ハライド湾高陸連合物の熱化学特性 平成11年2月

学位論文

ハライド溶融塩混合物の熱化学特性 Thermochemical Properties of Molten Halide Mixture

平成11年2月

東京大学大学院工学系研究科システム量子工学専攻

細矢 雄司

1. 序論	3
1.1 フッ化物溶融塩を用いる核工学システム	4
1.1.1 核融合炉プランケット増殖材料	4
1.1.2 溶融塩増殖炉	6
1.2 塩化物溶融塩を用いる核工学システム	7
1.2.1 核燃料乾式再処理	7
1.2.2 溶融塩燃料高速増殖炉	8
1.3 溶融塩を用いる核工学システムに関する基礎研究	9
1.4 本研究の目的	10
1.5 摘要	12
2. 熱力学計算	13
2.1 溶融塩と構造材料の両立性の予測	14
2.2 フッ化物の熱化学平衡計算	16
2.2.1 フッ化物の熱力学データ	16
2.2.2 中性子照射下Flibe	18
2.2.3 Flibeと構造材の両立性	21
2.3 塩化物の熱化学平衡計算	31
2.3.1 模擬物質としての稀土類	31
2.3.2 塩化物の熱力学データ	34
2.3.3 塩化物溶融塩と構造材の両立性	36
2.3.4 塩化物燃料におけるFP	38
2.4 混合と相平衡	40
2.5 摘要	46
3. 相平衡状態図の作成	47
3.1 実験	48
3.1.1 方法と原理	48
3.1.2 試薬と試料の取り扱い	52
3.1.3 NdCl,の融点測定	55

目 次

3.2 NdCl ₃ -NaCl二元系	56
3.2.1 試料	56
3.2.2 転移点测定	56
3.2.3 固相のキャラクタリゼーション	60
3.3 NdCl ₁ -KCl二元系	63
3.3.1 試料	63
3.3.2 転移点測定	63
3.3.3 固相のキャラクタリゼーション	66
3.4 NaCl-KCl二元系	70
3.5 NdCl ₃ -NaCl-KCl三元系	71
3.6 摘要	74
4.構造材料の腐食実験	75
4.1 溶融塩と構造材料の両立性の検討	76
4.1.1 溶融塩による材料の腐食	76
4.1.2 分析方法と原理	77
4.2 FFHR液体プランケットの系	80
4.2.1 実験	81
4.2.2 結果と考察	81
4.3 溶融塩高速増殖炉の系	89
4.3.1 実験	89
4.3.2 結果と考察	90
4.4 両立性の検討における実験と計算の役割	95
4.4.1 実験対象の試験片表面近傍	95
4.4.2 半無限媒体の拡散方程式	95
4.4.3 計算と実験の協調	97
4.5 摘要	99
5. 粘論	100
参考文献	103
投稿論文等	105
谢辞	106

第1章

序論

THE R. LEWIS CO., LANSING MICH. LANSING MICH.

A REAL PROPERTY OF A REAL PROPERTY OF

The Provide State

周期律表の1-3族のような陽性金属の塩化物・フッ化物は熱力学的に極めて安定で あり、その融体は熱媒体・化学反応媒体・核工学的媒体として利用できる。

これらハライド溶融塩はイオン性の強い液体で、価電子は存在せず化学的に不活 性であるとともに、良く独立したイオン同士であるため各種の成分塩は広い組成範 囲で互いに溶け合う。そして多元系にすることによって融点や蒸気圧を下げ、常圧 下で実用に供しやすい媒体にすることができる。

溶融塩中においては、各閉数イオンが強いクーロン力により空間をよく充填して おり、一般に水程度の大きな熱容量を持つ。この点で溶融塩は熱媒体としての利用 が期待される。そして溶融塩は各種の塩を容易に溶解させることができるので、様々 な化学反応をその中で進行させつつ、その反応物質や反応生成物を高い濃度まで溶 解・保持し、化学反応の円滑な進行を助ける役割を果たす。溶融塩が持つ、イオン 伝導による導電性を利用した電気化学反応、すなわち溶融塩電解はよく知られてい る利用例である。また、高温での使用によって反応速度定数や拡散係数を大きくす ることができる。このように溶融塩は化学反応媒体としても理想的な特長を有する。 さらに、ハライド溶融塩の場合はよく独立した単原子イオンで構成される流体であ るので、放射線による照射損傷というものが無く、核変換による核化学反応は別と して分解も起こりにくい。したがって、核工学への応用においても魅力的な媒体と なりうる。

本章では、溶融塩を利用することが考えられている核工学システムについて過去 にまとめられた報告¹¹³を参考にしながら、本研究の背景および目的の設定について 述べる。

1.1 フッ化物溶融塩を用いる核工学システム

L1.1 核融合炉ブランケット増殖材料

核融合炉は、現在商用化に至っている核分裂炉の次に来たるべきエネルギー供給 システムとして期待が寄せられ、研究開発が進められている。現段階で考えられて いる核融合反応は

$D + T \rightarrow {}^{4}He + n \tag{1.1}$

である。ここでD, T.nはそれぞれ重水素、三重水素(以降トリチウム)、中性子である。 このD-T反応は、数ある核融合反応の中では反応断面積が大きく、最も低い温度で 進行する反応である。しかしながらトリチウムは半減期12.26yrの放射性同位元素で あり、天然の水素における存在比は著しく小さいので、人工的に生産しなければな らない。トリチウムを生成する核反応のうち、実際には

$${}^{6}\text{Li} + n \rightarrow {}^{4}\text{He} + T \qquad (1.2)$$

$${}^{7}\text{Li} + n \rightarrow {}^{4}\text{He} + T + n' \qquad (1.3)$$

4

という、(1.1)式のD-T反応で生じる中性子を利用することができて反応断面積が大 きいりチウムを利用する反応が検討され、核融合炉ブランケットのトリチウム増殖 材料として期待されている。

核融合炉ブランケットに要求される機能としては、このトリチウム生成のみなら ず、炉心で発生する中性子やy線等のエネルギーを熱に変換し、ブランケット冷却材 に伝え、中性子やy線そのものは遮蔽する、といったことが挙げられる。

そこで、リチウム含有物質の中でもLiF-BeF,混合溶融塩(Flibe)が、核融合炉ブラン ケット材料の候補のひとつとして期待されている。熱媒体として優れた性質を持つ 溶融塩を用いることでそれ自体が冷却材となり、照射損傷もない。また、同じ融体 である液体金属の場合に比べれば電気伝導率が小さいのでMHD圧力損失が小さいと いう長所を持つ。Beは次に示す核反応

$$^{\prime}\mathrm{Be} + n \rightarrow ^{4}\mathrm{He} + ^{4}\mathrm{He} + 2n^{\prime} \tag{1.4}$$

によってトリチウム増殖を助ける中性子増倍材として働き、そのフッ化物をLiFと混合することで融点を下げる役割も果たしている。LiF-BeF2 二元系相平衡状態図¹⁰を Fig.1-1に示す。

Fig.1-1 LiF-BeF,系状態図^[6]

1.1.2 溶融塩增殖炉

核分裂炉燃料は、固体燃料と液体燃料とに大別することができよう。後者につい ては以下に挙げる長所が指摘できる。

1) 炉心構造が簡単で熱的配慮が単純である。高い比出力が期待できる。

2) 燃料の添加、取り替えが運転中にポンプのみで可能で高稼働率を実現できる。

3) 燃料の連続再処理が可能である。輸送・解体・再組立といった工程は不要となり、 冷却期間もなくなるので核物質保有量も減る。

4) 核分裂生成物 (fission products, 以降 FP)を燃料から連続的に除去できるので、炉 内中性子の経済性が高まり高燃焼率を実現できる。

5) 炉内放射能保有量が減るため想定事故の規模が小さく、排除地域の面積を小さ くできる。

6) 廃棄物処理が簡単であると予想される。

7)燃料が液体であるから一般的には炉反応度の温度係数が負の大きい値になり、 熱伝導の遅れがなく自己制御的に瞬時に働くので安全性が高い。燃料濃度を加減 してシム制御用としうる。

これにより構造が簡単で建設費も運転経費もともに安価な、優れた安全性を持つ 抑をつくりうると考えられ、液体燃料は原子力開発の初期から多大なる関心を持た れていた。

液体燃料炉の開発過程をたどると、まず溶融合金燃料の研究が精力的に行われた が、容器用の材料問題解決に行き詰まっている。一方で、よく知られた水溶液技術 を活かすものとして水均質燃料も大いに関心を持たれたが、十分な熱効率を実現し ようとすると高温、高濃度の水溶液にせざるを得ず、極めて腐食性の高いものにな る。また電解質や水の放射線分解などの問題もあって、実用動力炉への期待は殆ど 絶たれている。そして第三の液体燃料として注目されたのが溶融塩燃料である。

核燃料物質を含むフッ化物溶融塩は、増殖炉燃料として期待され適用が検討され てきたきた。文献^{III}にまとめられているように、フッ化物溶融塩を燃料とする増殖炉 は米国Oak Ridge National Laboratoryにて以下のような開発過程をたどった。

Aircraft Reactor Experiment, ARE (1954)

出口温度860°C,出力2.5MWt,燃料²³⁵UF₄-ZrF₄-NaF

Molten Salt Reactor Experiment, MSRE (1964)

出口温度640°C,出力7.5MWt,燃料235UF,-ZrF,-7LiF-BeF,

MSREにおいて²³²Th-²³³U サイクルの成立性を実証(1968)

燃料 232 ThF_-233 UF_-7 LiF-BeF,

本格的100万kWe実用発電炉概念設計として取り纏め(1971)

MSREにおいては、無事故に近い運転実績と多大な実験成果が得られた。高融点高 放射能液体燃料が予期以上に合理的かつ安全に取り扱えることを実証し炉室内直接 燃料再処理方式の基盤ができた。

1.2 塩化物溶融塩を用いる核工学システム

1.2.1 核燃料乾式再処理

現在工業化されている水溶液を用いる湿式再処理法に対して、溶融金属・塩を利 用する乾式再処理法^(7,9)がある。この方法の特長として

有機物のような放射線分解の恐れが少なく、比較的高放射性のまま処理ができるため使用済み燃料の冷却期間が短くて済む。

2)金属燃料は金属のまま、ないしは金属に再還元されやすい状態で処理されるので、工程の単純化を図ることができる。

3)FPの廃棄物が乾燥濃縮された形で得られるので、取り扱いや貯蔵が簡便である。

4) 水を用いないので、臨界による処理量の制約がない。

5)水溶液に比べ処理体積が小さくて済むのでプラントの小型化に有利である。

といった点が挙げられる。しかし一般に除染係数が低く、遠隔操作で高温の装置を 運転保守するといった問題があり、未だ研究開発の段階である。

これまでに、米国Argonne National Laboratoryで高速増殖炉燃料の再処理のために溶 融金属-塩法およびそれを発展させた塩輸送法が研究されている。そこでは高速増殖 炉として合金燃料炉(Integrated Fast Reactor, IFR)が想定されている。考えられている 乾式再処理の体系の概略図をFig.1-2に示す。

FP : fission products

Fig.1-2 乾式再処理ブラントの概略図

使用済み燃料を低融点金属(Cdが考えられている)に溶かし、塩化物溶融塩(基本的 にLiCl-KCl共品塩)に接触させ、貴な成分であるMo, Ru, Rh, Pdなどを溶融金属相に残 して、卑な成分を塩化し溶融塩相に抽出する。そして溶融塩相と溶融金属相に分配 される稀土類・アクチニドを、固体電極および溶融Cd電極を用いて電解することに より、U, Puと稀土類を分離する。ArgonneにおけるIFR計画は1993年に中止が決定さ れたが、国内で乾式再処理法の研究は継続されている。

1.2.2 溶融塩燃料高速增殖炉

さらにアルカリ塩化物溶融塩は、高速炉用塩燃料などにおいてアクチニドの溶媒 として利用されることが期待されている。塩化物溶融塩燃料高速増殖炉は、従来の 酸化物燃料軽水炉には無い多くの特長を有する。これはNa冷却FBRの"insurance"と して位置付けられるべきものであるが、近年、ブルトニウムサイクルの理想形であ る原子炉内プルトニウムリサイクリングを実現することが可能なシステムのひとつ のオプションとしてこのシステムが提案されている^[204]。燃料として液体を採用する ことで、炉内における核燃料物質のリサイクリングを実現し、燃料サイクルの負荷 を抜本的に低減したプルトニウムリサイクルシステムを構築することがねらいであ る。本コンセプトは

1)液体燃料を用いることによる高い安全性

2) 高い内部転換比による超高燃焼度

3) 安易なTRU燃焼

4) 燃料加工工程の削減

5) 自己維持炉心の構築

などの特長を持っているが、炉を高速体系にするには前述のフッ化物系では不十分 であり、塩化物系にすることが望ましい^[2]3]。これは炉内中性子の経済性向上や、中 性子の減速を抑える意味で極めて重要である。そして燃料溶融塩は、以下の条件を 満たすことが必要である。

1) 熱力学的に安定であり分解などが起こらないこと。

2) 融点が炉の運転条件を満たすこと。

3) 蒸気圧が低いこと。

4) 粘度があまり高くないこと。

5) 構造材料との反応性が低いこと。

6)核的に有害な元素を含まないこと。

これらを考慮すると、高速炉燃料に溶融塩を用いる場合、(U, Pu)Cl,-塩化物希釈塩 という系が妥当で、希釈塩としてはNaCl, KCl, MgCl,が有望である¹²¹⁴。 1.3 溶融塩を用いる核上学システムに関する基礎研究

前節までに溶融塩を燃料とする増殖炉をフッ化物・塩化物両方について紹介した が、さらに進んでフッ化物熱中性子炉を専焼炉として組み合わせた廃棄物の出ない ハイブリッドシステム^国も考えられている。その体系の概念図をFig.1-3に示す。

Fig.1-3 ハイブリッドシステムの概念図

トリチウム管理上の問題を解決すれば、高速炉の燃料成分にLiCL専焼炉にLiFを添加することでトリチウム生産炉にすることも可能であり、例外的廃棄物のひとつと なるトリチウムも核融合炉燃料として有効利用が可能である。

このようなエネルギー生産システムは現段階ではデスクプランに終わっており、 そのための材料研究などは行われていない。そしてそれは、液体燃料の核分裂炉の 検討の中で潰えたコンセプトがそうであったように、容器材料の腐食の問題による ところが大きい。唯一実験炉で成功し実用の目処が立ったフッ化物燃料の溶融塩増 殖炉においても、体系的な炉心容器材料開発が一方で行われている。

溶融塩による固体材料の腐食では、状況が両極端に分かれることが多い。すなわ ち、腐食がほとんど認められない場合と、試験片が崩壊してしまうほどの腐食が起 こる場合とである。溶融塩は化学反応媒体として優れた性質を持っていることは既 述の通りである。しかし、その、フラックスとしての(ものを溶解・保持する)能力が 後者の激しい腐食の一大要因なっており、それが「溶融塩はcorrosiveである」という 一般的認識の最たる理由である。逆に腐食が見られなければ、その材料は使用に耐 えるという判断を下す以上の事はほとんど何もなされずに置かれてきたという側面 がある。そのために溶融塩を利用する際の容器材料の選定がよく分からず、経験的 に行われているのが実情である。これについてはさらなる実験的研究例が積み上げ られる必要がある。熱力学的に具存性のある材料をまず選び、次に不純物除去の必 要度を計画的に研究するならば、材料選択の幅は広がるであろう¹⁰⁰。

溶融塩は、多元系にすることで実用に供しやすくできる媒体であることもまた、 すでに冒頭で述べたが、この混合系の多様性が逆に、基礎物性データを集積する際 には膨大な努力を要請することになり、なかなか自由に必要なデータを入手できな い状況にある。核工学システムへの溶融塩の適用という面に絞ってみた場合、学術 的にも応用面でも極めて重要な情報を含む相平衡状態図などは、フッ化物系に関し ては前述の米国ORNLによる溶融塩増殖炉の研究開発の中で精力的に成果が揃えら れている¹¹¹が、一般的にはこれほど充実していることはない。

1.4 本研究の目的

フッ化物溶融塩を用いた核融合炉プランケットの設計にあたっては、現実的プラ ンケット条件下でのFlibeと構造材料との共存性について検討する必要がある。本研 究ではそのための基礎研究として、静的条件下でのFlibeによる構造材料の腐食のメ カニズムを検討項目のひとつとして取り上げる。

Flibeの構造材料に対する腐食挙動についての研究はこれまでにもいくつか行われ ている。特に、液体を燃料とする原子炉の開発のところで述べたように、Ni基合金 については溶融塩増殖炉実験(MSRE)での使用経験がある。しかしここでは、核融合 がブランケット材料としてのFlibeの適用を考え、文部省核融合科学研究所(NIFS)で 研究開発の行われているForce-Free Helical Reactor (FFHR)のブランケットを念頭に置 く。これについては、ブランケット設計に必要不可欠なトリチウムの挙動や構造材 料に対する腐食のデータの整備は遅れており、これらを求めることは極めて重要で ある。このブランケット概念設計では、中性子照射による構造材料の誘導放射能の 低減を達成するためにNiを含有する材料は候補から外され、低放射化フェライト鋼 やパナジウム合金などが候補材料として考えられている。これらについての腐食に 関するデータはほとんどない。

次に、塩化物溶融塩を燃料とする高速増殖炉に関する検討課題として

1) 炉物理研究(溶融塩燃料を用いたときの炉心の核設計)

2) 溶融塩自体の物理化学的研究(状態図の決定、燃料塩の物性評価)

3) 材料研究(原子炉容器、反射体、内部機器等に使用する材料の腐食等の評価)

4) FPの化学効果の評価

5) 溶融塩燃料の乾式再処理についての検討

6) 溶融塩の熱流動挙動の評価

7) TRU核種の溶融塩中挙動の評価

が挙げられる。

そこで、高速増殖炉の燃料に用いる溶融塩として(Pu,U」,)CL-NaCl-KCl系を想定 し、その特性を対象に取り上げることにした。具体的にはウランやブルトニウムの 模擬物質として稀土類を用い、稀土類三塩化物を含む混合系の相平衡状態図作成や、 実際の燃料を模擬した混合溶融塩による構造材候補材料の腐食についても検討項目 とした。

本研究では、これら溶融塩を利用する核工学システムの成立性の検討を背景とし、 そこで使われるハライド溶融塩混合物の熱化学特性を視野の中心に置いて

(1) 熱力学平衡計算による、対象体系の化学的挙動の評価

(2) 実験データの取得、計算による予想との対応についての考察

を行う。これらを通じて計算と実験それぞれの役割をにらみながら、上記システム におけるハライド溶融塩と構造材料の化学に関する研究へのそれらの適用について 検討することを目的とする。 1.5 摘要

熱媒体および化学反応媒体、核工学媒体としての溶融塩の特長に触れ、実際にハ ライド溶融塩を媒体として適用することが考えられている核工学システムについて 述べた。

フッ化物溶融塩を用いる核融合炉液体プランケットの概念を示し、その研究開発 の中でも材料研究について述べ、検討すべき課題を挙げた。既に基礎研究が行われ、 実験炉が成功裡に運転されたフッ化物溶融塩燃料増殖炉についても言及した。

塩化物溶融塩が、使用済み核燃料の乾式再処理において電解槽の溶媒に用いられ ること、原子炉内プルトニウムリサイクリングを実現することが可能なシステムと して塩化物を燃料に用いた溶融塩高速増殖炉が提案されていることを示し、その設 計における検討課題を提示した。

これらを踏まえて、ハライド溶融塩を用いる核工学システムの成立性の検討の上 で要求される溶融塩と材料の化学にまつわる研究の中に目的を設定した。

第2章

熱力学計算

Schermers and the product of the second states o

AR PERSON AND ADDRESS AND ADDR

2.1 溶融塩と構造材料の両立性の予測

本研究では、制御された(または制御しきれない不純物を含んだ)体系中でハライ ド溶融塩が耐熱食性材料と共存している系の平衡状態を知ることが、ひとつの重要 な課題である。Aのハロゲン化物AXと容器材料Bの両立性を評価する際には

$AX + B \rightleftharpoons A + BX$

(2.1)

という反応の自由エネルギーの正負を調べれば良い。A、B 共に単体元素であれば、 AXとBXの生成自由エネルギーの大小を比較するという、より簡便な方法で反応の 有無を予測できる。

しかし実際に本研究で考えているような核工学システムの系は極めて多数の成分 を含む上に、化学反応を起こす可能性のある成分の組み合わせが幾つも混在してい る。このような場合に個々の成分の熱力学関数を検索し、反応式を仮定して平衡状 態を計算する、という手法では現実的に無理がある。

しかし幸いなことに、材料開発,設計において熱容量,転移点,相平衡状態図等 の熱力学データは材料製造プロセスの熱力学的特性を把握し副御する際には不可欠 のものであるから、古くからデータ集として纏められており、それを利用して複雑 系の熱力学計算を行おうという研究分野もそれに並行して拡張され続けている。

