probabilities of the 

system by applying matrix-geometric method and performance measures, such as 

mean number in the system, mean waiting time in the system and blocking probability, 

4) proposing disposition strategies for the system in order to make the system work in 

high performance ways. Practically, our numerical values of performance measures 

provide theoretical basis for the practitioners better to grasp the characteristics of the 

series configuration systems. The insights can also be applied to the real case that 

design high performance queueing systems. 

The rest of the content in this chapter is organized as follows. The notations used 

in our model and detailed descriptions of matrix-geometric method applied to the 

system with two, three and four service stations and major performance measures for 

the system are given in section 2. Numerical results and the proposed disposition 

strategies for the case studies of the system are presented in section 3. Finally, we 

conclude with discussions of our works and indicate possible directions for future 

research in section 4. 

 

2.2 Modeling Framework 

2.2.1 Notations 
In this section, we introduce notations used in our model framework. Mean 

arrival rate of Poisson arrivals is denoted as  . We reserve the notations 1 , 2 , 3  

and 4  for the mean service rate of the station-1, the station-2, the station-3, and the 

station-4 respectively. We use 
1 2, 3 4 5, , ,Pn n n n n  to denote the steady-state probability 
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1 2, 3 4 5, , ,Pn n n n n
of 

1n customer in the station-4 and 
2n customer in the station-3 and 

3n  

customer in the station-2 and 4n  customer in the station-1 and 5n customer in the 

queue. 

For instance, the steady-state probability 
,0,1, ,3P bb

means that there is a customer who is 

blocked in the station-1 and the station-2, since the customer in the station-3 is still 

receiving the service. There is no customer in the station-4. There are concurrently 3 

customers waiting in the queue. Similarly, for the system consisting of three and two 

service stations, the notation 
1 2, 3 4, ,Pn n n n

and 
1 2, 3,Pn n n

 are used to mean the steady-state 

probability and the states of each service stations, respectively. 

 
2.2.2 Matrix-Geometric Method 
    Let denote [ , , ,...] 0 1 2P P P P  as steady-state probability vector corresponding 

to the transition matrix Q. Note that the steady-state probability vector comprises 

steady-state probabilities of the quasi-death-birth process. The detailed compositions 

of the sub-matrices of the transition matrix Q for the system with two and three 

service and four stations are given in Appendix A. The equilibrium equation of the 

quasi-birth-death process can be described as QP = 0 , while the normalization 

condition of the steady-state probability is 1.P1 =  Then, the global balance 

equations of the quasi-birth-death process can be written as 

0,0 1,0B B , 0 1P P 0
                        

(1) 

0,1 1 2 2B A A ,  0 1P P P 0
                      

(2) 

i 0 i 1 1 i 2 2A A A ,   P P P 0     i 1 .              (3) 

There exist a rate matrix R, and the following recurrence relation can be constructed 

i 1R R , i i-1 1P P P       i 1 .              (4) 

The unknown rate matrix R can be obtained by substituting (4) into (3), and simply to 

matrix quadratic equation 

 2

0 1 2A RA R A 0   .                       (5) 

The simplified equations of (1) and (2) can be represented as 

0,0 1,0B B , 0 1P P 0
                        

(6) 

0,1 1 2B (A RA )  0 1P P 0.
                    

(7) 
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According to Bloch et al. [23], the normalization condition equation that only 

involves 
0P  and 

1P  is given by 

1(I R) 1,  0 1P 1 P 1                      (8) 

where I is the identity matrix with same size as the rate matrix R. 
We apply an iterative method by successive substitution, described in Neuts [10] to 

solve the rate matrix R from (5). Taking (6), (7) and (8) into account, the steady-state 

probability vector of 
0P  and 1P can be obtained by solving following matrix 

equation 

*
0,0 0,1

1*
1,0 1 2

B B
( ) ( ,1)

B (I R)(A RA )


 
 

 
0 1

1
P ,P 0 .

1
          

(9) 

where *(.)  indicates that the last column of the included matrix is removed to avoid 

linear dependency. 

 

2.2.3 Stability Conditions 

Definition 1. Stability of a Queueing System 

A queueing system is stable if the number of customers in the system grows with 

bound. 

 

For the stability of the queueing systems, the stability condition is described by Neuts 

[10] 

A 0 A 2A A ,P 1 < P 1
                       (10) 

where AP  is the steady-state probability vector corresponding to the conservative 

stable matrix A. 

 

The conservative stable matrix is defined to be 

0 1 2A A A A   .
                     (11) 

Solving the following system equations with normalization condition, we can obtain 

the steady-state probability AP . 
A ,AP 0

                          (12) 

n

A,i

i 0

P 1


 .

                         
(13) 

Substituting the steady-state probability AP  and the sub-matrix 0A and 2A of the 

system consisting of two, three and four service stations into (10), the exact formulae 

of stability conditions can be derived. 
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2.2.4 Exact Form of Stability Conditions and Performance Measures 
    In this section, we define the performance measures for the series configuration 

system consisting of two, three and four service stations. Performance measures 

include mean number in the system, mean number in the queue, mean waiting time in 

the system, mean waiting time in the queue and blocking probability of the service 

stations in front of the terminal station. Exact formulae of stability conditions for the 

system with equivalent and different service rates are also given in the section. 

 

 Two Service Stations 

 Stability Conditions 

The stability conditions of the system consisting of two service stations is given by 

(1) For 1 2    

1 2 1 2

2 2

1 1 2 2

( )   
 

   
.

                     
(14) 

 

(2) Special case: 1 2      

2

3
   .

                       (15) 

<proof> 

The transition matrix of the series configuration queueing system with two service 

stations can shown as 

0,0 0

2 1 0

2 1 0

2 1 0

2 1 0

2 1

B A 0 0 0 0

A A A 0 0 0

0 A A A 0 0

Q 0 0 A A A 0

0 0 0 A A A

0 0 0 0 A A

 
 
 
 
 


 
 
 
 
   . 

    The following sub-matrices show the composition of the transition matrix 

corresponding to the quasi-birth-death process for the system with two service 

stations. 

0,0 2 2

2 2

0 0

B ( ) 0

0 ( )

 
     
 

     ,

 0

0 0

A 0 0

0 0

 
  
 

  ,
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1

1 2 1 2

2 2

( ) 0 0

A ( ) 0

0 ( )

   
      
 

     ,

 
1

2 1

0 0

A 0 0

0 0 0

 
  
 
   .

 

 

Now derive the stability conditions of the system with two service stations. 

The stability condition (14) can be derived by (10) 

A 0 A 2A A ,P 1 < P 1  

We first evaluate the conservative stable matrix A 

1 1

0 1 2 2 1 2 1

2 2

0

A A A A ( )

0

  
 

        
 
    . 

Then we obtain the steady-state probability vector 
A A,0 A,1 A,2[P ,P ,P ]P  by solving  

following system equations with normalization condition 

A ,AP 0                          (16) 

2

A,i

i 0

P 1


 .

                        
(17) 

The steady-state probability vector is given by 

2 2

2 1 2 1
A 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

[ , , ]
   


           

P .

  

We get the result of the left-hand side of (10) 
2 2

2 1 2 1
A 0 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

A ,
   

   
           

P 1 =  

and the right-hand side of (10) 
2 2

1 2 1 2 1 2 1 2
A 2 2 2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

( )
A 0 .

       
  
           

P 1 =  

Finally, we obtain the stability condition of the system with two service stations 

  
1 2 1 2

2 2

1 1 2 2

( )
.

   
 

   
                          

 

For the system with same service rate, we set 1 2    
 

2

2

(2 ) 2
.

3 3

 
   

                            
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 Performance Measures 

Performance measures for the system consisting of two service stations are 

defined by 

 

(1) Mean number of customers in the system 

2 1,0,0 0,1,0 1,b,0 1,b,n 1 1,1,n 2 0,1,n 1

n 2

L (P P P ) (P P P ) n


  



       .          (18) 

(2) Mean number of customers in the queue 

2;q 1,b,n 1,1,n 0,1,n

n 1

L (P P P ) n




    .

                  
(19) 

(3) Mean waiting time in the system (Little’s Law) 

2
2

L
W 


.                               (20) 

(4) Mean waiting time in the queue (Little’s Law) 

2;q

2;q

L
W 


.                              (21) 

(5) Blocking probability of the customer in the station-1 

2;b 1,b,n

n 0

P P




 .

                           
(22) 

 

 

 

 

 Three Service Stations 

 Stability Conditions 

Following formulae shows the stability conditions for the system consisting of three 

service stations. 

(1) For 1 2 3      

3

3

N
,

D
 

                        
(23) 

where 

3 2 2 2 2 3

3 1 2 3 1 2 2 3 1 1 2 1 3 1 2 3 1 3 2 3 3N ( )( )( 3 3 ),                       

and 
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5 2 2 4 3 2 2 3

3 1 2 2 3 3 1 2 2 3 2 3 3

3 4 3 2 2 3 4

1 2 2 3 2 3 2 3 3

2 4 3 2 2 3 4 5

1 2 3 2 3 2 3 2 3 3

4 2 3 3 2 4 5 4 3 3 4 2 5

1 2 3 2 3 2 3 2 3 2 3 2 3 2 3

D ( ) (2 5 5 3 )

( 5 8 7 3 )

( 5 8 5 )

( 5 5 ) ( 2 )

               

            

            

                   .

 

(2) Special case: 1 2 3     

22

39
   .

                       
(24) 

<proof> 

The proof is shown in Appendix A1. 

 

Next, we study the behavior of the system consisting of three service stations. We 

consider taking the limit of the service rate of each service station to zero, 

respectively 

1

3

0
3

N
lim 0,

D 


                      
(25) 

and 

2

3

0
3

N
lim 0,

D 
                          (26) 

and 

3

3

0
3

N
lim 0

D 
 .                          (27) 

The results show that if one of the service rates of the service stations approaches to 

zero, the mean arrival rate also should be lowered to zero. This means that if one of 

the service stations is failed, the impact to the whole queueing system is fateful. Since 

the service rate of any service stations down to zero, the number of customers in the 

queue would growth rapidly and tend to diverge. 

 Performance Measures 

Performance measures for the system consisting of three service stations are 

defined by 

(1) Mean number of customers in the system 

3 0,0,1,0 0,1,0,0 1,0,0,0 1,b,0,0 0,1,b,0 0,0,1,1 0,1,1,0 1,0,1,0 1,1,0,0

0,0,1,n 1 0,1,1,n 2 1,0,1,n 2 1,1,1,n 3 1,b,1,n 2 0,1,b,n 1 1,1,b,n 2

n 3 n 2

1,b,b,n 1

n 1

L (P P P P P ) 2(P P P P )

(P P P P ) n (P P P ) n

(P )

 

      

 





        

        

 

 

n


 .

         

(28) 
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(2) Mean number of customers in the queue 

3;q 0,0,1,1 0,1,1,1 1,0,1,1 0,1,b,1 0,0,1,2

0,0,1,n 0,1,1,n 1,0,1,n 0,1,b,n

n 3 n 2

1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n

n 1

L (P P P P ) 2(P )

(P ) n (P P P ) n

(P P P P ) n

 

 





    

     

    

 

 .

          

(29) 

(3) Mean waiting time in the system (Little’s Law) 

3
3

L
W 


.                            (30) 

(4) Mean waiting time in the queue (Little’s Law) 

3;q

3;q

L
W 


.                           (31) 

(5) Blocking probability of the customer in the station-1 

     
3 ; b , 1 1 , b , b , n 0 , 1 , b , n 1 , 1 , b , n

n 0

P P P P




   .

                
(32) 

(6) Blocking probability of the customer in the station-2 

 
3;b,2 1,b,b,n 1,b,0,n

n 0

P P P




  .

                   
(33) 

(7) Blocking probability of the customer in the station-1 and the station-2 

3;b,12 1,b,b,n

n 0

P P




 .

                        
(34) 

 

 

 Four Service Stations 

 Stability Conditions 

Following formulae shows the stability conditions for the system consisting of three 

service stations. 

(1) For 1 2 3 4     

4

4

N
,

D
 

                        
(35) 

where the exact results of the N and the D are shown in the supplementary document 

I. 

(2) Special case: 1 2 3 4      

4024

7817
   .

                      
(36) 
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<proof> 

The proof is shown in Appendix A2. 

