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A NEW RELATIONSHIP BETWEEN THE DILATATION OF
PSEUDO-ANOSOV BRAIDS AND FIXED POINT THEORY

YUMEHITO KAWASHIMA

ABSTRACT. A relation between the dilatation of pseudo-Anosov braids
and fixed point theory was studied by Ivanov. In this paper we reveal a
new relationship between the above two subjects by showing a formula
for the dilatation of pseudo-Anosov braids by means of the representa-
tions of braid groups due to B. Jiang and H. Zheng.

1. INTRODUCTION

The purpose of this paper is to reveal a new relationship between the
dilatation of pseudo-Anosov braids and fixed point theory. For this purpose
we obtain a new formula to determine the dilatation of pseudo-Anosov braids
from the representation ¢, , due to Jiang and Zheng [15].

Let us recall the notion of pseudo-Anosov braids. Let ¥, be a closed
surface of genus g and P, be an n-point subset of ¥,. We denote by ¥,
the subset of 3, deleting FP,,. We consider the case when X, ,, has negative
Euler characteristic. Let f be a homeomorphism of ¥, fixing P, setwise.
We recall that f is periodic if f* equals identity for some k > 0, and it
is reducible if there exists an f-invariant closed 1-manifold J C X, whose
complementary components in X, ,, have negative Euler characteristic or else
are Mobius bands. We refer to J as a reduction of f. Finally, f is pseudo-
Anosov if there exists a number A\ > 1 and a pair F°, F* of transverse
measured foliations with singularities modelled on k-prongs, £k =1,2,... in
Figure 1 such that the equalities f(F*) = (1/A\)F* and f(F*) = AF* hold.
Furthermore, the one-prong singularities of these foliations are allowed to
occur only at the punctures. For an isotopy class ¢ of homeomorphisms
of X4, ¢ is periodic if there exists a periodic element in ¢. Similarly, ¢ is
reducible if there exists a reducible element in ¢ and ¢ is pseudo-Anosov if
there exists a pseudo-Anosov element in .

In [22], Thurston classified the isotopy classes of homeomorphisms on
¥, fixing P, into periodic, reducible and pseudo-Anosov types. Since we
can regard the braid group B, on n strands as the mapping class group of
disk with n punctures, every element of B, is also classified into periodic,
reducible and pseudo-Anosov types. In [3], Bestvina and Handel obtained an
algorithm which gave the classification for surface homeomorphisms. Using
this algorithm, they established a method to calculate the dilatation of a
pseudo-Anosov maping class ¢.

Dilatations themselves are related to many fields and have been inten-
sively studied by many authors. For example, it is known that the logarithm
of the dilatation of pseudo-Anosov maps is the same as the topological en-
tropy of pseudo-Anosov maps, which is an important subject in ergodic
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1-prong singularity 3-prong singularity
FI1GURE 1. local chart around the singularities

theory. Also in [11], Ivanov showed that the logarithm of the asymptotic
Nielsen number, which appeared in fixed point theory, coincides with the
entropy. In this paper, we obtain a new formula to determine the dilatation
of pseudo-Anosov braids from the representation , ,, due to B. Jiang and
H. Zheng [15].

The growth rate of a sequence {a,} of complex numbers is defined by

Growth a,, = max {1, lim sup |an|1/n} :
n—,oo n—oo

Let us notice that the above growth rate could be infinity. When the in-
equality Growth an > 1 holds, we say that the sequence grows exponentially.

For any set S 7S denotes the free abelian group with the specified basis
S. If x =) cgkss is a finite sum, we define the norm of x in ZS by

EE LA
seS

For any matrix A = (a;;) with coefficients in ZS, the norm of A is the matrix
defined by ||A|| = (||lasj]|) when a;; is a finite sum for all 7 and j.

Let P, be a finite subset of int D? of n > 0 points and we set D,, = D?\ P,.
For integers n,m > 0, we consider three types of configuration spaces as
follows: The space of m-tuples of distinct points in D,, denoted by

Fum(D?) ={(21,...,2m) € (Dn)™ | 2 # zj for alli # 5},
the space of subsets of distinct m elements in D,, denoted by
Crm(D?) = Fyn(D?) /S,
and the space T}, ,,(D?) of pairs of disjoint subsets of n distinct elements
and m distinct elements in D? denoted by
ITym(D?) = Fonim(D?)/Sn X S,

where the symmetric group S, acts on F, ,,(D?) by permuting compo-
nents of an m-tuple and similarly, the subgroup S, X &, of S+ acts on
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Fontm(D?). We write {y1,...,ym} and ({z1,..., 20}, {y1,. ., ym}) for the
elements of Cy, m(D?) and IT,, ,,(D?) respectively.

We choose m distinct points di,...,d,, in 0D? and take a base point
c={di,...,dn} of Cpm(D?). Let b= (Py,c) be a base point of IT}, ;,(D?).
The m-braid group on D, is defined by

By, n(D?) = 1 (Com(D?), )
and the intertwining (n, m)-braid group on D? is defined by
Epm(D?) = m1(ITm(D?),b).
We set
Engm ={p= (1, .., pin—1) € I\ | p1 4+ pin—1 = m}.

We construct a Z[By, m(D?)]-invariant free Z[By, m(D?)]-submodule Hp of
a relative homology of the universal covering of some configuration space
generated by certain m-dimensional subspaces corresponding to p € &, .
The precise definition is given in Section 4.1. The braid group B, acts on
the homology as the mapping class group and acts on Z[E,, ,,(D?)] by the
right multiplication. Tensoring these two actions, B, acts on

Z[Epm(D*)] ®@zm,.,.(p2) M

and we define a representation (, ,,, by this action.

Let T" be a group, ZI" its group ring, I'. the set of conjugacy classes,
ZI'. the free Abelian group generated by I';, and 7y : ZI' — ZI'. the natural
projection. We suppose ( is an endomorphism of a free ZI'-module satisfying
C(v) = Z?:l a;j - v; for a basis {v1,...,v;}. The trace of ( is defined as

k
trp ( = mr (Z a“‘> e ZI'..

i=1
We note that, under the basis &, ,,, all matrix elements of ¢y, n(5) be-
long to ZI'g ,, where I'g,, is the subgroup of B, ,, generated by 8 and
B,..m(D?). Therefore, (,,(3) can be naturally regarded as an endomor-
phism of the free ZI'g ,,,-module generated by &, 1.
Our main result is stated as follows.

Theorem 1.1. For any pseudo-Anosov braid 8 € B,, we denote by A the
dilatation of 5. Then we obtain

2 Cn,m(ﬁ’“)H = Growth tr [|Gum(8%)[| = A™
Gnrlo_yggh HtrFﬁ,m Cn,m(ﬁ)H = A

Growth
k—o0

The representations (,,, are related to homological representations of
braid groups in the following way. For m = 1, there exists a homomorphism
PB: En71(D2) — Z such that the representation induced by pp is equivalent
to the reduced Burau representation. Similarly for m > 2, there exists a ho-
momorphism prxp : En,m(D2) — Z®7Z such that the representation induced
by prxp is equivalent to Lawrence-Krammer-Bigelow representation. The
Lawrence-Krammer-Bigelow representations of the braid groups were stud-
ied by Lawrence [21] in relation with Hecke algebra representations of the
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braid groups. In [4], [19] and [20], Bigelow and Krammer showed the faith-
fulness of the Lawrence-Krammer-Bigelow representation independently.

In [9], Fried proved that the entropy of pseudo-Anosov braids is bounded
below by the logarithm of the spectral radius of the Burau matrix B(t) of
pseudo-Anosov braids after substituting a complex number of modulus 1
in place of ¢t. In [18], Kolev proved the same estimation directly with dif-
ferent methods. The estimate will be called the Burau estimate. In [2],
Band and Boyland showed that the spectral radius of the Burau matrix
B(t) of pseudo-Anosov braids after substituting the root of unity in place
of t is the dilatation itself of pseudo-Anosov braids only if ¢t = —1. Further-
more, Band and Boyland showed that the spectral radius of B(—1) is the
dilatation of pseudo-Anosov braids if and only if the invariant foliations for
pseudo-Anosov maps in the classes of pseudo-Anosov braids have odd order
singularities at all punctures and all interior singularities are even order.

In [17], Koberda proved that the square of the dilatation of pseudo-Anosov
braids is bounded below by the spectral radius of Lawrence-Krammer-Bigelow
representation LKB(q,t) of pseudo-Anosov braids after substituting com-
plex numbers of modulus 1 in place of ¢ and ¢. In this paper we recover the
following result of [9], [18] and [17].

