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Impact of Prenatal Heavy Metals Exposure on Birth Outcomes and Newborns 

Leucocytes Telomere Length in Myanmar 

（妊娠期における重金属暴露が出生アウトカム及び新生児の白血球テロメア長

に与える影響：ミャンマーにおける研究） 

ABSTRACT 

Introduction: Arsenic, cadmium and lead are well-known environmental contaminants 

and their toxicity at low concentrations is a target of scientific concern. Through trans-

placental exposure, these metals can accumulate in fetal tissues, extending the risk of 

fetal toxicity. Meanwhile, heavy metals exposure appears to modify telomere length 

(TL), which may predispose a person to adverse health risks. Information on newborn 

TL is important because TL later in life is mainly influenced by the TL at birth, 

meaning that having a short or long TL is greatly defined before adulthood. However, 

the determinants of TL at birth were poorly explained.  This study aimed to examine the 

extent of heavy metals contamination among a Myanmar population. This study also 

identified the potential effects of prenatal heavy metals exposure on birth outcomes 

among pregnant women and newborns in Myanmar. In addition, this study determined 

whether prenatal heavy metals exposure has an impact on newborn leucocyte TL. For a 

better understanding of the etiologic pathway, this study also determined whether heavy 

metals-induced TL shortening triggers the occurrence of adverse birth outcomes. 
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Methods: A birth-cohort study was conducted among 419 pregnant women in Myanmar. 

At their first visit, face-to-face interviews were performed, and maternal spot urine was 

collected. Cord blood samples were collected at the time of delivery during follow-up. 

Urinary arsenic, cadmium, lead and selenium concentrations were measured by 

inductively coupled plasma mass spectrometry (ICP-MS) and adjusted for creatinine. 

TL was measured by quantitative real-time polymerase chain reaction (PCR), and 

relative TL was calculated as the ratio of telomere repeats product to a single-copy gene 

(T/S ratio). We examined the prenatal exposure of arsenic, cadmium and lead and their 

associations with adverse birth outcomes and newborn TL using multivariable logistic 

and linear regression analysis, respectively. Later, we determined whether a shorter TL 

was associated with risks of adverse birth outcomes using logistic regressing analysis. 

Results: The median values of adjusted urinary arsenic, cadmium, selenium and lead 

concentrations were 74.2, 0.9, 22.6 and 1.8 μg/g creatinine, respectively. Prenatal 

cadmium exposure was positively associated with risk of low birth weight (adjusted 

odds ratio (AOR) = 4.79, 95% confidence interval (CI): 1.25, 18.37, p = 0.022) after 

adjusting for maternal age, maternal education, the baby’s sex, smoking status, 

primigravida, antenatal visits and selenium concentration. However, maternal heavy 

metals concentration was not significantly associated with preterm delivery. There was 

an independent inverse association between prenatal arsenic (lowest vs highest quartile, 

coefficient = - 0.13, 95% CI: - 0.22, - 0.03, p = 0.002), cadmium (lowest vs highest 

quartile, coefficient = - 0.19, 95% CI: - 0.30, - 0.08, p < 0.001), and lead exposure 

(lowest vs highest quartile, coefficient = - 0.11, 95% CI: - 0.20, - 0.02, p = 0.020) and 

newborn TL, even after adjusting for maternal age, education, ethnicity, smoking status, 
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parity, gestational age, mode of delivery, the baby’s sex, birth weight and selenium 

concentration. Newborn TL was not significantly associated with any adverse birth 

outcomes. 

Conclusions: The present study determined that Myanmar mothers are highly exposed 

to cadmium. Prenatal maternal cadmium exposure was associated with an increased risk 

of low birth weight. This is also the first study to determine the impact of prenatal heavy 

metals exposure on newborn TL. The present study also identified that arsenic, 

cadmium and lead exposure could shorten TL, even in utero exposure. Since the TL at 

birth could predict the TL later in life, future public health measures should integrate 

interventions to reduce heavy metals contamination, with special emphasis on pregnant 

women. However, the risk of adverse birth outcomes was not associated with newborn 

leucocyte TL. 

Keywords: heavy metals, birth outcome, telomere length, newborn, Myanmar
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Chapter 1: Introduction 

 

1.1 Heavy Metals Exposure and Health 

Toxic heavy metals such as arsenic, cadmium and lead are naturally or 

anthropogenically dispersed in the environment [1, 2]. They may enter the human body 

through dermal contact, oral and/or inhalational routes [1]. Once entered, they are 

deposited into the human tissues with lengthy half-lives and subsequently, may pose 

several health hazards [1-3]. The state of toxicity in the body is influenced not only by 

exposure to high concentrations but also by the gradual accumulation of lower 

concentrations of heavy metals when the detoxification process takes place at a much 

slower rate than accumulation [1].  

Arsenic is a well-known toxic heavy metal and recognized as a human 

carcinogen [4, 5]. It naturally occurs in groundwater and its contamination has become a 

severe public health concern, especially when it is the primary source of drinking water 

for people living in contaminated areas [4, 6]. Worldwide, approximately 200 million 

people are suffering from chronic arsenic toxicity through arsenic-contaminated 

drinking water [4, 6, 7]. India and Bangladesh are particularly notable for their high 

arsenic contamination in groundwater with a large affected population size and 

relatively severe health effects [4]. Several countries across Southeast Asia were 

recently identified for groundwater arsenic contamination including Indonesia, Vietnam, 

Thailand, Cambodia, Laos, and Myanmar [4, 8]. Arsenic toxicity may result in both 

acute and chronic poisoning mostly through ingestion [9]. Several studies have proved 

that long-term arsenic exposure has adverse impacts on human health; causing skin 
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lesions, cardiovascular diseases, neurological complications, reproductive disorders, 

respiratory disorders, malignant diseases and non-malignant diseases [10-15]. 

Furthermore, arsenic passes the placental barrier from the mother to the fetus, further 

extending the health consequences [16]. 

Cadmium is a ubiquitous element in the environment and is toxic even at low 

concentrations [1, 17]. The ‘itai-itai’ disease in Japan brought the world’s attention to 

the dangers of environmental cadmium exposure and has led to numerous reports on the 

health risks of cadmium among human populations [18, 19]. The general population can 

be exposed to cadmium mostly through the diet, tobacco smoking and industrial 

activities [18]. Cadmium exposure primarily affects the kidney, liver and bones; 

however, growing evidence indicates that cadmium exposure, even at a low 

concentration, also has a carcinogenic effect and is associated with risks of chronic 

disease [18, 20-22]. Moreover, cadmium can extend the health risks to the fetus and 

greatly accumulate in the placenta [20, 23]. Meanwhile, it can inhibit the synthesis of 

hormones, such as progestogens, testosterone, leptin, and thyroid hormones, by acting 

as an endocrine disruptor which eventually has effects later in life [24, 25]. 

Lead is also an environmental contaminant that is naturally found at low 

concentrations in the earth’s crust; perhaps many industrial activities have predisposed 

its widespread occurrence [1, 26-28]. The general population is mostly exposed to lead 

through inhalation or ingestion, equally [1, 2]. The degree of lead exposure varies 

broadly across regions depending on urbanization, industrialization and lifestyle [27, 

28]. Environmental exposure to lead poses a major health challenge, particularly, its 

neurotoxic effects consistently threaten developing children [28-30]. Lead exposure can 
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also contribute to the etiological backgrounds of many diseases including renal, 

neurological, haematological, and cardiovascular diseases [28]. It is reported that 

inorganic lead exhibits mutagenic, clastogenic and carcinogenic properties [26]. Like 

arsenic and cadmium, lead can also easily pass through the placenta and accumulate in 

fetal tissues [3]. 

Selenium naturally exists in the environment and is unevenly distributed over 

the earth’s surface [31]. Humans consume selenium from foods, and the selenium 

content of foods varies depending on the selenium content of soil where the foods are 

produced [31-33]. Selenium is one of the essential nutrients for the detoxification of 

oxidative stress, owing to the active site of glutathione peroxidase [32, 34, 35]. The 

antioxidant effect of selenium plays a significant role in anti-carcinogenesis since it 

limits DNA damage induced by oxidative stress [31, 32]. In addition, high selenium in 

the form of selenoenzymes or selenoproteins can prevent the generation of oxidized 

low-density lipoprotein, thereby regulating the plasma cholesterol level [32]. It was 

previously reported that selenium deficiency can predispose humans to serious health 

problems such as Keshan disease, Kashin-Beck disease, carcinogenicity, and 

cardiovascular diseases [31]. In contrast, an estimated safe oral intake of selenium is 5 

µg per day per body weight (kg) for adults, perhaps it differs across regions [31]. 

Although sensitive biochemical indicators of selenium overdose are limited, it has been 

reported that both animals and humans who consume more than a safe level of selenium 

can exhibit hair and nail lesions, peripheral neuropathy and reproductive problems [31, 

33]. Moreover, previous studies have confirmed that selenium also has maternal-fetal 

transfer [36-38]. 
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1.2 Heavy Metals Exposure and Maternal and Newborn’s Health 

Pregnant women and their fetuses are more vulnerable to the adverse effects of 

the exposure to environmental toxic substances [16, 39, 40]. If exposure happens in-

utero, the effect could cause a negative impact in early childhood and later in life; 

through permanent structural and functional changes [41]. Although the placenta may 

act as a selective transporter that prevents the passage of potentially toxic substances to 

the developing fetus, some environmental contaminants can freely or partially cross the 

placental barrier [37]. In particular, arsenic, cadmium and lead are well-known 

environmental heavy metals that could extend the health risk to the fetus even at a low 

concentration through trans-placental circulation [36, 39, 42, 43].  

The toxicologic effects of heavy metals could alter the prenatal stage of human 

development which is a critical period of fetal cell division and differentiation [41]. For 

example, prenatal cadmium exposure could impair steroidogenesis which leads to 

suboptimal fetal growth and development [24]. Lead exposure could interfere with 

calcium deposition into the bone, resulting in decreased fetal bone growth [44]. Arsenic 

exposure during pregnancy may also contribute to placental insufficiencies that could 

lead to intrauterine growth retardation by inducing oxidative stress [45].  

The associations between prenatal exposure to environmental heavy metals and 

adverse birth outcomes have been examined in varying degrees over the last decades. In 

many studies, prenatal arsenic, cadmium and lead exposure were inversely associated 

with the anthropometric measures of newborns such as birth weight, birth length, and 

head circumference [43, 46-50]. Moreover, exposure to these metals also increased the 

risk of preterm delivery [51-53]. Inorganic arsenic exposure during pregnancy was also 
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positively associated with the risks of stillbirth and miscarriage [54]. Although a 

definitive explanation for heavy metals-induced adverse birth outcomes is lacking, these 

metals are known to be involved in oxidative stress induction, hormone interactions and 

direct toxicity which could lead to defective placentation [24, 37, 45]. Since adverse 

birth outcomes could increase the lifelong mortality risk later in life, there has been 

increased awareness with regard to predicting the potential health impact of prenatal 

heavy metals exposure on birth outcomes [55, 56].  

 

1.3 Biological Significance of Telomeres  

1.3.1 Telomere Biology and its Role 

Telomeres are repeated sequences of oligomers (TTAGGG) located at the 

human chromosomal ends. They prevent chromosomal damage by protecting against 

chromosome-chromosome fusions and degradation, thereby maintaining genomic 

integrity [57-59]. Telomere length (TL) is largely maintained by the telomerase RNA 

protein complex and the shelterin proteins whose levels are regulated by human 

telomerase reverse transcriptase (hTERT) and telomerase RNA genes (hTR) [60-64]. 

Telomeric DNA is more sensitive to oxidative stress due to its guanine-rich sequences 

[65, 66]. In addition to direct attack by reactive oxygen species (ROS), the DNA repair 

response is less competent in telomeric DNA than in the majority of other genomic 

DNAs [65]. This is because telomere-related proteins can interfere with the cellular 

responses to breaks on telomeric DNA strands by blocking access to DNA repair 

enzymes [65, 67, 68]. 
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Telomere shortening occurs in normal somatic cells following each cell division 

[62, 64]. Once they reach a certain minimum length, cellular apoptosis occurs because 

of chromosomal end fusion [63, 64]. Based on existing studies, if cellular apoptosis 

does not occur at the critical TL, cells continue to divide due to activation of 

telomerases [57, 60, 62]. Telomerases add the telomere DNA sequences (TTAGGG 

repeats) to prevent chromosomal fusion, resulting in chromosomal instability [62]. 

Dysfunctional telomeres and telomerase activity may, in turn lead to genomic instability 

and malignancy [61, 69, 70]. 

  

1.3.2 Factors Associated with TL and Related Health Risks 

Inter-individual variation in TL can be mostly explained by variation at birth, 

although it also depends on TL attrition rate later in life [66, 71-74]. However, overall 

TL attrition during adulthood is relatively small, meaning that most adults maintain a 

fixed ranking and tracking of TL over their lifetime [71]. In relation to this, a Danish 

twin study estimated that the heritability of TL at baseline was 64% (95% confidence 

interval (CI): 0.39, 0.83) with significant shared environmental effects (estimate = 0.22, 

95% CI: 0.06, 0.49) [74]. The intrauterine environment is potentially plausible for 

newborn TL modification perhaps via fetal programming cascade [75]. Meanwhile, the 

TL attrition rate depends on telomeric DNA susceptibility and responses to the intrinsic 

and/or extrinsic stressors and telomerase enzyme activities [75]. It has been established 

that TL is correlated with aging, exposure to genotoxic agents, oxidative stress and a 

wide range of environmental factors [64, 76-78]. Many factors such as obesity, smoking 

and environmental heavy metals exposure could lead to oxidative stress which in turn 
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accelerates telomere shortening [79-81]. Furthermore, these factors are closely 

associated with inflammatory responses, particularly the production of cytokines that 

could activate telomerase enzymes, resulting in TL shortening [82-85]. However, it is 

difficult to establish the causal relationship between such factors and TL because TL 

alteration could be a direct or indirect systemic effect of a response mechanism. 

Genetic and epigenetic modifications are also associated with telomere 

maintenance. Polymorphisms in telomere-related genes, particularly hTERT genes are 

strongly associated with telomere instability and increased risks of various cancers [86]. 

Moreover, epigenetic regulations, both global DNA methylation and methylation status 

of subtelomeric regions, are involved in telomere dynamics [87, 88]. These epigenetic 

modifications could determine the expression of telomere-related genes which are 

crucial in telomere maintenance.  