 

 Performance Measures 

Performance measures for the system consisting of three service stations are 

defined by 

(1) Mean number of customers in the system 

4 0,0,0,1,0 0,0,1,0,0 0,1,0,0,0 1,0,0,0,0 1,b,0,0,0 0,0,1,b,0 0,1,b,0,0 0,1,b,b,0 1,b,b,0,0

0,0,0,1,1 0,0,1,1,0 0,1,0,1,0 1,0,0,1,0 1,0,1,0,0 1,1,0,0,0 0,1,1,0,0

1,b,0,1,0 0,0,1

L (P P P P P P P P P )

2(P P P P P P P

P P

        

      

  ,b,1 0,1,1,b,0 1,1,b,0,0 0,1,b,1,0 1,0,1,b,0 1,b,1,0,0

0,0,0,1,2 0,0,1,1,1 0,1,0,1,1 1,0,0,1,1 1,0,1,1,0 1,1,0,1,0 0,1,1,1,0 1,1,1,0,0

0,0,0,1,n 1 0,0,1,1,n 2 0,1,0,1,n 2 1,0,0,1

P P P P P )

3(P P P P P P P P )

(P P P P  

    

       

    ,n 2 1,0,1,1,n 3 1,1,0,1,n 3 0,1,1,1,n 3 1,1,1,1,n 4

n 4

1,b,0,1,n 2 0,0,1,b,n 1 0,1,1,b,n 2 1,1,b,1,n 3 0,1,b,1,n 2 1,0,1,b,n 2 1,b,1,1,n 3 1,1,1,b,n 3

n 3

0,1,b,b,n 1 1,b,b,1

P P P P ) n

(P P P P P P P P ) n

(P P



    





       





    

        

 





,n 2 1,1,b,b,n 2 1,b,1,b,n 2

n 2

1,b,b,b,n 1

n 1

P P ) n

(P ) n



  









  

 



 .

         (37) 

(2) Mean number of customers in the queue 

4;q 0,0,0,1,1 0,0,1,b,1 0,0,1,1,1 0,1,0,1,1 1,0,0,1,1 1,0,1,1,1 1,1,0,1,1

1,b,0,1,1 0,1,1,1,1 0,1,1,b,1 0,1,b,b,1 0,1,b,1,1 1,0,1,b,1

0,0,0,1,2 0,0,1,1,2 0,1,0,1,2 1,0,0,1,2 0,0

L (P P P P P P P

P P P P P P )

2(P P P P P

      

     

     ,1,b,2

0,0,0,1,3 0,0,0,1,n 0,0,1,1,n 0,1,0,1,n 1,0,0,1,n 0,0,1,b,n

n 4 n 3

1,0,1,1,n 1,1,0,1,n 1,b,0,1,n 0,1,1,1,n 0,1,1,b,n 0,1,b,b,n 0,1,b,1,n 1,0,1,b,n

n 2

1,1,1,

)

3(P ) (P ) n (P P P P ) n

(P P P P P P P P ) n

(P

 

 





       

        



 



1,n 1,1,b,1,n 1,b,b,1,n 1,b,1,1,n 1,1,1,b,n 1,b,b,b,n 1,1,b,b,n 1,b,1,b,n

n 1

P P P P P P P ) n




        .

 

          

(38) 

(3) Mean waiting time in the system (Little’s Law) 

4
4

L
W 


.                            (39) 
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(4) Mean waiting time in the queue (Little’s Law) 

4;q

4;q

L
W 


.                           (40) 

 

(5) Blocking probability of the customer in the station-1 

4;b,1 0,0,1,b,n 0,1,1,b,n 0,1,b,b,n 1,0,1,b,n 1,1,1,b,n 1,b,b,b,n 1,1,b,b,n 1,b,1,b,n

n 0

P P P P P P P P P




        .  

                     
(41) 

(6) Blocking probability of the customer in the station-2 

4;b,2 1,1,b,1,n 0,1,b,1,n 0,1,b,b,n 1,b,b,1,n 1,b,b,b,n 1,1,b,b,n

n 0

P P P P P P P




      .       (42) 

(7) Blocking probability of the customer in the station-3 

4;b,3 1,b,0,1,n 1,b,1,1,n 1,b,b,1,n 1,b,b,b,n 1,b,1,b,n

n 0

P P P P P P




     .           (43) 

Proposition 2.2.1. Disposition strategies for the series configuration queueing system 

consisting of the arbitrary number of service stations with different service rates are 

different. 

(1) Series configuration queueing system with the odd number of service stations 

It is better to arrange lower service rate for the first service station compared with 

other service stations in the system in order to obtain the best operational efficiency 

for the system with the odd number of service stations. 

(2) Series configuration queueing system with the even number of service stations 

We suggest setting higher service rates for the service stations in front of the terminal 

station as possibly as we can. In this way, the mean waiting time in the system would 

be the shortest compared with other disposition strategies. 

 

2.3 Numerical Results 

Numerical experiments for the queueing system consisting of two, three and four 

service stations are provided in this section. Performance metrics of the system with 

equivalent service rates (i.e. 1 2 3 4     ) and with different service rates 

are presented. Performance measures include mean number in the system, blocking 

probabilities of the customers before the terminal service station, mean waiting time 

in the system and mean waiting time in the queue.  

Based on the results of simulation, we will suggest better disposition strategies to 

increase operation efficiency for the system. 
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2.3.1 Two Service Stations 

(1) Each Service Station with Same Service Rate 

We first present how mean number in the system and blocking probabilities of 

the station-1 change as the mean arrival rate varies   from 0.01 to 0.6. We observe 

that mean number in the system increases as   increases as shown in Figure 2. It is 

noted that the mean number of customer in the system increases rapidly as   

approaches to 0.66. This numerical result verifies the stability condition derived in the 

Section 2.2.4. The trends of blocking probabilities also increase and finally approach 

to about 0.33. as shown in Figure 3. 

 

Figure 2. Mean number in the system    Figure 3. Blocking probability 

(two service stations)                 (two service stations) 

 

(2) Each Service Station with Different Service Rates 

Next, the impact of different rates causing distinct performances for the series 

configuration system is investigated.  We set 1 22, 1     and 1 21, 2    , then 

vary the mean arrival rate   from 0.01 to 0.60. It is noted that if we dispose higher 

service rate for the station-1, the mean waiting time in the system is less than that of 

setting higher service rate for the station-2. Since setting higher service rate for the 

station-1 would advance the opportunity for the customers waiting in the queue to 

enter the first service station, it can reduce mean waiting time in the queue for 

customers, as show in Figure 4 and Figure 5, respectively. It is suggested that setting 

higher service rate for the station-1 of the system with two service stations in order to 

maintain higher operational efficiency when the service rate of each service station is 

different. 
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Figure 4. Mean waiting time            Figure 5. Mean waiting time 

in the system (two service stations)       in the queue (two service stations) 

 
2.3.2 Three Service Stations 

(1) Each Service Station with Same Service Rate 

    The mean number in the system and blocking probability of the station-1 and the 

station-2 as a function of mean arrival rate of the system consisting of three service 

stations are shown in Figure 6 and Figure 7, respectively. The numerical results of 

mean number in the system are consistent with the exact results of stability conditions 

we derived in the section 2.2.4 which shows the upper bound of the stability condition 

approach to 
22

39
( 0.564 ). In addition, it is noted that the blocking probability of the 

station-1 is higher than that of the station-2. The blocking probability of the station-1 

and the station-2 happening simultaneously is relatively low in this case. 

 

Figure 6. Mean number in the system    Figure 7. Blocking probability 

(three service stations)                (three service stations) 

 

(2) Disposing the Service Rates of Two Service Stations 

    In the case of different service rates, we assume that we are able to control the 

service rates of two service stations and the service rates of one service station at one 
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    Intuitively, it is better to set higher service rates for the service stations before the 

terminal service station (i.e. the last service station of the series configuration 

queueing system) according to the results of the system with two service stations. In 

the case of controlling service rates of two service stations, we set 

1 2 32, 2, 1      and 1 2 31, 2, 2       and 1 2 32, 1, 2      , then vary 

the mean arrival rate   from 0.01 to 0.75. The numerical results suggest that setting 

higher service rates for the station-2 and the station-3 result in best operational 

efficiency, as shown in Figure 8. Since setting lower service rate for the station-1 

would cause less waiting in the queue, it makes easier for the customer to enter 

service stations to receive their services. 

 

    It is observed that the mean waiting time in the system of the case 

1 2 32, 2, 1       is higher than that of the case 1 2 32, 1, 2       when the 

mean arrival rate is lower than 0.56, as show in Figure 9. This result reveals the fact 

that when the mean arrival rate is lower than 0.56, it takes longer time to complete 

services in the service stations for the case 1 2 32, 2, 1      , since the mean 

waiting time in the queue is almost the same for both cases. When the mean arrival is 

greater than 0.56, the mean waiting time in the queue in the case of 

1 2 32, 1, 2       becomes relatively longer than that of the case 

1 2 32, 2, 1      . We finally observed that the mean waiting time in the system in 

the case of 1 2 32, 1, 2       is larger than that of the case 1 2 32, 2, 1      . 

 

We suggest 1 2 31, 2, 2       as the best disposition strategy, when we are 

able to control service rates of two service stations for the system. 

 

Figure 8. Mean waiting time           Figure 9. Blocking probability 

in the system (three stations)           (three stations) 
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(2) Disposing the Service Sate of a Service Station 

Next, we study the case of controlling service rate of one service station, we set 

1 2 32, 1, 1      and 1 2 31, 2, 1       and 1 2 31, 1, 2      , then vary the 

mean arrival rate   from 0.01 to 0.6. The plots are presented in Figure 10, which 

shows that in the case of 1 2 32, 1, 1      , the mean waiting time is the greatest 

compared with other two cases. In this disposition strategy, the customers in the queue 

are difficult to enter the service stations, because of the high blocking probability of 

the station-1.  

    It is noted that the mean waiting time in the system of the case 

1 2 31, 1, 2       is lower than that of the case 1 2 31, 2, 1       when the 

mean arrival rate is lower than 0.46. Since the mean waiting time in the queue is 

almost the same for both cases, we discover that the case 1 2 31, 2, 1       would 

result in longer time to complete the services in the service stations, as shown in 

Figure 11. The waiting time in the queue in the case of 1 2 31, 1, 2       becomes 

relatively longer than that of the case 1 2 31, 2, 1      , when the mean arrival is 

greater than 0.46. It is observed that the mean waiting time in the system in the case 

of 1 2 31, 1, 2       is larger than that of the case 1 2 31, 2, 1      . The 

setting of lower service rates in the station-1 and the station-2 makes customers take 

longer waiting time in the queue.  

It is suggested that set 1 2 31, 1, 2       as the best disposition strategy 

when the mean arrival rate is lower than 0.46. Conversely, the case of 

1 2 31, 2, 1       is a relatively better disposition strategy when the mean arrival 

rate becomes larger than 0.46 in the case that we can control only one of the service 

rates for the system consisting of three service stations. 

 

Figure 10. Mean waiting time           Figure 11. Blocking probability 

in the system (three service stations)      (three service stations) 
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2.3.3 Four Service Stations 

(1) Each Service Station with Same Service Rate 

    The increasing trends of mean number in the system and blocking probabilities 

as a function of mean arrival rate   is studied. Figure 12. presents the mean number 

in the system for the system consisting of four service stations. It is observed that the 

upper bound of the stability condition of the mean number in the system approaches 

to 
4024

7817
( 0.514 ), which proves the consistence of the exact results derived in the 

section 2.2.4. Blocking probability of the station-1, the station-2 and the station-3 as a 

function of mean arrival rate of the system consisting of four service stations is shown 

in Figure 13. Furthermore, it is investigated that the blocking probability of the 

station-1 is higher than that of the station-2 and of the station-3 in this case. 

 

Figure 12. Mean waiting time          Figure 13. Blocking probability 

in the system (four service stations)      (four service stations) 

 

 

(2) Disposing the Service Rates of Three Service Stations 

    In the case of different service rates, we study the conditions that we can 

concurrently control the service rates of three service stations and the service rate of 

only one service station for the system consisting of four service stations. 

    First, we investigate the cases that we are able to control three service rates of the 

service stations in this system. We set 1 2 3 42, 2, 2, 1        and 

1 2 3 42, 2, 1, 2         and 1 2 3 42, 1, 2, 2        and

1 2 3 41, 2, 2, 2        , then vary the mean arrival rate   from 0.01 to 0.7. It is 

suggested to set higher service rates for the station-1, the station-2 and the station-3 in 

order to obtain the best operational efficiency for the system, as shown in Figure 14. 

This best disposition strategy for the system consisting of four service stations is 

accordant with the result of the system comprising two service stations indicated in 

previous numerical simulations. 
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    Since the mean waiting time in the system of the case 

1 2 3 42, 1, 2, 2         is always higher than that of the case 

1 2 3 42, 2, 1, 2         for all mean arrival rates. On the other hand, we 

compare the cases between 1 2 3 41, 2, 2, 2         and 

1 2 3 42, 2, 1, 2        . It is investigated that the mean waiting time of the 

system of the case 1 2 3 41, 2, 2, 2         is higher than that of the case 

1 2 3 42, 2, 1, 2         when mean arrival rate is lower than 0.65. This result 

shows that when the mean arrival rate is lower than 0.65, the case 

1 2 3 41, 2, 2, 2         causes longer time for the customers waiting in the 

queue as show in Figure 15. The mean waiting time in the queue of the case 

1 2 3 41, 2, 2, 2         becomes shorter than that of the case 

1 2 3 42, 2, 1, 2         when the mean arrival rate is greater than 0.65. 