1970年以前は、熱力学データを用いた熱化学計算の分野では、方程式の複雑さ(非 線形性)や煩雑さから関与する反応が多くても数個までの平衡状態を計算するのが限 界であり、実用的に重要な多元系における平衡状態の計算による再現は事実上不可 能であった。

G.Eriksson et al. は1971年に高温反応容器内の気相と純物質固体および中間化合物の 間の多元系平衡状態を計算するコードSOLGASを開発し⁽¹²⁾、後には液相,固溶体を含 んだ系にも対応できるプログラムSOLGASMIXへと拡張した。さらに彼らの不断の 努力の積み重ねによって、今日ChemSageというアプリケーションに成長するに至り、 PC用パッケージもリリースされている⁽¹³⁾。

また、時期を同じくして CALPHAD (CALculation of PHAse Diagrams)と呼ばれる体系が形作られ、液体、固溶体の自由エネルギーを定式化して記述する研究が L.Kaufman et al.を中心として盛んに行われ、計算機プログラムを用いて多元系状態図 が作成されるようになってきた。

このような動向に刺激を受けて、1980年代よりIntegrated Thermochemical Database と 呼ばれる熱力学データベースの開発が世界各国で始まった。これらのデータベース では、平衡状態の計算機能や作図機能をシステムに付与して、熱力学量を利用者の 求める形で、つまりより実用的な形で自由に取り出す機能を有しているのが特徴で ある。このようなデータベースシステムの代表格がChemSage, F*A*C*T, Thermo-Cale, MALTである。 これらのデータベースは単独で作成されたものはほとんど無く、いくつかのグルー プあるいはプロジェクトによって共同で編纂されている。したがって、データベー スそのものは各システムで共有している部分が多い。JANAF (Joint of Army, Navy and Air Force), Knacke, SGTE (The Scientific Group Thermodata Europe)のデータベースはその 代表的なものである。そして平衡状態の計算(つまり系のギブス自由エネルギー最小 化ルーチン)にはSAGE (SOLGASMIX-based Advanced Gibbs-Energy minimizer)がよく流 用されている。

1990年代になって、このようなデータベースシステムにも新たな動向が伺えるようになった。その第一が拡散・移流・偏析といった動的現象解析を組み合わせてマクロな現象を総合的に計算するツフトの開発である。ChemSageのREACTORコードが一例として挙げられる。これは一定の割合で物質やエネルギーが出入りする系における定常状態を計算する機能を有する。第二には、熱力学関数のみならず、熱伝 導率・密度・結晶学的データ等の様々な物理定数も取り込んだ広範なデータベース を作成する試みである。この分野ではまだ検索型のデータベースしか存在しないが、 TAPPシステムがすでにかなりの完成度に達している。

本研究では、山内ら日本熱測定学会熱力学データベース作業グループが開発した MALT2^{DADUSI}を用いる。このシステムは非理想溶体は取り扱えない。気相は理想溶体 で、凝縮相は純物質によって構成されているものとしている。

平衡状態を計算するというのは具体的には「ある特定の温度において混合物のギ プス自由エネルギー(定圧下の場合)が最小となる、系の構成成分とその組成を求める」 ことである。このギブス自由エネルギー最小化のアルゴリズムは幾つかあるが、こ こで用いた化学平衡計算コー下gemは最急降下法を改良した勾配ベクトル射影法を採 用している¹⁶⁰。その中での最小化の対象となる量G_{notal}は、組成どおりに比例配分し た全成分の自由エネルギーの総和と気相の理想混合エントロピーとの和をRTで割っ たもの:

$$G_{\text{total}} = \sum_{i} \frac{g_{i}}{RT} x_{i} + \sum_{i \text{ for gen phase}} x_{i} \ln \frac{x_{i} P / atm}{\sum_{k \text{ jor gas phase}} x_{k}},$$
(2.2)

である(Pは系の全圧)。

これによって10元300成分までの多元系を取り扱うことができる。 現実の系では

- 各種成分の溶解度・活量の効果

- 腐食の進行による体系組成のシフト

- 種々の勾配(電磁場・温度・組成…)

- 速度論的要素(溶解,蒸発…)

- 中性子照射による構造材のダメージ

の事も考慮に入れなければならないが、ここでは一切無視している。

2.2 フッ化物の熱化学平衡計算

文部省核融合科学研究所(NIFS)で研究、開発が進められているForce-Free Helical Reactor (FFHR)における自己冷却液体プランケット材料としてFlibeを利用することが 検討されている。したがって、このLiF-BeF₂溶融塩とプランケット構造材料との両 立性は重要な検討項目であるが、これについての基礎研究は未だ不十分である。

そこで、構造材候補材料として挙げられているものを試料として腐食試験を行う ことももちろん必要であるが、実際のFFHR運転時の条件を実験室で再現することは 極めて困難である。或いは、実験の際に混入する微量不純物が、腐食挙動に大きな 影響を及ぼすにもかかわらず、その量を再現性良く制御することは難しい。また、 核融合炉の運転条件下では中性子による重照射により、Flibeは核変換を起こして腐 食性気体を生成する。照射の程度によってこの腐食性化学種の量は変化するが、そ の影響を実験室で再現することも至難である。しかし、熱力学計算によって熱化学 平衡状態を知ることは可能である。この場合、体系中に存在する各化学種の初期分 率を自由にふって設定することができるので、実験に先立って候補材料の耐食性の 有無について知見を得ることができる。

本節では、NIFSのFFHRブランケットを念頭に置き、そこで用いられるFlibeに腐 食性化学種が任意の量存在している中に構造材料が共存している体系の平衡状態の 計算について述べる。

2.2.1 フッ化物の熱力学データ

LiF, BeF, そのものは全くの非腐食性である。ところが実験室の腐食試験では不純物としてO、, H,Oが体系に持ち込まれる。

BeF,は潮解性を持ち、ここで問題になる温度領域で

$BeF, +H, O \rightleftharpoons BeO+2HF$

(2.3)

という反応によるHF発生がある。右辺への反応が自発的(ΔG≤0)になるのは634°C以上である。

また、既述の通り現実のブランケットにおいても中性子照射によるT(HF)発生を 考えなければならない。フッ化水素はほとんどの金属を侵す。MALT2によるフッ化 物の生成ギブス自由エネルギーの温度依存性をFig.2-1に示す。HFよりも安定なフッ 化物を作る金属は侵される。

FFHR プランケットで考えられている Flibe使用温度は450°~550°Cである。この温 度領域でHFに侵されない金属は、貴金属を除けばNi, Mo, W程度に限られてしまう ことが分かる。

Fig.2-1 フッ化物の生成ギブス自由エネルギー

17

2.2.2 中性子照射下Flibe

2.2.2.1 Flibeの核変換に伴う生成ガスの主成分組成

通常、ハライド溶融塩による腐食では、不純物である酸素や水蒸気の影響が大きく、 それらを抑えることは現実の体系で最も重要なことのひとつである。ところが、核 融合炉ブランケット材料として適用されるフッ化物の系については全く事情が異な る。フッ素が高速中性子と核反応を起こし酸素を生じる。溶融塩自身が酸素や水蒸 気を発生する性質を内在的に持っているのである。溶融塩増殖炉というコンセプト において、高速炉を実現しようとするなら塩化物系にしなければならない理由もま さにそこにある。

そこでまず中性子照射時のFlibeの化学的実体を検討した。

Li, Beについては中性子照射とともに'H,"H,"He,"He,"Be,"Be生成する。

Fは1H,2H,3H,4He,15N,16N,16O,17O,18O,20F,20Neを生成する。

生成系に影響を及ぼす主たる核反応は以下のトリチウム生成・中性子増倍・フッ素 の核変換の3種類であると考えられる。

$L_1(n,\alpha)$ [, $L_1(n,n\alpha)$] (2.4)

 $^{\circ}Be(n,2n\alpha)\alpha, ^{\circ}Be(n,2n)^{*}Be \rightarrow 2\alpha$ (2.5)

 ${}^{19}F(n,np){}^{18}O, {}^{19}F(n,d){}^{18}O, {}^{19}F(n,t){}^{17}O, {}^{19}F(n,nt){}^{16}O$ (2.6)

化学反応式として書くならば(すなわち以後のHとはH.D.Tを含む)

Li→H+He	反応率λ	(2.7)
Be→2He	反応率µ	(2,8)
F→O+H	反応率 v	(2.9)

と表せるので、単純に考えると

$LiF \rightarrow HF^* + He$	(2.10)
	100 200

 $BeF_2 \rightarrow F_2^* + 2He \tag{2.11}$

という反応でフッ素が余るかのように見えるが(F*は照射を受けて一部がO.Hになったフッ素)、正しくはλ, μ, νの値がそれぞれ違うのであるから(2.10)(2.11)式の左辺で も過不足が生じる。結局は原子ごとに考えて、後からそれを化合し直させるかたち で生成系を再現するべきである。

原系のFlibeにおけるLi/Be比を κとおくと、生成系は

 $(\kappa\lambda + 2\mu)$ He-{ $\kappa\lambda + (\kappa + 2)\nu$ } H-($\kappa + 2$) O-{ $(\kappa\lambda + 2\mu) - (\kappa + 2)\nu$ } F-Flibe** (2.12) と表される。最後のFlibe** は、照射によって組成はシフトしているが、Li, Be と stoichiometricにFが付いているLiF-BeF₂である。核変換に伴いBeF₂-rich側に組成がシ フトする。 核変換の計算結果

(2.13)

を用いx=2として(2.9)式からのトリチウム生成が(2.7)式によるものに比べて十分少 ないとすれば、

$$\lambda : \mu : \nu = 1 : 1/7 : 1/12 \tag{2.14}$$

を得る。結果、49H-7O-41F-48Heが照射による生成ガスの構成元素組成となる。

この生成ガスはFlibe内部で発生するものであるので、これによるHF-H₂O-O₂が直 接構造材料に作用するのではなく、LiF-BeF₂-HF-H₂O-O₂における化学平衡達成後の 気体を考えるほうが自然である。そこで、Flibe**+照射生成ガス系の平衡計算を行っ た。

2.2.2.2 計算体系

平衡計算に用いた体系の概略図を Fig.2-2に示す。気相は10molのAr雰囲 気に、中性子照射に伴うトリチウム生 成に比例した総量のH₂,O₂,F₂,Heを、 先程求めた所定の比率で添加した。 化学的にはAr,Heに分ける意味は無い がそのままにした。

凝縮相は6molLiF-3molBeF,をベー スに、やはり中性子照射に伴う組成変 化を反映させた。この段階での計算で は図中の構造材料は含まれていない。

Fig.2-2 計算体系の概略図

温度は、FFHRプランケットの運転温度の上限側の値550°Cとした。

また、雰囲気のベースとなるArには、10Ar/9.9999Ar-0.0001H₂/9.999Ar-0.001H₂/9.999Ar-0.001H₂/9.999Ar-0.001H₂/9.999Ar-0.01H₂/9.99Ar-0.1H₂/9Ar-1H₂という形で、実際のブランケットで考えられているトリチウム回収ガスに対応させて水素を(照射によって発生するものとはまた別個に)添加した場合の計算も行った。

2.2.2.3 照射下Flibeの実体

中性子照射に伴って生成するガスとFlibeとの平衡を考えると、トリチウム生成(と 言うより直感的にはburn-up)の程度によって水蒸気圧と酸素分圧の逆転が見出された。 そしてそれは凝縮相における BeOの出現と関係していることが判明した。BeO生成 に消費されるのは酸素ではなくて水蒸気であり、酸化性が大きくなるはずの酸素分 圧が大きい領域でBeOが突然消失するということも分かった。照射下Flibeの平衡状 態の計算結果をFig.2-3に示す。 横軸は、照射によって発生するトリチウムの濃度で ある。

この計算で、照射初期にはFlibe中にBeO生成が見られ水蒸気圧は小さいが、照射 が続くとあるところでBeOが消失し水蒸気圧が大きい条件に移行することが分かっ た。これは、照射が進むにしたがって同時に生成するHF分圧が大きくなることによっ て(2.3)式の平衡が左辺側へ移るためと考えられる。トリチウムの放出や回収を全く 考えないならば、今回の条件においてはそのBeO消失の時期はFFHR プランケット条 件(10²ppm-T/day)で運転開始から数十日のオーダーである。

次に雰囲気への水素添加の効果について述べる。シナリオは比較的単純で、添加 した水素が酸素と化合して水蒸気を生成し酸素は失われる→水蒸気が増加した分だ けBeO収量が増える、という形である。したがって生成系のHFにはほとんど変化は 見られず、水蒸気圧の変動も小さい。水素添加によって変わるのは、酸素分圧と凝 縮相のBeO量のみである。BeO消失後の領域では、水蒸気の増加がそのまま雰囲気 に反映される。

このように、過渡的な Flibe中の BeO 生成挙動が見出され、改めて(2.3) 式の反応の ギブス自由エネルギーが0 に近いことが効いていることが判明したので、温度の影響 を比較的強く受けることが予想される。そこでもう少し低温側 (500°C/450°C)での計 算も試みたが、結果的にはそれほど大きな変化は見られなかった。わずかに、低温 ほどBeO消失は早まり、それに付随して気相ではH,Oの量が変動する程度である。

実際のブランケットではトリチウム増殖比向上と、化学的に還元性の環境を実現 するために金属Beの添加が考えられている。550°Cの計算では、凝縮相に金属Beを 加えた場合も検討した。HF, H₂O, O, はすべてBeと反応して除去されることが分かっ た。気相はH₃-BeH₂となった。BeH₂というガス生成は、明らかに新たなペリリウム 取り扱い技術を要求すると考えられる。

また、このように酸素がある程度の速度で発生する場合に、そのスカベンジャー としての機能が期待されている金属Beは、多量のBeO生成時も健全に働くのか、と いう新たな課題も浮上する。

2.2.3 Flibeと構造材の両立性

2.2.3.1計算体系

系の大きさは先程と同じくFig.2-2のとおりで、ここで実際に図に示した形で構造 材料も体系に入れる。図は、後述の実験体系を意識した書き方にしたが、実際のブ ランケットでは当然、構造材が全てを内包する形である。ただし、いずれにしても 計算上は幾何学的な配置は関係なく、全てが完全に混合し、接触しあっている。

計算では、FFHRプランケット構造材候植材料として考えられている低放射化フェ ライト鋼JLF-1(Fe-9Cr-2W),パナジウム合金V-4Cr-4Ti,および非金属のSiCを取り上 げた。不活性ガス雰囲気にO₂,H₂O,HFを添加したときの生成系の変化を調べた。温 度は全て550℃とした。 2.2.3.2 結果と考察

はじめに生成系の概略をまとめるとTable 2-1のようになる。問題の温度で(2.3)式 が自発的でないので、H₂O添加ではBeF,との反応よりもむしろ金属の酸化に消費さ れることが分かる。

	2ppm-O ₂ +H ₂ O	2ppm-O ₂ +HF	100ppm-O ₂ +HF
Fe-9Cr-2W (JLF-1)	酸化 (Cr ₂ O ₃ / FeCr ₂ O ₄ / BeWO ₄)	酸化 フッ化 (CrF ₂ / CrF ₃ , FeF ₂)	■酸化物収量の増加のみ
V-4Cr-4Ti	酸化 (TiO/Ti ₂ O ₃ / VO)	酸化 フッ化 (TiF ₃ / VF ₃)	■ 酸化物収量の増加のみ
SiC	酸化 (CO/CO ₂)	フッ化 (SiF4, SiHF3)	

Table 2-1 体系にH,O, HFを添加した場合の生成系の概略

フェライト鋼JLF-1

体系に強制的にH₂O, HFを添加した場合の計算結果をそれぞれ Fig.2-4, Fig.2-5に示 す。さらに中性子照射下Flibeを模擬したものとJLF-1の系についての計算結果を、主 たる化学種に限定して Fig.2-6に示す。トリチウム濃度(照射の程度に対応する)につ いては2種類(10² ppm, 10⁴ ppm)選択した。

合金成分のうちCrが選択的に反応する。比較的重照射(10⁴ppm-T)を受けるとCrは 次乏し、母材のFeがフッ化を受け蒸発する。しかし一方で、Cr₂O,も共存している。 これが保護性皮膜として機能すれば十分な耐食性が期待できる。

腐食性の大きい重照射下の計算では、実際のブランケットで考えられている還元 性化学種の添加についても検討した。

Fig.2-4 H,O添加時の生成系(JLF-1)

Fig.2-5 HF添加時の生成系(JLF-1)

Fig.2-6 中性子照射下Flibe中での生成系(JLF-1)

25

トリチウムの効果的な回収のために雰囲気をH,パージすることが考えられている ので、それに対応した雰囲気での計算を行ったが、Fig.2-6でも明らかなようにCrに 対してはほとんど効果はなかった。FcF,の蒸発は少なくなることが分かった。

TBR向上のための金属Be添加では、腐食性の化学種のスカベンジャーとして非常 に効果的に働き、構造材料は全く腐食されない。しかし一方で、好ましくないベリ リウム含有ガス(BeH₂)の生成が見出された。

パナジウム合金V-4Cr-4Ti

体系に強制的にH,O,HFを添加した場合の計算結果をそれぞれFig.2-7, Fig.2-8に示 す。さらに中性子照射下Flibeを模擬したものとV-4Cr-4Tiの系についての計算結果 を、主たる化学種に限定してFig.2-9に示す。同じくトリチウム濃度については2種類 (10² ppm, 10⁴ ppm)を用いた。

合金成分のうちTiが反応し、重照射下で欠乏する。添加元素のうちCrは全く化学 反応には関与しない。Ti欠乏後には母材がフッ化を受けVF,が生成する。ただし比較 的穏やかな条件下ではTiOが共存できる。バナジウム合金の場合は、雰囲気を水素に しても変化はない。それに対し、金属Be添加はフェライト鋼のときと同様、BeH,生 成はあるものの効果的なスカベンジャーとなる。

金属材料全体として、体系にHFが存在すればそれに応じてフッ化物生成が見られ るが、しかし一方でなお、その系でも合金成分の酸化物のひとつはフッ化されるこ となく共存が可能である。この構造材料の酸化物が保護性皮膜として機能するかど うかが耐食性に深く関与すると考えられる。

現実のブランケットでは溶融塩の精製プロセス等でもっと厳しく体系から酸素が 除去され、金属Be添加の効果も著しいので、酸化皮膜生成はほとんど望めない。金 属Be添加はむしろ腐食性を持つ化学種のスカベンジャーとして必須と言える。計算 では、体系にBeを添加した場合、全く構造材料の反応は起こらなかった。体系に導 入した全てのH_OやHFはBeと反応する。

Fig.2-7 H₂O添加時の生成系(V-4Cr-4Ti)

Fig.2-8 HF添加時の生成系(V-4Cr-4Ti)

Fig.2-9 中性子照射下Flibe中での生成系(V-4Cr-4Ti)

SiC

金属系材料と全く同様にして、まず体系に強制的にH₂O, HFを添加した場合の計算 を行った。

H₄O添加ではケイ素が選択的にフッ化される。生成物はSiF₄やSiHF₅で、これらは 揮発する。酸化も受ける。穏やかな酸化条件下ではBe₂SiO₄ (phenakite) 生成が見られ るが、これはベリリウム管理上好ましくない。水蒸気圧が大きくなるとCH₄の生成 すら見出された。腐食性の化学種全でと反応し、生成物は気体であるので耐食性は 全く期待できない。HF添加でも、生成物質量の絶対値こそ異なるが挙動は同じであっ た。やはり耐食性は期待できない。

なお、gem コードの制約上あまりに多成分の体系は扱えないので、炭素数3以上 の有機化合物を削除して計算した。これについてはSiCとは別にC単独で行った計算 で、炭素数3のC₄H₄ですらせいぜい10⁻²⁰ atm程度であり、結果に重大な影響をもたら すものではないことを確認している。

ここでやはり金属Be添加についても検討した。結果は、H₂O添加であれHF添加で あれ、Beを体系に加えることでSiC破壊は促進される。つまり同じ条件の雰囲気下 でBeを添加していないときよりも生成系でのSiCの減り方が著しい。条件が厳しく なるとSiCは完全に消失する。生成系を見れば理由は単純であり、BeによってSiCか らCが抜き取られてしまっていた(Be,C生成)。ただしその際の酸素の行方はBe添加 の目的どおりで、BeOを生成して酸素は除去され、生成系の気相はH,-CH,となる。

ただしこれは固相反応であるので、両立性の検討の際には反応速度が効いてくる ということと、実際の使用体系でこれらが接触しなければこの反応は起こらないこ に留意する必要がある(FlibeにSiC, Beとも全く溶解しないとして)。しかしSiCは、前 章で紹介したMSREにおける材料(新Hastelloy)開発時に、その溶解のしやすさが問題 になっているので反応そのものは起こると予想される。

