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Chapter 1  

General Introduction 

本章（項）の内容は、学術雑誌論文として出版する計画があるため公表できない。5

年以内に出版予定。 
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Chapter 2  

Wind estimation and verification using flight paths of seabirds 

soaring over the ocean surface 

 

Introduction 

Fine-scale wind information in the context of movement ecology of seabirds 

 Majority of flying animals are exposed to winds that have a significant effect in shaping their 

movements (Liechti, 2006). Soaring seabirds are most exposed to winds because they repeat thousands 

of kilometers of commuting flights and much longer trans-oceanic flights over the ocean where nothing 

obscures the wind stream. Recent tracking studies of these seabirds reported that large-scale 

trans-oceanic movements were shaped by large-scale global wind patterns (Egevang et al., 2010; Shaffer 

et al., 2006; Weimerskirch et al., 2015). Compared to the large-scale global wind patterns, the local wind 

patterns vary from hour to hour, where low and high-pressure systems pass continuously. These 

atmospheric pressure systems sometimes cause no wind in doldrums and occasionally strong winds 

associated with storms, which both could cause a significant effect to their movement (Catry et al., 2004; 

Weimerskirch et al., 2016). Seabirds should be able to react adequately to such fine-scale variation of 

winds to save time and energy consumption (Hedenström et al., 2002; Liechti, 2006). Therefore, 

revealing the bird’s flight behavior to cope with such local wind patterns is a key to understand the 

movement strategy and the resulting energy budgets of the birds. 

The development of bio-logging devices enabled to record flight behavior of the birds in the 

scale of seconds (Amélineau et al., 2014; Gibb et al., 2017; Sachs et al., 2013; Shimatani et al., 2012; 

Spivey et al., 2014; Treep et al., 2015). However, the local fine-scale observations of wind relevant to 

the scale of these birds’ flight behavior lack due to spatially and temporally coarse measurement of 

ocean wind by conventional methods, such as satellites, buoys, balloons, and weather stations. 
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Moreover, the coarse wind information is not precisely the wind that is experienced by the birds both 

horizontally and vertically, because buoys and weather stations are often displaced from the bird’s 

position in a kilometer scale, and satellite-based wind observations are fixed at 10 m reference height. 

Therefore, fine-scale wind observation that is temporally and spatially relevant to the seabird’s 

movement is a key to address the seabird’s movement strategy with the wind. 

 

Fine-scale wind information in the context of meteorological observations 

Recently, remote sensing systems used to record atmospheric circulation have been developed. 

Satellite-borne scatterometers estimate ocean surface wind velocities each day which covers a wide 

range of the global ocean (Fig. 2-1). These wide-range satellite-based wind data in combination with 

refined ocean-atmosphere models are utilized in numerical weather predictions and to describe the 

oceanographic features (Chelton et al., 2004; Chelton et al., 2006; Liu, 2002). Buoys scattered over the 

ocean measure high time resolution surface winds. These in situ observations of wind are used to 

validate remote sensing wind measurements and are assimilated into meteorological model analyses 

(Ebuchi et al., 2002; Pickett et al., 2003). However, since wind data is only acquired twice per day by 

each satellite with many unobserved gaps (Fig. 2-1), and buoys have limited spatial coverage, fine-scale 

changes of hours to days in local wind conditions might be overlooked. Also, wind data are lacking in 

coastal areas due to interference caused by complex topographic effects which makes satellite-based 

wind measurements obscure (Albert et al., 2010; He et al., 2004; Pickett et al., 2003). Obtaining in situ 

high resolution atmospheric and oceanographic data to fill these spatial and temporal observation gaps 

would deepen our understanding of physical processes relevant to interactions between the atmosphere 

and ocean. It is expected to improve atmospheric and ocean model analyses (Albert et al., 2010; He et al., 

2004), and reveal detailed structure which remains unresolved by using only remote-sensing methods 

(Kawai et al., 2015). 

The recent development of miniaturized animal-borne data loggers presented a unique 
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capability to use animals as indicators of environmental variables. The extensive movement range and 

locomotion ability of marine mammals and seabirds enabled environmental observations to be obtained 

in places and scales unresolved by conventional methods. For example, instrumented seals have been 

providing temperature and salinity profiles in the Antarctic Ocean for more than ten years, especially 

under sea-ice coverage which was impossible to measure by satellites (Biuw et al., 2007; Charrassin et 

al., 2008). Bird-borne sensors are also utilized in measuring environmental variables such as 

temperature, depth and light intensity directly from the instruments carried by the animal (Charrassin et 

al., 2002; Durant et al., 2009; Weimerskirch et al., 1995; Wilson et al., 2002). Besides direct 

measurement from animal-borne instruments, indirect evaluation of flow velocity can be made 

particularly when the animal’s movements are passively driven or strongly affected by the flow. Studies 

have evaluated velocity of air and water flows from bird movement trajectories which are the 

consequence of bird movement itself and the drift caused by the flow. For example, wind velocity and 

the state of a bird in relation to the wind can be evaluated using statistical models (Shimatani et al., 

2012). Three-dimensional flight paths of thermal soaring raptors have been used to estimate the 

horizontal and vertical component of wind in the mountain regions which agreed with measurements 

from meteorological stations (Treep et al., 2015). Furthermore, movements of shearwaters floating on 

the ocean surface were used to derive high-resolution ocean surface currents which matched in situ and 

remote sensing measurements of currents (Yoda et al., 2014). These studies demonstrate the potential of 

free-ranging animals as an indicator of environmental information. 