We suggest the case 1 2 3 42, 2, 2, 1         as the best disposition strategy, 

when we are able to control service rates of three service stations for the system. 

 

Figure 14. Mean waiting time          Figure 15. Mean waiting time 

in the system (four service stations)      in the queue (four service stations) 

 

(3) Disposing the Service Rate of a Service Station 

Next, we study the case of controlling service rate of one service station, we set 
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1 2 3 41, 1, 2, 1        and 1 2 3 41, 1, 1, 2        then vary the mean arrival 

rate   from 0.01 to 0.5. It is investigated that the mean waiting time is the greatest in 

the case of 1 2 3 41, 1, 1, 2        compared with other three cases as shown in 

Figure 16. This disposition strategy makes the customers in the queue difficult to 

enter the service stations, since the mean waiting time in the queue is higher than 

other three cases. 
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1 2 3 41, 1, 2, 1        . We compare the case 1 2 3 42, 1, 1, 1         with 

the case 1 2 3 41, 2, 1, 1         for discussing the disposition strategies. We 

consider that the mean waiting time in the system of the case 

1 2 3 42, 1, 1, 1         is lower than that of the case 1 2 3 41, 2, 1, 1         

when the mean arrival rate is lower than 0.42. It is noted the mean waiting time in the 

queue is almost the same for both cases, so setting higher service rate for the station-1 

is better to make customer to enter the service stations when mean arrival rate is lower 

than 0.42, as shown in Figure 17. When the mean arrival is greater than 0.42, it is 

observed that the mean waiting time in the system in the case of 

1 2 3 42, 1, 1, 1         is larger than that of the case 1 2 3 41, 2, 1, 1        . 

While the increasing of the mean arrival rate, the setting of lower service rates in the 

station-1 and the station-2 and the station-3 makes customers take longer waiting time 

in the queue. 

We suggest that setting 1 2 3 32, 1, 1, 1         as the best disposition 

strategy when the mean arrival rate is lower than 0.42. On the other hand, for the case 

that we can control only one of the service rates for the system consisting of four 

service stations, we observe that case of 1 2 3 41, 2, 1, 1         is a relatively 

better disposition strategy compared with the case 1 2 3 32, 1, 1, 1         when 

the mean arrival rate becomes larger than 0.42. 

 

 

Figure 16. Mean waiting time          Figure 17. Mean waiting time 

in the system (four service stations)      in the queue (four service stations) 
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2.4 Summary and Discusstions 

    In this chapter, the steady-state probabilities of the series configuration 

queueing system consisting of two, three and four service stations with different 

service rates are successfully evaluated by matrix-geometric method. Therefore, 

matrix-geometric method is a powerful tool to study queueing systems with complex 

quasi-birth-death process. We further derived the exact form of stability conditions 

which is important for studying steady-state analysis for the series configuration 

systems. Numerical results of performance measures based on the evaluated 

steady-state probabilities are provided in order to investigate more characteristics of 

the systems. Disposition strategies to increase the operational efficiency of the series 

configuration queueing system are proposed through series numerical simulations. 

    Intuitively, arranging higher service rate for the service stations in front of the 

terminal station can be applied to the series configuration queueing system consisting 

of more than 2 service stations. Surprisingly, the simulations presented the opposite 

results on the intuitions. According to our simulations results, we suggest that a better 

disposition strategy for the system consisting of the even number of service stations 

would be increasing the service rates for the first service station and those stations 

near the terminal station in order to make the series configuration system work more 

efficiently. On the other hand, setting lower service rate for the first service station 

compared with other service stations in the system in order to obtain the best 

operational efficiency for the system with the odd number of service stations.  
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CHAPTER 3 

TRANSIENT ANALYSIS OF A SERIES CONFIGURATION QUEUEING 

SYSTEM WITH BLOCKING PHENOMENA 

 

3.1 Preface 

Traditionally, most of the research on queueing systems focused on steady-state 

analysis, because it is relatively easier to evaluate steady-state probabilities and derive 

its related stability conditions based on the information of structure generator matrix. 

Although steady-state analysis can demonstrate important properties for the queueing 

system, it still lack the information of the system evolving from its initial conditions 

In addition, it is always need long time for a dynamic system turning into steady-state. 

Therefore, we try to conduct the transient analysis and study the dynamic behaviors 

for the series configuration queueing system consisting of two service stations in this 

chapter. 

    The series configurations system consisting of two service stations is shown in 

Figure 1. The quasi-birth-death process of the system with two service stations is 

shown in Figure 2. Transient state probabilities are estimated by Runge-Kutta method 

to solve the master equation of the system. Dynamic performance measures evolving 

with time including mean number in the system, mean waiting time in the system, 

blocking probability of the station-1 and rejecting probability of the system are 

evaluated through transient probabilities. For the system with large capacity, we 

discover that some of the performance measures are convergent to the results of our 

previous studies on steady-state analysis of the system. Simulation results reveal that 

there is still difference of operational efficiency of the system by setting different 

service rates for the service stations. We propose better disposition strategies for the 

system working in higher performance by numerical results. 

 

 

Figure 1. Series configuration queueing system with two service stations 
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                                            

 

2      1               2      1               2  

                                            
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                                            

 

 

Figure 2. Quasi-birth-death process of the system with two service stations 

  

The rest of the content in this chapter is organized as follows. The summary of 

notations used in our model and problem description are introduced in the beginning 

of next section. Formulation of dynamic behavior of the system is also described in 

the Section 3.2. Numerical results of the transient analysis of the system and 

disposition strategies are presented in Section 3.3. Finally, we conclude with 

discussions of our works and indicate possible directions for future research in section 

4. 

3.2 Modeling Framework 

3.2.1 Problem Formulation and Notations 
In our analysis, a series configuration queueing system consisting of two service 

stations operates independently and simultaneously. We assume Poisson arrival 

process with mean arrival rate  . The time to serve a customer in each service station 

obeys exponential distribution with mean service time 
1


. Customers should enter 

each service station to receive services in order. After complete the service in each 

server, the customer can leave the system. The existence of blocking phenomena after 

the service in the station-1 is because there is no queue between service stations. This 

phenomenon happen in the condition that a customer has completed the service in the 

station-1, but another customer is still receiving service in the station-2. In front of the 

first service station, there is a queue with finite capacity. Each service station can 

serve a customer at a time and the service time is independent of the number of 

customers. This system obeys the first come first serve (FCFS) discipline. 

The notations 
1  and 

2  denote the service rate of the station-1 and the 

station-2, respectively. Moreover, we use 
1 2 3n ,n ,nP (t)  to denote the transient 

0,0,0 0,1,0 0,1,1 

1,0,0 1,1,0 1,1,1 

1,b,0 1,b,1 1,b,2 
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probability 
1 2 3n ,n ,nP (t)  of 1n customer in the station-2 and 2n customer in the 

station-1 and 3n  customer in the queue. For instance, the steady-state probability 

1,b,5P (t)
 
means that there is a customer who is blocked in the station-1, since the 

customer in the station-2 is still receiving the service. There are five customers 

waiting in the queue. 

 
3.2.2 Master Equations 

The series configuration queueing system consisting of two service stations is 

modeled by continuous-time Markov process. The capacity of the system is supposed 

to be equal or larger than 5 (i.e. K 5 ). According to the quasi-birth-and-death 

process, the dynamic behavior of the system can be described as following system of 

differential equations: 

0,0,0

0,0,0 2 1,0,0

dP (t)
P (t) P (t),

dt
  

                   
(1) 

1,0,0

2 1,0,0 2 1,b,0 1 0,1,0

dP (t)
( )P (t) P (t) P (t),

dt
     

           
(2) 

1,b,0

2 1,b,0 1 1,1,0

dP (t)
( )P (t) P (t),

dt
    

                (3)

0,1,i

1 0,1,i 0,0,i 2 1,1,i

dP (t)
( )P (t) P (t) P (t),

dt
       i 0,1,2,...,K 4  .    (4) 

1,1,i

1 2 1,1,i 1,0,i 2 1,b,i 1 1 0,1,i 1

dP (t)
( )P (t) P (t) P (t) P (t),

dt
        

       

i 0,1,2,...,K 4  .    (5) 

1,b,i 1

2 1,b,i 1 1,b,i 1 1,1,i 1

dP (t)
( )P (t) P (t) P (t),

dt



        i 0,1,2,...,K 3  .   (6) 

0,1,K 3

1 0,1,K 3 0,1,K 4 2 1,1,K 3

dP (t)
( )P (t) P (t) P (t),

dt



                (7) 

1,1,K 3

1 2 1,1,K 3 1,1,K 4 2 1,b,K 2 1 0,1,K 2

dP (t)
( )P (t) P (t) P (t) P (t),

dt



          
  (8) 

1,b,K 2

2 1,b,K 2 1,b,K 3 1 1,1,K 2

dP (t)
P (t) P (t) P (t),

dt



                 (9) 

0,1,K 2

1 0,1,K 2 0,1,K 3 2 1,1,K 2

dP (t)
( )P (t) P (t) P (t),

dt



                (10) 

1,1,K 2

1 2 1,1,K 2 1,1,K 3 1 0,1,K 1

dP (t)
( )P (t) P (t) P (t),

dt



               (11) 

1,1,K 1

1 1,1,K 1 0,1,K 2

dP (t)
P (t) P (t)

dt



    .                (12) 
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The normalization condition of the system at each time step t is 

K 1 K 2 K 2

0,0,0 1,0,0 0,1,i 1,1,i 1,b,i

i 0 i 0 i 0

P (t) P (t) P (t) P (t) P (t) 1
  

  

       .         (13) 

Runge-Kutta numerical method is applied to evaluate transient probabilities of the 

system. Meanwhile, we assume that the system is empty at the beginning of the 

system state. This means that the initial conditions of the system are given by 

K 1 K 2 K 2

0,0,0 1,0,0 0,1,i 1,1,i 1,b,i

i 0 i 0 i 0

P (0) 1; P (0) P (0) P (0) P (0) 0
  

  

       .      (14) 

Although there are no concerns about the stability conditions of the system in 

transient analysis, we still cite the stability conditions from our previous works Tsai 

[26-28] here as indications for the cases of numerical results in Section 3.3. 

 

Theorem 1. The stability conditions of the series configuration queueing system 

consisting of two service stations 

(1) For 1 2    

2

1 1 2 2

2 2

1 1 2 2

( )   
 

   
.

                     
 

(2) Special case: 1 2      

2

3
   .

                        
 

 

3.2.3 Performance Measures 
In this section, we define performance measures for the series configuration 

system consisting of two service stations. Mean number in the system, mean number 

in the queue, mean waiting time in the system, mean waiting time in the queue, 

blocking probability of the station-1 and rejecting probability of the system are 

described by transient probabilities for further studies of dynamic behavior of the 

system through numerical analysis. 

 Performance measures 

Performance measures for the system consisting of two service stations are 

defined by 

 

 

(1) Mean number of customers in the system 

1,0,0 0,1,0 1,b,0

K 1

1,b,n 1 1,1,n 2 0,1,n 1 1,1,K 2

n 2

L(t) [P (t) P (t) P (t)]

[P (t) P (t) P (t)] n P (t) K


   



  

      .
        (15) 
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(2) Mean number of customers in the queue 

K 2

q 1,b,n 1,1,n 0,1,n

n 1

L (t) [P (t) P (t) P (t)] n




    .

            
(16) 

(3) Blocking probability of the customer in the station-1 

b 1,b,n

n 0

P (t) P (t)




 .

                       
(17) 

(4) Rejecting probability of the system 

r 1,b,K 2 1,1,K 2 0,1,K 1P (t) P (t) P (t) P (t)     .

             
(18) 

(5) Mean waiting time in the system (Little’s Law) 

eff

L(t)
W(t)

(t)



.                           (19) 

where eff r(t) [1 P (t)]     is the effective mean arrival rate. 

(6) Mean waiting time in the queue (Little’s Law) 

q

q

eff

L (t)
W (t)

(t)



.                          (20) 

 

3.3 Numerical Results 

In this section, numerical experiments for the queueing system consisting of two 

service stations are performed. Both performance metrics of the system with 

equivalent service rates (i.e. 1 2     ) and different service rates are presented to 

study the dynamic behavior of the system. We proposed the disposition strategies 

based on the numerical results to make the system work in a better operational 

efficient way. The relaxation time and its fitting equations for the meaning waiting 

time in the system is provided to investigate the dynamic properties of the system. 