Theorem 1.2. (Fried [9], Kolev [18] and Koberda [17]) For a pseudo-Anosov
braid 3, the dilatation of B is equal to or greater than the spectral radius of
the Burau matriz B(t) of B after substituting a complex number of modulus
1 in place of t and the m-th power of the dilatation of B is equal to or
greater than the spectral radius of the Lawrence-Krammer-Bigelow matriz
LKB,,(q,t) of B after substituting complex numbers of modulus 1 in place
of q and t.

This paper is organized as follows. In Section 2 we recall the definition
of the topological entropy due to Adler, Konheim and McAndrew [1]. Then
we recall how to define the topological entropy of self maps on metric spaces
due to Bowen [7]. In Section 3, we review asymptotic fixed point theory.
We recall asymptotic fixed point theory for compact spaces due to Jiang [14]
and a version of relative Nielsen theory due to Jiang, Zhao and Zheng [16]
and Jiang and Zheng [15]. In Section 4, we construct the representation (;,
due to Jiang and Zheng [15] and state the relation between the trace of ¢,
and the number of essential fixed points of some good self map. In Section
5 we prove the main theorem using the relation among dilatation, entropy
and fixed point theory. In Section 6 we recover from our main theorem the
estimation of the dilatation of pseudo-Anosov braids in [9], [18] and [17] by
means of the homological representation.

2. PRELIMINARIES

2.1. Topological entropy. The most widely used measure for the complex-
ity of a dynamical system is the topological entropy. We refer the readers to
[23] for an introductory treatment. We recall basic notions of the topological
entropy due to Adler, Konheim and McAndrew [1]. Then we recall how to
define the topological entropy of self maps on metric space due to Bowen
[7]. Originally the topological entropy is defined in [1]. We recall [1] for the
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definition of the topological entropy. For any open cover a of X, let N(«)
denote the number of sets in a subcover of minimal cardinality. Since X is
compact and « is an open cover, there always exists a finite subcover of X
in a. Let H(«) be the logarothm of N(«) and we call H(«) the entropy of
«. For open covers o and 8 of X, their join is the open cover consisting of
all sets of the form A N B with A € o and B € . Similarly, we can define
the join \/]_, oy of any finite collection {c;} of open covers of X. For a
continuous self map 7" of X, T~'a denotes the open cover consisting of all
sets T1A with A € a. The entropy h(T,a) of a map T with respect to a

cover « is defined as
1 n—1 4
lim H< T_Za> .
n—,oo N, i=0

The topological entropy h(T) of a map T is defined as sup h(7T', o), where the
supremum is taken over all open covers .

For a compact surface X with negative Euler characteristic and a pseudo-
Anosov homeomorphism f of X with the dilatation A\ > 1,

(2.1) h(f) = log A

is the minimal entropy in the homotopy class of f([8, p. 194]).

In [7], topological entropy is defined for self maps of a metric space X,
which is not necessarily compact. Henceforth (X, d) is a metric space, not
necessarily compact. B(z;r) and B(z;r) denote the open and the closed
ball centered at x and radius r respectively. We shall define the topological
entropy for uniformly continuous maps 7' : X — X. We denote by UC(X, d)
the space of all uniformly continuous maps of the metric space (X, d).

From now on 7' denotes a fixed element of UC(X,d). If n is a natural
number we can define a new metric d,, on X by

{2 (2
dn(z,y) = max d(T"(x),T"(y)).

The open ball centered at x and radius r in the metric d,, is
n—1
() T7'B(Tx;r).
i=0

For € > 0 and a compact subset K of X, a subset F' of X is said to (n,¢)
span K with respect to T if for any element x of K, there exists an element
y of F with d,(z,y) < e. In other words, F is said to (n,e) span K with
respect to T if F' satisfies the following condition

n—1
Kc|J T BTy
yEF i=0

Let r, (e, K, T) denote the smallest cardinality of any (n, ¢)-spanning set for
K with respect to T. We set

r(e, K,T) = limsup(1l/n)logr,(e, K,T)

n—oo

and the entropy of T with respect to K is defined by
T,K)=1 K, T).
hd( ) ) E%T(E, ) )
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Then the entropy of T is defined by
hd(T) = sup hd(Tv K)7

where the supremum is taken over all compact subsets of X.

There exists another equivalent definition. A subset F of X is said to
be (n,e) separated with respect to T if for any distinct elements z,y of E,
dn(x,y) is larger than €. In other words, E is said to be (n,e) separated
with respect to T if for x € E the set

n—1 . '
ﬂ T'"B(T'z;¢)
=0

contains no other point of E. Let s, (e, K,T) denote the largest cardinality
of any (n, ) separated subset of K with respect to 7" and we set

s(e, K,T) = limsup(1l/n)log s,(e, K,T).
n—oo

Then we have
ha(T,K) = lin(ljs(a, K,T).
e—

In [7], Bowen showed the equality h(T") = hq(T, X) when X is compact.

3. ASYMPTOTIC NIELSEN THEORY FOR STRATIFIED MAPS

In [14], Jiang studied fixed point theory using mapping torus. In [16],
Jiang, Zhao and Zheng studied fixed point theory for some good noncompact
spaces. In [15], Jiang and Zheng studied fixed point theory for configuration
spaces using the method in [16]. In this section we will review some of the
relevant materials from [14], [15] and [16] about fixed point theory.

3.1. Mapping torus. Subsections 3.1 and 3.2 are devoted to recall basic
notions of fixed point theory due to [14]. In [14], Jiang studied fixed points
by using mapping torus. Let X be a topological space and f: X — X be
a continuous self map. We pick a base point v € X and a path w from v
to f(v). We denote by G the group m(X,v) and let fo : G — G be the

composition

G = m(X,v) L5 (X, f(v) 25 m1(X,v).

The mapping torus T of f is the space obtained from X xR by identifying
(z,s+1) with (f(z), s) for any element x € X and s € Ry, where R, stands
for the real interval [0, 00). On T’ there exists the natural semi-flow

o : Ty xRy =Ty, o((x,s),t) = (x,s+t) forallt > 0.

A point z of X and a positive number 7 > 0 determine the time-7 orbit
curve Py = {¢1(z,0)}o<i<r in Ty. We may identify X with the cross-
section X x {0} C T¥, then the map f : X — X is just the return map of
the semi-flow ¢.

We take the base point v of X as the base point of T;. We define I to
be the fundamental group 7 (7, v) of Ty and let I'. be the set of conjugacy
classes of I'. Then I'. is independent of the base point of T and can be
regarded as the set of free homotopy classes of closed curves in Ty. By the
van Kampen Theorem, I' is obtained from G by adding a new generator z
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represented by the loop (p(m)w*l, and the relations 27 1gz = fg(g) for all
g € G:

I'=(G,z| gz = zfc(g) forall g € G).
In general, the map + : G — I' induced by the inclusion X — T is not
injective. However, if f is a homeomorphism, then ¢ is injective and is a
section of the above exact sequence. Therefore there exists an exact sequence

1= m(X,v) = m(Tf,v) = Z—1

if f is a homeomorphism.

We note that x is a fixed point of f if and only if its time-1 orbit curve
is closed on the mapping torus 7. For fixed points x and y of f, we define
x and y to be in the same fized point class if and only if their time-1 orbit
curves are freely homotopic in T'. Therefore every fixed point class F gives
rise to a conjugacy class cd(F) in I';, called the coordinate of F. For a fixed
point class F of f, the fized point index ind(f,F) of f at F is the standard
intersection number of the diagonal diag(X/F) of (X/F) x (X/F) and the
graph graph(f’) of the map f’ at F, where f’ is the induced map from f
by the projection X — X/F. A fixed point class F is called essential if its
index ind(f, F) is nonzero. The generalized Lefschetz number is defined as

Lr(f) =) ind(F, f) - cd(F),
F
where the summation is taken over all essential fixed point classes F of f.
The Nielsen number Np(f) is the number of nonzero terms in Lp(f) and
the indices of the essential fixed point classes appear as the coefficients in
Lr(f). These invariants are homotopy invariants.

Remark 3.1. We take an arbitrary path c from v to a fixed point x. In the
light of the continuous map H : I x I — Ty defined by H(s,t) = (c(t),s),
®(z,1) 18 homotopic to the loop c‘lnp(ml)f(c) = c lz2wf(c) and we obtain

cd(z) = [[zwf(c)e™ ),
where [[7]] is a free homotopy class obtained by ~.

3.2. Periodic orbit classes. In [14], Jiang studied the periodic orbit of f,
i.e. the fixed points of the iterates of f.

The periodic point set of f is the set of points (z,n) in X x N satisfying x =
f™(x) and is denoted by PP f. An n-point of f is a fixed point = of f™. For
an n-point x of f, an n-orbit of f at x is the f-orbit {z, f(z),..., [ 1 (x)}
in X. A primary n-orbit is an n-orbit consisting of n distinct points. In
other words, an n-orbit of f at x is a primary n-orbit if n is the least period
of the periodic point z.

