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1. Introduction

A discrete subgroup of PSL2(C) is called a Kleinian group. PSL2(C) acts on

the Riemann sphere Ĉ as the conformal automorphisms. For a Kleinian group Γ,
by considering how Γ acts on Ĉ, Ĉ is divided into the limit set Λ(Γ) and the domain
of discontinuity Ω(Γ) (see Subsection 2.1).

PSL2(C) acts also on the hyperbolic 3-space H3 as the orientation-preserving
isometries. Torsion-free Kleinian groups correspond to complete hyperbolic 3-
manifolds; the quotient of H3 by a torsion-free Kleiniain group is a complete hyper-
bolic 3-manifold, and conversely a complete hyperbolic 3-manifold is given as the
quotient of H3 by a torsion-free Kleianian group (see Subsection 2.3).

In this thesis we study Kleinian groups and hyperbolic 3-manifolds, in partic-
ular, what is related to the deformation theory of (representations into) Kleinian
groups (see Subsection 2.8). Let M be a compact, orientable and hyperbolizable
3-manifold, that is, the interior IntM of M is homeomorphic to a complete hy-
perbolic 3-manifold. Let AH(M) denote the space of conjugacy classes of discrete
faithful representations from π1(M) into PSL2(C). We abbreviate AH(Sg,b× I) to
AH(Sg,b), where Sg,b is a compact orientable surface of genus g with b boundary
components, and I is a closed interval in R. The following two are known concern-
ing the interior IntAH(M) of AH(M) (see e.g. Chapter 7 of [18] and Section 4 of
[42]):

• It was shown by works of Ahlfors, Bers ([7], [11]), Kra ([26]), Marden ([28]),
Maskit ([30]), Sullivan ([44]), and Thurston that the interior IntAH(M) is
the union of the quotients of Tiechmüller spaces (see Theorem 2.8.3).

• Ohshika ([39]), Namazi and Souto ([37]) showed that the density conjecture
which asserts that the closure of IntAH(M) is the whole space AH(M)
holds (see also Theorem 2.8.4).

However, it is known that the topology of the whole deformation space is more
complicated than that expected from the description of the interior IntAH(M)
stated above and from the density conjecture. In fact, Anderson and Canary ([8])
constructed a compact, orientable and hyperbolizable 3-manifold M such that two
components of IntAH(M) have the intersecting closures, called bumping (see Def-
inition 2.8.5). Anderson, Canary and McCullough ([9]) gave a necessary and suf-
ficient condition for two components of IntAH(M) to bump, in the case where
all the boundary components of M are incompressible. Holt ([21]) refined their
investigation to show that for a collection of components of IntAH(M) each two of
which bump, there exists a point of AH(M) at which those components all bump.

Let S be a closed orientable surface of genus greater than or equal to 2. By the
description of IntAH(S) above, it has only one component. However, McMullen
([34]) observed that there exists a point at the boundary of AH(S) any sufficiently
small neighborhood of which has the disconnected intersection with IntAH(S),
called self-bumping (see Definition 2.8.6). Bromberg and Holt ([14]) showed that
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for more general 3-manifold M , AH(M) can self-bump. Ito ([22]) gave a complete
description of the self-bumping points of AH(S1,1).

In the results above [8], [9], [34], and [14], bumping and self-bumping phenomena
come from the fact that the hyperbolic 3-manifold corresponding to a (self-)bumping
point of AH(M) has a natural projection to its associated geometric limit which
wraps an annulus cusp neighborhood into a torus one.

We will express more specifically what the fact a natural projection wraps is.
Let ρ be a point of AH(M). We denote the image of a representation representing
the conjugacy class ρ by Γρ, and its quotient hyperbolic 3-manifold H3/Γρ by Nρ.
We consider the natural projection πρ from Nρ to its associated geometric limit

N̂ = H3/Γ̂. Here a geometric limit associated to ρ is a hyperbolic 3-manifold which
is the geometric limit i.e. the Gromov-Hausdroff limit of a sequence of hyperbolic 3-
manifolds corresponding to that of points in AH(M) converging to ρ (see Subsection
2.9). We assume that Nρ has an accidental parabolic curve γ i.e. an essential simple
closed curve in an incompressible component B of the conformal boundary ∂cNρ of
Nρ which is homotopic in Nρ∪∂cNρ to arbitrarily short curve (see Definition 2.7.1).
We moreover assume that γ is homotoped into an annulus cusp neighborhood Q
of Nρ, that the image of Q by πρ is a torus cusp neighborhood T̂ of N̂ , and that

the Kleinian group Γ̂ is the HNN-extension Γ0∗σ of a subgroup Γ0 of Γ̂ extended
by adding a parabolic element σ ∈ Γ̂ which, together with ρ(γ), generates the

subgroup π1(T̂ ) of Γ̂. For a non-negative integer n, we say that the projection πρ

wraps n times if n is the smallest number such that the Kleinian group Γ0∗σn+1

contains Γρ and the restriction of the natural projection π̄ : Nρ → H3/Γ0∗σn+1 to
some compact core K for Nρ is an embedding (see Subsection 2.10).

Meanwhile, Abikoff and Maskit ([1]) decomposed the Kleinian group Γρ along
the rank 1 parabolic subgroup J generated by ρ(γ) (see Proposition 2.7.5):

Γ =

{
Γ1 ∗

J
Γ2, if γ is separating in B,

Γ′∗δ, if γ is non-separating in B,

where Γ1, Γ2 and Γ′ are subgroups of Γ, and δ is an element of Γ.

In this thesis, for a point ρ of AH(S) with an accidental parabolic curve γ,
under some assumption of the annulus cusp neighborhood Q of Nρ corresponding
to γ, we characterize whether there exists the natural projection πρ from Nρ to an

associated geometric limit N̂ with some condition of the image of Q by πρ which
wraps n times with respect to γ. In fact, we will show the following theorem:

Theorem 3.1.1. Suppose that ρ ∈ AH(S) has an accidental parabolic curve γ
with the corresponding annulus cusp neighborhood Q, and the cusp of Q abuts only
geometrically finite ends. Let p be the fixed point of ρ(γ), and J = ⟨ρ(γ)⟩ the rank 1
parabolic group generated by ρ(γ). Then Γρ is decomposed along J ;

Γρ =

{
Γ1 ∗

J
Γ2, if γ is separating in S,

Γ′∗δ, if γ is non-separating in S,

where Γ1, Γ2 and Γ′ are subgroups of Γρ, and δ is an element of Γρ. Moreover for
a given nonnegative integer n, the following holds:
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There exist an associated geometric limit N̂ = H3/Γ̂ so that Q covers a torus cusp

neighborhood T̂ of N̂ , that the natural projection πρ : Nρ → N̂ wraps n times with

respect to γ, and that N̂ has double trouble with respect to T̂ if and only if the
following holds.

• In the case where γ is separating in S, there exist a parabolic element σ
fixing the point p, (Γi, J)-invariant open disks Ci and Di in Ĉ for i = 1, 2,
such that the following condition DSn holds:

DSn

{
σn+1(C1) = Ĉ \ C2, σ

n(D1) = Ĉ \D2,

Λ(Γi) separates Ci and Di, and Ci ∩ Λ(Γi) = Di ∩ Λ(Γi) = p.

• In the case where γ is non-separating in S, there exist a parabolic element

σ fixing the point p, (Γ′, J)-invariant open disks C and D and (Γ′, Jδ−1

)-

invariant open disks C ′ and D′ in Ĉ such that the following condition DNn
holds:

DNn


σn+1δ(C ′) = Ĉ \ C, σnδ(D′) = Ĉ \D,

Λ(Γ′) separates C from D, and C ′ from D′,

C ∩ Λ(Γ′) = D ∩ Λ(Γ′) = p, C ′ ∩ Λ(Γ′) = D′ ∩ Λ(Γ′) = δ−1(p), and

(∗)for any f ∈ Γ′, f(C) ∩ C ′ = ∅, f(C) ∩D′ = ∅, f(D) ∩ C ′ = ∅, f(D) ∩D′ = ∅.

Here the condition that Ci is (Γi, J)-invariant means that for any f ∈ Γi, f(Ci) =
Ci if f ∈ Γi, or f(Ci) ∩ Ci = ∅ otherwise.

We note that for a point ρ of AH(S) with an accidental parabolic curve γ, Evans
and Holt ([20]) bounded the number n such that Nρ has the natural projection
which wraps n times with respect to γ from above, by using of hyperbolic length
of curves in the conformal boundary of Nρ which transverse to γ.

As a corollary of Theorem 3.1.1, we obtain the following:

Corollary 3.4.1. There exists a continuous family ρt ∈ AH(S), t ≥ 1 such that
ρt has a ⌊t⌋-wrapping projection.

Here ⌊t⌋ is the largest integer less than or equal to t. In fact, we will construct
such a family consisting of self-bump points of AH(S) (see Subsection 3.4).

Acknowledgment. I would like to express my gratitude to Prof. Ken’ichi Ohshika
for his positive comment and advice, and I would like to thank Assoc. Prof. Hideki
Miyachi for his suggestion for an example in Subsection 3.4. I am deeply grateful
to my advisor, Prof. Takashi Tsuboi for his helpful guidance. Finally, I owe my
deepest to gratitude to my parents, who watch over me for a long time.

2. Preliminaries

2.1. Kleinian groups. We review some definitions in Kleinian group theory. See
e.g. [29] for reference.

The hyperbolic 3-space H3 is considered as the upper half-space

{(x, y, t) ∈ R3|t > 0} equipped with the metric ds2 =
dx2 + dy2 + dt2

t2
.

The Riemann sphere Ĉ = C∪ {∞} is regarded as the boundary (at infinity) of H3.
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Notation 2.1.1. For a set A in H3, we denote its closure in H3 := H3∪ Ĉ by A
H3

,

and the intersection A
H3

∩ Ĉ by ∂A.

PSL2(C) acts on Ĉ as the Möbius transformations. Under the above con-
sideration, this action is naturally extended to the action on H3 by orientation-
preserving isometries, and both the group of conformal automorphisms of Ĉ, de-
noted by Aut(Ĉ), and the group of orientation-preserving isometries of H3, denoted
by Isom+ H3, are identified with PSL2(C).

The hyperbolic plane H2 is considered as the plane in H3 orthogonal to C along
R. The subgroup PSL2(R) of PSL2(C) stabilizes this plane, and is identified
the group of orientation-preserving isometries of H2, denoted by Isom+ H2. H2

is also regard as the upper-half plane {z ∈ C| Im z > 0} in C, where Im z is the
imaginary part of z, and PSL2(R) is also identified with the group of conformal
automorphisms of H2, denoted by Aut(H2).

Notation 2.1.2. For an element f ∈ PSL2(C), we denoted the set of its fixed

points in H3 by Fix(f).

An element f ∈ PSL2(C) is called either elliptic if ∅ ̸= Fix(f) ⊂ H3, or parabolic

if Fix(f) is a single point in Ĉ, or loxodromic if Fix(f) consists of two points in Ĉ.
The following proposition is known (See e.g. Lemma 2.3.1 of [29]).

Proposition 2.1.3. Let Γ be a subgroup of PSL2(C). If a loxodromic element
g ∈ Γ has exactly one fixed point in common with some element h ∈ Γ, then Γ is
not discrete.

Definition 2.1.4. A Kleinian group is a discrete subgroup of PSL2(C), and a
Fuchsian group is a discrete one of PSL2(R).

Definition 2.1.5. The limit set of a Kleinian group Γ, denoted by Λ(Γ), is the set

of accumulation points in H3 of the Γ-orbit of a point p ∈ H3. (This definition does

not depend on the choice of the point p.) Λ(Γ) is contained in Ĉ, and the domain

of discontinuity of Γ, denoted by Ω(Γ), is the complement of Λ(Γ) in Ĉ.

Ω(Γ) is the largest open subset of Ĉ upon which Γ acts properly discontinuously
(see e.g. Proposition 2.10 of [32]).

Definition 2.1.6. A Kleinian group Γ is said to be elementary if Λ(Γ) consists of
at most two points, and non-elementary otherwise.

When Γ is a non-elementary Kleinian group, Λ(Γ) is the closure of the set of
loxodromic fixed points, and if Γ has parabolic elements, it is the closure of the set
of parabolic fixed points as well.

Notation 2.1.7. For a set B in H3 and a Kleinian group Γ, we denote by stΓ(B)
the subgroup {f ∈ Γ|f(B) = B}.

For a component Ω of Ω(Γ), stΓ(Ω) is called the component subgroup of Γ.

