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Chapter 1

Classification of irreducible
symmetric spaces admitting

compact standard
Clifford—Klein forms

Abstract

We give a complete classification of irreducible symmetric spaces which
admit standard compact Clifford—Klein forms by using representation the-
ory, embeddability of semisimple Lie algebras into simple Lie algebras and
the criterion for proper action on homogeneous space of reductive type by
T. Kobayashi.

1.1 Introduction

1.1.1 Background

A Clifford—Klein form is a double coset space I'\G/H equipped with a man-
ifold structure, where G is a Lie group, H is a closed subgroup of G and I'
is a discontinuous group for G/H (see Definition [LZT] for more details). For
example, symmetric spaces, Klein’s bottle and compact Riemannian surfaces
are Clifford—Klein forms. It is important to consider the existence of compact
Clifford—Klein forms in this field,

Problem A ([Ko89, [Ko96b]). Which homogeneous space G/H admits a com-
pact Clifford—Klein form?

A special case of Problem A includes:

Fact 1.1.1 ([Bo63]). Let G be a linear reductive Lie group and H a compact
subgroup of G. Then G/H always admits compact Clifford-Klein forms.



Opposite extremal case occurs if H is non-compact:

Fact 1.1.2 ([CM62]). Let I'NO(n + 1,1)/0(n,1) (n > 2) be a Clifford-Klein
form. Then I is a finite group. In particular, O(n 4 1,1)/O(n, 1) never admits
compact Clifford—Klein forms.

On the other hand, in the case where H is non-compact, Kulkarni found
examples admitting compact Clifford—Klein forms:

Fact 1.1.3 ([Ku&1]). Homogeneous spaces SO(2,2n)/SO(1,2n) and SO(4,4n)/SO(3,4n)
(n > 1) admit compact Clifford-Klein forms.

These results are for specific homogeneous spaces, but in 1980’s, a systematic
study of the existence problem of compact Clifford Klein forms was started by
T. Kobayashi, which deals with a wide class of homogeneous spaces containing
pseudo-Riemannian symmetric space. His breakthrough on the problem is to
introduce “continuous analogue” of discontinuous group and to give a sufficient
condition for the existence of compact Clifford—Klein forms:

Fact 1.1.4 ([Ko89 Theorem 4.7]). A homogeneous space G/H of reductive type
has a compact Clifford—Klein form I'\G/H if it admits a reductive subgroup L
of G whose natural action on G/H is proper and cocompact.

Then, Problem A is trivial for Riemannian symmetric spaces and group
manifolds.

Remark 1.1.5 (Trivial case). A group manifold (G’ x G')/ diag, G’ admits a
compact Clifford-Klein form, where we put diag, G’ := {(g,7(g9)) : g € G'} C
G’ x @' for an involution 7 on G’.

As other examples, T. Kobayashi found 12 series of irreducible symmetric
spaces which admit compact Clifford-Klein forms.

Fact 1.1.6 ([KYO05, Corollary 3.3.7]). Symmetric spaces in the following Ta-
ble 1.1 admit compact Clifford—Klein forms. Here n =1,2,---.

Table 1.1: Symmetric spaces which admit compact Clifford—Klein forms.

G/H L

1 SU(2,2n)/Sp(1,n) U(1,2n)
2 SU(2,2n)/U(1,2n) Sp(1,m)
3 SO(2,2n)/U(1,n) SO(1,2n)
4 SO(2,2n)/S0(1,2n) U(l,n)
5 SO(4,4n)/S0O(3,4n) Sp(1,m)
6 | SO(4,4)/50(4,1) x SO(3) | Spin(4,3)
7 | SO(4,3)/50(4,1) x SO(2) G2

8 S0(8,8)/50(7,8) Spin(1,8)
9 S0O(8,C)/SO(7,C) Spin(1,7)
10 SO(8,C)/S0(7,1) Spin(7,C)
11 SO*(8)/U(3,1) Spin(1,6)
12 | SO*(8)/50*(6) x SO*(2) | Spin(1,6)



Remark 1.1.7. SO(6,2)/U(3,1), SO*(8)/U(3,1) and SO*(8)/SO*(6)x.SO*(2)

are infinitesimally isomorphic.

So far, Problem A has been attacked by not only T. Kobayashi but also
many other mathematicians. However, Problem A is not yet solved completely
even for irreducible symmetric spaces, which was classified by M. Berger [Br57].

1.1.2 Continuous analogue of Problem A and main theo-
rem

We want to consider a continuous analogue of Problem A based on Fact [[T.4

Problem B. Classify homogeneous spaces G/H of reductive type which have
a reductive subgroup L of G acting properly and cocompactly.

In this paper, we give a solution to this problem for irreducible symmetric
spaces:

Theorem 1.1.8. Let G/H be a noncompact irreducible symmetric space where
G is the group of displacements. Suppose that G/H admits a reductive sub-
group L of G acting on G/H properly and cocompactly. Then G/H is locally
isomorphic as a symmetric space to one of the following list:

e (trivial case) a Riemannian symmetric space,

e (trivial case) a group manifold,

e a symmetric space in Table 1.1.

Here, recall that T. Kobayashi gave the following:

Conjecture 1.1.9 ([KYO05, Conjecture 3.3.10]). Let G/H be a homogeneous
space of reductive type. If G/H admits a compact Clifford—Klein form, then
G/H admits a reductive subgroup L of G acting on G/H properly and cocom-
pactly.

No counter example to Conjecture[[.T.9 has been known as of now. Evidence
of Conjecture includes the nonexistence theorems of compact Clifford—
Klein forms in various settings proved by K. Ono [KO90], R.J Zimmer [Z94],
R. Lipsman [Li95], Y. Benoist [B96], F. Labourie, S. Mozes [LMZ95], G.A. Mar-
gulis [Ma97], H. Oh, D. Witte [OW00], T. Yoshino [KY05], Y. Morita [MI15].

If this conjecture is true, then we complete the classification of irreducible
symmetric spaces admitting compact Clifford—Klein forms from Theorem [[LT.8l

Note that Theorem only claims the existence of L. We also want to
classify such reductive subgroup L.

Problem C. Suppose G/H is locally isomorphic as a symmetric space to a
symmetric space in Table 1.1. Classify a reductive subgroup L of G acting on
G/ H properly and cocompactly.



From the following Fact [LT.10], it is natural to deal with group manifolds
in Problem C.

Fact 1.1.10 ([FI86, Theorem 2(iv)]). Let X be a symmetric space and G =
G(X) its group of displacements. Then X is irreducible if and only if either X
has dimension one or g is simple or g is the direct sum of two isomorphic simple
ideals, g = g1 ® g1, and o(X,Y) = (¥, X) for all X,Y € g;.

Remark 1.1.11. The classification of reductive subgroups acting properly and
cocompacly on group manifolds is more difficult than the case where G is simple.

We also give a solution to Problem C.

Theorem 1.1.12. Suppose G/H is locally isomorphic to a symmetric space in
Table 1.1 except for Lie(G) ~ s0(2,2). Let L’ be a reductive subgroup of G
acting on G/H properly and cocompactly. Then L’ is locally isomorphic to the
corresponding L “up to compact factor”.

See Definition [L.2.25] for the definition of “up to compact factor”. Moreover,
we will give all the embeddings of [ C g up to Int(g) in Section 1.5.

Remark 1.1.13. If Lie(G) is isomorphic to s0(2,2), then G/H is a group
manifold.

1.1.3 Observation on the results

Remark that symmetric spaces in Table 1.1 have the following good properties:

Observation 1. Suppose (G/H, L) is in Table 1.1. Then the following condi-
tions are satisfied:

e rankg H = 1 or rankg L =1,
e rankg H + rankg L = rankg G.

The author does not know a direct proof of these conditions. However, the
proof of Theorem [[L.T.8| could be simpler, if one has shown these conditions
directly for (G/H, L) satisfying the assumption of Theorem [[LT.8

1.2 Preliminary, setting and strategy
1.2.1 Clifford—Klein form

In this subsection, we prepare terminology for our problem and definition of
Clifford—Klein forms of reductive type.

Proposition and Definition 1.2.1 (Clifford-Klein form (See [Ko96bl §0] for
more details.)). Let G be a Lie group and H a closed subgroup of G. Suppose
a discrete subgroup I' of G acts on G/H properly discontinuously and freely,
then the quotient space T'\G/H has the natural manifold structure such that
G/H — T'\G/H is a C*-covering map. We call the manifold I'\G/H Clifford-
Klein form of G/H and the discrete subgroup I' a discontinuous group.