An n-point class of f is a fixed point class F™ of f™. We recall from [12,
Proposition I11.3.3] that f(F™) is also an n-point class, and the fixed point
index ind(f(F™), f*) of f™ at f(F™) and the fixed point index ind(F", ™)
of f™ at F™ are the same. Thus f acts as an index-preserving permutation
among its n-point classes. An n-orbit class of f is the union of an orbit of
this action. In other words, two points x and 2’ in Fix f™ are said to be in
the same n-orbit class of f if and only if there exist natural numbers ¢ and
j such that fi(x) and f7(2') are in the same n-point class of f. The set
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Fix f™ splits into a disjoint union of n-orbit classes. On the mapping torus
Ty, we observe that (z,n) is in the periodic point set of f if and only if the
time-n orbit curve ¢, ) is closed. The free homotopy class [[¢(;n)]] € T
of the closed curve ¢, ) is called the I'-coordinate of (z,n) and is denoted
by cdr(z,n). It follows from [13, §3] that periodic points (z,n) and (2/,n’)
in the periodic point set of f have the same I'-coordinate if and only if n
and n/ are the same and x and 2’ belong to the same n-orbit class of f.
Therefore every n-orbit class O™ gives rise to a conjugacy class ¢dpr(O") in
I';, called the I'-coordinate of O™.

An important notion in the Nielsen theory for periodic orbits is the notion
of reducibility. Suppose m is a divisor of n and m is less than n. If the n-
orbit class O™ contains an m-orbit class O™, then for x € O™, the closed
curve @y is the closed curve ¢, ., traced n/m times and c¢dp(O™) is the
(n/m)-th power of cdr(O™). An n-orbit class O™ is reducible to period m if
c¢dp(O™) has an (n/m)-th root and is irreducible if cdp(O™) has no nontrivial
root.

An n-orbit class O™ is called essential if its index ind(O™, f™) is nonzero.
For each natural number n, the generalized Lefschetz number with respect
to I' is defined as

Lp(f") = _ind(O", f") - cdp(O™) € ZI,
On

where the summation is taken over all essential n-orbit classes O™ of f.
When we consider the case n = 1, 1-orbit classes of f are fixed point classes
of f and the definition of generalized Lefschetz number with respect to I
and the definition of generalized Lefschetz number in Section 3.1 coincide
for n = 1. The Nielsen number of n-orbits Ny(f™) is the number of nonzero
terms in Lp(f™) and the indices of the essential fixed point classes appear
as the coefficients in Lp(f™). Clearly it is a lower bound for the number
of n-orbits of f. The Nielsen number of irreducible n-orbits NIp(f™) is the
number of nonzero primary terms in Lp(f™). It is the number of irreducible
essential n-orbit classes. It is a lower bound for the number of primary
n-orbits of f. The generalized Lefschetz number with respect to I', the
Nielsen number of n-orbits and the Nielsen number of irreducible n-orbits
are homotopy invariants.

3.3. Asymptotic Nielsen theory. In [14] Jiang defines the asymptotic
Nielsen number of f to be the growth rate of the Nielsen numbers
N°°(f) = Growth Np(f"),
n—o0o

the asymptotic irreducible Nielsen number of f to be the growth rate of the
Nielsen numbers of irreducible orbits

NI(f) = Growth Np(f")

and the asymptotic absolute Lefschetz number of f to be the growth rate of
the norm of generalized Lefschetz numbers

L¥(f) = Growth [ Lr(f*)]
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In [14] all these asymptotic numbers are shown to enjoy the homotopy in-
variance.

Remark 3.2. Since the inequality NIr(f) < Nr(f) < ||Lr(f)|| holds, we
obtain NI®(f) < N°°(f) < L*°(f). In [14], Jiang showed that a suffi-
cient condition for the equality NI®°(f) = N°°(f) is that f satisfies the
following Property of Essential Irreducibility: The number E, of essen-
tially irreducible n-point classes that are reducible is uniformly bounded
in n. Also in [14], Jiang showed that a sufficient condition for the equality
N°(f) = L>=(f) is that f satisfies the following Property of Bounded Index:
The maximum absolute value B,, of the indices of n-point classes F" is uni-
formly bounded in n. These conditions are not strong. For example, every
homeomorphism of D,, satisfies the Property of Essential Irreducibility and
the Property of Bounded Index.

In [11], Ivanov showed that the logarithm of the asymptotic Nielsen num-
ber N*°(f) of a self map f coincides with the entropy of a self map f.

Theorem 3.3. (Ivanov [11]) Let X be a compact surface with negative Euler
characteristic and f be a self map of X. Then the entropy of f coincides
with log N*°(f).

For a compact surface X with negative Euler characteristic, we take a
pseudo-Anosov homeomorphism f of X with the dilatation A > 1. Then
together with (2.1), we obtain that

(3.1) h(f) =log A = log N*°(f)

is the minimal entropy in the homotopy class of f.

3.4. Nielsen theory for stratified maps. In Section 3.1, the space X is
always assumed to be compact. However, the configuration space Cmm(Dz)
is not compact. In [16], Jiang, Zhao and Zheng extended fixed point theory
for some good noncompact space and using this, they developed Nielsen
theory for Cp,(D?) in [15]. The Nielsen theory for stratified maps is a
version of relative Nielsen theory. We recall basic notions of the Nielsen
theory for stratified maps due to [15]. We refer the readers to [16] for a
detailed treatment of this subject.
For a compact, connected polyhedron space W, let

p=W'cwW!c...cwlcwm=w

be a filtration of compact subpolyhedra. For 1 < k < m, the subspace
Wy, = WF\ W+ is called the k-th stratum. A map f : W — W is
called a stratified map if f(Wy) is contained in W, for all strata Wy. Two
stratified maps f, f/: W — W are called stratified homotopic if there exists
a homotopy H : W x I — W such that Hy equals f, Hy equals f’ and Hy is
a stratified map for all ¢.

We define f,, to be a map restricting f on W,,. We will be concerned
with fixed point classes of f,, in the top stratum. A free homotopy class of
closed curves in T, , represented by a closed curve v, is said to be related
to a lower stratum Wj, if there exists a homotopy H : St x I — T such that
Hy equals v, Hy is a closed curve in T}, for all 0 <t < 1 and Hj is a closed
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curve in Tf|Wk' A fixed point class of f,, is called degenerate if its coordinate
is related to some lower stratum Wj,. Otherwise, it is called non-degenerate.
The generalized Lefschetz number of the stratified map f is defined as

L3(f) = ind(fm, ) - cd(Fyy) € ZT,
Fm

where the summation is taken over all non-degenerate fixed point class F,,
of fm. Let N2(f) be the number of nonzero terms in L{(f). It is the number
of essential non-degenerate fixed point classes, and will be called the Nielsen
number of the stratified map f.

The Nielsen fixed point theory has the natural version for stratified maps.
The main result is that Lp(f) and Np(f) are not changed by a stratified
homotopy of the map f, which is proved in [16].

3.5. Nielsen theory for finite invariant sets. We recall basic notions
of Nielsen theory for finite invariant sets due to [15]. In this subsection,
we assume that X is a compact, connected, smooth manifold of dimension
dand f: X — X is a self embedding. We fix a natural number m. We
consider the symmetric product space

SP™X = X™/S,,.

Its points are written as [z1, . .., Z,], with repetition allowed. For an integer
k satisfying 0 < k < m, we define the subspace

SP™ X = {[x1,...,2m]) € SP™X | #{z1,...,2m} < k}.
Then we have a filtration
) =SP™0X c SP™'X c...c SP™™ X c SP™™X = SP™X.

For 1 < k < m, the k-th stratum is W}, = Spmk x \ SP™*=1 X We notice
that the top stratum is Cp ,, (X).
The map f induces a map SP™ f : SP™X — SP™X given by

SP™ f([x1,. .-y xm]) = [f(x1), ..., f(zm)]

Since f is an embedding, SP™ f is now a stratified map with respect to the
above filtration. Hence the theory in the previous subsection is applicable.

We define f to be the map restricting SP™f on W,,. A fixed point
[X1,...,2m] of fcorresponds to an f-invariant set consisting of precisely m
distinct points. Thus, the number of non-degenerate, essential fixed point
classes of fis a lower bound for the number of such f-invariant sets for all
embeddings isotopic to f.

