
博士論文
Quasi-integrable extensions of the discrete Toda

lattice equation

(離散戸田格子方程式の準可積分拡張)

　　

氏名　　神谷　亮
　　　 　 Ryo Kamiya



1

Abstract

In this thesis, we introduce extensions to the two-dimensional Toda lattice equation.
In these extensions, the resulted equations preserve the co-primeness property which
is an algebraic reinterpretation of singularity confinement used in the research of the
discrete Painlevé equations. We call these extensions quasi-integrable extensions. To
our best knowledge, this equation is the first example of quasi-integrable discrete
equation defined over three dimensional lattice.

First, we treat the quasi-integrable equations in polynomial form, which is an analog
of the bilinear form of integrable equations. We prove that general iterates of the
equation are irreducible Laurent polynomials of the initial data and that every pair
of two iterates is co-prime, which indicates confined singularities of the equation. By
reducing the equation to two- or one-dimensional lattices, we obtain quasi-integrable
extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.

Then, we investigate extensions of the nonlinear form of two-dimensional Toda lat-
tice equation, which cannot be obtained by variable transformation from the above
polynomial forms. By extending to non-autonomous polynomial forms, we then prove
that their tau function analogues possess irreducibility and the Laurent property with
respect to their initial variables and some extra terms related to the non-autonomous
terms. Using irreducibility and this Laurent property, we prove that these equations
satisfy the co-primeness conditions in some extended Laurent polynomial rings.We
also introduce nonlinear forms of the extended Somos-4 recurrence obtained by re-
duction of the extended 2 dimensional discrete Toda lattice equations, and prove that
they also possess the extended Laurent property and satisfy co-primeness conditions.
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Chapter 1

Introduction

1.1 Toda lattice equation and co-primeness property
The Toda lattice equation was derived by Toda as a model of one-dimensional chain
of masses connected by springs with nonlinear interaction force [1]. The Toda lattice
is one of the completely integrable systems with multi-soliton solutions. The equation
of motion of the Toda lattice is

d2

dx2
wn = exp(wn−1 − wn)− exp(wn − wn+1),

where wn is the position of the n-th particle. The time-discretization of the Toda
lattice was obtained by Hirota [2], and was given as a bilinear form:

τt+1,nτt−1,n = τ2t,n + τt,n−1τt,n+1. (1.1)

Two-dimensional Toda lattice (2D-Toda) equation was introduced by Leznov and
Saveliev [3]: (

∂

∂x2
+

∂

∂y2

)
wn = exp(wn−1 − wn)− exp(wn − wn+1).

Its bilinear form (2D-dToda) was found by Hirota, Tsujimoto and Imai [4] as

τt+1,n,m+1τt−1,n+1,m = τt,n+1,mτt,n,m+1 + τt,n,mτt,n+1,m+1, (1.2)

where the dependent variable τ is defined on the three-dimensional lattice (t, n,m) ∈
Z3.

There are several integrability criteria of discrete equations. Particularly impor-
tant two of them are ‘the singularity confinement test’ [5], and ‘the algebraic entropy
test’ [6]. A singularity of a discrete equation is said to be confined, if it is elimi-
nated after a finite number of iteration steps, and at that stage, the dependence on
the initial data is recovered. The discrete equation passes the singularity confine-
ment test (SC test), if all the singularities of the equation are confined. The SC
test was extremely effective in distinguishing ‘integrable’ discrete systems, and also
in constructing non-autonomous integrable equations. For example, discrete analogs
of the Painlevé equations were discovered by searching for non-autonomous exten-
sions to the QRT mappings that conserve their singularity patterns [7]. However, a
‘counter example’ to SC test has been proposed [8]. The equation they have proposed,
which is now called the Hietarinta-Viallet equation, passes the SC test, although it
is considered to be non-integrable in the sense that it has chaotic orbits of iterates
and has no conserved quantities. They have proposed to use the algebraic entropy
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to deal with this type of equations. Algebraic entropy is a quantity to measure the
degree growth of the iterates of the equations. The criterion is that the equation is
integrable if and only if its algebraic entropy is zero. This criterion is quite strong:
the Hietarinta-Viallet equation has positive (log((3 +

√
5)/2) > 0) algebraic entropy.

Recently, with the aim of refining these integrability criteria, the ‘irreducibility’ and
the ‘co-primeness’ properties have been proposed to distinguish integrable mappings
[9]. Let us study a discrete mapping whose iterates are always Laurent polynomials
of the initial variables. If the equation has this property, it is said to have the Laurent
property [10]. The mapping has the irreducibility, if every iterate is an irreducible
Laurent polynomial of the initial variables. Here we assume that the equation is well-
defined under a suitable boundary condition. The equation satisfies the co-primeness
condition, if every pair of two iterates is co-prime as Laurent polynomials. We can
also define the co-primeness condition, even if the iterates are not necessarily Lau-
rent polynomials. Moreover, it is also possible to relax the co-primeness condition as
follows: the equation passes the co-primeness condition if every pair of two iterates
‘which is separeted by a fixed finite distance’ is always co-prime. The irreducibility
and co-primeness are found out to be useful in formulating the integrability of dis-
crete equations defined over the lattice of dimension more than one. For example,
It was proved that these two properties can be also formulated for the discrete Toda
equation (both the τ -function form and the nonlinear form) with various boundary
conditions: i.e., open, the Dirichlet, and the periodic boundaries [11].

A discrete equation is called ‘quasi-integrable’, if it passes the SC test, and at
the same time, has exponential growth of the degrees of the iterates. Note that,
in one-dimensional systems, the latter statement is equivalent to saying that the
algebraic entropy of the equation is positive, however, for higher-dimensional case we
cannot define the entropy in its usual sense. To construct quasi-integrable extensions
to known discrete equations, we introduce parameters on the powers of the terms.
Some of the equation we study are already introduced by Fomin and Zelevinsky as
examples of equations whose iterates are always Laurent polynomials [10]. In this
thesis, in addition to the Laurent property, we prove the irreducibility and the co-
primeness properties for these equations. Let us prepare a small lemma on Laurent
polynomials:

Lemma 1
Let R be a ring of Laurent polynomials. For two Laurent polynomials f, g ∈ R, let
us suppose that f is irreducible in R and, at the same time, f contains a non-unit
variable that is not in g. Then f and g are co-prime in R.

Proof Since f is irreducible, the common factor of f and g should be either a unit
or f itself. However, from the assumption, there exists a variable that is in f but not
in g, thus f cannot be a factor of g. Thus f and g are co-prime.

Note 1
For example, in a ring R = Z[x±], 1/x and 1/x2 are units because they are invertible in

R, however, 2 ∈ R is not a unit since 1/2 ̸∈ R. Another example is that (x2+1)/x3 ∈
R is irreducible and is co-prime with (x2 + 3)/x ∈ R, but is not co-prime with
(x4 − 1) ∈ R.
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1.2 The contents of the thesis
In chapter 2, we consider a polynomial form of the quasi-integrable two dimensional
discrete Toda lattice equation. Our quasi-integrable extension to the 2 dimensional
discrete Toda lattice equation (2D-dToda) is given in τ -function form as follows:

τt+1,n,m+1τt−1,n+1,m = τk1
t,n+1,mτ

k2
t,n,m+1 + τ l1t,n,mτ

l2
t,n+1,m+1, (1.3)

where k1, k2, l1, l2 are positive integers, with (k1, k2, l1, l2) ̸= (1, 1, 1, 1). The set of
initial values of equation (1.3) is {τ0,n,m, τ1,n,m|n,m ∈ Z}: i.e., set of all the entries
in the t = 0 and t = 1 planes. The evolutions of (1.3) goes upward in the t-axis
to t ≥ 2. The equation (1.3) is quasi-integrable in the sense that its degree growth
is exponential (as we shall explain in Proposition 1) and that it has co-primeness
property(Theorem 1).

Proposition 1
The degrees deg(τt,n,m) of the iterates of (1.3) grow exponentially with respect to t.

Proof Let us suppose that the initial values are τ0,n,m = 1, τ1,n,m = a for every
n,m, and prove that deg(τt,n,m) := dt grows exponentially. Since τt ≡ τt,n,m(∀n,m)
becomes a polynomial in a, and τt−1 is a factor of τt, it is readily obtained that
dt+1 = Mdt − dt−1, with d0 = 0, d1 = 1, where M := max(k1 + k2, l1 + l2). Unless
k1 = k2 = l1 = l2 = 1, we have

lim
t→+∞

(dt)
(1/t) =

M +
√
M2 − 4

2
> 1.

We have proved an exponential growth for one particular degenerate case, which
constitutes the lower bound of the degrees of the iterates.

Our goal in chapter 2 is to prove the Laurent property, the irreducibility and the
co-primeness property of (1.3), all the three of them are indication of integrable-like
nature of the equation in terms of the singularity analysis. For the simplicity of our
arguments, we will assume that the greatest common divisor of (k1, k2, l1, l2) is equal
to 2m(m ∈ Z≥0), which is equivalent to the statement that the polynomial

xk1yk2 + zl1wl2 (1.4)

is irreducible in Z[x, y, z, w]*1. Our main theorem in chapter 2 is Theorem 1, which
states that every iterate τt,n,m of (1.3) is an irreducible Laurent polynomial of the
initial variables in Z coefficients, and that two iterates are always co-prime. To make
our strategy for proof clear, we first prove the co-primeness property of extended
Somos-4 recurrence, which is obtained from equation (1.3) by reduction.

We note that the equation (1.2) of 2D-dToda is essentially the same as the Hirota-
Miwa equation [12]. Therefore, we can think of (1.3) as a quasi-integrable extension
to the Hirota-Miwa equation.

In chapter 3, we consider the following discrete lattice equation

(Ut+1,n,m+1 − 1)(Ut−1,n+1,m − 1)

(Ut,n+1,m − 1)k1(Ut,n,m+1 − 1)k2
=
U l1
t,n,mU

l2
t,n+1,m+1

Uk1
t,n+1,mU

k2
t,n,m+1

. (1.5)

*1 Even if the greatest common divisor is not a nonnegative power of two, we can prove that they
are co-prime as Laurent polynomials of the initial values.
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where t ∈ Z≥0, (n,m) ∈ Z2 and k1, k2, l1, l2 are arbitrary positive integers. When
k1 = k2 = l1 = l2 = 1, (1.5) is called a two-dimensional Toda lattice equation[4, 13].
In fact, if we define

Ũt,n,m :=
−1 + δϵ

δϵ
Ut,n,m,

(1.5) with k1 = k2 = l1 = l2 = 1 turns into(
1 + δϵ(Ũt+1,n,m+1 − 1)

)(
1 + δϵ(Ũt−1,n+1,m − 1)

)
(
1 + δϵ(Ũt,n+1,m − 1)

)(
1 + δϵ(Ũt,n,m+1 − 1)

) =
Ũt,n,mŨt,n+1,m+1

Ũt,n+1,mŨt,n,m+1

.