 
3.3.1 Each Service Station with Same Service Rate 

We first study the effects of the capacity of the queue on decay rate of different 

performance measures. We fix 1 2 1    , 0.666   and set K 200  and 

K 50 . It is investigated how mean number in the system, mean waiting time in the 

system, blocking probability and rejecting probability of the system evolve with time 

when the finite capacity of the queue is 200, as shown in Figure 3 ~ Figure 6. It is 

observed that the decay speed of each performance converges to the steady-states is 

pretty slow, because it almost takes 50000 (time steps) from the transition states to 
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become steady states. On the other hand, we discover that the speed of convergence is 

faster in the cases that we set lower capacity (K = 50) for the system, as shown in 

Figure 7 ~ Figure 10. It is noted that the steady-state of blocking probability in both 

cases approach to 0.33. This result is consistent with our simulations in previous work 

Tsai [26-28]. Furthermore, it is noted that the difference of mean waiting time in the 

system is not large for each case with different mean arrival rate in the early stage of 

transient states, as shown in Figure 12. The blocking probabilities still approach 0.33 

in all cases when the transient states become steady, as shown in Figure 13. 

 

Figure 3. Mean number in the system    Figure 4. Mean waiting time in the 

(K = 200)                          system (K = 200) 

 

Figure 5. Blocking probability          Figure 6. Rejecting probability 

(K = 200)                          (K = 200) 
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Figure 7. Mean number in the system   Figure 8. Mean waiting time in the 

(K = 50)                          system (K = 50) 

 

Figure 9. Blocking probability          Figure 10. Rejecting probability 

(K = 50)                           (K = 50) 

We continue to study the effects of various mean arrival rates on performance 

measures of the system. We set 1 2 1    , K 50  and varies mean arrival rate 

from 1~5. It can be easily observed that the convergent speed of each performance 

measure increases as mean arrival rate increases, as shown in Figure 11 ~ Figure 14., 

respectively. 

 

Figure 11. Mean number in the system   Figure 12. Mean waiting time in the 

    (K = 50)                           system (K = 50) 
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Figure 13. Blocking probability         Figure 14. Rejecting probability 

(K = 50)                           (K = 50) 

 

3.3.2 Each Service Station with Different Service Rates 
Next, we study the impact of setting different service rates for the service 

stations on operational efficiency of the system (i.e. mean waiting time in the system), 

and suggest disposition strategy for the system operating more efficiently. The 

capacity setting in the following cases is K 15 . 

The following cases are considered: 

Case 1 

We choose 1 21, 2     and 1 22, 1    and set 0.2  . 

Case 2 

We choose 1 21, 2     and 1 22, 1    and set 0.4  . 

Case 3 

We choose 1 21, 2     and 1 22, 1    and set 0.66  . 

Case 4 

We choose 1 21, 2     and 1 22, 1    and set 0.7  . 

Case 5 

We choose 1 21, 2     and 1 22, 1    and set 0.74  . 

Case 6 

We choose 1 21, 2     and 1 22, 1    and set 0.78  . 

As time goes by, we discover that disposing different service rate for the service 

stations causes different operational efficiency of the system, as shown in Figure 15. ~ 

Figure 20., respectively. It can also be observed that the speed of decay to the 

steady-state of the mean waiting time in the system decreases as mean arrival rate 

increases. We finally suggest that disposing higher service rate for the station-1 in 

order to keep the high performance operations of the series configuration queueing 

system consisting of two service stations. Transient analysis shows the same pattern 

of the disposition strategy as our previous works on steady-state analysis Tsai [26-28]. 
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Figure 15. Mean waiting time in the     Figure 16. Mean waiting time in the 

system (K = 15)                     system (K = 15) 

 

Figure 17. Mean waiting time in the     Figure 18. Mean waiting time in the      

system (K = 15)                     system (K = 15) 

 

Figure 19. Mean waiting time in the     Figure 20. Mean waiting time in the 

system (K = 15)                     system (K = 15) 

 
3.3.3 Analysis of Relaxation Time 
   In this section, we analyze the relaxation time of transient states of the system. 

Here, the relaxation time is denoted as R. It is noted that the relaxation time of the 

system in disposition strategy 1 22, 1     is longer than that of the 1 21, 2     

as show in Figure 21~ Figure 28. The relaxation time is increasing significantly as 
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mean arrival rate   increases. The dynamic properties of the system with different 

combination of parameters can be described by fitting equations in each case. 

    

Figure 21. Mean waiting time in the    Figure 22. Mean waiting time in the 

system 1 20.2, 2, 1)               system 1 20.2, 1, 2)       

  

Figure 23. Mean waiting time in the    Figure 24. Mean waiting time in the 

system 1 20.4, 2, 1)               system 1 20.4, 1, 2)       

    

Figure 25. Mean waiting time in the    Figure 26. Mean waiting time in the 

system 1 20.66, 2, 1)              system 1 20.66, 1, 2)       
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Figure 27. Mean waiting time in the    Figure 28. Mean waiting time in the 

system 1 20.7, 2, 1)               system 1 20.7, 1, 2)       

 

3.4 Summary and Discusstions 

    We successfully solved the transient probabilities of the series configuration 

queueing system consisting of two service stations by Runge-Kutta method. We also 

calculated important transient performance measures, such as mean number in the 

system, mean waiting time in the system, blocking probability and rejecting 

probability of the system to investigate the dynamic behavior of the system. Moreover, 

the convergent speed of each performance measure of the system depending on the 

capacity of the system and the mean arrival rate is investigated. Relaxation time and 

the fitting equation are provided to study the dynamic properties of the system. 

We suggest setting higher service rate for the station-1 of the series configuration 

queueing system with two service stations in order to keep better operational 

efficiency for the system. This consideration is consistent with the steady-state 

analysis for the same system in Chapter 2. We have also shown the same results of 

disposition strategies for the transient analysis of the system in this Chapter. 
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CHAPTER4 

PERFORMANCE ANALYSIS OF SERIES CONFIGURATION SYSTEM 

SUBJECT TO BREAKDOWNS AND REPAIRS 

 

4.1 Preface 

The breakdowns of machines happen frequently in real applications. Recently, 

the big data analytics has been applied to detect the failures of machines in factory 

due to development of storage technology and computational platforms. It is possible 

to detect related failure information before the failure of machines by applying 

machine learning techniques. In this way, we can maintain the machines more 

effectively and save other unnecessary costs. In this Chapter, we try to analyze series 

configuration subject to breakdowns and repairs. The theoretical results provide 

insights to know the characteristics of the system, so that the operating staffs can 

maintain the system suitably by means of controlling specific system parameters of 

the system, such as mean service rate, breakdown rate and repair rate. 

The quasi-birth-death process of the queueing system subject to breakdowns and 

repairs is shown in Figure 1. It is noted that the system works in three possible major 

working states which include working states of servers without breakdowns, working 

states of servers with breakdowns of station-1 and working states of servers with 

breakdowns of station-2. By matrix-geometric method, we can conduct the 

steady-state analysis for the system and evaluate the failure probability of the 

station-1, station-2 and reliable probability of the system corresponding to different 

combinations of system parameters. Sensitivity analysis for the system with various 

service rates, breakdown rates and repair rates are also demonstrated. We further 

propose disposition strategies by disposing system parameters to make the system 

work more efficiently and more reliably based on the information of simulations. 

 Problem Formulation 

In our analysis, the queueing system consists of two independent service stations 

placed in series configuration and operates simultaneously with server breakdowns. 

For the simplicity of modeling work, we assume that the service stations cannot 

become breakdown simultaneously in this study. Poisson arrival process with mean 

arrival rate   is assumed. In each station, the average time to serve a customer 

follows exponential distribution with mean 
1


. The service stations can break down 

and the breakdown times are exponentially distributed with breakdown rate  . 

Concurrently, the repair time is assumed to be exponential with mean repair time 
1


. 

A complete service is defined as customers passing through all of the service stations 
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in order and finishes the final service in the terminal station. There is no queue 

between service stations. An infinite capacity queue in front of the first station is 

allowed. Each service station can only serve a customer at a time while the service 

rate is independent of the number of customers. The service of the system obeys the 

first come first serve (FCFS) discipline. 

 

4.1.1 Contributions and Outline 
Major theoretical results in this chapter including 1) constructing steady-state 

structure generator matrix equations of the queueing system with two service stations, 

2) deriving stability conditions consist of system parameters in exact form, 3) 

evaluating the steady-state probabilities with different conditions of system 

parameters, 4) presenting insights through numerical simulations to propose 

disposition strategies for the system working more smartly and efficiently. Practically, 

the practitioners can benefit from our theoretical results by disposing finite resources 

and adjusting related parameters based on the information to increase the operational 

efficiency of the system in applications. Furthermore performance measures of the 

system can be quantitatively described by our model, such as mean number in the 

system, mean waiting time in the system, blocking probability of the station-1, 

reliable probability of the system, failure probability of each service station. 

    The rest of the content in this Chapter is organized as follows. First, we 

summarize notations used in our model in the beginning of next section. Section 2. 

includes details of matrix-geometric method applied to evaluate steady-state 

probabilities of the system. Furthermore, the stability conditions and major 

performance metrics are also included in this section. In section 3., we perform 

numerical experiments and propose disposition strategies for the system through case 

studies. Finally, conclusions and discussions of our works and indications of possible 

directions for future research are included in Section 4. 

4.2. Modeling Framework 

4.2.1 Notations 
    In this section, the notations used in our model framework are introduced. In 

steady-state, the following notations are used. 

 , mean arrival rate of the customers 

1 , mean service rate of the station-1 

2 , mean service rate of the station-2 

1 , mean failure rate of the station-1 

2 , mean failure rate of the station-2 

1 , mean repair rate of the station-1 

2 , mean repair rate of the station-2 
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1 2, 30; ,P n n n ,
 steady-state probability in working states (both service stations work 

concurrently). 
1 2, 31; ,P n n n ,

 steady-state probability in failure states of the station-1 (only 

station-2 works ), 
1 2, 32; ,P n n n ,

 steady-state probability in failure states of the station-2 

(only station-1 works), Note that the notation 
1 2, 30; ,P n n n

 is used to denote the 

steady-state probability in working states 
1 2, 30; ,P n n n

 of 
1n customer in the station-2 and 

2n customer in the station-1 and 3n  customer in the queue. For instance, the notation 

,1;1 ,7P b
 of steady-state probability means that in failure states of the station-1, there is 

a customer receiving the service in the station-2 and a customer who is blocked in the 

station-1 by the customer in the station-2 and seven customers waiting to secure 

services in the queue. 
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Figure 1. State transition diagram of the queueing system subject to breakdowns and 

repairs 
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4.2.2 Matrix-Geometric Method 
    Let [ , , ,...] 0 1 2P P P P  denote as steady-state probability vector corresponding 

to the transition matrix Q. The steady-state probability vector contains steady-state 

probabilities of the quasi-death-birth process in working states, failure states of the 

station-1 and the station-2. The compositions of the sub-matrices of the transition 

matrix Q for the system are shown in Appendix A. The steady-state equations of the 

quasi-birth-death process in vector form with the transition matrix can be written as 

QP = 0 , while 1P1 =  is the normalization condition of the steady-state probability. 

Then, the global steady-state equations of the quasi-birth-death process can be 

described as 

0,0 1,0B B , 0 1P P 0
                        

(1) 

0,1 1 2 2B A A ,  0 1P P P 0
                      

(2) 

i 0 i 1 1 i 2 2A A A ,   P P P 0     i 1 .              (3) 

There exists a rate matrix R, and follows the recurrence relations 

i 1R R , i i-1 1P P P       i 1 .              (4) 

We substitute (4) into (3), and simplify to quadratic matrix equation in order to solve 

the rate matrix R 

 2

0 1 2A RA R A 0   .                       (5) 

The simplified equations of (1) and (2) can be represented as 

0,0 1,0B B , 0 1P P 0
                        

(6) 

0,1 1 2B (A RA )  0 1P P 0.
                    

(7) 

The normalization condition equation that only involves 0P  and 1P  can be referred 

in Bloch et al. [23] 

1(I R) 1,  0 1P 1 P 1                       (8) 

where I is the identity matrix with same size as the rate matrix R. 
The rate matrix R is solved by logarithmic reduction method, described in Bloch et al. 

[23] from (5). Then, taking (6), (7) and (8) into together, the steady-state probability 

vector of 0P  and 1P can be obtained by solving following matrix equation 

*
0,0 0,1

1*
1,0 1 2

B B
( ) ( ,1)

B (I R)(A RA )


 
 

 
0 1

1
P ,P 0 .

1
          

(9) 
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where *(.)  indicates that the last column of the included matrix is removed to avoid 

linear dependency. 