Below is a useful criterion for the degeneracy of a fixed point class of f

Proposition 3.4. (Jiang and Zheng [15]) We suppose that X is a com-
pact, connected smooth manifold of dimension d and f : X — X is a self
embedding. Let Q = {z1,...,xym} be an f-invariant subset of X. We fix
k satisfying 1 < k < m. Let D denote the disjoint union of k copies of
the d-dimensional disks. The coordinate of the fized point [x1,...,xy] of f
is related to the k-th stratum Wi if and only if there exists an isotopy of
embeddings {it : D — X }o<t<1 such that io = foiy, Q C it(D) and each
component of i;(D) contains at least one point of Q for all 0 <t < 1.
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In Proposition 3.4, the components of igp(D) containing more than one
point of @ are called merging disks of Q. The existence of merging disks
of ) means that the f-invariant set () can be merged into a smaller one by
isotoping f in a neighborhood of these disks.

Given a nontrivial n-strand braid 3, there exists a connecting isotopy {h; :
D? — D?}p<i<1 from id such that the curves {h¢(P,)}o<t<1 represent the
braid 8. We set fg = hi. Jiang and Zheng figured out their key observation.

Proposition 3.5. (Jiang and Zheng [15]) (1) The mapping torus of the
induced map fz : Com(D?) — Cpm(D?) can be identified with the space
obtained from

{((he(Po) {yr, - ym})st) | wi € D*\ hy(Py),0 <t < 1} C ITym(D?) x 1

by identifying the top Cpm(D?) x {0} with the bottom Cpm(D?) x {1}.

(2) Under the above identification, the fundamental group T'g ., of T?E is
isomorphic to the subgroup in Bpim generated by [ and Bmm(Dg).

(3) Moreover, when a fized point of fg corresponds to a finite fg-invariant

subset Q of Dy, the coordinate of the former is precisely [Bp,uq|, where
Bp,uq ts the braid corresponding to the geometric braid {hy(P, U Q)}o<i<i-

4. THE REPRESENTATION (j, ,, AND FIXED POINTS

4.1. The definition of (, ,,. In [6], Bigelow defined the triangle corre-
sponding to the embedded edge for m = 2. Triangles are elements of the rel-
ative homology of some abelian covering of the configuration space Cn,m(Dz).
In this subsection we define (, ,,, due to Jiang and Zheng by using the lifts
of triangles to the universal covering.

We introduce some relative homology of the universal covering of the
configuration space C,, ,,(D?). Let p : 5n7m(D2) — Cpm(D?) be the universal
covering of Cp, ,,(D?) and fix ¢ € p~1(c) as a base point of 5n7m(D2). For
e > 0, we define V to be the set of points {z1,..., 2z} in Cpm(D?) such
that at least one of the pair (z;, ;) is within distance ¢ of each other. We
define V. to be the preimage of V. in 5n,m(D2). The relative homology
Hm(C~n7m(D2), 8C~n7m(D2) U V2) is nested by inclusion.

For 8 € By, f3 has a unique lift f5 : (Cpm(D?),8) = (Com(D?),¢) and
induces an automorphism of the left Z[B,, ,,,(D?)]-module

lim Hyp (Cppon (D?), OCppn(D?) U V).
e—0

The induced automorphism is independent of the choice of the representative
and denoted by E*

The groups By, (D?) and E,, ;,,(D?) can be regarded as subgroups of
Bo.n+m(D?). The intertwining (n,m)-braid group E,,,,(D?) is the preim-
age of S, x S, under the canonical projection Bg ,1m(D?) — Spim. In
addition, B, ;,(D?) is the subgroup of (n+ m)-braids in E,, ,(D?) that be-
come trivial by forgetting the last m strands. The intertwining (n, m)-braid
group Emm(DQ) is isomorphic to the subgroup Ej, ,,, of By, generated by

2
O1y-++3y0n—1,0p,0n+1--+,0n4+m—1
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and By, ;,(D?) is isomorphic to the subgroup B, of By,1m generated by

Al,n+17 ce ;An,n+17 On+1y---50n+m—1,
where A;; is defined by

Aij =0j-1...0i410,07 - .. oy

Therefore B, acts on E, ,(D?) by the right multiplication and so there
exists an induced action of 3 on the Z[E,, ,(D?)]. Moreover, since By, ,,(D?)
is included in E,, ,(D?), Z[E,, 1, (D?)] is a right Z[B,, ;,(D?)]-module. Using
the Z-module automorphism 5* and the action on Emm(DQ) by B, we
construct an automorphism 8 ® B, on the left Z[Ep,m(D?)]-module

Z[En7m(D2)] QLB (D)) ;1_1)% Hm(CNn,m(D2)7 85n,m(D2) U 175)

by
(B® B.)(h®c) =hB & B.(o).

Proposition 4.1. For any 8 € B, BR B is a Z[Ep,m(D?)]-homomorphism.

Proof. For every v € Ey, ,(D?), the equality

Y(B@ B)(h @) =v(hB @ Bu(c)) = yhB ® B.(c)
= (BeB)vh@c) = (B B)(hed).
holds. O

From now on, we define a representation (,,, of B, over the free left
Z[En,m(Dz)]-module generated by &, ,,. The cardinality d,, ,, of the basis
n+m—2

m .

We now introduce some other relative homology and an intersection pair-
ing. Henceforth every path is a continuous map from I = [0, 1]. Fore > 0, we
define U, to be the set of points {z1,...,xm} € Cn,m(DQ) such that at least
one of them is within distance ¢ of some puncture point. We define U. to be
the preimage of p in C~n’m(D2). The relative homology 1."-[7,1((?717m(D2)7 Ue) is
nested by inclusion.

We set

/)
pi = (2?170) 7Pn: {plv"'apn}u

d: = J o ={dy,...,d
j CcOos 3 7, sIn 3m , C { 1, ) m}v

2t+1 7 141
2= 2+l siniﬂ
v dn 77 3m

and let a{ be a polygonal line connecting p;, zg and p;+1. We call az fork.
For p € &, m, we set

FH = {{J}l,. . .,.’Em} € Cn’m(DZ) | #({xl,...,xm} ﬁNz) = MZ}

Enm 18
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FI1GURE 2. The picture for n =5 and m = 3

and
n—1 Uit1
_ : J
S, = H H int o],
i=1 j=u;+1

where u; = 23;11 pj. We take line segments 6; on D,, from ¢; to zf , where
u; < j < uir1. We notice that they are disjoint. Let z, be the endpoint
of ©, = {01,...,0,}. We take a lift z, of z, so that the lift éu of ©,
is starting at ¢ and ending at z,. We take lifts ﬁ# and §u of Fj, and S,
containing z,, respectively. Let [X] denote the element of certain relative
homology corresponding to the m-dimensional subspace X of 5n7m(D2). We
set
Hr= @D ZBum(D?) [ﬁu} C Timy Hyy (G (D?), 8Cry.in (D?) U V2)

e—0
,Ufegn,m

and
Hs= D ZBum(D?)] [@L] C 1im Hy(Cpom (D), U2).

e—0
,Uegn,m
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For x € Hg and y € Hp, let (z-y) € Z denote the standard intersection
number. In [6] for m = 2 and [5], Bigelow defined an intersection pairing.
Similarly, we define an intersection pairing

() : He X Hp — Z[Bpm(D?)]

(@y)= > (z-B(v)B.

BELByn,m(D?)]

We notice that < [S’VM} , [ﬁy}> equals 1 when p = v and 0 otherwise. There-
fore {[ﬁu]} . is linearly independent. We define elements dfﬁ) of
HEER,m

Z[By,m(D?)] so that {d;(ﬁ/)}u,uegn,m satisfies the relations
> [B] =5 ([5]).
for all u € &, ;. Using the intersection pairing, we obtain

o 2 =+ ({[5].5. ().

where 7 is an automorphism of Z[B,, ,,(D?)] with 7(8) = 871. There exists
a homomorphism

Chom : Bn = Autgg, . (p2) (Z[Enm(D?)] @zB,.,.(p2)] HF)

defined by ¢}, ,,(8) = (B® B:) |, We notice that

Z[Enm(D?)] ©gp, .07 HF = €D Z[Enm(D?)] [ﬁ “}

Megn,m

and this gives the representation ¢, , to the matrix group
GL(dn,m; Z[Ep m(D?))).

We set Gom (8) = (cfﬁ,)) and notice that cgﬁj) = Bdfﬁ,) in Z[E, (D?)].
Proposition 4.2. The map Cym @s a group homomorphism.

Proof. For 3,v € By, we obtain

G (B)Gum () = () (cf)) = (842 (7d2)) = (Z /Bdgfi)fydgz)) .
o
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We notice that fgy = fy o fg. Then we obtain

Z SNy = By (B7)«(Na

= By-9 (Zdup Np>
= By Z

Fe(ges
= Z(Zﬁd vd,w)Ny

= Z ( /(tﬁp) pV)
v p
Therefore we obtain . m (8)Cnm(7) = Cam(B87)- O

We recall the definition of trace. Let I' be a group, ZI" its group ring, I'.
the set of conjugacy classes, ZI'. the free Abelian group generated by I
and 7 : ZI' — ZI'. the natural projection. Let { be an endomorphism of a
free ZI'-module satisfying ((v;) = Z§:1 a;j - vj for a basis {v1,...,v}. The
trace of { is defined as

k
trr { = nr (Z an-> e Zl..