In Conjecture [LT.9) T. Kobayashi assumed that G/H is of reductive type
and subgroup acting on G/H properly and cocompactly is a reductive in G. So,
let us recall:

Definition 1.2.2 ([Ko89]). Let G be a linear reductive Lie group and H a
reductive subgroup of G. We say the homogeneous space G/H is of reductive

type.
Throughout this paper, we shall work in the following:

Setting 1. G is a linear reductive Lie group. H and L are reductive subgroups

of G.
Let us recall the definition of “linear reductive” and “reductive subgroup”.

Definition 1.2.3 (linear reductive Lie group, See [Ko89] for more details ). Let
G be a Lie group. We say G is a linear reductive Lie group if G is contained
a connected complex reductive Lie group G¢ with Lie algebra isomorphism
Lie(G) ®r C ~ Lie(Gc¢) (see Definition [Ko89]). Then G has a global Car-
tan involution #. We call the dimension of dim G/K = dimg=? noncompact
dimension of G, which is denoted by d(G).

Definition 1.2.4 (reductive subgroup [Ko89|). Let G be a linear reductive Lie
group and H a closed subgroup of G. We say H is reductive in G or a reductive
subgroup of G if there exists a Cartan involution 6 on G such that 6(H) = H
and H has finitely many connected components.

Definition 1.2.5 (reductive Lie subalgebra). Let G be a linear reductive Lie
group and g its Lie algebra. Let [ be a subalgebra of g. We say [ is a reductive
subalgebra of g if there exists a Cartan involution 6 on G such that do(l) = [.

By d(I) we denote its noncompact dimension dim (=40 of [,

Remark 1.2.6. Let G be a connected linear reductive Lie group and L a
connected closed subgroup of G. Then we have

L is reductive in G <= [ is a reductive subalgebra of g.

Definition 1.2.7 (standard Clifford—Klein form [KK16]). Let G/H be a ho-
mogeneous space of reductive type and I" a discontinuous group for G/H. A
Clifford—Klein form I'\G/H is called standard if there exists a reductive sub-
group containing I" and acting on G/H properly.

Remark 1.2.8. Problem B is equivalent to the classification of irreducible
symmetric spaces admitting standard compact Clifford—Klein forms.

Remark 1.2.9 ([KY05, Remark 3.3.11]). There exist non-standard compact
Clifford—Klein forms.



1.2.2 Kobayashi’s criterion for proper action

In this subsection, we recall the criterion for proper action and cocompactness
by T. Kobayashi.

Definition 1.2.10. We call the action of L on G/H is proper if the following
subset Lg C L is compact for all compact subsets S C G/H.

Ls={leL:tSNS#0}

Remark 1.2.11. For discrete subgroup I' C G, T' action is propely discontinu-
ous if and only if the action is proper.

Let us recall the definition of “proper in G” and “similar in G” to describe
useful criterion for proper action.

Definition 1.2.12 ([Ko96a]). We say the pair (H, L)

e is proper in G, denoted by H M L in G if For any compact subset S of G,
SHS™! N L is relatively compact.

e is similar in G, denoted by H ~ L in G if there exists a compact subset
of G such that L ¢ SHS™! and H c SLS™".

Fact 1.2.13 ([Ko96a]). Let G be a Lie group and L, L' and H closed subgroup
of G. Then we have
L-action on G/H is proper <= LM H in G,
FL~L inG, then LhHinG < L' hHinG.

Remark 1.2.14. Let L be a closed subgroup of G. Let L’ be a closed subgroup
of L such that L’ C L. If L-action on G/H is proper, then so is L'-action.

Fact 1.2.15 ([Ko89]). In Setting [Il we fix a Cartan involution on G and fix
a maximal abelian subspace a of p. Take Cartan involutions #; and 63 on
G such that 6;(H) = H and 62(L) = L. Take maximal abelian subspaces
ay C H7% and o), C [7%. Then we can and do take ay, s € Int(g) such that
ag = a(ay),ar := az(a}) C a. Then the following conditions are equivalent:

(i) the natural action of L on G/H is proper,
(ii) Wag Nnag = {0}.

Here W = W (g, a) is the Weyl group coming from the restricted root system of
g with maximal abelian subspace a of p.

From Fact [[2.T5 we obtain the following:

Remark 1.2.16. In Setting [l if L-action on G/H is proper, then the following
inequality holds:
rankg L + rankg H < rankg G.
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Remark 1.2.17. From Fact[[L2.T5] in Setting[Il we can consider the properness
in Lie algebra level.

Fact 1.2.18 ([Ko89, Theorem 4.7]). In Setting [Il under the assumption that
L-action on G/ H is proper, the following conditions on G, H and L is equivalent:

(i) L\G/H is compact,
(ii) d(G) =d(L) +d(H).

1.2.3 Exact formulation of Problem C

Problem C has non-essential parts. So we elliminate them, namely
(i) conjugate for L (see Definition [[2.2T]),
(ii) compact factor for L (see Definition [[2.25]).

Eventually, we reach the following:

Problem C’. Suppose G/H is locally isomorphic as a symmetric space to one
in Table 1.1. Classify a reductive subgroup L of G acting on G/H properly and
cocompactly up to conjugate and compact factor.

H conjugate

Remark 1.2.19. Let T be a discontinuous group for G/H. Take g € G. Then
I'\G/H and gI'g~*\G/H are differmorphic as a (G, G/H )-manifold.

Definition 1.2.20 ((G,G/H)-structure, see [LMZ95, [MT5] for example). A
manifold M is said to be locally modelled on a homogeneous space of G/H or
said to be (G, G/H)-structure, if it is covered by open sets that are diffeomorphic
to open sets of G/H and the transition functions are locally given by transitions
by elements of G satisfying the cocycle condition.

From the above remark, we introduce the following equivalent relation on
reductive subgroup of G:

Definition 1.2.21. Let L;, Lo be reductive subgroups of G. We denote by
Ly ~conj Lo in G if there exists an element g € G such that g(L1)og™! = (L2)o.

B compact factor
For the problem for the existence of a reductive subgroup L acting on G/H
properly and cocompacly, “compact factor” of L is not essential. Therefore
we introduce a equivalence class in reductive subgroups of G which preserves
properness and cocompactness.

Fix a linear reductive Lie group G. Put g = Lie(G).

Definition 1.2.22. Let Lq, Lo be reductive subgroups of G. We denote by
L1 <. Lo in G if there exists a compact subgroup K of G satisfying the following
two conditions:

11



(i) K € Zg ((L1)o),

(ii) K(L1)o = (L2)o-
Remark 1.2.23. A compact subgroup of a linear reductive Lie group is reduc-

tive in G.

Remark 1.2.24. The relation “<.” in reductive subgroups of G is pre-order.
Namely the following conditions hold:

(i) L1 <¢ L,
(ii) Ly <. Ly, Ly <. Ls = L; <. Ls.
However “L; <. Lg and Lg <. Ly = L; = Ly” does not hold.
Proof. (i) is clear by definition. We show (ii). There exist compact reductive
subgroups K7 and K3 and such that
K1(L1)o = (L2)o, K1 C Zg ((L1)o) ,
K3(L2)o = (Ls)o, K2 C Za ((L2)o) -

Put K3 = K3K;. Tt is enough to show that K3 satisfies K3 C Zg((L1)o).These
comes from K; C Zg((Ll)O) and Ko C Z(;((LQ)O) = Zg(Kl(Ll)o). ]

Definition 1.2.25. Let ~. be the equivalence relation of reductive subgroups
of G generated by the pre-order <.. We denote by Ly ~. Lo in G if Ly is
equivalent to Ly in the sense of ~..

¢ b

The equivalence relation “~.” can be described in Lie algebra level.

Definition 1.2.26. Let [, [, be reductive subalgebras of g. We denote by
[1 < Iz in g if there exists a compact Lie subalgebra £ of g and satisfying the
following two conditions:

hd [Ea[1]207
e Dl =1s.

This is pre-order in reductive Lie subalgebras of g. Let ~. be the equivalence
relation of reductive subalgebras of g generated by the pre-order <.. We denote
by [; ~¢ [5 in g if [; is equivalent to [ in the sense of ~..

Proposition 1.2.27. For reductive subgroups Ly, Lo of a linear reductive Lie
group G and their Lie algebras [; := Lie(Ly), [z := Lie(Ls), the following
conditions are equivalent:

(1) L1 ~e L2 in G,
(ll) [1 ~e [2 in g.