Definition 2.1.8. For a Kleinian group Γ and its subgroup J , a set C in H3 is
said to be precisely invariant under J in Γ, or (Γ, J)-invariant, if J = stΓ(C) and
f(C) ∩ C = ∅ for any f ∈ Γ \ J .

We adopt the notation “(Γ, J)-invariant” from [32] with a minor change.
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Notation 2.1.9. We denote that H is a subgroup of a group G as H < G, and for
an element g ∈ G, we denote the conjugate group gHg−1 by Hg. We denote the
subgroup generated by elements g1, . . . , gl of G by ⟨g1, . . . , gl⟩.

Let P be a maximal parabolic subgroup of a Kleinian group Γ. A parabolic
subgroup is a subgroup consisting of parabolic elements and the identity. There

exists an element g ∈ G such that P =

⟨[
1 1
0 1

]⟩g

or

⟨[
1 1
0 1

]
,

[
1 z
0 1

]⟩g

for some z ∈ C \ R, where
[

a b
c d

]
denote the element of PSL2(C) represented

by

(
a b
c d

)
∈ SL2(C). For any c > 0, setting Hc := {(x, y, t) ∈ R3|t ≥ c}, P

stabilizes g(Hc), moreover if c is sufficiently large, g(Hc) is (Γ, P )-invariant. Such
g(Hc) is called a horoball based at g(∞). We will always assume that parabolic
subgroups are maximal.

Definition 2.1.10. A Kleinian group Γ is said to be minimally parabolic if its
parabolic subgroups are all rank 2.

2.2. Quasi-Fuchsian groups, generalized web groups, and degenerated
groups. We introduce several specific classes of finitely generated Kleinian groups.
See e.g. [9] for reference.

Let Γ be a finitely generated Kleinian group. The Ahlfors finiteness theorem
implies that for any component Ω of Ω(Γ), Λ(stΓ(Ω)) = ∂Ω (see Lemma 2 of [4]).

Definition 2.2.1. A finitely generated Kleinian group Γ whose domain of discon-
tinuity has exactly two components is called quasi-Fuchsian group if Γ fixes these
components and is called an extended quasi-Fuchsian group otherwise.

Maskit showed that a quasi-Fuchsian group Γ is quasi-conformally conjugate to
a Fuchsian group whose limit set is R∪{∞}, that is, there exists a quasi-conformal

homeomorphism ϕ of Ĉ such that ϕ◦Γ◦ϕ−1 = {ϕ◦f◦ϕ−1|f ∈ Γ} is a Fuchsian group
(see Proposition 8.7.2 of [45] and also p. 8 of [17], and see e.g. [6] for the definition
of quasi-conformal map). Since ϕ(Λ(Γ)) = Λ(ϕ ◦ Γ ◦ ϕ−1) is R ∪ {∞}, the limit set
Λ(Γ) of a quasi-Fuchsian group is a simple closed curve. The component subgroup
of a extended quasi-Fuchsian group Γ′ stabilizes each component of Ω(Γ′) and thus
is a qusai-Fuchsian subgroup. The limit set Λ(Γ′) of a extended quasi-Fuchsian
group Γ′ is also a simple closed curve.

Definition 2.2.2. A web group is a finite generated Kleinian group whose domain
of discontinuity has at least three components and the component subgroup of each
component is quasi-Fuchsian. Quasi-Fuchsian groups, extended quasi-Fuchsian groups,
and web groups are called genaralized web groups.

For a web group Γ, each component Ω of Ω(Γ) is simply-connected. Indeed, since
∂Ω = Λ(stΓ(Ω)) and stΓ(Ω) is quasi-Fuchsian by definition, ∂Ω is a simple closed
curve, and thus Ω is simply-connected. Hence Λ(Γ) is connected, and the limit set
of any generalized web group is connected.

Definition 2.2.3. A finitely generated non-elementary Kleinan group is degenerate
if both its limit set and its domain of discontinuity are non-empty and simply-
connected.

7



Wrapping projections and decompositions of Kleinian groups

2.3. (G,X)-structures and holonomies. We review (G,X)-structures and holonomies.
See e.g. [17] for reference.

Let X be a real analytic manifold and G a Lie group acting on X analytically
and faithfully (or effectively). Let M be a manifold, possibly with boundary, having
the same dimension as X.

Definition 2.3.1. A (G,X)-structure on M is a maximal atlas, i.e. a collection
of charts {ϕλ : Uλ → X}λ∈Λ satisfying the following conditions:

(1) {Uλ}λ∈Λ is an open covering of M ;

(2) Each ϕλ is a homeomorphism onto its image. Moreover whenever Uλ ∩
∂M ̸= ∅, ϕλ(Uλ ∩ ∂M) is locally flat in X;

(3) For each connected component U of Uλ∩Uµ, there exists an element g ∈ G,
called a transition function, such that ϕλ|U = g ◦ ϕµ|U .

Here a l-submanifold L of a topological n-manifold N with l < n is said to
be locally flat if for any x ∈ L, there exists a neighborhood U of x in N and a
homeomorphism τ : U → Rn such that τ(U ∩ L) ⊂ Rd ⊂ Rn (see e.g. [15]).

(G,X)-structures are also called geometric structures. A hyperbolic surface is a
surface with a (PSL2(R),H2)-structure. A hyperbolic 3-manifold is a 3-manifold
with a (PSL2(C),H3)-structure.

Let N be a connected manifold with a (G,X)-structure, and fix a point x0 ∈ N .
A holonomy representation ρ : π1(N, x0) → G is defined as follows. Let γ be a
loop with the basepoint x0, and cover it with a finite number of charts {Ui}ki=1 so
that for each i = 1, . . . , k − 1, Ui ∩ Ui+1 is non-empty and connected. For each
i = 1, . . . , k − 1, let gi : Ui ∩ Ui+1 → X be a transition function. The holonomy
of γ is defined to be the composite g1 ◦ · · · ◦ gk−1. This definition does not depend
on the choices of loops in the homotopy class of γ keeping the end points fixed, or
those of charts, and thus it defines ρ([γ]).

When N is a (geodesically) complete hyperbolic 3-manifold, the image ρ(π1(N))
is a torsion-free Kleinian group. Conversely given a torsion-free Kleinian group Γ,
H3/Γ is a complete hyperbolic 3-manifold (see e.g. Theorem 1.18 of [32]).

2.4. Klein-Maskit combination theorems. We review some terminologies and
the Klein-Maskit combination theorems, see e.g. [31] for more details.

Definition 2.4.1. A fixed point of a rank 1 parabolic subgroup J of a Kleinian
group Γ is said to be doubly cusped in Γ if there exist two disjoint open circular
disks C1 and C2 in Ĉ such that C1 ∪ C2 is (Γ, J)-invariant. C1 ∪ C2 is called a
doubly cusped region.

For a (Γ, J)-invariant simple closed curve c in Ĉ and a (Γ, J)-invariant open
disk C in H3 with ∂C = c, we say that C is a spanning disk for c if every rank 1
parabolic fixed point in c of J has a doubly cusped region in Ω(Γ) such that the
pair of geodesic half-spaces on this region does not intersect C.

Theorem 2.4.2 (Klein-Maskit combination theorem I). Let Γ1 and Γ2 be Kleinian

groups and set J=Γ1∩Γ2. Let c be a simple closed curve in Ĉ and D1 and D2 the two
8



J. Tanaka

components of Ĉ \ c. Suppose that each Di is (Γi, J)-invariant, for i = 1, 2. Then
the group generated by Γ1 and Γ2 is a Kleinan group, which is the amalgamated
free product Γ1 ∗

J
Γ2. Under further assumptions, H3/Γ1 ∗

J
Γ2 can be described as

follows. Suppose that J is geometrically finite, and that for every rank 1 parabolic
fixed point x in c of J , either stΓ1∗

J
Γ2
(x) has rank 2, or x is doubly cusped in Γ1∗

J
Γ2.

Then there exists a (Γ1 ∗
J
Γ2, J)-invariant open disk DC in H3 spanning c, such that

DC divides H3 into two closed sets H1 and H2, where Hi is (Γi, J)-invariant, for
i = 1, 2. Then H3/Γ1∗

J
Γ2 can be obtained from the disjoint union of H3/Γ1 with the

image of H1/J deleted and H3/Γ2 with the image of H2/J deleted, by identifying
along their common boundary DC/J .

Theorem 2.4.3 (Klein-Maskit combination theorem II). Let Γ′ be a Kleinian

group. For i = 1, 2, let ci be a simple closed curve in Ĉ, and Di an open disk
with ∂Di = ci, and set Ji = stΓ′(Di). Suppose that D1 and D2 are disjoint, that
each Di is (Γ

′, Ji)− invariant, and that there exists an element δ ∈ PSL2(C) such
that δ(D1)∩D2 = ∅, δ(c1) = c2 and J2 = Jδ

1 . Then the group generated by Γ′ and δ
is a Kleinian group, which is the HNN-extension Γ′∗δ. Under further assumptions,
H3/Γ′∗δ can be described as follows. Suppose that Ji is geometrically finite, and
that for every rank 1 parabolic fixed point xi in ci of Ji, either stΓ′∗δ

(xi) has rank 2,
or xi is doubly cusped in Γ′∗δ, for each i. There exists a (Γ′, Ji)-invariant open disk
DCi

in H3 spanning ci, such that δ(DC1
) = DC2

. Let Hi be the closed topological
half-space cut out of H3 by DCi

, with ∂Hi = Di. Then H3/Γ′∗δ can be obtained
from H3/Γ′, by deleting the images of H1/J1 and H2/J2 and by identifying two
resulting boundaries DC1/J and DC2/J by δ.

2.5. Spaces of structures on surfaces. We define several spaces consisting of
structures on fixed surfaces. See e.g. [29] and [35] for references.

Let Σ be a connected oriented surface of genus g with p punctures, and the
number 3g− 3+ p be denoted by ξ(Σ). We assume that ξ(Σ) ≥ 0. A simple closed
curve on Σ is said to be essential if it is neither homotopically trivial nor homotopic
into a puncture. A subsurface of Σ is said to be essential if its boundary consists
of essential simple close curves.

The Teichmüller space T (Σ) of Σ is the space of marked conformal structures
on Σ. More precisely, T (Σ) is defined as follows. Fix a conformal structure, i.e. a
1-dimensional complex structure, on Σ. Such a surface is called a Riemann surface.

Definition 2.5.1. The Teichmüller space T (Σ) is the set of equivalence classes of
pairs [(R′, h′)], where R′is a Riemann surface and h′ : Σ → R′ is a quasi-conformal
homeomorphism, and two pairs (R1, h1) and (R2, h2) are equivalent if there exists
a conformal homeomorphism j : R1 → R2 such that j ◦ h1 is homotopic to h2.

Alternatively T (Σ) is the space of marked complete hyperbolic structures.

Fix a complete hyperbolic structure on Σ.

Definition 2.5.2. A geodesic lamination is a closed subset on Σ which is a disjoint
union of simple geodesics, called leaves of the lamination.

Let GL(Σ) denote the space of geodesic laminations on Σ with the Hausdroff
topology.
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Definition 2.5.3. A transverse measure on a geodesic lamination is a Borel mea-
sure on arcs transverse to the leaves which is invariant under homotopy of arcs
preserving their topological positions with respect to the leaves. A geodesic lamina-
tion with a transverse measure is called a measured lamination.

Let ML(Σ) denote the space of measured laminations with the weak-* topology
on measures, and UML(Σ) the quotient space of ML(Σ) obtained by forgetting
the measures.

Definition 2.5.4. A measured lamination is said to be filling if it intersects trans-
versely all the measured laminations except itself.

Let EL(Σ) denote the image in UML(Σ) of the filling laminations in ML(Σ).
Elements in EL(Σ) are called ending laminations.

2.6. Structures of hyperbolic 3-manifolds. We review some definitions in hy-
perbolic 3-manifold theory. See e.g. [29], [35] and [40] for references.

Let N = H3/Γ be a (complete) hyperbolic 3-manifold.

Definition 2.6.1. The convex hull of a closed set X in Ĉ is the minimal convex
subset of H3 which contains the union of geodesics connecting two points in X. The
convex core of N , denoted by C(N), is the quotient of the convex hull of Λ(Γ) by
Γ.

Definition 2.6.2. Both N and Γ are said to be geometrically finite if for any δ > 0,
the closed δ-neighborhood of C(N) has finite volume.