核特性や機械的強度に優れていることで候補材料として挙げられていても、残念 ながら化学的には全く耐食性が期待できない。金属Be添加は、中性子増倍材として ではなくスカペンジャーとして必須となるが、体系に加える際には注意を要し、接 触することがあれば反応して構造材として機能しなくなる可能性がある。

以上、FFHR ブランケット設計の中で構造材候補材料として挙げられている材料に 対し、実験的にその量を制御しながら両立性を検討することが困難な腐食性の化学 種を含有するFlibeとの混合体系の平衡状態を、熱力学計算を適用して求めた。

これによって、HFが体系内にあることで材料はフッ化を免れないが、フェライト 鋼やバナジウム合金では成分の酸化物が共存しうること、SiCは蒸発する生成物しか 生成しないこと、及びBe添加の効果等を広範囲にわたる条件で知ることができた。

2.3 塩化物の熱化学平衡計算

塩化物溶融塩を媒体として利用する、使用済み核燃料の乾式再処理に関する研究・ 開発は国内で進められつつあるが、これと組み合わせることで原子炉内燃料サイク ルが可能となり、核燃料にまつわる様々な工程の抜本的な軽減が可能となる塩化物 燃料炉についての研究は、現在は行われていないというのが実情である。

しかしフッ化物溶融塩燃料増殖炉実験での成功が示しているように、ハライド溶 融塩を燃料とするコンセプトは十分実現の可能性を持っている。この炉型の実現の ための基礎研究課題のひとつとして、やはり燃料塩とブランケット構造材料との両 立性が挙げられる。

核融合炉ブランケット同様、この場合も現実の高速炉運転時の条件を実験室で再 現することは極めて困難である。実験の際に混入する微量不純物の影響が大きいに もかかわらず、その制御が難しいことも酷似している。そして、核分裂炉を運転す れば、燃料塩はFPを生じて種々の化学種を生成するが、その影響を実験室で再現す ることが難しいのもFlibeの核変換と同様である。しかしここでも、熱力学計算を用 いて平衡状態を算出し、各化学種の挙動に関する知見を得ることはできる。

本節では、溶融塩燃料高速増殖炉の容器・配管材料を念頭に置き、その中で用い られる塩化物溶融塩に任意の量の不純物が混在している体系の平衡状態の計算につ いて述べる。

2.3.1 模擬物質としての稀土類

実際の核工学システムの検討を進めるにあたっては本来ならばUCI,, PuCI,を対象 に選ぶべきところではあるが、後述の実験による研究を実施することを考えた場合 核燃料物質の貯蔵・廃棄等における管理上の制約や、実験中の汚染の危険等、多く の困難が予想される。本研究では次善の策としてラシタニド三塩化物を模擬物質と して用いることにした。周期律表において稀土類はアクチニドと同じ族に属し、反 応化学的に酷似しているだけでなく、結晶化学的にも非常によく似た挙動を示す。 稀土類三塩化物のイオン半径および常温における結晶構造、融点をTable 2-2にまと めて示す^[17]。その表から分かるように、軽稀土三塩化物はすべてUCI,型六方晶であ り、その格子パラメータもUCI,とほとんと同じである。UCI,型構造をとる結晶の格 子パラメータをTable 2-3 にまとめて示す^[18]。

R -	-	R(III)	Ion Radii	on Radii / pm Anhydrous Trichloride RCI		Anhydrous Trichloride RCI		
	Z	6	8	9	Structure Type*	Space Group	Melting Point/°C	
Y		90.0	101.9	107.5	AlCl ₃ -type	C2/m	720	
La		103.2	116.0	121.6	UCl ₃ -type	P6,/m	852	
Ce		101	114.3	119.6	UCl,-type	P6 ₃ /m	817	
Pr		99	112.6	117.9	UCl ₃ -type	P6 ₃ /m	786	
Nd		98.3	110.9	116.3	UCl ₃ -type	P6,/m	759	
(Pm)		97	109.3	114.4	UCl _a -type	P63/m	737	
Sm		95.8	107.9	113.2	UCl ₃ -type	P63/m	681	
Eu		94.7	106.6	112.0	UCl ₃ -type	P63/m	624	
Gd		93.8	105.3	110.7	UCl ₃ -type**	P6 ₃ /m	605	
Tb		92.3	104.0	109.5	PuBr,-type*	* Cmcm	582	
Dy		91,2	102.7	108.3	AlCl ₃ -type	C2/m	651	
Ho		90.1	101.5	107.2	AICl ₃ -type	C2/m	720	
Er		89.0	100.4	106.2	AICl ₃ -type	C2/m	777	
Tm		88.0	99.4	105.2	AlCl ₃ -type	C2/m	828	
Yb		86.8	98.5	104.2	AlCl ₁ -type	C2/m	875	
Lu		86.1	97.7	103.2	AlCl ₃ -type	C2/m	904	

1 低上海のノよっ半辺れ上ボニ協ル施の肥料107

	<i>a</i> ₀ / Å	$c_0 / \text{\AA}$	
LaCl ₃	7.48	4.38	
CeCl ₃	7.45	4.31	
PrCl ₃	7.42	4.28	
NdCl ₃	7,40	4.23	
(PmCl ₃)			
SmCl,	7.38	4.17	
EuCl ₃	7.37	4.13	
GdCl ₁	7.36	4.11	
UCI,	7.44	4.32	

Table 2-3 UCI 型三塩化物結晶の格子定数[18]

ここで考えているようなイオン結合性の強い物質ではクーロン相互作用が支配的 であるので、これら結晶化学的特性や溶融塩中での挙動は、その価数が同じであれ ばイオン半径によってスケーリングできるであろう。アクチニドのイオン半径をラ ンタニドのそれと対比させてFig.2-10に示す¹¹⁷。U³⁺、Pu³⁺のイオン半径はそれぞれ Ce³⁺、Nd³⁺のそれに近い。

さらに、稀土類三塩化物は熱力学的特性値もアクチニド三塩化物のそれにかなり 近い。例としてFig.2-11に標準生成ギブス自由エネルギーの温度依存性を示す。図で も明らかなように、稀土類三塩化物の標準生成ギブス自由エネルギーは、重稀土に なるほどUCl₄,PuCl₄のそれに近づいていく。

Fig.2-10 アクチニドおよびランタニドのイオン半径¹¹⁷¹

Fig.2-11 標準生成ギブス自由エネルギーの温度依存性

アクチニドのみならずランタニドにおいても各元素ごとに分離するのは困難であ り、容易に高純度試薬が入手できるのはLa, Ce, ないしはNd化合物である。そして、 中でもNdCl₃はFig.2-11で分かるように、熱力学計算において重要な役割を果たす標 準生成ギブス自由エネルギーがUCl₃, PuCl₃に最も近いので、本研究においては対象 として特にNdCl,を選択した。

2.3.2 塩化物の熱力学データ

希釈塩として用いられるアルカリ塩化物はもちろん、NdCl₃やUCl₃、PuCl₃そのもの は塩化物として極めて安定な部類であり、非腐食性である。しかしこの体系におい ても不純物としてO₃, H₂Oが体系に持ち込まれることで腐食性ガスが発生する。

NdCl,も潮解性を持ち、

$$NdCl_1 + H_2O \rightleftharpoons NdOCl + 2HCl$$
 (2.15)

という反応によるHCI発生がある。高速炉の運転温度は600°~750°C程度が検討され ているので、右辺への反応が自発的になる461°Cを越えている。したがって、前節の フッ化物の場合より大きな影響を及ぼすと予想される。

塩化物の生成ギブス自由エネルギーの温度依存性をFig.2-12に示す。

Fig.2-12 塩化物の生成ギブス自由エネルギー

HCIより安定な塩化物を作る金属はHCIにより塩化されるので、高速炉の運転温度 では、フッ化物のときと同様に、塩化に耐えるのは貴金属かNi, Mo, Wである。

2.3.3 塩化物溶融塩と構造材の両立性

フッ化物での計算と同様、理想的な平衡状態で何がどれだけあるかを定量的に知 り、腐食挙動に対する影響力の大きい水分の量をふった場合の効果を検討すること を目的に計算を行った。実験で再現性良くコントロールすることの難しい不純物で あることもフッ化物のときと同じである。

構造材としては超耐熱合金 Hastelloy-Xを考えた。フッ化物を燃料とする溶融塩増 殖炉実験で実績のある Hastelloy-Nよりも、塩化物に対しては Hastelloy-Fの方が耐食性 に優れているというのが供給元(当時 Haynes Stellite社(現 Cabot Corp. Stellite Div.))の報 告で、それに従って対象として Hastelloy-Xを選んだ。Hastelloy-Xは、合金組成がほと んど Hastelloy-F と同じで、産業用ガスタービンの静翼に用途がある。さらに原子炉 (高温ガス炉)用に Co, Ti を低減させた Hastelloy-XR もある。

2.3.3.1 計算体系

計算体系の大きさはフッ化物のとき と同様で、概略はFig.2-13のとおりで ある。Hastelloy-Xは図に示したものの 他に本来もっと多種類の成分を含むが 元の数や化合物数の制約上、合金添加 元素のうち微量で本質的でなかったり 全く反応に関与しないと予想されるも のは除外し、溶融塩についても希釈塩 NaCl-KClは省いた系を対象とした。

Fig.2-13 計算体系の概略図

2.3.3.2 結果と考察

原系に添加したH₂Oの量に対して、平衡状態における代表的な化学種の量をプロットするとFig.2-14が得られる。結果は大きく四つの領域に分けて考える事ができるだろう。初期水分量の少ない順に並べれば、

1) 全く腐食は起こらない[<10³mol-ppm]

2) Crが犠牲金属となる腐食[<2×10⁴mol-ppm]

3) Cr 欠乏後のFeが犠牲金属となる激しい腐食[<5×10⁴mol-ppm]

4) Ni, Wの反応生成物の蒸発に支配される腐食

である。Crが欠乏する前の段階では共存する酸化物が見られないが、FeCl,の蒸発が 始まり腐食が激しくなる領域では、Cr,O,生成が見出される。この状態では塩化性雰 囲気下で共存できる酸化物があり、その機能によっては耐食性が期待できる。しか し基本的には、HClの発生に応じて卑な成分から塩化を受けていくことが確認された。

Fig.2-14 腐食体系中の各化学種量の初期水分量依存性

37

この系の場合、不純物による塩化性ガスの発生とは別にもうひとつ、NdCl,による 酸化物の破壊という問題がある。塩化物を用いる体系で構造材候補材料として考え られているNi基の超耐熱合金では、表面にNiを含有する酸化物を形成して高温にお ける耐食性を発現させているのであるが、

$$NdCl_1 + NiO \rightarrow NdOCl + NiCl_2$$
 (2.16)

$$NdCl_{1} + NiCr_{2}O_{4} \rightarrow NdOCl + NiCl_{2} + Cr_{2}O_{3}$$

$$(2,17)$$

$$NdCl_3 + NiFe_2O_4 \rightarrow NdOCl + NiCl_2 + Fe_2O_3$$
 (2.18)

という反応のギブス自由エネルギーが負であるので、Niを含有する酸化物は溶解してしまうと考えられる。これはUCl,、PuCl,の場合にもあてはまる。

アクチニド・ランタニドの塩化物を含有する溶融塩の系においては、前節のフッ 化物の系とは対照的に、塩化が優先的に起こることが判明した。理想的な平衡状態 を考えるかぎりでは、脱湿をはじめとする不純物の低減を徹底する必要があると考 えられる。

2.3.3 塩化物燃料におけるFP

軽水加のように、固体燃料を用いる原子如においては、FPを燃料要素の中に閉じ 込め、再処理の際に燃料を解体するまでは外部に漏洩しないようにすることが、燃 料の基本的な設計思想となっている。これに対して溶融塩燃料加のような液体燃料 を用いる場合、燃料はポンプによって知ら内外を循環させられるので、FPはその流 路に広く分布することになる。このとき、FPが燃料中に均一に溶解して存在すると は考えにくく、一部が構造材に沈着したりガスとして放出される等の挙動が予想さ れる。そしてこれらFPが構造材料に何らかの作用を及ぼすことも考えられる。

核分裂によって生じる核種は周期律表上の広い範囲にわたっており、すべての族 に属する元素が含まれる。使用済み高速炉用U-Zr合金燃料における、各元素の発生 量をTable 2-4 に示す⁽¹⁹⁾。この表では被覆管材については割愛した。Zrは表では燃料 合金成分のものとFPとして発生するものとに分けている。この発生量はあくまで高 速炉用U-Zr合金燃料の場合だが、他の形態の燃料でも多少の上下はあるにせよ概ね このような分布になるであろう。

FPで大きな組成を持つものは、軽い側の分裂生成核ではZr, Mo, Ru, Pd, 重い側ではXe, Cs, Ce, Ndである。これらをはじめとする主なFPを

1a) 塩化に対して卑であるが、希ガス先行核を持つもの(Sr, Cs, Ba)

1b) 塩化に対して卑で、希ガス先行核を持たないもの(Zr, Ce, Nd)

2) 塩化に対して貴であるもの(Mo, Ru, Pd, Ag, Sb, Te, I)

3) 希ガス(Kr, Xe)

と分類することができよう。

発生量 / kg yr.		発生量 / kg yr. 「		発生量/kgyr. 1	
U	2430	Y	1.664	Zr	16.92
Np	1.303	La	7.511	Mo	20.67
Pu	395.3	Ce	13.55	Tc	5.179
Am	9.817	Pr	6.988	Ru	18.93
Cm	0.283	Nd	22.82	Rh	5.739
Zr	343.1	Pm	0.653	Pd	15.70
Na	61,14	Sm	6.931	Ag	1.585
		Eu	0.768	Cd	1.745
Rb	1.414	Gd	0.750	Sn	1.905
Cs	23.93	Tb	0.055	Sb	0.519
Mg	0.054	Se	0.271		
Sr	3.024	Те	4.418	Kr	1.630
Ba	9.637	I	2.505	Xe	29.31

300 MWc合金燃料FBR車応設計(電力中央研究所)をもとに。アクチニドについ てはCITATION.他についてはORIGEN-IIにより計算したもの。(20monihs/cycle, core 2.94 ton/2vr.; blanket 2.77 ton/2vr., equilibrium burnup 10 at%)

これらFPが、通常の酸化数を持った状態で溶融塩中に存在するとすれば、塩化物 溶融塩炉における熱化学的な挙動は計算で評価できよう。定性的には、構造材料の 中で塩化に対して卑な成分との、塩化物の生成自由エネルギーを比較すれば挙動の 推測はできる。Hastelloy-Xの主な構成成分の中では、Crが塩化に対して最も卑であ るが、Fig.2-12でも分かるように1a)、1b)に分類されるFPはすべて、さらに卑である ので構造材料を塩化することはない。逆に2)に分類されるものは、構造材料を塩化 して自らは還元される。もちろん3)は化学的には何ら作用しない。

塩化挙動に対してはこのようにある程度の推測は可能であるが、体系中に酸化物 等が共存する系は、問題が極めて煩雑になる。さらにFPの場合には、生成時に異常 な酸化数を取る可能性にも留意する必要がある。溶融塩の系においてアニオンとし て存在する可能性のあるBr. Te. 1も、CI過剰であれば揮発する可能性もあろうが、実 際の存在状態は実験炉からのデータが得られないと予想できない。また、単に化学 的な作用とは別に1a)や3)に分類されるものは気体として存在している間に運ばれる ことによって挙動の解析は困難となる。

化学的な作用のほかに、放射線被曝防護の面での問題や、中性子毒としての作用 も重要な検討課題であるが、これらも実験炉からのデータが必須である。貴な金属

などは構造材料に沈着し、耐食性を向上させることが期待される一方で、構造材料 へ放射能が蓄積する恐れがある。

いずれにしても、フッ化物燃料増殖炉実験においてすら、実験炉データは限られ ていて炉における各種FPの分布を定量的に示すことはできない状態にある。塩化物 燃料高速炉も含め今後の実験炉データが待たれる。

2.4 混合と相平衡

本章で行った平衡計算は、熱力学の最もプリミティブな形(純物質凝縮相+理想混 合気相)での適用によるものである。本節でその問題点について考察すると同時に、 計算モデルの拡張の可能性も検討する。

計算の中では全てmolベースで物質量は取り扱われ、ある温度・圧力下で自由エネ ルギーが最小となる生成系構成化学種とその物質量が出力である。したがってgemの 仮定の中での物質取支そのものには問題はなく、全圧を1atmとしているのでgemで 導出される気相成分の活量(厳密にはフカシティ)を分圧として示してきた。しかし当 然、体系の大きさが(カバーガスであるAr量を変えるなどして)変われば、分圧の値 は大きく変わるものである。また、gemでは溶解は扱えないが、現実の体系では気相 化学種が溶融塩へのある程度の溶解度を有している。最も影響の大きいと考えられ る Flibeへの HFの溶解について簡単に概算する。溶解度は 10⁻⁴ molmol-melf⁻¹ atm⁻¹ の オーダーである。例えば本章の計算条件においてHFが 10⁻⁴ mol (分圧が約10⁻⁴ atm)の とき、溶解量は 10⁻⁷ mol となって影響は小さいと考えられる。しかし、もちろんこれ も体系の大きさが変わったときは別途考慮すべき問題となりうる。

混合、溶解の効果を計算モデルに入れることを考えた場合、混合の熱力学を敷衍 しなければならない。一般に相平衡は、与えられた示強変数(今回考えているような 通常の系では温度・圧力・成分の組成)のもとで、系の自由エネルギー

$G = \sum N^{\varphi} G_{m}^{\varphi}$ (2.19)

を最小にすることで実現される。ここに、N[®]、G_m[®]はそれぞれ相φの物質量およびモ ルギブス自由エネルギーである。各相のモルギブス自由エネルギーは

$$G_{m} = G_{m}^{\dagger} + G_{m}^{bhal} + G_{m}^{curves} + G_{m}^{pressured} + G_{m}^{magnetic ardening}$$
(2.20)

と表すことができる。 G_m "は各相の標準モルギブス自由エネルギー、 G_m "^{deal}は理想溶体混合エントロビーに起因する項、 G_m "^{oreve}は化学的相互作用(会合・配位等)に起因する項(もちろん純物質ならば G_m "^{ereve}はともにゼロ)、残る二つは物理的外力によるモル体積の変化に起因する項である。

本研究で対象にしている系では、最後の物理的外力による二つの項は不要であろう。溶融塩は常圧で十分に熱媒体として機能するので、溶融塩燃料炉は軽水炉と異

なり常圧下で運転されるし、核融合炉ブランケットや乾式再処理電解槽でも加圧の 必要性は皆無である。磁性も関係のない体系である。

あとはギブス自由エネルギーが最小となるときに出現する相およびその物質量を 求めることになるわけだが、実際には出現相をそのまま用いるのではなく、(2.20)式 から導出される各成分の部分モルギブス自由エネルギー(以下化学ボテンシャルと称 する)を使うと問題が明解になる。成分jの化学ボテンシャル

$$\mu_{j} \equiv \left(\frac{\partial G_{m}}{\partial n_{j}}\right)_{n_{k}n_{j}} \tag{2.21}$$

を用いれば、(2.19)式は

$$G = \sum_{j} b_{j} \mu_{j} \tag{2.22}$$

と書き換えられる。ここにb,は成分jの全物質量で、反応の前後で保存される。(2.22) 式の最小値を求めるということは、相φを構成する元素iの物質量をn[®],単位物質量の 元素iから生成される成分jの物質量を表す化学当量係数をa.[®]としたときに、

$$b_{j} = \sum_{n} \sum n_{j}^{n} a_{n}^{\sigma} \tag{2.23}$$

なる東縛条件下で(2.19)式の最小値を求める際にLagrangian multiplierとしてµを用いたことに相当する。

次なる課題は、純物質ならば問題にならないが、複数の成分によって構成される 相(液相および中間化合物・金属間化合物相)のG_mを、如何に構成成分の分率を含む 関数として表すか、という事である。

複数の成分からなる相のギブス自由エネルギーを、各成分のそれと組成で表すモ デルについて述べる^{Day}。理想溶体においては各成分のギブス自由エネルギーの線形 結合に理想混合エントロビーの寄与が加わって

$$G_{\rm m} = \sum x_i G_j + RT \sum x_i \ln x_j \tag{2.24}$$

となり、正則溶体においてはさらに混合熱の項が加わって

$$G_{\rm m} = \sum_{i} x_i G'_i + RT \sum_{i} x_i \ln x_i + \sum_{i < j} \omega_{ij} x_i x_j$$
(2.25)

で与えられる。x_iは成分iのモル分率、Rは気体定数、Tは温度で、正則溶体モデルで現れるω,は成分ij間の相互作用パラメータと呼ばれる。

ここでもう少し、溶融塩という対象に絞って、理想溶体および正則溶体モデルに ついて述べる。

成分A,Bの、熱力学的に平衡に達している混合物のギブス自由エネルギーは、そ

れぞれの物質量をn,.nnとすれば

$$G_{\text{misure, real}} = n_{\text{A}} G_{\text{A}}^{*} + n_{\text{B}} G_{\text{B}}^{*} + (n_{\text{A}} + n_{\text{B}}) G^{\text{excess}}$$
(2.26)

で与えられる。右辺第3項のG^{escens}は過剰ギブス自由エネルギーと呼ばれ、過剰エン タルビーH^{escens}および混合エントロピーS^{mas}によって

$$G^{\text{excess}} = H^{\text{excess}} - TS^{\text{mis}}$$
(2.27)

と表される。

もし混合が完全に行われていれば、任意の同種粒子の交換に対して熱の出入りは 起こらない。すなわち言い換えれば、

$$H^{\text{excess}} = 0 \tag{2.28}$$

である。このような混合物は理想溶体(Ideal Solution)と呼ばれる。

しかし現実の溶体では過剰エンタルビーがゼロになることは稀である。かなり古 くから、これについての研究が行われており、1929年にHildebrandが提唱した

$$H^{\text{excess}} = \omega_{\text{AB}} x_{\text{A}} x_{\text{B}} \tag{2.29}$$

とするモデルが現在もなお健在である。 x_A, x_B は成分A, Bのモル分率である。このように過剰エンタルピーが表されるものは正則溶体(Regular Solution)と呼ばれ、 ω_{AB} を相互作用パラメータという。実際、多くの系でその妥当性が示され、相互作用パラメータが求められている。しかし、確かに多くの系で求められてはいるが、当然のことながら任意の組み合わせについて揃っているわけではない。これを具体的に得ようとするならば、平衡混合物のエンタルピーを求め、加成則から予想される理想値からのズレ(混合熱)の組成依存性を調べれねばならない。Fig.2-15にLiF-KF系の混合熱の測定例^[21]を示す。

One characteristic of the simplest type of regular solution is that the neat content per mole of solution is a parabolic function of composition. This point may be tested for mixtures of lithium and potassium fluorides, the heat

Fig. 5. Heat of mixing of lithium and polassium fluorides. $xLiF(l) + (1 - x)KF(l) = x LiF_1(1 - x)KF(l)$: $y = -\Delta H$ in keat.

of mixing of which was measured at 1148°K by Gilbert⁶.