An increasing body of evidence has indicated associations between TL and 

pathophysiological outcomes later in life, such as aging, cardiometabolic diseases and 

malignancies [70, 86, 89, 90]. A recent meta-analysis comparing short TL to long TL 

subjects showed that the relative risk of cardiovascular diseases was 1.54 (95% CI: 1.30, 

1.83) [90]. In another study, a shorter TL was found to be significantly associated with 

an increased metabolic risk profile for high-density lipoprotein (β = - 0.016, p = 0.05), 

triglycerides (β = 0.038, p < 0.001), waist circumference (β = 0.647, p = 0.007), and 

fasting blood glucose level (β = 0.011, p < 0.001) [91]. In addition, telomere shortening; 

or lengthening increases the likelihood of malignancies. Therefore, perhaps TL differs 

between the types and stages of cancers. For example, telomere shortening is associated 

with an increased risk of bladder, gastric and oesophageal cancers [92-94], while 
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telomere lengthening increases the risk of melanoma, breast and lung cancers [95-97]. 

Nevertheless, it could be hypothesized that TL alterations could serve as a biomarker of 

a disease or risk; and thus, the assessment of TL could be useful in biomonitoring health 

risks. 

 

1.4 Heavy Metals Exposure and TL 

1.4.1 Arsenic Exposure and TL 

The impact of environmental and occupational arsenic exposure on TL has been 

increasingly concerning. An in vitro study on human cord blood cells stated that the TL 

increased upon exposure to a low concentration of inorganic arsenic (0.001 µM) after 

both 24 hours and 7 days of treatment, while the TL shortened at a high concentration of 

1 µM after 7 days in culture [98]. Another study on human cell lines also supported the 

idea that telomerase activity induced by arsenite concentration at 0.1 - 1 µM resulted in 

telomere elongation, whereas a high concentration (more than 1-40 µM) shortened the 

TL [99]. A prospective cohort study in Bangladesh among 167 participants showed that 

a longer TL was highly prevalent among participants of a high arsenic exposure group 

(urinary arsenic > 339 µg/g) [100]. Another study in India also demonstrated that a 

longer TL was found among an arsenic-exposed population with skin lesions than in the 

control group (odds ratio (OR) 13.75; 95% CI: 5.66, 33.41) [101]. However, a study 

conducted among healthy subjects in Italy revealed an inverse association between 

arsenic exposure and TL (β = - 0.23, p = 0.08) [102]. A cross-sectional study conducted 

in Northern Argentina found no association between urinary arsenic concentration 
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(median value = 230 µg/L) and TL [103]. Based on the existing studies, it is convincible 

that arsenic has a dose-response effect on TL and telomerase activity. 

Without a doubt, arsenic is considered genotoxic since it induces oxidative 

stress; and alters DNA repair and DNA methylation patterns [104-106]. Thus, these 

mechanisms could potentially affect TL maintenance [68]. So far, many studies have 

postulated several possible underlying mechanisms of arsenic-induced TL alterations. 

Arsenic involved in telomere shortening through the mediation of arsenic-induced 

apoptosis, while it is also possible that arsenic-induced oxidative stress directly 

damages the telomeres and telomere-related proteins [79]. Since telomerase activation 

plays a crucial role in telomere maintenance [60, 62], the effect of arsenic on hTERT 

gene expression has also been investigated. A study conducted among the villagers of 

inner Mongolia reported that hTERT expression was highly associated with arsenic 

exposure both in vivo and in vitro [107]. In contrast, a case-control study in India found 

that telomere lengthening was independent on telomerases, and was possibly due to the 

upregulation of shelterin complex proteins such as TRF1 and TRF2, which trigger 

“alternative telomere lengthening” (ATL) [101]. Another study among a Bangladesh 

population also elucidated that arsenic exposure was correlated with the expression of 

other telomere-related genes such as WRC, TERF2, DKC1, TERF2IP, and OBFCI. The 

same study also suggested that alterations in the expression of these genes may cause 

telomere de-protection, contributing to the activation of ATL [100].  
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1.4.2 Cadmium Exposure and TL  

Environmental and occupational exposure to cadmium is associated with TL 

alterations. A handful of recent studies have explored the effect of cadmium on TL. In 

vitro studies of mouse embryonic stem cells showed that telomere shortening was 

triggered by chronic exposure to low-dose cigarette smoke (0.02 mg/mL) or cadmium 

(5-10 µM) [108, 109]. Regarding human studies, a population-based cross-sectional 

study in the U.S. reported that a higher cadmium concentration in both the blood (mean 

blood cadmium = 0.44 µg/dL) and urine (mean urinary cadmium = 0.28 µg/dL) was 

significantly associated with a shorter TL (β = - 5.54; 95% CI: - 0.42, - 0.47 for blood 

and β = - 4.50; 95% CI: - 8.79, - 0.20 for urine) [110]. Similarly, a cross-sectional study 

among Nepalese adolescents also reported that the urinary cadmium concentration 

(geometric mean = 0.19 µg/L) had a significant negative association with salivary TL (β 

= - 0.24; 95% CI - 0.42, - 0.07) [111]. Likewise, a concentration of 0.09 µg/dL 

cadmium initiated the placental telomere shortening (r = - 0.138, p = 0.013) among a 

population in an electronic recycling waste town of China [23].  

 Possible mechanisms of cadmium-induced telomere mutagenicity have been 

proposed in previous studies. Since telomeres are notably sensitive to oxidative stress, 

cadmium could disturb the oxidative stress response by promoting the production of 

ROS [65, 112, 113]. Cadmium may also accelerate telomere shortening by stimulating 

the production of inflammatory chemicals, particularly cytokines [83, 84]. Furthermore, 

cadmium mimics the action of divalent metallic ions such as zinc which could interfere 

with the DNA repair system [114, 115]. Through these processes, cadmium may impact 

TL maintenance. 
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1.4.3 Lead Exposure and TL  

TL could also be modified by environmental lead exposure since inorganic lead 

also exhibits mutagenic, clastogenic and carcinogenic properties [26]. The effects of 

lead exposure on TL have been examined in several studies. A case-control study 

conducted among male lead smelters in Poland reported that telomere shortening was 

associated with a higher blood lead level (mean blood lead level was 33 µg/dL for the 

exposed group and 2.2 µg/dL for the control group) [116]. Another study conducted in 

the southern part of Poland also showed that children had a shorter TL (β = - 0.13; 95% 

CI - 0.23, - 0.02) at the blood lead level of ≥ 3.2 µg/dL [78]. Similarly, a cross-sectional 

study among Chinese battery plant workers reported a strong negative correlation 

between peripheral blood TL and blood lead level (r = - 0.70, p < 0.0001) [117]. 

Conversely, blood lead level was not significantly associated with the relative TL in a 

population-based study using national health and nutrition examination survey data of 

the U.S. from 1999-2002 (mean blood lead level was 1.67 µg/dL) [110]. 

Researchers have speculated about the underlying molecular and biological 

mechanisms of lead-induced genotoxicity. Lead could induce genotoxicity through 

indirect pathways due to oxidative stress or DNA epigenetic modifications [1, 118]. 

Moreover, it may provoke TL alternations by interfering with chromatin organization, 

and causes nuclear membrane impairment, which is crucial for telomere stability [119, 

120]. Lead can also replace calcium, zinc and/or magnesium in enzymes through the 

ionic mechanism of its toxicity, which can ultimately interfere with various biological 

processes including DNA processing and repair [26, 121]. 
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1.4.4 Selenium Exposure and TL 

Selenium is considered an antioxidant and the nutritional level of selenium has 

an anticarcinogenic effect [31, 32]. Despite its antioxidant effect, epidemiological 

studies on the associations between selenium level and TL among human populations 

are limited. An in vitro study on human hepatocyte cell lines demonstrated that the TL 

of hepatocyte L-02 cells was significantly longer at 0.5 and 2.5 µmol/L sodium selenite 

[122]. Another study reported that at doses of 2.5, 5.0 and 10 µmol/kg selenium, the 

telomerase activity of rat hepatocytes increased significantly, supporting the mechanism 

of telomerase-dependent TL elongation [123]. Another study on yeast cells showed that 

selenium-treated cells had a significantly longer TL than control cells (p = 0.031). This 

study also demonstrated that both lead and selenium-treated cells had a longer TL than 

lead alone treated cells, indicating that selenium can repair the damage by the lead to 

some degrees [124]. The antioxidant effect of selenium may involve in protecting or 

repairing of the TL, thereby decelerating telomere aging. It is worth investigating how 

selenium acts and mediates the effects of other metals on TL among human populations. 

  

1.5 TL and Adverse Birth Outcomes 

TL shortening could be associated with the pathophysiology of adverse 

pregnancy outcomes, such as low birth weight and preterm delivery [125-127]. 

Placental cell aging is a physiological adaptive response of rapid cell division during 

pregnancy [125], and TL could be considered as a biomarker of cellular aging [58, 65-

67]. Premature placental aging happens when the intrauterine environment becomes 
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hostile due to intrinsic or extrinsic chemical contaminants, leading to placental 

dysfunction [125]. Placental dysfunction, particularly; decreased placental growth and 

restricted nutriment supply to the developing fetus lead to intrauterine growth restriction 

[125, 127]. In addition, senescent cells may induce the aging process of adjacent cells 

by secreting high levels of inflammatory cytokines, metalloproteinases and epithelial 

growth factors [128]. As a consequence, aging and systemic inflammation may also 

provoke preterm delivery [125]. Hence, cumulative cell damage, shorten TL, may be 

closely associated with low birth weight and preterm birth.  

Previous studies have reported that a shorter TL was associated with preterm, 

preterm premature rupture of membranes (pPROM), stillbirth and fetal growth 

restriction [127, 129-133]. A retrospective study in the Netherlands found that 

individuals born preterm had a significantly shorter TL than individuals born at normal 

term (p = 0.003) [133]. In contrast, in a comparative study of leucocyte TL in three 

groups of pPROM, preterm with intact membranes and normal full-term newborns, the 

TL was not significantly different between pPROM and normal full-term newborns (p = 

0.31); however, preterm newborns had a significantly longer TL than pPROM (p = 

0.05) and normal-term (p < 0.01) newborns [129]. Another study in Italy also reported 

that placental TL shortening was found among the stillbirth group (p < 0.001), 

suggesting that premature aging of the placenta may contribute to the etiology of 

stillbirth [131]. Similarly, the placental TL was significantly shorter among the 

newborns with fetal growth restriction compared to control group in a U.S. study ( p < 

0.001) [127]. 
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Telomerase activity may also play an important role in TL shortening in relation 

to adverse birth outcomes. A previous review reported that complicated pregnancies 

such as preeclampsia and/or fetal growth restriction had decreased or no telomerase 

activity, leading to shortening of the TL [126]. Another study in the U.S also 

demonstrated that higher expression of telomere-induced senescence markers such as 

elongation factor 1 alpha, p 21 and p16 were found among the fetal growth restriction 

group (p < 0.01), indicating that cellular senescence is more frequent among this group 

that may suppress placental telomerase activity [127].  

Heavy metals-induced TL shortening may be an intermediate molecular cause of 

fetal stress and placental apoptosis which leads to adverse birth outcomes. Although a 

definitive explanation for the mechanism of heavy metals-induced adverse birth 

outcomes is not clear, heavy metals are involved in oxidative stress induction, hormone 

interactions and direct toxicity which could lead to defective placentation [16, 24, 40, 

49]. Meanwhile, TL shortening is a biomarker of cumulative oxidative stress [65]. As 

mentioned above, there is an increasing evidence for associations between a shorter TL 

and adverse birth outcomes [127, 129-133]. Taken together, it is possible that TL 

shortening could be a proxy of placental dysfunction which triggers adverse birth 

outcomes.  

  

1.6 Justification  

Heavy metals exposure is likely to modify the TL, which may be associated with 

adverse health risks. However, available information regarding the effect of 
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environmental heavy metals exposure on TL is controversial and limited. Previous 

studies have investigated the effect of heavy metals exposure on TL and telomerase 

gene expression; nevertheless, those studies focused only on adult or adolescent 

populations [100, 101, 103, 110, 111]. In the context of TL, the response to oxidative 

stress is different, even between mother and fetus [129]. Although the trans-placental 

transmission of some heavy metals, such as arsenic, cadmium and lead has been 

investigated [36, 39, 42, 43], so far, only one in vitro study had described the 

associations between prenatal arsenic exposure and newborn TL [98]. Therefore, it is 

important to pay attention to whether in-utero exposure to heavy metals could extend 

the effect to newborn TL. 

Knowledge of newborn TL is relevant because the TL later in life is mainly 

influenced by the TL at birth, meaning that having a short or long TL is greatly defined 

before adulthood [71, 74]. So far, only a handful of studies have identified predictors of 

newborn TL [134-139]. For example, younger paternal age (β = 0.016, 95% CI: 0.004, 

0.028, p = 0.008), higher maternal pre-pregnancy body mass index (β = - 0.52, 95% CI: 

- 0.85, - 0.20, p = 0.002), and lower maternal education (Spearman’s rho = 0.36, p < 

0.01) are independent predictors of a shorter newborn TL [134, 138, 139]. Furthermore, 

maternal pregnancy-related psychological stress was negatively associated with 

newborn TL among a Pennsylvanian population (β = - 0.099, 95% CI: - 0.197, - 0.002, 

p = 0.047) [136]. A recent prospective cohort study in Belgium also determined that 

high prenatal PM2.5 (particulate matter ≤ 2.5 microns in diameter) exposure was 

correlated with a shorter newborn TL (8.8%, 95% CI: - 14.1%, - 3.1%) [135]. Since in 

utero exposure effects are closely correlated with early-life developmental effects and 
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ongoing health risks, partly through epigenetic modifications [140], it is crucial to 

identify the factors that influence TL at birth for preventive measures against human 

disease morbidity and mortality later in life. 

Adverse birth outcomes such as low birth weight and preterm delivery, are 

closely associated with various lifelong mortality and morbidity risks [56, 141]. 

Generally, low birth weight babies are at increased risks of mortality, morbidity and 

disability since it is correlated with poor growth in childhood and an increased 

incidence of many diseases such as hypertension, cardiovascular diseases and type 2 

diabetes mellitus in adulthood [56]. According to the World Health Organization 

(WHO), more than 15% of newborns are born with a birth weight less than 2500 g, with 

the developing countries accounting for more than 95% of them [56]. Preterm delivery 

is another major determinant of neonatal mortality and morbidity [142]. A study of 4 

million early neonatal deaths over 193 countries reported that 28% of neonatal deaths 

were either directly or indirectly due to preterm delivery [143]. A recent systematic 

analysis showed that Southeast Asia accounted for the highest number of preterm birth 

rates in 2010, and estimated that 13.6% were born preterm [141]. Moreover, the 

associations between prenatal heavy metals exposure and adverse birth outcomes have 

been identified in many previous studies [43, 46-50]. Better understanding of the 

etiologic pathway between prenatal heavy metals exposure and adverse outcomes 

among a Myanmar population is relevant for preventive measures. 