We denote Ũt,n,m := Ut(nδ,mϵ). By fixing the values x := nδ and y := mϵ and taking
δ → 0 and ϵ→ 0, we obtain

∂2

∂x∂y
logUt(x, y) = Ut+1(x, y)− 2Ut(x, y) + Ut−1(x, y), (1.6)

which is the canonical form of the two dimensional Toda lattice equation[14, 15].
For a given solution of (1.3), if we put

Ut,n,m :=
τt+1,n,m+1τt−1,n+1,m

τk1
t,n+1,mτ

k2
t,n,m+1

, (1.7)

Ut,n,m satisfies (1.5). Hence one might expect that (1.5) also has the co-primeness
property and this conjecture will be proved easily from the irreducibility of (1.3).
However, for a solution of (1.5), τt,n,m is in (1.7) does not necessarily satisfy (1.3).
The equation for τt,n,m depends on the initial values of Ut,n,m and we cannot directly
use the irreducibility of τt,n,m for the discussion of the initial value dependence of
Ut,n,m in (1.5). In fact, (1.5) has a slightly different co-primeness property from those
previously discussed, which is what we wish to explain in this chapter. The main
theorem in chapter 3 is Theorem 5. Before proving the main theorem, we study a
simpler case: a nonlinear discrete mapping which is given by a reduction of (1.5)
and that can be regarded as a nonlinear form of an extended Somos-4 recurrence
relation[16].

Chapter 4 is devoted to concluding remarks. Some lemmas and propositon are
shown in appendix.
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Chapter 2

Polynomial form of quasi-integrable

two dimensional discrete Toda lattice

equation

2.1 Quasi-integrable Somos-4 sequence
Before dealing with our main target (1.3), let us study the properties of a one-
dimensional recurrence relation (2.1), which is obtained by a reduction of the equation
(1.3) on a line: we identify all the iterates τt,n,m such that N = 1 + 2t + n +m and
introduce a new variable xN := τt,n,m. The form of the reduced equation is

xn+4xn = xln+3x
m
n+1 + xkn+2, (2.1)

where l,m, k are positive integers, which we shall call the quasi-integrable Somos-4
sequence. In fact, (2.1) is quasi-integrable for every set of positive integers l,m, k
except for (l,m, k) = (1, 1, 1), (1, 1, 2). The flow of the discussion here for the quasi-
integrable Somos-4 case helps us to construct the proof of our main theorem. It is
worth noting that equation (2.1) is given by Fomin and Zelevinsly as the ‘generalized
Somos-4 sequence’ in their paper (Refer to Example 3.3 in [10]. The original Somos-4
is the case of (l,m, k) = (1, 1, 2).), and that the Laurent property of the equation is
proved using the ideas in cluster algebras. Our Proposition 2 studies not only the
Laurent property but also the irreducibility and co-primeness.

Proposition 2
Let us assume that the greatest common divisor of (l,m, k) is 1 or a positive power
of 2. Then every iterate xn of equation (2.1) is an irreducible Laurent polynomial of
the initial variables x0, x1, x2, x3. If n ̸= m, xn and xm are co-prime.

We note that the condition on (l,m, k) is equivalent to the irreducibility of the poly-
nomial xlym+zk ∈ Z[x, y, z] (Proposition 8). The following Lemma 2 is used to prove
Proposition 2.

Lemma 2
For every n ≥ 4 we have

xn ∈ R0 := Z[x±0 , x
±
1 , x

±
2 , x

±
3 ],

and that every pair from xn, xn−1, xn−2, xn−3 is co-prime.
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Note 2
The assumption that ‘xlym + zk ∈ Z[x, y, z] is irreducible’ is not used in Lemma 2.
Thus the Laurent property holds for every positive integer l,m, k.

Proof Proof of Lemma 2 is done by induction. It is easy for n ≤ 7. We just give
a proof for n = 7, assuming Lemma 2 for n ≤ 6. Since x7 = (xl6x

m
4 + xk5)/x3, x7 is

trivially a Laurent polynomial of xi(i = 0, 1, 2, 3). We also obtain the co-primeness
of x7 and x6 as follows: if x7 has a common factor (which is not a unit) with x6,
that factor must also divide x5, which leads us to a contradiction with the induction
hypothesis that x6 is co-prime with x5.

Next we prove the case of larger n. Let us suppose that Lemma 2 is satisfied for
every integer less than n+ 1 and prove it for n+ 1. By continued iterations we have

xn+1xn−3 = xlnx
m
n−2 + xkn−1

=

(
xln−1x

m
n−3 + xkn−2

xn−4

)l(
xln−3x

m
n−5 + xkn−4

xn−6

)m

+

(
xln−2x

m
n−4 + xkn−3

xn−5

)k

=
xkln−2x

km
n−4(x

l
n−4x

m
n−6 + xkn−5) +O(xn−3)

xln−4x
k
n−5x

m
n−6

=
xkln−2x

km
n−4xn−3xn−7 +O(xn−3)

xln−4x
k
n−5x

m
n−6

. (2.2)

From induction hypotheses, the right hand side of (2.2) (xlnx
m
n−2 + xkn−1) must be

a Laurent polynomial of xi(i = 0, 1, 2, 3). In equation (2.2), the term xn−3 must
be co-prime with xn−4, xn−5 and xn−6. Thus, by dividing the both sides of (2.2)
by xn−3, we obtain that the numerator of (2.2) must be divisible by xln−4x

k
n−5x

m
n−6.

Therefore we obtain that xn+1 is also a polynomial in x±i (i = 0, 1, 2, 3). Since
xn+1xn−3 = xlnx

m
n−2 + xkn−1, xn+1 is co-prime with xn, xn−1, xn−2.

Next we prove the irreducibility. We prepare the following Lemma 3 to assist the
proof for the n ≥ 9 case. Let us define yn as a value of xn when we substitute
x0 = x1 = x2 = x3 = 1:

yn = xn|{x0=x1=x2=x3=1}.

Lemma 3
The integer sequence {yn} is strictly increasing for n ≥ 3. If l = m = k = 1, we have

y10 > y8y4 > y9 > y7y4,

and if otherwise, we have
y9 > y8y4.

Proof If k = l = m = 1, we have

y4 = 2, y5 = 3, y6 = 5, y7 = 13, y8 = 22, y9 = 41, y10 = 111,

and the lemma is readily obtained. In other cases, we have

y9 − y8y4 = y9 − 2y8 =
yl8y

m
6 + yk7
y5

− 2y8 =
y8(y

l−1
8 ym6 − 2y5) + yk7

y5
.

If l ≥ 2, the right hand side is positive. In the case of l = 1, we have ym6 = (3+2k)m >
2y5, thus the right hand side is also positive.
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Proof (Proposition 2)
It is sufficient to prove that xn (n ≥ 4) is irreducible. x4 = (xl3x

m
1 +xk2)/x0 is trivially

irreducible because of the assumption. We use Lemma 12 on the factorization of
Laurent polynomials under a variable transformation, which has been introduced in
[9]. Lemma 12 is reproduced in the appendix of this thesis. We take

M = 4, {q1, q2, q3, q4} = {x0, x1, x2, x3}, {p1, p2, p3, p4} = {x1, x2, x3, x4},

f(x1, x2, x3, x4) = xn (n ≥ 5).

First x4 is trivially a Laurent polynomial of {q1, q2, q3, q4}, since x4 ∈ R0. Also,
since equation (2.1) is invertible, x0 is a Laurent polynomial of {x1, x2, x3, x4} and is
irreducible. Thus we can factorize xn (n ≥ 5) as

xn = xα4 firr,

where firr is some irreducible Laurent polynomial in R0. Since we have already proved
that xm ∈ R0, the parameter α must be a non-negative integer. From Lemma 2, x4 is
co-prime with x5, x6, x7, thus we have α = 0．Therefore x5, x6, x7 are irreducible. For
xn (n ≥ 8), Lemma 2 does not tell us if x8 is co-prime with x4, thus we take another
approach. We will prove that, if suitable initial values are taken for (x0, x1, x2, x3) ∈
C4, then we have at the same time x4 = 0 and x8 ̸= 0. Then we can conclude that
x8 does not contain a factor x4 when factorized, and thus α = 0. Let us investigate
the case of x8. By a direct computation, we have

x8 =
1

xm1 x
k
2x

l
3

{
xkm3 xkl5 x0 + lxk2x

km
3 x

k(l−1)
5 xl6x

m−1
4 +

+ mxk+m
2 x

k(m−1)
3 xkl5 x

l−1
4 + kxm1 x

(k−1)m+l
3 x

(k−1)l
5 xk−1

4 +O(x4)
}
. (2.3)

Since x4 =
xl3x

m
1 + xk2
x0

, the value of x4 is zero, when we take x0 = x1 = x3 = 1, x2 = t,

t = e
√
−1π/k as initial values. In this case,

x5 =
xk3
x1

= 1, x6 = t−1, x7 =
xk5
x3

= 1,

and from (2.3),

x8 = (−1)
{
1 + δm,1(−1)lt−l + δl,1(−1)mtm + kδk,1

}
, (2.4)

where δp,q is the Kronecker delta. From (2.4), we have x8 ≠ 0 for every (k, l,m) ∈ Z3
>0

with the exception of (k, l,m) = (1, 1, 2), (1, 2, 1), (3, 1, 1). We can study these three
cases separately and can find at least one set of (x0, x1, x2, x3) ∈ C4 such that x4 = 0
and x8 ̸= 0. (In the case of (k, l,m) = (3, 1, 1), for example, if we take the initial
values as x1 = −1, x0 = x2 = x3 = 1, we have x4 = 0 and x8 = 3 ̸= 0.) Thus the
irreducibility of x8 is proved.

The iterate xn(n ≥ 9) has the following two factorizations from Lemma 12,

xn = xα4 firr = xβ1

5 x
β2

6 x
β3

7 x
β4

8 girr (n ≥ 9), (2.5)

where firr, girr are both irreducible Laurent polynomials of the initial variables. To
obtain (2.5), we have chosen {p1, p2, p3, p4} = {x5, x6, x7, x8} for the second equality
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and have applied Lemma 12. Let us suppose that xn(n ≥ 9) is reducible and derive
a contradiction. From (2.5), a factorization of xn is limited to the following type:

xn = x4xj × unit (n ≥ 9, j ∈ {5, 6, 7, 8}),

where ‘unit’ is a unit element in R0. When we substitute x0 = x1 = x2 = x3 = 1 in
the above equation, the ‘unit’ goes to 1 and we have

yn = y4yj (n ≥ 9, j ∈ {5, 6, 7, 8}),

which is impossible from Lemma 3. Thus xn(n ≥ 9) is irreducible. We have completed
the proof that xn is irreducible for every n ≥ 1. Since the sequence {yn} is strictly
increasing for n ≥ 3, two iterates xn and xn′ with n ̸= n′ cannot be equal to each other.
Two irreducible distinct elements must be co-prime, and the proof of Proposition 2
is finished.

2.2 Co-primeness of quasi-integrable 2D-dToda
Next we move on to our main equation (1.3). For ease of notation, let us shift all
the variables τt,n,m to τt,n+t/2,m−t/2. These shifts produce half-integer lattice points,
however, the evolution of equation (1.3) is simplified since it is now described using
six vertices of an octahedron. For simplicity let us define the following symbols in
(n,m)-plane: n = (n,m) and

e1 =

(
1

2
,
1

2

)
, e2 =

(
−1

2
,
1

2

)
, e3 =

(
−1

2
,−1

2

)
, e4 =

(
1

2
,−1

2

)
.

From here on, τ̂ denotes a up-shift in the t-axis, and τ̌ denotes a downshift in the
t-axis. Then equation (1.3) can be expressed as

τ̂nτ̌n = τk1
n+e4

τk2
n+e2

+ τ l1n+e3
τ l2n+e1

. (2.6)

We have the following main theorem on the irreducibility and co-primeness of 2D-
dToda:

Theorem 1
Let us assume that the greatest common divisor of (k1, k2, l1, l2) is a non-negative
power of 2. Then each iterate τt,n of equation (2.6) is an irreducible Laurent polyno-
mial of the initial variables{

τt=0,n, τt=1,m

∣∣∣n ∈ Z2,m ∈
(
Z+

1

2

)2
}
.