 

Study objectives 

Wind information in the scale of tens of minutes is essential from the perspective of movement 

ecology of seabirds and meteorological observations. This chapter aims to propose a simple method to 

estimate wind velocity from a bird’s trajectory. First, global positioning system (GPS) units were 

deployed on the backs of three species of soaring seabirds, streaked shearwater (Calonectris 
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leucomelas), Laysan albatross (Phoebastria immutabilis), and wandering albatross (Diomedea exulans) 

to investigate fine-scale flight trajectories. Then, wind velocities were estimated from the flight 

trajectories of the birds, taking advantage of the ground speed change caused by wind resistance and 

assistance. The accuracy of the bird-based wind estimations is examined, and possible effects of a bird’s 

flight strategy to the wind estimation are discussed. The use of the estimated wind to reveal the 

ecological and bio-mechanical aspect of bird flight is further discussed in chapter 3. The contribution of 

the estimated wind to meteorology by using soaring seabirds as “living ocean buoys” is suggested in 

chapter 4. 

 

Materials and Methods 

Field Experiments 

In this study, data from three species of Procellariiformes were used: streaked shearwater 

(mean body mass 0.6 kg), Laysan albatross (3.1 kg), and wandering albatross (9.7 kg). GPS loggers used 

in the field studies were GiPSy-2 (Technosmart, Rome, Italy) for streaked shearwaters and Laysan 

albatrosses, and GPL20 (Little Leonardo, Tokyo, Japan) for wandering albatrosses. GiPSy-2 was 

powered by a Li-SOCl2 battery, and wrapped by heat shrink tube for waterproof. The mass of the loggers 

was approximately 25 g (GiPSy-2) and 80 g (GPL20), which was less than 5% of bird’s body mass. GPS 

loggers were attached to the back of the birds with waterproof tape (Tesa, Hamburg, Germany) and they 

were retrieved after the birds returned to their nests. GPS loggers were set to take one positional fix 

every second. 

GPS loggers were attached to eight and nine streaked shearwaters simultaneously on August 

29th and September 2nd, 2014, respectively, at a breeding colony of the Funakoshi-Ohshima Island 

(39°24’N, 141°59’E) in Japan. At this study site, more than 100 nests are marked for research and 

individuals are identified by the ring attached to the tarsus. Adult birds returning to their nests to feed 

their chicks were easily caught by hand through the entrance or a small hole dug on the top of the 
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burrows. One bird lost its instrument before recapture, and another bird was not recaptured. Thus, seven 

and eight loggers were retrieved, respectively. Two of the retrieved loggers did not record enough data. 

The remaining seven and six datasets were used in further analysis. The procedures of the field study 

were approved by the Animal Experimental Committee of The University of Tokyo, and this work was 

conducted with permission from the Board of Education of Iwate prefecture and the Coastal Wide-Area 

Promotion Bureau of Iwate prefecture, Japan. 

The field study of Laysan albatross was conducted in February 2014 at the Ka’ena Point, Oahu 

Island breeding colony (21°34’N, 158°16’W) in Hawaii. GPS loggers were attached to three birds, and 

all were recaptured. One logger did not record enough data, so the remaining two datasets were used in 

further analysis. The experiment was conducted under permission from the Hawai’i Department of Land 

& Natural Resources and the United States Geological Survey Bird Banding Laboratory. 

The field study of wandering albatross was conducted in March 2007 at Possession Island, 

Crozet archipelago (46°25’S, 51°44’E) in South Indian Ocean by Katsufumi Sato (Atmosphere and 

Ocean Research Institute, The University of Tokyo). GPS loggers were attached to six birds, and all 

were recaptured. Two loggers failed to record due to exposure to seawater, and the remaining four 

datasets were used in further analysis. The experiment was conducted under permission from the ethics 

committee of the Institute Polaire Paul Emile Victor, France. 

 

Initial processing of GPS data 

The raw data downloaded from GPS loggers included gaps; missing data of one to few 

seconds, and overlaps; continuous data assigned to the same time-stamp. Although the number of gaps 

and overlaps were much smaller than the total data length, the gaps were interpolated, and overlaps 

were deleted to make a continuous data with an equal time interval. Cubic spline was used to 

interpolate the gaps of longitude and latitude. When multiple data points were assigned to the same 
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time, the data point appeared first was kept and other data points were deleted to prevent equal time 

interval. 

 

Speed and direction 

Movement speed and direction of the birds were derived from the GPS positional data (Fig. 

2-2A). The ground speed of the bird at each position (𝑃𝑖(𝑥𝑖 , 𝑦𝑖)) was defined by the distance between 

consecutive positions (𝑃𝑖) and (𝑃𝑖+1) divided by the time interval; 1 second (Fig. 2-2A). Flight 

direction of the bird at each position (𝑃𝑖) was defined by the anti-clockwise angle between east and the 

direction of the line connecting consecutive positions (𝑃𝑖) and (𝑃𝑖+1) (Fig. 2-2A). This direction 

corresponds to the ground velocity of the bird, not the heading that corresponds to the air velocity of 

the bird. The GPS units used in this study continuously communicated with the satellites to obtain one 

fix per second which sustained high relative accuracy between consecutive positional fixes. However 

erroneous GPS positions were obtained infrequently. Speed and direction data corresponding to these 

erroneous GPS positions were eliminated by using the speed data; points accompanied by ground 

speed over 50 ms-1 were excluded and replaced by linear interpolation. 

