博士論文

RNA sequence を用いた骨における p53 標的遺伝子の同定

津田 祐輔

目次

要旨

- 第1章 序文
- 第2章 研究材料および方法
 - 2-1. 細胞培養とマウス
 - 2-2. 発現ベクターの作成
 - 2-3. RNA sequence 解析
 - 2-4. RNA sequence データ解析
 - 2-5. Quantitative real-time PCR
 - 2-6. cDNA microarray
 - 2-7. Western blotting
 - 2-8. 組織免疫染色
 - 2-9. レポーターアッセイ
 - 2-10. 融合タンパクの作成
 - 2-11. 細胞増殖アッセイ
 - 2-12.コロニー形成アッセイ
 - 2-13. 安定発現細胞株を用いた実験
 - 2-14.T細胞アッセイ
 - 2-15. マウス骨肉腫モデルの解析

第3章 結果

3-1. 骨において DNA ダメージにより発現が変化する遺伝子群の全体像とパ

スウェイ解析

3-2. p53 標的遺伝子のスクリーニング

3.3. 骨特異的標的遺伝子 CD137L の同定

3-4. p53 もしくは CD137L による細胞増殖抑制効果

3-5. CD137L 逆向きシグナルと正方向シグナルの骨肉腫細胞における役割

第4章 考察

第5章 結論

謝辞

引用文献

骨肉腫における p53 変異の意義を明らかにするため、マウス骨組織において p53 標的遺伝子を網羅的に探索した。野生型及び p53 欠損マウスに 10Gy の全身 放射線照射を行い、各群 3 サンプル計 12 サンプル (p53^{+/+}、p53^{-/、}、照射有、照 射無) について RNA sequence を施行した。p53^{+/+}照射有群においてその他の群 と比較して、2 倍より大きく発現が上昇している 69 遺伝子を候補遺伝子として 抽出した。ヒト骨肉腫細胞株を用いた解析の結果、新規 p53 標的遺伝子 *CD137L、CDC42BPG、FST* を同定した。CD137L は双方向性のシグナルを持ち、 逆向きシグナルは細胞増殖を負に制御し、正方向シグナルは T 細胞を活性化し 腫瘍免疫を増強させる可能性が示された。また、CD137L 融合タンパクはゼノ グラフドモデルにおいて腫瘍増殖を抑え、新規治療標的になりうることが示唆 された。

第1章 序文

癌抑制遺伝子 p53 の変異は多くの癌種に見られ頻度が高い(図1)。p53 は転写
因子として機能し、その標的遺伝子の発現誘導を介してがん化を抑制する[1]。
p53 に発現誘導される遺伝子はアポトーシスや細胞周期の停止などを誘導し、
がん化を抑制している[1,2]。さらに、近年では代謝[3]、幹細胞の維持[4]、転移
[5]、免疫反応[6]を制御し、癌抑制的に働くことが明らかとなっている。これは
p53 が制御している癌抑制機能を明らかにすることにより、癌の早期発見や転
移の抑制、癌の治療において新しい可能性が開かれることを示唆している。

骨肉腫の発生頻度は全悪性腫瘍の中で 0.2%であり、非常に稀な悪性腫瘍で ある[7]。骨原発悪性腫瘍の中では、最も発生頻度が高い腫瘍であり全骨原発悪 性腫瘍の 30%程度を占める[7]。近年の骨肉腫のゲノム解析において最も頻度が 高い変異は *p53* 遺伝子変異であり、全ゲノム解析では 95%もの症例に構造異常 や一塩基置換を含む何らかの *p53* の変異が見つかっている (図 2) [8-12]。ま た、p53 の生殖細胞系列に *p53* 変異をもつ Li-Fraumeni 症候群の小児患者におい て、骨肉腫の発生頻度が最も高いこと(表 1) [13]や間葉系幹細胞から骨芽細 胞への分化過程のいずれかで *p53* に変異を導入したマウスに骨肉腫の発生頻度 が高いこと(図 3) [7、14]は骨肉腫発生における *p53* 変異の重要性を示す所見 である。しかし、骨肉腫発生における p53 変異の役割については不明な点の多 い。

近年の報告において p53 の結合部位や転写活性能は細胞特異性があると報告されている[15]。さらに、Li-Fraumeni 症候群の患者や p53 欠損マウスにおいて、様々な臓器に悪性腫瘍が発生し、その腫瘍の発生頻度は異なっている(表

1、図3)[13、16]。これらの結果はp53の腫瘍抑制効果は臓器や細胞特異性を 持つ可能性を示唆している。このような点を考慮すると、骨肉腫発生における 意義を知る上で骨や骨芽細胞におけるp53の機能を明らかにすることは重要で あると考えられる。

骨肉腫の治療は現在、手術による切除とドキソルビシン、シスプラチン、 メトトレキセートによる多剤併用化学療法が主体である。これらの治療により、 局所病変のみの患者の5年生存率は70%程度に改善した[17]。しかし、転移や 再発を起こした骨肉腫患者の5年生存率は20%程度と低く、この30年程進歩 がない[18]。このため、新規治療の開発が望まれている。p53の機能そのものを 対象に薬物治療を行うことはp53経路の複雑さに起因する副作用のため困難で あり[1]、治療標的となりうるp53標的遺伝子や下流の経路を同定することは、 p53遺伝子に変異のある癌を治療する上で鍵となる可能性がある。

そこで我々は、骨や骨芽細胞における *p53* 標的遺伝子を網羅的に探索し、 新規 *p53* 標的遺伝子を発見することを目的として RNA sequence 解析を行った。 また、本研究の目的は骨肉腫発生における *p53* 変異の意義を明らかにし、新規 治療標的を同定することである。

第2章 研究材料および方法

2-1. 細胞培養とマウス

U2OS と SaOS2 は American Type Culture Collection (Manassas、VA、 USA)から提供を受けた。FreeStyle[™] 293、LM8 は Invitorigen (Carlsbad、CA、 USA)より購入した。U2OS(p53 wild)、SaOS2(p53 null)はヒト骨肉腫由来、 LM8 はマウス骨肉腫由来、FreeStyle[™] 293 は胎児腎臓由来の細胞株である。 MCF10A は乳腺上皮細胞由来、HCT116 は大腸癌由来の細胞株である。骨芽細 胞初代培養は以前に記載された方法で樹立した[19]。

U2OS は McCoy's medium +10% FBS+L-glutamine で培養した。SaOS2 は McCoy's medium+15% FBS+L-glutamine で培養した。FreeStyle[™] 293 は FreeStyle[™] 293 Expression Medium で培養した。

Small interfering RNA (siRNA) oligonucleotides は Sigma Genosis (Hokkaido、Japan) で合成して購入した。トランスフェクション試薬として Lipofectamine RNAiMAX reagent (Invitrogen、Carlsbad、CA、USA) や FuGENE6 (Roche、Basel、Switzerland) を用いた。siRNA oligonucleotides のシ ークエンスは表 2 に示した。

p53 knockout C57BL/6J マウスは RIKEN BioResource Center (Ibaraki, Japan)か ら購入した。C3H/HeJ マウスは CLEA (Tokyo、Japan)から購入した。飼育ケ ージ内の移動は自由とし、飼料および飲用水は常時摂取可能な状態で、12 時間 ごとの明暗サイクルにて飼育した。すべての動物実験は「東京大学医科学研究 所動物実験指針」に従って行った。

2-2. 発現ベクターの作成

発現ベクターを作成するため、*CD137L、CDC42BPG、FST*の全長を KOD-Plus DNA polymerase (Toyobo、Osaka、Japan)で増幅して pCAGGS vector に挿入した。作成後に DNA sequence で vector への挿入を確認した。作成に使用したプライマーは表 2 に示した。

2-3. RNA sequence 解析

p53 野生型(p53+/+) およびノックアウトマウス(p53-/-)、放射線照射ありな しの4群(各群3匹ずつ)を用いた。p53野生型・放射線照射なしをW群、 p53 野生型・放射線ありをWX群、p53 ノックアウト・放射線なし群をK群、 p53 ノックアウト・放射線あり群を KX 群と定義した。X 線照射を 10Gy 行い、 24時間後に頭蓋骨を含む24臓器を摘出した。骨肉腫の前駆細胞と考えられて いる骨芽細胞が細胞の大部分を占めることから頭蓋骨を選択した。放射線照射 の線量は10Gyとしたが、これはp53を活性化させアポトーシスを誘導する線 量であり、これまでの論文を参照して決定した [20, 21]。それぞれ回収した組 織は RNA later に浸し RNA 回収まで 4℃で保管した。組織は Precellys を用いて QIAzol 中で破砕後、RNeasy plus universal mini kit (Qiagen、CA、USA) を用い て RNA を回収した。Nanodrop (Thermo scientific、USA) で回収量を、 Bioanalyzer (Agilent technologies、CA、USA) で Quality を測定した。RT-qPCR でも Quality check を行い、ライブラリー作成へと進めた。1µgの total RNA から、 TruSeq RNA Sample Preparation kit (Illumina) を用いてシークエンスライブラリ ーを作成した。まず、poly-T 付加磁気ビーズにて total RNA から poly-A RNA (mRNA)を精製し、これを2価陽イオンにて化学的に断片化した。断片化し た mRNA から、逆転写酵素 (SuperScript II Reverse Transcriptase、Life

Technologies)を用いて cDNA を合成し、アダプター配列を付加した。作成し たライブラリーは HiSeq2000 (Illumina)を用いて両端 100bp のシークエンスを 行った。

2-4. RNA sequence データ解析

RNA sequence データ解析は TopHat-Cufflinks pipeline を用いて行った。データ解 析前に FastQC でデータの Quality を確認した。シークエンスリードを TopHat (v2.0.9)を用いて、マウスゲノム mm9/GRCm37 にマッピングした。マッピン グパラメーターは TopHat の初期設定に従った。Cufflinks (v2.2.1)を用いて、 FPKM 値を算出した。それぞれの FPKM 値の解析を行う前に、0を消すために 0.0001をすべての値に加えた。WX 群において発現が 2 倍より大きく上昇する 遺伝子を抽出するために「WX の FPKM 値の中央値/K、KX、WX の FPKM の 中央値内で最大値 >2」、「WX とその他の群の FPKM 値を T-test で比較し P <0.05」、「WX の FPKM 値 >1」の 3 つの基準を満たす遺伝子を抽出した。一 方、1/2 より低下する遺伝子として「WX の FPKM 値の中央値/K、KX、WX の FPKM 値の中央値内で最低値 <1/2」、「WX とその他の群の FPKM 値を T-test で比較し P <0.05」、「K、KX、WX の中央値内で最低値 >1」の基準で抽出し た。DAVID (The Database for Annotation、Visualization、and Integrated Discovery)を用いてパスウェイ解析を行った [22、23]。