=1

We suppose ((u;) = 2521 bij - uj for another basis {u1, ..., ux}. Then there

k
cij-vjand v; =)

exist elements ¢;; and d;; such that u; = Zk i1

=1 dij - uj.
Then we obtain

k
E czga]ldlm *Um

k k k k
=1 l=

k
wi) =y ciiC(o) =D | D ehap | u=)
j=1 '

—_

k ok k
> egagdi | = | Y D0 diciag

11=1 j=1i=1 I=1

3
Y
M»

s
~_

1

3
M?r
Mw

7

1

I
3
M~

Qjj
1

<.
Il

Therefore the definition is independent of the choice of the basis. Let ¢ and
¢ be two endomorphisms of a free ZI'-module defined by ((v;) = 2?21 aij-vj

and &(v;) = Z?Zl bij - v; for a basis {v1,...,v;}. Then we obtain

k k k k
trpr( o0& = ap Zzaijbﬁ =T7r Zzbﬁaij =trréo(.

i=1 j=1 j=1i=1
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N

=

Un—2

F1GURE 3. Decomposition of Yy,

C

n-1

We note that, under the basis &, ,,, all matrix elements of ¢, ,,,(3) belong
to ZI'g . Therefore ¢, ,,,(3) can naturally be regarded as an endomorphism
of the free ZI'g,,-module generated by &, ,,. In this way, the notations
trry ., Cnm(B) and trpﬁk’m Cnﬁm(ﬁk) in the main theorem are well-defined.

Theorem 4.3. For any pseudo-Anosov braid B € B,, we denote by A the
dilatation of 5. Then we obtain

trr, Cn,m(ﬁk)H = Growth tr [[Gum (85)]| = A™,
Growth|ftrr;,, Gum(B)]] = X

Growth
k—o0

4.2. The work of Jiang and Zheng. The representation ¢, ,, is the same
as the representation due to Jiang and Zheng [15]. We compactify D,, to
a 2-disk with n holes and denote it by Y, and assume further that there
exists a homeomorphism fj5 : Y;, — Y, such that fz is the map restricting
f73 on int Y,,. We identify int Y,, U dD? with D,,. We decompose the surface
Y,, into an anulus and n — 1 foliated rectangles, as shown in Figure 3.

We define U = U; U ---UU,_1 to be the union of the n — 1 foliated open
rectangles. We define a partial ordering on U such that x1 < xo if either x
lies in a rectangle to the right of xo or z; lies in a strictly lower leaf of the
same rectangle as xs. For example, the order of the three points in Figure
3is x1 < g < T3.

We set

V= {{xl,...,xm} € Cmp(Yn) x; € U,

Then we have V = U#ngm
V'u = {{1'1,...,.Z'm} eV ’ #{a:l,...,a:m}ﬂUi :/Lz}

Each V,, is connected; thus the elements of &, ,,, are in one-to-one correspon-
dence to the components of V.

Ilustrated in Figure 4 and Figure 5 are two embeddings ¢; and ¢;, which
can be understood as the action of the elementary mapping o; and o, !

there exists n € Sy, s.t. }
Ty(r) <0 = Tyim) '

Vi, where
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(7 = H H = H )
5 H E A E g
§ S HE s

L = = == = )
Ul Ui-l Ui-1 Un-l

FIGURE 4. The image of the self map ¢;

(7 = H H H H )
= H £ fa H H =
g HE Qo B -

\\ - B - = //
Ul Ui—1 Ui—1 Un—1

FIGURE 5. The image of the self map ¢,

on Y, respectively. Both push the annulus outward, irrationally rotate the
outmost boundary, keep the foliations of (¢;) =1 (U) and (¢;) "1 (U), uniformly
contract along the leaves of the foliations, and uniformly expand along the
transversal direction.

For every ¢ € {¢17 e '7¢TL*1;$1’ s agnfl}a we have

Vane (V)= |J Wi,
nESm
where

there exist x1, ...,z s.t.
(@) _ 1 r=A{x1,...,zn},
ijn x € VM N ¢ (Vl/) xn(l) <= xn(m)a

¢(z1) < - < P(xm),

Each W,S(ff% is connected; thus the elements of the set {n € S, | W,S(,% # 0}
are in one-to-one correspondence to the components of V,, N ¢~1(V,).

We choose a base point b = {b1,...,by} in int A. For every element
x={x1,...,xpn} in V with 1 < -+ < x,,,, the disjoint “descending” paths
connecting by to zj in Y; give rise to a path v, in Cy,,(Y,). Similarly,

the disjoint “ascending” paths connecting by to ¢(bg) give rise to a path

Yoy 0 Cnn(Yn). For every nonempty Wﬁf%, we choose a point = € Wﬁ,)%

and a,(ﬁ,% denotes the element of 71(Cpm(Yr),b) represented by the loop
Yob) - P(Vz) -’yg&). We note that a/(ﬁ,)n is independent of the choices of x, v,

Yo(v) ANd Yo (z)-
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In [15], Jiang and Zheng showed that the equations

M'Cn,m(o'i) = Z Cffg'lf,

I/Egn m

p Cnml(o Zd

vEEn,m

where '
cl(f,), =(=1)" 0;- Z sgnn - afﬂ%,

WS, A0
d/(fl), = (-1~ ~ai_1 . Z sgnn - a,(ff,g,
WL £0

give rise to a group representation of B,, over the free ZB,,1,, module gen-
erated by &, .

We take the base point b in ©, N A. We can take the base point b
independent of ;1 because of the definition of ©, and A. Let ©; be a path
from b to ©,(1) along ©, and O} be a path from b to ©,(0) along ©,. We
identify 71 (Cpm(D?), c) with m1(Com(Ys),b) by the map induced by ©,.

Proposition 4.4. The representation defined above and the representation
Cn,m give the same matriz for any braid under the above identification.

Proof. We consider the case 8 = o0; and the case § = o, Lis similar. We
notice that F), is given by shrinking V,, along the leaves of foliations and

then $(nyn) is homotopy equivalent to F,,. Therefore the nonzero terms
of 7i.( [f’;}) are in one-to-one correspondence to the components of V,, N

#~1(V,), which are in one-to-one correspondence to the elements of the set
{n € S | Wiii) # 0},

There exists a homotopy {H : D,, x I — D, } with H(z,0) = ¢;(x) and
H(z,1) = fg(x) such that a map H(-,t) defined by H(-,t)(z) = H(z,t) is
injective for any ¢. Let H : Crm(D?) x I — Cypm(D?) be the map defined
by H{z1,...,2m},t) = {H(z1,t),...,H(®m,t)} and H(z,-) be the path
defined by H (z, )(t) = H(z,1t).

For nonempty Wﬁ%), we take an element z in W;(L,dj)%) NF,. We take v,
the composition of two paths ©, and the path from z, to = in F),. Since
Y¢(») 1s homotopic to the composition of two paths ©; and q@( / )*1 relative

to the endpoints, the loop ?E('yx)fyll is identified with oz,(m; by the above

fa(2)
identification. Therefore al(ﬁ]g is the term of @*(E) corresponding to W,SV%)
and the signature is (—1)"" sgnn. Finally, left multiplication of ¢; and ten-
soring o; from left induce the same action on Z[Emm(DQ)}. Therefore ¢ m
and the representation due to Jiang and Zheng [15] give the same matrix
for all 5 € By, O

In [15], Jiang and Zheng studied the relation between the forcing rela-
tion of braids and the trace of this representation. We review the result
[15] of Jiang and Zheng. Let f : R? — R? be an orientation-preserving
homeomorphism and

{ht : RQ — Rz}ogtgl
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be an isotopy with hg = id and h; = f. An f-invariant set P = {z1,...,2,} C
R? gives rise to a geometric braid

{(he(z:), ) |0<t<1,1<i<n}
in the cylinder R? x [0, 1]. Indeed, the closed curve

in the configuration space Cy, 1, (D?) gives rise to a braid Bp in the n-strand
braid group B,. A braid 8 forces a braid + if, for any orientation-preserving
homeomorphism f : R? — R? and any isotopy {h:} : id ~ f, the existence
of an f-invariant set P with [Sp] = [8] guarantees the existence of an f-
invariant set @ with [Bg] = [7]. A braid §’ is an extension of 3 if 3 is
a disjoint union of 5 and another braid v. We note that they are possibly
intertwining. An extension /3’ is forced by f3 if, for any orientation-preserving
homeomorphism f : R? — R? and any isotopy {h;} : id ~ f, the existence of
an f-invariant set P with [Sp] = [§] guarantees the existence of an additional
f-invariant set @ C R? \ P with [Bpyg] = [4].