 

Extract flight phase 

The trajectory was divided into two phases: resting and flight, based on the ground speed of 

the bird. The histogram of ground speed was bimodal (Fig. 2-3). The peak at lower ground speed 

corresponds to resting on sea surface or land, and the peak at higher ground speed corresponds to 

flight (Shiomi et al., 2012; Weimerskirch et al., 2002). These two behavioral phases can be divided at 

a ground speed of approximately 4 ms-1 based on the bimodal histogram (Fig. 2-3). Streaked 

shearwaters frequently showed cyclic flight maneuvers — repeating flight against the wind and 

following the wind in a few seconds scale. The flight against the wind in this cycle occasionally 

caused few seconds of low ground speed under 4 ms-1, so simply dividing rest and flight behaviors 
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based on 4 ms-1 ground speed threshold caused spurious resting phases during cyclic flight maneuvers. 

Therefore, resting phases were defined as where low ground speed under 4 ms-1 was kept for at least 5 

seconds. The rest of the track was assigned to flight phase. 

 

Estimate wind velocity from the trajectory of bird flight 

Ground velocity is the sum of air velocity and wind velocity. When there is no wind, ground 

velocity is identical to the air velocity in any heading directions. When there is wind, however, ground 

speed increases in a tailwind, decreases in a headwind, and shows an intermediate value in a sidewind, 

according to the amount of assistance or resistance from the wind. Therefore, the ground speed 

changes in a continuous manner in relation to flight direction due to the effect of wind. Maximum 

ground speed should be achieved in pure tailwind which equals the sum of airspeed and wind speed, 

whereas minimum ground speed should be achieved in pure headwind which equals wind speed 

subtracted from airspeed. Here, the relationship between flight direction and ground speed was used to 

estimate air velocity and wind velocity by fitting a cosine curve or a circle (Fig. 2-2B, C). 

The relation between flight direction and ground speed can be approximated by a cosine 

curve (Shimatani et al., 2012). A cosine curve was fitted to the relation between ground speed and 

flight direction using the following equation: 

 

𝑉𝑔 =  𝑉𝑤 cos(𝜃 − 𝜃𝑤) + 𝑉𝑎 (2-1) 

 

Maximum likelihood estimates of wind speed (𝑉𝑤), wind direction (𝜃𝑤), and airspeed (𝑉𝑎) could be 

obtained by using the observed series of ground speed (𝑉𝑔) and flight direction (𝜃), assuming a 

Gaussian distribution for ground speed (𝑉𝑔). Wind speed (𝑉𝑤) could be graphically shown as the 

one-half of the difference between the maximum and the minimum ground speed obtained from the 

fitted cosine curve (Fig. 2-2B). Wind direction (𝜃𝑤) could be graphically shown as the direction where 

the maximum ground speed is achieved (Fig. 2-2B). 
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The relation between air, ground, and wind vectors were precisely expressed by fitting a 

circle to the ground velocity vector by minimizing the following equation, which is the sum of squared 

difference between the data points and the closest point on the circle (Fig. 2-2C). 

 

∑ {√(𝑉𝑔 cos 𝜃 − 𝑉𝑤 cos 𝜃𝑤)
2

+ (𝑉𝑔 sin 𝜃 − 𝑉𝑤 sin 𝜃𝑤)
2

− 𝑉𝑎}

2

(2-2) 

 

Wind speed (𝑉𝑤), wind direction (𝜃𝑤), and airspeed (𝑉𝑎) can be estimated from this equation using the 

observed series of ground speed (𝑉𝑔) and flight direction (𝜃) (Fig. 2-2C). The estimated wind vector 

can be graphically shown as the vector from the origin to the center of the fitted circle (Fig. 2-2C). The 

estimated airspeed can be graphically shown as the radius of the fitted circle (Fig. 2-2C). Cosine fitting 

and circle fitting methods were compared where satellite-based winds were available for verification. 

 

Apply two-dimensional wind estimation to bird trajectory 

Only the flight phases lasting longer than 10 minutes were used in the wind estimating 

analysis. One minute after take-off and one minute before landing were excluded from the analysis 

considering the effect of frequent flapping accompanied with rapid acceleration and deceleration 

which could differ from the cruising speed (Kogure et al., 2016; Sato et al., 2009). Each flight phase 

was divided into series of 5-minutes windows (Fig. 2-2A). This 5-minutes section length was a 

consequence of a trade-off between the need for sufficient numbers of data points to estimate wind 

while keeping a high temporal resolution. It is also comparable to 5-minutes to a 1-hour interval of the 

in-situ measurements from buoys and weather stations for further validation. Cosine fitting was 

applied to each section to estimate wind velocity. Mean latitude and longitude of each section were 

calculated to represent the positions of the estimated wind. Circular deviance of each flight section 

was calculated to represent the variation of flight direction. To avoid ambiguous estimation of wind 

direction Akaike’s information criterion (AIC) was calculated for cosine curve fitting (𝐴𝐼𝐶𝑐𝑜𝑠) and 
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line fitting with a fixed slope of zero (𝐴𝐼𝐶𝑛𝑢𝑙𝑙) in each section, assuming normal distribution around 

each fitting. The wind was not estimated when 𝐴𝐼𝐶𝑐𝑜𝑠 > 𝐴𝐼𝐶𝑛𝑢𝑙𝑙 − 2. This selection of fitting 

avoided wind velocity estimation when the variation of flight direction was small, or the ground speed 

variation seemed random, not reflecting the effect of wind velocity. It also avoided wind estimation 

when wind speed was extremely weak. 