2-5. Quantitative real-time PCR

Quantitative real-time PCR (RT-qPCR) はSYBR Green Master Iを用いて Light Cycler 480 (Roche、Basel、Switzerland) で行った。プライマーのシークエンス は表2に示した。Total RNAはRNeasy plus spin column kits (Qiagen、Valencia、 CA、USA)を用いて手順書に沿って抽出した。Complementary DNAはSuper Script Preamplification System (Invitrogen、Carlsbad、CA、USA)を用いて合成 した。抗がん剤であるAdriamycin (ADR)で処理をして回収したU2OS、骨芽細胞 初代培養は、ADRによりp53の活性化を図ったものであり、p53の代表的な標的 遺伝子であるp21の誘導をpositive controlとした。また、SaOS2にp53を発現させ るために様々なmultiplicity of infection (MOI)でアデノウイルス (Ad-p53) もしく はコントロールとして LacZ (Ad-LacZ) を感染させた。

2-6. cDNA microarray

データは過去の我々の論文から引用した[24、25]。SurePrint G3 Human GE 8x60K microarray (Agilent、Santa Clara)を用いた。MCF10A *p53*^{+/+}、MCF10A *p53*^{-/-}、HCT116 *p53*^{+/+}、HCT116*p53*^{-/-}細胞を用いて ADR で 2 時間処理した。 ADR 投与後、0 h、12 h、24 h、48 h に細胞から RNA を回収した。47,534 peaks (derived from 22,276 genes)を用いて解析を行った。

2-7. Western blotting

Western blotting (WB) は通常のプロトコールにて行った。Protein lysatesは RIPA buffer (Thermo scientific、USA) とProtease inhibitor cocktail (Roche、 Basel、Switzerland) で作成した。Anti-b-actin monoclonal antibody (clone AC15) はSigmaから購入した。Anti-p53 monoclonal antibody (clone DO-7) と anti-p21WAF1 monoclonal antibody (clone EA10) はCalbiochem (San Diego、 CA、USA) から購入した。Anti-HA monoclonal antibody (clone 3F10) はRoche から購入した。Anti4-1BBL(CD137L) monoclonal antibody (EPR1172Y) は GeneTex (CA、USA) から購入した。

2-8. 組織免疫染色

生後1週の*p53+/+と p53-/マ*ウスの頭蓋骨を用いた。マウスはW群、WX群、K 群、KX群の4群を用い、各群には3匹のマウスを使用した。組織免疫染色は 以前に述べられた方法で行った[26]。Endogenous peroxidase をブロック後に染色 を行い、抗体は Goat anti-Cd137l antibody(sc-11819、Santa Cruz)と rat anti-Ki67 antibody(clone MIB-5、Agilent Technologies)を用いた。染色は2人の独 立した研究者により評価を行った。

2-9. レポーターアッセイ

p53コンセンサス配列と比較してp53-binding site の可能性があるDNA 配列を転 写開始点から5000bp上流もしくは第1イントロン内から抽出し、それらのDNA 配列を増幅しpGL4-promoter vector (Promega、WI、USA) でサブクローン化し た。プライマーの配列は表2に示した。遺伝子導入においてはSaOS2をプレート に播種し、24時間後にFugene-6 (Roche)を用いてPGL4ベクターと発現ベクタ ーを遺伝子導入した。細胞は導入後48時間にて回収した。ルシフェラーゼアッ セイは、Dual Luciferase assay system (Promega)を用いて以前に示された方法 で行った[26]。

2-10. 融合タンパクの作成

Recombinant CD137-Fc は次に示す方法で以前に報告された論文を参考にして作 成した[27、28]。CD137の細胞外ドメインを構成するシークエンス (human、 amino acids 24–186; mouse、amino acids 24–187) や Cd1371の細胞外ドメインを 構成するシークエンス (mouse、amino acids 104–304) とヒト IgG の Fc 部分

(amino acids 100–329)を増幅してクローニング後、制限酵素で切断して
pCAGGS に組み込んだ。ベクターは Fugne6 を用いて FreeStyle 293-F 細胞に導入した。融合タンパク(human CD137-Fc、mouse Cd137-Fc、mouse Cd1371-Fc)
は protein A-Sepharose (Invitrogen)を用いて、細胞上清より精製した。さらに、
dialysis cassette (0.1–0.5 ml、10 K Molecular weight cut off、Thermo scientific)を
用いて、精製を行った。human IgG antibody (American Qualex International、
San Clemente、CA、USA)を用いて細胞上のCd137 もしくは Cd137L と融合タンパクとの結合を確認した。

2-11. 細胞増殖アッセイ

細胞増殖は CellTiter-Glo Luminescent Cell Viability Assay (Promega) を用いてプ ロトコールに従って解析した. 細胞は 96-well culture plate に播腫し、開始時には SaOS2 は 4.0×10³ 個、骨芽細胞初代培養は 7.5×10³ 個とした。 96-well culture plate に細胞を撒く 24 時間前より IgG-Fc もしくは CD137-Fc を用いてコートした。 培養開始後 48h 後に microplate reader (BiotekInstruments、VT、USA) で 450 nm の吸光度を測定した。

2-12. コロニー形成アッセイ

Colony formation assay は 6-well culture plate で行った。細胞に pCAGGS/CD137L もしくは Mock plasmid を導入し Geneticin (U2OS は 1.0mg/ml、SaOS2 は 1.0 mg/ml、LM8 は 1.2mg/ml) (Invitrogen、Carlsbad、CA、USA) と一緒に 1-2 週 間培養した。コロニーを crystal violet (Sigma、St Louis、MO、USA)で染色し て Image J software で定量化した。

2-13. 安定発現細胞株を用いた実験

LM8 に対して Mock もしくは Cd1371-pCAGGS expression vector を Lipofectamine 2000 reagent (Invitrogen) を用いて導入した。両ベクターは Geneticin に対して 耐性の遺伝子を発現しており、3 週間 Geneticin (1.0 mg/ml) を添加したメディ ウムで培養して Geneticin 耐性の細胞を濃縮した。それぞれのベクターを導入し た細胞の中で CD137l 発現の差が大きい群として 3 クローンずつを選択した

(Cd137l-1、Cd137l-2、Cd137l-3、Mock 1、Mock2、Mock3)。生後6週の
C3H/HeJマウスの背部皮下にこれらの細胞を移植した。1×10⁶個のLM8安定発
現細胞株をPBS0.1mlに入れて注射した。腫瘍径を2、3日毎に計測して体積を
次の式で計算した。計算式:(長径)×(短径)²×0.52。結果は平均±標準偏
差で示した。有意差はWilcoxon rank-sum test で計算した。

2-14. T 細胞アッセイ

Cd137-FcのT細胞に対する影響をELISAでIL2を測定することで探索した。 また、細胞増殖能の評価も行った。T細胞は生後6週のC3H/HeJマウス

(CLEA Japan、Tokyo、Japan)の脾臓から採取して、FACS Aria (BD Biosciences、San Jose、CA、USA)を用いて CD4⁺または CD8⁺ T 細胞を分離し

た。24well プレートに CD4⁺ T 細胞を 5.0×10^5 個/500 µl、CD8⁺ T 細胞を 2.5×10^5 個/500 µl で播種した。細胞を播種する前に 5.0 µg/ml の濃度で anti-CD3 antibody (clone 145-11C、Biolegend) と Cd137l-Fc (20 µg/ml) もしくは Mock-Fc (20 µg/ml) をプレートに固着させた。Anti-CD28 antibody (clone 37.51、 eBioscience、San Diego、CA、USA、 1.5μ g/ml) をポジティブコントロールとし て用いた。細胞播種 48 時間後に細胞上清の IL-2 を ELISA (mouse IL2 DuoSet ELISA、R and D systems、Minneapolis、MN、USA) を用いて測定した。アッセ イは 3 回、繰り返して行った。

2-15. マウス骨肉腫モデルの解析

生後 6 週の C3H/HeJ マウスの左背部に 0.1 ml の PBS と 1 × 10⁶ LM8 cells を注射 した。腫瘍が 0.5cm 大になった時点で Cd137-Fc 融合タンパク (50 µg) もしく は Mock-Fc (50 µg) を 3 日間、腹腔内投与した。マウスは各群 3 匹を用いて、 腫瘍径を 2、3 日毎に計測して体積を次に示す計算式で計算した。計算式: (長 径) × (短径)² × 0.52。結果は平均 ± 標準偏差で示した。有意差は Wilcoxon rank-sum test で計算した。 結果 3-1. 骨において DNA ダメージにより発現が変化する遺伝子群の全体像と パスウェイ解析

p53 依存的に放射線による DNA ダメージ下で誘導される新規遺伝子を探索する ため、RNA sequence を用いて 23813 遺伝子の発現を解析した。骨以外の 23 臓 器の RNA sequencing データの詳細は次の論文に示されている[29]。解析の全体 像を図4に示した。p53^{+/+}、放射線照射有群において、その他の群と比較して 発現が2倍より大きく上昇する遺伝子として、69遺伝子が抽出された(表3)。 代表的な p53 に発現誘導される遺伝子である p21、Bax、Fas はこの中に含まれ ていた(図5)。一方、1/2に低下する遺伝子として127の遺伝子が抽出された (表 4)。2倍に上昇する遺伝子セットを用いて DAVID でパスウェイ解析を行 ったところ、p53 signaling pathway が最も上位であり cytokine-cytokine receptor interaction (CD137Lを含む)、TGF-beta signaling pathway (FSTを含む)が次 に関連するパスウエイとして挙げられた(表 5)。1/2より低下する遺伝子セッ トは Cell cycle が最も関連するパスウェイであった。過去の論文を参照した CHIP sequence データでは、誘導される 69 遺伝子中 49 遺伝子(71%) に p53 結 合領域が見られた[30]。一方で、同じデータを参照すると、抑制される 127 遺 伝子中では8遺伝子(6%)のみにp53結合領域が見られた。さらに、抑制され る 127 遺伝子中 51 遺伝子は p53-p21-DREAM pathway によって制御されると報 告されており[31]、抑制される遺伝子の多くは p53 により間接的なメカニズム で制御されている可能性が考えられた。

3-2. p53 標的遺伝子のスクリーニング

p53+/+、放射線照射あり群において、その他の群と比較して2倍より大きく発 現が上昇する 69 遺伝子の内訳はこれまでに p53 の標的遺伝子として報告されて いる遺伝子が28遺伝子、ヒトに相同遺伝子がない遺伝子が10遺伝子、残りが 31 遺伝子であった。p53 依存的に誘導される遺伝子を同定するため、野生型 *p53* を発現している U2OS において siRNA で *p53* の発現を抑制し、ADR を投与 した。代表的な p53 標的遺伝子である p21 が mRNA レベルにおいて ADR 投与 によって誘導され、siRNAにより抑制されることを確認した(図 6)。上述の 2倍より大きく誘導され、既報とヒトに相同遺伝子がない遺伝子を除いた 31 遺 伝子について RT-qPCR を行い、p53 に制御される遺伝子として CD137L、 *CDC42BPG*、*FST*の3遺伝子を同定した(図6)。さらに、これらの3遺伝子 の RNA sequence データでは放射線照射により発現が誘導されることを確認し た(図7)。さらに、p53 野生型である U2OS において ADR 投与によって発現 が誘導された(図8)。また、p53+/+とp53-/-マウスから作成した骨芽細胞初代 培養において、ADR 投与により発現が誘導され(図 9)、誘導は p53 依存的で あることが分かった(図10)。また、p53 nullの細胞株である SaoS2 に Adeno virusを用いて p53を発現させると、これらの3遺伝子の誘導がみられた(図 11)。これらのことから、CD137L、CDC42BPG、FSTはp53依存的に誘導され る遺伝子であることが示唆された。また、これらのRT-qPCRの結果からU2OS、 SaOS2、骨芽細胞において、ADR 投与なしのベースレベルで CD137L の発現が あることが確認できた。