Meanwhile, a number of studies have demonstrated that a shorter TL is 

correlated with adverse birth outcomes such as stillbirth, preterm delivery and fetal 

growth restriction [127, 129-133]. Unfavorable conditions in utero can trigger oxidative 
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stress which, in turn causes placental insufficiency, leading to adverse birth outcomes 

[129, 144]. Consequently, adverse birth outcomes could alter TL homeostasis and 

accelerate TL shortening or vice versa [129, 131, 144]. The earlier TL shortening 

happens, the faster the intrinsic organs age, which is closely related to cellular 

dysfunction and disease susceptibility [126]. Therefore, it is important to understand the 

mechanistic pathway between TL homeostasis during fetal development and adverse 

birth outcomes. 

To prevent waterborne infectious diseases, groundwater (from deep well) has 

been substituted as the source of drinking water in Myanmar. However, toxic heavy 

metals contamination in groundwater may increase the risk of many chronic diseases 

[145]. According to the World Bank Policy Report 2005, an estimated 3.4 million 

people were at risk of arsenic contamination mainly through ingestion in Myanmar 

[146]. The southern and central regions of Myanmar are confirmed to be highly 

contaminated with arsenic in the groundwater [145, 147-149]. High arsenic 

concentration in the groundwater has been predicted in the southern part of the country, 

the Ayeyarwady Region, based on the local hydrogeology and climate; reductive 

dissolution of iron oxyhydroxides in groundwater was assumed [147]. According to the 

previous national reports, in the Ayeyarwady Region, of total 123,964 drinking water 

samples; 29.18% are above the WHO standard for an arsenic concentration of 10 μg/L, 

and 8.19% exceed the arsenic concentration of 50 μg/L [148, 149].  

Evidences regarding the other heavy metals contamination is limited in 

Myanmar. As mentioned previously, diet (rice in particular), tobacco smoking, and 

occupational exposure are the major sources of cadmium exposure in general [18]. In 
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Myanmar, only few women smoke, and occupational exposure in possible only in the 

regions where mining is conducted. Diet may be a major source of cadmium exposure 

since Myanmar people usually consume large amount of rice in their daily life. For lead, 

occupational activities such as mining, and battery industries are potential sources of 

exposure. In fact, a previous study conducted in central Myanmar reported that of 18 

water samples, none of them was above the WHO standards of lead concentration (10 

μg/L), and cadmium concentration was below the detection limit of 1 μg/L [145]. Little 

is known about the extent of heavy metals exposure among Myanmar population; 

assessment of exposure using biological samples is necessary. 

Without a doubt, confirmed arsenic contamination is consistently threatening the 

health of Myanmar people. A previous study in central Myanmar reported that increased 

arterial blood pressure and low brachial index were found among those with a nail 

arsenic level higher than 0.09 µg/g [150]. Additionally, among the populations in the 

Ayeyarwady region, a negative association was found between 2-h creatinine clearance 

and a serum arsenic concentration of more than 0.008 µg/L, indicating that chronic 

arsenic exposure may affect renal glomerular function [151]. Despite significant arsenic 

health concerns and potential contamination of other heavy metals in Myanmar [145, 

147], an exposure assessment using biological samples has rarely been conducted 

among a Myanmar population. 

Myanmar is still on the way of progress in reducing neonatal mortality. As 

reported by the Myanmar Demographic and Health Survey 2015-16, the estimated 

infant mortality rate was 40 deaths per 1,000 live births, and more than 60% of deaths 

occurred during the first month [152]. According to the WHO, in Myanmar, the 
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estimated number of low birth weight babies was 179 per 1,000 live births in 2000 and 

the preterm birth rate was 12 per 100 live births in 2010 [56, 141]. In addition to 

investing in maternal and neonatal healthcare services, a wider range of underlying 

etiologic factors should be examined. Although heavy metals contamination has been 

confirmed, no study has determined the extent of prenatal toxicity and the effect of 

those heavy metals exposure on birth outcomes among a Myanmar population. 

 

1.7 Study Objectives 

This study aimed to identify the associations between prenatal heavy metals 

exposure and adverse birth outcomes among pregnant women and newborns in 

Myanmar. This study also aimed to determine the effect of prenatal heavy metals 

exposure on fetal cellular damage by observing newborn leucocyte TL as a biomarker. 

For a better understanding of the etiologic pathway, this study also explored the 

associations between TL and adverse birth outcomes. The study objectives are also 

presented in the following schematic diagram (Figure 1). The findings of this study 

highlight heavy metals-induced newborn leucocyte TL alterations and its relationship 

with adverse birth outcomes which could be beneficial for a better understanding of the 

fetal origin of adulthood diseases. 
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Figure 1: Conceptual Framework  



 
 

21 
 

Chapter 2: Methods 

2.1 Study Design and Area 

A birth-cohort study was conducted on 493 pregnant women and newborns in 

the Kyaungone and Kyonpyaw Districts of the Ayeyarwady Region, Myanmar 

(Appendix 1). Face-to-face interviews were performed using a questionnaire, and 

maternal spot urine samples were collected during the third trimester. Cord blood 

samples and birth outcomes were evaluated at delivery during the follow-up period of 

one to three months.  

The Ayeyarwady Region is bound on the north by the Bago Region; on the east 

by the Yangon Region and on the south and west by the Bay of Bengal. Geographically, 

the region encloses an area between north latitudes 15° 40' and 18° 30' and between east 

latitudes 94° 15' and 96° 15', covering a total area of 35,140 km2, with a total population 

of 6,184,829. According to Census 2014, the population density in this region was 

180/km². The Ayeyarwady Region has been identified for its high concentration of 

arsenic in the groundwater. According to a national report, of a total tested 123,962 

drinking water samples in 17 townships, approximately 29% contained an arsenic level 

above 10 μg/L, and about 8.2% were higher than 50 μg/L [149]. In terms of water 

sources, shallow or deep tube wells (76.4%) ranked first for highest contamination 

followed by dug wells (21.6%) and surface water (1.9%) [149]. Census 2014 reported 

that approximately 96% of the population relied on tube wells for their primary source 

of drinking water in the Ayeyarwady Region. 
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Three hospitals within approximately two hours of driving participated in this 

study. The included hospitals were township- or station-level public hospitals intended 

to assure accessibility of health services for the general population. All hospitals were 

checked for the availability of basic infrastructure such as electric supply and storage 

areas, during the preliminary situational survey in June, 2016.  

 

2.2 Data Collection Period  

Data collection was conducted from August to December 2016. 

 

2.3 Participants  

Eligible participants were pregnant women aged 18 years and above; residing in 

the study area for more than six months who visited to the health center for antenatal 

care services in the third trimester and with their newborns. Pregnant women who 

suffered from severe medical conditions and those who did not give consent were 

excluded from this study.  

 

2.4 Sample Size 

Data regarding prenatal heavy metals exposure and newborn TL is not yet 

available. In addition, there was no information on the prenatal heavy metals exposure 

among the Myanmar population. Therefore, the sample size was estimated as follows. 
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Sample size = 
𝑧2∗p (1−p)

𝑒2
⁄

1+ 
(𝑧2∗p (1−p))

𝑒2𝑁

 , where z = z-score at 95% CI, p = probability, e = margin 

of error of 5%, and N = population size, assuming that 50% of the population was at 

risk since 58% of the wells in the Ayeyarwady Region had an arsenic concentration of > 

10 µg/L in a previous study [147]. The estimated sample size turned out to be 384. 

Considering the missing value, a total of 493 participants were recruited for this study. 

 

2.5 Terminology and Operational Definitions 

(1) Pregnant women: Women who carry a developing fetus in their uterus, certified 

by medical professionals. 

(2) Newborns: Newborns are just born babies who are only hours old. In this study, 

newborns mean both live births (born alive) regardless of birth outcomes and 

stillbirths (born dead). 

(3) Normal pregnancy outcome: In this study, normal pregnancy outcome was 

defined as term delivery without any complication. 

(4) Adverse birth outcomes: In this study, adverse birth outcomes included low birth 

weight (birth weight < 2500 g at term), preterm delivery (a live birth before 37 

weeks of completed gestation), stillbirth and congenital abnormalities [153]. 

(5) Skilled birth attendants: Skilled birth attendants are skilled health personnel 

(including doctors, nurses and midwives and not including auxiliary midwives 

and traditional birth attendants) who have been educated and trained to be 

proficient in the skills needed to manage normal pregnancies, childbirth, and the 
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immediate postnatal period as well as in the identification, management, and 

referral of complications in women and newborns. 

(6) Telomere length (TL): In this study, relative TL was measured by quantitative 

real-time polymerase chain reaction (PCR). TL was measured as the ratio of 

telomere repeat unit signals to a single copy gene [154]. 

 

2.6 Data Collection  

All of the field work was conducted in collaboration with the local health centers. 

A material transfer agreement was obtained from the Department of Physiology, the 

University of Medicine 1, Yangon and the Department of Medical Research, Ministry 

of Health and Sports, Myanmar to bring back the biological samples to Japan for further 

analysis.  

Before the actual data collection, advocacy and training sessions were conducted 

by the principal researcher at the local health centers. The training session covered the 

objectives of the study, and included an explanation of the questionnaire (Appendix 2) 

and the sampling procedure. Proper instruction (Appendix 3 and 4) was informed to all 

of the local health personnel before biological sample collection. 

Pregnant women who met the eligible criteria were selected from a list of 

antenatal attendance from the district or station health centers. The district or station 

health centers manage all of the maternal and child health programs, including the 

antenatal care services for all sub-divisions of the respective district. Authorized health 

personnel of each sub-division then assisted the research team to trace the eligible 

pregnant women. Those women were approached for in-person interviews and were 
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asked for the drinking water and urine samples. In Myanmar, standardized antenatal 

care is aimed at ensuring that every pregnant woman can have access to at least four 

antenatal visits with quality care by the skilled birth attendants without any financial 

burden [155]. According to the recent Demographic and Health Survey 2015-16, 

approximately 78% of women receive antenatal care from skilled birth attendants in the 

Ayeyarwady Region [152]. 

During the first visit, each participant underwent a pretested face-to-face 

interview for about 30 to 45 minutes by the principal investigator and trained research 

assistants in Myanmar. Questionnaires were initially prepared in English and then 

translated to Myanmar. To enhance the accuracy, it was back-translated into English by 

an independent healthcare staff. A maternal spot urine sample was also collected at the 

first visit. The participants were also asked for a drinking water sample of 20 mL by the 

research team.  

During the follow-up (after 1 to 3 months), the skilled birth attendants collected 

cord blood (3 - 5 mL) at the time of delivery in an ethylene-diamine-tetra-acetic acid 

(EDTA)-coated tube under aseptic conditions. The local skilled birth attendants 

performed the anthropometric measurements and noted the information regarding the 

birth outcomes in the delivery records after birth. It was then extracted for further 

analysis in this study. 

All samples were collected in sterile bottles with respective seals and labels. 

Water samples were properly acidified with nitric acid (grade for analysis of poisonous 

metals, 60%, Wako, Osaka, Japan) at a ratio of 4.5 mL water with 75 μL of 60% nitric 

acid. All samples were firstly stored at - 20 °C at the local health centers. The frozen 
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samples were then transported to the Department of Human Ecology, the University of 

Tokyo, Japan under a cold chain and kept frozen at - 80 °C until experimental analysis.  

 

2.7 Measurements  

2.7.1 Assessment of Heavy Metals Exposure  

Arsenic, cadmium, selenium and lead concentrations in water and maternal urine 

were measured by an assured quality-controlled technique using octapole 

collision/reaction cell inductively coupled plasma mass spectrometry (ICP-MS) 

(Agilent 7500ce ICP-MS, Agilent Technologies, Santa Clara, CA, USA). Original urine 

samples were diluted 20-fold with 1% nitric acid (grade for analysis of poisonous 

metals, 60%, Wako, Osaka, Japan) and 2% 1-butanol (grade for HPLC, 99.5% Nacalai 

Tesque, Kyoto, Japan), and filtered through a 0.45 μm pore membrane (Millipore, 

Billerica, MA, USA) connected to a disposable plastic syringe. ICP multi-elements 

standard solution (XVI CertiPUR, Merck, Darmstadt, Germany) was prepared by the 

gravimetric method to generate a calibration curve. The detection limit (DL) was 

calculated as three times standard deviation (SD) of the procedural blanks. The average 

DL values of arsenic, cadmium, lead and selenium were 0.239, 0.025, 0.843 and 0.362 

μg/L, respectively for urine and 0.015, 0.013, 0.049 and 0.017 μg/L, respectively for 

water. Values under the DL were assumed as a half value of DL. Analytical quality was 

assured by the repeated analysis of the samples against the National Institute of 

Standards and Technology (NIST) Standard Reference Material 1643f Trace Elements 

in Water (NIST, Gaithersburg, MD, USA), National Institute for Environmental Studies 
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(NIES) Certified Reference Material No.18 Human Urine (NIES, Ibaraki, Japan) and 

Seronorm Trace Elements Urine (SERO AS, Billingstad, Norway).  

In this study, maternal urine was used as a biomarker of heavy metals exposure. 

For the studies of a large sample size, less invasive and highly accessible samples are 

relevant as biomarkers [156]. Among this study population, ingestion is a major route of 

exposure, and the amount of exposure may not vary largely day-by-day. Therefore, 

urine samples are expected to reflect the heavy metals exposure among the population 

residing in the study area for considerably long period of time. Urinary arsenic level is 

considered as a robust biomarker of exposure, and is widely used in many 

epidemiological studies since arsenic in the body is mainly excreted in the urine [156]. 

Urinary cadmium level is also an appropriate biomarker because urinary cadmium 

concentration is proportional to the cadmium body burden and accumulation in the 

kidneys [18]. In case of lead, since ingested and inhaled lead is rapidly distributed into 

blood and soft tissues, plasma/blood lead concentration is commonly used as a 

biomarker of exposure; urinary concentration of lead is correlated with plasma/lead 

concentration (r = 0.82, p < 0.01)  [2, 157, 158]. Generally, plasma/blood selenium level 

is considered as a good indicator of selenium status in humans since it reflects the 

nutritional status/intake of selenium more directly [31]. Although urinary selenium level 

is not a robust biomarker, it is also applied in many studies since ingested selenium is 

mainly excreted by urinary route [35, 159], and some studies also reported the 

significant correlations between urinary and plasma (r = 0.52, p < 0.001) selenium 

concentrations [160].   
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All urinary heavy metals concentration measurements were adjusted for 

creatinine. Although 24-hours urine collection is the standard method, creatinine-

adjusted single spot urine had been used to estimate the heavy metals exposure [161-

163]. Considering the complexity and burdens of data collection, spot urine collection 

has frequently used in epidemiological studies that target a large number of subjects 

[163]. The urinary creatinine concentration was measured by the in-vitro colorimetric 

Jaffe method using a commercial kit (LabAssay Creatinine Kit, Wako, Osaka, Japan). A 

linear standard curve was drawn based on five assigned doses of standard solution. 

