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論文題目 
 
	
 	
 Study of the Sertoli Valve Epithelia in the Terminal Segment  
                               of Mouse Seminiferous Tubules 
          
	
 	
 	
 	
 	
 （マウス精細管基部のセルトリバルブ上皮に関する研究） 
 
   In adult mammalian testes, spermatozoa are produced through almost all their life, 

and this is because males have spermatogonial stem cells (SSCs) inside testes, and SSCs 

self-renew or differentiate in a well-balanced manner. SSCs are settled in seminiferous 

tubules with nursing cells called Sertoli cells (SCs) and SCs support the SSCs. SCs 

supply secreting factors and regulate the balance of self-renewing and differentiation of 

undifferentiated spermatogonia including SSCs. A major niche factor for SSCs’ 

self-renewing is glial cell line-derived neurotrophic factor (GDNF). Undifferentiated 

spermatogonia including SSCs express GDNF family receptor alpha 1 (GFRA1). On the 

other hand, major SSCs’ differentiating factor is retinoic acid (RA). 

   Undifferentiated spermatogonia differentiate into differentiated spermatogonia and 

after that, they differentiate into spermatocytes and meiosis occurs. By meiosis, haploid 

cells, called spermatids, are produced. Spermatids undergo the morphological change 

and develop into matured spermatids. Finally, they are released into the lumen of 

seminiferous tubules as spermatozoa and transferred into the rete testis (RT) by the 

luminal fluid flow. This series of events is called spermatogenesis. Spermatogenesis is 



precisely coordinated in time and space and occurs with periodical cycle called 

seminiferous epithelial cycle. In mice, it has been divided into 12 stages. These cyclical 

differentiations might be explained by periodical GDNF secretion and RA secretion. 

The stages highly expressing GDNF and RA occur alternatively like a seesaw. 

   The above periodical differentiation is the story inside convoluted seminiferous 

tubules (ST), which account for a large portion of seminiferous tubules. In the terminal 

segment of seminiferous tubules, where they are connected to rete testis, a gradual 

depletion of germ cells occurs and finally tubules are lined only by SCs and a few 

spermatogonia. This region is known as straight seminiferous tubule, transitional zone 

or transition region, and this region is seen in many species including human. The SCs 

in this region form ‘plug’ or ‘valve’ -like structure and are considered to regulate the 

luminal fluid flow of seminiferous tubules. In our laboratory, we call this structure 

“Sertoli valve (SV)” and our previous data on hamsters show that SV epithelium 

constitutively expresses GDNF and supports the stable proliferation and selective 

maintenance of undifferentiated spermatogonia. The SCs in SV region support 

GFRA1-positive undifferentiated spermatogonia, while the region lacks KIT-positive 

differentiated spermatogonia and further differentiated spermatogenic cells. These data 

suggest that in SV region, balance between self-renewal and differentiation of SSCs is 

inclined more to self-renewal, so that periodical cycle is missing. 

   SCs proliferate from fetal stage to neonatal stage, however for a long time, it was 

considered that proliferation of SCs is not observed in adult stage in most of mammals. 

Our previous data show that SCs in SV region of hamsters are still capable of 

proliferation even in adult stage. Moreover, the evidences of proliferating adult SCs in 

SV region were also found in normal rat testes and cultured mouse SCs. 

   As stated above, SV region shows interesting feature, so that many researchers hope 

to know the cellular or molecular characteristics. In this study, I did the histological 

observation, developmental engineering analysis, and transciptomic analyses to clarify 

the development and molecular basis of SV structure. For the histological observation, I 

focused on the Akt signaling and performed the immunohistochemistry using 

anti-phospho-Akt (active form of Akt) antibody. In the developmental engineering 

analysis, I used Amh-Treck transgenic mice to deplete the SV structure and after that, I 

reconstruct the SV structure by SCs of convoluted seminiferous tubules. Finally, I 

performed the microarray and detected the SV specifically highly expressed genes. 