3-3. 骨特異的標的遺伝子 CD137L の同定

これら3遺伝子がp53により直接転写誘導されるかを検討するために、遺伝子の転写開始点上流や1stイントロンにおいてコンセンサス配列と類似するp53 結合領域を探索した。3遺伝子ともにp53結合領域の候補が見られ(図12)、 この領域をクローニングしてレポーターアッセイを行ったところルシフェラー ゼ活性が上昇した(図13)。さらに、p53抗体を用いた CHIP sequence のデー タを過去の論文より入手して検索すると[30]、FST遺伝子の3.5kb上流にピー クが見られ、この領域をクローニング(FST-BS2)してレポーターアッセイを 行った。その結果、この領域においてもルシフェラーゼ活性が上昇した(図 13)。また、CHIP assayを行い、p53タンパクとこれらの領域のDNAとの直接 の結合を確認した(図14)。これらの結果は、CD137L、CDC42BPG、FSTは p53タンパクに直接制御されること示していると考えられた。

RNA sequence の結果を臓器毎に検討すると、*Cd1371*は骨においてのみ WX 群で2倍以上に誘導された(図 15)。*Cdc42bpg、Fst*は骨特異的な誘導は見ら れなかった。さらに、Western bltting を行い、U2OS に対して ADR を投与する と CD137L が誘導され、sip53 によって誘導は抑制された(図 16)。また、マ ウス頭蓋骨から採取した骨組織に放射線照射を行い、組織免疫染色を行うと p53^{+/+}群のみ Cd1371 が誘導された(図 17)。以上の結果より Cd1371 について、 さらなる機能解析を行うこととした。

我々の MCF10A と HCT116 を用いたマイクロアレイの結果では、 MCF10Ap53^{+/+}、HCT116 p53^{+/+}に加え、MCF10Ap53^{-/-}、HCT116 p53^{-/-}において も CD137L の発現は誘導された(図 18)。また、H1299 肺癌細胞株においても、 CD137L の発現は誘導された。これらの結果は CD137L が様々な細胞株におい

て p53 依存的もしくは非依存的に誘導されることを示している。マウスとヒト において誘導が異なることは、CD137L はヒトにおいて 4 つの p53 結合領域の 候補があると Remap で示されているが、これらはマウスにおいて保存されてい ない事が原因の一つと考えられる(図 19)。

3-4. p53 もしくは CD137L による細胞増殖抑制効果

骨芽細胞前駆細胞は骨肉腫の起源細胞と考えられており[19]、骨芽細胞の初代 培養を用いて増殖能の評価を行った。以前に示されている様に、*p53^{-/-}マウスか* ら樹立した初代骨芽細胞は*p53^{+/+}マウスと*比較して増殖能が亢進していた(図 20)。さらに、*p53^{-/-}マウスから*樹立した初代骨芽細胞においては Ki67 陽性の 骨芽細胞が *p53^{+/+}マウスと*比較して多かった(図 21)。*p53^{+/+}マウス*における Ki67 陽性細胞は放射線照射により *p53^{-/-}マウス*よりも大きく減少し、*p53* によ る細胞増殖抑制効果を示唆していると考えられた。

次に CD137L の機能を解析するために U2OS、SaOS2、LM8 を用いてコロ ニー形成アッセイを行った。CD137L を過剰発現させると、Mock と比較して細 胞数が有意に減少した(図 22)。さらに、FST344 (major isoform of FST)、 FST311 (minor isoform of FST)、CDC42BPG を過剰発現した場合にも細胞数 は有意に減少した(図 23)。これらの結果より 3 遺伝子は細胞増殖を負に制御 すると考えられた。

T細胞はレセプターである CD137 を発現している。また、DNA ダメージ により骨芽細胞や U2OS に CD137 は誘導されることが分かった(図 24)。ま た、ベースのレベルにおいて、これらの細胞において CD137 が発現しているこ とが分かった。これらの細胞が腫瘍細胞への CD137L 逆向きシグナルに関与している可能性がある。

次に我々は Cd1371の細胞増殖抑制効果を in vivo で調べた。Cd1371 もしく は Mock を発現する LM8 を作成し(図 25)、CH3 のマウスの皮下に注射した。 その結果、Cd137Lを発現する LM8 は Mock を発現する細胞と比較して細胞増 殖が減少した(図 26)。

3-5. CD137L 逆向きシグナルと正方向シグナルの骨肉腫細胞における役割

CD137Lはリガンドであるが、CD137と結合することで逆向きのシグナルが流 れることが知られている[32]。この逆向きシグナルは増殖や分化など様々な細 胞応答を引き起こす。CD137Lの働きをより詳細に調べるために、CD137 もく は CD137Lの細胞外ドメインとヒト IgG の Fc 領域の融合タンパクを作成した

(CD137-Fc、CD137L-Fc)。細胞免疫染色を行い、融合タンパクと細胞膜上のCD137L、CD137 との結合を確認した(図 27)。

CD137-Fcの細胞増殖への影響を調べるために、CD137-Fcもしくは Mock-Fc をプレートに固着させて、SaOS2 もしくは *p53*^{+/+}骨芽細胞初代培養を培養し た。CD137-Fcの群では細胞増殖が減少し、CD137L 逆向きシグナルは細胞増殖 を負に制御すると考えられた(図 28、29)。

CD137のリガンド/レセプターシステムは抗原提示細胞がT細胞を刺激し て活性化する際に用いられている事が報告されている[33]。CD137L-FcがT細 胞へ持つ影響を調べるために、C3H/HeJマウスの脾臓から樹立した CD4 陽性も しくは CD8 陽性T細胞を用いて IL2 産生能と増殖能のアッセイを行った。 CD137L-Fc と CD3 を固着させたプレートで CD4 陽性もしくは CD8 陽性 T細胞 を培養すると Mock と比較して、IL2 産生能や増殖能が有意に増加した(図 30)。

最後に Cd1371-Fc が LM8 細胞の増殖能に対してどのように作用するかを in vivo のモデルを用いて検証した。6 週齢の C3H/HeJ マウスの左背部皮下に 1× 10⁶ の LM8 cells を移植した。腫瘍移植後、約7日目に 0.5cm に腫瘍が達した後より、Cd1371-Fc (0.2ml、50ug) もしくは Mock-Fc (0.2ml、50ug) を3日間連続で投与した。その結果、19日目には Cd1371-Fc の群で Mock-Fc と比較して有意に腫瘍径が小さく、腫瘍増殖抑制効果が見られた(図 31)。また、Cd137-Fc の投与では細胞増殖抑制効果は見られなかった。

第4章 考察

我々は骨において p53 依存的に発現が誘導される遺伝子を RNA sequence を用 いて網羅的に探索した。まず、骨において発現が変化する遺伝子群の全体像を 明らかにし、p53 によって制御されるパスウェイを同定した。さらに骨におい て発現誘導される新規遺伝子群について骨肉腫細胞株を用いてスクリーニング を行い、p53 に直接制御される遺伝子として *CD137L、CDC42BPG、FST*を同定 した。また、p53 により骨特異的に誘導される CD137Lに着目し、細胞増殖能 の低下と免疫応答を増強する作用を明らかにした。

p53に誘導される遺伝子群に対してパスウェイ解析を行うとアポトーシス 関連の遺伝子が集積していた。これまでに多くの報告で、p53は細胞周期停止 とアポトーシス誘導を介して腫瘍抑制的に働くと言われており、過去の報告に 矛盾しない結果であった。我々の結果からは骨や骨芽細胞おいても p53 は DNA ダメージに反応してアポトーシスと細胞増殖停止を引き起こすことで腫瘍抑制 的に働いていると推察された。さらに、パスウェイ解析では「Cytokinecytokine receptor interaction pathway」に関連する遺伝子が集積しており、このパ スウェイが p53 の下流にあり腫瘍抑制的に働く可能性が示唆された(図 32)。 このパスウェイに含まれる遺伝子としては *Inhbb、Tnfrsf10b、Gdf5、Eda2r、 Fas、Cd1371*が含まれていた。この中で、*Tnfrsf10b、Eda2r、Fas*は p53の標的 遺伝子かつ腫瘍抑制的に働くことが報告されている[34、35、36]。

*CD137L*は骨で最も発現が誘導される p53 標的遺伝子であることを新たに 発見した。*CD137L*は別名で *Tumour necrosis factor superfamily* 9 (*TNFSF*9) や *4-1BBL*としても知られており TNF superfamily の一員である。CD137 のレセプ

ターリガンドシステムは抗原提示細胞による共刺激を通して、T細胞を活性化 することが知られている[37、38]。T細胞の活性化は抗腫瘍免疫に重要である ことが知られており、免疫療法は臨床的に有用な治療法であることが証明され きている[39]。T細胞の活性化には主要な2経路の活性化が重要ある[38]。一つ は主要組織適合複合体(major histocompatibility complex(MHC) class I)とT 細胞受容体との結合、もう一つは共刺激/共抑制分子同士の結合である。T細胞 活性化の程度は共刺激分子と共抑制分子のバランスによって決まる[40]。p53は T細胞応答をMHC class I分子の誘導とPDL1の抑制を通じて制御している[41、 42]。我々は今回初めて、p53が共刺激分子を制御することを明らかにした。 我々の報告は免疫系の制御における p53の重要性を強調するものである。

CD137Lは2つのメカニズムにより骨肉腫発生を抑制している可能性があ る(図33)。一つ目は逆向き CD137Lシグナルによる増殖抑制効果である。 我々の研究では逆向き CD137Lシグナルは骨芽細胞や SaOS2 に対して細胞増殖 抑制効果を示した。逆向き CD137Lシグナルは内因性のアポトーシス経路を通 じたアポトーシスや、細胞周期停止効果を示したと報告されている[43]。しか し、p53 は多くの遺伝子を誘導して細胞増殖を負に抑制することが知られてい るが、本研究の結果からは CD137L の逆向きシグナルによる細胞増殖抑制効果 は弱く、限定的であると考えられた。