Definition 2.6.3. Ω(Γ)/Γ is called the conformal boundary of N and denoted by
∂cN .

If π1(N) ∼= Γ is finitely generated, then Ahlfors’ finiteness theorem(see e.g. [3])
asserts that ∂cN is a finite union of Riemann surfaces of finite type.

Definition 2.6.4. For a real number ϵ > 0, the ϵ-thin part of N , denoted by Nϵ,
is the subset of N consisting of those points where the injectivity radius is less than
or equal to ϵ.

Recall that the injectivity radius of N at a point x is the real number

inf

{
1

2
dH3(x̃, f(x̃))

∣∣∣∣f ∈ Γ \ {id}
}
,

where x̃ is a lift of x in H3.

The Margulis lemma says that there exists the universal constant ϵM , called
the Margulis constant, such that if ϵ ≤ ϵM , then each component of Nϵ is either
a regular neighborhood of a short geodesic, called a Margulis tube, or a quotient
of a horoball by the rank 1 or 2 parabolic subgroup of Γ stabilizing it, called an
annulus cusp neighborhood or a torus cusp neighborhood, respectively. In this
thesis, we call the end of a cusp neighborhood a cusp. The complementary part of
N of disjoint union of cusp neighborhoods of all cusps, denoted by N0, is called the
non-cuspidal part of N .

Definition 2.6.5. An end of a manifold is the projective limit of a descending
sequence of components of the complement of an ascending exhausting sequence of
compact subsets.

10
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We consider that ends lie in the manifold.

Definition 2.6.6. An end of N0 is called a relative end of N .

Definition 2.6.7. A relative end e of N is said to be topologically tame if there ex-
ists a properly embedded compact subsurface F in N0 such that F cut a submanifold
U out of N0, which contains e and is homeomorphic to F × (0,∞).

In this thesis, for the end e we call the component U of N0 \F its neighborhood,
and the subsurface F its face. A topologically tame end is said to be incompressible
if its face is incompressible. An end which is not topologically tame is called a wild
end.

Definition 2.6.8. A topologically tame end of N is said to be geometrically finite
if it has a neighborhood which does not intersect the convex core C(N).

The geometrically finite ends bijectively correspond to the components of ∂cN
(see e.g. Lemma 4.6 of [38]).

Notation 2.6.9. We denote the interior of a topological space X by IntX.

Definition 2.6.10. An incompressible topologically tame end is said to be simply-
degenerate if there exists a sequence of essential simple closed curves on IntF the
sequence of whose geodesic representatives in U ⊂ N tends to the end, where U is
a neighborhood for the end and F is its face.

Thurston showed that the above sequence of curves converges to an ending lam-
ination in UML(IntF ) (see Chapter 8.10 of [45]). Bonahon showed that any in-
compressible tame end is either geometrically finite end, or simply-degenerate one
(see Théorème 1.4 and Section 6 of [12]). The end invariant of N is defined to be
the set consisting of a conformal structures for each geometrically finite end, and
an ending lamination for each simply-degenerate end.

We consider the case where π1(N) ∼= Γ is finitely generated.

Definition 2.6.11. A compact core for an n-manifold is a compact n-submanifold
whose inclusion is a homotopy equivalence. A 3-manifold pair is a pair of 3-
manifold with boundary and a compact (possibly disconnected) subsurface of its
boundary. A relative compact core of a 3-manifold pair is a 3-manifold pair each
whose component is a compact core for the corresponding component.

Recall that N0 is the non-cuspidal part of N and let C be the boundary of the
union of cusp neighborhoods in N . By the works of Scott ([43]), McCullough ([33]),
and Kulkarni and Shalen([27]), the 3-manifold pair (N0, C) has a relative compact
core (M0, P0), and by the works of Agol ([2]), and Calegari and Gabai (see Theorem
0.4 of [16]), each relative end is tame, and has one of the component of N0 \M0 as
its neighborhood. We say that an annulus cusp abuts an end if the corresponding
neighborhood does. Moreover, Brock, Canary and Minsky ([13]) gave the ending
lamination theorem for incompressible ends, which asserts that the hyperbolic 3-
manifold N = H3/Γ whose relative ends are all incompressible, is determined up
to isometry, by its homeomorphism type and its end invariant.

2.7. Accidental parabolic curves and elements. We review accidental para-
bolic curves, and accidental parabolic elements. See e.g. [1] and [32] for reference.

11
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Let Γ be a torsion-free Kleinian group, and N the quotient hyperbolic 3-manifold
of Γ with its holonomy representation ρ : π1(N) → Γ(< PSL2(C)).

Definition 2.7.1. An accidental parabolic curve γ for N is an essential simple
closed curve on a incompressible component of ∂cN which can be homotoped in
N ∪ ∂cN to have arbitrarily short length.

An accidental parabolic curve for N is interpreted as an accidental parabolic
element of Γ defined as follows.

Definition 2.7.2. A parabolic element f ∈ Γ is said to be accidental if there
exist a simply-connected component Ω of Ω(Γ) and a conformal homeomorphism
ω : Ω → H2 such that f ∈ stΓ(Ω) and ω ◦ f ◦ ω−1 is a loxodromic element of
PSL2(R).

The preimage in Ω of the axis in H2 for ω ◦ f ◦ω−1 via ω is called the axis for f .

Proposition 2.7.3. For any accidental parabolic curve γ for N , ρ(γ) is an ac-
cidental parabolic element of Γ. Conversely, for any accidental parabolic element
f ∈ Γ which is primitive, i.e. not a non-trivial power, the axis for f projects to an
accidental parabolic curve for N .

We check this proposition. Let π : H3 ∪Ω(Γ) → N ∪ ∂cN be the projection. We
note that the following holds (see e.g. Proposition 2.35 of [32]):

Proposition 2.7.4. Let Σ be a connected surface in N ∪∂cN , and ∆ a component
of π−1(Σ). Σ is incompressible in N ∪ ∂cN if and only if ∆ is simply-connected.

Proof of Proposition 2.7.3. Let γ be an accidental parabolic curve for N . By def-
inition, ρ(γ) is parabolic. Let B be the component of ∂cN in which γ lies, and
Ω the component of Ω(Γ) which covers B. Since γ ⊂ B ⊂ ∂cN , ρ(γ) ∈ stΓ(Ω).
Since B is incompressible, by Proposition 2.7.4, Ω is simply-connected, and by the
Riemann mapping theorem (see e.g. [5]), there exists a conformal homeomorphism
ω : Ω → H2. Since Γ acts on Ω conformally, ω ◦ ρ(γ) ◦ ω−1 ∈ PSL2(R). Since ρ(γ)
is a translation along a lift of γ, ω ◦ ρ(γ) ◦ ω−1 is a translation along a lift of γ via

H2 ω−1

→ Ω
π|Ω→ Ω/stΓ(Ω). Since γ is essential, ω ◦ ρ(γ) ◦ ω−1 is loxodromic. Thus

ρ(γ) is an accidental parabolic element of Γ. Conversely, let f be an accidental
parabolic element which is primitive in Γ, Ω and ω, a component and a conformal
homeomorphism as in Definition 2.7.2. The axis for ω ◦ f ◦ω−1 in H2 projects to a
homotopically non-trivial curve γ in Ω/stΓ(Ω) ⊂ ∂cN . Since Ω is simply-connected,
by Proposition 2.7.4, Ω/stΓ(Ω) is incompressible. Since f is loxodromic, γ is not
homotopic into a puncture. Since γ also represents the parabolic element f , it can
be homotoped to have arbitrarily short length in N ∪ ∂cN . Since f is primitive in
Γ, γ is simple and thus is an accidental parabolic curve. Hence Proposition 2.7.3
holds. □

Let γ be an accidental parabolic curve on a component B of ∂cN , p the parabolic
fixed point of ρ(γ), and γ̃ the axis for ρ(γ) in Ω(Γ) starting and ending at p.

Proposition 2.7.5. Γ is decomposed along the parabolic subgroup J := ⟨ρ(γ)⟩;

Γ =

{
Γ1 ∗

J
Γ2, if γ is separating in B,

Γ′∗δ, if γ is non-separating in B,
12
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where Γ1, Γ2 and Γ′ are subgroups of Γ, and δ is an element of Γ.

Proof of Proposition 2.7.5. This proposition follows from Lemmas 2 and 3 of [1] as
follows. Since γ is simple, γ̃ ∪ {p} is (Γ, J)-invariant. The Γ-translates of γ̃ ∪ {p}
divide up Ĉ into infinitely many connected components. Let T1 and T2 be the
connected components whose boundaries contain γ̃ ∪ {p}. Set Γi := stΓ(Ti), for
i = 1, 2.

First, we suppose that γ is separating in B. We note that T1 and T2 are not
Γ-equivalent, that is, there exists no element f ∈ Γ such that f(T2) = T1. Let Di be
the open disk bounded by γ̃∪{p} where Di∩Ti = ∅. In the proof of Lemma 2 of [1],
Abikoff and Maskit asserted that Di is (Γi, J)-invariant, and that Γ is generated by
Γ1 and Γ2. Thus the Klein-Maskit combination theorem I implies that Γ = Γ1 ∗

J
Γ2.

Next, we suppose that γ is non-separating in B. We note that T1 and T2 are
Γ-equivalent, that is, there exists an element f ∈ Γ such that f(T2) = T1. In the
proof of Lemma 3 of [1], Abikoff and Maskit asserted that there exist an open disk
D1 bounded by γ̃∪{p} which is (Γ1, J)-invariant, and an open disk D2 bounded by
f(γ̃ ∪ {p}) which is (Γ1, J

f )-invariant, such that for any h ∈ Γ1, h(D1) ∩D2 = ∅,
and that Γ is generated by Γ1 and f . Set Γ′ := Γ1, δ := f , and T ′ := T1. By the
Klein-Maskit combination theorem II, we have Γ = Γ′∗δ. □

We have two remarks for Proposition 2.7.5.

Remark 2.7.6. Abikoff and Maskit also showed that when Γ is finitely generated,
the decomposition process described in Proposition 2.7.5 must end after a finitely
many number of steps (see Section 6 of [1]), and the resulted groups are generalized
web groups or degenerate groups without accidental parabolic elements (see Theorem
1 of [1]).

Remark 2.7.7. By definition, there exists a cusp neighborhood Q of N which γ is
homotoped into. Moreover by the Cylinder theorem (see e.g. Section 3.7 of [29]),
there exists a once-punctured disk A in N whose boundary (at infinity) is γ and
whose puncture lies on the cusp of Q, which decomposes N . If Q is an annulus
cusp neighborhood whose cusp abuts only geometrically finite ends, then p is doubly
cusped in Γ, and by the Klein-Maskit combination theorems, N is decompsed along
the once-punctured disk A into parts of H3/Γ1 and H3/Γ2 in the case where A is
separating in N , or into a part of H3/Γ′ in the case where A is non-separating in
N . Similarly if Q is a torus cusp neighborhood, then stΓ(p) has rank 2, and by
the Klein-Maskit combination theorem II, N is decompsed along A into a part of
H3/Γ′.

For a torus cusp of N , we define the following.

Definition 2.7.8. When N has a torus cusp neighborhood T , N is said to have
double trouble with respect to T if there exist essential simple closed curves in ∂T
and in two distinct incompressible components of ∂cN , respectively, which are mu-
tually homotopic in N ∪ ∂cN .

We note that the above curves on ∂cN are accidental parabolic curves.
13
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2.8. Deformation spaces. We review deformation theory of Kleinian groups. See
e.g. [18] for more details.

Let M be a compact orientable hyperbolizable 3-manifold. Here “hyperboliz-
able” means that IntM admits a complete hyperbolic structure. Let AH(M) de-
note the set of conjugacy classes of discrete faithful representations of π1(M) into
PSL2(C).