 

   In Chapter 1, I analyzed the activation of Akt signaling in SCs using 

immunostaining of anti-p-Akt antibody. In ST region, Akt signaling was seminiferous 

epithelial cycle-dependently activated, while in SV region, Akt signaling was 

constitutively activated. This pattern of Akt activation in SV region was not observed in 

1-week-old neonatal mouse testes, but from 2 to 4-week-old, this pattern was observed 

and the valve-like structure was constructed. Transplanting the immature 1-week-old 

mouse SCs of ST region into SCs-depleted Amh-Treck Tg mouse testes revealed that 

SCs of ST can act as SCs of SV such as supporting few spermatogenic cells, activation 

of Akt signaling, and construction of valve-like structure positive for ace-Tub, when 

they are settled in SV region. These data suggest that Akt signaling is 

region-specifically constitutively activated after birth, and the construction of valve-like 

structure non-cell autonomously occurs dependent on information of the place where 

SCs are settled. I cannot understand the activation of Akt signaling in SV is the result or 

cause of the construction of valve-like structure from these data, but activation of Akt 

signaling in SV region might play an important role in constructing SV structure. 

 

   In Chapter 2, I show that Cyp26a1, the RA-metabolizing enzyme, was highly 

expressed in SCs of SV region of W/Wv mice (lack spermatogenic cells due to a germ 

cell-autonomous defect) compared to RT and ST regions by microarray, quantitative 

PCR analysis and in situ hybridization. In contrast, Aldh1a2, the RA-synthesizing 

enzyme, was highly expressed in ST region of wild-type mice, which include 

spermatogenic cells, compared to RT, SV, and ST regions of W/Wv mice. RA is the 

differentiation factor of spermatogenic cells. The data that Cyp26a1 is highly expressed 

in SV region suggest that RA degradation is constitutively occurring in SV region, so 

that SV region is missing seminiferous epithelial cycle, and balance between 

self-renewal and differentiation of SSCs is inclined more to self-renewal. This is 

consistent with the previous data that SV epithelia constitutively express GDNF and 

support the stable proliferation and selective maintenance of undifferentiated 

spermatogonia. RA degradation in SV region may play an important role in regulating 

the differentiation of spermatogenic cells in SV region. I also show that Fgf9 is highly 

expressed in RT region, and exogenous FGF9 can activate the Akt signaling in SCs 

even in ST region. 



 

   In the present study, I show the constitutive activation of Akt signaling in SV region, 

and the activation of Akt signaling and formation of valve-like structure non-cell 

autonomously occurred. Based on these findings, I proposed the hypothesis that RT 

secretes FGF9 and SCs that received FGF9 will be activated of Akt signaling, and then 

the SCs show the feature of SV structure. In addition, I cannot forget about the 

seminiferous epithelial cycle-dependent activation of Akt signaling in wild-type mouse 

ST region. Clarifying the factors of activating Akt signal in STs and the function of 

cyclical activation of Akt signaling is required. This cyclical activation of Akt signaling 

in ST region might have a relation with constitutive activation of Akt signaling in SV 

region. In the present study, I show that Cyp26a1 is highly expressed in SV region and 

that data suggest that RA degradation is constitutively occurring in SV region, and 

balance between self-renewal and differentiation of SSCs is inclined more to 

self-renewal in SV region. I can hypothesize that this situation is produced by 

constitutive activation of Akt signaling. If I apply this hypothesis to ST region, cyclical 

activation of Akt signaling in ST region may produce the cyclical balance of 

self-renewing and differentiation of SSCs. 