もう一つの CD137L による腫瘍抑制メカニズムはT細胞の活性化による可能性が考えられた。Cd1371 融合タンパクは in vitro で T細胞を活性化したが、 このデータは CD137L の正方向のシグナルは骨肉腫の微小環境を改変して T細胞活性化を通じて抗腫瘍効果を発揮する可能性があることを示唆している。 CD137Lを発現する肝細胞癌細胞株をマウスに移植すると、強いT細胞応答と 長期の腫瘍免疫を惹起すると報告されており[44]、我々の仮説を支持するもの である。24 臓器の中で、Cd137lの発現は骨で最も発現が誘導されており、骨肉 腫発生における CD137L の重要性を示唆している。

しかし、骨で最も誘導されるメカニズムについては不明である。Remapデ ータベースでは骨分化因子である Runx1 と Runx3 は CD137L に結合しているこ とが示されている。また、我々の RNA sequencing のデータにおいて Runx1 と Runx3 は骨において発現が高いことが示されている。さらに、RUNX ファミリ ータンパクは DNA ダメージに応じて p53 タンパクと結合して協調的に働く事 が示されている[45、46、47]。以上より、RUNX ファミリーが Cd1371の骨にお ける誘導に関与している可能性があると考えられた。

CD137L-Fcはinvivoで抗腫瘍効果を示した。そのメカニズムについては、 さらなる検討が必要であるが、CD137L/CD137 シグナルは骨肉腫に対する新規 の治療標的となるかもしれない。抗腫瘍効果を示した理由としては、CD137L-FcによるT細胞活性化が関与している可能性がある。CD137Lは強い免疫惹起 作用を持ち、いくつかの癌腫に対して実現性のある免疫治療として注目されて いる[48]。PDL1 抗体や CTLA4 抗体は現在、骨肉腫に対しても治験が行われてお り(Clinical trial number: NCT03006848、NCT01445379)、これらの薬剤と CD137L アゴニスト抗体の併用による抗腫瘍効果の増強については、興味深い点 であり今後の課題である。しかし、CD137L アゴニスト抗体の臨床試験

(NCT00309023)において副作用として好中球減少症や自己免疫の活性化による肝障害が報告されており免疫応答の制御が課題である[49]。

今回、検討することができなかったが、ヒト骨肉腫検体における CD137L や CD137 の発現は検討するべき点である。また、CD137L の solbule form は血 清で測定可能であり[50]、検討すべき課題であると考えられる。

我々は CDC42BPG と FST を新規 p53 標的遺伝子として同定し、ともに U2OS と SaOS2 に対して増殖抑制効果を示した。増殖抑制効果以外にも、 CDC42BPG は骨肉腫細胞の浸潤や転移に関与する CDC42 を抑制することで抗 腫瘍効果を示す可能性がある[51、52]。また、p53 は CDC42/JNK1 パスウエイ の活性化を通してアポトーシスを誘導し、CDC42 は miR-29 を通して p53 を負 に制御すると報告されていることから、フィードバックループが存在している 可能性がある[53、54]。さらに、CDC42BPG もこのフィードバックループに関 与している可能性がある。また、FST は骨肉腫細胞の増殖を促進する BMP2 の 抑制を通して、抗腫瘍効果を示している可能性がある[55、56]。

第5章 結論

我々は RNA sequence 解析から骨において p53 が制御する遺伝子やパスウェイ の全体像を明らかにした。さらに、CD137L の骨肉腫発生における意義と治療 標的としての可能性を示した。本研究は骨肉腫発生における p53 の関与と p53 による免疫制御に関して新しい視点を与えるものである。

謝辞

本研究の遂行におきましてご指導をいただきました東京大学医科学研究所の松 田浩一先生に深謝いたします。また、基礎研究に従事する貴重な機会を与えて 下さり、ご指導ご鞭撻を賜った東京大学整形外科教室の田中栄先生、河野博隆 先生に深謝いたします。

引用文献

- Bieging, K.T., Mello, S.S. & Attardi, L.D. Unraveling mechanisms of p53mediated tumor suppression. *Nat. Rev. Cancer* 14, 359–370 (2014).
- 2. Brady, C.A. *et al.* Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. *Cell* **145**, 571–583 (2011).
- Maddocks, O.D. & Vousden, K.H. Metabolic regulation by p53. J. Mol. Med. 89, 237–245 (2011).
- 4. Marión, R.M. *et al.* A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. *Nature* **460**, 1149–1153 (2009).
- 5. Elyada, E. *et al.* CKIα ablation highlights a critical role for p53 in invasiveness control. *Nature* **470**, 409–413 (2011).
- Muñoz-Fontela, C., Mandinova, A., Aaronson, S.A. & Lee, S.W.
 Emerging roles of p53 and other tumor-suppressor genes in immune regulation. *Nat. Rev. Immunol.* 16, 741–750 (2016).
- Kansara, M., Teng, M.W., Smyth, M.J. & Thomas, D.M. Translational biology of osteosarcoma. *Nat. Rev. Cancer* 14, 722–735 (2014).
- 8. Chen, X. *et al.* Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. *Cell Rep.* **10**, 104–112 (2014).
- Perry, J.A. *et al.* Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. *Proc. Natl. Acad. Sci.* USA 111, 5564–5573 (2014).
- 10. Bousquet, M. *et al.* Whole exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations. *Ann. Oncol.* **27**, 738–744 (2016).
- 11. Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures

reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).

- Lorenz, S. *et al.* Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. *Oncotarget* 7, 5273–5288 (2015).
- Srivastava, S., Zou, Z.Q., Pirollo, K., Blattner, W. & Chang, E.H. Germline transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. *Nature* 348, 747–749 (1990).
- 14. Walkley, C.R. et al.

Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. *Genes. Dev.* **22**, 1662–1676 (2008).

- 15. Nikulenkov, F. *et al.* Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. *Cell Death Differ*.
 19, 1992–2002 (2012).
- 16. Donehower, L.A. *et al.* Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. *Nature* **356**, 215–221 (1992).
- Collins, M. *et al.* Benefits and adverse events in younger versus older patients receiving neoadjuvant chemotherapy for osteosarcoma: findings from a metaanalysis. *J. Clin. Oncol.* **31**, 2303–2312 (2013).
- Meyers, P.A. *et al.* Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. *Cancer* 117, 1736–1744 (2011).
- 19. Wang, X. *et al.* p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis and bone remodeling. *J. Cell Biol.* 172, 115–125 (2006).

- E.A. Komarova, R.V. *et al.* Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. *Oncogene* 23, 3265-3271 (2004).
- 21. K. Oda. *et al.* p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. *Cell* **102**, 849-862 (2000).
- Huang, D.W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools:
 Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* 37, 1–13 (2009).
- 23. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 4, 44–57 (2009) .
- Yodsurang V, Tanikawa C, Miyamoto T, Lo PHY, Hirata M, Matsuda K.
 Identification of a novel p53 target, COL17A1, that inhibits breast cancer cell
 migration and invasion. Oncotarget. 2017 Jun 9. doi: 10.18632/oncotarget.18433.
- Mori J, Tanikawa C, Funauchi Y, Lo PH, Nakamura Y, Matsuda K. Cystatin C as a p53-inducible apoptotic mediator that regulates cathepsin L activity. Cancer Sci. 2016 Mar;107(3):298-306.
- Tanikawa, C., Matsuda, K., Fukuda, S., Nakamura, Y. & Arakawa, H. p53RDL1 regulates p53-dependent apoptosis. *Nat. Cell Biol.* 5, 216–223 (2003).
- 27. Zhang, N. *et al.* Targeted and untargeted CD137L fusion proteins for the immunotherapy of experimental solid tumors. *Clin. Cancer Res.* 13, 2758–2767 (2007) .
- Madireddi, S. *et al.* Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies. *J. Exp. Med.* 211, 1433–1448 (2014).
- 29. Tanikawa, C. et al. The Transcriptional Landscape of p53 Signalling Pathway.

EBioMedicine 109-119. doi: 10.1016/j.ebiom (2017) .

- 30. Kenzelmann, B.D. *et al.* Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. *Genes Dev* 27, 1016-1031 (2013).
- 31. Fischer, M., Grossmann, P., Padi, M. & DeCaprio, J.A.
 Integration of TP53, DREAM, MMB-FOXM1 and RB
 E2F target geneanalyses identifies cell cycle gene regulatory networks. *Nucleic Acids Res* 44, 6070-6086 (2016).
- 32. Menendez, d. *et al.* Diverse stresses dramatically alter genome wide p53 binding and transactivation landscape in huma cancer cells. *Nucleic Acids Res* 41, 7286-7230 (2013).
- 33. Lippert, U. *et al.* CD137 ligand reverse signaling has multiple functions in human dendritic cells during an adaptive immune response. *Eur. J. Immunol.* 38, 1024–1032 (2008).
- 34. Nagata, S. Fas-induced apoptosis, and diseases caused by its abnormality. *Genes Cells* 1, 873–879 (1996).
- 35. Wu, G.S., Kim, K. & el-Deiry, W.S. KILLER/DR5, a novel DNA-damage inducible death receptor gene, links the p53-tumor suppressor to caspase activation and apoptotic death. *Adv. Exp. Med. Bio.* 465, 143–151 (2000).
- 36. Tanikawa, C. *et al.* XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway. *Oncogene* **28**, 3081–3092 (2009) .
- 37. Ju, S. *et al.* A novel approach to induce human DCs from monocytes by triggering
 4-1BBL reverse signaling. *Int. Immunol.* 21, 1135–1144 (2009).

- Wen, T., Bukczynski, J. & Watts, T.H. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. *J. Immunol.* 168, 4897–4906 (2002) .
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. *Nat. Rev. Cancer* 12, 252–264 (2012) .
- 40. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. *Nat. Rev. Immunol.* **8**, 467–477 (2008).
- 41. Wang, B., Niu, D., Lai, L. & Ren, E.C. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. *Nat. Commun.* 4, 2359 (2013).
- 42. Cortez, M.A. *et al.* PDL1 Regulation by p53 via miR-34. *J. Natl. Cancer Inst.* 108, doi: 10.1093/jnci/djv303 (2016).
- 43. Qian, Y. et al. CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med. Oncol. 32, 44 (2015).
- 44. Li, G. *et al.* Triple expression of B7-1, B7-2 and 4-1BBL enhanced antitumor immune response against mouse H22 hepatocellular carcinoma. *J. Cancer Res. Clin. Oncol.* 137, 695–703 (2011).
- 45. Smith, N. *et al.* Overlapping Expression of Runx1 (Cbfa2) and Runx2 (Cbfa1)
 Transcription Factors Supports Cooperative Induction of Skeletal Development. J *Cell Physiol.* 203, 133-143 (2005) .
- Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., Groner, Y. Loss of Osteoblast Runx3 Produces Severe Congenital Osteopenia. *Mol Cell Biol.* 35, 1097-1109 (2015).