We will define the topology of AH(M). Let HomT (π1(M), PSL2(C)) denote
the set of representations ρ : π1(M) → PSL2(C) with the property that ρ(γ) is
parabolic if γ is a non-trivial element of a rank 2 abelian subgroup of π1(M). Fix
a generating set {γ1, . . . , γl} of π1(M), and identify HomT (π1(M), PSL2(C)) with
the affine algebraic variety, denoted by RT (M) in PSL2(C)l via the map ρ 7→
(ρ(γ1), . . . , ρ(γl)). We note that another generating set induces a canonically iso-
morphic affine algebraic variety. The quotient of HomT (π1(M), PSL2(C)) by conju-
gation is called the (PSL2(C))-character variety of π1(M) and denoted by XT (M).
More preciselyXT (M) is the Mumford quotient HomT (π1(M), PSL2(C))//PSL2(C)
(see e.g. [24] for precise definition). Culler and Shalen showed that XT (M) is
a closed algebraic set (see Corollary 1.4.5 [19]). AH(M) is topologized as the
subspace of XT (M). This topology is called the algebraic topology. The Mum-
ford quotient HomT (π1(M), PSL2(C))//PSL2(C) is not isomorphic to the usual
quotient HomT (π1(M), PSL2(C))/PSL2(C) by conjugation, however the Mumford
and usual quotients of the subset of HomT (π1(M), PSL2(C)) consisting of repre-
sentations whose images are not contained in parabolic groups are isomorphic (see
[24]). Form now on, we suppose that π1(M) is non-abelian. It follows from the
above that a sequence ρm converges to ρ in AH(M) if and only if there exist rep-
resentatives ξm and ξ of ρm and ρ, respectively, such that for any γ ∈ π1(M),
ξm(γ) converges to ξ(γ) in PSL2(C). Convergences in AH(M) are called algebraic
convergences. By a work of Jørgensen, AH(M) is closed in XT (M) (see Theorem
1 of [23]).

Notation 2.8.1. From now on, given ρ ∈ AH(M), we denote its representative
also by ρ.

The interior of AH(M) can be characterized as follows. Let MP (M) denote the
subspace of AH(M) consisting of those representations with geometrically finite
and minimally parabolic images. It follows from Marden’s Isomorphism theorem
(Theorem 8.1 of [28]) that MP (M) is open in AH(M) as a subset in XT (M).
Together with a work of Sullivan ([44]), this implies that MP (M) is the interior of
AH(M). Furthermore the topology of IntAH(M) has been well understood.

Definition 2.8.2. An element ρ′ ∈ AH(M) is said to be quasi-conformally conju-
gate to an element ρ ∈ AH(M) if there exists a quasi-conformal homeomorphism

ϕ : Ĉ → Ĉ such that for any γ ∈ π1(M), ρ′(γ) = ϕ ◦ ρ(γ) ◦ ϕ−1.

For an element ρ ∈ AH(M), let QC(ρ) denote the subspace of AH(M) consist-
ing of those representations which are quasi-conformally conjugate to ρ. Marden
observed that for any ρ ∈ MP (M), QC(ρ) ⊂ MP (M) (see Proposition 9.1 of [28]).

Let A(M) denote the set of equivalence classes of pairs [(M ′, h′)], where M ′ is
a compact, oriented hyperbolizable 3-manifold and h′ : M → M ′ is a homotopy

14
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equivalence, and two pairs (M1, h1) and (M2, h2) are equivalent if there exists an
orientation-preserving homeomorphism j : M1 → M2 such that j ◦ h1 is homotopic
to h2. For an element [(M ′, h′)] ∈ A(M), let Mod0(M

′) denote the group of isotopy
classes of orientation-preserving homeomorphisms of M ′ which are homotopic to
the identity, and ∂NTM

′ the non-toroidal boundary components of M ′.

The map Φ : AH(M) → A(M) is defined by Φ(ρ) := [(Mρ, hρ)], where for
each ρ ∈ AH(M), Mρ is a compact core for H3/ρ(π1(M)), and hρ : M → Mρ is a
homotopy equivalence such that the conjugacy class of the induced homeomorphism
hρ∗ : π1(M) → π1(Mρ) is ρ. Such a homotopy equivalence is called a marking of ρ.

By works of Ahlfors, Bers ([7], [11]), Kra ([26]), and Maskit ([30]), for any
ρ ∈ MP (M) with Φ(ρ) = [(M ′, h′)] ∈ A(M), QC(ρ) ∼= T (∂NTM

′)/Mod0(M
′)

holds.

Marden’s Isomorphism theorem (Theorem 8.1 of [28]) implies that for any ρ, ρ′ ∈
MP (M), ρ′ is quasi-conformally conjugate to ρ if and only if Φ(ρ′) = Φ(ρ).
Thurston’s geometrization theorem (see Morgan [36], or Otal [41]) implies that
the restriction Φ|MP (M) is surjective. Marden’s stability theorem (Proposition 9.1
of [28]) implies that Φ is continuous i.e. locally constant. In conclusion, we have
got,

Theorem 2.8.3.

IntAH(M) = MP (M) =
∪

ρ∈MP (M)

QC(ρ) ∼=
⊔

[(M ′,h′)]∈A(M)

T (∂NTM
′)/Mod0(M

′).

In this thesis, we will consider the case where M = S × I. Here S is a closed
surface of genus g ≥ 2 and I is a closed interval. We abbreviate AH(S × I) and
MP (S × I) to AH(S) and MP (S), respectively. Let QF (S) denote the subset
of AH(S) consisting of those points whose images are quasi-Fuchsian groups. We
recall that any quasi-Fuchsian group is quasi-conformally conjugate to a Fuchsian
group (see Subsection 2.2). Thus QF (S) is contained in MP (S). Since any two
Fuchsian representations of AH(S) are quasi-conformally conjugate, MP (S) =
QF (S) and Φ(MP (S)) is a single point. Then, the results above are stated as

IntAH(S) = MP (S) = QF (S) ∼= T (S)× T (S)

.

We go back to a general hyperbolizable compact 3-manifold M . Ohshika (The-
orem 1.1 of [39]), Namazi and Souto (Theorem 1.1 of [37]) showed that

Theorem 2.8.4 (Density theorem).

AH(M) = IntAH(M)

.
However the topology of AH(M) is still mysterious. Anderson and Canary

discovered the first example of the bumping phenomena (see Theorem 3.1 of [8]).

Definition 2.8.5. Two distinct components W1 and W2 of IntAH(M) are said
to bump at a point ρ in the boundary ∂AH(M) if ρ ∈ W1 ∩ W2, where Wi is the
closure of Wi in XT (M) for i = 1, 2.
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Anderson, Canary and McCullough characterized exactly when two components
of AH(M) can bump in the case where the boundary components of M are all
incompressible (Corollary 1 of [9]).

Furthermore McMullen first demonstrated that AH(S) can self-bump (see The-
orem A.1 of [34]).

Definition 2.8.6. A component W of the interior of AH(M) are said to self-bump
at a point ρ in the boundary ∂AH(M) if for any sufficiently small neighborhood V
of ρ in AH(M), V ∩W is disconnected.

Bromberg and Holt generalized this result by using different technique (see The-
orem 4.5 of [14]). These bumponomics phenomena are related to non-trivial wrap-
ping projections which will be stated in Subsection 2.10. In fact, the existence
of bumpings in [8] and [9], and self-bumpings in [34] and [14] was shown under
existence of non-trivial wrapping projections.

2.9. Geometric limits. We review geometric limits (see e.g. [10]), and some ter-
minologies and a theorem given by Ohshika and Soma in [40].

Definition 2.9.1. A sequence of hyperbolic 3-manifolds with basepoints (Nm, xm)

is said to converge geometrically to a hyperbolic manifold with a basepoint (N̂ , x̂)
if there exist sequences of real numbers {Rm > 0} and {Km ≥ 1} with Rm → ∞
and Km → 1, and a sequence of biLipschitz diffeomorphisms into images {fm :
B(x̂, Rm) → Nm} such that for each m, fm is Km-biLipschitz and maps x̂ to xm,

where B(x̂, Rm) is the open ball of radius Rm centered at x̂ in N̂ .

We often omit basepoints of geometrically convergent sequences.

Definition 2.9.2. A sequence of Kleinian groups {Γm} is said to converge to a

Kleinian group Γ̂ in the Chabauty topology if the following two conditions hold:

(1) each f̂ ∈ Γ̂ is the limit of some sequence {fm ∈ Γm} in PSL2(C);

(2) for any sequence {fm ∈ Γm}, whenever its subseuence {fm(l)} converges to

an element f̂ in PSL2(C), f̂ lies in Γ̂.

It is known that a sequence of Kleinian groups {Γm} converges to a Kleinian

group Γ̂ in the Chabauty topology if and only if the quotient manifolds H3/Γm

converges geometrically to H3/Γ̂.

Jørgensen and Marden showed that every sequence {ρm} converging to ρ in
AH(M) has a subsequence, also denoted by {ρm} such that ρm(π1(M)) converges

to a Kleinian group Γ̂ in the Chabauty topology (see Propositions 3.8 and 3.10 of
[25]). Since ρ(γ) = limm→∞ ρm(γ) for any γ ∈ π1(M), by the condition (2) of

the definition above, ρ(π1(M)) is a subgroup of Γ̂, and thus there exists a locally

isometric covering H3/ρ(π1(M)) → H3/Γ̂, called the natural projection. Both H3/Γ̂

and Γ̂ are called associated geometric limits of ρ.

We will consider geometric limits of Kleinian groups isomorphic to π1(S), where
S is a closed surface of genus g with p punctures such that ξ(S) ≥ 0. Ohshika and
Soma ([40]) introduced biLipschitz models for such geometric limits, called labelled
brick manifolds, and classified those geometric limits. Following [40], we will state
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the definition of labelled brick manifold and their theorem. For a compact essential
subsurface F of S with ξ(S) ≥ 0, and an interval J , which is either [0, 1], [0, 1), or
(0, 1], a 3-manifold homeomorphic to F ×J is called a brick. For a brick B = F ×J ,
F ×{0} and F ×{1} are denoted by ∂−B and ∂+B, and called the lower front and
the upper front, respectively, and for each t ∈ J and x ∈ F , F ×{x} and {t}×J are
called horizontal and vertical leaves, respectively. When a brick is homeomorphic
to either F × [0, 1) or F × (0, 1], it is called a half-open brick and a front which is
not contained in it is called the ideal front.

Definition 2.9.3. A finite brick complex is a finitely many bricks K = {B1, . . . , Bl}
realized as subsets of a 3-manifold with pairwise disjoint interiors satisfying the
following two conditions:

(1)

l∪
i=1

Bi is connected;

(2) for any two bricks Bi and Bj in K with Fij := Bi ∩ Bj ̸= ∅, there exists a
leaf-preserving embedding η : Bi∪Bj → S×[−1, 1] with η(Bi) ⊂ S×[−1, 0],
η(Bj) ⊂ S × [0, 1] such that η(Fij) is an essential subsurface of S × {0}.

The finite union
∪

B∈K B is called a finite brick manifold with brick decomposition
K.

Definition 2.9.4. For an ascending sequence {Km}∞m=1 of finite brick complexes,

the union K :=

∞∪
m=1

Km is called a brick complex, and the union
∪
B∈K

B a brick

manifold with brick decomposition K.

Definition 2.9.5. A labelled brick manifold is a brick manifold labelled as follows.
Categorize its half-open bricks into geometrically finite bricks and simply-degenerate
bricks. Then for each geometrically finite brick B = F × J , attach a point in
T (IntF ) to its ideal front, and for each simply-degenerate brick B = F ×J , a point
in UML(IntF ) to the end corresponding to its ideal front.

In this thesis, we denote the union of all the (marked) conformal structures
attached to geometrically finite bricks by ∂cM . We note that this symbol is denoted
by ∂∞M in [40].

Ohshika and Soma showed the following theorem (see Theorem C of [40]).

Theorem 2.9.6. Suppose that M is a labelled brick manifold satisfying the follow-
ing conditions (i)− (iv) and (EL) :

(i) each component of ∂M is either a torus or an open annulus;

(ii) there exists no proper embedded incompressible annulus in M whose bound-
ary components lie on distinct boundary component of M ;

(iii) if there exists an embedded, incompressible half-open annulus S1× [0,∞) in
M such that S1 × {t} tends to a wild end e of M as t → ∞, then its core
curve is homotopic into an open annulus component of ∂M tending to e;

(iv) the manifold M is (not necessary properly) embedded in S × (0, 1) in such
a way that each brick has a form F ×J with an interval J and an essential
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subsurface F of S with respect to the product structure of S× (0, 1) and the
ends of geometrically finite bricks lie in S × {0, 1};

(EL) the ending laminations of two simply-degenerate ends of M are not homo-
topic to each other in M.

Then M has a block decomposition, and if we put on M the model metric associated
with the decomposition, then there exists a non-elementary geometric limit G of
quasi-Fuchsian groups isomorphic to π1(S) such that NG = H3/G admits a K-
biLipschitz homeomorphism f : M → (NG)0 which can be extended to continuously
to a conformal map ∂cM → ∂cNG between the boundaries at infinity for a constant
K ≥ 1 depending only on χ(S).