   RA signaling plays crucial roles during vertebrate development. There is a concept 

of RA-FGF antagonism and it is applied to several mechanisms of development. In the 

chick embryo, FGF signaling has been shown to antagonize the RA gradient and to 

maintain the undifferentiated state of cells in the posterior part of the embryo 

throughout somitogenesis. On the research of mouse somitogenesis, conditional 

deletion in the mesoderm of Fgfr1, the only FGF receptor expressed in the mouse 

paraxial mesoderm, resulted in the absence of the RA-degrading enzyme CYP26 in the 

posterior part of the embryo. In addition, on the research of mouse limb bud 

development, culturing of wild-type mouse forelimb bud in the presence of an inhibitor 

of the FGFR tyrosin kinase (SU5402) resulted in almost complete loss of Cyp26b1 

expression, and conversely, the implantation of FGF4-loaded beads into Shh-deficient 

mouse limb buds, of which the expression of Cyp26b1 was reduced in the distal 

mesenchyme and RA activity was increased, resulted in striking restoration of Cyp26b1 

expression. Applying these findings to the present study, I can consider that FGF9 

signaling in SV epithelia might activate the expression of Cyp26a1 in SV epithelia. 



 

 

 

 

 

 

 

General Introduction 



   A life starts from one zygote. The zygote is formed by fertilization of two gametes, 

oocyte and spermatozoon. The gametes are haploid cells that contain half number of 

chromosomes compared to somatic cells. The process for obtaining haploid cells 

involves the meiotic division inside the gonads. 

   As noted above, there are two kinds of gametes, oocyte and spermatozoon. In 

mammalian gonads, oocytes are produced in XX female ovaries, and spermatozoa are 

produced in XY male testes. Oocytes and spermatozoa are both derived from primordial 

germ cells (PGCs), but PGCs go through the different processes inside XX ovaries and 

XY testes. In mammalian XX ovaries, all oocytes, which are differentiated from PGCs, 

undergo first meiotic division while fetal stage. On the other hand, in mammalian fetal 

XY testes, PGCs differentiate into spermatogonia and still maintain the pluripotency 

(Feng et al. 2014). The main factor for making this difference is retinoic acid (RA), a 

derivative of vitamin A. In fetal XX ovaries, RA induces meiosis in fetal stage (Li & 

Clagett-Dame 2009, Bowles et al. 2016), while in fetal XY testes, RA is degraded by 

RA-metabolizing enzyme, Cytochrome P450, family 26, subfamily b, polypeptide 1 

(CYP26B1) (Bowles et al. 2006, Koubova et al. 2006, MacLean et al. 2007). 

   In adult mammalian testes, spermatozoa are produced through almost all their life, 

and this is because males have spermatogonial stem cells (SSCs) inside testes, and SSCs 

self-renew or differentiate in a well-balanced manner (de Rooij 2017, Lord & Oatley 

2017). SSCs are settled in seminiferous tubules with nursing cells called Sertoli cells 

(SCs) and SCs support the SSCs. SCs supply secreting factors and regulate the balance 

of self-renewing and differentiation of undifferentiated spermatogonia including SSCs 



(Franca et al. 2016). Outside of seminiferous tubules, there are peritubular cells (myoid 

cells), interstitial cells (Leydig cells), vasculatures and so on, and they also regulate the 

fate of undifferentiated spermatogonia (Yoshida et al. 2007, Chen et al. 2016, Potter & 

DeFalco 2017). A major niche factor for SSCs’ self-renewing is glial cell line-derived 

neurotrophic factor (GDNF) (Meng et al. 2000). Undifferentiated spermatogonia 

including SSCs express GDNF family receptor alpha 1 (GFRA1) (Grasso et al. 2012, 

Hara et al. 2014). On the other hand, major SSCs’ differentiating factor is RA (van Pelt 

& de Rooij 1990, Hogarth & Griswold 2010, Endo et al. 2015). 

   Undifferentiated spermatogonia differentiate into differentiated spermatogonia and 

after that, they differentiate into spermatocytes and meiosis occurs. By meiosis, haploid 

cells, called spermatids, are produced. Spermatids undergo the morphological change 