Every pair of the iterates is always co-prime.

Proof We will rewrite xn := τt=0,n, yn := τt=1,n, and so on: i.e., we use
zn, un, vn, wn, pn, qn for the values of τt=i,n at i = 2, 3, 4, 5, 6, 7. We will prove
Theorem 1 step by step from xn to pn and beyond.

1. The case of t = 2: If n ̸= n′, then zn and zn′ are irreducible in

R := Z
[
x±
n ,y

±
n′

∣∣∣n ∈ Z2,n′ ∈ (Z+ 1/2)
2
]
,
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and are co-prime.
∵ ) Since

zn =
1

xn

(
yk1
n+e4

yk2
n+e2

+ yl1n+e3
yl2n+e1

)
,

if n ̸= n′, two iterates zn and zn′ have at most two variables in the (t = 1)-
plane (y∗) in common. Thus from Lemma 1, two iterates must be co-prime.

2. The case of t = 3: if n ̸= n′, two iterates un and un′ are irreducible in
R = Z[x±,y±] and are co-prime. Each un is co-prime with zn′ for all n′ ∈ Z2.
∵ ) From

un =
1

yn

(
zk1
n+e4

zk2
n+e2

+ zl1n+e3
zl2n+e1

)
and from Lemma 12, we obtain the factorization of un as

un =

 ∏
kfinite

zαk
nk

 firr (nk ∈ Z2, αk ∈ Z≥0),

where firr is irreducible in R. Since un does not have the factor zn+ei for
i = 1, 2, 3, 4, we have αk = 0 if nk = n + ei (i = 1, 2, 3, 4). (Note that {zn}
is mutually co-prime, and thus, two distinct z∗’s are not identical.) For other
nk, the iterate znk

contains at least one term ynk+ei
that does not appear in

un. Since znk
is binomial with respect to the variables {yn} in t = 1, the term

ynk+ei
cannot be eliminated by multiplying some unit element in R. Thus

from Lemma 1, two iterates znk
and un are co-prime, and we have αk = 0.

We have proved that un is irreducible. It is readily obtained that each un is
co-prime with zn′ for every n′. The final step is to prove that un and un′ are
co-prime if n ̸= n′. Each iterate un, when expanded as a Laurent polynomial
in R, contains nine terms y∗ in (t = 1)-plane, none of which is cancelled out by
multiplying unit elements in R. When n ̸= n′, there must be at least one term
y∗ that does not appear simultaneously in the iterates un and un′ . Therefore,
using Lemma 1, we obtain the co-primeness of un and un′ .

3. The case of t = 4 (Part I): vn ∈ R:
∵ ) Let us denote 9 points a, b, c, . . . , i in the lattice plane Z2 on which the
variables vn, zn, xn lie, and denote 8 points α, β, γ, δ, α′, β′, γ′, δ′ in the lattice
plane (Z+1/2)2 on which the variables un, yn lie, as in Figure 2.1. Let us take
the point ‘e’ at the center as n = e. By a direct computation, we have

zeve = uk1

δ u
k2
α + ul1γ u

l2
β

=

(
zk1
i zk2

e + zl1h z
l2
f

yδ

)k1
(
zk1
e zk2

a + zl1d z
l2
b

yα

)k2

+

(
zk1

h zk2

d + zl1g z
l2
e

yγ

)l1 (
zk1

f zk2

b + zl1e z
l2
c

yβ

)l2

=
(zl1k1

h zl2k1

f zl1k2

d zl2k2

b )(yl1γ y
l2
β + yk1

δ yk2
α ) +O(ze)

yk1

δ yk2
α yl1γ y

l2
β

=
zexe · zl1k1

h zl2k1

f zl1k2

d zl2k2

b +O(ze)

yk1

δ yk2
α yl1γ y

l2
β

. (2.7)
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Fig. 2.1 Numbering of the lattice points

By eliminating ze from both sides, we conclude that ve is a Laurent polynomial.
The calculation of τt,nτt−2,n can be done for t ≥ 5 in the same manner as
we have done for t = 4 in (2.7). Therefore the Laurent property (not the
irreducibility) in Theorem 1 can be partially proved first: i.e., if we suppose
that τt,n ∈ R and is irreducible in R for every 0 ≤ t ≤ t0, then we readily
conclude that τt,n ∈ R for t = t0 + 1. However the irreducibility for t = t0 + 1
needs more careful treatment.

4. The case of t = 4 (Part II): Iterates vn (n ∈ Z2) are irreducible Laurent
polynomials and are mutually co-prime. They are also co-prime with every un′

(n′ ∈ (Z+ 1/2)2) and zn′ (n′ ∈ Z2).
∵ ) Let us take n = e and use the numbering of the lattice points in Figure 2.1.
We will prove that ve is an irreducible Laurent polynomial. By using Lemma
12, we obtain the following factorization of ve:

ve =

(∏
n′

z
αn′
n′

)
firr (αn′ ∈ Z≥0),

where firr is irreducible in R. For n′ with n′ /∈ {a, b, ..., i}, there exists a term
y∗ of t = 2, that is contained in the iterate zn′ , and at the same time, is not
contained in ve. This term y∗ cannot be cancelled out by multiplying some unit
element, and thus from Lemma 1 we have αn′ = 0.
The proof is completed if we prove that αn′ = 0 for n′ ∈ {a, b, ..., i}. Let us
define two ideals of R as I1 := za · R and I2 := z2e · R. From the symmetry of
the evolution equation and the configuration of the variables, it is sufficient to
prove that αa = αb = αe = 0.

■(Proof of αa = 0) Since ze and za are co-prime, we only have to prove that
zeve /∈ I1. Let us suppose that zeve ∈ I1 and lead us to a contradiction. Note
that za does not have a term yδ′ when written with the initial variables. Thus it
is necessary that the term of the highest order of zeve be divisible by za, when
the terms of zeve is re-arranged with respect to yδ′ (as a Laurent polynomial
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of yδ′). We have

zeve = uk1

δ u
k2
α + ul1γ u

l2
β =

(
zk1
i zk2

e + zl1h z
l2
f

yδ

)k1

uk2
α + ul1γ u

l2
β . (2.8)

Among the eight terms zi, ze, zh, zf , yδ, uα, uγ , uβ that appear in (2.8),
only zi contains the term yδ′ in its expansion. Therefore when we re-arrange
the terms of zeve as a Laurent polynomial of the variable yδ′ , its degree is k31.

The coefficient of the term y
k3
1

δ′ is equal to

x
−k2

1
i y

k2
1k2−k1

δ zk1k2
e uk2

α ,

and it should be divisible by za. This leads us to a contradiction because
we have already proved that uα and ze are both co-prime with za. We have
zeve /∈ I1 and thus αa = 0.
Proof of αb = 0 can be done in a similar manner to the previous step and is
omitted in this thesis.

■(Proof of αe = 0) Let us suppose that zeve ∈ I2. The four variables
yα′ , yβ′ , yγ′ , yδ′ are not used to construct ze. Thus, when an element of I2
is considered as a Laurent polynomial in yα′ , the coefficient of its highest term
should be divisible by z2e . By further expanding the iterates uα, uβ , uγ in the
right hand side of equation (2.8), we have

I2 = zeve + I2

= y−k1

δ y−k2
α (k1z

k1
i zk2

e z
l1(k1−1)
h z

l2(k1−1)
f + zl1k1

h zl2k1

f )

× (k2z
k1
e zk2

a z
l1(k2−1)
d z

l2(k2−1)
b + zl1k2

d zl2k2

b )

+ y−l1
γ y−l2

β (l1z
l1
g z

l2
e z

k1(l1−1)
h z

k2(l1−1)
d + zk1l1

h zk2l1
d )

× (l2z
l1
e z

l2
c z

k1(l2−1)
f z

k2(l2−1)
b + zk1l2

f zk2l2
b ) + I2

= y−k1

δ y−k2
α (k1z

k1
i zk2

e z
l1(k1−1)
h z

l2(k1−1)
f zl1k2

d zl2k2

b

+ k2z
k1
e zk2

a z
l1(k2−1)
d z

l2(k2−1)
b zl1k1

h zl2k1

f )

+ y−l1
γ y−l2

β (l1z
l1
g z

l2
e z

k1(l1−1)
h z

k2(l1−1)
d zk1l2

f zk2l2
b

+ l2z
l1
e z

l2
c z

k1(l2−1)
f z

k2(l2−1)
b zk1l1

h zk2l1
d )

+ (y−k1

δ y−k2
α + y−l1

γ y−l2
β )zl1k1

h zl2k1

f zl1k2

d zl2k2

b + I2. (2.9)

Here the term with z2e is absorbed in the ideal I2. Among all the iterates on
t = 2 plane (i.e., zn), the only iterate that contain yα′ in its expansion is za.
Let us re-arrange the right hand side of (2.9) as a Laurent polynomial of yα′ .
Then the coefficient of the highest order (k22-th order) is

k2x
−k2
a y−k1

δ yk1k2−k2
α zk1

e z
l1(k2−1)
d z

l2(k2−1)
b zl1k1

h zl2k1

f ,

which should be divisible by z2e . Since every pair of two terms of zn is co-prime,
we conclude that k1 ≥ 2. The same arguments also show that l1 ≥ 2, l2 ≥ 2
and k2 ≥ 2. (We consider (2.9) as a Laurent polynomial of yβ′ , yγ′ , and yδ′

each.) Therefore, in (2.9), the first two terms are divisible by z2e and belong
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to the ideal I2. Thus the last term (y−k1

δ y−k2
α + y−l1

γ y−l2
β )zl1k1

h zl2k1

f zl1k2

d zl2k2

b of

(2.9) is also in I2. On the other hand, from the evolution equation, we have

(y−k1

δ y−k2
α + y−l1

γ y−l2
β )zl1k1

h zl2k1

f zl1k2

d zl2k2

b

=y−k1

δ y−k2
α y−l1

γ y−l2
β zl1k1

h zl2k1

f zl1k2

d zl2k2

b xe · ze, (2.10)

which indicates that (2.10) is divisible by ze only once. This leads us to a
contradiction. Thus zeve /∈ I2, and therefore αe = 0 is proved.
Now we have finished the proof of the irreducibility of ve.
Next let us prove that each vn is co-prime with every iterates below t = 4.
Let us substitute xn → 1, yn → 1. Then τn is a constant independent of
a choice of n for a fixed t: we define τ̃ := τn|xn→1,yn→1 and use symbols
such as z̃ for τ̃(t = 2) and so on. Then we have z̃ = 2, ũ = 2k1+k2 + 2l1+l2 ,
ṽ = (ũk1+k2 + ũl1+l2)/2, which indicates that ṽ > ũ, z̃. Therefore vn cannot
have a common factor with {un′} or {zn′}. Finally we note that vn and vn′

are co-prime if n ̸= n′. This is readily proved using Lemma 1, since vn and
vn′ are Laurent polynomials of the same degree, and they have distinct terms
y∗ in the t = 1 plane.

5. Proof of the case t = 5: Let us prove that wn is an irreducible Laurent polyno-
mial in R and every pair is co-prime. Also we prove that wn is co-prime with
vn′ , un′ , zn′ .
∵) Let us use Lemma 12 to consider the possible factorizations of wn as we
have done for the quasi-Somos-4 sequence (n ≥ 9) in Proposition 2. Let us
suppose that wn is reducible. Then we have only two types of factorizations as
follows:

wn = unit× zn′un′′ or wn = unit× zn′vn′′ .