In trr, . Cnm(B), there exist some unwanted terms. To describe them,
we recall the Thurston classification theorem.

Theorem 4.5. (Thurston [22]) Every homeomorphism f : S — S of a com-
pact surface S is isotopic to a homeomorphism ¢ called Thurston representa-
tive such that either ¢ is periodic, pseudo-Anosov or there exists a system of
disjoint simple closed curves v = {vy1,...,v} inint S called reducing curves
such that v is invariant by ¢ and v has a ¢-invariant tubular neighborhood
U such that each component of S\ U has negative Euler characteristic and
on each ¢-component of S\ U, ¢ is either periodic or pseudo-Anosov.

We suppose that 3’ € Bj,i,, is an extension of 3 € B,. Let ¢ be a
Thurston representative determined by /. We say 3’ is collapsible relative
to B if there exists a system of reducing curves of ¢ such that one of them
encloses none of the punctures corresponding to (. Similarly, we say 3’
is peripheral relative to (8 if there exists a system of reducing curves of
¢ such that one of them encloses precisely one of or all of the punctures
corresponding to 8. If an extension 8’ € -1 (By,m(D?)) of a braid 8 € B,
is collapsible relative to 3, then we say the conjugacy class [3'] in I'g,, is
collapsible and if an extension 8 € B - w1 (By,m(D?)) of a braid 8 € By,
is peripheral relative to 3, then we say the conjugacy class [5'] in I'g,, is
peripheral. The relation between the forcing relation of braids and the trace
of the representation defined above is written as follows.

Theorem 4.6. (Jiang and Zheng [15]) We suppose that a braid ' € Byym
is an extension of B € B,. Then [3' is forced by 3 if and only if 3 is neither
collapsible nor peripheral relative to 8 and the conjugacy class ['] has a
nonzero coefficient in trp, ... Cum(5).

4.3. Trace of (,,, and fixed points. In this subsection, we prove the
key lemma of the proof of main theorem. We define eFix f to be the set
of essential fixed points of f. We choose a word 8 = 71 ...7n, where 7; is
an element of {Jlil, ... ,afil}. We put ¢; = ¢, if there exists a number

Ji satisfying 7, = oj, and ¢; = ajl if there exists a number j; satisfying
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T = Uj_il. Then the embedding g = ¢n...¢1 : Yy — Y, induces a map

9 : Bnm(Yn) = By m(Yn) stratified homotopic to JTﬁ It is immediate from
the definition of ¢; and ¢; that Fixg is a subset of V.

We prove the next lemma whose proof is similar to that of [15, Proposition
4.3.] by Jiang and Zheng.

Lemma 4.7. There exists a positive number B such that we have the in-
equality

#eFix(@") < [[trr, | Gum(8%)]| < Bt eFix(g").

Proof. Without loss of generality, we only have to prove the case k = 1. We
note that each of the components Wi of U,cg, . Vi N (9)~1(V,) is homeo-
morphic to R?™. Since § is a hyperbolic map on Wﬁ, there exists precisely
one fixed point of g on W},. Let z; € W}, be the fixed point of g on W},. We
notice that the fixed point class containing z consists of one element x. We
set
a(x5) = Yg(0) - (@) (V) - Vi -

We obtain

cd(z) = [[27500) - (9) (V) - 72, ) = Blla? ()] € (Cam)e
by Remark 3.1 and recall that

ind(g, ;) = (diag(Ca,m(D?)), graph(9)) s,

is the definition of ind(g, ;).

On the other hand, we take a lift T of = so that the lift v, of 7, is starting
at ¢ and ending at z. Then we obtain g(z;) = a9(x;)z;. Computing the
fixed point index ind(g, z;) of g at z;, we obtain

ind(g,2;) = (~1)" (a(a;) S, - (@)(F))

Therefore we obtain
(=Dl = > ind(g, )ed (=),
J
where [[c]] is the element of the free abelian group Z(I's,,). projecting c,
and
(=D)™trry, Gum(B) = Y ind(g,2) - cd(x).
r€Fixg

In the above equality, the number of nonzero terms in the right hand side
is eFix(g). By Remark 3.2, there exists a positive number B such that the
inequality

# eFix(9) < ||trrs,, Cum(B)|| < B# eFix(9)
holds. O

We count the number of essential fixed points of g*. Let {z1,..., 2}
be a fixed point of Fix (g¥). Then there exists an m-tuple (ni,...,nm,) of
natural numbers with 221 in; = m such that there exist n; periodic orbits

of g* of period i in {z1,..., 2} forall 1 <i < m. Let A,, be the set of such
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m-tuples and Df be the number of essential periodic points of ¢* of period
i. Then there exist Df /i periodic orbits of g* of period i and we obtain

#eFix ()= > H( Dk/z >
(N1 5o ) E Ay, =1

Remark 4.8. When we consider the period of periodic points of ¢* of
period ¢ as periodic points of g, we notice that Df = D;(k,i)i’ where g(k, 1)
is the greatest common divisor of k and i. Moreover, if ¢ a divisor of k then
periodic orbits of g of period 7 is contained in some periodic orbits of g of
period k and D} /i is equal to or greater than D} i/ k. Therefore we have

Df /i = Dy ;)i > Di;/1(ki),
where [(k, 1) is the least common multiplier, and we obtain

# eFix (§%) > y H( ,ﬂ/zm)

(nh ,'r‘Lm)GAml 1

5. PROOF OF THE MAIN THEOREM

In this section we conclude the proof of main theorem. We denote by A
the dilatation of a pseudo-Anosov braid f.

Proposition 5.1. For any pseudo-Anosov braid 5 € B, the inequalities

Growth ||[trp k Cn m(ﬂk)H =A™
k—o0 pEm ’

Growth Htrrﬁ m Cnm(ﬁ)” > A
m—o00 ’

hold.
Proof. We recall that N1r , | ((¢*)") defined in Section 3.2 is a lower bound

for the number of primary i-orbits of g*. In other words, we have the in-
equality D¥/i > N Ipﬁk ) (¢*). When we use this inequality and Remark 4.8,
and consider the case (ny,...,ny,) = (0,...,0,1), we obtain the inequality

[trry . Com(BF)|| > # eFix (%)

_ Z H< Dk/z >
(n1yeesnm ) EA, =1
Dt D}

“m  l(k,m)

> g(k7m)NIF5,1(gkm)‘

Since g is homotopic to fg, we obtain

Growth trry,, Cnm(ﬂk)H > Growthg(k,m)]\r]rﬁ 1<gkm) — A
k—o00 ’ k00 ,
m
Gégvgh Htrpﬁ,m Cn,m(ﬂ)“ > GnrlgvgghNIFm(g )=\
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g*(Ny) g (Ny) g*(N3)

FIGURE 6. The case when vy = 6, K}, = 4, KF, = 2,Kf3 =
3pn=1pi2=4p13=1

Proposition 5.2. For any pseudo-Anosov braid § € B, the inequality

Growth tr

Gun)] 3

holds.

Proof. By (4.1), the (u, v)-entry of HCnm H is H<[ ,,} ,ﬁ* ([ D>H We
notice that H<[ } B* ([ ]>>H is equal to or less than the number of in-

tersections of S, and g*(F),). We deﬁne K to be the number of intersections
of a; and g*(N;) and set A% = > Ki We set

n—1 n—1

M(n,p,v) = p€Mn—1N)| > pij=vi,y pij = pi
=1 j=1

For every i, j and p € M(n, u,v), we can choose p;; paths from v; forks and
choose one intersection from Kj; intersections for each forks; see Figure 6.
Therefore we obtain
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(s) o@D = 3 Tt )

Since
n—1 n—1ln—1
(I+) > T,
=1 pEM (n,p,v) i=1 j= 1
is independent of k, we have

Growtn [([5.]. 3% (7)) < (Gpon )™

It suffices to show Growth A¥ < \. We set
k—o00

ij
Uing '(Uj) = Hvijl

and take an open cover v = {Vjj5, [ 1 <4, <n—-1,1<k < Kilj}UA’ of
the compact set Y;,, where A’ does not contain any intersections of g~! (o)
and Nj.

Lemma 5.3. Each element of \/k L g P(a) contains at most one intersec-
tion of g~*(aj) and N;.