In [40], a block decomposition is a brick decomposition constructed from that
of M by removing repeatedly some union of solid tori specified by the information
of the end invariants of M , so that each brick is homeomorphic to either Σ0,3 × J ,
Σ1,1×J , or Σ0,4×J , where Σ0,3 is a thrice-holed sphere, Σ1,1 is a once-holed torus,
Σ0,4 is a 4-holed sphere, and J is an interval, and the model metric on its brick
manifold is the piecewise Riemannian metric with a preassigned metric on each
brick.

Remark 2.9.7. We note that in the proof of Theorem C of [40], each torus cusp of
NG is (hyperbolic) Dehn filled, that is, attached by a solid torus with some specific
gluing, in each hyperbolic 3-manifold of the converging sequence to NG.

2.10. Wrapping projections. We explain wrapping projections. See [20].

Let M be a compact orientable hyperbolizable 3-manifold at least one of whose
boundary components is incompressible. Let ρ be an element of AH(M) and set

Nρ = H3/ρ(π1(M)). Recall that ρ denotes also its representative. Let N̂ = H3/Γ̂

be an associated geometric limit of ρ with the natural projection πρ : Nρ → N̂ .

We assume the following:

(i) ρ has an accidental parabolic curve γ;
(ii) the cusp neighborhood Q corresponding to γ is an annulus one in Nρ which

covers a torus one T̂ in N̂ via πρ; and

(iii) there exist a parabolic element σ ∈ Γ̂ and a subgroup Γ0 of Γ̂ such that σ

and ρ(γ) generate π1(T̂ ), and Γ̂ = Γ0∗σ.

Then, we say that the natural projection πρ : Nρ → N̂ wraps n times with respect
to γ if n is the smallest number such that there exists a hyperbolic 3-manifold
N̄ = H3/Γ̄ with Γρ < Γ̄ < Γ̂ satisfying the following condition Wn:

Wn


πρ factors through π̄ : Nρ → N̄ and π̂ : N̄ → N̂ ,

there exists a compact core K for Nρ so that π̄|K is an embedding, and

Γ̄ = Γ0 ∗σn+1 .

We call a natural projection πρ with nonzero wrapping the wrapping projection.
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3. Main theorem and its proof

In this section, we state our main theorem, which characterize wrapping projec-
tions by the actions of decomposed groups along the accidental parabolic subgroup,
and give its proof and an example as a corollary. Let S be a closed orientable sur-
face of genus g ≥ 2. Recall that for ρ ∈ AH(S), we denote its representative also
by ρ. From now on, for simplicity, we denote its image ρ(π1(S)) by Γρ.

3.1. The statement of the main theorem. In this thesis, we show the following.

Theorem 3.1.1. Suppose that ρ ∈ AH(S) has an accidental parabolic curve γ
with the corresponding annulus cusp neighborhood Q, and the cusp of Q abuts only
geometrically finite ends. Let p be the fixed point of ρ(γ), and J = ⟨ρ(γ)⟩ the rank 1
parabolic group generated by ρ(γ). Then Γρ is decomposed along J ;

Γρ =

{
Γ1 ∗

J
Γ2, if γ is separating in S,

Γ′∗δ, if γ is non-separating in S,

where Γ1, Γ2 and Γ′ are subgroups of Γρ, and δ is an element of Γρ. Moreover for
a given nonnegative integer n, the following holds:

There exist an associated geometric limit N̂ = H3/Γ̂ so that Q covers a torus cusp

neighborhood T̂ of N̂ , that the natural projection πρ : Nρ → N̂ wraps n times with

respect to γ, and that N̂ has double trouble with respect to T̂ if and only if the
following holds.

• In the case where γ is separating in S, there exist a parabolic element σ
fixing the point p, (Γi, J)-invariant open disks Ci and Di in Ĉ for i = 1, 2,
such that the following condition DSn holds:

DSn

{
σn+1(C1) = Ĉ \ C2, σ

n(D1) = Ĉ \D2,

Λ(Γi) separates Ci and Di, and Ci ∩ Λ(Γi) = Di ∩ Λ(Γi) = p.

• In the case where γ is non-separating in S, there exist a parabolic element

σ fixing the point p, (Γ′, J)-invariant open disks C and D and (Γ′, Jδ−1

)-

invariant open disks C ′ and D′ in Ĉ such that the following condition DNn
holds:

DNn


σn+1δ(C ′) = Ĉ \ C, σnδ(D′) = Ĉ \D,

Λ(Γ′) separates C from D, and C ′ from D′,

C ∩ Λ(Γ′) = D ∩ Λ(Γ′) = p, C ′ ∩ Λ(Γ′) = D′ ∩ Λ(Γ′) = δ−1(p), and

(∗)for any f ∈ Γ′, f(C) ∩ C ′ = ∅, f(C) ∩D′ = ∅, f(D) ∩ C ′ = ∅, f(D) ∩D′ = ∅.

See Figures 3.1.1 and 3.1.2. (Note that all the figures in this thesis are schematic
pictures.)
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Figure 3.1.1. The
disks satisfying the
condition DSn

Figure 3.1.2. The
disks satisfying the
condition DNn

Remark 3.1.2. We note that in the separating case, since Ci∩Λ(Γi) = Di∩Λ(Γi) =
p, and Ci and Di are disks, each of them is contained in some component of Ω(Γi),
and that “Λ(Γi) separates Ci and Di” means Ci and Di lie in different components
of Ω(Γi), and similarly for the non-separating case. We labelled the last condition in
DNn, which requires that for any f ∈ Γ′, f(C)∩C ′ = ∅, f(C)∩D′ = ∅, f(D)∩C ′ =
∅, f(D) ∩D′ = ∅, by (∗).

Now we prove Theorem 3.1.1. Since Nρ has the accidental parabolic curve γ, by
Proposition 2.7.5, Γρ is decomposed along J = ⟨ρ(γ)⟩;

Γρ =

{
Γ1 ∗

J
Γ2, if γ is separating in S,

Γ′∗δ, if γ is non-separating in S,

where Γ1, Γ2 and Γ′ < Γρ, and δ ∈ Γρ.

3.2. The actions of the decomposed groups imply wrapping projection.
In this subsection, given a parabolic element σ and the disks satisfying the condition
DSn in the case where γ is separating in S, or DNn in the case where γ is non-
separating in S, we will construct an associated geometric limit N̂ = H3/Γ̂ with

the natural projection πρ : Nρ → N̂ such that Q covers a torus cusp neighborhood

T̂ of N̂ via πρ, that πρ wraps n times with respect to γ, and that N̂ has double

trouble with respect to T̂ .

The case where γ is separating in S. By assumption, Ĉ is divided into the

(Γ1
σn+1

, J)-invariant disk σn+1(C1) and the (Γ2, J)-invariant disk C2. The Klein-

Maskit combination theorem I implies that Γ1
σn+1

∗
J
Γ2 is discrete. We define Γ0 to

be this Kleinian group.

We show the next claim:
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Claim 3.2.1. f(Ci) ∩Di = ∅ for any f ∈ Γi and i = 1, 2.

Proof of Claim 3.2.1. Suppose that f(Ci)∩Di ̸= ∅ for some f ∈ Γi. Let Ωi be the
component of Ω(Γi) such that Di ⊂ Ωi. Since f(Ci)∩Di ̸= ∅, f(Ci)∩Ωi ̸= ∅, thus
f(Ci) ⊂ Ωi.

Since the cusp of Q abuts only geometrically finite ends by assumption, Nρ =
H3/Γρ is cut along a once-punctured disk corresponding to J which connects the
accidental parabolic curve γ to the cusp of Q, and divided into (parts of) H3/Γ1

and H3/Γ2 as in Remark 2.7.7, and the cusps in ∂cH3/Γi corresponding to J are
contained in two different components Bi+ and Bi− of ∂cH3/Γi. See Figure 3.2.1.

Figure 3.2.1. The decomposition of Nρ

If f−1(Ωi) ̸= Ωi (see Figure 3.2.2), then the cusps in ∂cH3/Γi are contained in
only one component of ∂cH3/Γi.

Figure 3.2.2. The components of Ω(Γi) around p if f−1(Ωi) ̸= Ωi
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Thus f−1(Ωi) = Ωi, and hence Ci = f−1(f(Ci)) ⊂ f−1(Ωi) = Ωi. This violates
the assumption that Λ(Γi) separates Ci and Di. Hence, Claim3.2.1 holds. □

We observe the following (see Figures 3.2.3, 3.2.4 and 3.2.5):

Observation 3.2.2. By Claim 3.2.1 and the (Γ1
σn+1

, J)-invariance of σn+1(D1),

we see that for any f ∈ Γ1
σn+1

\ J ,

f(σn+1(D1)) ⊂ Ĉ \ σn+1(C1) = C2 and f(σn+1(D1)) ∩ σn+1(D1) = ∅.

Observation 3.2.3. By the (Γ2, J)-invariance of C2 and Claim 3.2.1, we see that
for any g ∈ Γ2 \ J ,

g(C2) ⊂ Ĉ \ C2 = σn+1(C1) and g(C2) ∩D2 = ∅.

Observation 3.2.4. By the (Γ1
σn+1

, J)-invariance of σn+1(C1) and Claim 3.2.1,

we see that for any f ∈ Γ1
σn+1

\ J ,

f(σn+1(C1)) ⊂ Ĉ \ σn+1(C1) = C2 and f(σn+1(C1)) ∩ σn+1(D1) = ∅.
.

Figure 3.2.3.
Observation 3.2.2

Figure 3.2.4.
Observation 3.2.3

Figure 3.2.5.
Observation 3.2.4

We will show that σn+1(D1) is (Γ0, J)-invariant. Since D1 is J-invariant and
σ commutes with J , σn+1(D1) is also J-invariant. Given any h ∈ Γ0 \ J , since

Γ0 = Γ1
σn+1

∗
J
Γ2, we can express it as a reduced word of the form · · · g4f3g2f1, or

· · · g3f2g1, where fi ∈ Γ1
σn+1

\J , gj ∈ Γ2\J . Then we can check that h(σn+1(D1))∩
σn+1(D1) = ∅ by looking at f1(σ

n+1(D1)), g2f1(σ
n+1(D1)), f3g2f1(σ

n+1(D1)),
g4f3g2f1(σ

n+1(D1)), . . . using Observations 3.2.2, 3.2.3, 3.2.4, 3.2.3, . . ., or by look-
ing at g1σ

n+1(D1), f2g1σ
n+1(D1), g3f2g1σ

n+1(D1), . . . using Observations 3.2.3,
3.2.4, 3.2.3, . . ..

Similarly, D2 is (Γ0, J)-invariant. Noting C2 ∩D2 = ∅, we have h(σn+1(D1)) ∩
D2 = ∅ for any h ∈ Γ0. Applying the Klein-Maskit combination theorem II to D2

and σn+1(D1), we see that Γ0∗σ is discrete. We define Γ̂ to be this Kleinian group.
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We define Γ̄ to be Γ0∗σn+1 . By definition, Γ̄ is a subgroup of Γ̂, and since

Γ0 = Γ1
σn+1

∗
J
Γ2 and Γρ = Γ1 ∗

J
Γ2, Γ̄ contains Γρ. Let πρ, π̄ and π̂ be the natural

projections corresponding to Γρ < Γ̄ < Γ̂:

Nρ = H3/Γρ

πρ ''NN
NNN

NNN
NNN

π̄ // N̄ = H3/Γ̄

π̂
��

N̂ = H3/Γ̂

We will construct H3/Γ0 and N̂ = H3/Γ̂ combinatorially from H3/Γ1 and H3/Γ2.
Using the Klein-Maskit combination theorem I, we construct H3/Γ0 as follows.
Since p is the unique parabolic fixed point of Γ0 in ∂C2, which is doubly cusped in
Γ0, we can take a (Γ0, J)-invariant spanning disk D∂C2

in H3 for ∂C2. Recall that

σn+1(∂C1) = ∂C2 divides Ĉ into σn+1(C1) and C2. Let HCi
be the closed topologi-

cal half-space in H3 with ∂HCi = Ci for each i, such that H3 is divided by D∂C2 into
σn+1(HC1

) and HC2
. It is clear that HCi

is (Γi, J)-invariant. Then H3/Γ0 can be

regarded as the union of (H3/Γ2)\(HC2
/J) and (H3/Γ1

σn+1

)\(σn+1(HC1
)/J) along

D∂C2
/J . Here (H3/Γ1

σn+1

)\(σn+1(HC1
)/J) is isometric to (H3/Γ1)\(HC1

/J). Us-

ing the Klein-Maskit combination theorem II, we construct N̂ = H3/Γ̂ as follows.