 

4.2.3 Stability Conditions 
According to Neuts [10], the stability conditions of the system can be derived from 

following inequality: 

A 0 A 2A A ,P 1 < P 1                        (10) 

where AP  is the steady-state probability vector corresponding to the conservative 

stable matrix A. 

The conservative stable matrix is defined to be 

0 1 2A A A A   .                      
(11) 

We can obtain the steady-state probability AP by solving the following system 

equations with normalization condition 
A ,AP 0                           (12) 

8

A,i

i 0

P 1


 .

                         
(13) 

 
4.2.4 Performance Measures and Exact Results 
    In this section, we define the performance measures for the series configuration 

system consisting of two service stations subject to breakdowns and repairs. 

Performance measures include mean number in the system, mean number in the 

queue, mean waiting time in the system, mean waiting time in the queue and blocking 

probability of the station-1, failure probability of each service station and reliable 

probability of the system. Exact formulae of stability conditions for the system with 

special and general case are also given in the section. 

 

 Stability Conditions 

Theorem 1. The following inequalities are necessary and sufficient conditions for the 

system to be stable. 

(1) Special case: 1 2     , 1 2     , and 1 2   , 

2

2 2

2 ( + + )

(2 + )(3 +3 +2 +6 +3 )

   
 

      
.

             
(14) 

 

(2) General case: 1 2   , 1 2   , 1 2   , 

N
,

D
 

                        
(15) 

where 
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 Performance Measures 

Performance measures for the system consisting of two service stations subject 

to breakdowns and repairs are defined by 

(1) Mean number of customers in the system 

0;1,0,0 0;0,1,0 0;1,b,0 0;1,b,n 1 0;1,1,n 2 0;0,1,n 1

n 2

1;1,0,0 1;0,1,0 1;1,b,0 1;1,b,n 1 1;1,1,n 2 1;0,1,n 1

n 2

2;1,0,0 2;0,1,0 2;1,b,0 2;1,b,n 1 2;1,1,n 2 2;0

L (P P P ) (P P P ) n

(P P P ) (P P P ) n

(P P P ) (P P P



  





  



 

      

      

     





,1,n 1

n 2

) n






 .

       (16) 

(2) Mean number of customers in the queue 

q 0;1,b,n 0;1,1,n 0;0,1,n 1;1,b,n 1;1,1,n 1;0,1,n

n 1 n 1

2;1,b,n 2;1,1,n 2;0,1,n

n 1

L (P P P ) n (P P P ) n

(P P P ) n

 

 





       

   

 

 .        (17) 
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(3) Mean waiting time in the system (Little’s Law) 

L
W 


.                               (18) 

(4) Mean waiting time in the queue (Little’s Law) 

q

q

L
W 


.                              (19) 

(5) Blocking probability of the customer in the station-1 

b 0;1,b,n 1;1,b,n 2;1,b,n

n 0 n 0 n 0

P P + P P
  

  

    .

                
(20) 

(6) Failure probability of the station-1 

f ,1 1;0,0,0 1;1,0,0 1;1,b,0 1;0,1,n 1 1;1,1,n 1 1;1,b,n

n 1

P (P P P ) P P P


 



    + + .       (21)

                       
 

(7) Failure probability of the station-2 

f ,2 2;0,0,0 2;1,0,0 2;1,b,0 2;0,1,n 1 2;1,1,n 1 2;1,b,n

n 1

P (P P P ) P P P


 



    + + .      (22)

  

(8) Reliable probability of the system 

r 0;0,0,0 0;1,0,0 0;1,b,0 0;0,1,n 1 0;1,1,n 1 0;1,b,n

n 1

f ,1 f ,2

P (P P P ) P P P

= 1- (P + P )



 



    + +

.       
(23) 

 

4.3. Numerical Results 

In this section, we perform numerical experiments for the queueing system 

consisting of two service stations subject to breakdowns and repairs to study the 

effects of various parameters on mean waiting time in the system, blocking probability, 

failure probability and reliable probability. In addition, sensitivity analysis clearly 

shows how performance measures vary with specific parameters including service 

rates, breakdown rates and repair rates. Disposition strategies and methods of 

controlling parameters to increase operational efficiency for the system according to 

the results of numerical simulation are proposed. 
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4.3.1 Validation of Stability Conditions by Numerical Results 
First, the consistency of stability conditions is examined by numerical results. 

We fix 
1 2 1    , 1 2 1    , 1 2 1   , and present the trends of mean 

number in the system as the mean arrival rate   varies from 0.01 to 0.352, as shown 

in Figure 2. It is observed that mean number in the system increases as   increases. 

The bound of the stability condition in this case (
6

0.352
17

 ) validates the exact 

results derived in section 4.2.4. It is noted that the blocking probability of the 

station-1 increases as the values of   increases and the maximum value of the 

blocking probability of the station-1 is near 0.37, as shown in Figure 3. 

 

Figure 2. Mean number in the system   Figure 3. Blocking probability of the 

station-1 

 

4.3.2 Sensitivity Analysis of Performance Measures 
In this section, the impact of mean failure rate of service stations in working 

states   on the mean waiting time in the system and blocking probability is studied. 

We set 1 2 1   , 1 2 0.8    with various numbers of mean failure rate which 

increases from 0.2 to 0.6 and vary the mean arrival rate   from 0.01 to 0.35. It is 

discovered that both mean waiting time in the system and blocking probability 

increases as the values of   increases, as shown in Figure 4 and Figure 5, 

respectively. 
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Figure 4. Mean waiting time           Figure 5. Blocking probability 

in the system with respect to failure rate  with respect to failure rate 

 

On the other hand, we investigate the effect of mean repair rate of service 

stations either in failure states of the station-1 or of the station-2 on mean waiting time 

in the system and blocking probability. We fix 1 2 1   , 1 2 1    with 

different numbers of mean repair rate which increase from 0.4 to 0.8 and vary the 

mean arrival rate   from 0.01 to 0.35. It is investigated that the mean waiting time 

in the system and the blocking probability decreases as   increases, as shown in 

Figure 6 and Figure 7, respectively. 

 

Figure 6. Mean waiting time           Figure 7. Blocking probability 

in the system with respect to repair rate   with respect to repair rate 

 

Next, we study the sensitivity performance of failure probability of the station-1 

and the reliable probability of the system with respect to mean failure rate of the 

station-2 
2  and vary the mean failure rate of the station-1 

1  from 0.01 to 1. It is 

clear that the failure probability of the station-1 and the reliable probability of the 

system decreases as 
2  increases, as shown in figure 8 and figure 9, respectively. 

These results mean that in practice, we can control the failure probabilities of the 

station-1 and the station-2 and reliable probabilities of the system by adjusting the 
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ratio of the mean failure rate of the station-2 
2  to the mean failure rates of the 

station-1 
1  and vice versa. 

 

Figure 8. Failure probability of the      Figure 9. Reliable probability 

station-1 with respect to failure rate     of the system with respect to failure rate 

 
4.3.3 Disposition Strategies 
    Finally, we consider the influence of disposition strategies of mean service rate, 

mean failure rate and mean repair rate on the performance of mean waiting time in the 

system. We set 1 2 1   , 1 2 0.8   , and study the cases with different service 

rates 1 21, 2    , and 1 22, 1    , then vary the mean arrival rate   from 

0.01 to 0.35. It is observed that setting higher service rate for the station-1 increases 

the operational efficiency for the system subject to breakdowns and repairs, as shown 

in Figure 10. Next, we fix the parameters 1 21, 1    , 1 2 0.8  
 
and 

investigate the cases with different failure rates of service stations in working states 

1 20.6, 0.3    , and 1 20.3, 0.6    , then vary the mean arrival rate   from 

0.01 to 0.25. It can be seen that if the system with higher failure rate of the station-1, 

the mean waiting time of the system is higher than that of the case with lower failure 

rate of the station-1, as shown in Figure 11. Finally, the system parameters with 

different repair rates are fixed at 1 2 0.3   , 1 2 1   . We present the cases 

1 20.4, 0.8    , and 1 20.8, 0.4    , and vary the mean arrival rate   from 

0.01 to 0.25. It is noted that disposing higher repair rate for the station-1 can make the 

system work in a higher performance, as shown in Figure 12. These results show the 

fact that the bottleneck of the working stations for the series configuration queueing 

system with two service stations is the station-1 which affects the whole operational 

performances of the system with perfect working states, referred as Tsai et al. [26-28], 

and the system subject to breakdowns and repairs. We suggest dispose higher service 

rate and repair rate and keep lower failure rate for the station-1 of the system in order 

to increase operational efficiency of the system. 
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Figure 10. Mean waiting time           Figure 11. Mean waiting time 

in the system with different service rate   in the system with different failure rate 

 

 

Figure 12. Mean waiting time 

in the system with different repair rate 

 

4.4 Summary and Discussions 

    We study a series configuration queueing system consisting of two service 

stations subject to breakdowns and repairs. The service stations in this kind of system 

might fail and contain repair procedures for the failure service stations We 

successfully demonstrate matrix-geometric method is still a powerful tool for further 

investigating and understanding characteristics of series configurations queueing 

systems as described in our previous works, Tsai [26-28], even for more complex 

extensions of the mathematical models and conditions close to the real applications in 

industries. 

    Numerical results validate the correctness of the exact formulae of stability 

conditions. We also discover the fact that the bottleneck of the working stations for 

the series configuration queueing system with two service stations is the station-1 

which significantly influences the whole operational performances of the system with 
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that setting higher service rates, repair rate and sustain lower failure rate for the 

station-1 of the system to make the system work more efficiently according to the 

numerical experiments. 

Future research will focus on conducting statistical analysis for real industrial 

application of manufacturing systems and validate the propositions of the analysis 

with our theoretical results developed in this research. Transient analysis and 

reliability analysis of the system would be considered further. 
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CHAPTER 5 

GENERAL DISPOSITION STRATEGIES OF SELF-BLOCKING 

QUEUEING SYSTEM WITH PERFECT SERVICE STATIONS 

 

5.1 Preface 

    The research topics in previous Chapters focused on the queueing systems with 

service discipline that customers should enter each service station orderly to complete 

the services in the system. That kind of queueing system is popular in manufacturing 

industries. In this Chapter, we study another kind of series configuration queueing 

system with different service rules, called self-blocking queueing system. The 

complete service in this queueing system is defined as a customer should receive a 

service in either service station. However, since there is no finite buffer among service 

stations, the blocking phenomena still happen in the case that a customer has 

completed its service in a service station, but another customer in the next stations is 

still receiving the service. The first study on the performance analysis of self-blocking 

queueing system consisting of two service stations was conducted by Ke and Tsai [61]. 

They notice that the system with two servers can be applied to analyze the operational 

situations of gasoline stations in urban areas. Now, we extend their studies to the 

system consisting of three service stations and investigate related important 

performance measures, such as mean number in the system, mean number in the 

queue, mean waiting time in the system, mean waiting time in the queue, blocking 

probabilities of servers located before the terminal stations and mean throughput of 

each service station. The self-blocking with many service stations can be applied to 

the real cases in taxi cabs. We finally propose a general disposition strategy for the 

system to work in higher operational performance based on the numerical results. 

 

Figure 1. Scheme of self-blocking queueing system 

 
5.1.2 Contributions and Outline 

Major theoretical results in this chapter including 1) developing steady-state 

structure generator matrix equations of the self-blocking queueing system with three 

service stations, 2) deriving stability conditions of the system in exact form, 3) 

evaluating the steady-state probabilities with different service rates of the service 

stations, 4) presenting sensitivity analysis through numerical simulations to propose 

disposition strategies for the system working more efficiently. In practice, the 

operational staffs can benefit from our theoretical results by applying disposition 
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strategy for the self-blocking system in a taxi can in order to reduce the mean waiting 

time for the customers in the queueing system. 

The rest of the content in this Chapter is organized as follows. In Section 2, we 

formulate the problem and provide notation used throughout the article. In Section 3, 

we construct the steady-state equations corresponding to the quasi-birth-death process 

of the system and evaluate the steady-state probabilities by matrix-geometric method. 

We derived the stability conditions of the system in explicit mathematical expressions 

with general case and special case. In section 4, numerical results are presented to 

demonstrate the properties of the system and to illustrate different performance 

measures of the system with different service rates. Finally, we conclude the research 

topic with discussions and suggest possible future research topics in the last Section. 

 

5.2 Modeling Framework 

5.2.1 Problem Formulation and Notations 
Three independent service stations placed in series configuration operate 

simultaneously in the queueing system. We assumed Poisson arrival process with 

mean arrival rate   and the time to serve a customer in each service station is 

exponentially distributed with mean service time 
1


. When the service stations are all 

in the idle situation, the customer must enter the terminal station directly to receive 

the service. There are no queues between each service station. A customer can finish 

the service at any stations then leave the system directly if the self-blocking 

phenomenon does not happen. The self-blocking phenomenon means that when a 

customer completes the service in a service station, but the another customer in the 

next station has not finished the service yet. The customer who is receiving the 

service blocks the customer who has completed the service in the previous station. 