 

Validation of two-dimensional bird-based wind estimates by satellite-based wind 

measurements 

The bird-based wind speed and direction were compared with wind estimated by 

satellite-borne scatterometers to examine the accuracy. The scatterometers transmit microwave pulses 

to the ocean surface and measure the surface roughness from the backscattered pulses. Wind speed and 

direction are estimated by relating the surface roughness to wind stress. The satellites orbit the earth 

twice per day and estimate wind speed and direction in continuous swaths covering large parts of the 

global ocean (Fig. 2-1). The reference wind speed and direction data were obtained from the SeaWinds 

microwave scatterometer instrument flown on the QuikSCAT spacecraft (QSCAT) and the Advanced 

Scatterometer instrument flown on the EUMETSAT MetOp-A satellite (ASCAT) from Physical 

Oceanography Distributed Active Archive Center (PODAAC, http://podaac.jpl.nasa.gov/). Wind 

speed and direction data were downloaded from OPeNDAP in PODAAC where wind velocities were 

gridded in 12.5 × 12.5 km resolution in 10 m reference height for both QSCAT and ASCAT. Wind 

speed and direction from QSCAT was used for comparison with 2007 dataset (wandering albatross) 

and ASCAT for 2014 dataset (streaked shearwater and Laysan albatross). Bird-based winds and 

satellite-based winds were collocated for comparison by choosing the nearest point both temporally 

and spatially. Temporal difference and spatial separation were limited to 2 hours and 10 km — within 

the range of previous studies validating or comparing in-situ wind measurements with satellite-based 

winds (Adams and Flora, 2009; Freilich and Dunbar, 1999) — resulting in a maximum difference of 
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89 minutes and 8.6 km. In many cases, the location of the bird-based wind data was between the 

swaths of satellite-based wind measurements which caused large spatial separation. Twelve out of 20 

compared points were from different individuals (all points from shearwaters are from different 

individuals), and a maximum of four points are obtained from the same individual (wandering 

albatross). Comparison points from the same individual were temporally separated by at least 12 hours 

which could be treated as temporally independent observations. Due to the small amount of collocated 

data between bird-based and satellite-based wind estimates, here the wind estimates from all species 

were pooled to validate the bird-based wind using satellite-based wind estimates statistically. 

Wind speed and direction estimated by both the cosine fitting and the circle fitting methods 

were compared with satellite-based wind estimates. Bird-based wind velocities and satellite-based 

wind velocities were both decomposed to 𝑥  and 𝑦  components in earth-oriented Cartesian 

coordinates, 𝑥 increases along the eastward axis and 𝑦 increases along the northward axis. The 

generalized vector correlation coefficient was calculated to evaluate the degree of correlation between 

bird-based and satellite-based wind velocities (Crosby et al., 1993). This coefficient takes into account 

both wind speed and direction and shows a value between 0 and 2, 0 indicating no correlation and 2 

indicating a complete correlation between two series of vectors. 

The generalized vector correlation coefficient is independent of the scaling effect to vector 

datasets by either a constant magnitude or angular shift. Therefore, the wind speeds and the directions 

of satellite-based and bird-based winds were further compared separately. Wind speeds were 

compared by applying Passing-Bablok regression (Passing and Bablok, 1983) using mcreg function in 

mcr package in R ver. 3.0.0. Although the satellite-based wind estimates used as the reference data for 

validation also include error, Passing-Bablok regression compares two different methods (bird-based 

and satellite-based) estimating the same parameter (wind speed) taking into account that both of the 

estimating methods have an error. Wind directions of satellite-based and bird-based wind estimates 

were compared by the Fisher-Lee parametric test for angular correlation (Zar, 1999) to test whether 
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there was a correlation between them. All the analyses in the method section were done using Igor Pro 

(WaveMetrics) with the advanced add-on “Ethographer”, MATLAB (MathWorks), and R (R Core 

Team). 

 

Results 

Wind estimates from the flight trajectories of soaring seabirds 

A total of 353, 74, and 185 hours of positional data were obtained from streaked shearwaters 

(27.2 ± 12.9 hours, n = 13), Laysan albatrosses (37.1 ± 4.0 hours, n = 2), and wandering albatrosses 

(46.3 ± 1.2 hours, n = 4), respectively. A total of 1685, 718, and 744 sections of wind estimates were 

obtained from each species. The number of sections in which wind estimation was avoided by the 

model selection based on AIC was 21 (1.2%) for streaked shearwaters, 18 (2.5%) for Laysan 

albatrosses, and 5 (0.7%) for wandering albatrosses. Excluding these points resulted in 1664 wind data 

obtained from streaked shearwaters, 700 from Laysan albatrosses, and 739 from wandering 

albatrosses. 

Extensive travel distances and prolonged flight durations of soaring seabirds enabled wide 

range estimation of wind speed and direction in fine-scale resolution. Estimated wind speed from 

streaked shearwater’s trajectories ranged from 0.4 to 11.2 ms-1 with average of 3.4 ± 1.6 ms-1. Data 

points were widespread in the ocean between Hokkaido and Sanriku in north-eastern Japan, and were 

densely distributed mainly near the Sanriku coast (ca. <100 km from land) (Fig. 2-4) because the birds 

frequently returned to their colony at the coastal island to feed their chick. Offshore winds estimated 

by long-distance foraging trips (ca. 500 km) were relatively strong while speeds of coastal winds 

estimated by short distance foraging trips (ca. < 100 km) were weaker and changed direction frequently 

(Fig. 2-4). 