Proof. Every nonempty element of \/p 09 P(a) can be written as

B =V, N---Ng "YW

Icfliklk)

with ig = ¢ and i = j. By the definition of ¢ and ¢, ¢*|p : B — Uj is
bijective. Therefore (g*|5)~*(a;) is one leaf of U; and there exists only one
intersection of ¢ k(ozj) and N;. (]

It follows from Lemma 5.3 that
/-1
A=Y KGN (\/ g‘“‘”)
i i=0

and by (3.1), the growth rate of N (\/Z 09 i(a)) is equal to or less than
the dilatation of 8. Therefore the proposition follows. O

Proposition 5.4. For any pseudo-Anosov braid § € B, the inequality
Growth HtITB o G ( )H <A

m—00

holds.
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Proof. By Lemma 4.7, trpﬁk N (n,m(ﬂk)

number of essential fixed points of g*. For m = 1, we notice that g*

is equal to or greater than the

g*. Therefore ’ trka ) gml(ﬁk)H is equal to or greater than the number of

essential periodic points of g whose period is a divisor of k. In particular,

we obtain |/trp Cn,l(ﬁk)H > D} /k. Therefore we obtain

l6rry,. Com(B)]| < B#eFixg=B Y H<D/z>

nl: 7nm)€AmZ 1

sy I
(TLl, T )GA i=1

By Proposition 5.2, there exists a monotonically increasing sequence {a;} of

real numbers such that

Htrp

"61“1*61 Cn 1

IN

Cn,1( H and limsupa; =1

i1
B, 1—00

holds. Therefore we obtain

[trry, GmB)] < B> H i

(n17 T

m)EA
< B(amM\)™Sm
where S, is the number of elements of A,,.
Lemma 5.5. The equality lim,, oo Srln/m =1 holds.

Proof. We suppose that m — ¢, > ¢dyy,, where
em = 4([V/m] +1)%, dm = 4([Vm] +2)
and |z] is the floor function. Let C), be the subset of A,, satisfying the

following condition

Cm

g n; =dpy andn,,_ S ing =
i=1

Then (), is in one-to-one correspondence with the d,,-combinations with
repetition from ¢, elements. Therefore we obtain the inequality

o (i) < (AT D)
o= dm 4(|v/m| +2)
AWml+2)(Vml+1) A +1)?
A([V/m] +2) 1
> (L%J _’_1)4(L%J+2) > %ML%H’Q) :mH‘/TTLJJrZ.

We set
Apg = {0, 1) € Ay | mac{i | g # 0} = k}.
and let S, ;, be the number of the elements of A,, ;. Then clearly

Sm = Z Sm,k
k=1
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holds and the recursion formula
(5.1) Sm+1k+1 = Sk + Sm—k k+1

follows from the equality A, = ]_[?:1 Ap—k,j. Moreover, Sy, . is less than

the number of how to put m balls in distinct k boxes, which is mF.

We assume that maxy, Sy, x = Sp k- Since Sy, < m.S,, i, holds, we obtain
1
mko > S, 1 > RSm > mVm

and ko > v/m. From (5.1), we obtain
Smko < S2(m—ko);m—ko = Sm—ko-
Since S,, is monotonically increasing for m, we obtain
Sm < mSm ko < MSm—ky <MS,,_ /.

There exists a natural number N such that the assumption holds for all
m > N. We set f(m) =m — /m and nx(m) = min{i | f{(m) < N}. Then
we obtain S,, < m™~ (™) Sy, We notice that if z is larger than (/m — 1)%,
then x — f(x) = ¥z is larger than /m — 1. Therefore we obtain

f[%2_2%+2J+1(m) < m_(%+(%_1)(%2_2%+2)) — (%—1)4.

Therefore we obtain

Ym
nn(m) <3 [4k2 = 2k + 2] + 1 < Ym(AYm® — 2¢m + 3) < 4m3/4
k=1

and )
1< R/ S < (m™ S ) ()™ <R/ Sym ™™

Since the limit lim,, oo V.S Nm4/ vm equals 1, squeeze theorem leads to the
. . 1/m
conclusion lim,, o Sy = 1. O

By this lemma, we obtain

trFB,m Cn,m(ﬁ)“l/m < lim Sup(BSm)l/mam)\ =\

m—ro0

lim sup ’
m—0o0
O

Proof of Theorem 1.1. Since we have the inequality tr(||A|) > ||tr A| for
any matrix A with coefficients in Laurent polynomial ring, we obtain

e, Gun (8") Gum (89 <A™
by Proposition 5.1 and Proposition 5.2. Therefore we have

Cn,m(ﬁk) H ="

A" < Growth
k—o0

< Growth tr
k—o00

Growth Htrp . (nm(ﬁk)H = Growth tr
k—oo B¥,m k—oo

We have
A < Growth Htrpﬁm Cnm(B)H <A
m—o0 ’

by Proposition 5.1 and Proposition 5.4 and we have Growth Htrpﬁ o Cam(B) H =
m—0o0 ?
A O
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6. HOMOLOGICAL REPRESENTATION OF BRAID GROUPS

6.1. Homological representation of braid groups. In [21] Lawrence
construct a monodromy representation of braid groups. We review the rep-
resentation. We take a homomorphism

PB Bn71(D2) = <O’1,.. . ,O’n_170721> — 7

~B
defined by pg(o;) = 0forall 1 <i < nand pg(c2) = 1. Let pg : D, — D,
be the covering corresponding to Ker pg and fix dB € pgl(dl). For an n-
braid 3, we take a representative f. Let

~ ~— B ~ ~ B ~
f25(Dn,d%) = (Dn,d%)
~ ~B _~B

be the lift of f. Then f? acts on Hy(D,, ,0D, ) as Z[Z]-homomorphism.

The linear representation B defined by B(f) = ]ZB is called the reduced
Burau representation. Let t denote the generator of covering transformation

of lf)vnB corresponding to 1 € Z. Then the ring Z[Z] is isomorphic to the
Laurent polynomial ring Z[t*!] and B(3) can be regarded as a matrix with
coefficients in the Laurent polynomial ring Z[t*!]. Similarly for m > 2, we
take a homomorphism

2\ ~v 2
PLKB - Bn,m(D ) = <017--'70n—170n70n+17~ . -aan+m—1> —ZBL

defined by prxp(o;)) = 0@ 0 for all 1 < i < n, prxp(c2) = 1 &0 and
pLKB(O'n+j) =06d1foralll <j<m. Let prrp : Cé’,],%B(DQ) — Cn’m(DQ)
be the covering corresponding to Ker prxp and fix ¢t6B ¢ pZ}(B(c). For
B € By, we take a representative f. Let

fLKB . (5LKB (D2) fCVLKB) N (5LKB (DZ) 'CVLKB)
be the lift of f. Then fLXB acts on Hy (EﬁﬁB (D?)) as an Z|Z®Z)-homomorphism.

The linear representation LKB,, defined by LKB,,(3) = FLEB ig called the
Lawrence-Krammer-Bigelow representations. Let ¢ and t denote the gener-
ator of covering transformation of Cﬁ,ﬁB (D?) corresponding to 100 € Z®Z
and 0@ 1 € Z @ Z respectively. Then the ring Z[Z @ Z] is isomorphic to the
Laurent polynomial ring Z[¢™!,¢*'] and LKB,,() can be regarded as a ma-
trix with coefficients in the 2-variable Laurent polynomial ring Z[q**, t+1].

The homological representation of braid groups has been also intensively
studied. The Lawrence-Krammer-Bigelow representations of the braid groups
were studied by Lawrence [21] in relation with Hecke algebra representations
of the braid groups. In [4], [19] and [20], Bigelow and Krammer showed the
faithfulness of the Lawrence-Krammer-Bigelow representation for m = 2
independently.

In [9], Fried showed how to estimate the entropy of a pseudo-Anosov braid
by using the Burau matrix B(¢) of a pseudo-Anosov braid. In [18], Kolev
proved the same estimation directly with different methods. The following
theorem is the estimate and this estimate is called the Burau estimate.

Theorem 6.1. (Fried [9], Kolev [18]) Let f be a homeomorphism of D>
fixing P, setwise and 3 be an n-braid represented by f. Then the topological
entropy of f is equal to or greater than the logarithm of the spectral radius of
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the Burau matriz B(t) of B after substituting a complex number of modulus
1 in place of t.

If the inequality is an equality for 17 = 7g, then the Burau estimate is said
to be sharp at ny. In [2], Band and Boyland determined a necessary and
sufficient condition when the Burau estimate is sharp at the root of unity.

Theorem 6.2. (Band and Boyland [2]) For a pseudo-Anosov braid 3, the
Burau estimate is sharp at the root of unity ng only if ng = —1. Furthermore,
the Burau estimate is sharp at —1 if and only if the invariant foliations for a
pseudo-Anosov map in the class represented by 3 have odd order singularities
at all punctures and all interior singularities are even order.