Fig.2-15 LiF-KF系における混合熱の組成依存性(Gilbert et al.^[21]による)

図のように混合熱が組成に対し放物線を描くという実験事実が、過剰エンタルビーが(2.29)式の形で表せるという根拠になった。過去の測定例では、相互作用パラメータには温度依存性がほとんど見られないことが知られている^[21]。

次に、混合エントロピーの方に話を移す。このエントロピー増大の山来は、構成 粒子の配列の組み合わせが増えることにある。A,Bの数をそれぞれN_A,N_Bとすれば、 配列の組み合わせの総数Ωは

$$\Omega = \frac{(N_A + N_B)!}{N_A! N_B!}$$
(2.30)

で与えられる。Boltzmannの式S=klnΩにStirling近似lnN!=NlnN-Nを用いれば

$$-\frac{\sigma_{\text{total}}}{k} = N_{\text{A}} \ln N_{\text{A}} + N_{\text{B}} \ln N_{\text{B}} - (N_{\text{A}} + N_{\text{B}}) \ln (N_{\text{A}} + N_{\text{B}})$$
(2.31)

となり、気体定数 $R = kN_{Avo}$ 、そして $x_A = N_A / (N_A + N_B)$ 、 $x_B = N_B / (N_A + N_B)$ であることに注意すれば、

$$\frac{S^{\text{miss}}}{R} = x_{\text{A}} \ln x_{\text{A}} + x_{\text{B}} \ln x_{\text{B}}$$
(2.32)

を得る。

溶融塩混合物では、各成分は電離しているので

$$\Omega = \frac{\left(\sum_{j \text{ for settion}} N_i + \sum_{j \text{ for minor}} N_j\right)!}{\sum_{i \text{ for minor}} (N_i !) \prod_{j \text{ for minor}} (N_i !)}$$
(2.33)

で与えられるが、実際にはイオン間の強いクーロン相互作用によって、完全にラン ダムに混合しているわけではなく、カチオンの周囲にはアニオン、アニオンの周囲 にはカチオンが配列していると考えられる。さらに踏み込んで言えば、カチオンや アニオンはある決まったサイトを持っており、その中でそれぞれがランダムに混合 しているとしてよい。これをイオン性溶体の準格子(quasi-lattice)モデルといい、

$$\Omega = \frac{\left(\sum_{l \text{ for calling }} N_l\right) !}{\sum_{l \text{ for calling }} (N_l !)} \frac{\left(\sum_{l \text{ for calling }} N_l\right) !}{\sum_{l \text{ for mono}} (N_l !)}$$
(2.34)

と表せることになる。これをもとに、混合エントロビーを

$$\frac{S^{max}}{R} = \sum_{i, h = i \text{ diam}} x_i \ln x_i + \sum_{j \in h = and on} x_j \ln x_j$$
(2.35)

とするモデルをTemkinが1945年に提唱した。特に今回のような1価の共通アニオン 系では

$$-\frac{S^{min}}{R} = \sum_{j \text{ three number } x_j \ln x_j + 1 \ln 1 = \sum_{k \text{ three remaining } x_k \ln x_k} x_k \ln x_k$$
(2.36)

となるので、(2.32)式と全く同様のケースであることが分かる。

溶融塩相を単一相の理想溶体として(2.2)式に(2.36)式の項を加えることで、気相の みならず液相も、Temkinモデルに従う理想溶体として扱えることになるが、本研究 で用いている熱力学データベースシステムMALT2では、大概の無機塩類は固相と液 相の熱力学データが凝縮相としてひとまとめになっており、溶融しているかどうか で使い分けられる形式になっていない。この項のgemコードへの適用は、凝縮相が完 全に単一の液相あるいは固相だけになっている場合には有効であろう。

しかし一方で、理想溶体でも正則溶体でもない系もまた、いくつも存在する。非 正則性も考慮した拡張されたモデルもこれまでに幾つも考え出されているが、それ ぞれに適性があるので実際の熱化学計算に適用する際にはその点に留意しなければ ならない。例えば会合体溶液に対しては、(2.25)式の正則溶体モデルを拡張し(混合エ ンタルビーに組成について高次の項を入れ)たRedlich-Kister-Muggianuの式

$$G_{m} = \sum_{j} x_{j} G_{j}^{*} + RT \sum_{i} x_{j} \ln x_{i} + \sum_{i < i} x_{i} x_{i} \sum_{n} L_{n}^{(n)} (x_{i} - x_{i})^{n}$$
(2.37)

が用いられるが、イオン性融体においては副格子(sub-lattice)モデルやあるいは擬化 学(quasi-chemical)モデルが適用されることも多い。これらのモデルは、強いクーロン 場を念頭に置いた液体の構造の考察から導出されたものである。詳細は成書³³に譲 るが、単に最終的な式の形そのものを比べると(2.37)式に類似している。

あるいはまた過剰エントロビー

$$S^{\text{excess}} = \sigma_{\text{AB}} x_{\text{A}} x_{\text{B}} \tag{2.38}$$

を導入するといった手法も採られる。σ_{AB}もまた、定数とは限らず一般に組成の関数 である。ここまで一般化すればほぼあらゆる系の相平衡状態特性がシミュレートで きる。しかしこのような計算で用いられるべきパラメータが充実しているのは、金 属およびいくつかの酸化物の系であるというのが現状で、非酸化物溶融塩について はかなり限られた組み合わせしか手に入らない。

このような、より現実に近いシミュレーションを可能にするパラメータは、直接 的には混合物の熱力学量の測定、間接的には混合における活量低下や各成分の蒸気 圧、溶解度といった相平衡状態特性の実験データから導出される。より厳密な平衡 状態の計算による評価を行う場合には、まず実験に依存せざるを得ない。

しかしながら、原系を構成するハライドや構造材料母材については現実の体系で もそれぞれ液相・固相において人きな分率を持ち、混合の理想・非理想を問わずそ の活量はRaoult期からそれほど大きく外れるものではないと考えられる。むしろ問題 になるのは活量係数が1から大きく外れる可能性のある凝縮相の希薄成分である。しかしこれらの成分の活量係数が数%のオーダーで偏奇したとしても、希薄であるゆえに物質量としての変動は小さく、生成相が変わるほどの影響を計算結果に及ぼすことは考えにくい。すなわち、本論文では原系への不純物添加量を横軸として生成系を見ているが、この横軸の目盛りが活量の効果で変化しうるが、生成相およびその量のオーダーは影響を受けないと考えられる。

したがって、全化学種が接触し合い、その幾何学的配置・勾配を考えないという 仮定の下での生成相はこの熱力学計算で忠実に再現できると考えられる。そしてそ の体系において共存できる化学種を特定できるという部分は、影響を受けない。

2.5 摘要

ハライド溶融塩と構造材料の両立性の検討においては、実験では微量不純物が腐 食挙動に影響するが、その量を再現性良く制御することは困難で、核工学システム の運転による影響を実験室で再現することも至難である。

そこで、想定される体系の熱化学平衡状態を知るために熱力学計算を適用した。 体系中に存在する化学種の量を任意に設定し、候袖材料の耐食性についての知見を 得た。

腐食性のH-O-F系ガスを雰囲気に含む条件下での、フッ化物溶融塩増殖材料Flibe と構造材料の両立性について、熱力学平衡計算を用いることによって検討した。よ り現実の核融合炉プランケット条件に近づけるために、中性子照射による核変換を 考慮に入れた生成ガスの組成を評価して熱化学平衡計算に反映させた。実際のプラ ンケットで考えられている雰囲気へのH。添加やFlibe中への金属Be添加についても併 せて計算した。熱化学平衡計算の結果、この体系ではHFに応じて材料のフッ化が見 られる一方で、酸化性の化学種が存在すれば常に酸化が優先的に起こり、取りあげ た構造材料(フェライト鋼・パナジウム合金)の成分の酸化物にはフッ化を受けずに残 留するものがあることが分かった。

不純物としてH₃Oを含む、高速増殖炉の塩化物燃料と構造材料の両立性について も同様の手法で検討した。この体系は塩化性化学種があればそれにしたがって材料 の塩化が進行することを確認し、初期水分量によって腐食挙動を分類して考えるこ とができることを示した。塩化物系についてはFPのふるまいについても述べた。

以上のように、実験では実現することの困難な、腐食の原因物質となる不純物を ふった場合の生成系の変化を定量的に求め、両立性を検討し、各種材料の耐食性を 持ちうる条件を示した。

理想溶体および非理想溶体モデルの混合溶融塩への適用について述べ、そこで必要となる熱物性を示し、実験の必要性を指摘した。

第3章

相平衡状態図の作成

相平衡状態図は、液相としての存在領域や各温度における各種成分の溶解度、固 相の存在状態等、多くの相平衡状態特性がバンドルされている重要な情報源である。 そしてこれは、単なる両端をしめる純粋成分の熱力学データのみからでは計算で求 めることのできないものであるので、未知のものは実験で作成しなければならない。

フッ化物の系については、米国ORNLのMSREの燃料塩の物理化学基礎データのひ とつとして、既に精力的に多数の状態図が作成されている。それに対して塩化物の 系のうち本研究に関係するものについては、かなり古いものや明らかに再検討を要 すると考えられるような状態図しか見出されなかった。

そこで、高速炉用溶融塩燃料の系を念頭に置き、UCl,, PuCl,の模擬物質として NdCl,を用いて行った、相平衡状態図の作成について述べる。

3.1 実験

3.1.1 方法と原理[24]

状態図の作成に用いた方法について、その原理と併せて説明する。

示差熱分析 (differential thermal analysis, DTA)

DTAでは、試料と基準物質とを炉内に熱的に対称に置いて加熱(または冷却)し、 そのときの両者の温度差を時間(または温度)に対して測定・記録する(Fig.3-1)。基 準物質には、測定温度範囲で熱的に変化しないもの(α-AI₂O₃等)が用いられる。基準 物質側は熱的変化が無いから、熱源や制御用熱電対にやや遅れて加熱(冷却)される が、試料に転移や融解が起これば温度変化が大幅に遅れ、測定している温度差が増 大する。化学変化による吸発熱においても同様の温度差の増大が見られる。これら の変化が終了すると温度差は急速に元の動的平衡状態に戻るから、結果的に熱的変 化が温度差のビークとして検出される。

Fig.3-1 示差熱分析装置の構成

以上の原理について少し詳しく検証する。 熱の流出入と温度について、試料側,基準物質側でそれぞれ

$$C_s \frac{dT_s}{dt} + \Delta H \frac{dx}{dt} = K_s (T_t - T_s)$$

$$(3.1)$$

$$C_r \frac{dT_r}{dt} = K_r (T_t - T_t) \tag{3.2}$$

が成り立つ。ここに C, T, t, AH, x, K はそれぞれ、熱容量、温度,時間,変化に伴う熱、 変化した割合,熱伝達係数であり、添字 s, r, f は試料,基準物質,熱源を意味する。こ こで特に等速で昇温する場合を考えると、動的平衡状態においては

$$\frac{dT_t}{dt} = \frac{dT_s}{dt} = \frac{dT_t}{dt} = \frac{dT}{dt}$$
(3.3)

とおくことができて、(3.1)、(3.2)式から両側の温度差についてまとめると

$$\frac{d}{dt}\Delta T + \frac{\Delta H}{C_s}\frac{dx}{dt} = -\frac{\Delta T - \Delta T_b}{\tau}$$
(3.4)

となる。ここで

$$\Delta T = T_s - T_t \tag{3.5}$$

$$\Delta T_{\rm b} = \frac{1}{K_{\rm s}} \left[(C_{\rm r} - C_{\rm s}) \frac{dT}{dt} + (K_{\rm r} - K_{\rm s})(T_{\rm f} - T_{\rm r}) \right] \tag{3.6}$$

$$\tau = \frac{C_s}{K_s}$$
(3.7)

とした。

熱的反応が無い(*dx/d1=0*)ときは、

$$\Delta T - \Delta T_b = (\Delta T - \Delta T_b)_{\ell=t_0} \exp\left(-\frac{\ell - t_0}{\tau}\right)$$
(3.8)

を得る。ここにもは変化のない領域の開始時刻である。

測定に際し、(3.5)~(3.8)式を理解しておくことが重要である。熱的変化がない 定常状態では、温度差はほぼ一定の値となり、それは基線(ベースライン)と呼ばれ る。基線は AT,に等しく(3.6)式によって定まる。この式から分かるとおり昇温速 度を変えれば基線も変わる。したがって風などの外的擾乱を防ぐと共に、昇温速度 が急変しないような温度制御が行われなければならない。

熱的変化が終了すると(3.8)式に従い温度差は指数関数的に基線に戻る。(3.7)式 で明らかなように、rすなわち装置の熱的応答速度を示す時定数は、試料の熱容量 が大きく、試料への熱伝達が悪いほど大きい(応答としては遅い)。したがって小さ い温度範囲にいくつかの変化があり、これらを分離して検出したいときは、少量の 試料・小さい昇温速度で測定した方がよい。一方、微小な熱量の変化を検出するに は、全く逆の条件で測定した方がよい。 Fig.3-2aに理想的な一次相転移(例えば純物質の融解)によって得られる信号の例 を示す。しかし現実には不純物などの効果により、得られるピークはFig.3-2bに示 すように鈍った形となる。この場合、以下のように信号の解釈が行われる。

現実の転移そのものは温度 T_1 で開始し T_2 で終了しているのだが、転移の平衡温度 T_{squit} は転移開始前のベースラインとピークの立ち上がりのふちの直線部分との交点(On-set)における温度とし、終了温度 T_{fac} はピーク極値における温度とする。

この方法をとれば、共晶や包晶等の不変系反応の平衡温度はかなりの精度で決定 できるが、転移の終了温度は測定条件や試料量の影響を受けやすく、いわゆる温度 遅れに留意しなければならない。したがって自由度のある転移の終了温度の決定な どにおいては、その実験体系において実際に混合物の試料を用いて実験を行い、昇 温速度や試料量の影響を評価した方がよい。

Fig.3-2 転移によるDTAのビーク

本研究で用いた装置は島津製作所製示差熱分析装置DTA-30である。DTAディテク タを覆う保護管内部のみをパージすれば良いので、雰囲気は非常に制御しやすくなっ ている。転移点は昇温速度15°C/minの加熱曲線から得た。測定の基準物質はα-Al_O, で、雰囲気はArガスフロー(流量~100ml/min)である。以下に報告するとおりNdCl, を含む二元系では、共晶・包晶・偏晶の不変系反応(組成によらず温度不変)と固相液 相共存状態から完全な液相への自由度1の転移が観測される。前者は転移前のベー スラインとピーク立ち上がりのふちの直線との交点における温度、後者は吸熱の終 了を示すピーク極値における温度を評価した。後者(以下液相線温度)はDTAの原理 のでも述べたとおり、実験条件の影響を受けやすいので、代表的な組成で条件を変 えて測定を行い、温度遅れの評価も併せて行った。本来ならば、液相線温度は冷却 曲線から評価するのが最善の方法なのであるが、以下に報告するNdCl,を含む系では いずれも過冷却を起こし、正しい液相線温度は得られない。 状態図作成においては温度測定が重要である。装置のDTA ディテクタのPt-Pt13%Rh熱電対(Rタイプ)は問題になる温度域に融点を持つ金属試料を用いて温度較 正を行った。この測定では従来のPtセルではなくアルミナセルを用いた。金属試料 をPtセルで加熱すると合金化し、セルごと溶融して装置を壊す恐れがあるからであ る。セルの違いによって測定温度に差が出ないことを確認するため、再びNaClの融 点測定をアルミナおよびPtセルの両方で行って比較した。金属試料はSn(99.999%)、 Zn(99.999%),Al(99.99%)およびAg(99.999%)で、いずれも固相と液相の共存温度は ITS-90の定義定点である。

得られた融点と凝固点の読みの値を実験条件とともにTable 3-1 に示す。Zn以外は 降温側では過冷却を起こし、正しい凝固点は得られなかった。NaClについても同様 である。さて、本題の較正については、232°C-962°Cの温度域において

(真の温度)=(読み)+4°C

(3.1)

とすれば、±3℃の誤差で温度を決定できる。以下に報告する温度は全てこの式に従っ て較正した値である。

雰囲気のAr流量については、流量計の取扱説明書に掲載されている較正表によった。 磁点の流量依存性は見られなかった。

Sample	m.p./°C	f.p./°C	rate/K min 1	flow rate/mlmin	ſ
Tin #1	230		10	100	
Tin #2	230		5	100	
Zinc #1	415	415	15	100	
Zinc #2	415	417	10	100	
Zinc #3	413	418	5	100	
Zinc #4	415	415	15	120	
Zinc #5	415	417	15	60	
Zinc #6	415	415	15	30	
Aluminum #1	658		15	100	
Aluminum #2	658		10	100	
NaCl #5 (<i>α</i> -Al ₂ O ₃ cell)	796		5	100	
NaCl #6 (Pt cell)	796		5	100	
Silver #1	956		15	100	

Table 3-1 温度較正用金属試料の測定結果

X線回折測定 (X-ray Diffractometry, XRD)

後述の方法で調製した熱分析用の試料すべてをXRDにも用い、固相のキャラク タリゼーションを行った。XRD図形に現れる回折ビークの同定によりそれを行っ たが、其晶においては構成する成分が或る組織を形作りつつも別個に存在してい るので、その粉末試料では結果的にそれら成分のビークが独立に現れ、その重ね 合わせとしてXRD図形をとらえることができる。それに対し固溶体を形成してい る場合は、溶質が溶媒の結晶構造を維持しつつ溶け込んでいるので、溶質成分の ビークは全く観測されず、溶媒成分の結晶構造のみに対応する回折図形が現れる。 ただしこの時、溶解度に応じて結晶の格子定数が変わる(Vegard II)ので、純粋な 溶媒成分のみの場合とビークの出現する回折角は異なってくる。以上のいずれで も説明のつかないビークが現れた場合は、何らかの中間相が形成されると考えれ ばよい。もとの成分によるビークを除いた残りのビークが、その相の回折図形で ある。

ホルダ封入容器は、測定に用いた装置の付属品ではなく、別個にあつらえたものなので、セッティングにおけるセンターのずれや、同折角のゼロ合わせに問題が残っているのであるが、NIST標準試料(SRM 675 Mica Powder: KAl₃Si₃O₁₀(OH)₃)を用いた測定で、回折角の誤差は±0.1°に抑えられることを確認した。