Proof. Tt is enough to show that L; <. L in G <= [; <. Iy in g. This is clear
by definition. 0

Remark 1.2.28. For reductive subgroups L; and Ls of G, d(L1) = d(L2) and
L1 ~ L2 in G holds if Ll ~e L2 in G.

12



1.2.4 Strategy of our proof

Our proof depends on the following three theories:
(i) representation theory of semisimple Lie algebras,

(ii) criterion for embeddability of semisimple Lie algebras into simple Lie al-
gebras,

(iii) criterion for proper action on homogeneous spaces of reductive type.

Conditions of our problem can be described in terms of representation of Lie al-
gebra. From (i), we can parameterize representations of semisimple Lie algebras
in terms of highest weight and calculate the dimensions of the representations.
From (ii), we can reduce the candidates of reductive subgroups L by the crite-
rion for embedding semisimple Lie algebras into simple Lie algebras. From (iii),
we can determine whether or not the corresponding subgroup L acts on G/H
properly in Lie algebra level.

1.2.5 Methods and key idea

In this section, we see our strategy to prove Theorem [[L1.8 and [LT.12] and
prepare methods and some lemmas used in common by the following proofs in
Section [[.3] and L4l Our methods depending on a representation theory of Lie
algebras works for both Problem B and C’, but for Problem C’; we investigate
Lie subalgebra more precisely after classification in the level of representations
of Lie algebras.

We overview our strategy for Problem B and C’ step by step.

step 1 We work on the classification of symmetric pair by M. Berger. We reduce
candidates of symmetric spaces G/H by using a necessary condition to
admit compact standard Clifford—Klein forms that the corresponding tan-
gential symmetric space Gy/Hp admits compact Clifford—Klein forms. In
this step, we reduce candidates as shown in Table 1.4.

step 2 We exclude the cases (G, H)=(Sp(2n,R), Sp(n,C)) (n > 2) in Table 1.4
by Fact

step 3 By step 2, candidates of symmetric pair (G, H) are classical types or
(Eg(-14), Fa—20))- We consider the classical types here (we use other
methods for (Eg(_14), Fi(—20)). Then we describe conditions for a existence
of reductive subgroups acting properly and cocompactly in terms of a
existence of representations p of Lie algebras [ = Lie(L).

step 4 For each candidate G/H, we obtain upper bound of dimension of repre-
sentation p coming from Fact and Remark By using Weyl’s
dimensionality formula, we obtain finite number of candidates of repre-
sentation of “primary simple factor“ (see [[2.31] for the definition).

13



step 5 We reduce candidates by using criterion for the embeddability of semisim-
ple Lie algebras into simple Lie algebras and properness.

step 6 For each pair of a Lie algebras and its representation (I, p) which induces
proper and cocompact L-action, we determine which images p([) are con-
jugate by Int(g) (see Section 1.5).

key idea in step 4 and 5

In this subsection, we see the key idea (algorithm) to determine representations
of Lie algebras which induce reductive subgroups acting on G/H properly and
cocompactly, and prepare lemmas used in step 4 and 5.

We introduce an equivalent relation in pairs of a Lie algebra and its repre-
sentation as follows:

Definition 1.2.29. Let ([,p) and (I',p’) be pairs of Lie algebras and their
representations. We say (I, p) is equivalent to (I, p’) if there exists a Lie algebra
isomorphism ¢ : [ — I such that p is equivalent to p’¢ as a representation of [.

In the case where G/H with rankg G—rankg H = 1, which is easier case than
the case rankg G—rankg H > 2, it is enough to consider simple Lie algebras with
real rank one such as so(k, 1), su(k,1), sp(k,1) and fy_20) by Remark
and the following Table 1.2.

Table 1.2: Simple Lie algebras with rankg L = 1 and their noncompact

dimensions
d(L)
5((2,R) ~sp(1,R) ~su(1,1) 2
s5p(1,C) ~ 0(3,C) ~51(2,C) ~ 0(3,1) 3
su*(4) ~ o(1,5) 5
50*(6) ~ su(1,3) 6
so(k, 1) k
su(k,1) 2k
sp(k, 1) Ak
fa(—20) 16

Next, we consider the case where G/H with rankg G —rankg H > 2, which is
difficult case because there are a lot of possible combinations of representations
of reductive Lie algebras, which are not necessarily simple. Therefore we focus
on “primary simple factor”, which is “the largest” simple ideal of [ in the sense
of ratio of the noncompact dimension to the real rank.

Assume that L is a reductive subgroup of G acting on G/H properly and
cocompacly. Since [ := Lie(L) is a reductive, we have a Levi decomposition as
follows:

=300
5 = @,

Here 3 is the center of [, and [*® is the semisimple ideal of [, and [; (i =1,---s)
are simple ideals of .
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Remark 1.2.30. For the classification of L up to compact factor, we can and
do assume that [; (i =1,--- , s) are noncompact.

Then we label simple ideals as follows:

Setting 2.
d(Li) o _d(Lit1)

=1 s—1).
rankg L; — rankg L;i1 @ a8 — 1)

Definition 1.2.31. We call [; primary simple factor.

We surmmarize properties related to primary factor of real rank and non-
compact dimension of semisimple Lie algebra.

Remark 1.2.32. Let [** = ®J_;[; be a decomposition into simple Lie algebras.
Then we have the following:

(i) d(L*®) =37, d(L;), rankg L = >"7 | rankg L;.

(ii) rankg L1 < rankg L®*

Moreover, we assume that m”fl(kLR)Ll > ra[i(é;zil (1<i<s—1). Then we have:

ooy d(L°?) =1 d(Ls)
(iii) e L = > ;ankR o for any 1 < £ < s,

: d(L°%) d(Ly)
(IV) rankp LS5 — rankg Lq°

Proof. Properties (i) and (ii) are clear. The inequality (iv) comes from (iii). So,
we prove (iii). This comes from the following inequalities about real numbers
with % > Z?Ii (i=1,---,n—1) for fixed n € N.

Ait1 a;+a;t41 ai
bit1 — bitbit1 — b’

n a; r a, ‘L a
o %mfn—é-#l < Emﬂ:l‘;f < thl ‘Z‘ for1<¢<n
i=n—t+1 bi i=10i i=1 04

These are easily checked. So, we omit the proof. O

B Outline of the proof for the case rankg G — rankg H > 2:
From step 1 and 2, it is enough to consider the following three types of symmetric
spaces for classical types.

Table 1.3: possible symmetric spaces with rankg G — rankg H > 2
step \G/H | SO(8,C)/SO(7,1) | SU(2p,2q)/Sp(p,q) | SOo(2p,q +1)/S0u(2p,1) x SO(q)

step a Remark [1.4.40 Lemma [[.3.17 Lemma [1.3.49
step b Lemma 447 Lemma Remark
step ¢ Lemma Lemma Lemma [[.3.57]
step d Remark [[.4.48] Remark Lemma

e In step a: we give a upper bound of the dimension of irreducible compo-
nents 7 of the restriction of p to primary factor [; and reduce candidates
of .
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e In step b: By using criterion for embeddability of semisimple Lie lagebras
into simple Lie algebras, we reduce candidates of irreducible components
7 of P| l

e In step ¢: Considering possible combinations of the other factors I; (i =
2,---,s), we determine possible pairs (I°**, p|7®) of semisimple parts and

9

restriction of p to [55.

e In step d: By verifying that the center of [ has no noncompact part or
possible parameter of p and ¢, we determine pairs (I, p).

1.2.6 Tangential symmetric space

In this subsection, we reduce candidates of symmetric spaces G/H admit-
ting reductive subgroups acting on G/H properly and cocompactly by using
Fact [[22.33] 1234 and 2230

Fact 1.2.33. Let G/H be a homogeneous space of reductive type. If G/H ad-
mits standard compact Clifford—Klein forms, then the tangential homogeneous
space Gyp/Hp admits compact Clifford—Klein forms.

Proof. This comes form Fact 2.2.7] O

Fact 1.2.34. Let G be a connected simple Lie group and G/H symmetric
space of reductive type with H noncompact. If the tangential symmetric space
Gy /Hy associated with G/H admits compact Clifford—Klein forms, then G/H
is infinitesimally isomorphic to one of the following symmetric spaces:

Table 1.4: possible candidates of symmetric spaces whose corresponding
tangential symmetric spaces admit compact Clifford—Klein forms

Symmetric space condition rankg G — rankg H
Sp(2n,R)/Sp(n,C) n>2 n
SO(p,q+1)/50(p,q) 1 <q < HR(p) 1
SU(2p,2q)/5p(p. q) 1<g<p q
S0(p,q+1)/50(p,1) x SO(q) | 2 < q < HR(p) q
Eeo(—14)/ Fa(20) 1
SU(2p,2)/U(2p,1) p>1 1
50(2p,2)/U(p,1) p>2 1
SO(8,C)/SO(1,7) 3
S0(8,C)/S0(7,C) 1
SO*(8)/U(3,1) 1
SO*(8)/50*(6) x SO*(2) 1

Here HR(n) is the Hurwitz—Radon number (see Fact 2779, Remark 278 for
the definition of Hurwitz—Radon number).