However, since w̃ > z̃ṽ > z̃ũ, we have a contradiction. Thus wn is irreducible.
By a discussion similar to that in the previous part, we conclude that wn and
wn′ are co-prime if n ̸= n′.

6. The proof of the case t = 6: All the iterates pn are irreducible Laurent poly-
nomials in R and are pairwise co-prime. Moreover they are co-prime with
wn′ , vn′ , un′ , zn′ .
∵) The discussion proceeds in the same way as in the previous part.

7. The proof of the case t ≥ 7: For t ≥ 7, each term τt,n is an irreducible Laurent
polynomial in R and is co-prime with every iterate τs,n′ (s ≤ t).
∵) From the discussion in the case of t = 4 (Part I), the iterate qn ∈ R for
every t ≥ 7. By using Lemma 12 for qn, we have three types of factorizations:

qn =

(∏
n′

z
αn′
n′

)
firr

=

(∏
n′

u
βn′
n′

)(∏
n′

v
β′
n′

n′

)
girr

=

(∏
n′

w
γn′
n′

)(∏
n′

p
γ′
n′

n′

)
hirr,

where firr, girr, hirr are irreducible in R. These factorizations cannot be
compatible unless qn is irreducible in R (in that case, αn′ = · · · = γ′n′ = 0 and
firr = girr = hirr). By the same argument to the previous step, each pair of
qn and qn′ is co-prime if n ̸= n′.



Chapter 2 Polynomial form of quasi-integrable two dimensional discrete Toda lattice equation 15

8. The proof for t ≥ 8 is done inductively.

2.3 Quasi-integrable 1D discrete Toda equation
The following equation (2.11) is obtained from a reduction of equation (1.3) to a two-
dimensional lattice. Let us make a transformation n+m→ N and identify all τt,n,m
with N = n+m. Then τt,N := τt,n,m satisfy

τt+1,Nτt−1,N = τkt,N + τ l1t,N−1τ
l2
t,N+1 (k, l1, l2 ∈ Z+). (2.11)

For an arbitrary (k, l1, l2) ∈ Z+, equation (2.11) passes the singularity confinement
test and has irreducibility and co-primeness properties. If (k, l1, l2) ̸= (1, 1, 1), (2, 1, 1),
the equation (2.11) has exponential growth of the degrees of its iterates. The equation
(2.11) is the discrete Toda equation (1.1) if k = 2, l1 = 1, l2 = 1. In the case of
(k, l1, l2) = (1, 1, 1), we can prove that the degree of its iterates grows according to
a polynomial of degree one, by applying a discussion in [17]. We note that equation
(2.11) is already mentioned in [10] as ‘Number walls’ and its Laurent property is
proved. We shall call (2.11) a ‘quasi-integrable 1D discrete Toda equation’ and include
it in the category of quasi-integrable systems.

Proposition 3
Let us define the evolution of the equation (2.11) from the initial variables τ0,n, τ1,n
(n ∈ Z), upward on the t-axis. Then every iterate τt,n for t ≥ 3 is an irreducible
Laurent polynomial in

Z
[
τ±0,n, τ

±
1,n |n ∈ Z

]
,

and every pair of the iterates is co-prime.

Note that the proof of Proposition 3 is not directly transferred from that of Theorem
1, since the irreducibility and the co-primeness are not necessarily conserved under
the reduction. Proof of this proposition is omitted in this paper, since it can be done
inductively with respect to t, with the help of Lemma 12.
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Chapter 3

Nonlinear forms of the

quasi-integrable two-dimensional

Toda lattice equation

3.1 Nonlinear recurrence related to Somos-4
Let us consider the following nonlinear mapping:

(un+4 − 1)(un − 1)

(un+2 − 1)k
=
umn+3u

l
n+1

ukn+2

(k, l,m ∈ Z>0). (3.1)

Equation (3.1) is obtained from (1.5) by the reduction:

u2t+n+m := Ut,n,m,

with k1 + k2 → k, l1 → l and l2 → m. Putting

un+2 :=
xn+4xn
xkn+2

, (3.2)

and substituting (3.2) in (3.1), we have

(Ŝ2 − k + Ŝ−2) log(un+2 − 1) = (mŜ − k + lŜ−1) log un+2

= (mŜ − k + lŜ−1)(Ŝ2 − k + Ŝ−2) log xn+2,

where Ŝ is an up-shift operator with respect to n. Thus we obatin

(Ŝ2 − k + Ŝ−2)
(
log(un+2 − 1)− (mŜ − k + lŜ−1) log xn+2

)
= (Ŝ2 − k + Ŝ−2) log

(
xn+4xn − xkn+2

xmn+3x
l
n+1

)
= 0. (3.3)

Let us introduce a new variable Fn by

Fn :=
xn+4xn − xkn+2

xmn+3x
l
n+1

. (3.4)

Then we can rewrite (3.3) as
Fn+4Fn

F k
n+2

= 1. (3.5)
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Equation (3.5) is a nine-term recurrence relation for {xn}, whose initial variables are
x0, x1, ..., x7. An iterate xn is a rational function of these initial variables.

The recurrence (3.5) is, in fact, explicitly solvable. Let us introduce

f0 := F0 =
x4x0 − xk2
xm3 x

l
1

, f1 := F2 =
x6x2 − xk4
xm5 x

l
3

,

g0 := F1 =
x5x1 − xk3
xm4 x

l
2

, g1 := F3 =
x7x3 − xk5
xm6 x

l
4

,

(3.6)

and the sequence {an} defined by

ai+1 − kai + ai−1 = 0 (i = 0, 1, 2, ...), a−1 = −1, a0 = 0, (3.7)

(a1 = 1, a2 = k, a3 = k2 − 1, a4 = k3 − 2k, ...).
Then it is easy to prove by induction that

F2i =
fai
1

f
ai−1

0

, F2i+1 =
gai
1

g
ai−1

0

(i ≥ 0). (3.8)

Therefore the following pair of recurrences is equivalent to (3.5):

x2i+4x2i = xk2i+2 +

(
fai
1

f
ai−1

0

)
xm2i+3x

l
2i+1 (3.9a)

x2i+5x2i+1 = xk2i+3 +

(
gai
1

g
ai−1

0

)
xm2i+4x

l
2i+2. (3.9b)

Note that (3.9a) and (3.9b) are trivially satisfied for i = 0, 1. In case ∀n, Fn = 1,
k = 2 and l = m = 1, we have

xn+4xn = xn+3xn+1 + x2n+2

which is the Somos-4 recurrence[16]. Hence, we may regard (3.1) as a nonlinear form
of an extended Somos-4 recurrence.

3.1.1 Extended Laurent property

Our main results are the “extended Laurent property” and “irreducibility” of (3.9a)
and (3.9b), and the “co-primeness” of (3.1). Let us first introduce the former result:
Proposition 4 which states the Laurent property of (3.9a) and (3.9b).

Proposition 4
xn is an extended Laurent polynomial of the initial data: i.e.,

xn ∈ R := Z
[
x±4 , x

±
5 , x

±
6 , x

±
7 , f

±
0 , f

±
1 , g

±
0 , g

±
1

]
.

Unlike the Laurent property in the usual sense, xn is a Laurent polynomial of
f0, f1, g0, g1, which are not initial variables themselves. Let us prepare a lemma to
facilitate the proof:

Lemma 4
Let n be an integer greater than 7. If xj ∈ R for all j with 7 ≤ j ≤ n, then the four
iterates xn, xn−1, xn−2, xn−3 are mutually co-prime.
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Proof (Lemma 4)
It is trivial that x7, x6, x5, x4 are mutually co-prime in R. When n = 8, we have

x8x4 = xk6 +

(
fa2
1

fa1
0

)
xm7 x

l
5.

If we suppose that x8 has a common non-monomial factor with x6, then this
factor should also divide xm7 x

l
5, which contradicts the induction hypothesis that

x7, x6, x5, x4 are mutually co-prime in R. The same argument proves that x8 is
co-prime with x7 and x5. Thus x8 is co-prime with x7, x6, x5. We can then prove
the statement of the lemma 4 by induction.

Proof (Proposition 4)
Let us prove by an induction. The statement is trivial if n ≤ 9.

Let us suppose that xn ∈ R for all n with n ≤ 2i + 1, and prove the case of
n = 2i+ 2. From equation (3.9a) we have

x2i+2x2i−2 = xk2i +

(
f
ai−1

1

f
ai−2

0

)
xm2i+1x

l
2i−1.

Let us focus on the factor x2i−2 in (3.9a) with i→ i− 2 and write

xk2i =
1

xk2i−4

[(
f
ai−2

1

f
ai−3

0

)k

xkm2i−1x
kl
2i−3 + x2i−2 × p2i

]
, (3.10)

where pj is a polynomial in xi (i ≤ j − 1). Precisely, we have

p2i = k

(
f
ai−2

1

f
ai−3

0

)k−1

x
m(k−1)
2i−1 x

l(k−1)
2i−3 xk−1

2i−2 +O(x2k−1
2i−2 ) (3.11a)

p2i+1 = m

(
g
ai−2

1

g
ai−3

0

)
xm2ix

k(m−1)
2i−1 xkl2i−3x

l−1
2i−2 + l

(
g
ai−3

1

g
ai−4

0

)
xkm2i−1x

k(l−1)
2i−3 xl2i−4x

m−1
2i−2

+O(x2l−1
2i−2) +O(x2m−1

2i−2 ). (3.11b)

From equation (3.9b) with i→ i− 2 and i→ i− 3,

xm2i+1x
l
2i−1 =

1

xm2i−3x
l
2i−5

[
xkm2i−1x

kl
2i−3 + x2i−2 × p2i+1

]
, (3.12)

Since kai−2 = ai−1 + ai−3, we have

1

xk2i−4

(
f
ai−2

1

f
ai−3

0

)k

xkm2i−1x
kl
2i−3 +

1

xm2i−3x
l
2i−5

(
f
ai−1

1

f
ai−2

0

)
xkm2i−1x

kl
2i−3

=
xkm2i−1x

kl
2i−3

xm2i−3x
k
2i−4x

l
2i−5

(
f
ai−1

1

f
ai−2

0

){
xk2i−4 +

(
f
ai−3

1

f
ai−4

0

)
xm2i−3x

l
2i−5

}
=

{
xkm2i−1x

kl
2i−3

xm2i−3x
k
2i−4x

l
2i−5

(
f
ai−1

1

f
ai−2

0

)
x2i−6

}
x2i−2.

Thus,

x2i+2x2i−2 =
x2i−2

xm2i−3x
k
2i−4x

l
2i−5

P2i+2,
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where

P2i+2 =

(
f
ai−1

1

f
ai−2

0

)
xkm2i−1x

kl
2i−3x2i−6 + xm2i−3x

l
2i−5p2i +

(
f
ai−1

1

f
ai−2

0

)
xk2i−4p2i+1, (3.13)

which is a polynomial of xj(0 ≤ j ≤ 2i). The right hand side is in R, and at the
same time, the four iterates x2i−2, x2i−3, x2i−4, x2i−5 must be mutually co-prime
from lemma 4. Therefore we have xm2i−3x

k
2i−4x

l
2i−5 |P2i+2. Thus x2i+2 ∈ R is proved.

By using exactly the same argument we obtain x2i+3 ∈ R. Thus xn ∈ R for n ≥ 4.

3.1.2 Irreducibility and Co-primeness

Let us now introduce the latter half of our main result on the nonlinear recurrence
(3.1). We first prove the irreducibility and co-primeness of xn in R in Theorem 2,
and then state our main theorem on the variable un of (3.1) in Theorem 3.