3.1.2 試薬と試料の取り扱い

NaCl

IIS特級,純度99.99%のものを、すりつぶし乾燥させて用いた。乾燥後はデシケー タで保管した。

KCI

市販特級,純度99.8%のものを、すりつぶし乾燥させて用いた。同じくデシケー タで保管した。

NdCl,

市販特級,ガラスアンプル封入,純度99.9%のものを、乾燥窒素雰囲気のグロー ブボックス中で開封、あらかじめ乾燥させておいたガラスビンに分けて取り、使 用の際も乾燥窒素雰囲気のグローブボックス中で取り扱った。使用時以外はデシ ケータで保管した。

NaCl, KClともに、本研究における開放系での昇温ではかなり蒸発することが予想 される。特に融点における飽和蒸気圧を例として挙げると

NaCl 2.19×10^{-4} atm

KCl 3.38×10^{-4} atm

である(MALT2に基づく)。

熱分析中の試料の雰囲気は常にArガスによりパージされているので、蒸発量は当 然、温度および時間に依存する。室温から融点を越える温度で昇降温を行って重量 変化を見たところ、昇温速度10°C/min程度では試料重量の%オーダーの蒸発が起こる ことが分かった。

これをふまえ、後の状態図作成では試料調製の際必ず蒸発量を監視して組成を評価し、ひとつのサンプルの測定は一度の昇温だけにするようにした。一般に、複数の成分を混合すれば蒸気圧は下げられるが、ここで報告する状態図作成のための試料調製では無視できない量の蒸発があった。

溶融塩高速増殖炉や乾式再処理ブラントも不活性ガスをパージさせてFPカスを除 去することが考えられているので、配管の破断事故時等だけでなく平常運転時にお いても、蒸気圧の問題は無視できないであろう。UCI,もNaCl, KCIに近い蒸気圧を有 する。

NdCI,無水物⁽²⁸⁾は紫色でUCI,型六方品. a₀=7.400Å, c₀=4.240Å. 融点については諸説 あり、740°C台から780°C台に至るまで様々な報告があるが、現在では759°C⁽²⁰⁾という値が一般に受け入れられている。水和物の脱水も注意深く行えば可能であるが、 脱水によって生じた水蒸気が雰囲気に混入したまま高温に達すると

NdCl₃+H₂O = NdOCl+2HCl

(3.2)

という反応を起こしてNdOCIを生じる。このようにこの試料を扱う際に注意しなけ ればならない不純物はNdOCIであると考えられる。かなり安定な物質であるが、ま だあまりこれそのものは研究対象に取り上げられていないため融点すら不明である。

不純物としてこのNdOCIが入ってきた場合、本来のNdCl,の融点より低いところで 融解が観測される。これについてはNdCl,-NdOCI系状態図が報告されていて^[21]、観 測されるのは共晶温度である。Fig.3-3にその状態図^[28]を示す。本研究での測定で共 晶が検出されたときにはいずれも740°Cで観測された。ひとまず報告されている共晶 温度は低すぎると考えられる。実際その状態図を見るとNdCl,の融点はかなり低く報 告されており、NdCl,そのものがかなり不純物を含んでいると考えられる。雰囲気の 制御については溶融塩増殖炉燃料についても同様のことが言える。雰囲気に酸素や 水蒸気が存在すればNdCl,のときと全く同様の反応

$2UCI_3 + O_2 \rightleftharpoons 2UOCI + 2CI_2$	(3.3)
$PuCl_1 + O_2 \rightleftharpoons 2PuOCl + 2Cl_2$	(3.4)
$UCI_3 + H_2O \rightleftharpoons UOCI + 2HCI$	(3.5)
$uCl_1 + H_2O \approx PuOCl + 2HCl$	(3.6)

が問題になるであろう。さらに、酸素分圧や水蒸気圧によっては酸化されて、例え ばウランについてはUOCI、、UO、などを生じる恐れもある。

Fig.3-3 NdCl,-NdOCl系状態図^[28]

再びNdCl,の融解挙動に話を戻す。当初、試料容器に用いるPtセルは装置付属のも のを使用していたのだが、たびたび試料がこぼれた。試料を少なくしてもなかなか 改善されず、新規に深い容器を製作しなければならなかった。これを用いても、融 解状態のまま過剰に温度を上げてしまうとNdCl,が側壁をはいあがってこぼれ出すこ とが分かった。すなわちPtはNdCl,に対して濡れ性が良いことを示している。これに ついてはUCl,やPuCl,についても同じであるかどうかは判断できないが、ホット実験 を行う際には注意を要するのではないかと考えられる。

試料の出し入れはすべてグローブボックス中で行った。グローブボックスには予 め乾燥剤(モレキューラシーブ)を入れておき真空排気を十分に行った後、窒素ガスを 導入した。これにより、試料は常に乾燥窒素雰囲気中で取り扱うことができる。

状態図作成用の試料は、各組成で或る程度まとまった量(g単位)調製した。アルミ ナるつぼにニッケル箔を敷き、粉末試料を秤り取って、電気炉を用いて一度融解さ せ徐冷して凝固させる。完全に冷めたところで改めて秤量し、減少量を蒸発量とす る。これを乳鉢で粉砕・すりつぶして得られた粉末を試料とする。これにより系は 均一になり、直接セルに取るより秤量誤差や蒸発による組成のズレは抑制される。

これをXRDに供する際には、乳鉢でさらに十分にすりつぶしてガラス製ホルダに 平らに押しつけ、アルミニウム製の封入容器に密封した。この作業も乾燥窒素雰囲 気のグローブボックス中で行ったので、実際の測定時に試料が水分にさらされる恐 れはないが、測定室に長時間放置したりすると水和物のものと思われる回折ビーク も観測される。恐らく封入容器のアルミニウムに吸着していた水分を吸って形成されるものと考えられる。しかし、本研究で得られた通常の測定の結果を見る限り、 手際よく作業しさえすればこの方法で十分である。

3.1.3 NdCl₃の融点測定

純物質ならば特に上述の方法をとる必要はないのだが、不純物混入の有無を評価 するため、上記の手順で用意した試料と、従来通り直接セルにとったものの両方で NdCl,の融点測定を行った。

Fig.3-4にDTA曲線の例を示す。ピークの立ち上がりが完全な直線ではない(融解が 等温過程でない)ので、不純物と固溶体を形成し、その融解を観測したものと考えら れる。この測定ではピークの最大値温度(融解の終了温度)は759°Cであった。これは 現在一般に受け入れられている文献値759°C¹²⁶¹と一致する。また、このことは逆に、 不純物の混入量がかなり抑制されたと判断する材料にもなりうる。しかしすでに測 定原理で触れているとおり融解の終了温度の評価は困難を伴う。幸い不純物の混入 量がかなり抑えられ、ほとんど純物質の融解のものに近いピークが得られたので、 厳密さは劣るが敢えてピーク立ち上がりを用いる本来の方法で融点の評価を行った ところ750°Cを得た。

これらの値をそれぞれ最大・最小の解釈としてNdCl,の融点を755°±5°Cと決定した。試料の準備の方法による差は認められなかった。

Temperature / °C

Fig.3-4 NdCl,のDTA曲線(Run #8)

55

3.2 NdCl₃-NaCl二元系

3.2.1 試料

Table 3-2に準備した試料の組成をまとめて示す。試料調製の際、るつぼに別途作製 した石英製のフタをした。試料を回収するときにフタには無色の物質が晶出してお り全く潮解性がなかった。これにより蒸発は全てNaClであるとして組成の評価を行っ た。試料はあらかじめ乾燥させたガラスびんに密封しデシケータに保管した。

No.	Weight of NdCl ₃	Weight of NaCl	Initial Comp. mol%NaCl	Loss in Weight	Estimated Comp. mol%NaCl
#1	3.69028	0.5480g	38.9	0.02018	38.0
#2	0.6865	0.8658	84.4	0.0576	83.5*1
#3	3.8446	0.2223	19.9	>0.3	-*2
#4	2.0856	0.9662	66.5	0.0695	64.8
#5	4.0174	0.3752	28.6	0.0385	26,4*3
#6	2.2358	1.4176	73.1	0.0145	72.9
#7	1.5525	0.3857	51.6	0.0241	50.0
#8	4.0933	0.2398	20.1	0.1404	9.0
#9	3.3613	0.2198'4	4.8	0.0146	3.2
#10	3.8386	0.3864	30.2	0.0427	27.7
ŧ11	0.7041	1.0289	86.2	0.0050	86.2
#12	4.0039	0.1922	17.1	0.0050	17.0
#13	0.4895	2.1603	95.0	0.0054	95.0
#14	2.2022	0.7554	59.5	0.0434	58.1

Table 3-2 NdCl, -NaCl系試料の組成

*1 融解が不十分で系が不均一 DTA測定時によけいなピークを観測。

*2 重量減少がNaClの重量を上回ってしまった。

*3これ以後の試料調製では石英のフタを用いる。だがこの一回目はきちんと閉じていなかったため、 フタに多量の晶出が見られた。系が不均

*4 直接では極めて多量のNdCI,を必要とするので、すでにある50.0mol%試料とNdCI,を用いて調製 した。0.2198gというのはその50.0mol%試料の重量

Sample #2, #3, #5は使用をあきらめた。

3.2.2 転移点測定

本項で、熱分析の結果をまとめて示す。この系では、熱的挙動に関しては3つの 領域に人別される。NaCI分率の小さい順に並べれば 包晶(Peritectic)および液相線(Liquidus) 共晶(Eutectic),包晶および液相線 共晶および液相線

として評価すべきものと考えられる転移が観測された。

Table 3-3 に各組成で観測された転移点を示す。これらの結果をもとに、組成に対し て転移点をプロットすれば Fig.3-5が得られる。液相線温度評価における温度遅れに ついては昇温速度により有意差は認められたが定量的な評価は困難であり、本測定 では±5°Cを誤差範囲とした。

Composition mol%NaCl	Eutectic	Transition Temperature / Peritectic	°C Liquidus
0.0			759
3.2		540	755
9.0		537	748
17.0		546	720
27.7	438	536	678
32.4	438	520	646
38.0	435	545	604
50.0	433		515
58.1	437		482
64.8	433		
72.9	437		601
86.2	441		774
95.0	434		806
100			800

Table 3-3 NdCl₄-NaCl系のDTAの結果

Fig.3-5 NdCl₂-NaCl系で観測された転移点

Fig.3-6にすでに報告されているNdCl₁-NaCl-CaCl₂系状態図^{1261/29]}を示す。この図の組 成三角形の外側に示されているNdCl₁-NaCl 二元系状態図は、この系が単純共晶系で あることを示しているが、本研究で得られたNdCl₁-NaCl系における転移点のプロッ トは、明らかにFig.3-6から予想されるものと異なっている。本研究では、文献のよ うな単純共晶系ではなく、包晶と考えられる転移を観測した。そして以下に報告す る固相の評価では包晶化合物の存在が明らかになった。

これについてはR.A.Sharma et al.が全く同じ系の状態図を報告している^[30]。Fig.3-7 にその状態図を示す。この研究は稀土類純金属の生産に着目して行われたもので本 研究と全く目的は異なるが、ほとんど同じ方法で行われており、同じ実験上の困難 についてふれている。しかし、本研究でいくつか改善された点もある。この文献で は、成分の蒸発による試料組成のシフトのことは全く触れていないし、本研究で NdCl₃-NdOCIの共晶のピークが観測されないところまで混入を抑えたオキシ塩化物 がかなり混入した試料を用いて、状態図作成に踏み切っている。

PrCl,-NaCl系においても、やはり同じようにこの系を単純共晶系としていた古い文献⁽³¹⁾は更新されている。Fig.3-8にその状態図を示す^[32]。

両者とも新たな報告においては同じ組成の包晶化合物が示され、イオン半径が近い ときは状態図も類似していることが確認できる。

Fig.3-6 NdCl₃-NaCl-CaCl₂系状態図^[29](I.S. Morozov et al.^[30]による)

Fig.3-8 PrCl₃-NaCl系状態図 (T.Hattori *et al.*^[32]による)

59

3.2.3 固相のキャラクタリゼーション

ここでは、熱分析の結果を受けて状態図を確定するべく行った固相のキャラクタ リゼーションについて述べる。まずXRDの測定条件を以下に列挙しておく。

使用X線	CuKa
测定回折角	$10^{\circ} \leq 2\theta \leq 90$
スキャンスビード	1°/min
X線測定系の時定数	2 sec
温度	$22^{\circ} \pm 1^{\circ}C$

Fig.3-9に、得られたチャートの一部を組成の順に並べて示す。見やすくする都合上、 極端に大きなビークは途中で切ってある。

これらから明らかに分かることは、NdCl,とNaCl以外に帰属されるべきビークが 多数存在するということである。上述したように、固溶体が形成されたとしても、 ピークの位置がずれるだけであって数は決して増えない。したがって、今回のX線回 折の結果からこの系では中間相が形成されると結論できる。次に、中間相がきちん とした化合物を形成しているかを判断しなければならない。これについては厳密に 議論しようとすると、文献^[33]に報告されているように化合物のstoichiometryに対応す る組成の前後で細かく熱分析をしなければならない。しかし現実には今までに得ら れている膨大な数の状態図から経験的に推定しておき、立証すれば十分であること が多い。Sharma et al.^{150]}も、先に報告されていたPrCl,-NaCl系状態図と自らの熱分析 の結果を照らし合わせることで25mol%NaClに化合物が存在すると仮定し、その組成 の試料を調製してDSC.XRDで分析し、NdCl,とは(もちろんNaClとも)別の単一相で あることを確認して、その25mol%NaClの縦線を確定している。

本研究で得られた全組成の回折図形を検討すると、やはり25mol%NaClを挟んで現 れている相が変化していることが分かった。Fig.3-9にも示したとおり、NdCl,-rich側 ではNdCl,相と化合物相が、NaCl-rich側では化合物相とNaCl相が見出された。

経験的にイオン性結晶の中間化合物は、成分の簡単な整数比で構成されるので、 やはり今回見出された中間相は包晶化合物でその組成は3NdCl,・NaClであると考えら れる。以上をもって、改めて今回得られた状態図をFig.3-10に示す。

Fig.3-9 NdCl₃-NaCl系試料粉末のXRD図形 上から (a) NdCl₃ (b) 9mol%NaCl (c) 38mol%NaCl (d) 86mol%NaCl (e) NaCl

Fig.3-10 NdCl,-NaCl系状態図(Present Work)

次に化合物の構造について述べる。Sharma et al.^[80]は化合物のX線回折については 回折角と強度を記すにとどめ、構造や格子バラメータについては全く触れていない。 文献に示されている回折角は概ね今回の測定で観測されたビータのものと一致して いる。ただ、文献の最大ビークは今回の測定では全く観測されなかった。他のビー クはほとんど一致していることを考えると、Sharma et al.の報告した最大ビークは誤 認と思われる。

包晶化合物の結晶構造は、XRD図形が純NdCl₃のものと回折角こそ違うがほとんど 平行移動したような形になっているので、全く同じ結晶系であると考えられる。実際に六方晶であるとすれば回折ビークの指数付けができ、格子パラメータを解析し た結果、a₀=7.50Å, c₀=4.25Åを得た。純NdCl₃のものと比較すると選択的にa軸方向 が伸びているのが分かる。

H.-J.Seifen et al.^[38]も同じ状態図を報告しているが、包晶化合物の組成が異なり "Nd_{1 e7}NaCl₆"すなわち通常の表記なら5NdCl₁,·3NaCl,モル分率で37.5mol%NaClであ るとしている。しかし本研究では、前節の熱分析で25mol%~37.5mol%NaClにおい ても包晶化合物とNaClの共晶を見出しているので、この組成に化合物があるとは考 えられない。

この系は Morozov et al.^[29]の報告のような単純共晶系ではなく、Sharma et al.^[30]の包 晶化合物を含む系に良く一致した。同じく過去に単純共晶系と報告されている UCI_n-NaCI系^[34], PuCI_n-NaCI系^[35]も再検討の必要があると考えられる。

3.3 NdCl,-KCl 二元系

3.3.1 試料

Table 3-4に準備した試料の組成をまとめて示す。やはり蒸発は全てKCIであるとして組成の評価を行った。

No.	Weight of NdCl ₃	Weight of KCl	Initial Comp. mol%KCl	Loss in Weight	Estimated Comp mol% KC1
#1	1.6068g	1.9898g	81.0	0.09018	79.9
#2	0.3077	1.7284	95.0	0.0236	94.9
#3	0.5616	1.4646	89.8	0.0233	89.6
#4	0.7680	1.2873	84.9	0.0321	84.6
#5	0.9117	0.8281	75.3	0.0848	73.3
#6	0.9264	0.9355	77.2	0.0407	76.5
#7	1.1475	0.8016	70.1	0.0380	69.1
#8	1.2650	0.6971	64.9	0.0442	63.4
#9	1.3343	0.5962	60,0	0.0521	57.8
#10	1.3818	0.4890	54.3	0.0385	52.3
¥11	1.3437	0.3969	49.8	0.0462	46.7
#12	1.5100	0.3071	40.6	0.0421	37.1
#13	1.5700	0.2093	30.9	0.0491	25.5
#14	1.3381	0.1256	24.0	0.0397	17.8
#15	1.5134	0.1069	19.2	0.0363	13.7

Table 3-4 NdCl,-KCl系試料の組成

3.3.2 転移点测定

Table 3-5にDTAで得られた転移点をまとめて示す。この系では、狭い温度範囲に 多数の不変系反応が観測された。この事は固相に複数の中間化合物が存在するか、 あるいは相転移を起こす相が存在することを示唆している(NdCl, もKClも融解まで転 移は起こさない)。各試料の組成に対して転移点をプロットするとFig.3-11が得られ る。

図中474°Cの転移は、KCI分率が大きい試料では存在そのものは確認されるが他の 転移と分離することが困難であるため、表中にも示さなかった。

近い温度に複数の転移がある場合は、昇温速度を小さくすることで、先に起こる 転移が終了してから次の転移が始まるまでの時間を長くすることができるので分離 が容易になるが、信号が小さくなる上に測定時間が長くなるために成分の蒸発によ る組成のシフトが無視できなくなる。信号強度の問題は試料量を増やせば解決でき るが、NdCl、を含む系は融解時にPtセルを這いあがるため、試料量にも限界がある。 以上の実験上の制約で、この反応のKCl-rich側における温度の決定は断念した。

各転移が何であるかは、後に述べる固相の評価も併せて検討しなければ決められ ないが、表に示したとおり444°C,474°Cは中間化合物の分解とした。詳細は次節で述 べる。489°Cは共晶、506°Cは包晶、624°Cは福晶と考えられる。KCI-rich側では共晶 からすでにKCIの溶出が開始しているので、吸熱によりベースラインがドリフトし偏 晶の立ち上がり温度は評価が困難で、過小評価になる傾向がある。そこで偏晶温度 は、ドリフトに対して十分大きい偏晶による吸熱が観測される、偏晶組成付近から KCI分率が大きい側の3点を選び(79.3,84.6,89.6mol%KCI)、これらの偏晶温度の平均 値624°Cとした。これも本来ならば冷却曲線で評価するべき転移であるが、過冷却の ため本測定ではそれはできなかった。

Composition	Transition Temperature / °C						
mol% KCl	Decomp. ⁽¹⁾	Decomp. ²	Eutectic	Peritectic	Monotectic	³ Liquidus	
0.0						759	
13.7		474		507		689	
17.8		470	484	507		664	
25.4		474	486	504		604	
37.1	444	461	482				
46.7	444	474	489			564	
52.3	444	464	492			590	
57.8	444	474	487			612	
63.4	444	474	489		604	642	
73.3	439		492		606	689	
76.5	444		489		610	693	
79.3	444		489		632		
84.6	444		489		621	689	
89.6	444		489		619	724	
94.9	440		487		606	746	
100						770	

Table 3-5 NdCl₃-KCI系のDTAの結果

†1) Decomposition: 2 (NdCl₃·2KCl) ≈ 3 KCl + 2NdCl₃·KCl

+2) Decomposition: 3 (2NdCl₃·KCl) = 2 KCl + 6NdCl₃·KCl

†3) "On-set" temperature is intrinsically uncertain.