The blocking phenomenon happens in the station-1, and the station-2 in this system. 

We assume an infinite queue in front of the first service station. In addition, the 

service station can only serve a customer at a time and the service rate is independent 

of the number of customers. The service of the system obeys the first come first serve 

(FCFS) discipline. 

The following notations are used for modeling the system: 

    Mean arrival rate of Poisson arrivals 

1    Mean service rate of the station-1 

2    Mean service rate of the station-2 

3    Mean service rate of the station-3 
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The notation 
1 2, 3 4, ,Pn n n n

 is used to denote the steady-state probability 
1 2, 3 4, ,Pn n n n

of 
1n

customer in the station-3 and 2n customer in the station-2 and 3n  customer in the 

station-1 and 4n customer in the queue.  

 

5.2.2 Matrix-Geometric Equations 
The steady-state probability vector corresponding to the structured generator matrix Q 

is denoted as [ , , ,...] 0 1 2P P P P . The steady-state probability vector can be obtained 

by solving the system of equations QP = 0 , while obeying the normalization 

condition 1.P1 =  The global balance equations of the system can be written as 

0,0 1,0 2 2,0 3 3,0B B B B ,   0 1P P P P 0                    (1) 

0,1 1 4 4B A A ,  0 1P P P 0                            (2) 

i 0 i 1 1 i 4 4A A A ,   P P P 0
      

i 1 .                   (3) 

A rate matrix R is introduced to construct the following recurrence relations 

   
i 1R R , i i-1 1P P P

      
i 1 .                    (4) 

Substituting (4) into (3), we can obtain the following characteristic equation of the 

recurrence relation 

4

0 1 4A RA R A 0   .                             (5) 

Therefore, we solve (5) by iteration method for the rate matrix R. 

The matrix equations of (1) and (2) can be further simplified as 

2

0,0 1,0 2,0 3,0B (B RB R B ) ,   0 1P P 0                       (6) 

3

0,1 1 4B (A R A )  0 1P P 0.                           (7) 

The normalization condition equation that involves 0P  and 1P  is given by 

1(I R) 1,  0 1P 1 P 1                              (8) 

where I is the identity matrix with same size as the rate matrix R.
 

Taking (6), (7) and the normalization condition (8) into account, the steady-state 

probability vector of 0P  and 1P can be obtained by solving following matrix 

equation 

*
0,0 0,1

2 13 *
1,0 2,0 3,0 1 4

B B
( ) ( ,1)

B RB R B (I R)(A R A )


 
 

   
0 1

1
P ,P 0 .

1
         (9) 
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where *(.)  indicates that the last column of the included matrix is removed to avoid 

linear dependency. 

 

5.2.3 Stability Conditions 
In order to confirm whether the quasi-birth-death process is tractable by the 

matrix-geometric method, the stability of the queueing system must be verified by 

checking the stability condition of Neuts [10]: 

A 0 A 2 A 3 A 4A A 2( A 3( A , P 1 < P 1 P 1) P 1)                (10) 

where 
A

P  is the steady-state probability vector corresponding to the generator matrix 

A. 

We first write down the generator matrix A: 
4

i

i 0

A A                             (11) 

Using A, the steady-state probability vector 0A 1A 2A 3A 4A 5A 6A[P ,P ,P ,P ,P ,P ,P ]AP can 

be obtained: 

= ,
A

P A 0                              (12) 

 
6

A,i

i 0

P 1,


                             (13) 

We can derive exact formulae of stability conditions by substituting the steady-state 

probability into (10) and employing the content of the matrix 0A and 2A . 

5.2.4 Performance Measures and Exact Results 

 Stability Conditions 

Theorem 5.2.1 The stability conditions of the system consisting of three service 

stations can be concluded as the following two inequalities: 

(1) For 1 2 3      

    
N

,
D

                               (14) 

where 

1 2 3 1 2 1 3 2 3 1 2 3N 3 ( )( )( )( ),              

and 

4 2 2 3 3 2 2 3 2 4 3 2 2 3 4

1 2 2 3 3 1 2 2 3 2 3 3 1 2 2 3 2 3 2 3 3

4 3 2 2 3 4 2 2 2 3 4

1 2 3 2 3 2 3 2 3 2 2 3 2 3 3

D ( ) (2 4 4 2 ) ( 4 5 4 )

( 4 4 ) ( 2 )

                           

                  .
 

(2) Special case: 1 2 3     

        
18

11
  .                       (15) 
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 Performance Measures 

Performance measures of the self-blocking queueing system with infinite 

capacity are defined as: 

 

(1) Mean number of customers in the system 

0,0,1,0 0,1,0,0 1,0,0,0 1,b,0,0 0,1,b,0 0,0,1,1 0,1,1,0 1,0,1,0 1,1,0,0

0,0,1,n 1 0,1,1,n 2 1,0,1,n 2 1,1,1,n 3 1,b,1,n 2 0,1,b,n 1 1,1,b,n 2

n 3 n 2

1,b,b,n 1

n 1

L (P P P P P ) 2(P P P P )

(P P P P ) n (P P P ) n

(P )

 

      

 







        

        

 

 

n .

         

(16) 

(2) Mean number of customers in the queue 

1 2 3

q 0,0,1,1 0,1,1,1 1,0,1,1 0,1,b,1 0,0,1,2

0,0,1,n 0,1,1,n 1,0,1,n 0,1,b,n 1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n

n 3 n 2 n 1

if
1 1

1

L (P P P P ) 2(P )

(P ) n (P P P ) n (P P P P ) n

[R(I R) (I R) ]

  

  

  
 

    

          

   

  

P 1

                    

(17) 

(3) Mean waiting time in the system (Little’s Law) 

L
W .


                             (18) 

(4) Mean waiting time in the queue (Little’s Law) 

q

q

L
W .


                            (19) 

(5) Blocking probability of the customer in the station-1 

b,1 1,b,b,n 0,1,b,n 1,1,b,n

n 0

P P P P




   .                   (20) 

 

(6) Blocking probability of the customer in the station-2 

b,2 1,b,b,n 1,b,0,n

n 0

P P P




  .                      (21) 

(7) Mean throughput of the system 

1 0,0,1,n 0,1,1,n 1,1,1,n 1,b,1,n

n 0

2 0,1,0,0 1,1,0,0 0,1,b,n 0,1,1,n 1,1,1,n 1,1,b,n

n 0

3 1,0,0,0 1,1,0,0 1,b,0,0 1,1,1,n 1,b,1,n 1,b,b,n 1,1,b,n

n 0

T [ P P P P ]

[P P P P P P ]

[P P P P P P P ]













    

     

      





 .

   (22) 
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Proposition 5.2.1 Disposition strategies for the self-blocking queueing system 

consisting of the arbitrary number of service stations with different service rates are 

same. 

We propose disposition strategies for the system based on previous research 

conducted by Ke and Tsai [61] and this work in order to increase the operational 

efficiency of the system. 

(1) Self-blocking queueing system with the arbitrary number of service stations 

It is better to arrange higher service rate for the terminal service station and the 

service stations near the terminal station compared with other service stations in the 

system in order to obtain better operational efficiency for the system. 

5.3 Numerical Results 

In this section, numerical experiments are performed to study characteristics of 

the self-blocking system consisting of three service stations. Numerical validation of 

the exact results of stability conditions is presented. Moreover, disposition strategies 

are suggested to make the system work more efficiently in accordance with 

simulations. 

 
5.3.1 Each Service Station with Same Service Rate 

First, we investigate the trends of mean number in the system and mean 

throughput of each service station as a function of mean arrival rate  . Mean number 

in the system is presented in Figure 2. The upper bound of the stability condition of 

the mean number in the system approaches to 
18

11
( 1.636 ). This numerical result is 

consistent with the exact formula given in the Section 5.2.4. Mean throughput of each 

service stations as a function of mean arrival rate is shown in Figure 3. It is 

investigated that the mean throughput of the station-1 is higher than that of the 

station-2 and of the station-3 in the condition that all of the service stations are set in 

the same service rate. 

 

Figure 2. Mean number in the system   Figure 3. Mean throughput of each station 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

50

100

150

200

250

300



M
e
a
n
 n

u
m

b
e
r 

in
 t

h
e
 s

y
s
te

m

 

 

(
1
 = 1, 

2
 = 1, 

3
 = 1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7



M
e
a
n
 t

h
ro

u
g
h
p
u
t

 

 

Station-1

Station-2

Station-3



 

58 
 

5.3.2 Each Service Station with Different Service Sates 

 Disposing the Service Rates of Two Service Stations 

We study the disposition conditions that we can concurrently control the service 

rates of two service stations and the service rate of only one service station for the 

system consisting of three service stations. 

First, in the cases that we are able to control two service rates of the service 

stations in this system. We set 1 2 32, 2, 1      and 1 2 32, 1, 2       and 

1 2 31, 2, 2      and then vary the mean arrival rate   from 0.01 to 2. It is 

observed that setting higher service rates for the station-2, and the station-3 is a better 

disposition strategy than that of other two cases, as shown in Figure 4. We suggest the 

case 1 2 31, 2, 2       as the best disposition strategy, when we are able to 

control service rates of two service stations for the system. 

 

 Disposing the Service Rate of a Service Station 

Next, the cases of controlling service rate of one service station are presented. 

We set 1 2 32, 1, 1      and 1 2 31, 2, 1       and 1 2 31, 1, 2      , then 

vary the mean arrival rate   from 0.01 to 1.6. It is investigated that the mean waiting 

time is the lowest in the case of 1 2 31, 1, 2      compared with other two cases 

as shown in Figure 5. Therefore, the case 1 2 31, 1, 2       is suggested as the 

best disposition strategy, when we can control service rates of only one service station 

for the system. 

Note that, in both case studies, numerical computations of all cases should obey 

the stability conditions derived in the section 5.2.4. in order to satisfy the ergodicity 

condition of the steady-state probabilities. 

 

 

Figure 4. Mean number in the system    Figure 5. Mean waiting time in the system 

(Disposing two service stations)         (Disposing a service station) 
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5.4 Summary and Discussions 

In this Chapter, performance analysis of self-blocking queueing system 

consisting of three service stations is studied. The steady-state probabilities of the 

system with infinite capacity are evaluated by matrix-geometric method. We have also 

derived stability conditions of the queueing system for both service stations setting 

same service rates and each service station arranging different service rates. 

Numerical simulation on mean number of customers in the system of the 

self-blocking system confirms the correctness of exact formulae of stability 

conditions. 

Numerical results of performance measures of the self-blocking queueing 

system indicate that it is always better to dispose higher service rate for the terminal 

service station in order to effectively reduce the mean waiting time in the system. In 

this way of disposition, the system can operate in a more efficient way. General 

disposition strategies for the system consisting of the arbitrary number of service 

stations are proposed to increase operational efficiency of the system. 

Transient analysis and the general service time distributions will be considered 

for future research. 
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CHAPTER 6 

EXPERIMENTS AND STATISTICAL ANALYSIS 

 

6.1 Preface 

The major purpose in this chapter is to design a plan to validate the theoretical 

results of disposition strategies for queueing system consisting of two service stations 

with blocking phenomena. According to Tsai et al. [26-28], if we dispose different 

service rate for the system with blocking phenomena in steady-state, it shows that the 

operational performance of the system would be different, as shown in Figure 1. 

On the other hand, we investigate that the effect of the disposition strategies is not 

significant before the system turn into the steady state based on the theoretical 

transient results. However, the disposition strategies are still effective when the 

system reach to the turning point between transient state and steady state, as shown in 

Figure 2. We design the experiment based on pedestrian dynamics. Although our 

theoretical results majorly focus on automatic automobile assembly line, the results of 

the experiment can be treated as a basic approximation for more refined experiments 

in real applications in the industries. 

    We measure waiting time in the queue for those customers certainly wait in the 

queue to receive the service from working stations. Four cases are designed to study 

the significant effects of disposition strategies that affect the operational performance 

of the system consisting of two service stations. The first and the second case 

demonstrate the mean arrival rate following steady-state situation. The transient state 

of the system with different disposition strategies is presented in the third and the 

fourth case, respectively. The mean waiting time in the queue is calculated to 

investigate the effect of different disposition strategies for the performance of the 

system with two service stations. 

 

    Figure 1. Mean waiting time in the     Figure 2. Mean waiting time  

    system (steady state)                in the system (transient state) 
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6.2 Experimental Process 

 Processes of the Experiment 

1. Generate service time from exponential distribution based on a specific average 

service rate. 

2. Generate mean arrival time from geometric distribution based on a specific 

average arrival rate. 

3. Investigate whether there are different operational efficiencies between disposition 

strategies suggested in our theoretical results depending on different arrival rates 

of the customers. 