Laysan albatrosses’ flight extended to the northern ocean of Hawaii islands with a total of 

718 bird-based wind estimates from two birds (Fig. 2-5). During the northward flight, both the 
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bird-based wind estimates and the satellite-based wind measurement showed a weak wind (ca. < 1 

ms-1) indicating that a high-pressure system might have passed this region (Fig. 2-5). 

Wandering albatrosses’ flight was recorded in a wide area of the Southern Indian ocean with 

a total of 744 bird-based wind estimates from four birds (Fig. 2-6). The average wind speed of the 

bird-based winds was stronger compared to the other two species reflecting that wandering albatrosses 

fly in a region where strong wind is dominant; the roaring forties. However, continuous change in 

wind speed was observed by the bird-based wind estimates indicating that the wind in roaring forties is 

not always consistent. One bird experienced weak winds in a northwestern travel (Fig. 2-6, ca. 43°

S50°E) and one bird seemed to be trapped in the high-pressure cell (Fig. 2-6, ca. 46°S43°E). 

 

Bird-based wind covered spatial and temporal observation gaps of conventional methods 

The fine-scale time series of wind in the Sanriku coastal area estimated from the flight 

trajectories of 13 streaked shearwaters were further examined in the context of complementing 

satellite-based wind observations. Fine-scale resolution of the bird-based wind estimates covered 

temporal and spatial gaps between the remote sensing measurements. Each of the bird-based wind 

velocity represented the wind experienced by the birds during five-minute flights of approximately 2–3 

km distance traveled. This resolution was higher compared to more than 12 hours and 12.5 km 

resolution of satellite-based wind observations. Dense spatial distribution of bird-based winds in coastal 

areas covered a key region where satellite-based wind measurements are lacking due to topographic 

effects (Fig. 2-4 and Fig. 2-7B, C). In addition, the high temporal resolution of the bird-based winds 

detected the dynamic change in wind direction from northerly winds to southerly winds that occurred 

between 0:00 to 12:00 UTC of September 3rd with timing differing according to the location of the birds 

(Fig. 2-7A). These changes were not recorded by the scatterometer wind estimation at 0:00 UTC Sep 3rd 

and 11:00 UTC Sep 4th, which is 35 hours apart, because of the coarse temporal resolution (Fig. 2-7B, 

C). 



14 

 

 

Verification of bird-based wind estimates 

To examine the accuracy of the bird-based wind velocities, it was compared with the 

satellite-based wind velocities estimated by the QuikSCAT and ASCAT satellite scatterometers. Many 

of the bird-based wind measurements were located between the swaths or time regions of the satellite 

coverage (Fig. 2-1) resulting in a total of 20 collocated comparable points between bird-based and 

satellite-based winds (streaked shearwaters N = 9 (Fig. 2-4 and 2-8), Laysan albatrosses N = 2 (Fig. 2-5 

and 2-9), and wandering albatrosses N = 9 (Fig. 2-6 and 2-10)). The generalized vector correlation 

coefficient (Crosby et al., 1993) that accounts for the correlation between two sets of vectors (lengths 

and directions) was used to compare the bird-based and satellite-based wind estimates. A significant 

correlation was shown between the bird-based and the satellite-based wind estimates both in cosine 

fitting (𝜌𝑣
2 = 1.66, P < 0.01) and in circle fitting (𝜌𝑣

2 = 1.55, P < 0.01). 

In addition, wind speed and direction were validated separately. The bird-based wind speed 

was strongly correlated with the satellite-based wind speed for both the cosine fitting method (Fig. 

2-11A, Pearson’s R = 0.93, P < 0.01) and the circle fitting method (Fig. 2-11C, Pearson’s R = 0.83, P < 

0.01), but was underestimated. Comparison of wind direction between bird and satellite-based estimates 

showed good agreement for both the cosine fitting method (Fig. 2-11B, Angular correlation coefficient 

R = 0.46, P < 0.01) and the circle fitting method (Fig. 2-11D, Angular correlation coefficient R = 0.52, P 

< 0.01). The absolute difference between bird-based and satellite-based measurements of wind direction 

became larger in weak winds, particularly at some points from streaked shearwaters and a Laysan 

albatross (Fig. 2-12). 

 

Discussion 

Soaring seabirds are characterized by its unique dynamic soaring flight, which relies on the 

energy extracted from wind (Sachs, 2005; Sachs et al., 2013; Spivey et al., 2014). This flight strategy 
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provides two technical advantage of using soaring seabirds as an indicator of wind. First, the high ratio 

of gliding in soaring seabirds indicates that their movements are dominated by the effect of the wind. 

This suggests that the movement could be adequately modeled by a simple relationship between ground 

vector, air vector, and wind vector. Second, flight paths of shearwaters and albatrosses recorded in this 

study showed a tortuous pattern of dynamic soaring in fine-scale movement on the order of several 

tens of meters (Fig. 2-2A) which was associated with a fluctuation of ground speed and flight direction 

(Fig. 2-2B, C). This fluctuation provided sufficient variation of flight direction in a short period that 

enabled a successful fitting of a cosine curve or a circle, even when the bird seemed to fly in a certain 

direction over a large scale (Fig. 2-2A). 