Theorem 2
The xn ∈ R are irreducible and pairwise co-prime.

Proof Let us define fn := F2n, gn := F2n+1. Note that fn is expressed as a monic
monomial of f0, f1, and gn as a monic monomial of g0, g1. We also define the ring
Rn by

Rn : = Z
[
x±2n+4, x

±
2n+5, x

±
2n+6, x

±
2n+7, f

±
n , f

±
n+1, g

±
n , g

±
n+1

]
(n = 0, 1, 2, ...),

(R0 : = R)

The proof is done by induction.

• The case of n = 8: Note that

x8 =

xk6 +

(
fk1
f0

)
xm7 x

l
5

x4
,

is a first order polynomial in f−1
0 , whose constant term xk6x

−1
4 is co-prime with

the coefficient of f−1
0 . Thus x8 is irreducible, and not a unit element.

• The case of n = 9:

x9 =

xk7 +

(
gk1
g0

)
xm8 x

l
6

x5
,

is a first order polynomial of g−1
0 . Exactly the same argument as in the case of

n = 8 shows that x9 is irreducible and is not a unit.
• In the case of n = 10: Let us take q = (x4, x5, x6, x7, f0, f1, g0, g1) and p =
(x6, x7, x8, x9, f1, f2, g1, g2), and let us use lemma 12. Since p and q satisfy the
conditions in the lemma and since the iterate x10 is irreducible in R1, we have
a factorization

x10 = xi108 xj109 x′10(q) (i10, j10 ∈ Z≥0).

(f2, g2 are units in R[q±], and f0, f1 are units in R[p±]. Since x8, x9 are
irreducible polynomials and not units, then i10, j10 ≥ 0.)

x10 =

xk8 +

(
fa3
1

fa2
0

)
xm9 x

l
7

x6
.
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If x10 has x8 as a factor, xm9 must have x8 as a factor. However, x8 and x9 are
co-prime with each other, which leads to a contradiction. In the same manner,
we conclude that x9 must not be a factor of x10, since if it were, xk8 must have
a factor x9, which is again a contradiction. Therefore x10 is irreducible. (x10
is trivially not a unit.) Using lemma 4, we have that x10 is co-prime with x8
and x9.

• In the case of n = 11: An argument similar to that in the case of n = 10 shows
that we have a factorization

x11 = xi118 xj119 x′11(q) (i11, j11 ∈ Z≥0).

An investigation parallel to that for n = 10 shows that x11 is irreducible and
that it is co-prime with xj (j ≤ 10).

• In the case of n = 12: We have a factorization of x12 as

x12 = xi128 xj129 x′12(q) (i12, j12 ∈ Z≥0).

Let us take f1 = t and take all the other initial variables as 1. Then we have

x8 = 1 + ta2 = 1 + tk,

x9 = 1 + xm8 ,

x10 = xk8 + tk
2−1xm9 ,

x11 = xk9 + xm10x
l
8.

If we substitute t = e
√
−1π/k then

x8 = 0, x9 = 1, x10 = tk
2−1, x11 = 1.

Since we have

p10 = δk,1, p11 = mtm(k2−1)δl,1 + lδm,1,

we can obtain P12 as

P12 = ta4 + δk,1 + ta4

(
mtm(k2−1)δl,1 + lδm,1

)
= δk,1 + (−1)k

{
1 +mtm(k2−1)δl,1 + lδm,1

}
.

Here we have used the fact that ta4 = (−1)k
2

= (−1)k since a4 = k(k2 − 2).
Therefore we have P12 ̸= 0 if k ̸= 1. We conclude that P12 = 0 if and only if
k = 1 and m ≥ 2, l ≥ 2. Thus, except for the cases of k = 1, l ≥ 2, m ≥ 2,
the iterate x12 cannot have x8 as a factor. Let us study the case of k = 1, l ≥
2, m ≥ 2. We have

x9 ≡ x7
x5
, x11 ≡ x9

x7
≡ 1

x5
, p10 ≡ 1, p11 ≡ 0,

where A ≡ B is considered as modulo the factor x8. We also have a3 = 0, a4 =
−1. Thus

P12 ≡
(
fa4
1

fa3
0

)
xm9 x

l
7x4 + xm7 x

l
5

≡ xm+l
7 x4
xm5 f1

+ xm7 x
l
5 ̸≡ 0
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Therefore P12 cannot have x8 as a factor, and thus i12 = 0. We can prove that
j12 = 0 in a similar manner.

• In the case of n = 13, we can prove the irreducibility of x13 in the same manner
as in the case of n = 12.

• We shall prove that xn (n ≤ 13) are mutually co-prime. Let us define cn as the
value of xn when we substitute 1 to all the initial data: i.e.,

cn = xn

∣∣∣x4=x5=x6=x7=1
f0=f1=g0=g1=1

.

As we have already proved the irreducibility of xn for n ≤ 13, it is sufficient to
prove that cn ̸= cm for every n ̸= m (n,m ≤ 13). We have

c8 = 2, c9 = 1 + 2m, c10 = 2k + (1 + 2m)m, c11 = ck9 + cm102
l,

c12 =
ck10 + cm11c

l
9

2
, c13 =

ck11 + cm12c
l
10

c9
.

It is trivial that 2 = c8 < c9 < c10 < c11. We show inductively that cn < cn+1:

cn+1 =
ckn−1 + cmn c

l
n−2

cn−3
>
cln−2

cn−3
cmn > cmn ≥ cn,

for n ≥ 8. Therefore xn are mutually co-prime.
• In the case of n = 14: Using the lemma 12, we have the following two factor-
izations

x14 = xr18 x
r2
9 x

′
14 = xr310x

r4
11x

r5
12x

r6
13x

′′
14,

where x′14, x
′′
14 are irreducible in R. Let us suppose that x14 is not irreducible.

Then the only possible factorization is

x14 = αxixj (i ∈ {8, 9}, j ∈ {10, 11, 12, 13}),
where α is a unit in R. Therefore c14 = cicj ≤ c9c13. On the other hand, since
we have

c14 =
ck12 + cm13c

l
11

c10
,

c14 > c13c11 > c13c9,

in the case of m ≥ 2 or l ≥ 2, which contradicts c14 ≤ c9c13. In the case of
m = l = 1, we have

c8 = 2, c9 = 3, c10 = 2k + 3, c11 = 2k+1 + 3k + 6,

and thus, when k ≥ 3,

c14 >
c13c11
c10

= c13
2k+1 + 3k + 6

2k + 3
> 3c13 = c13c9,

which also leads to a contradiction. The remaining cases are (k, l,m) =
(2, 1, 1)and(1, 1, 1). If (k, l,m) = (2, 1, 1) we can directly confirm that
c14 = 1529 > 3c13 = 942. If (k, l,m) = (1, 1, 1), we have c14 = 111 = 3 × 37,
which cannot be expressed as cicj , (8 ≤ i ≤ 9, 10 ≤ j ≤ 13). We have proved
that x14 is irreducible.

• In the case of n ≥ 15: If we suppose that x15 is not irreducible, we must have
cn ≤ c13c9 = 3c13, which is impossible when (k, l,m) ̸= (1, 1, 1) since we have
already shown that c14 > 3c13. The case of (k, l,m) = (1, 1, 1) is also shown to
derive a contradiction, since cn ≥ c15 = 191 > 3c13 = 123 for n ≥ 15. We have
proved that xn ∈ R is irreducible, and is mutually co-prime with each other.
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3.1.3 Extended co-primeness property

Let us introduce one of the main theorems in this chapter, which states that the
recurrence (3.1) has an “extended” type of co-primeness property, which uses extra
data apart from the initial variables.

Definition 1
Let A be an integral domain and Quat(A) be its quotient field. Two elements f, g ∈
Quat(A) are said to be co-prime with each other, if and only if we have the decom-
position f = f1/f2, g = g1/g2 where any common factor of arbitrary two elements in
{f1, f2, g1, g2} ⊂ A is a unit in A.

Theorem 3
The solution un of equation (3.1) satisfies the following “co-primeness” property: if
we suppose that n ̸≡ n′ (mod 2) or |n− n′| > 4 is satisfied, then two iterates un and
un′ are co-prime in the following ring Ru:

Ru := Z
[
{u±j , (uj − 1)±}5j=2

]
. (3.14)

Let us prepare several lemmas. We use the following notations: x :=
{x4, x5, x6, x7; f0, f1, g0, g1}, u := {x0, x1, x2, x3;u2, u3, u4, u5}, ξn(u) := xn(x(u)).

Lemma 5
We have a birational mapping between the two sets of variables x and u.

Proof We construct the rational mapping and show that it is invertible. From the
definition of ui (3.2),

x4 =
xk2
x0
u2, x5 =

xk3
x1
u3, x6 =

xk4
x2
u4 =

xk
2−1

2

xk0
uk2u4, x7 =

xk5
x3
u5 =

xk
2−1

3

xk1
uk3u5.

(3.15)
From (3.6) we have

f0 =
x4x0 − xk2
xm3 x

l
1

=
xk2(u2 − 1)

xm3 x
l
1

(3.16a)

f1 =
x6x2 − xk4
xm5 x

l
3

=
xk4(u4 − 1)

xm5 x
l
3

=
xk

2

2 x
m
1 u

k
2(u4 − 1)

um3 x
km+l
3 xk0

(3.16b)

g0 =
x5x1 − xk3
xm4 x

l
2

=
xk3x

m
0 (u3 − 1)

xmk+l
2 um2

(3.16c)

g1 =
x7x3 − xk5
xm6 x

l
4

=
xk5x

m
2 (u5 − 1)

xmk+l
4 um4

=
xk

2

3 x
m
2 x

mk+l
0 uk3(u5 − 1)

xk1x
k(mk+l)
2 umk+l

2 um4
. (3.16d)

The inverse mapping is

x3 =
xl4x

m
6 g1 + xk5
x7

, → x2 =
xm5 x

l
3f1 + xk4
x6

, → x1 =
xl2x

m
4 g0 + xk3
x5

, → x0 =
xm3 x

l
1f0 + xk2
x4

,

and
uj =

xj+2xj−2

xkj
, (j = 2, 3, 4, 5).
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Note that in both directions, the variables are expressed as irreducible Laurent poly-
nomials of the other variables.

Lemma 6
Let us define

ξ2i+2(u) =:
x
ai+1

2

xai
0

ξ̃2i+2(u), ξ2i+3(u) =:
x
ai+1

3

xai
1

ξ̃2i+3(u).

Then we have
ξ̃n(u) ∈ Z

[
{u±j , (uj − 1)±}5j=2

]
.

Proof Since xn ∈ R,

ξn(u) = xn ∈ Z
[
{u±j , (uj − 1)±}5j=2, {x±i }

3
i=0

]
.

Therefore we need to show that ξ̃n(u) is independent of x0, x1, x2, x3.
We inductively obtain that

x2i+2 =
xk2i
x2i−2

u2i

=
x
ai+1

2

xai
0

ua1
2i u

a2
2i−2 · · ·u

ai
2 , (3.17)

x2i+3 =
x
ai+1

3

xai
1

ua1
2i+1u

a2
2i−1 · · ·u

ai
3 , (3.18)

where ai has been defined in (3.7). The ui (i ≥ 6) can be expressed as rational

functions of u2, ..., u5 from (3.1). Thus ξ̃n(u) can be expressed using only u2, ..., u5
and this expression is unique.

Proposition 5
ξ̃n is irreducible in Z

[
{u±j , (uj − 1)±}5j=2

]
. If n ̸= r, the two terms ξ̃n and ξ̃r are

co-prime.