Proof. This comes from classification of irreducible semisimple symmetric spaces

and Theorem 2110, ZT.1T] and ZT13 O
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Fact 1.2.35 ([Ko89, Example (4.11)]). A symmetric space Sp(2n,R)/Sp(n,C)
does not admit compact Clifford—Klein forms for any positive integer n.

Remark 1.2.36. To show Theorem [[.1.8] from Fact [.1.6] 1.2.34] and [[.2.35] it
is enough to consider the following symmetric spaces:

SO(p,q+1)/SO(p,q) (1 < q < HR(p)),
SO(p,q+1)/SO(p,1) x SO(q) (2 < g < HR(p)),
SU(2p,2q)/Sp(p,q) (1 <q<p),

Eo(—14)/ Fa(—20)-

1.2.7 Lemmas used in the following sections

In this subsection, we prepare facts and lemmas about representation of semisim-
ple Lie algebra, embeddability of semisimple Lie algebra into simple Lie alge-
bras and the relation between real representations and complex representations,
which are used in the following proofs.

B representation of semisimple Lie algebras

Lemma 1.2.37. Let V be a vector space over C and 7 an irreducible component
of a representation p : [ — sl(V) of a semisimple Lie algebra [. Put m(l) :=
min{dim 7 : 7 is a nontrivial irreducible representation of [}. If dim 7 + m(l) >
dim p, then we have p = m @ @dime—dim iy

Proof. Let 7’ be a nontrivial irreducible component of p. Then dim 7 + m([) <
dim7 + dim 7" < dim p. O

Fact 1.2.38. Let [*® be a semisimple Lie algebra and p : [** — sl(V) a rep-
resentation of [**. Then we have the decomposition p = @&!p; into irreducible
components and have the following:

(i) dimp = 22:1 dim p;,

(ii) each irreducible component p; can be written as an external tensor product
(pi =miX---Krl, Vi ®---®V?) where 7}, is an irreducible representation
of [k-

(iti) dimp; = [[;_, dim}
. . t . i . i
(iv) dimp=3%",_, Hj’:l dim 7} > Z(i,j)el dim 7.

Here I := {(i,5) € {1,--- ,t}x{1,--- ,s} : 7 is a nontrivial irreducible representation of I;}.

Proof. (iv) comes from that dimensions of nontrivial representations of simple
Lie algebras are greater than or equal to 2 and that the inequality ab > a + b
holds for a,b > 2. O
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Lemma 1.2.39. Assume p is injective. Let m be an irreducible component of

ply - If the inequality dim 7 + 2 > dim p holds, then we have [** = [;.

Proof. Since the minimum dimension of nontrivial irreducible representations
of simple Lie algebras is two, dim7 + 2 < dim p if s > 2. O

B Lemmas for embeddability of semisimple Lie algebras into simple Lie algebras
See Notation [L.6.15] for the definition of “Cyy”, which is used in the following
lemmas.

Lemma 1.2.40. Let p : [*®* — s[(V) be a representation of semisimple Lie
algebra [°* = @ ,l;. Suppose an irreducible component 7 of p|;, satisfies
2dim 7 > dim p. Then the following conditions hold:

(i
(i

) m~7 and index,, m = 1 if p([*%) Cry sl(n, R),

)
(iii) 7 ~ 7V and indexy, 7 = 1 if p(I*¢) Cryg s0(n, C),
)

)

T
7~ 7 and index, ™ = —1if p(I**) Cne 5u*(25),
(iv) m ~ 7 and indexy, m = —1 if p(I**) Crny sp(%,C),

(v) w2 if p(I°%) Crne su(p, q) for some p+q=n (p,q € Z>o).

Here n = dimV, 7 is the involution on [(1C defining [; and 6, is the Cartan
involution on I§.

Proof. We show the condition (i). The similar argument works for (ii), (iii), (iv)
and (v). If we put m # 7, then from Lemma [[L242] we have 2dim7 < dimp <
2dim 7. This is contradiction. So we obtain m ~ 7. The same argument
induces m = [ : p|;,] = 1. By applying the criterion Proposition [L6.17 to p|y,,
we obtain 1 = (index,, )™ = index,, . O

Remark 1.2.41. For an irreducible representation 7 of simple Lie algebras, we
can easily check whether of not 7 is self-conjugate (or dual, adjoint) and the
index, m € {1} by using “diagram”. See Appendix or [Oni|] for example.

Lemma 1.2.42. Let p : [*® — s[(V) be a representation of [*® and 7 a irre-
ducible component of p|;,, where [; is a simple ideal of [**. Put n := dim V.
Then we have

(i) [ plu] = [ : pli] if p(I**) Crae sl(n, R) or p(I**) Crne su7(25),
(i) [m:ply] = [r" : plu] if p(°*) Crue s0(n, C) or p(I°*) Crnte 5P(3),
(it) [ < pla] = [7* : pli] if p(1%%) Crag s1(p,) for some p+g = .
Proof. These come from Proposition [[L6.17 [[L6.18 [.6.20) I.6.2Tland 6221 [

Lemma 1.2.43. Let p : [** — s[(V) be a representation of [**. Suppose that
p(°%) Cint s0(p,q) for some p+ ¢ = dimV. (7 ~ 7 and index,, # = —1) or
(m ~mV, indexy, 7 = —1) implies [ : p|y,] is even.
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Proof. This comes from p|(, (1) Crt 5I(n,R), ply (1) Cint 50(n, C) and Propo-
sition [[L6.17 and Here, n = dim V. O

M relation between complex representation and real representation

Remark 1.2.44. Let [ be a Lie algebra over R and V be a complex vector
space and p : [ — gl(V) an representation. We consider the cofficient restricton
of p, denoted by pg : [ = gl(Vk). Then we have (pr)€ ~ p @ 5, where (pg)° :
(= gl((Ve))

Proof. Let © be a complex structure of V and /—1 a complex structure of of
represetatkve (pr)© We define C-linear linear isomomorphism.

VR+V-1Vg 5 VaV
v+ V=1 = (v+ v v —d)
The above map induces the equivalence between (pr)® and p @ p. O

Remark 1.2.45. Let p : [ — gl(V) be a representation of real Lie algebra.
Then pg ~ (p)r holds.

Lemma 1.2.46. Let (p, ) be a representation of real semisimple Lie algebra
and 7 an irreducible representation of I. If (pg)® ~ 7 © 7 then pp ~ Tg(~ 7g).

Proof. From the above Remark [[2.44] and the assumption, we have (pg)* =~
pOp ~mdT. Since w is irreducible, we obtain m ~ p or T ~ p. Thus
pr =~ Tr(~ TR) holds. O

1.3 Proof of non-existence part

From Remark [[.2.36] and a property of Hurwitz—Radon number, to show Theo-
rem [[L.T.§ it is enough to conisider the following symmetric spaces G/H:

S0(2p,q+1)/50(2p,q) (1 < q < HR(2p)),

SU(2p,2q)/Sp(p,q) (1 <q<p),
SO(2p,q+1)/S0(2p,1) x SO(q) (2 < ¢ < HR(2p)),

Eg(—14)/ Fa(—20)-

Therefore we give a proof for the above four types of symmetric spaces in the
following subsections.
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1.3.1 (G, H)=(50(2p,q+ 1), SO(2p,q)) (1 < q < HR(2p))

In this subsection, we consider the case (G, H) = (SO¢(2p,q + 1),S00(2p, q))
(1< q< HR(2p), p>2). Our goal is the following

Proposition 1.3.1. Let G/H = SOy(2p,q + 1)/S00(2p,q) (1 < ¢ < HR(2p),
p > 2). There exists a closed subgroup L which is reductive in G and acts on
G/H properly and cocompactly if and only if ¢ =1 or (¢ = 3 and p is even) or
(¢ = 7 and p = 4). Moreover, L is locally isomorphic to SU(1,p), Sp(1,5) or
Sping (1, 8) respectively.