Wind velocities obtained from cosine curve and circle fitting methods both showed good 

agreement with the satellite-based wind velocities. This suggests that while circle precisely expresses 

the relationship between air, ground, and wind vector, cosine curve could be a good approximation. 

Circle fitting has an advantage that it directly treats the parameters as vectors. Cosine curve fitting has 

an advantage in its simplicity so that it could be expanded to model the movement of the birds by 

incorporating additional parameters into the function (Shimatani et al., 2012). Good agreement of the 

validation indicates that cosine curve fitting and circle fitting method are both valid for further 

application. 

The bird-based estimates of wind velocities agreed well with the satellite-based wind 

measurements. This was in the range of vector correlation coefficients shown in studies that validate 

winds measured by satellite scatterometers with winds measured in situ by meteorological buoys 

(Adams and Flora, 2009; Freilich and Dunbar, 1999) (𝜌𝑣
2  = 1.28 to 1.90). Comparison of wind 

direction between bird and satellite-based estimates showed good agreement. However, the absolute 

difference between bird-based and satellite-based measurements of wind direction became larger in 

weak winds, particularly at some points from streaked shearwaters and a Laysan albatross (Fig. 2-12). 

Studies that validate satellite-based wind estimates using the in-situ measurements by buoys also shows 
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that discrepancy in wind direction increases at weak winds (Adams and Flora, 2009; Freilich and 

Dunbar, 1999). Deviation from the true wind direction is crucial in strong winds but minor in weak 

winds; an extreme case is that wind direction has no information when wind speed is zero. This issue is 

addressed by calculating the vector correlation coefficient considering both speeds and directions 

(Crosby et al., 1993), which showed good agreement between the two methods. Scatterometers evaluate 

ocean surface wind velocities by measuring the ocean surface roughness. In coastal areas, the accuracy 

of satellite wind measurements decreases because of the complex wave structure and small-scale wind 

variation caused by topography. Validation of satellite-based winds using buoys-based wind 

measurements shows that mismatches occur most often near the shore (Adams and Flora, 2009; Freilich 

and Dunbar, 1999). This limited accuracy and difficulty in capturing small-scale wind variation at 

coastal areas might also explain the deviation of wind direction between the two methods, especially in 

shearwaters flying in such areas. On the other hand, wind directions estimated from flight paths of 

wandering albatrosses showed the strongest agreement with satellite-based wind directions (Fig. 2-11B, 

D) because this species flew far away from land in regions of strong persistent winds; the roaring forties 

(Fig. 2-5). 

The bird-based wind speed was strongly correlated with the satellite-based wind speed but was 

underestimated (Fig. 2-11A, C); which has several possible explanations. First, satellite-based wind 

speed is extrapolated to a 10 m reference height while average flight height of studied birds is known to 

be below 10 m; approximately 2 m for shearwaters and 3–8 m for albatrosses (Pennycuick, 1982). This 

difference in height is suspected to be one of the causes of the underestimation of bird-based wind speed 

due to the wind shear where wind speed decreases near the ocean surface. To evaluate the discrepancy of 

wind speed due to the height difference, the logarithmic wind profile near the ocean surface was used 

(Stull, 2003) which showed that the corresponding flight height would be lower than 1 m to satisfy the 

underestimation of bird-based wind speed estimates. This indicates that the wind shear does not solely 

explain the discrepancy between bird and satellite-based wind speed estimates or that the logarithmic 
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profile was inappropriate to represent the experienced wind shear (Bousquet et al., 2017). Second, 

potential sources of error which might be related to the characteristics of soaring flight of the seabirds 

should be considered. The unique dynamic soaring flight pattern used by shearwaters and albatrosses 

does not only zigzags in the horizontal direction but also fluctuates in the vertical direction (Sachs et al., 

2012; Sachs et al., 2013; Spivey et al., 2014). Therefore, the variation in ground speed includes the 

decrease and increase of ground speed associated with the gain and loss of altitude. Altitude variation 

related to the maneuvering of soaring birds consists of ascending against the winds and descending 

following the winds (Sachs, 2005; Sachs et al., 2013). This may cause the estimated wind speed to 

deviate from the true wind speed experienced by the bird. However, studies of dynamic soaring flight 

shows that potential energy associated with flight altitude is much smaller than the kinetic energy 

associated with fluctuating ground speed, indicating that wind resistance and assistance dominates 

ground speed fluctuation (Gibb et al., 2017; Sachs et al., 2012; Sachs et al., 2013). Another error can be 

caused by albatrosses and shearwaters that adjust their airspeed in relation to headwinds and tailwinds, 

with airspeed increasing in headwinds (Pennycuick, 1982; Spear and Ainley, 1997), because here an 

assumption was made that the bird flew in a constant airspeed in each section. However, airspeed 

adjustment is not relevant to the few seconds scale of the cyclic maneuver of dynamic soaring, and it is 

rather adjusted in a more larger scale relationship between wind direction and the bird’s flight direction, 

which is discussed in chapter three. Although flapping effort, which increases with decreasing body size 

(Sato et al., 2009), might also affect wind speed estimation especially in relatively small-sized 

shearwaters, this should have small effect because intermittent flapping of soaring seabirds is considered 

to keep air speed in a certain range for sustainable flight (Pennycuick, 1987; Spivey et al., 2014), and 

take-offs and landings associated with rapid increase or decrease in ground speed by flapping (Kogure et 

al., 2016; Sato et al., 2009) was excluded from the analysis. The strong correlation between bird-based 

and satellite-based wind speeds suggest that bird-based wind speeds could be converted to comparable 

values for practical use. Further analysis of the complex dynamics of the flight of these birds can 
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increase estimation accuracy, especially by recording flight height to determine the reference height of 

the estimated wind velocities. 