Since p is the unique parabolic fixed point of Γ̂ in both ∂2D and in σn+1(∂D1),

which is rank 2 in Γ̂, we can take (Γ0, J)-invariant spanning disks D∂D2
for ∂D2 and

Dσn+1(∂D1) for σ
n+1(∂D1), such that σ(D∂D2) = Dσn+1(∂D1), and that D∂C2 does

not intersect either D∂D2
or Dσn+1(∂D1). Set D∂D1

= σ−(n+1)(Dσn+1(∂D1)). Let

HDi
be the closed topological half-space cut out of H3 by D∂Di

with ∂HDi = Di for

each i. Then N̂ = H3/Γ̂ can be obtained by gluing (H3/Γ0)\((HD2
∪σn+1(HD1

))/J)
with itself along D∂D2

/J and σn+1(D∂D1
)/J via the identification given by σ.

By the constructions ofH3/Γ0 and N̂ , N̂ is homeomorphic to a manifold obtained
by removing a simple closed curve homotopic to γ from the interior of S × [0, 1].

A tubular neighborhood of γ gives rise to the torus cusp neighborhood T̂ . Since
D∂C2/J and D∂D2/J are embedded once-punctured disks in N̂ , N̂ has double

trouble with respect to T̂ .

We will construct a compact core K for Nρ such that the restriction π̄|K is an

embedding. For each i = 1, 2, we take an embedded thickened surface Ŝi in N̂
whose cusp lies on the one of T̂ , and the inclusion of whose lift is a homotopy
equivalence to H3/Γi, so that Ŝ1 and Ŝ2 are disjoint. Let Si be a lift of Ŝi in Nρ,

which is homeomorphic to Ŝi. We construct a compact core K for Nρ by removing
a smaller annulus cusp neighborhood P in the cusp neighborhood Q from S1 and
S2 and connecting them by a thickened annulus R in P . See Figure 3.2.6.

23



Wrapping projections and decompositions of Kleinian groups

Figure 3.2.6. The construction of K in the separating case

We consider this surgery in H3 for lifts of these components. Let H be the
horoball at p which covers P . By the constructions of H3/Γ0 and N̂ above, we

can take a lift S̃i in H3 of both Si in Nρ and Ŝi in N̂ such that S̃i lies between

HCi
and D∂Di

, and ∂S̃i = p. Since D∂D1
∪ D∂D2

⊂ H3 \ (HC1
∪ HC2

), we have

S̃1 ∪ S̃2 ⊂ H3 \ (HC1
∪HC2

). By removing H from these two lifts and connecting

them by the thickened strip R̃ in H which covers R, we construct a lift K̃ of K in
H3. See Figure 3.2.7.

Figure 3.2.7. The construction of K̃ in the separating case

Since S1 and S2 are disjointly embedded in N̂ via πρ, K \ R is embedded in N̄
via π̄. On the other hand, since σn+1(H3 \ (HC1

∪HC2
))∩ (H3 \ (HC1

∪HC2
)) = ∅,

we have σn+1(R̃) ∩ R̃ = ∅. So taking H so that H/⟨ρ(γ), σn+1⟩ = H/Γ̄, R is also
embedded in N̄ via π̄. Therefore, the compact core K is embedded in N̄ via π̄.
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The case where γ is non-separating in S. By assumptions, we see that

C = σn+1δ(Ĉ\C ′) is (Γ′, J)-invariant, C ′ is (Γ′, Jδ−1

)-invariant, and f(C)∩C ′ = ∅
for any f ∈ Γ′. The Klein-Maskit combination theorem II implies that Γ′∗σn+1δ is
discrete. We define Γ0 to be this Kleinian group.

Similarly to Claim 3.2.1, we have:

Claim 3.2.5. f(C) ∩D = ∅ and f(C ′) ∩D′ = ∅ for any f ∈ Γ′.

We observe the following (see Figures 3.2.8, 3.2.9 and 3.2.10):

Observation 3.2.6. By Claim 3.2.5, the (Γ′, J)-invariance of D, the (Γ′, Jδ−1

)-
invariance of D′, and the condition (∗) of DNn, we see that

f(D) ⊂ Ĉ \ C ∪D ∪ C ′ ∪D′ for any f ∈ Γ′ \ J, f(D) = D for any f ∈ J,

f(D′) ⊂ Ĉ \ C ∪D ∪ C ′ ∪D′ for any f ∈ Γ′ \ Jδ−1

, and f(D′) = D′ for any f ∈ Jδ−1

.

Observation 3.2.7. We see that

σn+1δ(Ĉ \ C ′) = C, and (σn+1δ)−1(Ĉ \ C) = C ′.

Observation 3.2.8. By Claim 3.2.5, the (Γ′, J)-invariance of C, the (Γ′, Jδ−1

)-
invariance of C ′, and the condition (∗) of DNn, we see that

f(C) ⊂ Ĉ \ C ∪D ∪ C ′ ∪D′ for any f ∈ Γ′ \ J, f(C) = C for any f ∈ J,

f(C ′) ⊂ Ĉ \ C ∪D ∪ C ′ ∪D′ for any f ∈ Γ′ \ Jδ−1

, and f(C ′) = C ′ for any f ∈ Jδ−1

.

Figure 3.2.8.
Observation 3.2.6

Figure 3.2.9.
Observation 3.2.7

Figure
3.2.10.
Observation 3.2.8

We will show that D is (Γ0, J)-invariant in a similar way to the separating case.
Given any h ∈ Γ0 \ J , since Γ0 = (Γ′)∗σn+1δ, we can express it as a reduced word
of the form · · · g4f3g2f1, or · · · g3f2g1, where fi ∈ Γ′ and gj = σn+1δ or (σn+1δ)−1.

Since (σn+1δ)−1fσn+1δ = fδ−1

for any f ∈ J , the above word does not have

(σn+1δ)−1fσn+1δ for any f ∈ J , or σn+1δf(σn+1δ)−1 for any f ∈ Jδ−1

, as its
consecutive subsequence of letters. We can check that h(D) ∩ D = ∅, by chasing
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f1(D), g2f1(D), f3g2f1(D), g4f3g2f1(D), . . . using Observations 3.2.6, 3.2.7, 3.2.8,
3.2.7, . . ., or by chasing g3f2g1(D), g3f2g1(D), g3f2g1(D), . . . using Observations
3.2.7, 3.2.8, 3.2.7, . . ..

Similarly, D′ is (Γ0, J
δ−1

)-invariant and thus, σn+1δ(D′) is (Γ0, J)-invariant.
Noting that σn+1δ(D′) ⊂ C, h(σn+1δ(D′)) ∩ D = ∅ for any h ∈ Γ0. Applying
the Klein-Maskit combination theorem II to D and σn+1δ(D′), we see that Γ0∗σ is

discrete. We define Γ̂ to be this Kleinian group.

We define Γ̄ to be Γ0∗σn+1 . By definition, Γ̄ is a subgroup of Γ̂, and since
Γ0 = Γ′∗σn+1δ and Γρ = Γ′∗δ, Γ̄ contains Γρ.

We will construct H3/Γ0 and N̂ = H3/Γ̂ combinatorially from H3/Γ′. Using the
Klein-Maskit combination theorem II, we construct H3/Γ0 as follows. Since p and
δ−1(p) are the unique parabolic fixed points of Γ0 in ∂C and in ∂C ′, respectively,
which are doubly cusped in Γ0, we can take a (Γ′, J)-invariant spanning diskD∂C for

∂C and (Γ′, Jδ−1

)-invariant spanning one D∂C′ for ∂C ′ such that σn+1δ(D∂C′) =
D∂C . Let HC be the closed topological half-space cut out of H3 by D∂C with
∂HC = C and HC′ the closed topological half-space cut out of H3 by D∂C′ with
∂HC′ = C ′. Then H3/Γ0 can be obtained by gluing (H3/Γ′)\ ((HC ∪HC′)/J) with
itself along D∂C/J and D∂C′/J via the identification given by σn+1δ. Using the

Klein-Maskit combination theorem II, we construct N̂ = H3/Γ̂ as follows. Since

p is the unique parabolic fixed point of Γ̂ in ∂D and in σn+1δ(∂D′), which is

doubly cusped in Γ̂, we can take (Γ0, J)-invariant spanning disks D∂D for ∂D and
Dσn+1δ(∂D′) for σn+1δ(∂D′), such that σ(D∂D) = Dσn+1δ(∂D′) and that D∂C does

not intersect D∂D or σn+1δ(D∂D′). Set D∂D′ := (σn+1δ)−1(Dσn+1δ(∂D′)). Let HD

be the closed topological half-space cut out of H3 by D∂D with ∂HD = D, and HD′

the closed topological half-space cut out of H3 by D∂D′ with ∂HD′ = D′. Then
N̂ = H3/Γ̂ can be obtained by gluing (H3/Γ0)\ ((HD∪σn+1δ(HD′))/J) with itself,
along D∂D/J and σn+1δ(D∂D′)/J via the identification given by σ.

By the constructions ofH3/Γ0 and N̂ , N̂ is homeomorphic to a manifold obtained
by removing a simple closed curve homotopic to γ from the interior of S × [0, 1].

A tubular neighborhood of γ gives rise to the torus cusp neighborhood T̂ . Since
D∂C/J and D∂D/J is embedded once-punctured disks in N̂ , N̂ has double trouble

with respect to T̂ . Let πρ, π̄ and π̂ be the natural projections corresponding to

Γρ < Γ̄ < Γ̂, similarly to the separating case.

We will construct a compact core K for Nρ such that the restriction π̄|K is an
embedding in a way similar to the separating case. We take an embedded thickened
surface Ŝ′ in N̂ whose cusps lie on the one of T̂ , and the inclusion of whose lift is a
homotopy equivalence to H3/Γ′. Let S′ be a lift of Ŝ′ in Nρ, which is homeomorphic

to Ŝ′. We construct a compact core K for Nρ by removing a smaller annulus cusp
neighborhood P in the cusp neighborhood Q from S′ and connecting it with a
thickened annulus R in P . See Figure 3.2.11.
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Figure 3.2.11. The construction of K in the non-separating case

We consider this surgery in H3 with lifts of these components. Let H be the
horoball at p which covers P . By the constructions of H3/Γ0 and N̂ above, we

can take a lift S̃′ in H3 of both S′ in Nρ and Ŝ′ in N̂ such that S̃′ lies in between

HC , D∂D, HC′ and D∂D′ , and ∂S̃′ = {p, δ−1(p)}. Since δ(D∂D′) ∪ D∂D ⊂ H3 \
(δ(HC′) ∪ HC), we have δ(S̃′) ∪ S̃′ ⊂ H3 \ (δ(HC′) ∪ HC). By removing H and

δ−1(H) from the lift and connecting it with the thickened strip R̃ in H which covers

R and connects δ(S̃′) and S̃′, we construct a lift K̃ of K in H3. See Figure 3.2.12.

Figure 3.2.12. The construction of K̃ in the non-separating case

Since S′ is embedded in N̂ via πρ, K \ R is embedded in N̄ via π̄. On the
other hand, since σn+1(H3 \ (δ(HC′) ∪HC)) ∩ (H3 \ (δ(HC′) ∪HC)) = ∅, we have

σn+1(R̃)∩ R̃ = ∅. So taking H so that H/⟨ρ(γ), σn+1⟩ = H/Γ̄, R is also embedded
in N̄ via π̄. Therefore, the compact core K is embedded in N̄ via π̄.
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The hyperbolic 3-manifold N̂ . From here we consider the both cases in the
same time. We have obtained the hyperbolic 3-manifolds N̂ and N̄ satisfying the
conditionWn. If there exists a hyperbolic 3-manifold N̄ ′ = H3/Γ̄′ with Γρ < Γ̄′ < Γ̂
satisfying the condition Wk, instead of N̄ = H3/Γ̄. The projection π̄′ : Nρ → N̄ ′

embeds some compact core K ′ for Nρ and Γ̄′ = Γ0∗σk+1 . By considering this
projection around the cusp neighborhood of Q, we get k ≥ n. So n is the smallest
of such numbers.

Finally we will check that N̂ is an associated geometric limit of ρ. Let f :
S × [0, 1] → Nρ be a marking of ρ, i.e. a homotopy equivalence corresponding to ρ,
such that f(S × [0, 1]) = K.

We will apply the work of Ohshika and Soma [40] stated as in Subsection 2.9 to N̂ .