- 47. Ozaki, T., Nakagawara, A., Nagase, H. RUNX_Family Participates in the Regulation of p53-Dependent DNA Damage Response. *Int J Genomics*. 271347. doi: 10.1155/2013/271347. (2013) .
- Melero, I. *et al.* Evolving synergistic combinations of targeted immunotherapies to combat cancer. *Nat. Rev. Cancer* 15, 457–472 (2015) .
- Bartkowiak, T., Curran, M.A. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. *Front Oncol* 8, 117 (2015).
- 50. Scholl, N. *et al.* The role of soluble and cell-surface expressed 4-1BB ligand in patients with malignant hemopoietic disorders. *Leuk Lymphoma* **50**, 427-36 (2009).
- 51. Yui, Y. *et al.* Mesenchymal mode of migration participates in pulmonary metastasis of mouse osteosarcoma LM8. *Clin. Exp. Metastasis* **27**, 619–630 (2010).
- 52. Ng, Y., Tan, I., Lim, L. & Leung, T. Expression of the human myotonic dystrophy kinase-related Cdc42-binding kinase gamma is regulated by promoter DNA methylation and Sp1 binding. *J. Biol. Chem.* 279, 34156–34164 (2004).
- Thomas, A., Giesler, T. & White, E. p53 mediates Bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. *Oncogene*. 19, 5259-5269 (2000).
- 54. Park S.Y., Lee J.H., Ha M., Nam J.W. & Kim V.N. miR-29 miRNAs activates p53 by targeting p85a and CDC42. *Nat Struct Mol Biol.* **16**, 23-29 (2009).
- Umulis, D., O'Connor, M.B. & Blair, S.S. The extracellular regulation of bone morphogenetic protein signaling. *Development* 136, 3715–3728 (2009).
- Luo, X. *et al.* Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. *Lab. Investig. J. Tech. Methods Pathol.* 88, 1264–1277 (2008).

Prevalence of TP53 mutations by tumor site

(C) IARC TP53 Mutation Database, R13 release, November 2008

図1、原発巣別のp53変異の頻度 IARC TP53 Mutation Database (2008)から引用

図2、骨肉腫におけるp53、およびその他の変異の頻度 文献8(Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 10, 104–112)から引用

図3、p53欠損マウスにおける悪性腫瘍の頻度

Donehower LA et al, 20 years studying p53 functions in genetically engineered mice. Nature Reviews Cancer 9, 831-841から引用

図4、解析の全体像

RNA sequenceの結果より23813遺伝子の発現情報が得られた。このうち69遺伝 子を放射線照射によりp53依存的に誘導される遺伝子として同定した。骨肉腫 細胞株を用いた2次スクリーニングでCD137L、CDC42BPG、FSTの3遺伝子が 新規のp53標的遺伝子であることが分かった。CD137Lは24臓器の中で骨特異的 に誘導された。

図6、U2OSを用いたqPCR解析

U2OSに対してsiRNAを導入した24時間後に、ADR (2 µg/ml, 2 h)を投与した。 投与36時間後に、cDNAを回収してqPCRを行った。EGFPに対するsiRNAはコ ントロールとして用いた。β-actinを発現のノーマライゼーションに用いた。 エラーバーは標準偏差を示している。

図7、Cd137l、Cdc42bpg、FstにおけるRNA sequenceデー

***P* <0.001, Student's t-test.

図8、U2OSを用いたqPCR解析

U2OSに対してADR (2 μ g/ml, 2 h)を投与した。投与36時間後に、cDNAを回収 してqPCRを行った。 β -actinは発現のノーマライゼーションに用いた。エラー バーは標準偏差を示している。

図9、*p53***^{+/+}マウスより樹立した骨芽細胞初代培養を用いたqPCR解析** *p53*^{+/+} 骨芽細胞初代培養にADR (0 – 2 μg/ml, 2 h)を投与して36時間後に qPCR解析を行った。 β-actinは発現のノーマライゼーションに用いた。エ ラーバーは標準偏差を示している。

図10、*p53*^{+/+}もしくは*p53*^{-/-}マウスより樹立した骨芽細胞初代培養を用いたqPCR解析 *p53*+/+ もしくは*p53*-/- 骨芽細胞初代培養にADR (2 µg/ml, 2 h)を投与して36時間後に qPCR解析を行った。β-actinは発現のノーマライゼーションに用いた。エラーバーは 標準偏差を示している。***P* <0.001, Student's t-test.

図11、SaOS2を用いたqPCR解析

SaOS2にAdeno virusを用いてp53をは発現させ36時間後にqPCR解析を行った。 βactinは発現のノーマライゼーションに用いた。エラーバーは標準偏差を示している。 ***P* <0.001, Student's t-test.

Human

а

Consensus	RRRCWWGYYYRRRCWWGYYY
CD137L-BS-A	AcACTAGCCagtAACATtaCT
CD137L-BS-B	GGGCAcGgTaAcGCATGaCT

CD137L-BS-AB

BS-A BS-B

Exon1

Mouse

Consensus	RRRCWWGYYYRRRCWWGYYY
Cd137I-BS	GtGCATGCaCAtACATGCag

b

Human

Consensus	RRRCWWGYYYRRRCWWGYYY
CDC42BPG-BS-A	AGGCATGagCcAcCATGCCC
CDC42BPG-BS-B	AtGCcAGTCCcAGcCcTGCCC
CDC42BPG-BS-C	ctGCTTGTCTctACTTGTCC

Exon2

Mouse

1kb

Exon3

Consensus	RRRCWWGYYYRRRCWWGYYY
Cdc42bpg-BS	cAACTTGTCCctGctCcTGCCC

CDC42BPG-AB

С

Human		Mouse		
Consensus	RRRCWWGYYYRRRCWWGYYY			
FST-BS1	GAACcAGTaTtGACcTGTgT	Consensus	RRRCWWGYYYRRRCWWGYYY	
FST-BS2	GGACcTGCCCAGACATGTCC	Fst-BS	cGACATGTaaAAACATcCgT	
FST-BS1	FST-BS 1kb	2	Fst-BS	1kb
••••	╼╶ _{──} ╋-╋-╋-╋-┥╸╸╸╸		╸┝ ╴╸ ╋╌╋╌╋┥	 ∎- ∙
Exon1	Exon2		Exon1 Exon2	

図12、p53結合領域の位置 ヒト(左)、マウス(右)。CD137L(a)、CDC42BPG(b)、FST(c)。

図13、(a)(b)(c)SaOSを用いたレポーターアッセイの結果 ヒト(左)、マウス(右)。CD137L(a)、CDC42BPG(b)、FST(c)。*P <0.05, *P <0.001, Student's t-test。

b

С

b

図14、(a)(b)(c) CHIP アッセイの結果

CD137L(a)。*CDC42BPG*(BS-C)(b)、*FST*(BS-1, BS2)(c)。SaOS2に対して Ad-LacZ (lane 1)、Ad-p53 (lane 2-4)を感染させた。DNAタンパク複合体を anti-p53 antibody (lanes 1 and 2)で免疫沈降後にqPCRを行った。Input chromatin は破砕したクロマチンの1%を免疫沈降前に採取した. ネガティブ コントロールとしてanti-IgG antibody (lane 3) と抗体なし(lane 4) を用いた。 エラーバーは標準偏差を示している (n = 3)。

図15、24臓器におけるCd137lの誘導

サンプルは4グループに分類した: (K) *p53^{-/-}* マウス放射線照射なし、(W) *p53^{+/+}* マウス放射線照射なし、(KX) *p53^{-/-}* マウス放射線照射あり、(WX) *p53^{+/+}* マウス放射線照射あり (n = 3 per group)。Median FPKM value of WX / maximum FPKM value of the median FPKM valueK, KX or Wを 24臓器に対して計算した。

図16、U2OSを用いたWestern blotting

U2OSに対してsiRNAを導入した24時間後に、ADR (2 µg/ml, 2 h)を投与した。 投与36時間後に、タンパクを回収してWBを行った。EGFPに対するsiRNA はコントロールとして用いた。

図17、組織免疫染色

Cd1371の免疫組織染色をp53+/+ もしくはp53-/-マウス頭蓋骨より採取したK、KX、W、WXの4群に対して行った。各群3組織の中から代表的な組織像を示した。 スケールバー(左)=50 μm,スケールバー(右)=20 μm. 矢印は骨芽細胞を示している。

図18、様々な細胞株におけるCD137Lの誘導

マイクロアレイでのMCF10A、H1299におけるCD137Lの誘導。また、H1299においてAdeno virusを用いてp53の発現を誘導し、Cd137Lの発現を調べた。

p53 binding regions in the *CD137L* gene (+/- 1kb) Ch19: 6530010-6536939 (GRCh37/hg19)

1	chr19	Promoter	6530921	6531665
2	chr19	Intron1	6532281	6532324
3	chr19	Intron2	6534452	6534634
4	chr19	Downstream	6536671	6536767

図19, RemapデータベースによるCD137Lの結合領域

図20、*p53*^{+/+}骨芽細胞初代培養と*p53*^{-/-}骨芽細胞初代培養を用いた増殖能の評価 *p53*^{+/+}骨芽細胞初代培養細胞や*p53*^{-/-}骨芽細胞初代培養細胞を培養し、48時間後に細 胞増殖の評価した。エラーバーは標準偏差を示している (n = 3)。**P* <0.05, Student's t-test.

p53+/+

図21、マウス骨組織のKi67 染色

p53^{+/+} or p53^{-/-} マウス頭蓋骨より採取したK、KX、W、WXの4群に対してKi67 染色を行った。各群3組織の中から代表的な組織像を示した。スケールバー (左) = 50 μm, スケールバー(右) = 20 μm.。

図22、SaOS2、U2OS、LM8を用いたコロニー形成アッセイ CD137LもしくはMockを導入して、細胞数をカウントした。また、同様の 系でタンパクを回収してWBを行い、CD137L抗体でブロットした。エラー バーは標準偏差を示している (n = 3)。**P < 0.001, Student's t-test. β -actin (U2OS and SaOS2)と α -tubulin antibody (LM8)をコントロールとして用いた。

図23、SaOS2、U2OS、LM8を用いたコロニー形成アッセイ CD137LもしくはMockを導入して、細胞数をカウントした。また、同様の系で タンパクを回収してWBを行い、CDC42BPG抗体、FST抗体でブロットした。 エラーバーは標準偏差を示している(n=3)。***P* <0.001, Student's t-test.