(elongating, etc.) and develop into matured spermatids. Finally, they are released into 

the lumen of seminiferous tubules as spermatozoa (this event is called spermiation) and 

transferred into the rete testis by the luminal fluid flow (Russell et al. 1990). This series 

of events is called spermatogenesis. Spermatogenesis require many kinds of molecules 

including RA, and previously I revealed that a deubiquitinase USP9X 

(ubiquitin-specific peptidase 9, X chromosome) is expressed in spermatogonia and is 

essential for proper spermatogenesis, showing the defective spermatogenesis with 

reduced numbers of spermatocytes and subsequent failure of spermiation in Usp9x 

conditional knockout mouse testes (Kishi et al. 2017). Moreover, spermatogenesis is 

precisely coordinated in time and space and occurs with periodical cycle called 

seminiferous epithelial cycle. In mice, it has been divided into 12 stages (Oakberg 



1956a, Oakberg 1956b) (Also see Fig. 0-1). These cyclical differentiations might be 

explained by periodical GDNF secretion (Johnston et al. 2011, Sato et al. 2011, Grasso 

et al. 2012) and RA secretion (Sugimoto et al. 2012, Hogarth et al. 2015a, Griswold 

2016, Endo et al. 2017). The stages highly expressing GDNF and RA occur 

alternatively like a seesaw. 

   The above periodical differentiation is the story inside convoluted seminiferous 

tubules, which account for a large portion of seminiferous tubules. In the terminal 

segment of seminiferous tubules, where they are connected to rete testis, a gradual 

depletion of germ cells occurs and finally tubules are lined only by SCs and a few 

spermatogonia (Fig.0-2). This region is known as straight seminiferous tubule, 

transitional zone or transition region, and this region is seen in many species including 

human (Roosen-Runge 1961, Dym 1974, Fawcett & Dym 1974, Osman 1978, Nykanen 

1979, Osman 1979, Lindner 1982, Ezeasor 1986, Hermo & Dworkin 1988). The SCs in 

this region form ‘plug’ or ‘valve’ -like structure and are considered to regulate the 

luminal fluid flow of seminiferous tubules (Johnson et al. 1970, Russell & Griswold 

1993). In our laboratory, we call this structure “Sertoli valve (SV)” and our previous 

data on hamsters (Aiyama et al. 2015) show that SV epithelium constitutively expresses 

GDNF and supports the stable proliferation and selective maintenance of 

undifferentiated spermatogonia. The SCs in SV region support GFRA1-positive 

undifferentiated spermatogonia, while the region lacks KIT-positive differentiated 

spermatogonia and further differentiated spermatogenic cells. These data suggest that in 

SV region, balance between self-renewal and differentiation of SSCs is inclined more to 



self-renewal, so that periodical cycle is missing. 

   SCs proliferate from fetal stage to neonatal stage, however for a long time, it was 

considered that proliferation of SCs is not observed in adult stage in most of mammals 

(Sharpe et al. 2003). Our previous data show that SCs in SV region of hamsters are still 

capable of proliferation even in adult stage (Aiyama et al. 2015). Moreover, the 

evidences of proliferating adult SCs in SV region were also found in normal rat testes 

(Figueiredo et al. 2016) and cultured mouse SCs (Kulibin & Malolina 2016). 

   As stated above, SV region shows interesting feature, so that many researchers hope 

to know the cellular or molecular characteristics. In this study, I did the histological 

observation, developmental engineering analysis, and transciptomic analyses to clarify 

the development and molecular basis of SV structure. For the histological observation, I 

focused on the Akt signaling and performed the immunohistochemistry using 

anti-phospho-Akt (active form of Akt) antibody. In the developmental engineering 

analysis, I used Amh-Treck transgenic mice (Shinomura et al. 2014) to deplete the SV 

structure and after that I reconstruct the SV structure by SCs of convoluted seminiferous 

tubules. Finally, I performed the microarray and detected the SV specifically highly 

expressed genes. 