Fig.3-11 NdCl₃-KCl系で観測された転移点

この系も、過去に Morozov et al.¹⁵⁶によって Fig.3-12のような状態図が報告されている。今回の測定で得られた転移点は、やはりまたこの報告とは異なるものである。 ただ、Morozov et al. も後からの報告⁽³⁷⁾で転移を付け加えており、この系の転移の分離の難しさがこれからも分かる。Fig.3-13に後から報告された状態図を示す。

Fig.3-12 NdCl3-KCl系状態図(I.S.Morozov et al. [36]による)

65

Fig.3-13 NdCl3-KCl-FeCl2系状態図(LS. Morozov et al.^[37]による)

3.3.3 固相のキャラクタリゼーション

Fig.3-14に、得られたチャートの一部を組成の順に並べて示す。NdCl₃-KCl系では 測定温度は23°±1°Cである。

25.4mol%KCIまでは見られたNdCl,相が37.1mol%から消失し、63.4mol%までは見 られなかったKCI相が69.1mol%から現れている。これにより、常温では2種類の中間 化合物が存在し、その組成はNdCl, ·2KCIおよび2NdCl, ·KCIと考えられる。

2:1=2NdCl, · KCl 1:2=NdCl, · 2KCl

Fig.3-14 NdCl₃-KCl系試料粉末のXRD図形 上から (a) NdCl₃ (b) 25mol%KCl (c) 47mol%KCl (d) 58mol%KCl (e) 85mol%KCl (f) KCl 過去の報告でもRCI₃・2KCI型の化合物(以下1:2と称す)を含む状態図が多数報告されている^[28]。1958年に報告されたLaCl₃-KCI系, CeCl₃-KCI系, NdCl₃-KCI系^[36], 1964年~1966年に報告されたRCl₃-KCI系状態図(R=Sm~Yb,そしてY,ただしTmは報告されていない)は全てロシアの研究グループによるもので、R=Ce~Gdで1:2が報告されている。1986年~1990年にH.-J.Seifen et al. によって報告された状態図(R=Ce~Eu)でも1:2が報告されている。

ところが、本研究では見出されなかったRCL、3KCl型の化合物(以下1:3と称す)に ついてはかなり事情が異なる。ロシアの研究グループは全ての系で1:3が常温まで安 定に存在する相として状態図中に示しているが、結晶データは全くない。これに対 しH.-J.Seifert *et al.* は、R=Ce, Pr^{ISI} 、Smに対してだけ、しかも高温でのみ存在する化 合物として報告し、その高温X線回折データを示している。

本研究で見出された2RCI,・KCI型の化合物(以下2:1と称す)についてはRがSm以降の重稀土では報告されている^[28]。また溶融塩系だけでなく、G.Meyer et al. によって 水溶液中でも合成され結晶データが得られている^[39]。

過去の報告では1:2はすべて斜方晶、2:1はすべて単斜晶系として報告されている。 このような対称性の低い結晶のデータの解析は非常に困難である。本研究では定性 的な相の同定に用いるにとどめた。

DTAの測定結果も併せて考慮すると状態図はFig.3-15のようになる。

Fig.3-15 NdCl3-KCl系状態図(Present Work)

506℃に包晶としてしか考えられない反応があるので、状態図にも示してあるとお り474℃以上でのみ存在して常温では観測されない包晶化合物があってその組成は 6NdCl, ·KClと考えられる。これは存在温度範囲がH.-J.Seifen et al.¹³³によって報告さ れた2NdCl, ·KClに対応する(467℃以上で存在し510℃で分解する)が、今回のDTAの 結果ではその組成はあり得ない。Fig.3-16に、過去に報告された関連するRCl₃-KCl系 状態図をイオン半径の順にまとめて示す¹³⁵[40^{-44]}。軽稀土から重稀土に移るにしたが い、2:1が現れ安定度が増していくことが特徴的である。その意味で、本研究で得ら れたNdCl₃-KCl系状態図は、軽稀土型から重稀土型へ移行する、中間的な状態特性を 示すものと考えることができる。図でも分かるようにPuCl₃-KCl系^[41]は過去に軽稀土 型として報告されている。

Fig.3-16 RCl,-KCl系状態図(R=Pr, Pu, Eu, Tb)

3.4 NaCl-KCl 二元系

この系はかなり古くから研究されており、近年その包括的なレポート^[45]が出されている。Fig.3-17aにその状態図^{128]}を示す。

本研究でも、この系の状態図を予備的に作成している。この系は任意の組成で互いに完全に溶け合う全率固溶系の中でも、最小共融点を持つ形である。

Fig.3-17bに本研究での測定結果を示す。図中△印は加熱曲線、他は冷却曲線を評価した。加熱曲線を用いた組成では冷却側で過冷却を示した。全率固溶系であるので、任意の組成で融解は自由度1の転移として観測される。したがって、加熱側では過大評価、冷却側では過小評価になる傾向があることに留意しなければならない。 特に新たな知見は得られず、文献⁽⁴⁵⁾に良く一致した。

Fig.3-17 NaCl-KCl系状態図 (a) Optimized Diagram^{[28][45]} (b) Present Work
3.5 NdCl_a-NaCl-KCl三元系

上述した二元系で調製した試料にさらに第三の成分を添加する形で、直接DTA 試 料セルに各組成の試料を取った。

三元系状態図を完全な形で報告するためには、輪郭をなす二元系状態図に加えて、 擬二元系断面図を作成するべきであるが、ここでは液相面温度を知ることを目的と した熱分析の報告をする。

Table 3-6にDTAの結果を示す。各DTA曲線には複数の転移が観測されたが、表に はその最後に現れる液相面温度を示す吸熱ビークのみを評価した。

Composition of		
NdCl ₃ -NaCl-KCl/mol%	Liquidus / 'C	
47-13-40	554	
54-19-27	586	
55-27-18	573	
46-27-27	634	
33-33-34	580	
43-42-15	566	
23-23-54	578	
16-15-69	586	
9- 9-82	719	
31-43-26	518	
24-65-11	706	

Fig.3-18に、これらの液相面温度と輪郭をなす二元系状態図から得られる三元系状態図を示す。

これによると、46NdCl₄-27NaCl-27KCl試料の液相面温度が、その周辺の組成の試 料のものより高いことに見られるように、この系には三成分の中間化合物の存在が 示唆され、congruentに融解するのであればその組成は2NdCl₄・NaCl・KClと考えられ る。

Fig.3-18 NdCl₃-NaCl-KCl系状態図

高速炉用塩燃料で使用される溶融塩にはUCl,、PuCl,が50mol%~60mol%含有され るであろうことから^{IT}、今回の測定で見出された2NdCl₃、NaCl・KClの存在によるもの と考えられる液相面温度の高い部分の出現は実用上非常に不利である。一般には成 分を増やせば、混合エントロピーを得てその融点は下げられるものであるが、この ように中間化合物を生成する場合は注意を要する。希釈塩にNaCl-KClを用いる場合、 前節の結果でも分かるようにこの系ではほぼ等モルの混合物の融点が最も低いが、 これにNdCl₄を溶解させてその分率を50mol%にすると、ちょうど2NdCl₃・NaCl・KCl の組成になり、融点を下げるという希釈塩の役割は全く期待できない。希釈塩に NaCl-KClを適用するのであれば、55NdCl₄-5NaCl-40KCl付近に見られる三元共晶点 組成を用いるべきであるから、希釈塩のNaCl分率を小さくする必要がある。

希釈塩にNaCl-KClを用いた塩化物三元系では、Pr^[31]およびSm^[46]について過去の 報告例があるが、今回の結果とはかなり異なるものである。ただし、前者について はPrCl₁-NaCl系が更新されているということを念頭に置かねばならない。三成分の化 合物については後者で2SmCl₃、3NaCl·KClが、さらにYCl₃-NaCl-KCl系で同じ組成の 化合物2YCl₄、3NaCl·KClが示されている^[47]。Fig.3-19にこれらの状態図を示す。

Fig.3-19 RCl₃-NaCl-KCl系状態図^[28] (a) R=Pr (Z.N. Shevzova *et al.*^[31]による) (b) R=Sm (B.G. Korshunov *et al.*^[46]による) (c) R=Y(B.G. Korshunov *et al.*^[47]による)

3.6 摘要

相平衡状態図は、溶融塩混合物の特性を知る重要な基礎データのひとつであり、 核工学システム媒体への適用の際にも重要な情報源である。そしてこれは純粋な成 分塩の熱力学データのみでは評価・予測することはできない。

本研究で対象としている核工学システムの中の塩化物溶融塩燃料高速炉の系については、その燃料塩に関連する状態図が、古いものか再検討を要すると考えられるものしか見出せなかったので、UCI,やPuCI,をランタニド塩化物NdCI,で模擬し、示差熱分析装置やX線回折装置を用いて、NdCI,-NaCI系、NdCI,-KCI系状態図を決定した。 また、NdCI,-NaCI-KCI三元系状態図の熱分析を行った。

NdCl₃-NaCl系状態図では、包晶点540°Cでincongruentに融解する中間化合物3NdCl₄-NaClを見出し、共晶点は437°Cであった。この状態図はMorozov et al.が報告したよう な単純共晶系ではなく、Sharma et al.の包晶化合物を含む系の状態図に転移点ととも に良く一致した。結晶化学的類似性を考慮して、過去に同じく単純共晶系として報 告されているUCl₃-NaCl系, PuCl₃-NaCl系についても再検討の必要があることを指摘し た。

NdCl,-KCl系状態図においては、高温で分解する二種類の中間化合物NdCl,-2KCl と2NdCl,-KClを常温で見出した。これらは高温では存在せず、その分解温度はそれ ぞれ444°C,474°Cであると考えられる。さらに狭い温度範囲に複数の不変系反応が見 出され、共晶点489°C,包晶点506°C,偏晶点624°Cと決定した。包晶については高温で のみ存在する包晶化合物6NdCl,-KClの存在を指摘した。過去に報告された稀土類塩 化物とKClの系の状態図では、今回の結果と一致するものはなく、中間化合物の振る 舞いは過去の報告における軽稀土型と重稀土型の中間的な性質を示した。

NdCl,-NaCl-KCl系状態図において、三成分の化合物2NdCl,・NaCl・KClの存在を指 摘した。これに基づき、高速炉用塩燃料の希釈塩にNaCl-KClを用いる場合は、NaCl 分率をかなり小さくしなければ、効果的に液相面温度を下げられないことを示した。

第4章

構造材料の腐食試験

溶融塩は非常に魅力的な媒体である一方で、それを保持する容器材料の選定が難 しいという実情がある。理論的に(熱力学関数のデータ上)共存性のある材料を選び、 不純物除去の必要性を実験的に詳細に検討する必要がある。さらに熱力学計算から は導出されない部分である、種々の化学種の幾何学的な配置の効果(皮膜生成等)や速 度論的な情報は、実験で得なければならない。

4.1 溶融塩と構造材料の両立性の検討

近年の数々の表面分析法の出現・発達によって、表面・界面の研究は盛んではあ るが、溶融塩と固体材料の界面については困難が多く、報告例に乏しい。溶融塩は 古くから化学的工学的媒体として利用されているにもかかわらず、固体材料の腐食 データの整備は進んでおらず、半経験的な構造材料選択が行われている。

溶融塩による腐食では、もしそれが起こる場合には激しく腐食されるので、重量 減少や腐食電流の測定といったかなりマクロな測定方法が適用され、界面の親察に ついても光学顕微鏡による金相観察・X線回折による表面近傍相の同定・XMAによ る元素分布の分析等のµmスケール程度の空間分解能による情報がほとんどである。

しかし実用に供される材料は、基礎研究で「腐食が認められなかった」ものであ る。ほとんど腐食されない材料も現実には表面近傍が変質している。溶融塩利用の 高度化のためには材料の微小な変質を追跡し、材料表面で起こっていることについ てより深い知見を得る必要がある。サブミクロン〜ナノスケール領域の材料の変質 を明らかにすることは、新規材料の開発や既存材料の表面改質等、より厳しい条件 での使用に耐える材料を作っていく上で貴重なデータとなる。

ハライド溶融塩を用いる核工学システムの中でも、熱力学計算の章で取り上げた FFHRのFlibeプランケットや塩化物燃料高速炉に着目し、構造材候補材料の腐食試験 を行って実験データを得、熱力学計算の結果と併せて両立性を検討する。

4.1.1 溶融塩による材料の腐食

溶融塩腐食は湿食と同様に、金属のアノード溶解反応と、酸化体(Oxidant)の還元 体(Reductant)へのカソード反応が、電気的中性条件の下に起こる同時反応と考えるこ とができる。

溶融塩では次のようなカソード反応が考えられる。

1) 溶融塩の陽イオン	$e.g. \operatorname{Cu}^{2^+} + 2e^- \rightarrow \operatorname{Cu}$	(4.1)
2) 溶融塩の酸素酸イオン	$e.g. \operatorname{SO}_4^{2^-} + 2e^- \rightarrow \operatorname{SO}_3^{2^-} + \operatorname{O}^{2^-}$	(4.2)
3) 雰囲気中の酸素	$O_1 + 4e^- \rightarrow 2O^{2-}$	(4.3)
4) 水分の存在	$2H^+ + 2e^- \rightarrow H_2$	(4.4)
	$20H^{-} + 2\mu^{-} \rightarrow H^{-} + 20^{2-}$	(1.5)

ハライド溶融塩による腐食の場合には、溶融塩には熱力学的に極めて安定な物質 を用いるので1)は考えられないし、ハライドであるので2)も関係ない。結局、状態 図作成にときに注意したのと同様、酸素および水分の存在が大きなウェイトをしめ ることになる。

溶融塩中における腐食速度の測定は、ほとんど重量減少法によって行われており、 そのメカニズムを電気化学的に解析した例はほとんどない。これはただ単に、耐食 材料に求められている腐食速度では、相当する電流密度がおおむね10 ⁶A/em²のオー ダーとなり、測定が困難であることによる。

一般に、溶融塩による腐食試験では、不純物濃度の制御や脱湿に限界があるため カソード反応を特定することすら容易でない場合が多い。そのため重量法による測 定でも研究者によるばらつきが極めて大きく、場合によっては傾向すら異なってい る。環境や腐食条件の再現が困難であるために、溶融塩中における金属材料の腐食 データは著しく整備が遅れている。

4.1.2 分析方法と原理

次に、試験片の分析に用いた方法についてその原理を含めて説明する。

本論文においては、腐食試験庁の表面近傍における変質のキャラクタリゼーション の中でも、特に1次元的な深さ方向の成分組成プロファイルの検討を主限とした。こ れは、無次元的な結果しか得られない熱力学計算との対応を比較的議論しやすいと いうことと、次のステップとして幾何学的な効果を盛り込んだ計算を行う場合に有 効な情報が得られるという利点を持っている。

この目的を念頭に表面分析法をふりかえると、オージェ電子分法(AES)、X線光電子 分光法(XPS)、2次イオン質量分析法(SIMS)、イオン散乱分光法(ISS)、ラザフォード後方 散乱分光法(RBS)、変わったところではグロー放電スペクトル法(GDS)といった手法 が適用できるであろう。しかし、それぞれの手法での深さ方向の分解能には相違が あり、基本的にRBS以外はナノスケール以下の表面極近傍を分析するものである。

以下に述べる試験片では、結果として変質が及んでいたのは深き数百nm程度の領 域で、これをRBS以外の方法で分析しようとすればスパッタリングを併用して表而 を破壊しながら深さプロファイルを得ることになる。またエッチング深さそのもの を別途評価する必要も生じる。その点で、非破壊でこの深さ領域を一度に分析でき るRBSは優れた方法であり、本論文の目的においては中心的な役割を果たすことの できるものである。そして、ナノスケールの情報が得られる他の方法も併せて利用 すれば、後述する計算によるRBSのシミュレーションにフィードバックでき、より 確実な議論ができる。ただし他の方法はいずれも破壊しながらの分析手法であるの で、同一試料を分析するにはいずれかひとつを選択しなければならない。本研究で はXPSを選択した。

X線回折測定 (X-ray Diffractometry, XRD)

XRDでは、板状の試験片をコンパウンド(粘土状物質)を用いてホルダに装荷し、 θ-20ディフラクトメータによって同折図形を得た。これによって直接得られるの は、Braggの条件によって導かれる単なる結晶格子の面間隔であり、構成元素に関 する情報は全く含まれない。しかし試料に存在しうる元素が分かっているので、既 知の物質の粉末に対する回折データ、International Centre for Diffraction Dataの Powder Diffraction Fileをもとにした指紋照合法で相を同定することができる。ただし板状 試験片では、粉末試料とは異なり結晶が理想的にランダムに劈開しているわけでは なく、板に加工された際の配向などの影響があることに留意せねばならない。

用いた装置は状態図作成の際の固相のキャラクタリゼーションで用いたものと 同一で、X線はCuKα(管電圧35kV,管電流20mA),測定温度は18~-23℃である。

本研究で得られる結果の中では表面から最も深いところ(~数μm)までの平均的 な情報である。面内方向についても最も広い領域(数十mm²)の平均的情報である。

ラザフォード後方散乱分光法 (Rutherford backscattering spectrometry, RBS)

RBSは、α粒子のような軽いイオンをMeV程度の高エネルギーに加速し、固体 に入射してその固体を構成する原子核によりラザフォード広角散乱されたイオンの エネルギーを分析することにより、固体中に含まれる原子の組成・不純物原子の深 さプロファイル等の情報を得るものである。インプランテーションや蒸着、あるい は腐食によって材料の表面付近が変質したときに、その試料のキャラクタリゼーショ ンに威力を発揮する。

この分析法は測定試料の破壊の程度が小さい(非破壊分析)。測定感度は中庸であ るが、測定に利用する物理現象の解析が確立されているので定量性に優れている。 試料は平板であれば特に調整は必要ない。入射イオンビーム径(通常の加速器の磁 場による収束であればImm程度)より大きな試料であれば金属・半導体バルク材料 に適用可能で、絶縁体でも薄膜であれば問題ない。簡単な試料でのRBSで得られ る結果とその解釈の例をFig.4-1に示す。

本研究では、東京大学原子力研究総合センターのタンデム型加速器からの3MeV ⁴He²"をブローブビームとして用いて160°方向の後方散乱エネルギースペクトルを 測定した。本研究の中では中間的な深さ(~数百nm)までの情報が得られる。面内 方向についてはビーム径である*ca.* 2mm¢の平均的情報である。

測定で直接得られるのは、プローブイオンの弾性散乱に関わった原子の質量数 とその深さに応じたプローブイオンのエネルギー損失についての情報が合わさった ものであり、予備的情報なしにこれを解析することは不可能であるが、予め存在す る元素が分かっていれば試行錯誤によって構成元素組成の深さプロファイルを評価 することができる。

一般には、あらかじめ深さプロファイルを仮定し計算機シミュレーションで合成したスペクトルとの比較検討を繰り返して解析を行う。スペクトルのシミュレーションは比較的簡単であり、その基礎となる手法は文献¹⁵⁰に詳説されている。

RUMPコード^[51]|52]は、深き方向の組成プロファイルを入力すると、原子の弾性 散乱の計算と物質の阻止能データ^[53]の参照を行って、特定の後方散乱角における 反跳粒子のエネルギースペクトルを出力する。RBSスペクトルを得た後、このコー ドでそのシミュレーションを行い深さ方向のプロファイルについて考察する、とい う手順は、近年、表面近傍の分析手法として確立・定着しつつある。

しかし、これによってプロファイルが一意に決定できるという性質のものでな いのは明らかである。異なる原子によって散乱されたとしてもその深さが異なって いれば結局同一のチャンネルにカウントされる可能性があるからである。浅いとこ ろの軽元素か深いところの重元素かの区別は恣意的なのである。

X線光電子分光法 (X-ray photoelectron spectroscopy, XPS)^{[54][55]}

XPSでは、真空中に置かれた試験片にAIKαやMgKα等の特性X線を照射して、 そのエネルギーで可能な範囲で内設電子から価電子までを光電子として放出させそ のエネルギースペクトルを得ることで、試料の元素分析・状態分析を行うことがで きる。適当な真空系が得られれば電子のエネルギーを精密に制御したり測定するこ とができることや、固体中の電子の透過力が弱いことから、表面極近傍の分析方法 として採用される。電子の脱出深さは極めて浅く、表面(<数nm)に特化した情報 を得ることができる。

XPSで用いた装置は日本電子株式会社のJPS-9000MXで、入射X線はMgKα(管電 圧10kV,管電流20mA)である。例外を除き1mmφに絞った。面内方向についてはこ の範囲の平均的情報が得られる。Arイオンスパッタによるエッチングを併用して、 深さ方向のプロファイルを調べた。エッチングは加速電圧 0.5kVのイオン銃で行っ た。

4.2 FFHR液体ブランケットの系

熱力学計算の章でも紹介したように、FFHRのブランケット構造材には低放射化フェ ライト鋼JLF-1 (Fe-9Cr-2W), パナジウム合金(V-4Cr-4Ti)などが候補に挙げられてい る。また第三の候補としてSiCもあげられている。Flibeを用いるFFHRブランケット の概念設計¹⁵⁰をFig.4-2に示す。

JLF-1 (ferritic steel, Fe-9Cr-2W)