Since N̂ is homeomorphic to S×(0, 1) from which a simple closed curve (homotopic
to γ) has been deleted by the construction, we can take a labelled brick manifold M

such that M is homeomorphic to the non-cuspidal part N̂0 of N̂ , has the same end
invariant as N̂ , and satisfies the conditions (i)-(iv) and (EL) in Theorem 2.9.6. By
Theorem 2.9.6, there exists a geometrically convergent sequence of quasi-Fuchsian
manifolds {Nm} such that the non-cuspidal part (NG)0 of NG is homeomorphic
to M , NG has the same end invariant as M , where NG is the geometric limit of
{Nm}. So (NG)0 and N̂0 are homeomorphic and have the same end invariant. Since

π1(NG) ∼= π1(N̂) is finitely generated, and bothNG and N̂ have only incompressible
tame ends, by the ending lamination theorem for incompressible ends stated as in
Subsection 2.6, NG is isometric to N̂ . We may assume that the sequence of quasi-
Fuchsian manifolds with basepoints (Nm, xm) converges geometrically to (N̂ , x̂) for
some basepoint x̂.

For each m, let fm : B(x̂, Rm) → Nm be a Km-biLipschitz diffeomorphism
stated in the definition of geometric convergence. Since K is compact, taking a
subsequence if necessary, we can assume that πρ(K) ⊂ B(x̂, Rm) for all m. By an
argument similar to that indicating that π̄|K is an embedding, we can check that

πρ(K) wraps n times around the cusp of T̂ in N̂ , that is, πρ(K) is homotopic to

the union of the embedded thickened surface ŜK homeomorphic to a thickening of
S and the n-fold thicken torus T̂K around the cusp of T̂ . See Figure 3.2.13.

Figure 3.2.13. N̂ and πρ(K)
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Since {fm} is a diffeomorphism and converges to an isometry, we may assume

that fm|ŜK
: ŜK → Nm is a homotopy equivalence and fm(T̂K) wraps around a

solid torus in Nm corresponding to the cusp of T̂ (see Remark 2.9.7 and Figure
3.2.14), and this wrapping can be eliminated by a homotopy in Nm.

Figure 3.2.14. Nm and fm(πρ(K))

This implies that fm ◦ πρ ◦ f : S → Nm is a homotopy equivalence. For each m,
let ρm be the holonomy of the pull-backed hyperbolic metric on S × [0, 1] induced
from Nm via fm ◦ πρ ◦ f . Since fm ◦ πρ ◦ f : S → Nm is a homotopy equivalence,
it is a marking of ρm. Hence ρm can be regarded as the holonomy of Nm. Since
Nm converges geometrically to N̂ , ρm converges algebraically to ρ. Thus N̂ is an
associated geometric limit of ρ. Therefore we have got the desired geometric limit
associated to ρ with the wrapping projection.

3.3. Wrapping projection implies the actions of the decomposed groups.
In this subsection, we will show the opposite direction of the proof. We assume
that there exists an associated geometric limit N̂ = H3/Γ̂ so that Q covers a torus

cusp neighborhood T̂ of N̂ , that the natural projection πρ : Nρ → N̂ wraps n times

with respect to γ, and that N̂ has double trouble with respect to T̂ . We will give
the disks satisfying the condition DSn in the case where γ is separating in S, or
DNn in the case where γ is non-separating in S.

Since N̂ has double trouble with respect to T̂ , as in Subsection 2.6, there exist
accidental parabolic curves γ+ and γ− in some components B+ and B− of ∂cN̂ ,

respectively, and an essential simple closed curve γ̂ in ∂T̂ , which are mutually
homotopic in N̂ ∪ ∂cN̂ . As in Remark 2.7.7, there exist disjoint embedded once-
punctured disks Â+ and Â− such that for each j = +,−, the boundary (at infinity)

of Âj is γj , and the puncture of Âj lies on the cusp of T̂ . Since γ+ and γ− are

accidental parabolic curves in N̂ and γ̂ lies in ∂T̂ , they also represent ρ(γ). We can
consider one of these two curves, say γ−, as the image of the accidental parabolic

curve γ by πρ : Nρ ∪ ∂cNρ → N̂ ∪ ∂cN̂ .

The union of the closures of all the connected components of preimage of Â− in

H3 which contain p divides H3 into infinitely many regions with boundary being a
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pair of closures of components of preimage of Â−. As in Remark 2.7.7 and in the

proof of Proposition 2.7.5, the decomposition of N̂ along the once-punctured disk
Â− gives a decomposition Γ̂ = Γ0∗σ such that Λ(Γ0) is contained in the closure

∆0
H3

of some region ∆0 stated above.

We will construct a compact core K for Nρ as follows. As in Remark 2.7.6,
Abikoff and Maskit showed that Γρ is decomposed along all accidental parabolic
subgroups into a finite number of subgroups {Γ′

1, . . . ,Γ
′
l} such that for each j =

1, . . . , l, Γ′
j is either a generalized web group, or a degenerate group without acciden-

tal parabolic elements (see Theorem 1 of [1] and also Lemma 3.2 of [9]). Moreover
in pp. 721–723 of [9] (see also Lemma 9 of [20]), Anderson, Canary and McCullough
showed that there exists a pairwise disjoint collection of relative compact carries for
{Γ′

1, . . . ,Γ
′
l} in N̂ . Here K̂ ′

j is called a compact carry for Γ′
j in N̂ if there exists a

relative compact core K ′
j for the non-cuspidal part (H3/Γ′

j)0 of H3/Γ′
j such that the

natural projection H3/Γ′
j → N̂ is injective on K ′

j , and that K̂ ′
j is the image of K ′

j

in N̂ . We take each K̂ ′
j so that K̂ ′

j ∩ (Â+ ∪ Â−) = ∅. We construct a compact core

K for Nρ by connecting the lifts of K̂ ′
1, . . . , K̂

′
l in Nρ via πρ by a thickened annulus

in an annulus cusp neighborhood corresponding to each accidental parabolic curve
of Nρ which is homotoped into its cusp.

The case where γ is separating in S. For each i = 1, 2, let Ki be the
component of K \ Q such that ρ(π1(Ki)) = Γi. We will show that for each i =
1, 2, πρ|Ki is an embedding. Suppose that πρ|Ki is not an embedding. By the

construction of K, Ki ∩ (Nρ)0 is embedded in N̂0, where (Nρ)0 and N̂0 are the

non-cuspidal part of Nρ and that of N̂ , respectively. In p. 724 of [9], Anderson,
Canary and McCullough showed that πρ maps different cusp neighborhoods ofNρ to

different cusp neighborhoods of N̂ . Thus there exists an annulus cusp neighborhood
Qα of Nρ whose cusp does not coincide with that of Q such that πρ|K∩Qα is not an

embedding. Let Hα be a horoball which covers Qα, and K̃α a connected component
of preimage ofK via the projection H3 → Nρ which meetsHα. Since πρ|K∩Qα

is not

an embedding, σα(K̃α) intersects K̃α transversely, for some element σα ∈ stΓ̂(Hα).

Since πρ wraps n times with respect to γ, the condition Wn holds, that is, Γρ is
a subgroup of Γ0∗σn+1 and there exists a compact core K ′ for Nρ such that π̄′|K′ is
an embedding, where π̄′ : Nρ → H3/Γ0∗σn+1 is the natural projection. Since K and

K ′ are homotopic to each other in Nρ, K̃α is homotopic to a connected component

K̃ ′
α of preimage of K ′ without moving the boundary (at infinity). Since σα(K̃α)

intersects K̃α transversely, σα(K̃ ′
α) intersects K̃

′
α transversely.

By the existence of σα, Qα covers a torus cusp neighborhood T̂α whose cusp
does not coincide with that of T̂ , and we have σα ∈ π1(T̂α). Since N̂ = H3/Γ0∗σ
is obtained by gluing a part of H3/Γ0 to itself as in the Klein-Maskit combination

theorem II, we can consider that T̂α ⊂ H3/Γ0 and σα ∈ Γ0. Since σα(K̃ ′
α) intersects

K̃ ′
α transversely, π̄′|K′ is not an embedding, which contradicts that π̄′|K′ is an

embedding. Hence πρ|Ki is an embedding, for i = 1, 2.
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We will show that Γρ < Γ0∗σk+1 for some k ∈ Z≥−1. By the construction
of K, Ki lifts into H3/Γi isometrically via the natural projection H3/Γi → Nρ,

for i = 1, 2. Since N̂ = H3/Γ0∗σ is constructed by gluing a part of H3/Γ0 to

itself as in the Klein-Maskit combination theorem II and the resulting joint in N̂
is the once-punctured disk Â−, which is disjoint from πρ(Ki), πρ(Ki) lifts into

H3/Γ0 isometrically via the natural projection H3/Γ0 → N̂ , for i = 1, 2. Since
the restriction πρ|Ki

is an isometry, by comparing these two lifts we see that there

exists an element fi ∈ Γ0∗σ such that Γfi
i < Γ0, for i = 1, 2. Moreover, since the

lift of Ki ∩ ∂Q in H3/Γi is an annulus which represents ρ(γ) ∈ Γi and the lift of
πρ(Ki ∩ ∂Q) in H3/Γ0 also represents ρ(γ) ∈ Γ0, we see that Jfi = J , for i = 1, 2.
Thus for each i = 1, 2, we may assume that fi = σai for some ai ∈ Z. By replacing

Γ0
σ−a2

by Γ0, we have Γ2 < Γ0 and Γ1
σ(a1−a2)

< Γ0. We have a1 − a2 ≥ 0 by

replacing σ−1 by σ if necessary, and set k := a1 − a2 − 1. Since Γ1
σk+1

< Γ0 and
Γ2 < Γ0, we have Γρ(= Γ1 ∗

J
Γ2) < Γ0∗σk+1 . Let π̄ : Nρ → H3/Γ0∗σk+1 be the

natural projection.

Let H be the horoball based at p which covers Q. Let K̃0i(i = 1, 2) and Ã+ be

the connected component of preimage of πρ(Ki) and that of Â+ via the natural

projection H3 → N̂ , respectively, which is contained in ∆0 and which meets H.
Since Â+ lies between πρ(K1) and πρ(K2) around T̂ (see Figure 3.3.1), one of

components ∆01 of ∆0 \ Ã+ contains K̃01 and the other component ∆02 contains

K̃02. Since π1(πρ(K1)) = Γ1
σk+1

< Γ0 and π1(πρ(K2)) = Γ2 < Γ0 acts on K̃01

and on K̃02 as translations, respectively, by the definition of limit set, we have

Λ(Γ1
σk+1

) ⊂ ∆01
H3

and Λ(Γ2) ⊂ ∆02
H3

.

Figure 3.3.1. N̂ , πρ(K1) and πρ(K2) around T̂
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Set ∆1 := σ−(k+1)(∆01) and ∆2 := ∆02. We have Λ(Γ1) ⊂ ∆1
H3

and Λ(Γ2) ⊂
∆2

H3

. For each i = 1, 2, let Ci be the component of Ĉ \∆i
H3

which is disjoint from
∆3−i, and Di the other component. We see that Ci ∩ Λ(Γi) = Di ∩ Λ(Γi) = p, for
i = 1, 2. See Figure 3.3.2.

Figure 3.3.2. ∆1, ∆2 = ∆02, and ∆01

We will show that for each i = 1, 2, Λ(Γi) separates Ci and Di. We reorder
the subgroups {Γ′

1, . . . ,Γ
′
l} of Γρ stated above so that J < Γ′

i < Γi for i = 1, 2.
Since Γ′

i is either a generalized web group or a degenerate group without accidental
parabolic elements, Λ(Γ′

i) is connected. Considering the action of J on Λ(Γ′
i), by

the connectedness of Λ(Γ′
i), we see that Λ(Γ′

i), thus Λ(Γi), separates Ci and Di.

We will check that k ≥ 0 and that σk+1(C1) = Ĉ \ C2 and σk(D1) = Ĉ \ D2.

By the choice of Â−, the preimage of Â− in Nρ via πρ is a once-punctured disk
A− between K1 and K2. We assume that ∆1 and ∆2 are in the order of the σ-
direction. K1, A− and K2 are in this order, since πρ preserves this order, πρ(K1),

Â− = πρ(A−) and πρ(K2) are in this order. Thus πρ(K1), Â−, πρ(K2) and Â+

are cyclically in this order around T̂ , and K̃02, Ã+ and K̃01 are in this order.
In particular, ∆02 and ∆01 are in this order. Thus we see that k ≥ 0 and that
σk+1(C1) = Ĉ \ C2 and σk(D1) = Ĉ \D2.