Although indirect measurement from flight paths of soaring seabirds might include errors 

related to behavior and flight strategy of the birds, bird-based and satellite-based wind velocities were 

strongly correlated, suggesting that these estimated wind velocities have sufficient accuracy for further 

practical use in both the study of seabird’s flight behavior and meteorological wind observations. Still, it 

is necessary to carefully address the estimation errors caused by flight behavior and the difference 

between species through validation, and further improve the accuracy by analysis of three-dimensional 

flight trajectories. 
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Table2-1. Information of the birds equipped with loggers. 

 

Species names, logger attached date, logger retrieved date, body mass, sex (M: male, F: female, U: 

unknown), logger name, and the reason for exclusion from the analysis are shown. 

  

Species
Logger attached

(year/month/day)

Logger retrieved

(year/month/day)

Body

mass

(kg)

Sex Logger Remarks

2014/9/2 fell off

2014/8/29 2014/9/3 0.62 M Gipsy

2014/9/2 2014/9/3 0.58 M Gipsy

2014/8/29 2014/8/30 0.56 F Gipsy

2014/9/2 2014/9/3 0.67 M Gipsy

2014/9/2 2014/9/6 0.50 F Gipsy

2014/8/29 2014/9/1 0.60 M Gipsy

2014/9/2 2014/9/5 0.50 F Gipsy insufficient data

2014/9/2 2014/9/3 0.62 M Gipsy insufficient data

2014/8/29 2014/8/30 0.63 M Gipsy

2014/9/2 2014/9/9 0.60 M Gipsy

2014/8/29 not recaptured

2014/8/29 2014/8/30 0.49 F Gipsy

2014/9/2 2014/9/5 0.46 F Gipsy

2014/8/29 2014/9/1 0.60 M Gipsy

2014/9/2 2014/9/3 0.62 M Gipsy

2014/8/29 2014/9/1 0.59 M Gipsy

2014/2/3 2014/2/8 3.1 U Gipsy

2014/2/4 2014/2/7 3.1 F Gipsy

2007/2/21 2007/3/3 7.2 F GPL20

2007/3/6 2007/3/15 8.7 F GPL20

2007/3/13 2007/3/27 11.3 M GPL20

2007/3/17 2007/3/21 11.0 M GPL20

Streaked shearwater

Laysan albatross

Wandering albatross
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Fig. 2-1. An example of the swaths of wind measurements by the satellites. 

The wind measurement from the ASCAT Metop-A (advanced scatterometer) in 31 August 2014 

(ascending path). The satellite orbits around the earth to measure winds by microwave pulses. These 

swaths of wind measurements are obtained twice per day (ascending and descending paths), however, 

large gaps are left unobserved such as the east coast of Japan where experiments were conducted on this 

day. The figure is copied from the STAR (Center for Satellite Application and Research) webpage. 
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Fig. 2-2. Estimation of wind from the ground speed and direction of the birds. 

(A) An example of a flight path of streaked shearwater obtained from GPS records. Flight is separated 

into 5-minutes sections (red part). Enlarged view of the flight path shows the zigzag dynamic soaring 

flight (bottom box). Flight direction (𝜃) and ground speed (𝑉𝑔) (dark blue arrow) with eastward (𝑉𝑔𝑥𝑖
) 

and northward (𝑉𝑔𝑦𝑖
) component (light blue arrows) is defined for each position (𝑃𝑖). Direction is zero 

towards east and positive anticlockwise (top left). (B) Cosine curve fitting to the relationship between 

flight direction and ground speed of the red section shown in (A). Wind speed is graphically shown as 

the half the difference between maximum and minimum values of the fitted curve (green two-way 

arrow). Wind direction is estimated as the direction where maximum value is obtained by the fitted 

circle (green one-way arrow). (C) Scatter plots of ground velocity and the fitted circle of the red flight 

section shown in (A). Wind velocity (green arrow), air velocity (red arrow), and ground velocity (blue 

arrow) are shown. Bird-wind angle (𝛼) is defined as the angle between the ground vector and the wind 

vector.  
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Fig. 2-3. Histograms of ground speed. 

Histograms of the ground speed of streaked shearwaters (N = 13), Laysan albatrosses (N = 2), and 

wandering albatrosses (N = 4). All histograms show bimodal distribution where low speed corresponds 

to resting and high speed corresponds to flight. Ground speed of 4 ms-1 was set as the threshold to 

divide rest and flight phase. 
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Fig. 2-4. Wind estimated from the flight of streaked shearwaters. 

Bird-based winds are mapped on the flight paths of (A) seven streaked shearwaters released on August 

29th, 2014 and (B) six streaked shearwaters released on September 2nd, 2014. Wind speed (colors) and 

direction in which the wind is blowing (black bars) is shown. Stars indicate the breeding colony. Points 

where bird-based wind was compared with satellite-based wind are shown in boxes. Estimated wind 

vectors (black arrows) are mapped on the bird’s flight track (light blue lines). Satellite-based wind 

measurements are mapped (gray arrows). Bird-based winds temporally closest to the satellite-based 

wind measurements are shown (red arrows).  
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Fig. 2-5. Wind estimated from the flight of Laysan albatrosses. 