Proof Recall that ξn(u) ∈ R′ := Z
[
{u±j , (uj − 1)±}5j=2, {x±i }

3
i=0

]
. Let us suppose

a factorization ξn(u) = h1(u)h2(u), (h1, h2 ∈ R′). From equations (3.16a) through
(3.16d), we have

hi ∈ R̃ := Z
[
x±0 , x

±
1 , ..., x

±
7 , f

±
0 , f

±
1 , g

±
0 , g

±
1

]
(i = 1, 2).

Since xn(x) is irreducible in R, it is also irreducible in R̃. Therefore either h1 or h2
is a unit in R̃. We can assume that h1 is a unit and can factorize it as

h1(∈ R̃) =

7∏
i=0

xαi
i

1∏
i=0

fβi

i gγi

i (αi, βi, γi ∈ Z).

By taking the inverse transformation from x to u, we have that h1 ∈ R′ is
a unit. Therefore ξn(u) is irreducible in R′, and thus ξ̃n is irreducible in
Z
[
{u±j , (uj − 1)±}5j=2

]
. Next we prove the co-primeness of two arbitrary iterates.

Let us suppose that ξn(u) and ξr(u) (n ̸= r) have a common factor G other than
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monomial ones. G is a common factor of the iterates in R̃, and is not a unit.
Therefore xn and xr are not co-prime in R̃. However, from Theorem 2, they must be
co-prime in R and thus co-prime in R̃, which is a contradiction.

Proof (Theorem 3)
Theorem 3 is readily obtained from

un =
xn+2xn−2

xkn
=
x̃n+2x̃n−2

x̃kn
,

and from Proposition 5.

3.2 Nonlinear extended two-dimensional discrete Toda

equation
Based on the results on the nonlinear recurrence equation (3.1) in the previous section,
we shall study the irreducibility and co-primeness properties of the nonlinear form
of the extended two-dimensional discrete Toda equation (1.5). Let us redefine the

independent variables as n′ := n +
t

2
, m′ := m − t

2
, and use the notations n :=

(n′,m′)，n ∈ Z2 (t ∈ 2Z), n ∈ (Z+ 1/2)2 (t ∈ 2Z+ 1)，

e1 =

(
1

2
,
1

2

)
, e2 =

(
−1

2
,
1

2

)
.

To ease notation, let us abbreviate the prime
′
in (n′,m′) from here on. Then equations

(1.7) and (1.5) are equivalent to the following equations:

Ut,n =
τt+1,nτt−1,n

τk1
t,n−e2

τk2
t,n+e2

, (3.19)

(Ut+1,n − 1)(Ut−1,n − 1)

(Ut,n−e2
− 1)k1(Ut,n+e2

− 1)k2
=
U l1
t,n−e1

U l2
t,n+e1

Uk1
t,n−e2

Uk2
t,n+e2

. (3.20)

Let us define the shift operators Ŝt, Ŝ1, Ŝ2, which defines an up-shift in the directions
of t, e1, and e2 respectively. Then the equation (3.20) can be written as:(

Ŝt + Ŝ−1
t − k1Ŝ

−1
2 − k2Ŝ2

)
log (Ut,n − 1)

=
(
l1Ŝ

−1
1 + l2Ŝ1 − k1Ŝ

−1
2 − k2Ŝ2

)
logUt,n

=
(
l1Ŝ

−1
1 + l2Ŝ1 − k1Ŝ

−1
2 − k2Ŝ2

)(
Ŝt + Ŝ−1

t − k1Ŝ
−1
2 − k2Ŝ2

)
log τt,n,

which is equivalent to

(
Ŝt + Ŝ−1

t − k1Ŝ
−1
2 − k2Ŝ2

)
log

[
τt+1,nτt−1,n − τk1

t,n−e2
τk2
t,n+e2

τ l1t,n−e1
τ l2t,n+e1

]
= 0.

Thus we have obtained a recurrence relation of τn,t as

Ft+1,nFt−1,n

F k1
t,n−e2

F k2
t,n+e2

= 1, (3.21)
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where we have defined

Ft,n :=
τt+2,nτt,n − τk1

t+1,n−e2
τk2
t+1,n+e2

τ l1t+1,n−e1
τ l2t+1,n+e1

. (3.22)

Equation (3.21) is nonlinear and is a five-term relation with respect to t. Evolution of
(3.21) can be defined by assigning the values of τt,n at t = 0, 1, 2, 3, and by computing
the iterations for t ≥ 4. Let us define the sequences at,n, bt,n ∈ Z by the following
linear recurrence relation

yt+1,n − k1yt,n−e2 − k2yt,n+e2 + yt−1,n = 0, (3.23)

and the initial data

a0,0 = 1, a0,n ̸=0 = 0, a1,n = 0, (3.24)

b1,−e2
= 1, b0,n = 0, b1,n̸=−e2

= 0. (3.25)

Then we can explicitly solve {Ft,n} as

Ft,n =
∏
r0,r1

F
at,n−r0
0,r0

F
bt,n−r1
1,r1−e2

, (3.26)

where the products are taken over all integers r0 and r1. Therefore the variable τt,n
satisfies the following equation:

τt+1,nτt−1,n = τk1
t,n−e2

τk2
t,n+e2

+ Ft−1,nτ
l1
t,n−e1

τ l2t,n+e1
. (3.27)

From (3.26) it follows that Ft−1,n is a monomial of F0,n, F1,n. Note that (3.27) is
trivial for t = 1, 2 for which it coincides with (3.22). Let us define a ring of Laurent
polynomials corresponding to R as

S := Z
[
{τ±2,n, τ

±
3,n}, {F

±
0,n, F

±
1,n}

]
. (3.28)

Lemma 7
Let us suppose that τt,n ∈ S for every t ≥ t0. Then two iterates τt0,n and τt0,r are
co-prime if n ≠ r.

Proof From the spatial symmetry of the equation, if we shift the subscripts in τt0,r
in the direction of n − r, we obtain τt0,n. Thus if τt0,r is a unit, then we have that
τt0,n is also a unit and is co-prime with τt0,r. Otherwise, there exists a non-unit factor
τ ′t0,r such that τt0,r = unit × τ ′t0,r. Since τ ′t0,r has only a finite number of variables,
τ ′t0,n has at least one variable that is not in τ ′t0,r. This variable is not a unit element,
and thus τt0,r and τt0,n are co-prime.

Lemma 8
Let us suppose that τt,n, τt−1,n′ ∈ S for all n,n′, and suppose that τt,n is co-prime
with four iterates τt−1,n±e1

, τt−1,n±e2
. Then if τt+1,r ∈ S, the iterate τt+1,r is also

co-prime with τt,r±e1
, τt,r±e2

.

Proof Proof is immediate from equation (3.27) and lemma 7.
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Proposition 6
τt,n ∈ S.

Proof The proposition is trivial when t ≤ 5. Let us suppose that the Proposition
6 is true for t (≥ 5 ). Then

τt+1,nτt−1,n = τk1
t,n−e2

τk2
t,n+e2

+ Ft−1,nτ
l1
t,n−e1

τ l2t,n+e1
∈ S.

By a direct calculation we have

τt+1,nτt−1,n =
1

τk1
t−2,n−e2

τk2
t−2+e2

τ l1t−2,n−e1
τ l2t−2,n+e1

×
[
τ l1t−2,n−e1

τ l2t−2,n+e1
F k1
t−2,n−e2

τ l1k1
t−1,n−e1−e2

· τ l2k1
t−1,n+e1−e2

F k2
t−2,n+e2

τ l1k2
t−1,n−e1+e2

τ l2k2
t−1,n+e1+e2

+ τk1
t−2,n−e2

τk2
t−2,n+e2

Ft−1,nτ
k1l1
t−1,n−e2−e1

τk2l1
t−1,n+e2−e1

τk1l2
t−1,n−e2+e1

τk2l2
t−1,n+e2+e1

+ τt−1,n × (polynomials of τt−1,n−2e2)
]
.

We further compute the first term in the square brackets above and obtain

τ l1k1
t−1,n−e1−e2

τ l2k1
t−1,n+e1−e2

τ l1k2
t−1,n−e1+e2

τ l2k2
t−1,n+e1+e2

×
(
τ l1t−2,n−e1

τ l2t−2,n+e1
F k1
t−2,n−e2

F k2
t−2,n+e2

+ τk1
t−2,n−e2

τk2
t−2,n+e2

Ft−1,n

)
= τ l1k1

t−1,n−e1−e2
τ l2k1
t−1,n+e1−e2

τ l1k2
t−1,n−e1+e2

τ l2k2
t−1,n+e1+e2

Ft−1,n

×
(
τk1
t−2,n−e2

τk2
t−2,n+e2

+ Ft−3,nτ
l1
t−2,n−e1

τ l2t−2,n+e2

)
= τ l1k1

t−1,n−e1−e2
τ l2k1
t−1,n+e1−e2

τ l1k2
t−1,n−e1+e2

τ l2k2
t−1,n+e1+e2

Ft−1,nτt−1,nτt−3,n.

Therefore there exists a polynomial Pt+1,n ∈ S in τt,n−e2 and other iterates such that

τt+1,nτt−1,n =
τt−1,nPt+1,n

τk1
t−2,n−e2

τk2
t−2+e2

τ l1t−2,n−e1
τ l2t−2,n+e1

.

From lemma 8, we have that τt−1,n is co-prime with τt−2,n−e2
, τt−2+e2

, τt−2,n−e1
, τt−2,n+e1

,

and satisfies τt+1,nτt−1,n ∈ S. Therefore τk1
t−2,n−e2

τk2
t−2+e2

τ l1t−2,n−e1
τ l2t−2,n+e1

divides
Pt+1,n. Thus τt+1,n ∈ S. We have thus proved by induction that τt,n ∈ S for all t.

Note 3
Let us calculate Pt+1,n:

Pt+1,n =
τk1
t,n−e2

τk2
t,n+e2

+ Ft−1,nτ
l1
t,n−e1

τ l2t,n+e1

τt−1,n
,
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τk1
t,n−e2

=
1

τk1
t−2,n−e2

(
F k1
t−2,n−e2

τk1l1
t−1,n−e1−e2

τk1l2
t−1,n+e1−e2

+k1F
k1−1
t−2,n−e2

τ
(k1−1)l1
t−1,n−e1−e2

τ
(k1−1)l2
t−1,n+e1−e2

τk1
t−1,n−2e2

τk2
t−1,n +O(τ2k2

t−1,n)
)
,

τk2
t,n+e2

=
1

τk2
t−2,n+e2

(
F k2
t−2,n+e2

τk2l1
t−1,n−e1+e2

τk2l2
t−1,n+e1+e2

+k2F
k2−1
t−2,n+e2

τ
(k2−1)l1
t−1,n−e1+e2

τ
(k2−1)l2
t−1,n+e1+e2

τk1
t−1,nτ

k2
t−1,n+2e2

+O(τ2k1
t−1,n)

)
,

τ l1t,n−e1
=

1

τ l1t−2,n−e1

(
τ l1k1
t−1,n−e1−e2

τ l1k2
t−1,n−e1+e2

+l1τ
k1(l1−1)
t−1,n−e1−e2

τ
k2(l1−1)
t−1,n+e2−e1

Ft−2,n−e1
τ l1t−1,n−2e1

τ l2t−1,n +O(τ2l2t−1,n)
)
,

τ l2t,n+e1
=

1

τ l2t−2,n+e1

(
τ l2k1
t−1,n+e1−e2

τ l2k2
t−1,n+e1+e2

+l2τ
k1(l2−1)
t−1,n+e1−e2

τ
k2(l2−1)
t−1,n+e2+e1

Ft−2,n+e1τ
l1
t−1,nτ

l2
t−1,n+2e1

+O(τ2l1t−1,n)
)
.