Absorbance was read at 520 nm on a spectrometer (Molecular Devices SpectraMax, 

Sunnyvale, CA, USA), and the creatinine concentration of each 10-fold diluted urine 

sample was calculated accordingly. 

 

2.7.2 Assessment of Birth Outcomes and Covariates 

The pretested questionnaire covered the variables regarding sociodemographic 

characteristics, drinking water status, anthropological measures, smoking status, 

pregnancy and obstetric history (Appendix 2). Sociodemographic characteristics 

included age, education, occupation, ethnicity and monthly income. Information 

regarding the household drinking water status was also assessed through the 

questionnaire. It included the primary source of drinking water, methods of treatment, 

any information about arsenic testing in the past and reported results. Delivery records 

included information regarding the birth such as birth weight, the baby’s sex, mode of 

delivery, gestational age, and other biological attributes of both mothers and newborns. 

Gestational age at birth was calculated by the date of the last menstrual period as noted 
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in delivery records and the date of childbirth. Low birth weight refers to a birth weight 

of less than 2500 g at term [56] and preterm delivery refers to live delivery before 37 

weeks of completed gestation in accordance with the definition of the International 

Classification of Diseases by the WHO [142]. The birth outcome variables were then 

dichotomized accordingly. 

 

2.7.3 Measurement of Newborn Leucocyte TL 

Genomic DNA was extracted from cord blood into 200 μL of solution using the 

QIAamp DNA Mini and Blood Mini Kit (Qiagen K.K., Tokyo, Japan), according to the 

manufacturer’s instructions. The quality of extracted DNA samples was assured using 

the μDrop plate (Thermo Fisher Scientific, Vantaa, Finland). The ratio of absorbance at 

260 nm to 280 nm was accepted only between 1.7 and 2.2 to maintain the purity of the 

DNA samples. In this study, the relative TL was measured by quantitative real-time 

PCR based on the previously established protocol [111, 154]. PCR was performed on a 

Roche Light Cycler Nano (Roche Diagnostics K.K., Tokyo, Japan). The temperature 

profiles for telomere amplification were set as 40 cycles of denaturation at 95°C for 1s, 

and annealing /extension at 54°C for 60 s; and for 36B4G amplification as 40 cycles at 

95°C for 1s, and annealing/extension at 58°C for 60 s. In addition, melting curve 

analysis was applied to assure the specificity of the products. Two master mixes of PCR 

reagents were prepared, one with telomere primers and the other with 36B4 primers. 

Primers used for telomere PCR are as follows: 
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• tel 1b [5’-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’] at 

a final concentration of 100 nM 

• tel 2b [5’ -GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’] 

at a final concentration of 900 nM 

Primers used for single-copy gene 36B4 are as follows: 

• 36B4u [5’-CAGCAAGTGGGAAGGTGTAATCC-3’] at a final concentration of 

300 nM 

• 36B4d [5’-CCCATTCTATCATCAACGGGTACAA-3’] at a final concentration 

of 500 nM 

Real-time qualitative PCR determines the fractional cycle number (Ct) at which 

the accumulating fluorescence in the well crosses a set threshold of several standard 

deviations that are higher than the fluorescence. A linear plot of Ct versus the amount of 

targeted DNA input was generated to compare the simple relative quantitation of 

unknowns by the standard curve, which was derived from amplification of the serial 

dilutions of a reference DNA sample in the same plate. The value of crossing point 

deviation of the unknown sample versus the standard was extracted to calculate the TL. 

The relative TL was calculated as the ratio of telomere repeats product to the single- 

copy gene (T/S ratio) for each sample in comparison with reference DNA sample. PCR 

was run for twice for each sample with the respective primers. Samples were made into 

duplicates for each run and accepted only if the SD of the Ct values was less than 1. The 

linearity of the standard curves was satisfactory for both the single-copy gene (mean r2 

= 0.98) and the telomere (mean r2 = 0.94). The inter and intra-experiment coefficients of 

variation (CV) for the single-copy gene were 2.9% and 5.6% respectively, and those for 

the telomere were 8.3% and 8.9%, respectively.  
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2.8 Ethical Considerations 

This study was approved by the Research Ethics Committee of the Graduate 

School of Medicine, the University of Tokyo (No.11186) and the Department of 

Medical Research, Ministry of Health, Myanmar (ERC No.009316). A material transfer 

agreement was obtained through the University of Medicine 1, Yangon, Myanmar. The 

objectives and purposes of the study were explained to all study participants before data 

collection. All the participants were voluntary, and the individuals had given written 

informed consent. 

 

2.9 Data Analysis 

All data were entered and rechecked using Microsoft Excel. Statistical analysis 

was performed using Stata 13 (StataCorp LP, Colledge Station, TX, USA). Urinary 

arsenic, cadmium, selenium and lead concentrations were converted to μg/g creatinine 

after adjusting for creatinine over the entire analysis. Since the urinary heavy metals 

concentration data and relative TL data were non-normally distributed, quartiles 

stratification and natural log-transformation were performed to enhance the normality. 

A descriptive analysis was conducted to present the mean, median, interquartile range 

(IQR), SD and percentage. Correlations between urinary heavy metals concentration 

were first analyzed by Spearman’s correlation. The Wilcoxon rank-sum test was applied 

to compare the exposure levels among different birth outcomes.  



 
 

32 
 

Multiple logistic regression models were used to identify the associations 

between prenatal heavy metals exposure and adverse birth outcomes. In the models, the 

dependent variable was either low birth weight (0 or 1) or preterm delivery (0 or 1). The 

independent variables included the creatinine adjusted heavy metals concentration of the 

quartile stratifications. Three different models were developed using the quartile 

stratifications of each heavy metal concentration where model 1 was used for bivariate 

analysis, model 2 was used for selenium adjustment and model 3 was used for selenium 

and other confounder adjustments. Associations between prenatal heavy metals 

exposure and TL were also assessed using similar models by bivariate and multivariate 

linear regression. Later, both bivariate and multivariate logistic regression analyses were 

performed to assess whether a shorter TL was associated with the occurrence of adverse 

birth outcomes.  

Potential confounders, such as maternal age, ethnicity, education, gestational age, 

birth weight, parity, the baby’s sex, mode of delivery, and smoking status were included 

in the regression models on the basis of rational associations in previous studies [39, 46, 

52, 129, 164-166]. Regarding the smoking status, the original questionnaire of this 

study included four responses as “smoke before pregnancy”, “smoke during pregnancy”, 

“passive exposure” and “no exposure at all”. However, only 2.1% of the study 

population had a history of smoking (either before or during pregnancy); therefore, this 

section was recategorized into only two sections as “no exposure at all” and “have or 

ever been or passive exposure”. Since gestational age is strongly correlated with both 

low birth weight and preterm delivery, it was excluded in the models of adverse birth 
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outcomes to avoid overestimation. For all analyses, the significance level was set at p-

value of <0.05.  
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Chapter 3: Results 

3.1 Background Characteristics of Participants  

A total of 493 participants were enrolled during their first visit. Of these, only 

419 participants had complete information with regard to delivery and urine samples for 

analysis, and 409 participants provided the cord blood (Figure 2). The background 

characteristics of the participants are presented in Table 1. Of the 419 participants, the 

mean maternal age was 28 years with an SD value of 6.6; 74.2% of participants were 

Bamar ethnic and 46% had completed primary school education. Most participants were 

either housewives (41.9%) or farmers (36.3%). Only 2% had a history of smoking and 

49.2% reported passive exposure.  

 

[Figure 2: Participation Flow Chart of the Study] 

 

[Table 1: Background Characteristics of Participants (n = 419)] 

 

 

3.2 Information Regarding Household Drinking Water 

Table 2 presents information regarding household drinking water among the 

study population. Overall, a bore well or household pumping of groundwater was the 

most common primary source of drinking water in this study area (89.9%). Only 18.5% 

of participants were aware that their water had been previously tested for arsenic. The 

majority of participants (84.0%) practiced some kind of water treatment method before 

drinking. As shown in Figure 2, the most frequent method was traditional cloth filtration 
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(70.2%), followed by boiling (18.9%), settling down (13.0%), using filtering 

equipment/machine (5.7%), chlorination (3.2%) and others (1.0%). 

 

[Table 2: Information Regarding Household Drinking Water (n = 493)] 

 

[Figure 3: Methods of Household Drinking Water Treatment (n = 414)] 

 

 

3.3 Heavy Metals Exposure  

Heavy metals concentration in the household drinking water is presented in 

Table 3. Of the total 248 drinking water samples; arsenic concentration ranged from 

0.02 μg/L to 197.90 μg/L (median = 2.10 μg/L, IQR; 0.48 - 8.79); 22.6% of drinking 

water samples were higher than the WHO standard of 10 μg/L (Appendix 8). 

Table 4 shows the creatinine-adjusted heavy metals concentrations in maternal 

urine. The median values of adjusted maternal urinary concentrations of arsenic, 

cadmium, selenium, and lead were 74.2 μg/g creatinine (IQR, 45.49 - 126.7), 0.9 μg/g 

creatinine (IQR, 0.5 - 1.4), 22.6 μg/g creatinine (IQR, 17.8 - 29.8), and 1.8 μg/g 

creatinine (IQR, 1.0 - 3.4), respectively. The correlation matrix for the concentration of 

heavy metals in maternal urine is presented in Table 5. A strong positive correlation was 

found between the metal pairs, such as arsenic-cadmium (Spearman’s rho = 0.22), 

arsenic-selenium (Spearman’s rho = 0.36) and arsenic-lead (Spearman’s rho = 0.20), 
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regardless of creatinine adjustment. As shown in Table 6, a significant positive 

correlation was also found between the drinking water arsenic concentration and 

maternal urinary arsenic concentration (Spearman’s rho = 0.30, p < 0.001). 

 

[Table 3: Heavy Metals Concentration in Household Drinking Water (n = 248)] 

 

[Table 4: Maternal Urinary Heavy Metals Concentration (n = 419)] 

 

[Table 5: Correlation Matrix of Maternal Urinary Heavy Metals Concentration 

(Spearman’s rho, n = 419)] 

 

[Table 6: Correlations between Heavy Metals Concentration in Drinking Water and 

Maternal Urine (Spearman’s rho, n = 240)] 

 

 

3.4 Maternal Health and Delivery Record Information 

Table 7 presents information regarding the pregnancy and childbirth of the 

participants. The mean gestational age was 38.5 weeks (SD = 1.9). Of the 419 

participants, 67.5% received antenatal care for more than four times, and their first 



 
 

37 
 

antenatal visit was at the gestational age of 15.6 weeks (SD = 6.1). Among the 

newborns, 56.8% were male and 43.2% were female. The birth weight ranged from 

1510 g to 6300 g, with an average value of 3171.7 g (SD = 493.0). In total, 19% were 

born prematurely and 6% were born as low birth weight babies.  

 

[Table 7: Maternal and Newborn Characteristics (n = 419)] 

 

 

3.5 Prenatal Heavy Metals Exposure and Birth Outcomes 

Tables 8a, 8b and 8c show the associations between maternal urinary heavy 

metals concentration and dichotomous outcomes of low birth weight and preterm 

delivery. Bivariate analysis revealed that an increased risk of low birth weight was not 

significantly associated with a higher maternal urinary cadmium concentration (lowest 

vs highest, odds ratio (OR) = 2.49, 95% CI: 0.90, 6.78, p = 0.078). The association was 

significant (lowest vs highest, adjusted OR (AOR) = 4.79, 95% CI: 1.25, 18.37, p = 

0.022) after adjusting for maternal age, maternal education, the baby’s sex, smoking 

status, primigravida and antenatal visits in the multivariate logistic regression. 

Additional models were also performed including the gestational age and the finding 

was not different. Maternal education (AOR = 0.63, 95% CI: 0.41, 0.98, p = 0.039) and 

primigravida (AOR = 3.73, 95% CI: 1.15, 12.13, p = 0.029) were also found to be 

strong predictors of low birth weight. There was no significant association between 

maternal heavy metals concentration and preterm delivery. 
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[Table 8a: Associations between Prenatal Arsenic Exposure and Adverse Birth 

Outcomes (n = 419)] 

 

[Table 8b: Associations between Prenatal Cadmium Exposure and Adverse Birth 

Outcomes (n = 419)] 

 

[Table 8c: Associations between Prenatal Lead Exposure and Adverse Birth Outcomes 

(n = 419)] 

 

 

3.6 Prenatal Heavy Metals Exposure and Newborn Leucocyte TL 

The median relative TL of the study population was 0.9 (IQR, 0.5 - 1.3). For 

each heavy metal (arsenic, cadmium and lead), three different models were developed to 

examine the associations between heavy metals exposure and TL as presented in Tables 

9a, 9b and 9c. Model 1 was the bivariate analysis of heavy metals concentration and TL. 

The linear regression model 2 was adjusted for selenium concentration to examine the 

mediation effect of selenium. Model 3 was developed by including potential covariates 

such as maternal age, education, ethnicity, smoking status, gestational age, primigravida, 

mode of delivery, the baby’s sex and birth weight in addition to selenium concentration. 

As shown in Table 9a, on bivariate analysis, urinary arsenic concentration was 

significantly associated with a shorter TL (lowest vs highest, coefficient = - 0.17, 95% 
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CI: - 0.26, - 0.08, p < 0.001). The associations remained significant even after adjusting 

for confounders; newborns with higher prenatal arsenic exposure had a shorter TL 

(lowest vs highest, coefficient = - 0.13, 95% CI: - 0.22, - 0.03, p = 0.002) (Table 9a). 

Similarly, cadmium concentration was significantly associated with a shorter TL across 

quartiles (lowest vs highest, coefficient = - 0.19, 95% CI: - 0.28, - 0.08, p < 0.001) 

(Table 9b). As presented in Table 9c, there was also a negative association between lead 

concentration and newborn TL (lowest vs highest, coefficient = - 0.11, 95% CI: - 0.20, - 

0.02, p = 0.020). Selenium concentration did not significantly buffer TL shortening, 

induced by arsenic, cadmium or lead exposure. 

  

[Table 9a: Associations between Prenatal Arsenic Exposure and Newborn Leucocyte 

TL (n = 409)] 

 

[Table 9b: Associations between Prenatal Cadmium Exposure and Newborn Leucocyte 

TL (n = 409)] 

 

[Table 9c: Associations between Prenatal Lead Exposure and Newborn Leucocyte TL 

(n = 409)] 

 

 

3.7 Adverse Birth Outcomes and Newborn Leucocyte TL  

Bivariate analysis followed by multivariate logistic regression was performed to 

identify associations between adverse birth outcomes and newborn leucocyte TL. As 
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shown in Table 10, there was no significant association between newborn TL and any of 

the adverse birth outcomes, specifically, low birth weight (AOR = 0.76, 95% CI: 0.22, 

2.69, p = 0.676) and preterm delivery (AOR = 1.34, 95% CI: 0.60, 3.03, p = 0.476). 