Proof. This comes from Lemma [[.3.2] and Proposition [[.3.3] O

Lemma 1.3.2. Let G/H = SO¢(2p,q + 1)/S00(2p,q) (1 < g < HR(2p),
p > 2)and n = 2p + g+ 1. There exists a reductive subgroup of G acting
on G/H properly and cocompactly if and only if there exist a pair of a simple
Lie algebra [ and its faithful representation p : | — sl(n,C) of satisfying the
following conditions:

d(L) = d(G) — d(H)(= 2p).

Here the inclusion so(2p, 2) C sl(n, C) is realized by the standard inclusion which
is preserved by matrix transpose, L is the analytic subgroup corresponding to
p(l) Cs0(2p,q+ 1), and W ~ Nk (a)/Zk(a) is the Weyl group of G.

Proof. This comes from Fact and [LZ18 O

Proposition 1.3.3. A pair of a simple Lie algebra [ and its representation
satisfying the conditions (i) to (iv) in Lemma [[.32]is equivalent to one of the
following:

e the representation po, ® Py : [ = su(p, 1) = s0(2p,2) (p > 2),
e the representation po, ® po, : [ =sp(p’, 1) — s0(4p’,4) (p' > 1),
e the spin representation p, : [ = s0(1,8) — s0(8,8).

Here p, denotes irreducible representation with highest weight w; and p de-
notes complex conjugate representation of p.

Proof. This follows from Lemma [[L3.7 3.8 L3310, 31T and O
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Remark 1.3.4. Suppose a pair (I, p) of Lie algebra and its representation
satisfies the conditions in Lemma [[.3.2] Then the following inequalities hold:

1<qg< HR(2p) <2p
d(L) =2p
dimp=2p+q+1

In particular, we have dimp < d(L) + HR(d(L)) < 2d(L) > 8.

Lemma 1.3.5. Suppose p: [ — sl(2p + 2, C) satisfies the conditions (i) to (iv)
of Lemma [[.L32] Let 7 be a nontrivial irrreducible component of p. Then the
following conditions are satisfied:

(i) dim7 < d(L) + HR(d(L)) < 2d(L) > 8,

(ii) 2dim7 > d(L) + HR(d(L)) = 7w ~7 ~ 7" and index, 7 = indexs 7 =
1.

(iii) dim7 + m(l) > d(L) + HR(d(L)) == rankw(X) = 2(¢ + 1) for any
X epr\ {0}

Here 7 is the involution on I¢ such that [7 = [ and 6 is the Cartan involution
on [c.

Proof. (i) This comes from Remark .34

(ii) Assume that 2dimn > d(L) + HR(d(L)). Then we have 2dimn7 >
d(L) + HR(d(L)) > dimp. Therefore we obtain the desired condition
by Lemma [[.2.40

(iii) From Lemma [[2Z37 and [[2T4] it is enough to show that for 0 # X € p C
Sym(2p+ ¢+ 1,R), X € Int(g)ay <= rank X < 2(g¢+ 1). This comes
from the fact that Ad(K)a = p and Int(g) action on g preserve the rank
as a matrix.

O

Remark 1.3.6. Since d(L) = 2p is even, for [ = so(k’,1) case, we consider the
case where k' is even.

Lemma 1.3.7. Let (I, w) be a pair of a simple Lie algebra with rankg L = 1
and its irreducible representation over C. Suppose (I, 7) satisfies the condition
(i) of Lemma [[3H Then (I, 7) is equivalent to one of the following list:
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Table 1.5: a pair of a simple Lie algebra and its irreducible representation
satisfying (i) in Lemma [[33.5]

[ T dim7 | not satisfy
50(2k, 1) (k > 2) @1 2%k + 1 (iil)
50(8,1) wy 16
50(6,1) ws 8 (ii)
su(k,1) (k>2) | wy, wi kE+1
su(4,1) @, @3 10 (i)
2w, 2wy | 15 (i)
su(3,1) @ 6 (i)
su(2,1) 2wy, 2wy | 6 (i)
w1 + wWa 8 (iii)
sp(k,1) (k>1) w1 2k 42
sp(2,1) wo 14 (iii)
w3 14 (i)

Lemma 1.3.8. Let (I, w) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (I, 7)
does not satrisfy the condition (ii) of Lemma [[.3.7]

Table 1.6: pairs of a simple Lie algebra and its irreducible representation
which do not satisfy (ii) in Lemma [[35]

[ T dimm | d(L)+ HR(d(L)) | selfconj? selfdual?
50(6,1) w3 8 8 index, m = —1
su(4,1) | we, ws 10 16 TRET

2t01, 2wy 15 16 TAET
su(3,1) ws 6 8 index, m = —1
su(2,1) | 2wy, 2w9 6 8 TET
op(2,1) s 14 16 index, 7 = —1

Proof. This comes from the data in the above table. Here 7 is the involution

T

on [¢ such that [ = [

O

Lemma 1.3.9. Let (I, 7) be a pair of simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.7. Then ([, 7)
does not satrisfy the condition (iii) of Lemma 3]

Table 1.7: pairs of a simple Lie algebra and its irreducible representation
which do not satisfy (iii) in Lemma [[-3.7]

Proof.

[ | ™ | dim= | d(L)
0(2k,1) w1 2k+1 2k
511(2, 1) w1 + wa 8 4
sp(2,1) w2 14 8

e In the case (I, m)=(s0(2k, 1), w1) (k > 2).

Since the inequality dim w+m(so(2k, 1)) > (2k+1)+(2k) > 4k = 2d(L) >
d(L)+ HR(d(L)) holds, it is enough to show that there exists X € p;\{0}
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such that rank 7(X) < 2(q + 1). Take X = E op41 + Eok+1,1 € pr, then
rankm(X) =2 < 2(¢+1).

In the case (I, m)=(su(2,1), w1 + w2).

Since the inequality dim m+m(su(2,1)) = 843 > 4+4 = d(L)+ HR(d(L))
holds, it is enough to show that there exists 0 # X € p such that
rank7m(X) < 2(¢ +1). We have p = 2, ¢ = 3 from d(L) = 4 = 2p
and 8 = dim7 < dimp < 2p+q¢g+ 1 and ¢ < HR(2p). Therefore we
have 7 = ad : su(2,1) — so0(4,4) C sl(su(2,1)). Take 0 # X € pr, then
rank (X) < 8 = 2(¢+1). In fact, rank 7(X) < 8 means 7(X) : su(2,1) —
s5u(2,1) is not injective and 7(X)(X) = ad(X)(X) = 0.

In the case (I, m)=(sp(2, 1), wa).

Since the inequality dim 7+m(sp(2,1)) = 1446 > 848 = d(L)+HR(d(L))
holds, and we have p =4 and 5 < ¢ < 7 from 8 = d(L) = 2p, dim7 <
dimp =2p+q¢+1and 1 < g < HR(2p) coming from Remark [[.34] i
is enough to show that there exists X € pr\{0} such that rank7(X) <
10(< 2(q +1)).

We realize sp(2,1) = sp(3,C)" as follows:

-+

p(3,C) = {X € M(6,C) : 'X.J + JX = 0},
T 15]3(3,@) — 5p(3,(C), X — 7]2,1;271X*1271;271,
0 —Is

I3 0
sentation of sp(2,1) with highest weight wy can be realized as follows

where, J = and I 1.0 = diag(1,1,—1,1,1,—1). The repre-

sp(2,1) x ker ¢ — ker ¢
(X,vAhw)—» XvAw+vAXw

Here ¢ is the following linear map:
0:COANCS - CoAw— wJw

Take X := Sy + S35 € pr. It is enough to show that rank 7(X) < 10,
that is dimker m(X) > 4. Let vy := —2e1 Aeg + ex Aes + ez Aeg, vg =
ea Nesg+esAeg, v3:= —ea ANeg+ ez Nes, vy := ez Aeg+esz Aes. Then v,
(i=1,2,3,4) are linearly independent and 7(X)v; = 0.

O

Next, we consider the pairs (I, 7)= (s0(8,1), wy4), (su(k, 1), w1), (sp(k, 1),

Lemma 1.3.10. Let p be a representation of a simple Lie algebra so(8,1)
satisfying the conditions (i) to (iv) of Lemma [[32] Suppose that 7 ~ p, is
an irreducible component of p. Then we have p = 7.