Fig.4-2 FFHR プランケット概念設計⁽⁵⁰⁾

4.2.1 実験

Flibeへの試験片の浸漬はバッチ式とし、試料の取り扱いは乾燥アルゴン雰囲気の グローブボックス中で行った。溶融塩組成はLiF:BeF,が2:1になるように秤量した成 分粉末を純Niるつぼに投入して昇温し、塩の溶融を目視で確認後、600°Cに保持して 試験片の浸漬を3hr行った。試験片をFlibeから引き抜き冷却した後、試験片に付着・ 残留し凝固した塩相をLiCl-KCI共晶組成塩で溶解し、さらに残った塩化物は超音波 洗浄で水洗除去し、アルコールで拭った後の状態を浸漬後試験片とした。

入手の容易な SUS430 (Fe-18Cr) をフェライト 鋼試験片として選んた。純バナジウムも用いた。浸漬試験片の取り出しについては結局上述の方法を選択したが、LiFと BeF2の中間化合物であるLi,BeF4がほとんど水に溶解しないことが分かり、当初は凝固したFlibeを物理的に砕いたり、過飽和ホウ酸による煮沸洗浄を試みた。前者については、試験片とFlibeの界面に生成する相をよく保存して比較的きれいに取り出せるが、客観的な議論の困難な付き方のFlibeが残存したままとなる。後者はFlibeの除去そのものは問題なく行えるが、試験片表面の生成相の破壊も著しく、一部金属光沢が戻ってしまうなど、その落ち方も不均一である。

試験片表面近傍のキャラクタリゼーションを、X線回折測定(XRD)とラザフォード 後方散乱分光法(RBS)を用いて行った。

4.2.2 結果と考察

SUS430銅試験片表面は物理的にFlibeを砕いて取り出したときには緑褐色であった が、この反応生成物は非密着性で塩化物で残留Flibeを溶解すると失われ、試験片は 灰色となった。熱力学計算では酸化物として最も安定なCr₂O,のみしか現れなかった が、非密着性の生成物の中にはその色からCr₂O,が含まれていた可能性はある。

通常のFe-Cr合金の酸化における酸化皮膜は古くから知られているようにもっと複 雑である¹⁵⁷⁰³⁴。Fig.4-3にFe-Cr合金の酸化皮膜の模式図を示す。

Fig.4-3 Fe-Cr合金の酸化皮膜の模式図

浸漬した後のSUS430のXRD図形をFig.44に示す。α-Fe相のピークのみが確認されたが、かろうじてスピネル型酸化物の最大ピーク位置に変化が見出された。これはFe₃O₄かFeCr₂O₄か、これらの混合物Fe(Fe,Cr)₂O₄であろうが、数μmまでの平均的 情報としては、腐食によって生成した相はほとんど見えないということである。

次に浸漬前後のSUS430のRBSのスペクトルをFig.4-5に示す。横軸は散乱されたフ ローブのエネルギーに相当し実際はα計数管のチャンネルで2.8655keV/channelである。 縦軸は各チャンネルのカウントを総カウントで規格化し百万分率で示してある。Fe およびCrによるスペクトルの立ち上がりの大きさを比べると、浸漬後の表面近傍の Crの割合が大きくなっていることが分かる。酸素による立ち上がりの増大も確認で きる。すなわちFig.4-3で示した酸化の状態のうち、界面個へCrが拡散している酸化 進行後の方に近い状態にあると考えられる。

ここで、RUMPコードによるRBSスペクトルのシミュレーションの結果について 述べる。浸漬前、すなわち深さに関わらず合金組成(82Fe-18Cr)としてRBSスペクト ルを再現すると、低チャンネル側になるほど過小評価になる傾向があることが見出 された。後述するVでも同様の傾向が見出されるが、さらに後でふれるHastelloy-Xで はそのような問題は生じない。

(man) and an int

Fig.4-4 浸漬後の試験片のX線回折図形(SUS430)

83

Fig.4-5 浸漬前後の試験片のRBSスペクトル(SUS430)

体心立方晶を対象にした場合に特有の問題であるのか定かではないが、RUMPコードの出力にそのような傾向があるものとし、浸漬前のスペウトルとそのシミュレーション結果の比を取って、補正係数とすることにした。Fig.46に示す合金組成の深 さプロファイルを仮定することでFig.4-7のような実験によるスペクトルとシミュレーションの一致が見られる。

このシミュレーションで得られた深さプロファイルから分かるように、SUS430 鋼 試験片表面には通常の酸化と同様の相が形成されていると考えられる。非密着性で 試験片取り出しの際に失われた部分については分からないが、取り出し後も残留し た密着性の変質層は400nm程度の深さまで及んでいる。スピネル相のような酸素の 組成が大きい部分は表面極近傍に限られているのでXRDではほとんど見えないこと もこれで分かる。

以上、フェライト鋼試験片では、熱力学計算でフッ化されずに残ると予想された Cr₂O₃については確認できなかったが、通常の酸化で知られている密着性の酸化皮膜 が形成されることが分かった。実験室条件では、使用温度を誤らなければ破局的な 腐食が起こることはないと考えられる。

Fig.4-6 浸漬後試験片の合金組成の深さプロファイル(SUS430)

Fig.4-7 浸漬後試験片のRBSスペクトル(SUS430)

Fe-Crステンレス鋼においては、侵入型不純物の炭素がクロム炭化物として粒界に 析出し、高クロムにすることで得られるステンレス鋼としての耐食性を損ない、粒 界腐食の原因となるのほよく知られている。しかし本論文では局部腐食に関する歳 論は今後の検討課題とし、全面腐食として1次元的に考えることにしているので、単 にCr分率の低下の効果として捉えることができよう。そして計算においてもCr欠乏 時の生成系を参考にすることができる。

V試験片の場合はかなり挙動が異なるものとなった。試験片をFlibeに浸漬した後ま もなく、Flibe中に黒色の物質が流出し分散していくのがはっきり確認できた。浸漬 後、試験片を取り出すと、目視によっても肉厚が減少している部位が分かるほど の腐食を受けていた。表面は金属光沢のままの部分と黒色の部分が不均一に存在し ていた。

浸漬後のV試験片のXRD図形をFig.4-8に示す。この試験片では純Vのビーク以外に、 明確に腐食による生成相が見出された。ほぼ全てVF,に帰属されるビークであった。 µmオーダーの深さに及ぶ変質が起きていることが分かる。

次に浸漬前後のVのRBSのスペクトルをFig.4-9に示す。縦軸・横軸とも先程のフェ ライト鋼のときと全く同様である。著しいVの減少とともにFの明確な増加が見出さ れた。Oの増加も見られた。

このスペクトルについてもRUMPコードによるシミュレーションを行った。フェ ライト鋼のところでも述べたが、低チャンネル側での過小評価が見出されたので、 浸漬前のスペクトルとそのシミュレーション結果の比から得られる係数で補正した。 Fig.4-10に示す深さプロファイルを仮定することでFig.4-11のようになる。

この深さプロファイルでも明らかなように、腐食による変質は1500nm程度の深さ にまで及んでいる。表面極近傍でのVの極端な分率の低さは、Vが表面においてはか なり高い酸化数になっていることを示している。酸化物とフッ化物が混在している ことは熱力学的にも予想されたが、XRDで存在が確認されたVF₂という化学種は計算 では見出されなかった。これは、試験片がFlibeに浸漬されている間は、より高次の フッ化物が界面に生成しており、それと母材に挟まれで存在していた相であったが、 高次のフッ化物は非密着性で取り出しの際に失われたと考えられる。Vに関しては、 保護性皮膜の生成は全く望めず、耐食性は期待できない。

Vにおいては、酸素が主要な侵入型不純物として挙げられるが、これに対しては大 きな溶解度を有するのでここではすべて固溶していると考えられる。その点で、熱 力学計算では酸素の挙動が再現できない。また、生成系でかなりの量の存在が予想 される水素についても、やはり固溶していると考えられる。水素化物形成による脆 化はより低温での問題であり、また材料の機械的特性は本論文の趣旨からは外れる こともあって特に追記はしない。

Fig.4-8 浸渍後の試験片のX線回折図形(Vanadium)

87

Fig.4-10 浸漬後試験片の組成の深さプロファイル(Vanadium)

Fig.4-11 浸漬後試験片のRBSスペクトル(Vanadium)

4.3 溶融塩高速増殖炉の系

4.3.1 実験

実験はすべて乾燥窒素雰囲気のグローブボックス中で行った。浸漬に用いる溶融 塩の組成は、第3章で報告した三元系状態図を参考に、50NdCl₃-5NaCl-45KCl付近を 選んだ。これは、50mol%程度NdCl₃を含有するもののうちで液相面温度が最も低く なる三元共晶点に近いと考えられる組成である。この組成になるように秤量した成 分粉末を乳鉢で十分に混合し、予め秤量した試験片とともに石英るつぼに投入した。 電気炉で昇温して塩化物の融解を確認後、600°Cで所定の時間保持した。その後、放 冷しるつぼを取り出して、凝固した混合塩化物は水洗除去し試験片を回収した。

試験片としてはNi基超耐熱合金 Hastelloy-X(Ni-Cr-Fe-Mo-W)を用いた。Table 4-1 に 詳細な化学組成を示す。その浸漬にあたっては、塩化物粉末の乾燥を行わずに所定 の温度まで昇温する場合と、NdCl,の加水分解の起こらない温度で乾燥させた後に改 めて昇温する場合の二種類の実験を行った。

前節と同様に試験片表面近傍のキャラクタリゼーションを、X線回折測定(XRD)と ラザフォード後方散乱分光法(RBS)、X線光電子分光法(XPS)を用いて行った。

	Table 4-1	Chemical Con	mposition	of Hastelloy-X
	Nî	balance	Mn	0.57
	Cr	21,41	Cu	0.07
	Fe	17.84	Si	0.37
	Мо	8.95	С	0.01
	W	0.55	S	< 0.005
	Co	0.74	В	0.001
1	1150°C ×20	min sprav co	oling	(in wt%)

4.3.2 結果と考察

結果は乾燥の有無により対照的なものとなり、この系では水が腐食挙動において 重要な役割を担っていることを確認した。

乾燥を行わなかった系ではHastelloy-X試験片が腐食を受け、FeCl₁(沸点332°C,気体 状態では二量体Fe₂Cl₆として存在する)と見られる黄色の気体を発生し、実験後の試 験片を取り出す際の洗浄に用いた水にはCr₂O₃と見られる淡緑色沈澱を見出した。こ れはちょうど、第2章でこの体系に対して行った熱力学計算の結果を四つの領域に分 類した、その第三の段階に相当する挙動である。これに対し十分に乾燥を行った系 では、腐食による重量減少は抑えられ黄色の気体の発生も確認されなかった。しか しいずれの試験片も浸漬後は表面が黒色に変化した。

XRDでは浸漬による変化は認められなかった。Fig.4-12に塩化物溶融塩に浸漬した 後のHastelloy-XのXRD図形を示す。確認できたのはNiに種々の成分が固溶して純Ni の回折角からずれたビークのみであった。

Fig.4-12 浸漬後の試験片のX線回折図形(Hastelloy-X)

試験片表面はかなり黒化したが、それが何であるのかはこれでは分からない。水 分の存在する系で腐食生成ガスの発生が見られたHastelloy-X試験片でさえ、表面か ら深さ数µmの平均的情報からは変質は見出されなかった。

RBSスペクトルをFig.4-13に示す。重元素側(高チャンネル)側から見ると、950ch, 900ch付近に、表面近傍における組成が見かけ上増加した元素があり、800ch付近に は反対に減少した元素が見られる。950ch付近についてはW,Ndが候補として挙げら れる。900ch付近についてはMoしか考えられない。800ch付近はCr,Fe,Niといった主 要成分が関係してくる。

Fig.4-13 浸漬前後の試験片のRBS スペクトル (Hastelloy-X)

ここでRUMPコードによるシミュレーションに先立ち、表面極近傍の元素分析を 行うべく、XPSによる測定を行った。浸漬後のHastelloy-X試験片のXPSのスペクトル をFig.4-14に示す。全くエッチングをしない状態ではほとんどCしか見えない状態で あったので、図では除外している。これは大気に曝されている間に吸着した炭化水 素やCO, CO₂と言った炭素含有ガスの影響と考えられる。9mA, 30secのエッチングで 即座にNi, Moが見えるようになった。Cr, Fe はほとんど完全に欠乏していることが分 かった。そしてもうひとつ、RBSで最も高チャンネル側に見られた増加はNdの存在 によるものであることも明らかになった。熱力学計算の結果では生成するNd化合物 はNdOC1であったが、XPSでC1は見出されなかった。

他にXPS スペクトルの中で特に目立つのはCの存在で、浸漬後の試験片の黒化はそれによるものであると考えられる。目視では黒化層は積算60secのエッチシダで失われ、試験片に金属光沢が戻った。XPSの結果ではもう少し深くまでCの存在そのものは見られるが、かなり早い段階でほとんど消失する。Nd, Oもエッチングを進めるにしたがって減少していく成分である。Moはほとんど増減は見られない。W はあまり 条件良く観測されないが、同じく有意の増減はないように見受けられる。主要成分であるNi, Cr, Feは、エッチングによって XPS のピーク強度が大きくなる。

以上のXPSで得られた知見をもとにしてRUMPコードによるRBSスペクトルのシ ミュレーションを行った。浸漬前の、深さ方向に関係なく一定の合金組成として行っ た結果は低チャンネル側も含めて実験と非常に良い一致を示したので、前節のフェ ライト鋼やバナジウムで用いたような袖正は全く行っていない。RUMPにおいて、 深さ方向に分布を持った組成を入力する場合、RUMP内部に予め用意された関数(一 次関数・指数関数・正規分布などがある)以外にしたければ、自ら何層にも区切って 各層の組成を入力する必要がある。恐らく本研究のような用途も予想してか誤差関 数を含む分布も用意されていたが、後述する拡散方程式で得られる解にマッチさせ るには入力バラメータが不足していたので、結局手入力にした。RUMPでは、入力 された各層をさらに自動的に刻入で、隣接する層の組成をスムージングするように なっている。その結果、最終的にどのようなブロファイルで計算が行われたかは定 かではないが、Fig.4.15に示す深きプロファイルを仮定することでFig.4.16を得た。

組成の変化は大きいが、変質が起きている領域は極めて浅く、200nm程度までで ある。得られたプロファイルを見ると、試験片表面は、Ni-Nd酸化物とMoCを主成 分とする炭化物で構成されていると考えられる。

Cr. Feといった塩化に対して卑な成分が失われるのは熱力学計算で予想したとおり であるが、Ni含有酸化物がNdCl,によって塩化を受けて失われると予想された部分は 実験の結果では全く異なっており、逆にNdがNi酸化物に取り込まれることが分かっ た。Ni-Nd酸化物系に関する報告は見当たらず、これが単なるNiO-Nd₂O,混合物な のか、あるいは何らかの中間化合物を形成しているのかは不明であるが、それが熱 力学的に極めて安定であることが予想される。そしてこのことは、塩化物溶融塩高 速炉燃料をこの構造材料中で用いることを考える場合には重大な問題で、核燃料物 質や稀土類FPが構造材料表面に取り込まれることを示唆している。

Fig.4-15 浸漬後試験片の合金組成の深さプロファイル(Hastelloy-X)

Fig.4-16 浸漬後試験片のRBS スペクトル(Hastelloy-X)

4.4 両立性の検討における実験と計算の役割

4.4.1 実験対象の試験片表面近傍

本研究の腐食試験においては浸漬時間が短く、速度論の部分は議論することがで きなかった。腐食の初期段階で材料の表面近傍が変質し、共存性のある相が界面に 形成された後の腐食挙動が長時間浸漬における議論の対象となる。それが形成され なければ耐食性はなく、構造材料にならない。したがって、まず初期段階を具に検 討して材料の変質をキャラクタライズすることも重要な課題のひとつである。本論 文の腐食試験の部分では、初期段階の表面近傍の変質を深さに対して1次元的に知る ことで、共存性のある界面の形成の有無を検討した。

重量変化測定は試験片の取り出し時の問題もあって困難な課題であるが、もちろ ん今後の検討項目に加えるべきであって、取り出し作業による損失量を再現性良く 評価できるならば、意味のある腐食速度データを得ることができるかもしれない。

また、本研究においては変質層の断面観察にEPMAを適用するには変質領域が浅 過ぎたが、長時間浸漬の結果これが適用できるようになる可能性はある。

4.4.2 半無限媒体の拡散方程式(**)

本研究で対象として取り上げる構造材候補材料は、複数の成分からなる。その中 には、酸化・ハロゲン化を受けやすいものと受けにくいものが混在している。全面 腐食が起こる体系を念頭に置き、溶融塩に接している界面と反対側は無限遠まで試 験片に対応する物質が存在し、腐食を受ける成分が界面における濃度に比例して溶 出していく、という理想的な系について考える。

腐食を受けやすい成分の、深さx,時刻1における濃度c(x,t)は、母材中の拡散係数を Dとすれば、拡散方程式

$$\frac{\partial}{\partial t}c(x,t) = D \frac{\partial^2}{\partial x^2} c(x,t)$$
(4.6)

に従う。これを 初期条件

 $c(x, 0) = c_0$ (4.7)

境界条件
$$J|_{c=0} \equiv -D \frac{\partial}{\partial x} c(x, t)|_{c=0} = -\alpha c(0, t)$$
 (4.8)

すなわち
$$\left. \frac{\partial}{\partial x} c(x, t) \right|_{t=0} = hc(0, t); \quad h = \frac{\alpha}{D}$$
 (4.9)

の下で解くと

$$c(x,t) = c_0 \left| 1 - \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right) + e^{\phi(x+y^2)t} \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}} + h\sqrt{Dt}\right) \right|$$
(4.10)

が得られる。

特に表面における濃度は

$$c(0, t) = c_n e^{b^2 h} \operatorname{erfc}(h \sqrt{Dt})$$

$$(4.11)$$

で与えられる。

また、表面における物質流束を積分すれば、界面単位面積当たりの重量減少

$$\Delta M_{\text{initial}} = \sum_{i \text{ for component}} \frac{c_0' M_i}{h_i} \left| \frac{2}{\sqrt{\pi}} h_i \sqrt{D_i t} - 1 + e^{h_i^{-2} h_i t} \operatorname{erfc}(h_i \sqrt{D_i t}) \right|$$
(4.12)

が得られる。Mは成分iの原子量である。

これを具体的に数値にするにはhの値が必要になるが、境界条件で用いた量 α の具体的な値は全く分からない。 $h \ge 1 Å$ になると深さ分布の形状はほとんど α によらなくなる。h % 1 Å より十分に大きいとすることは、境限が原子の大きさより薄い、要するに存在しないという仮定に相当する。このとき成分iの界面単位面積当たりの 重量減少は、最大でも

$$\lim_{h \to \infty} \Delta M_i = \frac{2}{\sqrt{\pi}} c_0 M_i \sqrt{D_i t}$$
(4.13)

r=3600sec

ということになる。

例として、塩化物溶融塩にHastelloy-Xを浸漬するようなケースを考えると、下の Table 4-2に示したNi中の拡散係数⁽⁴⁹⁾を用い、Hastelloy-Xの成分の中で塩化を受ける もの全て(Mn, Cr, Fe, Cu)について(4.13)式を用いて合計しても600°C, Ihrの場合で 0.002mg/cm²にしかならない。実験結果が著しく異なるようであれば、局部腐食等の 別の機構による腐食を考えるか、母材ごと失われるような腐食ということになる。

species	$D_0/\mathrm{cm}^2\mathrm{sec}^{-1}$	Q/kJmol 1	D(600°C)/10 ⁻¹⁷ cm ² sec ⁻¹ (Dt) ^{1/2} /Å	
⁶⁰ Co	0.59	269	4.74	41.3
⁵¹ Cr	1.1	272	5.55	44.7
⁶⁴ Cu	0.57	258	20.8	85.7
55Fe, 59Fe	0.22	253	16.7	77.5
*Mn	7.5	281	11.9	65.6
*Mo	3.0	288	1.69	24.7
¹⁸⁵ W	1.9	299	0.24	9.3

Table 4-2 Ni中における拡散係数^[49]

*) 稀薄固溶体中の拡散または相互拡散の外挿値

しかしここで得られた成分組成の深さ方向のプロファイルは、数学的に理想的な 媒体(現実に対応するものとしては単結晶)中の格子拡散(体拡散)に基づいたものであ る。現実の材料は通常多結晶体であるから別の要素が絡んでくる。すなわち粒界拡 散や粒界腐食によって生じた新しい表面に沿った拡散である。これらの拡散の速度 定数は実験的な測定が難しいため格子拡散ほど測定されていないが、多結晶と単結 品における測定結果の比較などから、粒界拡散係数や表面拡散係数は一般に非常に

大きいことが知られている。

そして、前節までの実験結果で得られた深さプロファイルは、本節で論したもの と著しく様相が異なる。これはすなわち、本研究の腐食試験片の分析における対象 が腐食の初期段階の変質であり、拡散方程式に従う速度論の対象ではないことを示 している。腐食の初期段階においては表面反応が主なプロセスであって、拡散支配 ではないと考えられる。