4. Observe the oscillation phenomena for the system with different disposition 

strategies when the system is still in transient state. 

 Processes for the Pedestrian 

Since the mean waiting time in the system is equal to the sum of the mean 

waiting time in the queue and the mean service time of the service stations. Our 

results show that different disposition strategies will majorly cause the different mean 

waiting time in the queue for customers. 

Thus, we define the following quantity to calculate mean waiting time in the queue 

according to the number of customers arriving to the system. 

n

q,i

i
q

x

W
n




 

where, n is the total number of customers entering the system, 
q,ix

 
is the waiting 

time for the ith customer in the queue. We still record the service time for the ith 

customer, denoted as 
s,ix . 

We assign electronic card to each customer and record both their waiting time in the 

queue and the time to complete their service when they are in the service stations. 

 Design of the Experiment 

The experiment process is shown in Figure 3. We assign five staffs to work in the 

experiment with different responsibilities. The staff 1 and the staff 2 work in the 

station-1 and the station-2, respectively. They are responsible to confirm the 

customers entering the service station complete the service in each station. The staff 3 

is responsible to record the waiting time in the queue when there are some customers 

waiting in the queue for the service. The staff 4 tells the customers that they can enter 

the queueing system based on the pseudo-random number generators of the specific 

mean arrival rate of geometric distributions. The staff 5 gives instructions for the 

attendants regarding specific problems in the experiment. 
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Figure 3. The experiment process 

 

 

 

6.3 Experimental Results 

In this section, we present the data collected from experiments and calculate the 

mean waiting time in the queue for each case. 

We consider the following cases: 

Case 1 

We choose 
1 2

1 1
4, 8 

 
 and set 

1
16


. 

Case 2 

We choose 
1 2

1 1
8, 4 

 
 and set 

1
16


. 



 

63 
 

Case 3 

We choose 
1 2

1 1
4, 8 

 
 and set 

1
8


. 

Case 4 

We choose 
1 2

1 1
8, 4 

 
 and set 

1
8


. 

 

The major purposes for conducing the experiments are to validate two theoretical 

results. First, we should validate whether the operational efficiency of the system is 

different by disposing different service rates for each service station. Second, the 

stability conditions derived in steady-state analysis would be test to observe whether 

the mean waiting time in the queue growths significantly or not. Table 1. ~ Table 4. 

show that the waiting time in the queue and their corresponding ID number of 

customers entering to the system. There are total 30 customers joining in the 

experiments. 

 

Table 1. Waiting time in the queue for the case 1 

ID No. Waiting time in the queue (MSEC) 

012E30D2008A4285 12476  

012E30D2008A4492 21053  

012E30D2008A4743 9174  

012E30D2008A4282 9709  

012E30D2008A424F 9321  

012E30D2008A4634 10646  

012E30D2008A4667 15151  

012E30D2008A4876 19734  

(MSEC: Millisecond) 

 

Table 2. Waiting time in the queue for the case 2 

ID No. Waiting time in the queue (MSEC) 

012E30D2008A424D 8493  

012E30D2008A477F 12144  

012E30D2008A4493 15755  

012E30D2008A4285 14829  

012E30D2008A4492 16128  

012E30D2008A4743 24052  

012E30D2008A4282 13093  

012E30D2008A424F 12729  
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012E30D2008A4634 23348  

012E30D2008A4667 12084  

012E30D2008A4876 13063  

012E30D2008A4482 17044  

 

Table 3. Waiting time in the queue for the case 3 

ID No. Waiting time in the queue (MSEC) 

012E30D2008A4493 12214 

012E30D2008A4285 24458 

012E30D2008A4492 38977 

012E30D2008A444A 32584 

012E30D2008A445A 38715 

012E30D2008A427C 31362 

012E30D2008A4743 31162 

012E30D2008A4282 40616 

012E30D2008A424F 32726 

012E30D2008A4634 33657 

012E30D2008A4683 43127 

012E30D2008A4862 45174 

012E30D2008A488D 51596 

012E30D2008A463D 46346 

012E30D2008A4667 51309 

012E30D2008A4876 56952 

012E30D2008A4883 55570 

012E30D2008A484E 62524 

012E30D2008A469C 58816 

012E30D2008A4864 59516 

012E30D2008A468E 68619 

012E30D2008A4856 71125 

012E30D2008A483B 49256 

012E30D2008A4482 35900 
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Table 4. Waiting time in the queue for the case 4 

ID No. Waiting time in the queue (MSEC) 

012E30D2008A4452 9399  

012E30D2008A477F 19633  

012E30D2008A4493 28391  

012E30D2008A4285 39306  

012E30D2008A4492 40094  

012E30D2008A444A 45074  

012E30D2008A445A 53037  

012E30D2008A427C 40952  

012E30D2008A4743 54474  

012E30D2008A4282 52966  

012E30D2008A424F 45834  

012E30D2008A4634 53070  

012E30D2008A4683 53509  

012E30D2008A4862 56527  

012E30D2008A488D 58913  

012E30D2008A4667 41920  

012E30D2008A463D 51913  

012E30D2008A4876 54245  

012E30D2008A4883 59513  

012E30D2008A484E 58434  

012E30D2008A469C 53059  

012E30D2008A4864 62590  

012E30D2008A468E 63208  

012E30D2008A4856 64292  

012E30D2008A483B 42158  

012E30D2008A4482 51325  

 

 Validations of Disposition Strategies 

Based on the theoretical results for the series configuration queueing system 

consisting of two service stations, we propose that it is better to set higher service rate 

for the server-1 in order to make the system work in better operational efficiency. 

Table 5. shows the summary of experiments. Experiment 1 and experiment 2 is 

compared with different service rate of the system with longer inter-arrival time. On 

the other hand, the system with shorter inter-arrival time with different service is 

designed between experiment 3 and experiment 4. 
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    The results of statistical test for the disposition strategies are shown in Table 6. 

Although the mean waiting time in the queue is consistent with our theoretical 

predictions for both cases, the statistical test shows that the experiment result is not 

significant due to large variance of the observational data. The major reason causing 

the large variance of the experimental data is that we just assign 30 customers in the 

experiment. Since it is noted that the waiting time in the queue for the customers 

entering the system earlier is almost zero, the variance of the observational data 

becomes large. However, if we increase the number of customers in the experiments, 

it is expected that the results of statistical test would become significant, because there 

are more and more records for the customers waiting in the queue. 

 

Table 5. Summary of the experiments 

No. of 

Experiments 

Entrance 

1


 

Server 1 

1

1


 

Server 2 

1

1


 

Theoretical 

Predictions 

Exp01 16 4 8 Better 

Strategy 

Exp02 16 8 4  

Exp03 8 4 8 Better 

Strategy 

Exp04 8 8 4  

 

 

Table 6. Statistical test for the significance of mean waiting in the queue with different 

service rates 

No. of 

Experiments 

Mean waiting time 

in the queue 

qW  

Statistical Test 

2 2

X Y

X Y

X Y
U

n n

 






 

Exp01 3.58 6.36  1.35 (Not Significant) 

Exp02 6.09 7.96   

Exp03 35.74 21.89  1.11 (Not Significant) 

Exp04 41.79 20.32   
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 Validations of Stability Conditions 

Next, we do the statistical test to compare the significance for the system with 

different inter-arrival time. It is discovered that the mean waiting time in the queue for 

the system with different inter-arrival shows statistical significance in both cases as 

shown in Table 7. This means that the stability conditions of the steady-state analysis 

may be applied to real cases. Therefore, the assumption of our theoretical models for 

the Poisson arrival is not so strong. 

 

Table 7. Statistical test for the significance of mean waiting in the queue with different 

arrival rates 

No. of 

Experiments 

Mean waiting time 

in the queue 

qW  

Statistical Test 

2 2

X Y

X Y

X Y
U

n n

 






 

Exp01 3.58 6.36  7.73 (Significant) 

Exp03 35.74 21.89   

Exp02 6.09 7.96  8.96 (Significant) 

Exp04 41.79 20.32   

 

 Theoretical Analysis of Variance of Mean Waiting Time in the Queue 

We observe that the variance of the experimental data is quite large. Now, we try 

to explain this phenomenon from theoretical analysis. Let W

 

and L

 

denote the 

mean waiting time in the queue and mean number in the queue, respectively. We can 

evaluate the variance of mean waiting time in the queue by Little’s law, 

 2 2

2 2

L 1 1
Var[W] Var[ ] Var[L] E[L ] (E[L]) .   

  
 

The theoretical values of errors reflect that the variance is large for both cases as 

shown in Figure 4 and Figure 5. Since we assume the time to serve a customer 

follows exponential distribution, the numerical value also show large variances. 

However, it is possible to reduce the variance of observational values by increasing 

the number of customer in experiments. Therefore, the different disposition strategies 

would become significant for the system consisting of two service stations. 
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Figure 4. Mean waiting time in the    Figure 5. Mean waiting time 

system 
1 22, 1)                 in the system 

1 21, 2)   
 

 

6.4 Summary and Discussions 

    We design a simple experiment to validate our theoretical results of stability 

conditions and disposition strategies for the series configuration queueing system 

consisting of two service stations. We set the mean arrival rate to satisfy the 

steady-state conditions and the transient conditions with different disposition 

strategies for the service stations.  

The statistical test of the difference of mean waiting time in the queue with 

different disposition strategies is insignificant, because the number of customer 

assigned in the experiment is not enough. Theoretical analysis on the mean waiting 

time in the queue also shows that the variance of mean waiting time in the queue is 

large. In the future, we can increase the number of customers to collect more 

experimental data in order to reduce the variance of the data. On the other hand, The 

statistical test of the difference of mean waiting time in the queue with different 

inter-arrival time is highly significant. This means that the assumption of Poisson 

arrival in the theoretical model is not so strong, because we can apply theoretical 

results of steady-state analysis to real cases. 

    It is worth to design other experiments to further investigate the characteristics of 

the system consisting of more than two service stations. In the future, we intend to 

propose our results of the research to the industries for real applications. 
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CHAPTER 7 

CONCLUSIONS 

  

    In this thesis, we study the performance analysis of series configuration queueing 

systems which are very important in traditional manufacturing industry, assembly line 

of automobile and semiconductor industry etc. We provide the theoretical steady-state 

analysis for the systems. The information of performance analysis reveals important 

characteristics of the systems. We expect that the information will be useful for the 

design of smart factory in the ear of Industry 4.0 and Internet of Things (IoT). 

Theoretical results of stability conditions are shown to be statistical significant by 

pedestrian experiments with different arrival rates. 

 In Chapter 2, series configuration queueing systems consisting of two, three and 

four service stations are investigated. This kind of system is very popular for the 

applications of assembly line in manufacturing industry. We construct the structure 

generator matrix and evaluate the steady-state probabilities by matrix-geometric 

method. The performance measures includes mean number in the system, mean 

number in the queue, mean waiting time in the system, mean waiting time in the 

queue, blocking probability of the service stations before the terminal station. 

Stability conditions are derived in exact form. Disposition strategies based on the 

numerical simulations are suggested to make the systems work efficiently. 

    Transient analysis for the series configuration system consisting of two servers is 

discussed in Chapter 3. A queue with finite capacity is allowed in front of the system. 

Master equation is constructed by the quasi-birth-death process of the system. We 

apply Runge-Kutta method to evaluate dynamic state probabilities. Dynamic 

performance measures including mean number in the system, mean number in the 

queue, mean waiting time in the system, mean waiting time in the queue, blocking 

probability of the station-1 and rejecting probability are defined. Numerical results 

show that there is different operational efficiency of the system if the service rates of 

servers are different. The disposition strategies are consistent with the results of 

steady-state analysis. 

    Chapter 4 is the topic about series configuration system subject to breakdowns 

and repairs. In practice, it is possible that the servers may go breakdowns due to some 

operational problems of machines. We extend the model formulation by introducing 

breakdown phenomenon with average rates follows exponential distribution and 

repair mechanism for the system. The steady-state probabilities in working states, 

failure states of the station-1 and failure states of the station-2 are evaluated by 

matrix-geometric method. Furthermore, we numerically estimate the performance 

measures including mean number in the system, mean number in the queue, mean 
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waiting time in the system, mean waiting time in the queue, blocking probability 

failure probability of the station-1, failure probability of the station-2, reliable 

probability of the system. Exact formula of the stability conditions is successfully 

derived. Sensitivity analyses with respect important system parameters are 

investigated to study the properties of the system. Numerical results also show that it 

is better to set higher service rate and repair rate for the station-1 in order to keep high 

operational performance for the system. On the other hand, maintaining lower 

breakdown rate for the station-1 compared with the station-2 make the system work 

more efficiently.  