 

[Table 10: Associations between Adverse Birth Outcomes and Newborn Leucocyte TL 

(n = 409)] 
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Chapter 4: Discussion 

4.1 Summary of Findings 

To the best of my knowledge, this is the first study to explore the effect of 

prenatal heavy metals exposure on newborn TL. Moreover, this is the first report on the 

prenatal heavy metals exposure and adverse birth outcomes among a Myanmar 

population. This study revealed that environmental cadmium exposure is comparatively 

high in Myanmar. Prenatal cadmium exposure had a significant association with the 

likelihood of a low birth weight while preterm delivery was not significantly influenced 

by prenatal heavy metals exposure. Prenatal arsenic, cadmium and lead exposure 

significantly shortened the newborn leucocyte TL. The associations were robust even 

after adjusting maternal age, education, ethnicity, smoking status, parity, gestational age, 

mode of delivery, the baby’s sex and baby’s weight. The underlying pathophysiology of 

adverse birth outcomes was not associated with TL shortening in this study. 

     

4.2 Heavy Metals Exposure 

This study firstly examined the extent of heavy metals contamination among the 

Myanmar population. The arsenic concentration of drinking water in this study (22.6%) 

was lower than the previous national report which reported that the arsenic 

concentration in 29.18% of samples was higher than the WHO standards of 10 μg/L 

[149]. This is probably because previous reports directly examined arsenic 

contamination in the source of drinking water while this study assessed the household 

drinking water where treatment and practices before drinking and handling water may 
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have influenced the contamination level. Since there is limited information on the 

concentrations of other heavy metals in Myanmar, the findings of this study support the 

baseline evidence of cadmium, selenium and lead concentrations in the household 

drinking water.  

While assessing heavy metals exposure using biological samples, the urinary 

arsenic concentration among the Myanmar population (74.22 μg/g creatinine) was much 

lower than other exposed populations of Nepal (mean = 196 μg/g creatinine) and India 

(mean = 290 μg/L) [101, 111]. The exposure level of participants examined in this study 

was also lower than the concentration of an unexposed Argentinean population (median 

= 230 μg/L), and Bangladesh population (mean = 154 μg/L) [54, 103]. In the case of 

cadmium, the urinary cadmium concentration in this study (geometric mean (GM) = 

0.86 μg/g creatinine) was comparatively higher than previous findings of non-

industrialized polluted areas of the U.S. (mean = 0.46 μg/g creatinine) and suspected 

contaminated areas of South Africa (GM = 0.27 μg/g creatinine) [167, 168]. The 

exposure level was also higher on comparison with high rice-consuming countries, such 

as Bangladesh (median = 0.63 μg/g creatinine), Nepal (GM = 0.33 μg/g creatinine), and 

China (GM = 0.55 μg/g creatinine) [50, 52, 111]. The median selenium concentration of 

this study was lower than 30 μg/g creatinine which is similar to the concentration of the 

normal reference range [169]. The urinary lead concentration in the present study was 

also found to be in a similar range to those of previous reports from Japan and Korea 

[47, 170]. 

This study also found significant correlations between metals pairs in the 

maternal urine regardless of creatinine adjustment. Even though the possibility of over-
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adjustment by creatinine could not be ruled out, this is in consistence with the previous 

studies which showed the correlations between urinary cadmium-selenium pair (r = 0.16, 

p = 0.02), cadmium-lead pair (r = 0.49, p = 0.00), and arsenic-selenium pair (r = 0.68, p 

< 0.01) [46, 171]. The results are conceivable since accumulation of one metal in body 

could contribute the potential excretion of others. For example, selenium intake can 

influence arsenic methylation, metabolism and urinary excretion [171]. Therefore, the 

correlations are expected because of the coexistence of metals in the body. 

In this study, there was a strong positive correlation between arsenic 

concertation in drinking water and maternal urine (Spearman’s rho = 0.30, p < 0.001). 

The finding of this study suggested that the source of arsenic exposure is probably from 

contaminated drinking water through ingestion. However, regarding cadmium, lead and 

selenium, there was no positive correlation between the drinking water and maternal 

urine, suggesting the importance of tracing the other sources of contamination. Future 

interventions should focus to increase the public awareness on arsenic removal and 

treatment to improve safer water supply.  

This is the first study to detect a comparatively higher concentration of cadmium 

among a Myanmar population. Although smoking being a major source of cadmium 

exposure, there was no significant association between smoking status and urinary 

cadmium concentration in this study. Therefore, these results suggest that the main 

source of cadmium exposure in Myanmar is the diet (either water or food). In a previous 

study comparing the cadmium content in different food items, the GM for cadmium in 

rice (50 ng/g) was significantly higher than that of wheat-derived foods such as bread 

(16 ng/g), flour (19.3 ng/g) and noodles (4 ng/g) [172]. Previous studies also revealed 
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that cadmium from the soil was absorbed and retained in rice to a great extent [173], 

and that cadmium in rice exclusively correlates with the cadmium body burden [174]. In 

Myanmar, rice is the staple food and other rice-derived foods are also major 

components of daily meals. Therefore, it is important to trace the potential sources of 

cadmium contamination while tackling related health concerns in Myanmar. 

 

4.3 Prenatal Heavy Metals Exposure and Birth Outcomes  

This study identified an association between maternal urinary cadmium 

concentration and an increased likelihood of a low birth weight. Low birth weight is 

considered a significant public health concern since it is highly associated with neonatal 

mortality and disease risk in adulthood [175]. Many studies have discussed the effects 

of arsenic, cadmium and lead exposure on several birth outcomes [39, 43, 46-49, 176, 

177]. Among them, cadmium was found to have the most distinct effects on 

anthropometric measures of newborns. For example, a study conducted among the 

Saudi Arabian population reported that the cadmium concentration in umbilical cord 

blood was inversely correlated with crown-heel length, birth weight, Apgar 5-minute 

scores and small for gestational age whereas it was not associated with lead or mercury 

concentration in the same population [43]. This finding is also consistent with previous 

studies where prenatal cadmium exposure led to decreased growth of the fetus in utero, 

leading to decrease in birth weight among the exposed population of similar 

concentrations in Bangladesh (median = 0.63 μg/L), Saudi Arabia (mean = 0.99 μg/L) 

and Japan (GM = 0.77 μg/L) [43, 47, 177]. This effect remained significant at a lower 

concentration (GM = 0.25 μg/L ) among a South Africa coastal population, suggesting 
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that even a lower concentration of cadmium exposure may trigger alterations in fetal 

growth [168].  

The underlying mechanisms of cadmium induced low birth weight have been 

postulated in many previous studies. Cadmium may interfere with zinc transfer to the 

fetus resulting in intrauterine growth retardation [178]. Cadmium may also be involved 

in fetoplacental hormonal alterations such as in the production of placental progesterone, 

thyroid stimulating hormone and placental leptin synthesis which have been linked to 

impaired fetal growth [24, 25, 179]. Moreover, experimental studies have provided 

supportive evidence that cadmium may impair placental circulation, inhibiting the 

transport of nutrients from the mother to the fetus [180, 181]. In contrast with previous 

studies, no association was found between maternal arsenic and lead exposure and low 

birth weight in this study [49, 176, 182]. This could be explained by the comparatively 

low concentrations of urinary arsenic and lead among our study population since 

exposure dose and timing play a critical role in intrauterine fetal growth [183].  

This study also aimed to identify associations between prenatal heavy metals 

exposure and preterm delivery. However, in this study, prenatal heavy metals exposure 

was not significantly associated with preterm delivery. This finding is consistent with a 

previous report in which the arsenic concentration in drinking water was not 

significantly associated with an increased risk of preterm delivery in Taiwan [51]. In the 

case of cadmium, the result is contradictory to previous findings which showed that the 

preterm birth rate was higher with an increased urinary cadmium concentration in China 

and the incidence of preterm delivery among the higher urinary cadmium concentration 

group (≥ 2 nmol/mmol creatinine) was higher than among those with a lower cadmium 
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concentration in Japan [52, 184]. Regarding lead exposure, the result was in line with a 

previous study, conducted among Swedish and Polish women, which revealed that the 

lead concentration in the myometrium and placenta was not significantly elevated in 

preterm delivery compared to term delivery [185] while other studies in China reported 

that a higher maternal blood lead level (≥ 10 μg/dL) doubled the risk of preterm 

delivery [186]. The inconsistencies in results may be explained by differences in 

exposure levels and sensitivity of the population which may vary in response to 

exposure. Moreover, gestational age was typically estimated to determine preterm 

delivery based on the date of last menstrual period and/or ultrasound data [142]. The 

variability in gestational age by regions and assessment protocols may also explain the 

inconsistencies. 

  

4.4 Prenatal Heavy Metals Exposure and Newborn Leucocyte TL 

In the current study, prenatal arsenic exposure was negatively associated with 

newborn TL. A handful of experimental and epidemiological studies have assessed the 

associations between arsenic exposure and TL. However, the findings are limited and 

disputable. For example, there are few contradictory findings that showed a positive 

association between arsenic exposure and TL. Specifically, a study conducted in India 

revealed that arsenic-exposed individuals with skin lesions had a significantly longer TL 

than control subjects [101]. Another study in Bangladesh also reported that a longer TL 

was found among the high exposure group compared to the low exposure group [100]. 

Meanwhile, some studies proposed that arsenic exposure had shortened TL and 

decreased cell survival in animal models and in vitro studies [79, 98]. Consistent with 
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these results, a recent study among Italian young adults also reported a negative 

significant effect of arsenic exposure on leucocyte TL [102]. 

 Contextually, the observation of the current study is plausible when taking into 

consideration the mechanisms of arsenic toxicity, such as the production of ROS, and 

alterations in the DNA repair system which, in turn, could result in telomere shortening 

[65, 79]. Telomeric DNA is more vulnerable to attack by ROS because of its guanine-

rich structures [65]. Telomeric DNA repair function can be affected directly by arsenic-

induced ROS through DNA strands breaking or by activation of genes involved in the 

repair of telomeric DNA [65, 100]. In addition, telomerase activity can be interfered 

with the oxidative DNA damage through subsiding the binding of shelterin complex 

proteins such as TRF1 and TRF2, leading to a deterioration in telomere maintenance 

[187]. The efficacy of arsenic metabolism may also play a role since it can modify the 

effects on telomeres; slower arsenic metabolism could result in a higher risk of arsenic-

induced TL alterations and carcinogenicity [103]. The shortened TL observed in this 

study could be due to the direct and/or indirect damage of TL by arsenic through the 

above-mentioned pathways. In contrast to previous studies among highly-exposed 

populations with clinical manifestations [100, 101, 103], the exposure level in this study 

was comparatively lower. Moreover, this study examined newborns’ TL to diminish the 

combined carcinogenic effects developed by other environmental factors, and the 

duration of exposure was relatively short in our study population. Therefore, the 

inconsistent results are coherent since telomere lengthening could be expected from 

long-term exposure of arsenic and the carcinogenic mode of arsenic may also be 
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involved in telomere lengthening of pre-malignant cells to increase the lifespan [100, 

101].  

Upon quartile stratification of cadmium exposure, this study found a significant 

negative trend across quartiles although the linear association was not significant. Our 

finding is consistent with the previous study among eight years old children in Poland 

which found no linear association between cadmium exposure and TL [78]. Our results 

are also consistent with previous findings, which showed that cadmium exposure 

(highest quartile vs lowest quartile) was inversely associated with TL (β = - 5.54; 95% 

CI: - 0.42, - 0.47 for blood and β = - 4.50; 95% CI: - 8.79, - 0.20 for urine) among the 

U.S adults [110]; and another study among Nepalese adolescents that reported a 

significant linear downward trend between cadmium quintiles and salivary TL (P trend = 

0.01) [111]. However, our results contradict a study in China, which reported that 

placental cadmium concentration was linearly associated with placental telomere 

shortening (r = - 0.138, p = 0.013) [23].  

The effect of cadmium on TL has been biologically postulated in many previous 

studies. Cadmium induces oxidative stress and inflammatory chemicals that can 

potentially accelerate TL shortening [84, 85]. Moreover, cadmium is also an established 

mutagenic metal, involved in the DNA repair system either through ROS induction or 

through enzymatic reaction due to its divalent ion action in replacing zinc ions [114, 

115]. The non-linear association revealed in this study could be explained by the dose of 

cadmium exposure passing the placental barrier during pregnancy and the differing 

study population. Although both inorganic arsenic and arsenic metabolites can freely 

pass through the placental barrier [16], cadmium rather accumulates in the placental 
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tissues; thus, the placental cadmium level was highly correlated with the maternal blood 

cadmium level [38, 42] whereas the maternal blood cadmium level did not correlate 

with cord blood cadmium level [38, 188]. Taken together, it is possible that newborn TL 

was unviolated due to the limited transfer of cadmium from the mother to the fetus 

except at higher concentrations. Therefore, the non-linear association and the negative 

quartile trend between cadmium exposure and newborn TL are conceivable. 

In this study, prenatal lead exposure was also negatively associated with 

newborn TL. In accordance, a study in Poland reported that the blood lead level was 

inversely associated with leucocyte TL among both children (r = - 0.25, p = 0.013) and 

adults (β = - 0.004; p = 0.006) [78, 116]. Another study among Chinese battery workers 

also found an inverse association between the blood lead level and peripheral white 

blood TL (r = - 0.70, p < 0.0001) [117]. In contrast, our finding is contradictory to 

previous results where lead exposure was not associated with placental TL among a 

Chinese population [23] and leucocyte TL among a U.S. population [110].  

Biologically, the effect of lead exposure on TL was recognizable since lead has 

been proven to promote ROS production; by inducing oxidative stress [1, 121]. The 

divalent ionic action of lead could also interfere with the uptake of certain elements 

such as zinc, calcium and magnesium which may ultimately affect DNA repair enzymes 

[26, 121]. Meanwhile, a recent study that examined blood heavy metals concentration 

among pregnant Korean women and their children up to five-years old revealed that 

lead concentration was lowest in the cord blood and highest in 24-36 month-old 

children, suggesting that children are at a higher risk of lead contamination from more 

hand-to-mouth activities at those ages [189]. The effect of lead on TL may be expressed 
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even at a low concentration and cumulative exposure should be considered since it is 

possible that lead exposure may affect TL even after birth in early childhood.  