Therefore we have

Pt+1,n = Ft−1,nτ
l1k1
t−1,n−e1−e2

τ l2k1
t−1,n+e1−e2

τ l1k2
t−1,n−e1+e2

τ l2k2
t−1,n+e1+e2

τt−3,n

+ τ l1t−2,n−e1
τ l2t−2,n+e1

(
k2F

k1
t−2,n−e2

F k2−1
t−2,n+e2

× τk1l1
t−1,n−e1−e2

τk1l2
t−1,n+e1−e2

τ
(k2−1)l1
t−1,n−e1+e2

τ
(k2−1)l2
t−1,n+e1+e2

τk1−1
t−1,nτ

k2
t−1,n+2e2

+k1F
k2
t−2,n+e2

F k1−1
t−2,n−e2

τk2l1
t−1,n−e1+e2

τk2l2
t−1,n+e1+e2

τ
(k1−1)l1
t−1,n−e1−e2

τ
(k1−1)l2
t−1,n+e1−e2

τk1
t−1,n−2e2

τk2−1
t−1,n

)
+ τk1

t−2,n−e2
τk2
t−2,n+e2

Ft−1,n

(
l2Ft−2,n+e1

τ l1k1
t−1,n−e1−e2

× τ l1k2
t−1,n−e1+e2

τ
k1(l2−1)
t−1,n+e1−e2

τ
k2(l2−1)
t−1,n+e2+e1

τ l1−1
t−1,nτ

l2
t−1,n+2e1

+l1Ft−2,n−e1τ
l2k1
t−1,n+e1−e2

τ l2k2
t−1,n+e1+e2

τ
k1(l1−1)
t−1,n−e1−e2

τ
k2(l1−1)
t−1,n+e2−e1

τ l1t−1,n−2e1
τ l2−1
t−1,n

)
+O(τt−1,n)

(3.29)

Theorem 4
Every iterate τt,n (t ≥ 2) is irreducible and any two iterates are co-prime.

Proof It is sufficient to prove the irreducibility for only τt,0 (t ∈ 2Z), τt,−e2
(t ∈

2Z+ 1), because of the translational symmetries of the equation.

• In the case of t = 2, 3, the statement is trivial since τt,n is a unit.
• In the case of t = 4:

τ4,0 =
τk1
3,−e2

τk2
3,e2

+ F2,0τ
l1
3,−e1

τ l23,e1

τ2,0
.

Since F2,0 =
F k1
1,−e2

F k2
1,e2

F0,0
, τ4,0 is a first order polynomial of F−1

0,0 , whose coef-

ficient is co-prime with its constant term. Thus τ4,0 is irreducible and not a
unit.

• In the case of t = 5, from lemma 12, we have

τ5,−e2
=

(∏
n

ταn
4,n

)
× τ ′5,−e2

(αn ∈ Z≥0),
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where τ ′5,−e2
is irreducible. We also have

τ5,−e2
=
τk1
4,−2e2

τk2
4,0 + F3,−e2

τ l14,−e1−e2
τ l24,e1−e2

τ3,−e2

.

Since τ4,n and τ4,r are mutually co-prime when n ̸= r from lemma 7, we have
αn = 0 (n = 0, −2e2, ±e1−e2). The term τ4,n is independent of F0,r (r ̸= n),

and is a first order polynomial of F−1
0,n whose constant term is non-zero. We

also have that F3,−e2 is a monomial of F0,0 and F0,−2e2 . Therefore τ5,−e2 is
independent of all the iterates F0,n (n ̸= 0, −2e2, ±e1 − e2). Thus αn = 0 for
all n ̸= 0, −2e2, ±e1 − e2. We have proved that τ5,−e2

is irreducible.
• In the case of t = 6, from lemma 12 we have the following factorization:

τ6,0 =

(∏
n

ταn
4,n

)
× τ ′6,0 (αn ∈ Z≥0),

where τ ′6,0 is irreducible. Let us take the initial data as ∀n, F0,n = t−1
n , and

take all the other initial data as 1. Then we have

F2,n = tn,

F3,n = tk1
n−e2

tk2
n+e2

,

F4,n = t
k2
1

n−2e2
t2k1k2−1
n t

k2
2

n+2e2
,

and

τ4,n = 1 + tn,

τ5,n = (1 + tn−e2
)k1(1 + tn+e2

)k2 + tk1
n−e2

tk2
n+e2

(1 + tn−e1
)l1(1 + tn+e1

)l2 ,

τ6,n =
τk1
5,n−e2

τk2
5,n+e2

+ t
k2
1

n−2e2
t2k1k2−1
n t

k2
2

n+2e2
τ l15,n−e1

τ l25,n+e1

1 + tn
.

Therefore the iterate τ6,0 depends only on tn (n ∈ I6) where

I6 :=
{
n = j1e1 + j2e2

∣∣ |j1|+ |j2| = 0, 2, (j1, j2) ∈ Z2
}
.

Thus n ̸∈ I6 → αn = 0. Let us prove that αn = 0 for n ∈ I6, one by one.
(i) In the case of t2e1

= −1, with tn = 1 for all n ̸= 2e1:

τ5,±e2
= 2k1+k2 + 2l1+l2 =: c5, τ5,e1

= 2k1+k2 , τ5,−e1
= c5.

Therefore we have τ6,0 > 0, and thus α2e1 = 0. From the symmetry of the
equation we also have α−2e1 = 0.

(ii) In the case of t2e2
= −1, with tn = 1 for all n ̸= 2e2:

τ5,e2
= (−1)k22l1+l2 , τ5,−e2

= c5, τ5,±e1
= c5.

Let us note that k22 ≡ k2 (mod 2) and we obtain

τ6,0 = (−1)k2
2l1+l2ck1

5 + cl1+l2
5

2
̸= 0.

Therefore α2e2
= 0. We also have α−2e2

= 0 in the same way.
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(iii) In the case of te1+e2
= −1, with tn = 0 for all n ̸= e1 + e2:

τ5,e2 = 1, τ5,−e2 = 1, τ5,e1 = 0, τ5,−e1 = 1.

Therefore
τ6,0 → 1.

Thus αe1+e2
= 0. We also have α−e1−e2

= 0, αe1−e2
= 0, and, α−e1+e2

=
0.

(v) In the case of τ0 = −1, with tn = 1 for all n ̸= 0.

F3,e2
= (−1)k1 , F3,−e2

= (−1)k2 , F3,n = 1 (n ̸= ±e2), F4,0 = (−1).

From equation (3.29),

P6,0 → (−1)(k1+k2)(l1+l2) + k2δk1,1(−1)k1k2(−1)k1(k2−1)2(k1+k2−1)(l1+l2)+k2

+ k1δk2,1(−1)k1k2(−1)k2(k1−1)2(k1+k2−1)(l1+l2)+k1

+ (−l2)δl1,12(k1+k2)(l1+l2−1)+l2 + (−l1)δl2,12(k1+k2)(l1+l2−1)+l1

= (−1)(k1+k2)(l1+l2) + (−k2)δk1,12
k2(l1+l2+1) + (−k1)δk2,12

k1(l1+l2+1)

+ (−l2)δl1,12l2(k1+k2+1) + (−l1)δl2,12l1(k1+k2+1) ̸= 0.

Therefore we have α0 = 0.
From these observations we conclude that τ6,0 is irreducible.

• Preparation for t ≥ 7: Let us define ct as the value of τt,n when we take all the
initial data as 1. Note that ct does not depend on n. If we substitute 1 for all
the initial data in Ft,n, we have Ft,n → 1, and

c3 = 1, c4 = 2, cj+1 =
ck1+k2
j + cl1+l2

j

cj−1
(j ≥ 4).

It is easy to see that the cj are strictly increasing. Therefore we have shown
the following fact: if τt,n and τs,r (s ̸= t) are irreducible, then τt,n and τs,r are
co-prime. Also, from lemma 12, τt,n and τt,r (n ̸= r) are co-prime if they are
both irreducible. Thus the irreducibility immediately implies the co-primeness.

• In the case of t = 7: From lemma 12,

τ7,−e2 =
∏
n

ταn
4,nτ

′
7,−e2

=
∏
n,r

τβn

5,nτ
γr

6,rτ
′′
7,−e2

,

(αn, βn, γr ∈ Z≥0),

where τ ′7,−e2
, τ ′′7,−e2

are irreducible. If we suppose that τ7,−e2 is not irreducible,
then there exist n, r, j such that

τ7,−e2 = unit× τ4,nτj,r (j ∈ {5, 6}).

Therefore
c7 ≤ c4c6 = 2c6.

On the other hand,

c7 =
ck1+k2
6 + cl1+l2

6

c5
> ck1

6 + cl16 ≥ 2c6,

which is a contradiction.
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• In the case of t ≥ 8, the discussion goes in exactly the same manner.

The proof is complete. Our final aim is to prove the following theorem:

Theorem 5
Two iterates U(t,n) and U(s, r) of the equation (3.20) satisfy the following property:
if |t− s| > 2 or r ̸= n, n± 2e2, they are co-prime in

SU := Z
[{
U±
t,n, (Ut,n − 1)±

}
t=0,1

]
. (3.30)

Let us use the following notations:

τt := {τt,n}, Ft := {Ft,n}, Ut = {Ut,n},
T := {F0,F1, τ2, τ3}, W := {τ0, τ1,U1,U2}

Then we have S = Z
[
F±
0 ,F

±
1 , τ

±
2 , τ

±
3

]
= Z [T ]. Note that from our previous results,

all the iterates τt,n ∈ S are irreducible and mutually co-prime. As before, we have
the following lemma.

Lemma 9
We have a birational mapping between T and W .

Proof W → T

τ2,n =
1

τ0,n
U1,nτ

k1
1,n−e2

τk2
1,n+e2

, (3.31a)

τ3,n =
1

τ1,n
U2,nτ

k1
2,n−e2

τk2
2,n+e2

=
U2,nU

k1
1,n−e2

Uk2
1,n+e2

τ
k2
1

1,n−2e2
τ2k1k2−1
1,n τ

k2
2

1,n+2e2

τk1
0,n−e2

τk2
0,n+e2

.

(3.31b)

Using these results,

F0,n =
τ2,nτ0,n − τk1

1,n−e2
τk2
1,n+e2

τ l11,n−e1
τ l21,n+e1

=
τk1
1,n−e2

τk2
1,n+e2

τ l11,n−e1
τ l21,n+e1

(U1,n − 1), (3.31c)

F1,n =
τ3,nτ1,n − τk1

2,n−e2
τk2
2,n+e2

τ l12,n−e1
τ l22,n+e1

=
τk1
2,n−e2

τk2
2,n+e2

τ l12,n−e1
τ l22,n+e1

(U2,n − 1)

=
τ l10,n−e1

τ l20,n+e1

τk1
0,n−e2

τk2
0,n+e2

τ
k2
1

1,n−2e2
τ2k1k2−1
1,n τ

k2
2

1,n+2e2

τ
121
1,n−2e1

τ2l1l2−1
1,n τ

l22
1,n+2e1

Uk1
1,n−e2

Uk2
1,n+e2

U l1
1,n−e1

U l2
1,n+e1

(U2,n − 1). (3.31d)

The inverse mapping (T → W ) is constructed as

τ1,n =
1

τ3,n

(
F1,nτ

l1
2,n−e1

τ l22,n+e1
+ τk1

2,n−e2
τk2
2,n+e2

)
, (3.32a)

and

τ0,n =
1

τ2,n

(
F0,nτ

l1
1,n−e1

τ l21,n+e1
+ τk1

1,n−e2
τk2
1,n+e2

)
, (3.32b)

U2,n =
τ3,nτ1,n

τk1
2,n−e2

τk2
2,n+e2

, → U1,n =
τ2,nτ0,n

τk1
1,n−e2

τk2
1,n+e2

. (3.32c)

It is immediately shown that these transformations are made up irreducible Laurent
polynomials.
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Lemma 10
Let us define the new variable σt,n as σt,n(W ) := τt,n(T ). Then we have the following
factorization: σt,n = ut,nσ̃t,n, where ut,n is a monic Laurent monomial of τ0,r, τ1,r,
and we have

σ̃t,n ∈ Z
[
{U±

s,r, (Us,r − 1)±}s=0,1

]
.