Fig. 0-1. Seminiferous epithelial cyle 

(A) Figure from “Histological and histopathological evaluation of the testis” (Russell et 

al. 1990). A map of the seminiferous epithelial cycle of mouse showing catalogued 

phases of germ cell development. m, mitosis or meiosis of the cells; In, intermediate 

spermatogonia; B, B spermatogonia; Pl, Preleptotene spermatocyte; L, Leptotene 

spermatocyte; Z, Zygotene spermatocyte; P, Pacytene spermatocyte; D, Diplotene 

spermatocyte; 2°, secondary spermatocyte; Arabic numerals, steps of spermatids. (B) 

Transverse section of convoluted seminiferous tubules. Roman numerals indicate the 

seminiferous epithelial cycle stage of each tubule. Spermatogenic cells in the tubules 

synchronously develop and show cyclical differentiation, but the adjacent seminiferous 

tubules do not always show the same cycle stage and they are not synchronously 

regulated because inside tubules, development of spermatogenic cells occurs as wave 

along the long axis of tubules. Right panel is higher magnification indicated by broken 

rectangle in left panel. SC, Sertoli cell; Spg, spermatogonium; Spc, spermatocyte; rSpt, 

round spermatid; eSpt, elongated spermatid. 





Fig. 0-2. Scheme of structures of testis and epididymis 

Seminiferous tubules are in the testis, and interstitial cells surround the tubules. 

Convoluted seminiferous tubules account for a large portion of seminiferous tubules 

and inside the convoluted seminiferous tubules, spermatogenic cells self-renew and 

differentiate in a well-balanced manner. In the terminal segment of seminiferous tubules, 

where they are connected to rete testis, a gradual depletion of germ cells occurs and 

finally tubules are lined only by SCs and a few spermatogonia. 



 

 

 

 

 

Chapter 1 

 

 

Development of Sertoli valve epithelia 



   As the contents of this chapter are anticipated to be published in a paper in a 

scholarly journal, they cannot be published online. The paper is scheduled to be 

published within 5 years. 



 

 

 

 

 

Chapter 2 

 

 

Molecular basis of Sertoli valve epithelia 



   As the contents of this chapter are anticipated to be published in a paper in a 

scholarly journal, they cannot be published online. The paper is scheduled to be 

published within 5 years. 



 

 

 

 

 

 

 

 

General Discussion 



   In Chapter 1, I analyzed the activation of Akt signaling, and in ST region, Akt 

signaling was seminiferous epithelial cycle-dependently activated, while in SV region, 

Akt signaling was constitutively activated. This pattern of Akt activation in SV region 

was not observed in 1-week-old neonatal mouse testes, but from 2 to 4-week-old, it was 

observed and the valve-like structure was constructed. Transplanting the immature 

1-week-old mouse SCs of ST region into SCs-depleted Amh-Treck Tg mouse testes 

revealed that SCs of ST can be activated of Akt signaling, and construct the valve-like 

structure positive for ace-Tub as SCs of SV when they are settled in SV region. These 

data suggest that Akt signaling is region-specifically constitutively activated after birth, 

and the construction of valve-like structure non-cell autonomously occurs dependent on 

information of the place where SCs are settled. 

   In Chapter 2, according to the hypothesis from Chapter 1, I compared the 

transcription of RT, SV, and ST regions of W/Wv mice. Microarray analysis offered me 

the 326 SV specifically highly expressed genes, and the top of them was Cyp26a1, 

which encodes the RA-metabolizing enzyme. I confirmed that Cyp26a1 was highly 

expressed in SCs of SV region of W/Wv mice compared to RT and ST regions by 

quantitative PCR analysis and in situ hybridization. RA is the differentiation factor of 

spermatogenic cells and induces the key transitions of spermatogenesis, and periodical 

secretion of RA enables the cyclical differentiation of spermatogenic cells in convoluted 

seminiferous tubules (Sugimoto et al. 2012, Hogarth et al. 2015a, Griswold 2016, Endo 

et al. 2017). The data that Cyp26a1 is highly expressed in SV region suggest that RA 

degradation is constitutively occurring in SV region, so that SV region is missing 



seminiferous epithelial cycle, and balance between self-renewal and differentiation of 

SSCs is inclined more to self-renewal. This is consistent with the previous data that SV 

epithelia constitutively express GDNF and support the stable proliferation and selective 

maintenance of undifferentiated spermatogonia (Aiyama et al. 2015). RA degradation in 

SV region may play an important role in regulating the differentiation of spermatogenic 

cells in SV region. 