Proof. This comes from 16 = dimn < dimp < d(L) + HR(d(L)) = 16 and
Lemma [[-2.37 O
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Lemma 1.3.11. Let p be a representation of a simple Lie algebra su(k,1)
(k > 2) satisfying the conditions (i) to (iv) of Lemma [[(321 Suppose that
T = P, is an irreducible component of p. Then we have k = p, ¢ = 1 and
p=mTDT.

Proof. From d(L) = 2k = 2p, we have k = p. Then, from Lemma
(i), Fact [L238 and 7 % 7, we have 2[7 : p](p + 1) < dimp < 4p, that is
[m:p] =[7:p] =1. Let 7’ be another irreducible component of p. Then 7’ is
equivalent to one of Table 1.5 in Lemmal[l.3.71 However, dim 7+dim 7-+dim 7’ <
d(L) + HR(d(L)) does not hold. Therefore, p ~ 7 @& T®trivi~! Then there
exists an element X € py, such that rank p(X) = 4. From properness, we have
rank p(X) =4 > 2(q+ 1) (See proof for Lemma [[35(iii)). So, we have ¢ =1
and p~ 1O T. O

Lemma 1.3.12. Let p be a representation of a simple Lie algebra sp(k, 1)
(k > 1) satisfying the conditions (i) to (iv) of Lemma Suppose that
T = pw, is an irreducible component of p Then we have p is even, k = &, ¢ =3
and p~ 7w P T.

Proof. From d(L) = 4k = 2p, we have p is even and k¥ = §. Moreover, from
index, m = —1, Lemmal[[Z2A43 and |7 : p]dim 7 = [7 : p](p+2) < 4p = 2d(L), we
have [ : p] = 2. Next, we show that ¢ = 3, which induces that p = 7 ® 7 from
2dim7m = 2p + 4 = dimp. From the inequality 2dim7 = 2(p + 2) < dimp =
2p + q + 1, we obtain ¢ > 3.

Claim. There is no irreducible component other than p, .

To prove this claim, it is enough to consider the case [ = sp(2,1) from
Table 1.5 and this claim can be easily checked by the ineqality about dimension
of the representation. Then for an appropriate 0 #= X € pr, rank7(X) = 8
holds by the definition of to;. Therefore, from properness of L-action (see proof
for Lemma [[.35(iii)), we have 2(q¢ + 1) < 8, that is, ¢ < 3. O

1.3.2 (G, H)=(SU(2p,2q9), Sp(p.q)) (1 <q <p)
In this subsection, we consider the case (G, H)=(SU(2p,2q), Sp(p,q)) (1 < ¢ <
p). Our goal in this subsection is the following:

Proposition 1.3.13. Let G/H = SU(2p,2q)/Sp(p,q) (p > g > 1). There
exists a closed subgroup L which is reductive in G acting on G/H properly and
cocompactly if and only if ¢ = 1. Moreover, L is locally isomorphic to SU(2p, 1)
up to compact factor.

Proof. This follows from Lemma [[.3.14] and Porposition O

Lemma 1.3.14. Let G/H = SU(2p,2q)/Sp(p,q) (1 < g < p) and n := 2p+2q.
There exists a reductive subgroup of G acting on G/H properly and cocompactly
if and only if there exists a reductive Lie algebra [ and its faithful representation
p: I — sl(n,C) satisfying the following conditions:

(i) p(f) C su(2p,2q) C sl(n,C),
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(ii) p(I) is preserved by matrix adjoint,
(iii) arN Wﬂh = {0},
(iv) d(L) =d(G) — d(H).

Here the inclusion su(2p,2q) C sl(n,C) is realized as the standard inclusion

which is preserved matrix adjoint, L is the analytic subgroup corresponding to
p(l) C su(2p,2q) and W ~ Nk (a)/Zk(a) is the Weyl group of G.

Proof. This comes from Fact and [LZ18 O

Proposition 1.3.15. There exists a reductive Lie algebra [ and its faithful
representation p : [ — sl(n, C) satisfying conditions (i) to (iv) of Lemma 314
if and only if ¢ = 1. Moreover, such [ is isomorphic to su(2p, 1) up to compact
factor and p is equivalent to p, Ptriv.

We devote this subsection below to showing Proposition [[.3.15]
First, for each symmetric pair (su(2p, 2q), sp(p, q)), we reduce candidates of
primary simple factors and their irreducible components.

Lemma 1.3.16. Suppose a ([, p) satisfies the conditions (i) to (iv) of Lemmal[l.3.14]
and [ is the primary factor of [ and 7 is a nontrivial irreducible component of
ply - Then (I;, ) is equivalent to one of the following table

Table 1.8: pairs of a simple Lie algebra and its irreducible representation 7
satisfying the conditions (i) and (ii) of Lemma [[317]

[ T dim7 | not satisfy
sl(n,C) (n >2) w1 Mtriv n (1)
su*(2n) n > 2 w1 2n (i)

su(k,l) 2<k>(>1)| @ ke+ 0 (ii) if £ > 2

su(3,1) s 6 (i)
s0(2n+1,C) (n >2) | wiWtriv | 2n+1 (1)
s50*(dn+2) (n > 2) w1 dn + 2 (iii)
sp(n,C) (n>2) w1 Mtriv 2n (1)
sp(k,l) (k>0>1) w1 2(k+9) (i)
g5 w1 Ktriv 7 (i)

Proof. This comes from Lemma [[L3.17 and Weyl’s dimensionality formula. [

Lemma 1.3.17. Suppose a representation p : [ — sl(V') satisfies the conditions
(i) to (iv) of Lemma 314 and a pair ([, 7) of a primary factor of [ and its
irreducible component of p|,. Then (I, 7) satisfies the following condition:

(i) dimnm < —4LE)

— rankg L1’

(il) max(4,2+/d < r;fﬁil%l
Proof. (i) From Lemmam, [C319 by taking A = rankg L**, B = d(L*°)
and C = dimp, we have dim7 < dimp|, = dimp < 2rankg L*® +
dL™) < 4y Here we used the inequality of Remark 237 (iv).

2rankg L*5 — rankg L;
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(ii) We obtain in the same way as (i) above, that is, we have max(4,2+/d(L1)) <
max(4,2/d(L*%)) < dimp < d(Ly)

rankp L1 °

O

Lemma 1.3.18. Suppose a pair (I, p) of a reductive Lie algebra and its repre-
sentation satisfies the conditions (i) to (iv) of Lemma[[3T4l Then the following
inequalities hold:

rankg L®® +t < q,
d(L**) +t = 4pq,
dimp = 2(p + q).

Here t = dim p(3) %, where 3 is the center of .

Proof. The condition (ii) implies the condition (ii)’ rankg L < rankg G—rankg H =
q. O

Lemma 1.3.19. Let 1 < A< Band C > 4. Thereexist 1 <¢g<pandt >0
such that

A+t<gq

B+t =4pq

C=2(p+q)

if and only if max(4, 2\/?) <O <24+ %. Moreover, then we have 24 + % <
B

A

Proof. This can be easily checked by a fudamental argument on inequalites. So,
we omit the proof. O

Lemma 1.3.20. Suppose a representation p : [ — sl(V') satisfies the conditions
(i) to (iv) of Lemma [[.3.14] and a pair (I;,7) of a primary factor of [ and its
nontrivial irreducible component of p|,. Then ([;, 7) satisfies the following
conditions:

(i) m~ 7",

(ii) dimm + m(ly) > m‘i(lglil = 7(X)7(X)* € Herm(2p,C) has a odd
dimensional eigen space for any X € pr, \ {0}, where we identify p with
M (2p,2¢; C),

(iii) dimm = —HE)_ — (L) < 4(rankg L;)2.

rankp L1

Here m(ly) := min{dim 7" : 7’ is a nontrivial irreducible representation of [; }.

Proof. (i) From Lemma [[Z40] we have 2dim 7 < rai(lglil or 7 ~ w*. From

Remark [[L3.27] we obtain the desired conclusion.
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(i) From Lemma [[Z37 we have p|;, = 7 @ @iimr—dimmriy We identify p
with M (2p, 2q; C), where (k1, k) € S(U(2p) x U(2q)) acts on M (2p, 2¢; C)
as X — lekz_l. Then it is enough to show that for X € M (2p,2q;C),
X € Ad(K)ppy holds if and only if the dimension of any eigenspace of
XX* € Herm(2p, C) is even. This comes from that we can take maximal
abelian subspace of py such as ay = {(a1,- -+ ,aq,a1,+ ,a,) ER* 1 q; €
R (i=1,---,q)} by taking an appropriate coordinate, the Weyl group is
isomorphic to Ga, X (Z2)?? and the property that the dimension of any
eigenspace of X X* € Herm(2p, C) is even is invariant under the action of

Ad(K).