In [17], Koberda shows the similar estimate by using Lawrence-Krammer-
Bigelow representation.

Theorem 6.3. (Koberda [17]) For a pseudo-Anosov braid /3, the m-th power
of the dilatation of B is equal to or greater than the spectral radius of the
Lawrence-Krammer-Bigelow matriz LKB,,(q,t) of B after substituting com-
plex numbers of modulus 1 in place of ¢ and t.

6.2. Homological estimation and Theorem 1.1. In this section, we re-
cover the estimation in [9], [18] and [17] using Theorem 1.1. If we have a ho-
momorphism p from En,m(Dz) to some group G, we have an another repre-

sentation py((n,m) on the free Z[G]-module defined by ps(Com) = (p« (cfﬁ,)))
Moreover, if G is a finitely generated free abelian group, Z[G] can be em-
bedded in C and in this way, p.((n,m) gives rise to a linear representation
P (Cnm) over C.

When m = 1, Let plg : E;,1(D?) — Z be a the homomorphism defined
by pig(o;) = 0 for all 1 < i < n and plg(c?) = 1. When m > 2, let
01 Enm(D?) — Z&Z be a homomorphism defined by p ;5(0i) =060
for all 1 <i < n, p)xp(02) =1®0 and pfrp(0ni;) = 0@ 1. We consider
the homomorphism from Autzg, . (p2) (Z[Ep m(D?)] QZ[Br.m(D?)] Hrp) in-
duced by pf xp. Since pfxp(0;) is 0@ 0 for all 1 < i < n, the action as
the right multiplication becomes trivial and (o) x5)«(Cn,m) is equivalent to
the Lawrence-Krammer-Bigelow representations for all m > 2. Similarly,
(p'5)+(Cn,1) is equivalent to the reduced Burau representation.

For any matrix A with coefficients in n-variable Laurent polynomial ring
and complex numbers z1,...,x,, we denote by A(x1,...,x,) the matrix
with coefficients in C substituting x; for i-th variable. For any matrix A
with coefficients in C, we denote by sr A the spectral radius of A. We state
the main result of this section.

Proposition 6.4. For any matric A with coefficients in the Laurent poly-
nomial ring Z[zx1, . .., Ty, we have

GrowtthrAk’ = sup srA(zy,...,x,).
k—o0 x; €81

Let I = (i1,...,in) be a multi index and z! = []}_, xZ’“
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Lemma 6.5. We suppose f(x1,...,2,) = Zi\l/[:o"'Z%:o arz! is an n-

variable polynomial of degree M. Then we have the inequality

D larl < (M +1)" sup |f(z1,...z0)]
I

Ikesl

Proof. First of all, we prove the case n = 1. Then f(x) is a polynomial
Zf\i 0 a;x’ of degree M. We consider the Vandermonde matrix

1 = M
V:VM+1(.T0,...,$M): . :
1 zm x%
Then we have Va = A, where
ao f(xo)
a= : and A = :
ay f(xar)

We denote by o, the m-th elementary symmetric function in the (M + 1)

variables x, ...,z . In other words, we have
Om = om(Z0, ..., xp) = E Ty(1) - - Ty(m)
I/GSm

foralll <m < M +1 and og = 1. We use the notation an to denote the
m-th elementary symmetric function in the M variables x; with x; missing.
In other words, we have

%
Om = O'm(l'(),. oy Li—1y L1y - - - ,xM).

We set V! = (v;;)0<ij<m- It is well known (see [10]) that we have

j
. g .
Vi = (_1)@ M—i
N Hk;éj(l"k — )
We put § = /M + 1 and z;, = exp(2y/—1k6). Since z;’s are all the roots
of z2M*1 1 =0, we obtain o (zo,...,ry) =0 for all 1 <m < M. Since
the recursion formula o}, .| = opm41 — x40y, holds, we obtain o7, = —x;07,
and o’ = (—x;)™. We notice that |z — x| = 2sin |k — j|6. Then we obtain

= _ 1
[izi(@e —25) | [IM,(2sink6)

Joig] = (=)'
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Since we have a = V1A, we have the inequality

Lemma 6.6. The equality Hﬁil(2 sinkf) = M + 1 holds.
Proof. We set
cos(2n — 1) = cos 0 f,,(cos 0), sin 2nf = sin 20g,,(cos 0)

for n > 1. Since

cos(2n + 3)0 + cos(2n — 1)0 = 2 cos 260 cos(2n + 1)6
sin2(n 4 2)0 + sin 2nf = 2 cos 20 sin 2(n + 1)6,

hold, we obtain recursion formulae f, 2(z) = 2(222 — 1)fri1(x) — fa(2)
and gni2(7) = 2(22% — 1)gns1(x) — gn(x). Moreover, because of the initial
conditions fi(x) = 1, fo(z) = 42?2 — 3, g1(z) = 1 and go(x) = 422 — 2, fu(2)
and g, (z) are polynomials of degree 2(n—1). Solving the recursion formulae
of leading coefficient and constant term, we find that the leading coefficients
of fu(x) and g, (z) is 4", the constant term of f,(z) is (2n — 1)(—1)""! and
the constant term of g, (z) is n(—1)""1.

There exist distinct 2(n — 1) solutions

tsin(kn/(2n — 1)) =cos(r/2t kn/(2n—1)) k=1,...,n—1
of fn(z) = 0 and distinct 2(n — 1) solutions
+sin(kn/2n) = cos(r/2 £ kr/2n) k=1,...,n—1
of gn(x) = 0. Vieta’s formula implies [[o-,(2sinkf) = M + 1. O

Lemma 6.6 implies Zf\io la;] < (M + 1)sup,egq | f(x)].
Now we consider the general case. For any n-variable polynomial

M M
fx1,...,zp) = Z--'Zaml
i1=0  in=0

of degree M, we set
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Then we obtain
§:|fZ 1, Tp—1)| < (M +1) sup |f(z1,...,20)|

TLyeey T 1651 Tl ,tnE€ST

Repeating this n times shows the inequality

Z]a1| <(M+1)" sup  |f(xr,...,x0)l

I 9617---79[371651

Proof of Pmposition 6.4. We notice that

S Y | =

i1=m in=m

sup
;€51

= sup
z,€S1

M—m
>3 |
11=0 1n=0

holds. We denote by A a matrix with coefficients in n-variable Laurent
polynomial ring. Let M and m be the maximum and minimum degree of
all entries of A. Then the maximum degree of all entries of A* is equal to
or less than kM and the minimum degree of all entries of A is equal to or
greater than km. Using Lemma 6.5, we obtain

sup |tr A¥(zq,... x| < HtrAkH < (K(M—m)+1)" sup |tr A¥(z1,...,2,)|.
J:iesl $i651
Therefore we obtain

GrowtthrAkH = Growth sup |tr AF(zy, ... 2,)).

k—oo k—ro0 x;€81
Cayley-Hamilton theorem shows
tr AF(zy, . ) = N+ AR
where A1,..., Ay are the eigenvalues of A(zy,...,x,). Therefore we obtain
Growth sup |tr A¥(z1,...,2,)| = sup st A(x1,...,z,).
k—o00 Iiesl xiesl
O
Using Proposition 6.4, we recover the estimation in [9], [18] and [17].

Corollary 6.7. For a pseudo-Anosov braid 3, the dilatation of 5 is equal
to or greater than the spectral radius of the Burau matriz B(t) of 8 af-
ter substituting a complexr number of modulus 1 in place of t and the m-th
power of the dilatation of B is equal to or greater than the spectral radius of
the Lawrence-Krammer-Bigelow matrizc LKB,(q,t) of B after substituting
complex numbers of modulus 1 in place of q and t.

Proof. Since Htr «(Cum)( Bk)H is equal to or less than tre Cam (B,
we obtain

Growth tr(p’g)«(Cn1) H
and

Growth ||tr(pl ) (Gam) (8Y) | <A™

From Proposition 6.4, we obtain

Growth||tr(pls)+ (Go.1) (8%)]| = sup B(1
—00 tesSt
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and

Growth [[tr(sfcp)- (Gaum) (8) | = sup LKBm(q.1).
—00 g,test

Therefore we obtain

sup B(t) < A and sup LKB,(q,t) <™.
test g,teS?t

O

On the other hand, it is not known whether Grgwth Itr(prrB)«(Cnm)(B)||
m—0o0

is A or not. If Grgwth Itr(priB)«(Cn,m)(B)]] is not necessarily A, there exists

some sufficient condition for Grgwth Itr(prrB)«(Cnm)(B)|| = A. Clearly the

condition in Theorem 6.2 is a sufficient condition for the above equality. We
want to reveal whether this sufficient condition is the best condition or not.
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