 This study found no buffering effect of selenium on newborn TL shortening 

induced by arsenic, cadmium or lead. So far, no previous epidemiological study has 

discussed the effect of selenium on TL among a human population. Some experimental 

studies have reported that selenium prevents the shortening of TL on yeast cells due to 

its antioxidant property and it was also shown to exhibit an antimutagenic effect by 

inhibiting telomerase activity in cancer cells [190, 191]. However, the present study 

found no mediation effect of selenium which could probably be explained by the 

interaction between heavy metals that may overcome the effect of selenium on newborn 

TL. 

The findings of the present study underline the importance of heavy metals 

exposure during prenatal life which results in TL shortening. In this study, newborns of 

the highest exposure group had 11% to 19% shorter TL than the lowest exposure group. 

This illustrates that newborns of highly exposed mothers are biologically older than 

newborns of unexposed mothers in terms of TL. This variation at birth may diminish the 

buffering capacity of TL to postnatal influence which may increase the risk of 

adulthood diseases.  

 

4.5 Adverse Birth Outcomes and Newborn Leucocyte TL 

This study found that newborn leucocyte TL was not significantly associated 

with either low birth weight or preterm delivery. Our finding is consistent with a 
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previous report of three cohort studies in Finland, which showed that leucocyte TL did 

not correlate with birth weight, birth height or gestational age at birth in any of the 

cohorts [192]. Our result is also in line with a previous prospective cohort study in the 

U.K., which reported that small for gestational age babies and their mothers had no 

significant shorter TL than term babies [193]. Together with the previous findings, our 

results support the idea that the pathophysiology behind low birth weight and preterm 

delivery was not correlated with newborn telomere homeostasis.  

In contrast, there are also differing results among previous studies. For example, 

a previous study on TL among preterm (< 37 gestational weeks) and full-term (> 37 

gestational weeks) babies found a significant decrease in TL between 27 and 32 weeks 

of gestation while no association was observed between 33 and 42 weeks of gestation 

[194]. These results are in concordance with the explanation that the telomerase activity 

of placental tissues is highest during the first trimester and decreases over time during 

pregnancy [126]. Therefore, the conflicting results are understandable since our study 

recruited pregnant women in their third trimester (mean gestational age = 38.5 weeks) 

to minimize the physiological confounding effect of gestational age on TL. In another 

study, placental TL was significantly lower among intrauterine growth restriction babies 

compared to normal uncomplicated control babies [132]. This inconsistency could be 

explained by the different nature of samples where the present study measured newborn 

leucocyte TL. Placental TL is considered an important factor in the physiology of 

placental development [125, 131, 132]. Across the gestation period, placental cells 

replicate rapidly to fulfil the increasing demands of fetal growth [125]. As an adaptive 

response, placental TL shortening indicates placental aging during pregnancy [131, 132]. 
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Therefore, it is possible that the placental TL may be more responsible for the effects of 

adverse birth outcomes while maintaining fetal homeostasis than fetal TL. 

 

4.6 Strengths and Limitations  

This study drew on many important strengths. The study design was a birth-

cohort prospective design and included a broad information on potential confounders. 

The study was conducted at three public general hospitals to minimize the selection bias. 

Birth outcomes data were extracted from the medical records of township- and district-

level hospitals where well-trained health professionals measured and recorded the birth 

information. In addition, before the actual data collection, advocacy and training 

sessions were given to the local health professionals in advance to make them aware of 

the significance of obtaining accurate information. The concentrations of heavy metals 

were measured using a sensitive, robust and well-validated method (ICP-MS), and was 

assured with certified reference materials. Multiple important heavy metals were 

examined rather than focusing on only one heavy metal. TL was measured from a 

highly accessible source of DNA, blood leucocytes since leucocyte TL is largely 

heritable and the attrition may be influenced by environmental factors [195, 196]. 

Moreover, this is the first study to determine whether prenatal heavy metals exposure 

affects newborns TL. This is also the first report on the extent of prenatal heavy metals 

exposure and its associations with adverse birth outcomes among a Myanmar 

population. 
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Some limitations should also be addressed in this study. The present study failed 

to control the genetic factors and prenatal exposure to other toxic chemicals which 

could collectively affect the outcomes. Nutritional intake was not fully considered in 

this study, although it is an important predictor of low birth weight [197]. Although the 

antenatal attendance is more than 78% in this study area [152], there is the possibility of 

missing eligible participants. Information on birth outcomes was extracted from the 

hospitals’ medical records, which may differ according to measurement protocols. 

Regarding TL, this study raised some issues to be focused on in future research. 

Maternal TL should be measured to investigate the mode of inheritance from mothers to 

newborns. It would also be worthwhile to perform a longer prospective study with 

repeated measurements of TL and the assessment of health outcomes later in life.  
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Chapter 5: Conclusions and Perspectives 

The present study provides baseline information concerning environmental 

heavy metals exposure among a Myanmar population. This study revealed that 

Myanmar mothers are comparatively highly exposed to cadmium which should be 

considered a public health threat. Prenatal exposure to cadmium was positively 

associated with low birth weight in Myanmar. Furthermore, this is the first study to 

reveal the impact of prenatal heavy metals exposure on newborn TL. This study 

identified that a strong and independent inverse association between prenatal arsenic, 

cadmium and lead exposure and newborn TL. However, the risk of adverse birth 

outcomes was not associated with newborn leucocytes TL in this study.  

Based on existing research, the TL at birth predicts the TL later in life, and the 

findings of this study revealed that in utero heavy metals exposure could predict TL at 

birth. Therefore, future public health measures should integrate interventions to reduce 

heavy metals contamination with special emphasis on pregnant women. Meanwhile, 

compelling prospective studies are warranted to predict the early life developmental 

effects and ongoing health risks among individuals with a shorter TL. Considering TL 

as a biomarker, future insights should incorporate the dose-response effect of 

environmental heavy metals exposure risks to foresee preceding and/or present diseases 

which could provide further important insights into the mechanisms of disease 

processes. 
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Table 1: Background Characteristics of Participants (n = 419) 

Characteristics n  % Mean  SD 

Age (years) 419  27.9 6.6 

Religion     

 Buddhist  376 89.7   

 Christian 41 9.8   

 Others  2 0.5   

Ethnicity     

 Bamar  311 74.2   

 National races†  106 25.3   

 Others 2 0.5   

Education     

 Illiterate  7 1.7   

 Read and write  66 15.8   

 Primary school completed 193 46.1   

 Middle school completed  81 19.3   

 High school completed  44 10.5   

 Graduate and above  28 6.9   

Occupation      

 Unemployed or housewives  176 41.9   

 Farmers 152 36.3   

 Private sectors 8 1.9   

 Government officers 14 3.3   

 Own business 32 7.6   

 Others  37 8.8   

Monthly household income # (USD) 296  124.2 55.7 

Hospitals     

 Kyaungone 153 36.5   

 Kyonpyaw 139 33.2   

 Ahtaung 127 30.3   

Smoking status     

 Not at all 210 50.1   

 Have or ever been or passively exposed  209 49.9   

†National races include Kachin, Kayar, Kayin, Chin, Mon, Yakhine and Shan. 

# 1 USD = 1224 MMK as of Sep, 2016. 
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Table 2: Information Regarding Household Drinking Water (n= 493) 

Characteristics Number Percentage 

Primary source of drinking water   

 Bore well/Hand pump/ Motor pump 419 89.9 

 Community well 14 2.8 

 River/ Lake water/Rain water  6 1.2 

 Household water supply (Municipal piped) 10 2.0 

 Others 44 8.5 

Duration of primary water source   

 Less than 2 years 125 25.3 

 2 – 20 years 253 51.3 

 More than 20 years 85 17.2 

 Don’t know 30 6.1 

Any treatment before drinking    

 No  79 16.0 

 Yes 414 84.0 

If yes, how often   

 Always  390 94.2 

 Usually 14 3.4 

 Sometimes  10 2.4 

 Few 0 0 

Water testing   

 Within 1 month 20 4.1 

 Within 1 – 3 months  45 9.9 

 Within 3 – 6 months  73 14.8 

 More than 6 months  144 29.2 

 Never 199 40.4 

 Missing  8 1.6 

Ever been tested for arsenic   

 No  245 49.7 

 Yes  91 18.5 

 Don’t know 157 31.8 

If yes, results   

 Above standard (>= 50 μg/L) 12 13.2 

 Below standard (< 50 μg/L) 59 64.8 

 Don’t know 20 22 
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Table 3: Heavy Metals Concentration in Household Drinking Water (n = 248) 

Concentration (μg/L) Median IQR Detection Limit 

Arsenic  2.10 (0.48 – 8.79) 0.015 

Cadmium  0.01 (0.01 – 0.01) 0.013 

Selenium  0.01 (0.01 – 0.02) 0.017 

Lead 0.02 (0.02 – 0.02) 0.049 
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Table 4: Maternal Urinary Heavy Metals Concentration (n = 419) 

Concentration Median IQR Detection Limit 

Unadjusted for Creatinine (μg/L)    

Arsenic  55.18 (30.54 – 94.56) 0.239 

Cadmium  0.62 (0.31 – 1.08) 0.002 

Selenium  16.40 (10.19 – 25.6) 0.361 

Lead 1.33 (0.42 – 2.89) 0.843 

Adjusted for Creatinine  

(μg/g creatinine) 

   

Arsenic  74.22 (45.48 – 126.67)  

Cadmium  0.86 (0.50 – 1.40)  

Selenium  22.57 (17.79 – 29.78)  

Lead 1.80 (1.04 – 3.43)  

 

  



 
 

81 
 

Table 5: Correlation Matrix of Maternal Urinary Heavy Metals Concentration 

(Spearman’s rho, n=419) 

 Arsenic  Cadmium  Selenium  Lead 

Unadjusted for Creatinine  

Arsenic  1.00    

Cadmium  0.41* 1.00   

Selenium  0.60* 0.64* 1.00  

Lead  0.44* 0.51* 0.62* 1.00 

Adjusted for Creatinine 

Arsenic  1.00    

Cadmium  0.22* 1.00   

Selenium  0.36* 0.41* 1.00  

Lead  0.20* 0.27* 0.26* 1.00 

* p < 0.001 
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Table 6: Correlations between Heavy Metals Concentration in Drinking Water 

and Maternal Urine (Spearman’s rho, n = 240) 

Variable Spearman’s rho p - value 

Water arsenic – urine arsenic 0.30 < 0.001 

Water cadmium – urine cadmium - 0.14 0.03 

Water lead – urine lead - 0.02 0.08 

Water selenium – urine selenium - 0.09 0.69 
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Table 7: Maternal and Newborn Characteristics (n = 419)  

Characteristics n  % Mean  SD 

Gestational age (weeks) 419  38.5 1.9 

Primigravida      

 No  181 43.2   

 Yes 238 56.8   

Antenatal visits      

 Less than four times  136 32.5   

 four or more than four times  283 67.5   

Gestational week of first antenatal visit  419  15.6 6.1 

Mode of delivery     

 Normal spontaneous delivery  188 44.9   

 Assisted delivery ᵞ  7 1.7   

 Cesarean delivery   224 53.5   

Baby’s sex     

 Male  238 56.8   

 Female  181 43.2   

Birth weight (g) 419  3171.7 493.0 

Birth outcomes     

 Normal alive 329 78.5   

 Stillbirth 2 0.5   

 Preterm ᶿ 80 19.1   

 Congenital abnormality 2 0.5   

 Low birth weight † 26 6.2   

Relative leucocyte TL (T/S ratio) 409  0.9 ª (0.5 – 1.3) ᵇ 

ᵞ Assisted delivery includes vacuum or forceps deliveries. 

ᶿ Any delivery before 37 weeks of gestation regardless of birth weight. 

† Birth weight < 2500 g regardless of gestational age at birth. 

TL: Telomere length. ª Median. ᵇ IQR.
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Table 8a: Associations between Prenatal Arsenic Exposure and Adverse Birth Outcomes (n= 419) 

 

Characteristics 
Low Birth Weight † Preterm ᵞ 

Model 1  ͣ  Model 2 ᵇ Model 3 c Model 1  ͣ  Model 2 ᵇ Model 3 c 

OR (95% CI) AOR (95% CI) AOR (95% CI) OR (95% CI) AOR (95% CI) AOR (95% CI) 

Arsenic concentration ᶿ        

  Quartile 1 (< 45.5) ref ref ref ref ref ref 

  Quartile 2 (45.5 – 74.2) 1.53 (0.47, 4.98) 1.55 (0.47, 5.13) 1.23 (0.36, 4.25) 0.80 (0.40, 1.59) 0.79 (0.39, 1.59) 0.80 (0.38, 1.66) 

  Quartile 3 (74.2 – 126.7) 1.71 (0.54, 5.41) 1.78 (0.54, 5.83) 1.75 (0.51, 6.04) 0.77 (0.39, 1.53) 0.79 (0.39, 1.59) 0.89 (0.43, 1.87) 

  Quartile 4 (> 126.7) 1.40 (0.48, 4.73) 1.41 (0.39, 5.08) 1.13 (0.29, 4.35) 1.06 (0.54, 2.06) 1.15 (0.57, 2.32) 1.28 (0.61, 2.70) 

Selenium concentration ᶿ        

  Quartile 1 (< 17.8)  ref ref  ref ref 

  Quartile 2 (17.8 – 22.6)  0.71 (0.23, 2.14) 0.65 (0.20, 2.03)  1.84 (0.91, 3.71) 1.55 (0.76, 3.20) 

  Quartile 3 (22.6 – 29.8)  0.44 (0.13, 1.55) 0.43 (0.11, 1.60)  1.65 (0.81, 3.36) 1.39 (0.66, 3.20) 

  Quartile 4 (> 29.8)  0.91 (0.31, 2.66) 0.92 (0.30, 2.91)  0.94 (0.42, 2.09) 0.76 (0.33, 1.74) 

Maternal age (years)   1.05 (0.98, 1.13)   1.03 (0.98, 1.07) 

Maternal education   0.63 (0.40, 0.97) *   0.87 (0.69, 1.11) 

Primigravida  

(ref: non primigravida) 

  4.29 (1.36, 13.55) *   1.75 (0.90, 3.41) 

Antenatal visits ≥ 4 times  

(ref: < 4 times) 

  0.59 (0.25, 1.39)   1.33 (0.75, 2.08) 

Mode of delivery 

(ref: normal vaginal delivery) 

  0.63 (0.27, 1.48)   0.42 (0.25, 0.70) ** 

Baby’s sex (ref: male)   1.61 (0.70, 3.68)   1.25 (0.75, 2.08) 

Smoking Status (ref: no exposure)   0.97 (0.42, 2.22)   1.55 (0.92, 2.61) 

*p < 0.05. ** p < 0.01.  