(iii) Assume dimm = ra‘i(kLR I)Ll. Then since we have the inequality ra‘i(lf][{ 1%1 =
dim7 < dimp < r;fl(é;)Ll , we obtain [*® = [;. Therefore we obtain d(L) =
4((11"(:211%(]1{ L1)? from mi(f];%l = dim7 = dimp < 2rankg Ly + % <
rankR1L1 :

O

Remark 1.3.21. Let [ be a noncompact simple Lie algebra and 7 a nontrivial
irreducible representation of [. Then a inequality 2dim 7 > ra‘i(kLR ) + holds.

Proof. This comes from the classification of simple Lie algebras and Weyl’s
dimensionality formula. O

In the case of g = su(2p, 2¢), we can determine the properness by the equiv-
alent class of representation from the following:

Proposition 1.3.22. Suppose G is a linear reductive Lie group such that its Lie
algebra g is a noncompact real form of sl(n,C) and b is a reductive subalgebra
of g. Suppose [ is a reductive Lie algebra and p; : [ — sl(n,C) (i = 1,2) are
faithful representations of I such that p;(l) (¢ = 1,2) are reductive subalgebra of
gand G, H and L; (i = 1,2) are analytic subgroups of SL(n,C). If p; and po
are equivalent as a representation of [, Ly action on G/H is proper if and only
if Ly action on G/H is proper.

Proof. Since we have p; ~ ps as a complex representation, there exist oy €
Int(sl(n,C)) such that ps = agp1. Assume that Li-action on G/H is not proper.
Then we have Ad(K)p,, () Npr # {0} from Fact Take 0 # X € p,, 1)
and k € K such that Ad(k)X € py. From Fact L4160 it is enough to show the
following:

Claim. Int(g)p2(I) Npm # {0}.

From Remark [[L3.23] ag(X) € p2(I) is hyperbolic in g. So, we can take a; €
Int(g) such that a1 (X) = ag(X). Therefore, 0 # Ad(k)X = (Ad(k)(a1) 1)ai(X) €
pr N Int(g)p2(1). O

Remark 1.3.23 (See [O13] for example). For X € g C g¢, X is hyperbolic in
g if and only if X is hyperbolic in gc.
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Fact 1.3.24 ([O13| Proposition 4.5 (i)]). Let g be a non-compact real form of
a complex semisimple Lie algebra gc. For a pair of hyperbolic elements A; and
As in g, the following two conditions are equivalent:

e A; and A; are (Int g)-conjugate in g.
e A; and A; are (Int g¢)-conjugate in ge.

Lemma 1.3.25. Let (I, m) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.9. Then (I, 7)
does not satisfy the condition (i) of Lemma [[:320]

Table 1.9: pairs of a simple Lie algebra and its irreducible representation in
Table 1.8 which do not satisfy (i) of Lemma

[ T
5l(n,C) n>2 w1 Ktriv
su*(2n) n > 2 W1, Wan—1
s0(2n+1,C) n > 2 w1 Xtriv
sp(n,C)n>2 w1y Mtriv
05 w1 Rtriv

Proof. The above irreducible representations 7 satisfy m % n*. See Appendix
or Table 5 [Oni] for example. O

Lemma 1.3.26. Let (I, m) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (I, )

does not satisfy the condition (ii) of Lemma [[Z3:200
Table 1.10: pairs of a simple Lie algebra and its irreducible representation in

Table 1.8 which do not satisfy (ii) of Lemma

[ ‘ s

su(k,l) (k>0>2) | wy

sp(k, ) (k>0>1) | oy

Proof. e In the case | = su(k, ) (k> (> 2):

We have dim 7 = k+/¢ = m(su(k, ¢)) and d(kLl% = 2k. So, the inequality
rankpg 1
dim74+m(ly) > racfl(é%l holds. We realize su(k, ) C sl(k+¢, C) as follows:

o:sl(k+¢,C)—sl(k+¢,C)
X — —ijX*ij
su(k,?) :=sl(k+¢,C)”

We take X € py, as follows:

B 0
X = <B* ),B:: ) € M(k,¢;C).
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Then we have pg, (X)pw, (X)* = BB* = diag(1,1,0,---,0) € Herm(2p, C)
under the identification p ~ M(2p,2q;C). Since dimensions of all the
eigenspaces of diag(1, 1,0, - - - 0) are even, the condition (ii) of Lemma[[.3.20]
is not satisfied.

e In the case I} = sp(k,f) (k> £>1):
We have dimnm = 2(k + ¢) = m(sp(k,¢)) and Al — 4k So, the

rankp L1
inequality dim 7+ m(ly) > ra‘fl(é;%l holds. We realize sp(k, ) C su(2k, 2¢)
as follows:

o : su(2k, 20) — su(2k, 20),
X = (J @ Lip) X (J @ Tryo) ™,
sp(k, £) = su(2k,20)°.

We take X € py, as follows:
B 0
X = <B* ),B:— ) € M(2k,2¢;C).

Then we can prove that the condition (ii) of Lemma [[3201is not satisfied
in the same way as the above case [; = su(k, ?) (k > £ > 2).
O

Lemma 1.3.27. Let (I, m) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (I, )
does not satisfy the condition (iii) of Lemma [[Z3.20

Table 1.11: pairs of a simple Lie algebra and its irreducible representation in
Table 1.8 which do not satisfy (iii) of Lemma [[Z3.20]

[ | 7 | dima | A2 | d(L) | ranks Ly
su(3,1) ws 6 6 6 1
so*(dn+2)n>2 | wy | 4dn+2 | dn+2 | 2n(2n+1) n
Proof. We can easily check from the data in table above. O

Lemma 1.3.28. Suppose a reprensetation p of [ satisfies the conditions (i) to
(iv) of Lemma [[3T4 and 7 is an irreducible component of p|,. Then (1, 7) is
equivalent to one of the following Table 1.12.

Table 1.12: pairs of simple Lie algebras [; and their irreducible representation
which satisfy conditions (i) to (iii) of Lemma [[Z3.20
[1 ‘ T

su(k,1) (k>2) | @
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Proof. This comes from Lemma [[.3.16] [3.20] T.3.25] and O

Next, we determine the pair (I**, p[f®). It is enough to consider the case
lh =su(k, 1) (k > 2) from Lemma [[L3:28 We show the following:

Lemma 1.3.29. (I3 p

1= ) is one of the following Table 1.13:

Table 1.13: candidates of pairs of semisimple Lie algebras [*® and their

representation p
[5s ‘

[ss

‘[ss

su(k,1) (k> 2) | @ & @?PTO-FHgriy

Proof. From Lemma [[3330 it is enough to show that ([;,7) satisfies the in-
equality d(L;) < 2dim 7 — 1. Since we have d(L1) = 2k and dim 7 = k + 1, this
inequality holds. O

Lemma 1.3.30. Let G/H = SU(2p,2q)/Sp(p,q) (p > q > 1). If a pair ([1, 7)
of a simple Lie algebra and its nontrivial representation satisfies the conditions
rankg L1 = 1 and d(L1) < 2dim7 — 1, then we have [** = [;.

Proof. Assume that d(L1) < 2dim7 — 1 and that there exists another simple
factor lp, which satisfies d(Li) > d(La) > _d(Li) g 9 < ¢ < 5. Then

e . .= rankg Ly — rankg L; -
by the injectivity of p, there exists an irreducible representation 7’ of [ such

that dim7 + dim7’ < dimp < %. From Lemma 331l we have
d(L2)

dimn’ < tanieI; — 1. From Weyl’s dimensionality formula, a pair (I, ") of a
simple Lie algebra and its nontrivial representation is a standard representation
of sp(k’,¢) or su(k’,¢'). From Lemma and [[333] we have 2dim 7 + 2 <
d(L1) < 2dim 7 — 1. This is contradiction. O

The following Lemmas[T.3.37] and[[L3.33]are used to prove Lemma[l[.3.30
We apply Lemma [[33T] by substituting d(L;), dimm, rankg Lo and d(Ls)
for B, C, p and ¢ respectively.

Lemma 1.3.31. Let 1 < B, 2 < C. The following conditions on B and C are
equivalent:

° Foranyp,qGR,iflgpgq,%gB,then?T‘;‘ffC<%fl,
e B<2C —1.
Proof. We prove that the following negative propositions are equivalent:
e There exist p,q € R such that 1 <p < g, % < B and %702%71.
e B>2C—1.