図24、骨芽細胞初代培養とU2OSを用いたqPCR解析

骨芽細胞初代培養(a)とU2OS(b)に対してADR (2 μ g/ml for 2 h)を投与した。投与36 時間後に、cDNAを回収してqPCRを行った。β-actinは発現のノーマライゼーションに用いた。エラーバーは標準偏差を示している。

図25、Western blotting(a)と細胞免疫染色(b) CD137L安定発現細胞株を樹立し、CD137Lの発現を確認した。

図26、ゼノグラフトを用いた増殖能の評価

Cd1371 (n =3) もしくはMock (n = 3) を発現する安定発現細胞株をC3Hマウスの両背部に移植した。それぞれのマウスは2匹ずつ使用した。体積は2、3日毎に測定した。**P* <0.05, Wilcoxon rank-sum test。

図27、Fc融合タンパクの設計と結合能の確認

(a) 融合タンパクのシェーマ。(b)293Tに発現ベクターを投与してCD137LもしくはCD137を 過剰発現後に、Fc融合タンパクを投与してFc融合タンパクの結合能を確認した。

図28、SaOS2に対するCD137-Fcの細胞増殖抑制効果

SaOS2をCD137-Fc(10から20µg/ml) もしくは Mock-Fcと共に 培養した。48時 間後に細胞増殖を評価した。エラーバーは標準偏差を示している(n=3) *P< 0.05, **P<0.001, Student's t-test。

図29、*p53*^{+/+}**骨芽細胞初代培養に対するCD137-Fcの細胞増殖抑制効果** *p53*^{+/+} 骨芽細胞初代培養をCd137-Fc(40 µg/ml)もしくはMock-Fc投与下で培養した。48時間後に細胞増殖を評価した。エラーバーは標準偏差を示している(n = 3)。 **P* < 0.05, Student's t-test。

Days after implantation

図31、ゼノグラフトモデルを用いたCd137l-Fcの増殖抑制効果

C3H/HeJマウス (each group, n = 3)の左背部皮下に1 × 10⁶ LM8を含むPBSを注射した。腫瘍が0.5cmの大きさに達した後にCd1371-Fc もしくはMock-Fcを3日間腹腔内に投与した。腫瘍径を2、3日毎に測定した。*P < 0.05, Wilcoxon rank-sum test。

図32、CD137L機能のシェーマ

p53によって制御されるパスウェイと遺伝子機能のシェーマ

図33、逆方向と正方向CD137Lシグナルの機能

Table 1. Distribution of Turnors in Affected Germline TP53 Mutation Carriers						
Tumor	No. of Turnors	No. of Patients	% of Affected Mutation Carriers	Mean/Median Age at Turnor Onset, Years (range)*		
		In All Patients (N =	322; 213†, 109‡)			
Breast carcinoma	172 (172†; 0‡)	127 (127†)	60 †	35/33 (20-69†)		
Soft tissue sarcoma	104 (54†; 50‡)	86 (46†; 40‡)	27	29/31 (0.5-67†; 0.5-70‡)		
Osteosarcoma	53 (24†; 29‡)	50 (23†; 27‡)	16	18/16 (8-55†; 5-54‡)		
CNS tumor	43 (25†; 18‡)	42 (25†; 17‡)	13	15/11 (0.3-67†; 1-33‡)		
Adrenocortical carcinoma	43 (30†; 13‡)	42 (29†; 13‡)	13	6/1 (0.5-41†; 0.7-19‡)		
Lung cancer	18 (8†; 10‡)	18 (8†; 10‡)	6	42/44 (14-58†; 37-54‡)		
Leukemia	16 (9†; 7‡)	14 (7†; 7‡)	4	14/12 (6-35†; 2-16‡)		
Prostate cancer	4 (4‡)	4 (4‡)	4‡	63/62 (57-71‡)		
Colorectal cancer	12 (5†; 7‡)	11 (5†; 6‡)	3	40/40 (21-74†; 27-52‡)		
Renal cancer	11 (4†; 7‡)	9 (3†; 6‡)	3	51/49 (34-68†; 41-70‡)		
Melanoma	11 (9†; 2‡)	8 (6†; 2‡)	2	40/43 (25-65†; 15-55‡)		
Lymphoma	7 (31; 41)	7 (3†; 4‡)	2	18/13 (11-42†; 2-32‡)		
Stornach carcinoma	7 (31; 41)	7 (3†; 4‡)	2	41/44 (44-581; 17-541)		
Pancreas carcinoma	6 (21; 41)	6 (2T; 41)	2	46/39 (32-641; 37-661)		
Head and neck cancer	6 (11; 51)	6 (11; 5‡)	2	41/42 (21T; 30-594)		
Skin cancer	6 (4T; 21)	5 (3T; 2‡)	2	31/31 (29-39T; 19-ND‡)		
Chondrosarcoma	5 (21; 31)	5 (21; 31)	2	32/31 (21-5/1; 19-334)		
Nashrahlastama	3 (31)	3 (31)	11	43/30 (20-091)		
Thuroid carcinoma	3 (01, 34)	3 (01, 31)	0.9	3/2 (1-0+) 42/40 (25 50+)		
Endometrial carcinoma	3 (31, 047	3 (31, 0+/	0.9	42/40 (30-001) EA/EA (31,77+)		
Testis choriocarcinoma	2 (21)	2 (21)	0.91	17/17 (17+)		
Econhoneol concer	2 (0+: 2+)	2 (0+: 2+)	0.5+	eg/eg (50.67±)		
Rladder carcinoma	2 (11: 11)	2 (11: 11)	0.6	49/49 (66†: 31±)		
Cervical carcinoma	1 (1†)	1 (1†)	0.5†	NDt		
Gestational choriocarcinoma	1 (1†)	1 (1†)	0.5†	30/30 (30†)		
Neuroblastoma	1 (11; 0‡)	1 (1†; 0‡)	0.3	0.5/0.5 (0.5†)		
Mesothelioma	1 (11; 0‡)	1 (1†; 0‡)	0.3	52/52 (52†)		
Myeloma	1 (0†; 1‡)	1 (0†; 1‡)	0.3	43/43 (43‡)		
Thymoma	1 (11; 0‡)	1 (11; 01)	0.3	33/33 (33†)		
Appendix carcinoma	1 (11; 01)	1 (1†; 0‡)	0.3	45/45 (45†)		
Anal cancer	1 (0†; 1‡)	1 (0†; 1‡)	0.3	50/50 (50‡)		
Not determined	4 (1†; 3‡)	4 (1†; 3‡)		(46†; 33-49‡)		
		In Children (n =	132; 70†, 62‡)			
Osteosarcoma	40 (20†; 20‡)	39 (19†; 20‡)	30	14/14 (8-18†; 5-18‡)		
Adrenocortical carcinoma	37 (25†; 12‡)	36 (24†; 12‡)	27	2/1 (0.5-11†; 0.7-17‡)		
CNS turnor	34 (19†; 15‡)	34 (19†; 15‡)	26	8/9 (0.3-18†; 1-18‡)		
Soft tissue sarcoma	33 (13†; 21‡)	31 (12†; 19‡)	23	5/2 (0.5-17†; 0.5-16‡)		
Leukemia	13 (7†; 6‡)	12 (6†; 6‡)	9	11/12 (6-17†; 2-16‡)		
Lymphoma	4 (21; 21)	4 (2†; 2‡)	3	9/10 (11-13†; 2-9‡)		
Nephroblastoma	3 (01; 31)	3 (0†; 3‡)	2	3/2 (1-6‡)		
Testis choriocarcinoma	1 (1‡)	1 (1‡)	2‡	17/17 (17‡)		
Neuroblastoma	1 (11; 0‡)	1 (11; 01)	0.8	0.5/0.5 (0.5†)		
Lung cancer	1 (11; 04)	1 (11; 01)	0.8	14/14 (141)		
Stomach carcinoma	1101, 147	1 (01, 14)	0.8	1//1/ (1/4)		
		In Adults (n = 2	19; 160T, 59‡/			
Breast carcinoma	172 (172†; 0‡)	127 (127†)	79†	35/33 (20-69†)		
Soft tissue sarcoma	70 (41†; 29‡)	59 (34†; 25‡)	27	41/42 (21-67†; 22-70‡)		
Lung cancer	17 (7†; 10‡)	17 (7†; 10‡)	8	44/45 (22-58†; 37-54‡)		
Prostate cancer	4 (4‡)	4 (4‡)	7‡	63/62 (57-71‡)		
Osteosarcoma	13 (41; 91)	13 (41; 9‡)	6	31/28 (33-55†; 19-54‡)		
Colorectal cancer	12 (51; 71)	11 (51; 6‡)	5	40/40 (21-74†; 27-52‡)		
CNS tumor	0 (6+: 2+)	9 (31, 61)	4	51/49134-681; 41-704) 20/22 (20 674: 20 224)		
CHO LUTIO	9 (61, 34)	looptinued on fr		38/33 (20-671; 30-331)		
		sonanded of it	weating helter			

表1、Li-Fraumeni症候群患者における癌腫の頻度

Bougeard G et al, Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol. 2015 Jul 20;33(21):2345-52.から引用

		Forward	Reverse
Quantitative real- time PCR	human CD137L	TCAGGCTCCGTTTCACTTG	CAGGTCCACGGTCAAAGC
	human CD137	CCTGAAGACCAAGGAGTGGA	GCAAAGCTGATTCCAAGAGAA
	human CDC42BPG	AGATGCTGAAGAGGGCTGAG	CCCCTTTCACGAGCACAT
	human FST	TCTGCCAGTTCATGGAGGA	TCCTTGCTCAGTTCGGTCTT
	mouse Cd1371	CGCCAAGCTACTGGCTAAAA	CGTACCTCAGACCTTGAGATAGGT
	mouse Cd137	TGAGCTTCTCTCCCAGTACCA	AGCAGCAAAGCCGATGTC
	mouse Cdc42bpg	GCCATTTGTTGGCTTCACTT	GGGCAGCCATTAGCTCTG
	mouse Fst	AAGCATTCTGGATCTTGCAACT	GATAGGAAAGCTGTAGTCCTGGTC
p53 binding site	human CD137L-BS-AB	AAAGGTACCTCCTTCAACACTAGCCAGTAACA	AAAAAGCTTTGGAACTACAGGCACATACCA
	mouse Cd1371-BS	AAAGGTACCTCAGTGGCTGAGAGCATTTG	AAAAAGCTTTGCTCTTAACTGCTGAACCA
	human CDC42BPG-BS-AB	AAAGGTACCCACCCAGGCTGATCTTGAAC	AAAAAGCTTTGTGTGACCTCAGGCAAGTC
	human CDC42BPG-BS-C	AAAGGTACCTGCCTGTGTTGTTGTCACC	AAAAAGCTTGGACAGGCTGCCTAATCCT
	mouse Cdc42bpg-BS	AAAGGTACCTTCTCCCTGCCTGCCTCT	AAAAAGCTTCCTGCAGAAATATCAGAGGTGA
	human FST-BS	AAACTCGAGAACAAAAATGAAAGGCGACA	AAAAGATCTGCAGCTTGGTGTTTGTTTAGTG
	mouse Fst-BS	AAAGGTACCCCTGCAGATTCATATTCATTCTC	AAAAAGCTTTTGCATTGACTTTTACTAGACTGTTT
Expression vector	human CD137L	AAAGAATTCTCTCGTCATGGAATACGCC	AAACTCGAGTTCCGACCTCGGTGAAGG
	mouse Cd1371	AAAGAATTCACCGTGGTAATGGACCAGCAC	AAACTCGAGTTCCCATGGGTTGTCGGGTTT
	human CDC42BPG	AAAGGTACCATGGAGCGGCGGCTGCGCGCG	AAAAGATCTAGGAGAGCTCTCCAATTC
	human FST317	AAAGGTACCCCCAGGATGGTCCGC	AAACTCGAGGTTGCAAGATCCGGA
	human FST344	AAAGGTACCCCCAGGATGGTCCGC	AAACTCGAGCCACTCTAGAATAGA
Reconbinant protein	nhuman CD137	AAAGGTACCCAGGATCCTTGTAGTAACTGC	AAAGAGCTCGATCTGCGGAGAGTGTCCTGG
	mouse Cd137	AAAGGTACCCAGAACTCCTGTGATAACTGT	AAAGAGCTCAGCTGCTCCAGTGGTCTTCTT
	mouse Cd1371	AAAGAATTCACCGAGCCTCGGCCAGCGCTC	AAACTCGAGTCATTCCCATGGGTTGTCGGG
Genotyping	mouse p53	GTTATGCATCCATACAGTACA	CCGCAGGATTTACAGACACC
CHIP assay	CD137L	TCCTTCAACACTAGCCAG	TCTCAGCACTGTGATGCC
	CDC42BPG	GGCCCTCTGTTGACAATCTC	ACAGGCTGCCTAATCCTCTG
	FST	GATGCCCACAGAAAGCCTAT	TGTCTGCTCCAAATCAGCAC
siRNA		Sence	Antisense
	siP53	GACUCCAGUGGUAAUCUACTT	AGUAGAUUACCACUGGAGUCTT
	siEGFP	GCAGCACGACUUCUUCAAGT	CUUGAAGAAGUCGUGCUGC