ᶿ Adjusted for creatinine (μg/g creatinine); † Birth weight < 2500 g regardless of gestational age at birth; ᵞ Any delivery before 37 weeks 

of gestation regardless of birth weight. 

a Bivariate logistic regression; b Multivariate logistic regression adjusted for selenium concentration; c Multivariate logistic regression 

adjusted for maternal age, maternal education, parity, baby’s sex, mode of delivery, smoking status and selenium concentration.
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Table 8b: Associations between Prenatal Cadmium Exposure and Adverse Birth Outcomes (n= 419) 

 

Characteristics 
Low Birth Weight † Preterm ᵞ 

Model 1  ͣ  Model 2 ᵇ Model 3 c Model 1  ͣ  Model 2 ᵇ Model 3 c 

OR (95% CI) AOR (95% CI) AOR (95% CI) OR (95% CI) AOR (95% CI) AOR (95% CI) 

Cadmium concentration ᶿ        

  Quartile 1 (< 0.5) ref Ref ref ref ref ref 

  Quartile 2 (0.5 – 0.9) 0.34 (0.07, 1.71) 0.34 (0.07, 1.73) 0.36 (0.07, 1.91) 1.42 (0.72, 2.78) 1.49 (0.75, 2.94) 1.41 (0.69, 2.87) 

  Quartile 3 (0.9 – 1.4) 0.91 (0.27, 3.09) 1.12 (0.32, 3.91) 1.16 (0.31, 4.40) 1.20 (0.60, 2.40) 1.16 (0.60, 2.37) 1.09 (0.51, 2.32) 

  Quartile 4 (> 1.4) 2.47 (0.90, 6.78) 3.38 (1.10, 10.43) * 4.79 (1.25, 18.37) * 0.93 (0.46, 1.92) 0.98 (0.57, 2.11) 0.86 (0.36, 2.05) 

Selenium concentration ᶿ        

  Quartile 1 (< 17.8)  Ref ref  ref ref 

  Quartile 2 (17.8 – 22.6)  0.65 (0.21, 2.01) 0.53 (0.16, 1.72)  1.80 (0.89, 3.63) 1.53 (0.74, 3.16) 

  Quartile 3 (22.6 – 29.8)  0.29 (0.08, 1.06) 0.26 (0.64, 1.02)  1.75 (0.85, 3.61) 1.53 (0.72, 3.25) 

  Quartile 4 (> 29.8)  0.52 (0.16, 1.66) 0.43 (0.12, 1.49)  1.01 (0.45, 2.25) 0.88 (0.38, 2.03) 

Maternal age (years)   0.99 (0.92, 1.08)   1.03 (0.98, 1.08) 

Maternal education   0.63 (0.41, 0.98) *   0.88 (0.69, 1.12) 

Primigravida  

(ref: non primigravida) 

  3.73 (1.15, 12.13) *   1.79 (0.92, 3.46) 

Antenatal visits ≥ 4 times  

(ref: < 4 times) 

  0.54 (0.23, 1.28)   1.29 (0.73, 2.28) 

Mode of delivery 

(ref: normal vaginal delivery) 

  0.58 (0.24, 1.39)   0.42 (0.25, 0.70) ** 

Baby’s sex (ref: male)   1.52 (0.64, 3.58)   1.26 (0.75, 2.11) 

Smoking status (ref: no exposure)   0.87 (0.37, 2.01)   1.53 (0.91, 2.56) 

*p < 0.05, ** p < 0.01, ***p < 0.001.  

ᶿ Adjusted for creatinine (μg/g creatinine); † Birth weight < 2500 g regardless of gestational age at birth; ᵞ Any delivery before 37 weeks 

of gestation regardless of birth weight. 

a Bivariate logistic regression; b Multivariate logistic regression adjusted for selenium concentration; c Multivariate logistic regression 

adjusted for maternal age, maternal education, parity, baby’s sex, mode of delivery, smoking status and selenium concentration.



 
 

86 
 

Table 8c: Associations between Prenatal Lead Exposure and Adverse Birth Outcomes (n= 419) 

 

Characteristics 
Low Birth Weight † Preterm ᵞ 

Model 1  ͣ  Model 2 ᵇ Model 3 c Model 1  ͣ  Model 2 ᵇ Model 3 c 

OR (95% CI) AOR (95% CI) AOR (95% CI) OR (95% CI) AOR (95% CI) AOR (95% CI) 

Lead concentration ᶿ        

  Quartile 1 (< 1.0) ref ref ref Ref ref ref 

  Quartile 2 (1.0 – 1.8) 0.86 (0.32, 2.33) 0.82 (0.30, 2.24) 1.00 (0.34, 2.90) 1.04 (0.52, 2.05) 1.10 (0.55, 2.18) 1.22 (0.60, 2.49) 

  Quartile 3 (1.8 – 3.4) 0.57 (0.18, 1.75) 0.57 (0.18, 1.78) 0.56 (0.18, 1.87) 0.94 (0.47, 1.91) 0.94 (0.46, 1.91) 0.98 (0.47, 2.05) 

  Quartile 4 (> 3.4) 0.44 (0.13, 1.49) 0.43 (0.12, 1.51) 0.43 (0.12, 1.58) 1.13 (0.70, 2.23) 1.19 (0.58, 2.41) 1.22 (0.58, 2.54) 

Selenium concentration ᶿ        

  Quartile 1 (< 17.8)  ref ref Ref ref ref 

  Quartile 2 (17.8 – 22.6)  0.76 (0.25, 2.29) 0.71 (0.22, 2.23)  1.80 (0.89, 3.61) 1.52 (0.74, 3.12) 

  Quartile 3 (22.6 – 29.8)  0.56 (0.16, 1.94) 0.57 (0.15, 2.16)  1.61 (0.79, 3.29) 1.40 (0.66, 2.96) 

  Quartile 4 (> 29.8)  1.21 (0.43, 3.44) 1.19 (0.39, 3.64)  0.93 (0.43, 2.02) 0.78 (0.35, 1.73) 

Maternal age (years)   1.04 (0.97, 1.12)   1.02 (0.98, 1.07) 

Maternal education   0.63 (0.41, 0.98) *   0.86 (0.68, 1.10) 

Primigravida  

(ref: non primigravida) 

  4.06 (1.31, 12.52) *   1.71 (0.89, 3.29) 

Antenatal visits ≥ 4 times  

(ref: < 4 times) 

  0.53 (0.22, 1.26)   1.30 (0.73, 2.29) 

Mode of delivery  

(ref: normal vaginal delivery) 

  0.60 (0.25, 1.42)   0.41 (0.25, 0.70) ** 

Baby’s sex (ref: male)   1.61 (0.70, 3.69)   1.25 (0.75, 2.08) 

Smoking status (ref: no exposure)   0.90 (0.39, 2.06)   1.53 (0.91, 2.56) 

*p < 0.05. ** p < 0.01.  

ᶿ Adjusted for creatinine (μg/g creatinine); † Birth weight < 2500 g regardless of gestational age at birth; ᵞ Any delivery before 37 weeks of gestation 

regardless of birth weight. 

a Bivariate logistic regression; b Multivariate logistic regression adjusted for selenium concentration; c Multivariate logistic regression adjusted for 

maternal age, maternal education, parity, baby’s sex, mode of delivery, smoking status and selenium concentration.  
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Table 9a: Associations between Prenatal Arsenic Exposure and Newborn Leucocyte Telomere Length (n = 409) 

 

Characteristics  

Model 1  ͣ  Model 2 ᵇ Model 3 c 

Coefficient (95% CI) Coefficient (95% CI) Coefficient (95% CI) 

Arsenic concentration ᶿ     

  Quartile 1 (< 45.5) Ref ref ref 

  Quartile 2 (45.5 – 74.2) - 0.07 (- 0.15, 0.19) - 0.06 (- 0.15, 0.26) - 0.06 (- 0.15, 0.03) 

  Quartile 3 (74.2 – 126.7) - 0.14 (- 0.22, - 0.05) ** - 0.12 (- 0.21, - 0.03) ** - 0.11 (- 0.20, - 0.02) ** 

  Quartile 4 (> 126.7) - 0.17 (- 0.26, - 0.08) *** - 0.15 (- 0.24, - 0.05) ** - 0.13 (- 0.22, - 0.03) ** 

Selenium concentration ᶿ     

  Quartile 1 (< 17.8)  ref ref 

  Quartile 2 (17.8 – 22.6)  0.03 (- 0.06, 0.12) 0.03 (- 0.06, 0.12) 

  Quartile 3 (22.6 – 29.8)  - 0.03 (- 0.12, 0.06)  - 0.03 (- 0.12, 0.06)  

  Quartile 4 (> 29.8)   - 0.06 (- 0.15, 0.04)  - 0.05 (- 0.15, 0.04) 

Maternal age (years)   - 0.004 (- 0.01, 0.002) 

Maternal education   0.005 (- 0.02, 0.03) 

Gestational age (weeks)   - 0.003 (- 0.02, 0.01) 

Birth weight (g)   0.00 (- 0.00, 0.00) 

Primigravida (ref: non primigravida)   - 0.03 (- 0.11, 0.05) 

Ethnicity (ref: Bamar)   0.01 (- 0.07, 0.05) 

Mode of delivery  

(ref: normal vaginal delivery) 

  - 0.03 (- 0.10, 0.04) 

Baby’s sex (ref: male)   - 0.03 (- 0.09, 0.03) 

Smoking status (ref: no exposure)   - 0.01 (- 0.07, 0.05) 

** p < 0.01. ***p < 0.001  

ᶿ Adjusted for creatinine (μg/g creatinine) 

a Bivariate linear regression; b Multivariate linear regression adjusted for selenium concentration; c Multivariate linear regression adjusted 

for maternal age, maternal education, gestational age, birth weight, parity, ethnicity, baby’s sex, mode of delivery, smoking status, 

cadmium, lead and selenium concentration.



 
 

88 
 

Table 9b: Associations between Prenatal Cadmium Exposure and Newborn Leucocyte Telomere Length (n = 409) 

 

Characteristics  

Model 1  ͣ  Model 2 ᵇ Model 3 c 

Coefficient (95% CI) Coefficient (95% CI) Coefficient (95% CI) 

Cadmium concentration ᶿ    

  Quartile 1 (< 0.5) ref ref ref 

  Quartile 2 (0.5 – 0.9) - 0.05 (- 0.13, 0.04) - 0.04 (- 0.13, 0.05) - 0.05 (- 0.14, 0.04) 

  Quartile 3 (0.9 – 1.4) - 0.13 (- 0.22, - 0.04) ** - 0.12 (- 0.21, - 0.03) ** - 0.14 (- 0.23, - 0.04) ** 

  Quartile 4 (> 1.4) - 0.19 (- 0.28, - 0.10) *** - 0.17 (- 0.26, - 0.08) *** - 0.19 (- 0.30, - 0.08) *** 

Selenium concentration ᶿ    

  Quartile 1 (< 17.8)  ref ref 

  Quartile 2 (17.8 – 22.6)  0.03 (- 0.05, 0.12) 0.03 (- 0.06, 0.12) 

  Quartile 3 (22.6 – 29.8)  - 0.01 (- 0.10, 0.08)  - 0.02 (- 0.11, 0.07) 

  Quartile 4 (> 29.8)  - 0.04 (- 0.13, 0.06) - 0.03 (- 0.13, 0.06) 

Maternal age (years)   0.002 (- 0.004, 0.01) 

Maternal education   0.00 (- 0.03, 0.03) 

Gestational age (weeks)   - 0.00 (- 0.02, 0.02) 

Birth weight (g)   - 0.00 (- 0.00, 0.00) 

Primigravida (ref: non primigravida)   - 0.02 (- 0.10, 0.06) 

Ethnicity (ref: Bamar)   0.02 (- 0.05, 0.08) 

Mode of delivery (ref: normal vaginal delivery)   - 0.02 (- 0.09, 0.04) 

Baby’s sex (ref: male)   - 0.01 (- 0.08, 0.05) 

Smoking status (ref: no exposure)   - 0.01 (- 0.05, 0.08) 

** p < 0.01. ***p < 0.001  

ᶿ Adjusted for creatinine (μg/g creatinine) 

a Bivariate linear regression; b Multivariate linear regression adjusted for selenium concentration; c Multivariate linear regression adjusted 

for maternal age, maternal education, gestational age, birth weight, parity, ethnicity, baby’s sex, mode of delivery, smoking status and 

selenium concentration. 
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Table 9c: Associations between Prenatal Lead Exposure and Newborn Leucocyte TL (n = 409) 

 

Characteristics  

Model 1  ͣ  Model 2 ᵇ Model 3 c 

Coefficient (95% CI) Coefficient (95% CI) Coefficient (95% CI) 

Lead concentration ᶿ    

  Quartile 1 (< 1.0) ref ref ref 

  Quartile 2 (1.0 – 1.8) - 0.10 (- 0.19, - 0.01) * - 0.09 (- 0.18, - 0.00) * - 0.09 (- 0.18, - 0.00) * 

  Quartile 3 (1.8 – 3.4) - 0.04 (- 0.13, 0.04) - 0.04 (- 0.13, 0.05) - 0.04 (- 0.13, 0.05) 

  Quartile 4 (> 3.4) - 0.14 (- 0.23, - 0.05) ** - 0.11 (- 0.20, - 0.02) * - 0.11 (- 0.20, - 0.02) * 

Selenium concentration ᶿ    

  Quartile 1 (< 17.8)  ref ref 

  Quartile 2 (17.8 – 22.6)  0.02 (- 0.07, 0.11) 0.01 (- 0.08, 0.10) 

  Quartile 3 (22.6 – 29.8)  - 0.04 (- 0.13, 0.05)  - 0.05 (- 0.14, 0.05)  

  Quartile 4 (> 29.8)   - 0.08 (- 0.17, 0.01) - 0.08 (- 0.17, 0.01) 

Maternal age (years)    - 0.002 (- 0.01, 0.004) 

Maternal education   0.01 (- 0.02, 0.04) 

Gestational age (weeks)   - 0.001 (- 0.02, 0.02) 

Birth weight (g)   0.00 (- 0.00, 0.00) 

Primigravida (ref: non primigravida)   - 0.02 (- 0.10, 0.06) 

Ethnicity (ref: Bamar)   0.02 (- 0.05, 0.09) 

Mode of delivery (ref: normal vaginal delivery)   - 0.03 (- 0.10, 0.03) 

Baby’s sex (ref: male)   - 0.03 (- 0.09, 0.04) 

Smoking status (ref: no exposure)   - 0.00 (- 0.07, 0.06) 

*p < 0.05. ** p < 0.01.  