    The general disposition strategy for self-blocking queueing system is proposed in 

Chapter 5. We demonstrate that the matrix-geometric method can still be applied to 

evaluate steady-state probability of self-blocking queueing system. Performance 

measures including mean number in the system, mean number in the queue, mean 

waiting time in the system, mean waiting time in the queue, blocking probability and 

mean throughput of each service station are defined. Stability conditions are derived 

in exact form. It is suggested that disposing higher service rate for the terminal station 

and servers near the terminal station in order to make the system work in higher 

operational efficiency. The disposition strategy is expected to be applied to taxi cab 

queueing systems.  

    In Chapter 6, we design four experiments to validate our propositions of 

disposition strategies and stability conditions for the series configuration queueing 

system consisting of two service stations. Although the mean waiting time in the 

queue for different disposition strategies is not statistical significant, the stability 

conditions for different mean arrival rates are statistically significant. The statistical 

results show that the assumption of Poisson arrival in our model is not so strong, 

because it may be applied to real cases. It is presented that the variance of mean 

waiting time in the queue with different disposition strategies is large by theoretical 

analysis. Regarding the statistically insignificant disposition strategies, we will 

increase the number of samples for the design of experiments in the future. It is 

expected that the effects by setting different service rates for servers would become 

significant. 

    Series configuration queueing system subject to working breakdowns and repairs, 

and the system subject to simultaneous breakdowns are first considered as research 

topics next step. The extension of stability conditions is expected to be obtained by 

matrix-geometric method. We will concurrently study self-blocking systems in the 

cases of breakdowns and repairs. Series configuration systems and self-blocking 

systems with general service distributions are worth to be important research in the 

future. 
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A.1 The structure of the transition matrix Q and its sub-matrices for 

the system with three service stations 

Finally, we represent transition matrix of the series configuration queueing system 

with three service stations as 

0,0 0,1

1,0 1 0

2 1 0

2 1 0
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    The details of sub-matrices of the composition of the transition matrix corresponding 

to the quasi-birth-death process for the system with three service stations are given by 
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A1.2 Derivation of stability conditions of the system with three 

service stations 

The stability conditions (23) and (24) in Section 2.2.4 of the system can be derived by 

following 
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Then we obtain the steady-state probability vector 

A A,0 A,1 A,2 A,3 A,4 A,5 A,6 A,7[P ,P ,P ,P ,P ,P ,P ,P ]P  by solving following system equations with 

normalization condition 

A ,AP 0
                           (A1.1) 

7
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P 1


 .

                          
(A1.2) 
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Finally, we obtain the stability condition of the system with three service stations 

A 0 A 2A A ,P 1 < P 1                      (A1.3) 
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where 
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For the system with same service rate, we set 1 2 3   
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A.2 The structure of the transition matrix Q and its sub-matrices for 

the system with four service stations 

We represent transition matrix of the series configuration queueing system with four 

service stations as 
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    The details of sub-matrices of the composition of the transition matrix corresponding 

to the quasi-birth-death process for the system with four service stations are given by 
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A3.2 Derivation of stability conditions of the system with four service  

stations 

The stability conditions (35) and (36) of the systems can be derived by following  
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Then we obtain the steady-state probability vector 

A A,0 A,1 A,2 A,3 A,4 A,5 A,6 A,7 A,8 A,9 A,10 A,11 A,12 A,13 A,14 A,15 A,16 A,17 A,18 A,19 A,20[P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ,P ]P

by solving following system equations with normalization condition
 

A ,AP 0                            (A3.1) 

20

A,i

i 0

P 1


 .

                          
(A3.2) 

 

Finally, we obtain the stability condition of the system with four service stations 

A 0 A 2A A ,P 1 < P 1                       (A3.3) 

4

4

N
,

D
 

    

                      (A3.4) 

 

where 4N  and 4D  are shown in supplementary document I. 

 

For the special case, we set 1 2 3 4     , 

4024
,

7817
  

    

                     (A3.5) 
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A.3 The structure of the transition matrix Q and its sub-matrices for  

the system with two service stations subject to breakdowns and 

repairs 

We provide transition matrix of the series configuration queueing system with two 

service stations subject to breakdowns and repairs as 

0,0 0

2 1 0

2 1 0

2 1 0

2 1 0

2 1

B A 0 0 0 0

A A A 0 0 0

0 A A A 0 0

Q 0 0 A A A 0

0 0 0 A A A

0 0 0 0 A A

 
 
 
 
 


 
 
 
 
   . 

    The details of sub-matrices of the composition of the transition matrix corresponding 

to the quasi-birth-death process for the system are given by 

 

1 2 1 2

2 2 1 2 1 2

2 2 1 2 1 2

1 1

0,0 1 2 2 1

1 2 2 1

2 2

2 2

2 2

( ) 0 0 0 0 0 0

( ) 0 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0 0 0 0

B 0 0 ( ) 0 0 0 0

0 0 0 ( ) 0 0 0

0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0 ( ) 0

0 0 0 0 0 0 0 ( )

        
          
 

          
 

    
       
 

     
    


   
     






,

 

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 

 
 

 
  
 

 
 
 

 
  

,  

1

1

2

1

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

 
 
 

,

 

 

1 1 2 1 2

2 1 2 1 2 1 2

2 2 1 2 1 2

1 1

1 1 2 2 1

1 2 2 1

2 1 2

2 1 2

2 2

( ) 0 0 0 0 0 0

( ) 0 0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0 0 0 0

A 0 0 ( ) 0 0 0 0

0 0 0 ( ) 0 0 0

0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0 ( ) 0

0 0 0 0 0 0 0 ( )

        
           


         


   
      


     
     


    

   














 

.
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A3.2 Derivation of stability conditions of the series configuration  

system subject to breakdowns and repairs 

The stability conditions (14) and (15) in Section 4.2.4 of the system can be derived by 

following  

A 0 A 2A A ,P 1 < P 1  

We first evaluate the conservative stable matrix A 

0 1 2

1 1 2 1 1 2

2 1 2 1 2 1 1 2

2 2 1 2 1 2

1 1

1 2 2 1

1 2 2 1

2 1 2 1

2 1 2 1

2 2

A A A A

( ) 0 0 0 0 0

( ) 0 0 0 0

0 ( ) 0 0 0 0

0 0 0 0 0 0 0

0 0 ( ) 0 0 0 0

0 0 0 ( ) 0 0 0

0 0 0 0 0 ( ) 0

0 0 0 0 0 0 ( )

0 0 0 0 0 0 0

  

         
           
 

         
 

  
      
 

    
     


    
   







 

Then we obtain the steady-state probability vector 

A A,0 A,1 A,2 A,3 A,4 A,5 A,6 A,7 A,8[P ,P ,P ,P ,P ,P ,P ,P ,P ]P  by solving following system equations  

with normalization condition 

A ,AP 0                          (A3.1) 

8

A,i

i 0

P 1


 .

                        
(A3.2) 

 

Finally, we obtain the stability condition of the system 

A 0 A 2A A ,P 1 < P 1                       (A3.3) 

                      b r e a k d o w n

b r e a k d o w n

N
,

D
 

                      

  (A3.4) 

 

where 

breakdown

2 2 2 2 2 2 2

1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1

2 2 2 2 2 2 3 2 3 2

1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 2 2

2 2 2 2 2 2

1 2 1 2 2 2 1 2 2 1 2 2 1 1 2 2 1 2 2

N

( 2 2

+ 2 2 2 +2

2 2 2



                              

                          

                        2 2

1 2 1 2 1 2 1 2

2 2 2

1 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2

2 2 2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 1 2

2 2 2 2

2 1 1 2 1 1 2 1 2 1 2 1

2

4 2 2 2 4 4

4 2 2 2 4 2

4 4 4

        

                                

                                 

               2 3 3 2

2 1 2 1 1 2 1 1 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2

2 1 2 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2 2 1 2

3 2 3 2

1 2 2 2 2 2

2 2 2

2 2 2 4 4 4

2 4 2 2 2 2

               

                               

                            

       3 3 3 2 3

2 2 1 2 2 1 2 1 22 2 ),         

 

and 
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2 2 2 2 2 2 2 2 2 3 2 3 2 4

breakdown 2 1 1 2 1 2 2 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 1

2 2 2 2 2 2 2

1 2 1 2 1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2

2 2 2 2

2 1 1 2 1 1 2 1 2 2 1 2 1 2

D ( )( 2 2 2

2 2

2 2 4 2

                            

                                 

                  2 2 2 2 3

1 2 1 2 1 2 1 2 1 1 1 2

3 2 3 3 4 2 2 2 2 2 2 2 2

2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 2

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2

1 2 1 2 1 1 2

2

4 4 2 2

2 2 4 2 2 2

2

            

                            

                                

         2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 2 1 2 1 1 1 2 2 1 1 2 1 1 2

2 2 2 2 2 2 2 2 2 3 2 3 2 3 2

1 2 1 2 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 1 2

3 2 4 2 2 3 2 3 3 3

2 1 2 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2

2 2 4

4 2 4 2 2 2

2 2 2 4 4

                     

                             

                            3 2 3

2 1 2

2 3 2 3 2 3 2 3 3 3 2 4 4 2 4

1 1 2 2 1 2 1 1 2 2 1 2 1 2 2 2 2 1 2 1 22 2 2 2 2 )

  

                          .

 

 

For the special case, we set 1 2     , 1 2     , and 1 2   , 

2

2 2

2 ( + + )

(2 + )(3 +3 +2 +6 +3 )

   
 

      
.              (A3.5) 
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A.4 The structure of the transition matrix Q and its sub-matrices for  

the self-blocking system with three service stations  

We provide transition matrix of the series configuration queueing system with two 

service stations subject to breakdowns and repairs as 

0,0 0,1

1,0 1 0

2,0 2 1 0

3,0 3 2 1 0

4 3 2 1 0

4 3 2 1

B B 0 0 0 0

B A A 0 0 0

B A A A 0 0

Q B A A A A 0

0 A A A A A

0 0 A A A A

 
 
 
 
 


 
 
 
 
   . 

    The details of sub-matrices of the composition of the transition matrix corresponding 

to the quasi-birth-death process for the self-blocking system with three service 

stations are given by 

 

3 3

0,0 2 2

3 2 3 2

3 3

0 0 0

( ) 0 0

B ,0 ( ) 0 0

0 0 ( )

0 0 0 ( )

  
     
 

     
 

      
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1

2
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3

0 0 0 0
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
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 
 
 
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2
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3

0 0 0 0

0 0 0 0
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
 
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 
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1

2

3,0

3
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 
 
 
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 
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 

 
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 
 
 
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 
  
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1

2

2 1 1 2

1 3 1 2 3 2 1

3 1 3 1

3

2 2 3

( ) 0 0 0 0 0 0

0 ( ) 0 0 0 0 0

( ) 0 0 0 0

A ,0 0 ( ) 0
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   
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 
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      
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0
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 
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1

2

4

3
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 
 
 
 
 


 
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 
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A4.2 Derivation of stability conditions of the self-blocking system 

with three service stations 

The stability conditions (14) and (15) of the system in the Section 5.2.4 can be 

derived by following  

A 0 A 2 A 3 A 4A A 2( A 3( A , P 1 < P 1 P 1) P 1)  

We first evaluate the conservative stable matrix A 

0 1 2 3 4

1 1

2 2

2 1 1 2

3 1 2 3 2 1

3 1 3 1

3 3

2 2 3

A A A A A A

0 0 0 0 0

0 0 0 0 0

( ) 0 0 0 0

0 0 ( ) 0

0 0 0 ( ) 0

0 0 0 0 0

0 0 0 0 0 ( )

    

  
  
 
     

 
        
     
 

  
      .
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Then we obtain the steady-state probability vector 

A A,0 A,1 A,2 A,3 A,4 A,5 A,6[P ,P ,P ,P ,P ,P ,P ]P  by solving following system equations  

with normalization condition 

A ,AP 0                          (A4.1) 

6

A,i

i 0

P 1


 .

                        
(A4.2) 

 

Finally, we obtain the stability condition of the self-blocking system with three 

service stations 

A 0 A 2 A 3 A 4A A 2( A 3( A , P 1 < P 1 P 1) P 1)            (A4.3) 

self blocking

self blocking

N
,

D





 

            

           (A4.4) 

where 

self blocking 1 2 3 1 2 1 3 2 3 1 2 3N 3 ( )( )( )( ),               

and 

4 2 2 3 3 2 2 3

self blocking 1 2 2 3 3 1 2 2 3 2 3 3

2 4 3 2 2 3 4

1 2 2 3 2 3 2 3 3

4 3 2 2 3 4 2 2 2 3 4

1 2 3 2 3 2 3 2 3 2 2 3 2 3 3

D ( ) (2 4 4 2 )

( 4 5 4 )

( 4 4 ) ( 2 )

                

           

                  .

 

 

For the special case, we set, 1 2 3   
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11
  .                         (A4.5) 