表2、プライマーの配列

gene			FPKM value			status
-	WX	KX	W	K	WX/max	
Aen	35.15	7.68	8.84	7.32	3.98	R
AI414108	1.57	0.36	0.76	0.51	2.07	М
Ak1	79.91	32.19	32.61	33.52	2.38	R
Ano3	1.37	0.05	0.03	0.06	24.64	N
Anxa8	36.83	16.46	15 49	14.13	2.24	N
Ass1	11.15	3 46	2.28	2.63	3.22	N
Atn1a2	13 71	6.47	3 39	4.68	2.12	N
D20120U22Dil	9.96	4.11	4.01	2.00	2.12	M
D2501201125Kik	120.60	4.11	50.40	12 62	2.10	D
Dax Dho2	16.05	42.14	5.52	43.03	2.17	R D
BDC3	10.85	4.80	5.52	4.87	3.05	K
Cbin2	1.27	0.41	0.63	0.50	2.02	N
Cengl	/5.24	14.88	17.13	15.05	4.39	R
Cd80	2.00	0.64	0.51	0.41	3.14	N
Cd1371	1.76	0.81	0.72	0.81	2.17	N
Cdc42bpg	8.31	4.05	3.97	3.88	2.05	Ν
Cdkn1a	343.52	66.17	74.00	64.30	4.64	R
Celf5	5.47	0.94	1.68	1.14	3.25	Ν
Ces2e	2.25	0.63	0.63	0.54	3.57	М
Cox6b2	48.06	8.77	7.36	8.15	5.48	Ν
Cpt1c	27.30	9.44	11.19	10.20	2.44	R
Dcxr	41.06	6.28	6.28	5.57	6.54	Ν
Dynlrb2	1.31	0.17	0.09	0.62	2.13	Ν
Eda2r	5.71	0.13	0.25	0.22	22.60	R
Ephx1	73.75	6.92	9.36	8.42	7.88	Ν
Exoc4	17.97	4.26	5.22	4.05	3.44	Ν
Fam212b	8.10	0.53	1.46	1.22	5.56	Ν
Fas	9.32	4.00	4.37	3.99	2.13	R
Foxi1	1.72	0.31	0.54	0.72	2.38	Ν
Fst	6.16	2.13	2.01	2.30	2.67	Ν
Gas6	364.76	106.60	122.06	121.24	2.99	Ν
Gdf15	3.07	0.27	0.25	0.49	6.31	R
Gdf5	1.52	0.41	0.53	0.71	2.14	N
Gfan	13 30	1 35	3.26	2 14	4.08	N
Gm11974	19.30	7 27	8.98	8 32	2 19	M
Gria3	9.27	2.07	2.76	2 47	3 35	N
Inhhh	4.18	1.23	1.90	1.65	2 20	N
L vve1	11.05	3 20	3 49	4.15	2.20	N
Mdm2	32.38	15.10	15 44	14 19	2.10	R
Momt	19.86	6.86	6.28	6 37	2.10	R
Mran	4 22	0.83	0.20	1.25	3 38	N
Dern	9.18	2.65	3.54	3.01	2.17	D
Dhlda3	00.31	18.02	23.24	10.30	2.17	P
I muas Dmain1	90.31	2.02	23.24	19.30	2.02	D
Pillapi	0.7 <i>3</i> 4.70	2.00	2.39	1.80	3.03	R D
FUIK Dala2	4.79	1.01	1.09	1.07	2.33	N
Pqic3	27.80	12.27	12.74	10.70	2.18	N
Psrc1	29.63	7.09	5.53	4.//	4.18	R
Ptprv	16.15	7.26	1.25	7.43	2.17	K
Pvt1	2.63	1.17	1.00	0.89	2.25	K
Rnf169	6.01	2.72	2.85	2.91	2.07	N
Rprm	3.03	0.67	0.92	0.84	3.29	R
Rps2/I	222.32	95.94	103.78	96.33	2.14	R
Serpina3n	2.53	0.94	0.83	0.94	2.69	М
Sesn2	17.52	3.66	4.21	3.62	4.16	R
Slc19a2	7.75	1.19	1.73	1.35	4.49	R
Slc2a9	2.73	0.64	0.61	0.65	4.23	R
Slco1c1	3.56	0.46	0.77	0.84	4.25	Ν
Svop	1.44	0.01	0.39	0.23	3.67	Ν
Syna	1.24	0.48	0.31	0.33	2.61	М
Tnfrsf10b	9.93	2.95	3.04	2.91	3.27	R
Trim7	7.52	1.62	1.27	1.74	4.33	Ν
Trp53inp1	25.23	5.36	5.87	4.88	4.30	R
Upk1b	2.42	0.27	0.19	0.38	6.43	Ν
Vnn1	1.67	0.44	0.38	0.55	3.04	Ν
Zfp365	5.47	1.72	1.91	1.55	2.87	R
Zmat3	15.04	3.06	3.82	3.15	3.94	R
1700003M07Rik	1.32	0.37	0.59	0.51	2.25	М
1700007K13Rik	3.76	0.05	0.29	0.23	13.01	М
2010001M06Rik	10.09	1.03	2.00	1.84	5.06	М
9030617003Rik	11.29	2.76	3.29	2.68	3.43	М

FPKM, fragments per kilobase of exon per million mapped fragments WX: irradiated $p53^{+/+}$ group, KX: irradiated $p53^{-/-}$ mice group, W: non-irradiated $p53^{+/+}$ group, K: non-irradiated $p53^{-/-}$ group. WX/max is median of WX / maximum value in median K, median KX or median W.

R, reported gene as p53 target, N, non-reported gene as p53 target, M, mouse genes which don't have human homologu.