ᶿ Adjusted for creatinine (μg/g creatinine) 

a Bivariate linear regression; b Multivariate linear regression adjusted for selenium concentration; c Multivariate linear regression adjusted for 

maternal age, maternal education, gestational age, birth weight, parity, ethnicity, baby’s sex, mode of delivery, smoking status and selenium 

concentration. 
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Table 10: Associations between Adverse Birth Outcomes and Newborn Leucocyte Telomere Length (n = 409) 

 

 

Characteristics 

Low Birth Weight † Preterm ᵞ 

OR 

(95% CI) 

AOR 

(95% CI) 

OR 

(95% CI) 

AOR 

(95% CI) 

Relative TLᶿ (T/S ratio) 0.73 (0.21, 2.48) 0.76 (0.22, 2.69) 1.40 (0.65, 2.99) 1.34 (0.60, 3.03) 

Maternal age (years)  1.05 (0.97, 1.13)  1.03 (0.99, 1.08) 

Maternal education   0.69 (0.44, 1.03)  0.89 (0.70, 1.14) 

Primigravida (ref: non primigravida)  4.07 (1.31, 12.66) *  1.76 (0.91, 3.38) 

Antenatal visits ≥ 4 times (ref: < 4 times)  0.62 (0.26, 1.45)  1.45 (0.82, 2.56) 

Mode of delivery (ref: normal vaginal delivery)  0.61 (0.26, 1.41)  0.37 (0.22, 0.63) *** 

Baby’s sex (ref: male)  1.43 (0.62, 3.28)  1.18 (0.71, 1.96) 

Smoking status (ref: no exposure)  0.85 (0.37, 1.96)  0.85 (0.37, 1.96) 

*p < 0.05. ***p < 0.001.  

ᶿ Log-transformed value. 

† Birth weight < 2500 g regardless of gestational age at birth. 

ᵞ Any delivery before 37 weeks of gestation regardless of birth weight.  
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Figure 2: Participation Flow Chart of the Study  

 

Completed Urine Sampling 

n = 466 

First Visit  

Completed Interview 

n = 493 

Failed to come to deliver at the health centers (n = 37) 

or did not have identification number of urine samples 

(n = 10) or cord blood (n = 10) 

 

 

Failed to give urine samples after the interview 

(n = 27) 

 

Analytical Sample 

n = 419 (Complete questionnaires + urine samples + 

birth outcomes data) 

n = 409 (Complete questionnaires + urine samples + 

birth outcomes data+ cord blood samples) 

Follow-up  
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ᶿ Multiple responses were allowed. 

 

Figure 3: Methods of Household Drinking Water Treatment ᶿ (n = 414)  

  

13.0%
18.9%

3.2%

70.2%

5.7%

Cloth Filter

Chlorination

Boiling 

Settle Down 

Filter Equipment/ 

Machine 

Others  1.0%
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Appendix 1: Map of Study Area 

 

Source: UNICEF and MOH, 2013  
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Appendix 2: Questionnaire (English Version) 

SURVEY QUESTIONNAIRE (English version) 

Identification: 

Township:  

 

Ward name: 

Interviewer 

Name: 

 

Date of interview:            /           / 

                                      

Field Editor Data Entry 

Name: 

Date:             /             / 

Name: 

Date:            /             / 

       

Introduction 

Mingalarbar! 

My name is                  . We are interviewing pregnant women in their third trimesters about 

the drinking water status and pregnancy and child birth. The information you give to me is 

confidential. The result of this survey will be used to help improve health programs for 

women. 

Eligibility 

Pregnant women (aged 18 years or above) in their third trimesters, residing in the study 

area for more than six months. 
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Instruction: Circle the answers, which are responded by the participants or fill in the 

blank areas. Thank you for your participation. 

Part (A) 

1. Socio-demographic characteristics 

No Questions Answers Codes Note 

1. In what month and year were 

you born? 

………. Month 

………. Year 

Don’t know  

 

 

99 

 

2. How old are you? (Completed 

year) 

   

3. What is your religion? Buddhist  1  

Christian  2 

Muslim  3 

Hindu  4 

Others 5 

4. What is your ethnicity? Bamar 1  

National races 2 

Others 3 

5. What is the highest education 

or year of school you 

completed? 

Illiterate  1  

Read and write 2 

Primary school completed 3 

Middle school completed 4 

High school completed 5 

Graduate and above  6 

6. What is your main 

occupation? 

Unemployed  1  

House-wife 2 

Farmers  3 
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Private sectors  4 

Government servants 5 

Own business 6 

Others 7 

7. Do you or have you worked 

for any of the following? 

Armed force  1 Multiple 

responses are 

possible  

Glass industry 2 

Coal mine/Refinery  3 

Saw mill 4 

Cotton field/Orchid 5 

Mining/Smelting 6 

Electronic plants  7 

None of these  8 

8. If yes, how long do you or 

have you worked? 

For …………. 

At …………… 

  

9. How much is monthly 

household income? 

In local currency (kyats) 

…………… 

Skip if the 

respondent is 

unemployed  
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2. Assessment of Quality of Drinking Water 

No Questions Answers Codes Note 

1. Which of the following 

sources of drinking water are 

available in your 

neighborhood? 

Bore well/Hand pump/ 

Motor pump  

1 Multiple 

responses 

are possible Community well 2 

River/Lake water 3 

Household water supply 

(Municipal piped) 

4 

Rain water  5 

Others (Specify) 6 

2. What is your primary source of 

drinking water? 

Bore well/Hand pump/ 

Motor pump 

1 Single 

response 

Community well 2 

River/Lake water 3 

Household water supply 

(piped) 

4 

Rain water  5 

Others (Specify) 6 

3. How long it had been as the 

primary drinking water 

source? 

 

……………………… 

 If the 

dwelling 

spot is 

changed, 

please count 

the duration 

from the new 

dwell. 

4. If the primary source of 

drinking water is shallow or 

 

…………………….. 
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deep well, please mention how 

deep is it? 

Don’t know 99 

5. Do you treat your water in any 

way to make it safer to drink? 

No 0 If No, skip to 

question no 

6. 

Yes 1 

6. If yes, how often do you treat? Always  1  

Usually  2 

Sometimes 3 

Few  4 

7. If yes, what do you usually do 

your water to make it safer to 

drink? 

Boil 1 Multiple 

responses 

are possible 

Add bleach/Chlorine  2 

Strain it through a cloth 3 

Use a water filter 

(ceramics, sand, 

composite, etc.) 

4 

Solar disinfection  5 

Let it stand and settle  6 

Others (Specify) 7 

8.. When was the last time the 

water was tested? 

< 1month  If Never skip 

to question 

no 9.  

Within 1- 3 months  

Within 3 - 6 months  

More than 6 months   

Never   

9.. What was it tested for? Bacteria 1  

Chemicals   2 

Others  3 

10. Who (Which organization) did 

the testing? 

Government 

Organizations  

1  
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NGOs/NPOs 2 

Other 3 

11. Has it ever been tested for 

arsenic? 

No  0  

Yes  1 

12.. If yes, what were the results? Above standard  

(> 10 µg/L) 

1  

Below standard  

(<= 10 µg/L) 

2 

Don’t know  3 
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3. Food Consumption 

No. Questions Answers Codes Note 

How often, in the past 3 months, did you eat the following? 

1. Seafood Never  1  

< 1 time per week 2 

1 - 6 times per week 3 

1 - 3 times per day 4 

≥ 4 times per day  5 

2. Rice or other cooked grains 

including brown rice, 

cracked wheat and millet  

(per 3 meals in a day) 

Almost never or never 1  

About ⅓ of the time  2 

About ⅔ of the time  3 

Almost always or always 4 

3.  Ways of rice cooking  Traditional boiling method  1  

Absorption method (by rice 

cooker)  

2 

Others  3 
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4. Maternal Health during Pregnancy  

No. Questions Answers Codes Note 

1. How many months 

pregnant are you? 

………….. months    

2. Is this your first 

pregnancy? 

No 0  

Yes 1 

3. If no, how many of 

pregnancies resulted in a 

baby that was born alive 

or born dead? 

Baby born alive …. 

Baby born dead …. 

Abortion……... 

  

4. Did your most recent 

birth result in a baby that 

was born alive or dead? 

Live birth 1  

Stillbirth 2  

5. If live birth, in which 

month and year did your 

most recent birth occur? 

   

6. How many times in total 

have you received 

antenatal care during 

your current pregnancy? 

 

………..  

  

7. How many months 

pregnant were you when 

you first received 

antenatal care for this 

pregnancy? 

 

………..  

  

8. Whom did you first see 

for checkup on your 

current pregnancy? 

Doctor  1  

 

 

 

 

 

Nurse/Midwife 2 

TBA/Traditional healer   3 

Community health worker 4 

Relative/Friend  5 

Others  6 
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9. Which arrangement 

have your or your family 

made for the birth of this 

child. 

 

N
o
  

Y
es

 

 

Transport 0 1 

Save money  0 1 

A blood donor 0 1 

A skilled provider 0 1 

A safe delivery place 0 1 

Others (Specify) 0 1 

10. During the antenatal 

period, did you 

experience any serious 

health problems? 

No 0  

Yes 1 

11. If yes, what problems 

did you experience? 

Severe vaginal bleeding  1  

Severe vaginal discharge   2 

Convulsion  3 

High fever 4 

Loss of consciousness 5 

Swollen hands/face  6 

Severe headache  7 

Severe abdominal pain  8 

Water breaks without labor 9 

Accelerated/reduced fetal 

movement  

10 

Others(Specify) 99 

12. Are you suffering any 

underlying medical 

disease?  

No 0 If yes, 

state. 

……… 

Yes 1 

13. Are you currently taking 

any medication? 

No  0 If yes, 

state. 

……… 

Yes  1 
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14. How is your smoking 

status? 

 

N
o
 

Y
es

  

Smoke before pregnancy 0 1 

Smoke during pregnancy 0 1 

Second hand exposure to 

smoking 

0 1 

Never smoke or being exposed 0 1 

15. How is your alcohol 

drinking status? 

 

N
o
 

Y
es

  

Drink before pregnancy  0 1 

Drink during pregnancy 0 1 

Never drink 0 1 

Clinical and Laboratory Information from Antenatal Record 

16. Body Weight     

17. Height     

18. Temperature     

19. Edema    

20. Pulse     

21. Blood Pressure     

22. Hemoglobin     

23. Urine test (AI/sugar)    

24. Malaria     

25. Prophylactic Treatment   

N
o
 

Y
es

  

Tetanus toxoid 0 1 

Iron  0 1 

Folic acid 0 1 

Vitamin B1 (B complex) 0 1 

26. Any diagnosed 

pregnancy related 

complication 

 

……………………… 
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Part (B) 

Identification: 

Township: Ward name: 

Interviewer 

Name: 

 

Date of interview:            /           / 

                                      

Field Editor Data Entry 

Name: 

Date:             /             / 

Name: 

Date:            /             / 

 

5. Delivery Record of Mothers and Newborns  

No. Questions Answers Codes Note 

Maternal Information  

1. Admission Date    

2. Contraction Started  Date  

Time 

  

3. Maternal weight …………. (kg)   

4. Maternal height ………….. (m²)   

5. Obstetric complications 

during pregnancy  

Antenatal hemorrhage 1  

Postpartum hemorrhage 2 

Postpartum sepsis 3 

Severe pre-

eclampsia/Eclampsia 

4 

Ruptured uterus 5 

Labor lasting >12 hours  6 

Placenta not delivered 30 

minutes after baby  

7 

Others (Specify) 99 
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Nil 98 

6. Any referral history No  0  

Yes 1 

7. Reason of referral  ……………………….   

Newborns Information  

6. Date of Birth     

7. Sex    

8. Birth weight     

9. Height     

10. Head Circumference     

11. APGAR score     

12. Type of Delivery  Normal spontaneous vaginal 

delivery 

1  

Assistant delivery (vacuum 

extraction or forceps) 

2  

Cesarean section  3  

13. Presentation  ……………………….   

14. Delivery Outcomes  Live birth  1  

Stillbirth  2 

IUFD 3 

Premature 4 

Twins  5 

Congenital abnormalities 6 

Others  7 

15. Baby to Breast/ Suck  Within 1 hour 1  

> 1 hour  2 

None 3 

 

Thank you so much for your cooperation.
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Appendix 3: Instruction for Urine Sampling  

 

Maternal spot urine is collected at the time of antenatal visit at third trimesters 

by the research team. 

 

1) Collect spot urine of about 5 – 20 mL from the pregnant women. 

2) Fasting or special diet is not necessarily to be requested. 

3) Urine samples are initially collected in storage 60 mL plastic cabinet and then 

transfer to 5 mL polyethylene tubes with airtight lids. 

4) Avoid contact with the inside or refrain from leaving the tubes open to air longer 

than necessary to minimize the external contamination. 

5) Label identification number and keep frozen immediately. 
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Appendix 4: Instructions for Cord Blood Sampling 

The fetal cord blood is to be collected shortly after the delivery under aseptic 

conditions. Procedures are almost the same for non-cesarean section and cesarean 

section. 

1) A segment of cord must be separated between two sets of clamps 

immediately after delivery as normal procedure permits. 

2) Ensure that the cord segment is full of blood. If needed, perform milking of 

the cord before clamping. 

3) Recommended for a segment of cord (about 8 inches) be separated from the 

rest of the cord and placenta to allow the third stage to continue without 

further interruption. 

4) Choose a site 4 - 6 inches from the cut end of umbilical cord for the cord 

blood sampling. 

5) Clean the chosen site using septic swabs, wiping the entire width of cord 

about 4 inches nearby the in-situ site.  

6) Using the sterile syringe, insert the needle into the chosen (cleaned) site of 

umbilical vein of cord and draw about 5 mL of cord blood. 

7) Transfer the collected blood into the provided vacuum tubes containing 

anticoagulant. 

8) Proper labeling of respective identification numbers and keep frozen within 

1 hour. 
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Appendix 5: Ethical Approval Letter (the University of Tokyo) 
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Appendix 6: Ethical Approval Letter (Department of Medical Research, 

Myanmar) 
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Appendix 7: Material Transfer Agreement 

 



 
 

111 
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Appendix 8: Arsenic Concentration in Drinking Water, Stratified by the WHO 

Guidelines (n = 248) 

Arsenic Concentration  Number  Percentage 

< 10 μg/L 192 77.4 

≥ 10 μg/L 56 22.6 
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Appendix 10: Newborn Leucocyte Telomere Length Across the Quartiles of (A) 

Arsenic and (B) Cadmium (n = 409) † 

 

 

(A) 

 

(B) 

† Quartile exposure levels (μg/g creatinine) for arsenic are 1st < 45.5, 2nd 45.5 – 74.2, 3rd 

74.2 – 126.7 and 4th > 126.7, and for cadmium are 1st < 0.5, 2nd 0.5 – 0.9, 3rd 0.9 – 1.4 

and 4th > 1.4. 