Bird-based winds are mapped on the flight paths of two Laysan albatrosses. Wind speed (colors) and 

direction in which the wind is blowing (black bars) is shown. Points where bird-based wind was 

compared with satellite-based wind are shown in boxes. Estimated wind vectors (black arrows) are 

mapped on the bird’s flight track (light blue lines). Satellite-based wind measurements are mapped (gray 

arrows). Extremely weak winds are shown in grey circles. Bird-based winds temporally closest to the 

satellite-based wind measurements are shown (red arrows). 
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Fig. 2-6. Wind estimated from the flight of wandering albatrosses. 

Bird-based winds are mapped on the flight paths of four wandering albatrosses. Wind speed (colors) and 

direction in which the wind is blowing (black bars) is shown. Points where bird-based wind was 

compared with satellite-based wind are shown in boxes. Estimated wind vectors (black arrows) are 

mapped on the bird’s flight track (light blue lines). Satellite-based wind measurements are mapped (gray 

arrows). Bird-based wind temporally closest to the satellite-based winds measurements are shown (red 

arrows). 
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Fig. 2-7. Bird-based wind estimates covering the temporal gaps of satellite-based wind 

observations. 

(A) Temporal view of the bird-based winds by six streaked shearwaters released on September 2nd, 2014. 

Two black vertical lines indicate the times when a satellite scatterometer estimated the wind in the sea of 

north-eastern Japan. (B) The satellite-based wind on approximately 0:00 UTC of September 3rd, 2014 

and (C) 11:00 UTC of September 4th, 2014. There are data gaps at the coastal area and outside the 

measurement band. 
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Fig. 2-8. Wind estimation by cosine curve fitting in streaked shearwaters. 

Cosine curve fitting against the relationship between ground speed and direction in nine flight sections 

of streaked shearwaters where the bird-based wind estimates were compared with satellite-based wind 

estimates. Red curves are the fitted cosine curves. The 95% prediction intervals are shown in gray. 

Estimated wind speed and direction are shown above each box with lower and upper 95% confidence 

intervals in parentheses. The number on the right bottom of each box represents the individual number. 

Each box is linked to the comparison points shown in Fig. 2-4. 
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Fig. 2-9. Wind estimation by cosine curve fitting in Laysan albatrosses. 

Cosine curve fitting against the relationship between ground speed and direction in two flight sections 

of Laysan albatrosses where the bird-based wind estimates were compared with satellite-based wind 

estimates. Red curves are the fitted cosine curves. The 95% prediction intervals are shown in gray. 

Estimated wind speed and direction are shown above each box with lower and upper 95% confidence 

intervals in parentheses. The number on the right bottom of each box represents the individual number. 

Each box is linked to the comparison points shown in Fig. 2-5. 
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Fig. 2-10. Wind estimation by cosine curve fitting in wandering albatrosses. 

Cosine curve fitting against the relationship between ground speed and direction in nine flight sections 

of wandering albatrosses where the bird-based wind estimates were compared with satellite-based 

wind estimates. Red curves are the fitted cosine curves. The 95% prediction intervals are shown in 

gray. Estimated wind speed and direction are shown above each box with lower and upper 95% 

confidence intervals in parentheses. The number on the right bottom of each box represents the 

individual number. Each box is linked to the comparison points shown in Fig. 2-6.  
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Fig. 2-11. Comparison between bird-based and satellite-based wind velocities. 

(A, B) The relationship between bird-based (𝑉𝑏𝑖𝑟𝑑) and satellite-based (𝑉𝑠𝑎𝑡) wind speeds for (A) the 

cosine curve fitting method (𝑉𝑏𝑖𝑟𝑑 = 0.50𝑉𝑠𝑎𝑡 − 1.02, Pearson’s R = 0.93, P < 0.01) and (B) the circle 

fitting method (𝑉𝑏𝑖𝑟𝑑 = 0.52𝑉𝑠𝑎𝑡 − 1.66, Pearson’s R = 0.83, P < 0.01). Gray dashed line represents 

equal speed. Blue dashed line represents the 99% confidence intervals. (C, D) The relationship between 

bird-based and satellite-based wind directions for (C) the cosine curve fitting method (angular 

correlation R = 0.44, P < 0.01) and (D) the circle fitting method (angular correlation R = 0.52, P < 0.01). 

Gray dashed line represents equal directions. Color represents streaked shearwaters (red), Laysan 

albatrosses (blue), and wandering albatrosses (orange). 
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Fig. 2-12. The deviation between bird-based and satellite-based wind direction in relation to wind 

speed. 

Color represents streaked shearwaters (red), Laysan albatrosses (blue), and wandering albatrosses 

(orange). Deviation between bird-based and satellite-based wind estimated increases as wind speed 

becomes weaker (Pearson’s R = 0.48, P < 0.03). 
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Chapter 3  

Adjustment of flight pattern in response to wind of seabirds 

combining flapping and dynamic soaring 

本章（項）の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内

に出版予定。 
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Chapter 4  

General Discussion 

本章（項）の内容は、学術雑誌論文として出版する計画があるため公表できない。5 年以内

に出版予定。 
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