   I also show that Fgf9 is highly expressed in RT region, and exogenous FGF9 can 

activate the Akt signaling in SCs even in convoluted seminiferous tubules. In Chapter 1, 

I show the constitutive activation of Akt signaling in SV region, and the activation of 

Akt signaling and formation of valve-like structure non-cell autonomously occurred. 

Based on these findings, I proposed the hypothesis that RT secretes FGF9 and SCs that 

received FGF9 will be activated of Akt signaling, and then the SCs show the feature of 

SV structure (Fig. 3-1). Injecting an FGFR inhibitor to the SV region and observing the 

Akt activity and valve formation probably elucidate whether this hypothesis is correct 

or not. In addition, I cannot forget about the seminiferous epithelial cycle-dependent 

activation of Akt signaling in wild-type mouse ST region. Clarifying the factors of 

activating Akt signal in STs and the function of cyclical activation of Akt signaling is 

required. This cyclical activation of Akt signaling in ST region might have a relation 

with constitutive activation of Akt signaling in SV region. In the present study, I show 

that Cyp26a1 is highly expressed in SV region and that data suggest that RA 

degradation is constitutively occurring in SV region, and balance between self-renewal 

and differentiation of SSCs is inclined more to self-renewal in SV region. I can 



hypothesize that this situation is produced by constitutive activation of Akt signaling. If 

I apply this hypothesis to ST region, cyclical activation of Akt signaling in ST region 

may produce the cyclical balance of self-renewing and differentiation of SSCs. 

   RA signaling plays crucial roles during vertebrate development (Duester 2008, 

Niederreither & Dolle 2008). There is a concept of RA-FGF antagonism (Mercader et al. 

2000) and it is applied to several mechanisms of development. In the chick embryo, 

FGF signaling has been shown to antagonize the RA gradient and to maintain the 

undifferentiated state of cells in the posterior part of the embryo throughout 

somitogenesis (Mathis et al. 2001, Diez del Corral & Storey 2004, Vermot & Pourquie 

2005). On the research of mouse somitogenesis, conditional deletion in the mesoderm 

of Fgfr1, the only FGF receptor expressed in the mouse paraxial mesoderm, resulted in 

the absence of the RA-degrading enzyme CYP26 in the posterior part of the embryo 

(Wahl et al. 2007). In addition, on the research of mouse limb bud development, 

culturing of wild-type mouse forelimb bud in the presence of an inhibitor of the FGFR 

tyrosin kinase (SU5402) resulted in almost complete loss of Cyp26b1 expression, and 

conversely, the implantation of FGF4-loaded beads into Shh-deficient mouse limb buds, 

of which the expression of Cyp26b1 was reduced in the distal mesenchyme and RA 

activity was increased, resulted in striking restoration of Cyp26b1 expression (Probst et 

al. 2011). Applying these findings to the present study, I can consider that FGF9 

signaling in SV epithelia might activate the expression of Cyp26a1 in SV epithelia. I 

will propose the hypothesis that there is RA-FGF antagonism in SCs, and in ST region, 

this antagonism is cyclically regulated by RA and FGF periodical secretion, while in SV 



region, FGF signaling is more predominant by highly expression of Fgfs and 

degradation of RA. 



   As the contents of this page are anticipated to be published in a paper in a scholarly 

journal, they cannot be published online. The paper is scheduled to be published within 

5 years.



Fig. 3-1. Schematic representation of this study 

In this study, I show the constitutive activation of Akt signaling in SV region, and this 

activation is considered to occur in a non-cell autonomous manner. Cyp26a1 was highly 

expressed in SCs of SV. These data suggest that RA degradation is constitutively 

occurring in SV region, and balance between self-renewal and differentiation of SSCs is 

inclined more to self-renewal in SV region. Fgf9 was highly expressed in RT region. 

Exogenous FGF9 could activate the Akt signaling in SCs. FGF9 from RT region might 

activate the Akt signaling in SCs of SV, and then SCs non-cell autonomously show the 

feature of SV epithelia. 
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