Proof By a direct computation, we have

τ2,n =
U1,n

τ0,n

(
τk1
1,n−e2

τk2
1,n+e2

)
=
τk1
1,n−e2

τk2
1,n+e2

τ0,n
· U1,n,

τ3,n =
U2,n

τ1,n

(
τk1
2,n−e2

τk2
2,n+e2

)
=
U2,n

τ1,n

(
U1,n−e2

τ0,n−e2

)k1
(
U1,n+e2

τ0,n+e2

)k2 (
τ
k2
1

1,n−2e2
τ2k1k2
1,n τ

k2
2

1,n+2e2

)
=
τ
k2
1

1,n−2e2
τ2k1k2−1
1,n τ

k2
2

1,n+2e2

τk1
0,n−e2

τk2
0,n+e2

· U2,nU
k1
1,n−e2

Uk2
1,n+e2

,

...

τt,n = (Monic Laurent monomial of τ0,r, τ1,r)

× (Monic monomial of U1,r, ..., Ut−1,n).

From equation (3.20), Us,n (s = 3, 4, ...) can be expressed using U1,r, U2,r. Therefore
ut,n is a monic Laurent monomial of τ0,r, τ1,r, and has a factor σ̃t,n ∈ Q(U0,U1).
On the other hand, from τt,n ∈ S and the transformations (3.31a) – (3.31d) we have

σt,n ∈ Z
[
τ±0 , τ

±
1 , {U±

s,r, (Us,r − 1)±}s=0,1

]
.

Therefore, from the uniqueness of the factorization, we conclude that

σ̃t,n ∈ Z
[
{U±

s,r, (Us,r − 1)±}s=0,1

]
.

Proposition 7
σ̃t,n is irreducibile in Z

[
{U±

s,r, (Us,r − 1)±}s=0,1

]
. For (t,n) ̸= (s, r), σ̃t,n and σ̃s,r

are co-prime.

Proof We use an argument similar to that in the proof of Proposition 5. We have

σt,n ∈ S̃ := Z
[
τ±
0 , τ

±
1 , {U±

s,r, (Us,r − 1)±}s=0,1

]
.

Let us suppose that we can factor σt,n as σt,n = h1(W )h2(W ) (h1, h2 ∈ S̃). From
equations (3.31a)–(3.31d) we can reformulate (Us,r − 1), to obtain

h1h2 ∈ S ′ := Z
[
{τ±

i }3i=0, F
±
t

]
.

On the other hand, τt,n ∈ S is irreducible in S ′ and we can assume that h1 is a unit
in S ′. Therefore h1 can be expresssed as

h1 =

1∏
i=0

∏
n

F
αi,n

i,n

4∏
j=0

∏
r

τ
βj,r

j,r (αi,n, βj,r ∈ Z),
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which implies that h1 is a unit also in S̃. Thus σt,n is irreducible in S̃.
From the uniqueness of the factorization, the iterate σ̃t,n is irreducible in
Z
[
{U±

s,r, (Us,r − 1)±}s=0,1

]
. Finally we prove co-primeness. Let us suppose

that σt,n and σs,r are not co-prime. Then they must have a (non-unit) common

factor H in S̃. Then H is not a unit in S ′, and τt,n and τs,r are not co-prime in
S ′. This conclusion contradicts the outcome of Theorem 4 that τt,n and τs,r are
co-prime in S.

Proof of Theorem 5 From equation (3.20), we have that Ut,n ∈ Q(U). Thus

Ut,n =
σt+1,nσt−1,n

σk1
t,n−e2

σk2
t,n+e2

=
σ̃t+1,nσ̃t−1,n

σ̃k1
t,n−e2

σ̃k2
t,n+e2

Therefore we obtain Theorem 5 from Proposition 7.
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Chapter 4

Conclusion

In this thesis we have constructed a quasi-integrable extension to the two-dimensional
discrete Toda equation (quasi 2D-dToda), and proved that it has Laurent property,
the irreducibility and the co-primeness property. The quasi 2D-dToda is considered
to be the first example of quasi-integrable equations defined on a three-dimensional
lattice Z3. We have also presented a quasi-integrable Somos-4 recurrence, a quasi-
integrable 1D discrete Toda equation (quasi 1D-dToda), through a reduction from
quasi 2D-dToda, and have proved that they also have the Laurent, the irreducibility
and the co-primeness properties (although some parts of the proofs have been omit-
ted). Quasi-integrable Somos-4 and quasi 1D-dToda are already known to have the
Laurent property [10], and in this thesis, we have added the proof for the irreducibility
and the co-primeness.

Properties of the irreducibility and co-primeness are considered as strong indica-
tions of the discrete integrability (including quasi-integrability), and also are algebraic
reinterpretations of singularity confinement. It is expected that further exploration
into the topics related to the co-primeness, will lead us to constructing refined in-
tegrability criteria for discrete dynamical systems. For example, in some discrete
equations, even when the general iterates are not irreducible, we can still prove that
every pair of two iterates are co-prime. This phenomenon might lie in the bound-
ary of integrable systems and non-integrable ones. For example, the quasi-integrable
Somos-4 equation satisfies co-primeness property when we remove the condition that
‘the polynomial xlym + zk is irreducible in Z’.

Another interesting topic to study is the nonlinear forms of the equations that we
have investigated here. The original 2-dimensional discrete Toda equation has the τ -
function bilinear form (1.2) as we have presented in this thesis, and also has a nonlinear
expression related to it. We proved that the nonlinear extended discrete 2D Toda lat-
tice equations (1.5) all have the co-primeness property in Z

[
{U±

s,r, (Us,r − 1)±}s=0,1

]
for general k1, k2, l1 and l2. The nonlinear recurrence corresponding to the ex-
tended Somos-4 (3.1), which is obtained as a reduction of (1.5), also shows the
co-primeness property in the ring Z

[
{u±j , (uj − 1)±}5j=2

]
. Since the co-primeness

property is an algebraic analogue of singularity confinement[5], the reason why the
ring Z

[
{u±j , (uj − 1)±}5j=2

]
appears in the property is that the “singularities”of (3.1)

are not only at uj = 0 but also at uj = 1 (j = 2, 3, 4, 5).
So far we have constructed several higher dimensional non-linear equations which

have the co-primeness property[18]. A natural question is whether there is any sys-
tematic way of constructing such equations. For discrete Painlevé equations, which
were first introduced as second order rational mappings with the singularity confine-
ment property, Sakai has given a geometric construction of the so called space of initial
conditions and completed the classification of the discrete Painlevé equations[7] [19].
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We expect some geometric interpretation of the co-primeness property with which a
systematic construction and classification of co-primeness preserving nonlinear equa-
tions becomes possible. This is one of the problems we wish to address in future
works. An investigation of the continuous limits of these discrete equations is also a
future problem.
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Appendix

A Conditions on the indices of the equation (1.3)
We prove the following proposition:

Proposition 8
Let r be a positive integer, and let a1, a2, a3, a4 be non-negative integers with
GCD(a1, a2, a3, a4) = 1. Then the polynomial

Xa1r
1 Xa2r

2 +Xa3r
3 Xa4r

4

is irreducible in Z[X1, X2, X3, X4] if and only if r = 2l (l ≥ 0).

Sketch of Proof If r has a odd prime factor, it is trivial that Xa1r
1 Xa2r

2 +Xa3r
3 Xa4r

4

is reducible. We prove that, if r is a power of 2, Xa1r
1 Xa2r

2 +Xa3r
3 Xa4r

4 is irreducible.
It is sufficient to prove the irreducibility of

F := (Xa1
1 Xa2

2 X−a3
3 X−a4

4 )r + 1

as a Laurent polynomial. From Lemma 11, there exists a matrix B = (bij) ∈ GLZ(4)
such that

b11 = a1, b21 = a2, b31 = −a3, b41 = −a4.

Then the following ring homomorphism

ψ : Z[Y ±
1 , Y

±
2 , Y

±
3 , Y

±
4 ] → Z[X±

1 , X
±
2 , X

±
3 , X

±
4 ],

defined by
Yi 7→ Xbi1

1 Xbi2
2 Xbi3

3 Xbi4
4 ,

is in fact an isomorphism, since we can define its inverse by

ψ−1 : Z[X±
1 , X

±
2 , X

±
3 , X

±
4 ] → Z[Y ±

1 , Y
±
2 , Y

±
3 , Y

±
4 ], Xi 7→ Y ci1

1 Y ci2
2 Y ci3

3 Y ci4
4 ,

where C = (cij) = B−1. From the definition of the map ψ, we have

ψ(Y r
1 + 1) = F.

Since r is a non-negative power of 2, Y r
1 + 1 is the 2r-th cyclotomic polynomial and

is irreducible. The irreducibility is preserved under the isomorphism ψ, thus F is
irreducible.

Lemma 11
Suppose that a1, . . . , aN ∈ Z are co-prime integers. Then there exists a matrix B =
(bij) ∈ GLZ(N) such that

bi1 = ai,

for every i.

Proof can be done using a knowledge of elementary algebra.
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B Lemma on the factorization of Laurent polynomials in [9]
Let us reproduce a lemma on how the Laurent polynomial is factorized when we make
a transformation to the variables, where the two sets of variables (before and after
the transformation) satisfy some good conditions. In usual settings, the conditions
are satisfied thanks to the Laurent property and the invertibility of the equation.

Lemma 12 ([9])
Let M be a positive integer and let {p1, p2, · · · , pM} and {q1, q2, · · · , qM} be two sets
of independent variables with the following properties:

pj ∈ Z
[
q±1 , q

±
2 , · · · , q

±
M

]
, qj ∈ Z

[
p±1 , p

±
2 , · · · , p

±
M

]
,

qj is irreducible as an element of Z
[
p±1 , p

±
2 , · · · , p

±
M

]
,

for j = 1, 2, · · · ,M . Let us take an irreducible Laurent polynomial

f(p1, · · · , pM ) ∈ Z
[
p±1 , p

±
2 , · · · , p

±
M

]
,

and another (not necessarily irreducible) Laurent polynomial

g(q1, · · · , qM ) ∈ Z
[
q±1 , q

±
2 , · · · , q

±
M

]
,

which satisfies f(p1, · · · , pM ) = g(q1 · · · , qM ). In these settings, the function g is
decomposed as

g(q1, · · · , qM ) = pr11 p
r2
2 · · · prMM · g̃(q1, · · · , qM ),

where r1, r2, · · · , rM ∈ Z and g̃(q1, · · · , qM ) is irreducible in Z
[
q±1 , q

±
2 , · · · , q

±
M

]
.

The underlying idea is the fact in algebra that the localization of a unique factorization
domain preserves the irreducibility of its elements. Proof is found in reference [9].
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