表3、p53依存的に発現が誘導される遺伝子群

gene			FPKM	value		status	gene]	FPKM va	lue		status
	WX	KX	W	Κ	WX/max			WX	KX	W	Κ	WX/max	
Ankle1	1.07	4.59	3.11	3.05	0.35	N	Mcm6	8.75	24.29	19.22	20.86	0.46	N
Anln	1.23	5.02	3.27	3.58	0.38	N	Melk	0.80	5.19	3.27	3.90	0.24	N
Apitd1	1.37	3.08	3.67	3.01	0.45	N	Mis18bp1	0.64	2.94	1.78	1.99	0.36	N
AstIb	1.95	10.43	7.53	7.02	0.28	N	Mk167	1.89	12.20	8.92	7.99	0.24	R
Atad2	1.34	3.99	3.02	3.06	0.44	IN N	Mins I	1.50	4.96	5.26	5.57	0.48	IN N
Aurkb	2.27	14.10	/.80	9.87	0.29	N	MXd3	1.12	/.81	0.11	6.10	0.18	IN N
BC030867	0.43	2.41	1.23	1.4/	0.35	M	Mybi2	1.00	4.55	2.89	3.23	0.35	IN N
Birco	0.25	35.08	20.28	22.11	0.31	K	Napsa	0.77	5.17	2.14	2.62	0.36	IN N
BUDI Dubib	0.75	5.99 0 42	2.14	2.42	0.35	IN N	Ncapg Neara	0.03	3.25	2.00	2.40	0.51	IN N
Bubib Cara?	2.22 5.40	8.43	5.00	5.47	0.44	IN N	Ncapg2	0.88	2.00	1.89	2.10	0.47	IN N
Cena2	5.40	26.62	10.43	17.42	0.33	IN N	Ncaph	3.19	9.88	0.55	0.85	0.49	IN N
Ccnb2	5.54	27.70	12.98	14.19	0.43	IN N	NdC80	1.20	6.96	4.64	4.76	0.26	IN N
Ccne2	0.65	1.92	1.87	1.74	0.38	IN N	Nell3	1.25	0.0/	4.58	4.60	0.27	IN N
Cd70h	0.79	1.94	2.02	2.55	0.41	IN N	NekZ	1.10	5.17	2.44	2.45	0.45	IN N
	1.01	12.18	0.23	4.27	0.24	IN N	INSII N62	0.84	2.95	1.94	1.91	0.44	IN N
Cdc43	0.20	2.05	4.09	3.22	0.41	IN N	Nui2	1.//	9.01	3.69 7.75	0.39	0.30	IN N
	0.39	2.05	1.55	1.01	0.25	IN N	Nusapi	2.54	15.80	1.75	/.80	0.33	IN N
Cdca2	0.94	4.08	2.23	2.27	0.42	N	Oip5	0.59	2.71	1.68	1.78	0.35	N
Udca3	5.72	30.56	20.39	19.34	0.30	N	Pbk	1.95	9.51	8.09	/.91	0.25	N
Udca5	0.92	5.25	2.75	3.56	0.34	N	PIKI	3.60	16.23	8.36	9.19	0.43	R
dca/	2.14	6.02	5.26	5.33	0.41	N	Pole	0.48	2.05	1.32	1.55	0.36	N
	0.67	2.43	1.99	2.03	0.33	N	Prc1	4.36	18./1	11.24	11.77	0.39	IN N
	4.13	18.56	10.12	11.95	0.41	N	Priml	2.88	9.11	6.77	8.20	0.43	N
Udkl	4.57	19.31	9.90	10.90	0.46	N	Racgap1	4.82	19.10	11.62	13.16	0.41	N
Udkn3	2.15	9.79	5.10	4.55	0.47	N	Rad51	1.71	5.20	3.51	3.68	0.49	N
Cenpe	0.75	2.77	1.54	1.70	0.49	N	Rad51ap1	1.52	5.91	3.61	4.27	0.42	N
Cenpf	0.44	2.37	1.40	1.41	0.31	N	Rrm2	4.84	22.29	17.55	16.90	0.29	N
Cenph	1.41	5.88	3.22	4.03	0.44	N	Sapcd2	0.39	1.77	1.09	1.22	0.36	N
Cenpi	0.82	2.89	1.84	1.96	0.44	N	Sgol1	0.64	3.03	1.63	1.78	0.39	N
Cenpk	1.55	4.67	3.50	3.59	0.44	Ν	Sgol2	0.70	2.88	1.54	1.65	0.45	Ν
Cenpm	1.24	5.52	4.00	4.42	0.31	Ν	Shcbp1	1.29	6.91	4.83	4.28	0.30	Ν
Cenpn	1.82	5.94	3.90	4.34	0.47	Ν	Ska1	0.33	1.77	1.25	1.29	0.27	Ν
Cenpp	1.11	4.86	3.27	3.44	0.34	Ν	Ska3	0.83	3.67	2.02	2.22	0.41	Ν
Cep55	1.49	7.26	3.43	4.40	0.44	Ν	Smc2	1.52	5.15	3.93	3.67	0.42	Ν
Chad	17.37	35.66	40.02	38.51	0.49	Ν	Snora81	0.00	1.87	1.82	1.86	0.03	Ν
Chek1	1.01	2.83	2.11	2.17	0.48	R	Spag5	1.45	5.84	3.05	3.51	0.48	Ν
Chtf18	1.12	3.31	2.29	2.76	0.49	Ν	Spc24	1.83	9.19	5.56	6.14	0.33	Ν
Ckap2l	2.82	10.37	6.32	6.79	0.45	Ν	Spc25	3.04	10.43	7.02	7.86	0.43	Ν
Clspn	0.50	2.81	1.90	2.01	0.27	Ν	Spdl1	1.01	3.29	2.19	2.38	0.46	Ν
Cybb	1.09	3.62	2.38	3.11	0.46	Ν	Tcf19	5.84	17.81	15.21	17.29	0.38	Ν
Depdc1a	0.95	4.97	2.82	3.26	0.34	Ν	Tk1	3.44	19.77	14.98	17.65	0.23	Ν
Dhfr	0.96	2.72	2.08	2.21	0.46	Ν	Top2a	4.44	21.32	12.51	13.25	0.36	Ν
Dlgap5	1.62	7.76	3.63	3.91	0.45	Ν	Tpx2	3.14	13.18	7.40	7.94	0.42	Ν
Dna2	0.59	1.54	1.21	1.38	0.49	Ν	Trip13	1.35	4.02	3.00	3.03	0.45	Ν
Dscc1	0.37	1.82	1.18	1.61	0.31	Ν	Ttk	0.94	3.56	2.54	2.31	0.41	Ν
E2f2	0.58	3.07	1.85	1.62	0.36	Ν	Uhrf1	2.56	14.19	8.68	9.82	0.29	Ν
E2f8	0.78	3.97	3.06	2.86	0.27	Ν	Vpreb3	0.13	10.44	5.31	3.64	0.04	Ν
Ect2	0.92	3.71	2.08	2.29	0.44	Ν	Wdhd1	0.99	3.73	2.69	2.61	0.38	Ν
Esco2	0.40	2.57	2.17	2.26	0.18	Ν	Xpnpep2	0.71	1.63	1.74	1.60	0.44	Ν
Fam64a	3.76	13.57	9.54	10.56	0.39	Ν	1190002F15Rik	3.01	9.45	6.67	7.00	0.45	Ν
Fbxo5	1.89	7.56	4.81	5.33	0.39	Ν	2700099C18Rik	1.47	5.75	3.68	3.59	0.41	М
Fignl1	1.17	4.28	3.18	3.46	0.37	Ν	2810417H13Rik	2.42	17.16	10.64	11.48	0.23	М
Foxm1	2.40	8.85	6.00	6.30	0.40	Ν	4930579G24Rik	1.88	4.55	3.92	4.04	0.48	M
Gins2	4.85	13.00	9.85	11.45	0.49	Ν							
Gpha2	10.17	26.16	25.66	20.35	0.50	Ν	FPKM. fragments	per kilo	base of ex	xon ner m	illion mar	pped fragm	ents
Gsg2	0.54	2.41	1.26	1.38	0.43	Ν	WX, irradiated n5	3 ^{+/+} gro	up. KX ir	radiated r	25.3 ^{-/-} mice	e groun W	non-irradi
Hells	0.97	3.65	2.48	2.67	0.39	Ν	$n53^{+/+}$ group K n	on-irrad	r_{r} , r_{s} , r_{s}	-/- groun	met	5-94P, 11	intudi
Hmgb2	12.97	43.96	37.27	32.87	0.39	Ν	WX/min is mediar	1 WX / 1	minimum	value of r	nedian K	median K	X or media
ncenp	5.67	18.42	11.53	11.94	0.49	Ν	R. reported gene a	s n53 to	røet N n	on-report	ed gene a	is n53 targe	t M mous
qgap3	0.56	3.02	2.28	2.48	0.25	Ν	which don't have	uman h		e report	ea gene a	_P 55 mg	,, mous
Gif11	1.35	7.05	4.40	4.81	0.31	Ν	which don't have I		.omoiogu				
Kif15	0.46	2.98	1.97	2.06	0.23	Ν							
	0.65	2.05	1.60	1.37	0.47	Ν							
Kif18a	0.05		1.24	1 39	0.42	Ν							
Kif18a Kif20b	0.52	2.16	1.24	1.0/		N							
Kif18a Kif20b Kif22	0.52 3.84	2.16 14.39	1.24 9.36	9.80	0.41	IN							
Kif18a Kif20b Kif22 Kif23	0.52 3.84 1.72	2.16 14.39 7.99	1.24 9.36 4.79	9.80 5.09	0.41 0.36	N N							
Kif18a Kif20b Kif22 Kif23 Kif2c	0.52 3.84 1.72 1.86	2.16 14.39 7.99 8.10	1.24 9.36 4.79 3.95	9.80 5.09 4.83	0.41 0.36 0.47	N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif2c Kif4	0.55 0.52 3.84 1.72 1.86 0.88	2.16 14.39 7.99 8.10 3.80	1.24 9.36 4.79 3.95 2.14	9.80 5.09 4.83 2.54	0.41 0.36 0.47 0.41	N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif4 Lmnb1	0.55 0.52 3.84 1.72 1.86 0.88 7 19	2.16 14.39 7.99 8.10 3.80 23.94	1.24 9.36 4.79 3.95 2.14 17.09	9.80 5.09 4.83 2.54 18.85	0.41 0.36 0.47 0.41 0.42	N N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif4 Lmnb1 Map4k1	0.55 0.52 3.84 1.72 1.86 0.88 7.19 0.57	2.16 14.39 7.99 8.10 3.80 23.94 2.28	1.24 9.36 4.79 3.95 2.14 17.09 1.34	9.80 5.09 4.83 2.54 18.85 1.18	0.41 0.36 0.47 0.41 0.42 0.49	N N N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif4 Lmnb1 Map4k1 Mcm10	0.52 3.84 1.72 1.86 0.88 7.19 0.57 0.79	2.16 14.39 7.99 8.10 3.80 23.94 2.28 3.44	1.24 9.36 4.79 3.95 2.14 17.09 1.34	9.80 5.09 4.83 2.54 18.85 1.18 2.11	$\begin{array}{c} 0.41 \\ 0.36 \\ 0.47 \\ 0.41 \\ 0.42 \\ 0.49 \\ 0.41 \end{array}$	N N N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif4 Lmnb1 Map4k1 Mcm10 Mcm2	0.52 3.84 1.72 1.86 0.88 7.19 0.57 0.79 4.28	2.16 14.39 7.99 8.10 3.80 23.94 2.28 3.44 14.37	1.24 9.36 4.79 3.95 2.14 17.09 1.34 1.94	9.80 5.09 4.83 2.54 18.85 1.18 2.11 11.26	$\begin{array}{c} 0.41 \\ 0.36 \\ 0.47 \\ 0.41 \\ 0.42 \\ 0.49 \\ 0.41 \\ 0.42 \end{array}$	N N N N N N							
Kif18a Kif20b Kif22 Kif23 Kif2c Kif4 Lmnb1 Map4k1 Mcm10 Mcm2 Mcm3	0.52 3.84 1.72 1.86 0.88 7.19 0.57 0.79 4.28 5.06	2.16 14.39 7.99 8.10 3.80 23.94 2.28 3.44 14.37 18.28	1.24 9.36 4.79 3.95 2.14 17.09 1.34 1.94 10.15	9.80 5.09 4.83 2.54 18.85 1.18 2.11 11.26 13.30	$\begin{array}{c} 0.41 \\ 0.36 \\ 0.47 \\ 0.41 \\ 0.42 \\ 0.49 \\ 0.41 \\ 0.42 \\ 0.40 \end{array}$	N N N N N N							

表4、p53依存的に発現が抑制される遺伝子群

	Term	Genes	-log (p value)	Fold enrichment
p53-induced genes	p53 signalling pathway	P21, Bbc3, Z3, Bax, Rprm, Mdm2, Pmaip1, Fas, Perp, Sesn2, Ccng1	12.27	30.49
	Cytokine-cytokine receptor interaction	Inhbb, Tnfrsf10b, Gdf5, Eda2r, Fas, Cd137l	2.16	4.7
	TGF-beta signalling pathway	Inhbb, Gdf5, Fst	1.15	6.6
	Apoptosis	Tnfrsf10b, Bax, Fas	1.15	6.6
p53-repressed genes	Cell cycle	Cdk1, E2f2, Cdc6, Ttk, Chek1, Mcm2, Mcm3, Mcm5, Mcm6, Ccne2, Cdc45, Ccnb2, Plk1, Bub1, Bub1b, Ccna2	10.99	21.1
	DNA replication	Prim1, Dna2, Pole, Mcm2, Mcm3, Mcm5, Mcm6	5.70	33.75
	Oocyte meiosis	Ccne2, Cdk1, Ccnb2, Plk1, SgoL1, Bub1, Fbxo5	2.82	10.27
	p53 signalling pathway	Ccne2, Cdk1, Ccnb2, Rrm2, Chek1	2.44	12.23
	Progesterone-mediated occyte maturation	Cdk1, Ccnb2, Plk1, Bub1, Ccna2	1.81	9.93
	Pyrimidine metabolism	Prim1, Rrm2, Pole, Tk1	1.54	7.03

表5、p53依存的に発現が誘導もしくは抑制される遺伝子を用いたパスウェイ解析