4.4.3 計算と実験の協調

全く新規に密融塩と材料の複雑系を取り扱うときに、適用されるハライド落融塩 が容器材料・構造材料と共存している系の平衡状態を知ることは重要な課題のひと つである。これに対しては、入手可能な熱力学データと計算モデルを用いて、熱力 学計算により、理想的な平衡状態を定量的に知ることができる。その結果から、対 象となる系の中で使用可能と予想される材料の選択がある程度可能であり、生成系 で共存できる化学種を見出すこともできる。溶融塩腐食においては一般的に体系内 の微量不純物が重要な役割を果たすが、その効果を実際に実験で再現するのは困難 であることが多い。しかし実験室では再現できないような系も計算上であれば取り 扱うことができる。これらの特徴を念頭に置き、本論文においてはフッ化物溶融塩 を用いる核融合加フランケットや塩化物溶融塩を燃料とする高速炉を対象に、そこ で構造材料として供されることが検討されている材料を用いて計算を行った。

その結果はあくまで無次元的なものであり、生成系化学種の幾何学的な配置を予 言するものではないが、おのおのの系で起こるであろう反応を示し、また共存の可 能な成分を示した。それらの中には実験でも見出されたものもあるが、反対に計算 からは全く予想されない部分もあった。計算をより一層現実の体系のシミュレータ としてステップアップさせるためには、それに用いられる熱力学データベース、そ して計算モデル、計算体系をひとつひとつ改善する必要がある。化学反応を考える 場合には、標準生成自由エネルギーをはじめ標準生成エンタルビー、活量係数、標 準電極電位などの熱力学あるいは電気化学データが必要とされ、凝縮相の存在状態 を示す状態図をはじめとする相平衡データも重要である。しかし新たな体系を対象 とするとき、特に多元系に対しては熱力学データや相平衡データの欠落が多く、実 験値の蓄積が要求される場合がほとんどである。

現実の多元系は理想溶体から逸脱した挙動を示すものがあり、それに対応するペ く極限則や正則溶体といったモデルが考えられているが、これらのモデルを利用す るにはまず、それぞれの体系に依存する熱力学パラメータがあらかじめ実験的に求 められていなければならない。簡単な例として、全く未知の相平衡状態図などは、 はじめから計算のみで予想することはほとんどできない。本論文では塩化物系状態 図を作成した。そこで得られた結果と、中間化合物の熱力学データを測定して併せ て利用すれば、熱力学計算で用いられるデータベースと計算モデルの部分に貢献で きるであろう。また得られる熱力学バラメータはCALPHAD法として知られる計算状 態図のための基礎データとなり、より多次元の相平衡状態の推算への基礎となる。

そして溶融塩と構造材料との両立性の検討の中で、熱力学計算からは導出されず 実験で得なければならない部分である、種々の化学種の幾何学的配置を明らかにす るために、構造材候補材料やそれに関連する材料の腐食試験を行い、試験片表面近 傍の変質の情報を得た。この結果を念頭に置いて計算体系を変えることにより、実 際に接触している化学種の中での平衡状態を知ることができる。より多次元の実験 結果は、より局所的な平衡状態の計算体系に入れることで比較検討できるであろう。

こうして、実験で得られた結果をフィードバックしながら熱力学計算を進展させ ることで、新たなシステムの化学的な材料研究が、より精確で効果的に行えると考 えられる。

4.5 摘要

ハライド溶融塩を媒体として適用する核工学システムのための材料研究における 課題の中で、全く整備の遅れている構造材料の腐食についての検討を行った。熱力 学計算の章で取り上げたFFHR ブランケットや溶融塩燃料高速炉に着目し、構造材候 補材料の腐食試験を行って、特にサブミクロンないしはナノスケールの材料の変質 に関する知見を得、熱力学計算の結果と併せて材料と溶融塩の両立性を検討した。

各核工学システムの中で候補材料として挙げられている材料に関連して、Flibeに対してはSUS430鋼およびVを、NdCl₄-NaCl-KCl系溶融塩に対してはHastelloy-Xを試験片として浸漬実験を行った。浸漬試験片はXRD, RBS, XPSを用いて表面近傍の相を 同定し、元素組成を評価した。

SUS430綱試験片では、フッ化性の化学種の共存下であっても通常の酸化で知られ ている密着性の酸化皮膜が形成されることを示した。反対にVは全く耐食性を示さな いことを見出した。NdCl,-NaCl-KCl系溶融塩では系に水分が存在すると溶融塩成分 と反応して腐食性化学種を生成し、腐食に対して極めて大きな影響力を示すことを 実験的に示した。また、構造材料へNdが取り込まれる現象を見出し、実際の溶融塩 高速炉への適用の際には問題になることを指摘した。

最後に本論文の中での実験の位置づけについて述べ、計算と実験の協調について 論じた。

第5章

結論

核燃料物質を含むフッ化物溶融塩は溶融塩増殖炉の実験炉における燃料としての 実績がある。また、LiF-BeF,混合溶融塩(Flibe)は核融合炉ブランケット材料等として の実用も期待されている。しかしながら、ブランケット設計に必要不可欠な構造材 料に対する腐食のデータの整備は遅れている。アルカリ塩化物溶融塩は、使用済原 子炉燃料の乾式再処理や高速炉用塩燃料などにおいて、アクチニドの溶媒として利 用されることが期待されている。塩化物溶融塩燃料高速増殖炉は、原子炉内ブルト ニウムリサイクリング等、多くの特長を有するが、さらに進んでフッ化物熱中性子 炉を専焼炉として組み合わせた廃棄物の出ないハイブリッドシステムも考えられて いる。こうしたエネルギー生産システムは現段階ではデスタブランに終わっており、 そのための材料研究などは行われていない。

そこで本研究では、溶融塩を利用する上記システムの研究開発における課題の検 討を念頭に置き、

(1) 熱力学計算による、対象体系の化学的挙動の評価

(2)実験データの取得、計算による予想との対応についての考察

を通じて、計算と実験それぞれの役割をにらみながら、溶融塩を用いる核工学システムにおける材料研究へのそれらの適用について検討を行った。

ハライド溶融塩が容器材料・構造材料と共存している系の平衡状態を知ることが 重要な課題のひとつとして挙げられる。本研究では、日本熱測定学会熱力学データ ベース作業グループによるMALT2および化学平衡計算コードgemを適用した。溶融 塩腐食においては一般的に体系内の微量不純物が重要な役割を果たすが、その効果 を実際に実験で再現するのは困難であることが多い。そこで計算によってそのよう な条件下の化学状態を検討した。

核融合科学研究所で検討されている Force-Free Helical Reactor (FFHR)のFlibe ブラン ケットを想定した計算では、中性子照射によるHF, H,O,O,生成も考慮し、雰囲気へ の添加化学種およびその適切な組成を評価した上で、構造材料との共存系における 平衡状態を検討した。この系で起こる反応は単なるフッ化ではなく、常に酸化が優 先的に起こる体系であることが示され、金属系材料ではその酸化皮膜が耐食性に大 きな影響を与えることを確認した。体系への金属Beの添加についても計算により検 討し、腐食性成分を効果的に除去できることを明らかにした。

また、塩化物燃料高速増殖炉で構造材候補材料として挙げられる Hastelloy-Xと、 アクチニド塩化物の模擬物質としてのNdCl,溶融塩との両立性についても検討した。 溶融塩そのものに腐食性は無く、雰囲気中の不純物である酸素や水蒸気によっての み腐食が起こる。フッ化物のときと全く同様の体系で、原系の気相に存在する水分 量に対して、代表的な化学種の平衡状態における量を計算した。また、高速炉の運 転で生じる核分裂生成物の挙動を塩化物の安定性の観点から考察した。

以上の計算では非理想溶体は取り扱えない。現実の多元系は理想溶体から逸脱し

た挙動を示すものが多く、そのために、稀薄な成分に対する極限則や正則溶体といっ たモデルが考えられている。しかしこれらのモデルを利用するには、それぞれの体 系に依存するパラメータがあらかじめ実験的に求められていなければならない。例 えば全く未知の相平衡状態図を、はじめから計算で予想することはほとんど不可能 である。

本研究では、NdCl,を用いて塩化物系状態図を実験により作成した。

試料は乾燥窒素雰囲気のグローブボックス中で調製し、示差熱分析 (DTA)、X線回 折測定(XRD)に供した。各組成試料の転移点測定をArガスフロー雰囲気中でDTAに よって行い、XRDによって固相をキャラクタライズした。NdCl₄-NaCl系状態図を決 定し、中間化合物3NdCl₄·NaClを見出した。さらにNdCl₄-KCl系状態図も決定し、新 たな中間化合物を見出した。状態図も全く新規のものであった。NdCl₄-NaCl-KCl系 状態図の測定からも新規3成分化合物の存在を指摘した。

溶融塩と構造材料との両立性の検討の中で、熱力学計算からは導出されない部分 である、種々の化学種の幾何学的配置の効果(特に酸化皮膜の機能)や速度論的な情報 は、実験で得なければならない。そこで、関連する材料の腐食試験を行った。

試験片の浸漬はバッチ式とし、試料の取り扱いは乾燥Ar雰囲気のグローブボック ス中で行った。溶融塩成分粉末をるつぼ中で昇温,溶融し、所定の温度に保持して 試験片の浸漬を行った。冷却後、試験片に付着,残留し凝固した塩相を洗浄除去し、 浸漬後試験片の分析を行った。X線回折測定(XRD)および一部の試料についてはラザ フォード後方散乱分光法(RBS),X線光電子分光法(XPS)を用いて試験片表面近傍のキャ ラクタリゼーションを行った。

これらの測定手法を適用することで、ミクロン平均,サブミクロン,ナノスケールの 深さにおける試験片表面近傍の変質の情報を効果的に入手することができた。

以上、ハライド溶融塩が媒体として期待されている核工学システムへの利用例と して核融合炉ブランケットの液体増殖材料や溶融塩増殖炉燃料等を取り上げ、構造 材料との両立性を中心に、材料研究への熱力学計算および実験の両者を適用した。 熱力学計算においては、実験で得ることが現実的に困難な条件における化学平衡状 態についての知見を、効果的にかつ定量的に得ることができた。さらに、全く実験 データが欠落していたり、信頼性に乏しく整備が要求されている部分の中でも、計 算のみでは推定ができないものとして、相平衡状態図の作成と構造材候補材料の腐 食試験を行い、新たな実験データを得るとともに、より精確な材料の化学的研究に おける熱力学計算と実験の協調について論じた。

本研究が、数々の有利な性質がありながら未だデスクブランに留まっている、溶 融塩を共通の媒体とする核工学システムの研究推進の一助になれば幸いである。

参考文献

11]"溶融塩增殖如",溶融塩增殖加研究專門委員会,日本原子力学会(1981)

[2] P. A. Nelson, D. K. Butler, M. G. Chasanov and D. Meneghetti, Nuclear Applications 3 (1967) 540

[3] M. Taube, EIR-249 (1974)

[4] 寺井隆幸, 東京大学工学部総合試驗所年報 53 (1994) 141

[5] A.Sagara, O.Motojima et al., Fux. Eng. Des. 29 (1995) 51

[6] K. A. Romberger, J. Braunstein and R. E. Thoma, J. Phys. Chem. 76 (1972) 1454

[7] 菅野昌義、"原子炬燃料"、原子力工学シリーズ2, 東京大学出版会(1976)

[8] T. Koyama, T.R. Johnson and D.F. Fischer, J. Alloys and Compounds 189 (1992) 37

[9] J. P. Ackerman and J.L. Settle, J. Alloys and Compounds 199 (1993) 77

[10] 金属臨時増刊号、"溶融塩・熱技術の基礎"、溶融塩・熱技術研究会、アグネ (1988)

[11] "Phase Diagrams of Nuclear Materials", ORNL-2548 (1959)

[12] G. Eriksson, Acta. Chem. Scand. 25 (1971) 2651

[13] G. Eriksson, K. Hack, "ChemSage—A Computer Program for the Calculation of Complex Chemical Equilibria", *Metall. Trans.* 21B (1990) 1013

[14] 山内繁, 熱測定 12 (1985) 142

[15] 横川晴美, 熱測定 12 (1985) 144

[16] 松本隆史, 横川晴美, 熱測定 19 (1992) 170

[17] D. Brown, "Halides of the lanthanides and Actinides": "Halides of Transition Metals".

A WILEY-INTERSCIENCE PUBLICATION John Wiley & Sons Ltd. (1968)

[18] F.S. Galasso,"Structure and Properties of Inorganic Solids", Pergamon Press (1970): 時訳, アグネ (1984)

[19]小山正史, 魚作浩一, 飯塚政利, 坂村義治。 本下賢介。" 高温冶金法物性值集"。

電力中央研究所報告,調查報告T93033 (1994)

[20] 田中敏宏, 飯田孝道, 熱測定 18, 3 (1991) 174

[21] R. A. Gilbert, J. Phys. Chem. 67 (1963) 1143

[22] J. Lumsden, "Thermodynamics of Molten Salt Mixtures", ACADEMIC PRESS (1966).

[23] Y. Marcus, "Introduction to Liquid State Chemistry" (1977); 形式, 化学同人(1982)

[24] "新熱分析の基礎と応用",日本熱測定学会編。リアライズ社(1989)

[25] "化学大辞典", 東京化学同人 (1989)

[26] A.S. Dworkin and M. A. Bredig, J. Phys. Chem. 67 (1963) 697

[27] F.N. T'en and I.S. Morozov, Zh. Neorg. Khim. 14 (1969) 2246

[28] "Phase Diagrams for Ceramists", The American Ceramics Society, NIST, Vol. 1 (1964), Vol. II (1969), Vol. III (1975), Vol. VII (1989)

[29] I.S. Morozov, Z.N. Shevtsova and L. V. Klyukina, Zh. Neorg. Khim. 2 (1957) 1639

[30] R. A. Sharma and R. A. Rogers, J. Am. Ceram. Soc. 75, 9 (1992) 2484

[31] Z.N. Shevtsova, E. N. Korzina and B. G. Korshunov, Zh. Neorg. Khim. 7 (1962) 2596

[32]服部毫夫, 池沢秀夫, 平野亮二, 持永純二, 日本化学会誌 6 (1982) 952

[33] H.-J. Seifert, H. Fink and J. Uebach, J. Thermal. Anal. 33 (1988) 143.

[34] C.J. Barton, ORNL-2548 (1959)

[35] C. W. Bjorklund, J. G. Reavis, J. A. Leary and K. A. Walsh, J. Phys. Chem. 63 (1959) 1776

[36] In Chzhu-sun and I. S. Morozov, Zh. Neorg. Khim. 3 (1958) 1916.

[37] V.I. Ionov, I.S. Morozov and B. G. Korshunov, Zh. Neorg. Khim, 5 (1960) 1248

[38] H.-J. Seifert, J. Sandrock and J. Uebach, Z. Anorg. Allg. Chem. 555 (1987) 148

[39] 例えば G. Meyer and E. Hüttl, Z. Anorg. Allg. Chem. 497 (1983) 191

[40] H.-J. Seifert, H. Fink and G. Thiel, J. Less-Common Met. 110 (1985) 139

[41] R. Benz, M. Kahn and J. A. Leary, J. Phys. Chem. 63 (1959) 1984

[42] B. G. Korshunov, D. V. Drobot, V. V. Bukhtiyarov and Z. N. Shevisova, Zh. Neorg. Khim, 9 (1964) 1427

[43] B.G. Korshunov, D. V. Drobot, G. P. Borodulenko and I.E. Galchenko, Zh. Neorg. Khim. 11 (1966) 1013

[44] B.G. Korshunov, D.V. Drobot, G.P. Borodulenko and I.E. Galchenko, Zh. Neorg. Khim, 11 (1966) 1013

[45] J. Sangster and A. D. Pelton, J. Phys. Chem. Ref. Data 16 (1987) 509.

[46] B.G. Korshunov, D.V. Drobot, K. I. Petrov, V. V. Bukhtiyarov and M. V. Rubisov,

Zh. Neorg, Khim, 10 (1965) 1675

[47] B. G. Korshunov, D. V. Drobot and Z. N. Shevtsova, Zh. Neorg. Khim. 10 (1965) 1901

[48] J.Crank, "The Mathematics of Diffusion", 2nd Ed., CLARENDON PRESS, OXFORD (1975)

[49] 金属データブック改訂3版, 日本金属学会編, 丸善(1993)

[50] W. K. Chu, J. W. Mayer, M.-A. Nicolet, "Backscattering Spectrometry", Academic Press (1978)

[51] L. R. Doolittle, Nucl. Instr. and Meth. in Phys. Res. B9 (1985) 344

[52] L.R. Dooliule, Nucl. Instr. and Meth. in Phys. Res. B15 (1986) 227

[53] J. F. Ziegler, J. P. Biersack, U. Littmark, "Empirical Stopping Powers for Ions and Solids". *IBM Research Report* RC9250 (1982)

[54] 大西孝治, 堀池清浩, 吉原一紘, 固体表面分析(II), 講談社サイエンティフィク(1995)

155) 田丸議二, 表面の科学, 学会出版センター (1985)

[56] A.Sagara et al., "Materials Design and Relating R&D Issues for the Force-Free Helical Reactor (FFHR)", J. Nucl. Mater. 258-263 (1997)

[57] 例えば O. Kubaschewski and B. E. Hopkins, "Oxidation of Metals and Alloys", BUTTERWORTHS (1962) [58] 金属材料の高温酸化と腐食, 腐食防食協会編, 丸産 (1982)

投稿論文等

細矢雄司,寺井隆幸,米岡俊明,田中知,高儒洋一, NdCl₃-NaCl系状態図の作成。 Proc. 16th Jpn. Sym. Thermophys. Properties (1995) 349

Yuji Hosoya, Takayuki Terai, Toshiaki Yoneoka.
 "Chemical Behavior of Molten Chlorides,"
 Proc. Int. Sym. Mater. Chem. Nucl. Environment (1996) 693

細矢雄司,寺井隆幸,田中知,高橋洋一, NdCl_z-NaCl二元系状態図, 熱物性10(1996)95

 Yuji Hosoya, Takayuki Terai, Tomohiro Kohayashi, Satoru Tanaka,
 "Characterization of near-surface region of Ni-based superalloy examined on corrosion resistance against molten chloride mixture,"
 J. Surface Analysis 3 (1997) 511

Yuji Hosoya, Takayuki Terai, Satoru Tanaka, "Phase Equilibria of NdCl,-NaCl-KCl," J. Nucl. Mater. 247 (1997) 304

Yuji Hosoya, Takayuki Terai, Toshiaki Yoncoka, Satoru Tanaka, "Compatibility of structural materials with molten chloride mixture at high temperature," J. Nucl. Mater. 248 (1997) 348

Takayuki Terai, Yuji Hosoya, Satoru Tanaka, Akto Sagara, Osamu Motojima, "Compatibility of Structural Materials with Li₂BeF₄ Molten Salt Breeder;" J. Nucl. Mater. **258-263** (1998) 513

Yuji Hosoya, Takayuki Terai, Satoru Tanaka, Akio Sagara, Osamu Motojima, "Compatibility of Structural Materials with Molten Fluoride Breeder," *Proc. 20th Sym. Fus. Technol.* (1998) 1457

謝辞

田中知教授, 寺井隆幸助教授には、本研究テーマを与えていたたき、研究室会では 数多くの御助言や激励の御言葉を賜りました。様々な発表・報告の機会をいただき、 お忙しい中でも予稿や報告書に目を通して下さり様々なアドバイス・御指導をして くださいました。研究室会では大津繁樹講師にもお世話になりました。

中央大学の高橋洋一教授には、熱分析の方法や研究方針など、機会があるごとに 声をかけていただき励まして下さいました。金属材料技術研究所の野田哲二先生か らも遠路はるばる研究室会に参加された際にはコメントを頂戴いたしました。

本研究の実験上のトラブルの対応や、測定条件の設定、装置の取り扱いから維持・ 管理まで、米岡後明助手には本当に御世話になりました。特に豊富な経験的知識を 背景とした大変有用なアドバイスの数々を頂き、数多くの困難を解決して下さいま した。

工学部総合試験所の小林知洋助手には、博士課程を通じて居室となった総合試 験所治金方面研究室の直接的なポスとして御世話になりました。特にRBSの成果 は小林さんの存在無くしては得られませんでした。同じくRBSでは、川西さんをは じめ原子力研究総合センターのRAPIDのスタッフのみなさんにも御世話になりまし た。

大森技官には常に研究室の環境を整えて頂いたのをはじめ、数々のわがままを開 いていただきました。府川さん、師山さんをはじめとする総合試験所治金方面研究 室の職員の皆さんや田中研究室の院生のみなさんにも色々と御世話になり、感謝の 念にたえません。

以上、本研究で御世話になった皆々様に感謝の意を表し、謝辞とさせていただき たいと存じます。

Dec 18, 1998 細矢雄司