We will show that Ci is (Γi, J)-invariant. By construction, ∂Ci is (Γ̂, J)-invariant,
in particular (Γi, J)-invariant. Suppose that f(Ci)∩Ci ̸= ∅ for some f ∈ Γi. Since
∂Ci is (Γi, J)-invariant, we get f(Ci) ⊂ Ci or Ci ⊂ f(Ci). In the both cases, f

has one fixed point on Ci. Since Ci ∩ Λ(Γi) = p, this fixed point is p. Since Γ̂ is
discrete, by Proposition 2.1.3, f is the parabolic element fixing p. Since J is the
maximal parabolic subgroup of Γρ, we have f ∈ J . By the J-invariance of ∂Ci, Ci

is (Γi, J)-invariant. Similarly, Di is also (Γi, J)-invariant. Hence the open disks C1,
D1, C2 and D2 satisfy the condition DSk.
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We will check that k = n. Set K̃1 := σ−(k+1)(K̃01) and K̃2 := K̃02. We take a

lift K~ of K in H3 by connecting that of K1 in K̃1 and that of K2 in K̃2 by that of

K∩Q in H, which lies between C1 and C2. We have σk+1(K~∩H)∩(K~∩H) = ∅,
and K ∩Q is embedded in π̄(Q) via the natural projection π̄ : Nρ → H3/Γ0∗σk+1 .

Since πρ(K1) and πρ(K2) are disjointly embedded in N̂ \ Int T̂ , K1 and K2 are
disjointly embedded in (H3/Γ0∗σk+1) \ Int π̄(Q) via π̄. Thus K is embedded in

H3/Γ0∗σk+1 via π̄, and the condition Wk holds. Since πρ : Nρ → N̂ wraps n times
with respect to γ, n is the smallest among such numbers by definition, and we
get k ≥ n. On the other hand, recall that Nρ has a compact core K ′ such that
the restriction π̄′|K′ is an embedding, where π̄′ : Nρ → H3/Γ0∗σn+1 is the natural

projection. Let K̃ be a connected component of preimage of K in H3 which meets
H. Since the two compact cores K and K ′ for Nρ are homotopic to each other, K̃

is homotopic to a conected component K̃ ′ of preimage of K ′ in H3 without moving
the boundary (at infinity). If k > n, then σn+1(K̃) intersects K̃ transversely, and

then by the homotopy above σn+1(K̃ ′) intersects K̃ ′ transversely, which contradicts
that π̄′|K′ is an embedding. Thus we get k ≤ n. Together k ≥ n, we have k = n.
Therefore the open disks C1, D1, C2 and D2 satisfy the condition DSn.

The case where γ is non-separating in S. Set K ′ := K \ Q. Similarly to
the separating case, πρ|K′ is an embedding.

We will show that Γρ < Γ0∗σk+1δ for some k ∈ Z≥−1. By the construction
of K, K ′ lifts into H3/Γ′ isometrically via the natural projection H3/Γ′ → Nρ,

and the lift of K ′ ∩ ∂Q in H3/Γ′ is a pair of two annuli one of whose components

represents ρ(γ) ∈ Γ′ and the other component represents ρ(γ)δ
−1 ∈ Γ′. Similarly to

the separating case, πρ(K
′) lifts into H3/Γ0 isometrically via the natural projection

H3/Γ0 → H3/Γ0∗σ = N̂ , and the both components of the lift of πρ(K ′ ∩ ∂Q) in
H3/Γ0 represent ρ(γ) ∈ Γ0. Thus there exists an element f ′ ∈ Γ0∗σ such that

Γ′f ′
< Γ0 and Jf ′

= J . We may assume that f ′ is a power of σ, and have Γ′ < Γ0

by replacing Γ0
f ′−1

by Γ0. Moreover, there exists an element f ∈ Γ0 such that

Γ′f < Γ0 and (Jδ−1

)f = J . We may assume that f = σaδ for some a ∈ Z. We have
a ≥ 0 by replacing σ−1 by σ if necessary, and set k := a − 1. Since Γ′ < Γ0 and
σk+1δ ∈ Γ0, we have Γρ(= Γ′∗δ) < Γ0∗σk+1 .

Similarly to the separating case, let H be the horoball based at p which covers
Q and Ã+ the connected component of preimage of Â+ via the natural projection

H3 → N̂ which is contained in ∆0 and which meets H. Let K̃ ′ be the connected
component of preimage of πρ(K

′) in H3 such that K̃ ′ is contained in ∆0 and the

boundary (at infinity) of K̃ ′ contains p and δ−1(p). Since σk+1δ ∈ Γ0, σ
k+1δ(K̃ ′)

is also a component of preimage of πρ(K
′) which is contained in ∆0 and whose

boundary contains p. Since Â+ lies between two parts of πρ(K
′) around T̂ (see

Figure 3.3.3), one of components ∆ of ∆0\Ã+ contains K̃ ′ and the other component

∆′
0 contains σk+1δ(K̃ ′). Since π1(πρ(K

′)) = Γ′ < Γ0 and π1(πρ(K
′)) = Γ′σk+1δ <

Γ0 acts on K̃ ′ and on σk+1δ(K̃ ′) as translations, respectively, by the definition of

limit set, we have Λ(Γ′) ⊂ ∆
H3

and Λ(Γ′σk+1δ) ⊂ ∆′
0

H3

.
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Figure 3.3.3. N̂ and πρ(K) around T̂

Setting ∆′ := σ−(k+1)(∆′
0), we have Λ(Γ′δ) ⊂ ∆′H

3

. Let C be the component of

Ĉ\∆H3

which is disjoint from ∆′, and D the other component. Similarly, let C ′δ be

the component of Ĉ \∆′H
3

which is disjoint from ∆, and D′δ the other component,
and set C ′ := δ−1(C ′δ) and D′ := δ−1(D′δ). See Figure 3.3.4.

Figure 3.3.4. ∆′, ∆ and ∆′
0

By the same argument as that in the separating case, one can check that C and

D are (Γ′, J)-invariant open disks and C ′ and D′ are (Γ′, Jδ−1

)-invariant open disks
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and that σk+1δ(C ′) = Ĉ \ C, σkδ(D′) = Ĉ \D, Λ(Γ′) separates C from D, and C ′

from D′, C ∩ Λ(Γ′) = D ∩ Λ(Γ′) = p, and C ′ ∩ Λ(Γ′) = D′ ∩ Λ(Γ′) = δ−1(p).

We will show the remaining conditions for the non-separating case, i.e. the last
condition (∗) of DNn. Suppose that f(C) ∩ C ′ ̸= ∅ for some f ∈ Γ′. Since

f(∂C) ∩ ∂C ′ = ∅ by construction, we get f(C) ⊂ C ′ or C ′ ⊂ f(C). Since f(C) ∩
Λ(Γ′) = f(p), C ′ ∩ Λ(Γ′) = δ−1(p), f(C) ∩ Λ(Γ′) = ∅, and C ′ ∩ Λ(Γ′) = ∅, we have
f(∂C) ∋ f(p) = δ−1(p) ∈ ∂C ′, which contradicts f(∂C)∩ ∂C ′ = ∅. Hence together
with f(∂C) ∩ ∂C ′ = ∅, we get f(C) ∩ C ′ = ∅ for any f ∈ Γ′. Similarly, we get
f(C) ∩D′ = ∅, f(D) ∩C ′ = ∅, and f(D) ∩D′ = ∅, for any f ∈ Γ′. Hence the open
disks C, D, C ′ and D′ satisfy the condition DNk.

By the same argument as that in the separating case, one can check that k = n.
Therefore the open disks C, D, C ′ and D′ satisfy the condition DNn.

Hence in the both cases, we have got the desired open disks, and we complete
the proof of Theorem 3.1.1. □
3.4. An example. In this subsection, we give an example. We suppose that ρ ∈
AH(S) is geometrically finite, thus ρ has only geometrically finite ends, and that ρ
has only one annulus cusp neighborhood, say Q. Let γ be the accidental parabolic
curve corresponding to Q.

We suppose that γ is separating in S, and γ divides S into two subsurfaces S1

and S2. Taking the base point at γ in S, we consider π1(S) = π1(S1) ∗
⟨γ⟩

π1(S2). We

choose a representative representation ρ so that ρ(γ) =

(
1

√
−1

0 1

)
. For i = 1, 2,

set Γi := ρ(π1(Si)) and ρi := ρ|π1(Si), and set J := ⟨ρ(γ)⟩.

Recall that Γρ = ρ(π1(S)) and that Nρ = H3/Γρ. Let Ωi be the component

of Ω(Γρ) which covers the component of ∂cNρ corresponding to Si and ∞ ∈ Ωi.
Replacing the numbers i = 1, 2 if necessary, we set C1 := {z ∈ C|Re z < c1} ⊂ Ω1

and C2 := {z ∈ C|Re z > c2} ⊂ Ω2 for some c1, c2 ∈ R. See Figure 3.4.1. We
choose ci so that Ci is (Γi, J)-invariant.

Figure 3.4.1. Parts of C1 and C2 with the real and imaginary axes
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Let γ̃ be an axis in Ω(Γρ) for the accidental parabolic element ρ(γ). Let Di be

the component of Ĉ\(γ̃∪{∞}) containing Ω3−i. See Figure 3.4.2. As in Subsection
3.3, we can check that Di is (Γi, J)-invariant.

Figure 3.4.2. The division of Ĉ along γ̃ ∪ {∞} with D1 and D2

Fix any t ≥ 0. We define the parabolic element σt by σt =

(
1 (c2 − c1)t
0 1

)
.

Since σt(D2) is (Γ2
σt , J)-invariant and Ĉ \ σt(D2)(⊂ D1) is (Γ1, J)-invariant, the

Klein-Maskit combination theorem I implies that Γ1 ∗
J
Γ2

σt is discrete.

Since ρ1(γ) = ρ(γ) = ρ2(γ)
σt , we can construct an isomorphism

ρt : π1(S) = π1(S1) ∗
⟨γ⟩

π1(S2) → Γ1 ∗
J
Γ2

σt

from the isomorphisms ρ1 : π1(S1) → Γ1 and ρ2
σt : π1(S2) → Γ2

σt . Since
ρt(π1(S)) = Γ1 ∗

J
Γ2

σt is discrete, ρt ∈ AH(S).

Let ⌊ ⌋ : R → Z be the floor function, that is, ⌊x⌋ is the largest integer less than
or equal to x. Set

Ct
2 :=

{
σt(1+ 1

⌊t⌋ )−1(C2), if t ≥ 1,

σt(C2), if 1 > t ≥ 0.

Since Ct
2 ⊂ σt(C2), C

t
2 is (Γ2

σt , J)-invariant. Set

Dt
2 :=

{
σt(D2), if t ≥ 1,

D2, if 1 > t ≥ 0.

Since Dt
2 ⊂ σt(D2), D

t
2 is (Γ2

σt , J)-invariant. Let

σt :=

{
σ ⌊t⌋

t
, if t ≥ 1,

σt+1, if 1 > t ≥ 0.

We can check that our theorem applies to ρt, σt, C1, D1, C
t
2 and Dt

2. Thus for any
t ≥ 1, ρt has a ⌊t⌋-wrapping projection.
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Since convergence in AH(S) are defined by the algebraic convergence, R≥0 ∋
t 7→ ρt ∈ AH(S) is continuous.

Therefore we have got the following corollary.

Corollary 3.4.1. There exists a continuous family ρt ∈ AH(S), t ≥ 1 such that
ρt has a ⌊t⌋-wrapping projection.

Moreover, since ρt is geometrically finite by construction, in the same way as
that in [14], one can check that for any t ≥ 1, AH(S) self-bumps at ρt. Thus we
get a curve in AH(S) consisting of self-bumping points.

4. Remarks

Finally, we give two remarks for Theorem 3.1.1.

In this thesis, we proved Theorem 3.1.1 in only the case where M = S×I, S is a
closed surface and I is an interval, which is the only case that there exists detailed
research for geometric limits in [40], and for some kind of geometric limits.

Even in that case, it is known from [40], that some geometric limits can have very
complicated topological structures. It is interesting to consider natural projections
to such geometric limits.

In more general case, for example, the case where M is a compact orientable
hyperbolizable 3-manifold whose boundaries components are all incompressible, we
can expect that the similar results hold, if the analogy of Ohshika and Soma’s works
in [40] is established.
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