?T';J —C>2-1 «= ¢<—(C—1)p(p— BH59) = f(p). Then there exist
such p, ¢ if and only if
FO) =1,
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We can easily obtain the above equivalence by considering pq plane with convex
curve ¢ = f(p). This is equivalent to the following:

B>2C—-1.

The following lemma is for the case lo = sp(k’, ¢') (k' > ¢ > 1).

Lemma 1.3.32. Let 1 < B, 2 < C. If there exist 1 < ¢ <k’ such that

4k < B
C < BHEL ok + 1)

then we have 2C + 4 < B.

Proof. This comes from the following;:

B+ 4K'¢' S
< - 7T
C <=y 2 +1)

_ B—|—4k/(l—|—€’) — 4k , ,

- - _ oK + )
B — 4k’ , ,

—W+2k—2f

<= -2
-2
. . s R B—4k’
Here we have the last inequality by substituting 1 for £’ considering that = v/

2k’ — 2¢" is monotone decreasing with regard to £'.

The following lemma is for the case l; = su(k’,¢') (K’ > ¢ > 1).

Lemma 1.3.33. If there exist 1 < ¢ < k' such that

2k' < B
{CgBﬁ%”—(H+0)
then 2C' + 2 < B.
Proof. We can prove this by the similar argument with Lemma O

Finally, we determine pairs ([, p) satisfying the conditions (i) to (iv) of

Lemma [[.3.14

Lemma 1.3.34. If a pair (I, p) of a reductive Lie algebra and its faithful rep-
resentation satisfies the conditions (i) to (iv) of Lemma [[3T4] then (I, p) is
equivalent to one of the following table:
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Table 1.14: candidates of pairs of reductive Lie algebras [ and their
representation p.
[ ‘ p
su(2p, 1) | widtriv

Proof. We show [ = [*® = su(2p,1) (ie. k = 2p, ¢ = 1), and p = wDtriv.
Suppose [** = su(k, 1) satisfies conditions (i) to (iv) of Lemma [[Z37T4] Then we
have the following inequalities

I<qg<p
1+t<q

2k 4+t = 4pq
E+1<2(p+q)

Here ¢ = dim p(3)~%, where 3 is the center of [. It is enough to show ¢ = 0 by
Remark Assume t > 1. Then we have

dpg =2k+t < (1+8)k+(1+t) -1 < (1+t)(k+1)—1 <2(p+q)g—1 < 4dpg—1.

This is contradiction. So we obtain ¢ = 0. Then we have k& = 2pq from the
third equality. From the fourth inequality, we have 2pg + 1 < 2(p +q) <
p—1D@-1) < %, which implies ¢ = 1, £ = 2p. As a result, we obtain
p = mPtriv. O

1.3.3 (G, H)=(SO(p,q+1), SO(p,1)xSO(q)) (2 < q < HR(p))

In this subsection, we consider the case (G, H)=(SO(p,q+1), SO(p,1) x SO(q))
(2 < ¢ < HR(p)). Our goal in this subsection is the following:

Proposition 1.3.35. Let G = SO(p,¢+1) and H = SO(p,1)xSO(q) (2 < ¢ <
HR(p)). If there exists a reductive subgroup L of G acting on G/H properly
and cocompactly, then (p, q) = (4, 3) or (4,2). Moreover L is locally isomorphic
to Spin(4,3) or Gy respectively up to compact factor.

Proof. This comes from Lemma [[.3.36] and Proposition [.3.37 O

The condition 2 < ¢ < HR(p) implies that p is even and p > 4. So, we
consider the case (g, h)=(s0(2p,q+ 1), s0(2p, 1) ® s0(q)) with 2 < ¢ < HR(2p)
andp>2.

Lemma 1.3.36. Let p,q be integers satisfying 2 < ¢ < HR(2p) and G/H =
SO0(2p,q + 1)/S0¢(2p,1) x SO(q). There exists a reductive subgroup of G
acting on G/H properly and cocompactly if and only if there exists a reductive
Lie algebra [ and its faithful representation p : [ — sl(2p + ¢ + 1, C) satisfying
the following conditions:

(i) p(f) Cs0(2p,q+1) Csl(2p+q+1,C),

(i1) p(I) is preserved by matrix transpose,
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(111) ar " Wag = {0},
(iv) d(L) = d(G) — d(H).

Here W is the Weyl group of SOy(2p,q + 1) and L is the analytic subgroup of
G corresponding to p(I) C s0(2p,q+ 1). We consider subalgebra so(2p,q+1) C
sl(2p+q+1, C) as standard inclusion preserverd by matrix transpose (X — X),

Proof. This comes from Fact and [LZ.18 O

Proposition 1.3.37. Let p,q be integers satisfying 2 < ¢ < HR(2p) and
G/H = SO¢(2p,q+1)/S0¢(2p,1) x SO(q). There exists a reductive Lie algebra
[ and its faithful representation p : [ — sl(2p+ g+ 1, C) satisfying the conditions
(i) to (iv) of Lemma[[.336lif and only if (p,q) = (2,3) or (2,2). Moreover, such
pair (I, p) is equivalent to (50(4,3), pw,) Or (g2(2); Pw,) UP to compact factor.

Proof. Our proof consists of step a, b, ¢ and d (see Outline of the proof for the
case rankg G —rankg H > 2 in subsection [[23]). This comes from Lemma [[L3.7]

Remark [.3.52] Lemma [[.3.57] and O
Notation 1.3.38. We put M*° = ra‘i(é:z)ss7 My = ra’i(é;%l.

step a : reduce candidates by upper bound of the dimension of rep-
resentations

Lemma 1.3.39. Let p: [ — sl(n,C) be a representation satisfying the condi-
tions (i) to (iv) of Proposition [[L3.36 and 7 an irreducible component of ply,.
Then the pair (I, 7) satisfies the following conditions:

(i) dim 7 < min (rankR L+ M; + 1,2M1),

(i) max(7,1+ /4d(Ly) + 1) < 2M;.

Proof. The condition (ii) and the inequality dim 7 < 2M; in (i) of Lemma L339
comes from Lemma [[340] d(L*®) < d(Ly) and M** < M;. Next we show the
inequality dim7 < rankg L1 + M; + 1. From Lemma [[.3.40, we have dim p <
rankg L% + M*° + 1 < rankg L°° + M7 + 1. So, it is enough to show that

dim 7 — rankg L; < dim p — rankg L*°.
This comes from Lemma [1.3.44] O

Lemma 1.3.40. Suppose a reductive Lie algebra [ and its faithful representa-
tion p : [ — sl(V) satisfy the conditions (i) to (iv) of Lemma [[:3:36] for some
positive integers p, ¢ with 2 < ¢ < HR(2p). Then the following inequality holds:

max (7,1 + \/4d(L*%) + 1) < dim p < rankg L*° + M*® + 1 < 2M*°.

Proof. This comes from the following Lemmas [[.3.41] and O
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Lemma 1.3.41. Fix positive integers p,q with 2 < ¢ < HR(2p). Suppose a
reductive Lie algebra [ and its faithful representation p : [ — sl(n,C) (n :=
2p+ q+ 1) satisfy the conditions (i) to (iv) in Proposition Then we have
the following inequalities:

rankg L*° +t < q<2p—1,
d(L*%) +t = 2pq,
7<dimp=2p+q+1.
Here d(L®®), rankg L*® are the noncompact dimension, real rank of semisimple

Lie subalgebra [** of [ respectively and ¢ = dim p(3)~%, where 3 is the center of
[

Proof. This comes from Remark and Fact O

Lemma 1.3.42. Let 1 < A < B and C > 6. There exist real numbers 1 < p, ¢
and ¢t > 0 such that

A+t<qg<2p-1

B+t =2pq

C=2p+q+1
if and only if max(6,1 + 4B+ 1) < dimp < A+ % + 1. Moreover, then we
haveA—&-%—i—lg%.
Proof. We can easily check this lemma by fundamental argument on inequality.

So, we omit the proof. O

Remark 1.3.43. Let I be a simple Lie algebra over R and 7 a nontrivial irre-
ducible representation. Then we have

dim7 > rankg L + 1.
This comes from the classification of simple Lie algebras.

Lemma 1.3.44. Let p: [** — s[(V) be a faithful representation of semisimple
Lie algebra [°* = @f_;[;. Let 7 be a nontrivial irreducible component of p|y, .
Then the following inequality holds:

dim7 — rankg L; — 1 < dim p — rankg L*® — s.
Proof. From Remark [[L2:38(iv), the injectivity of p and Remark [.3:43]
dim p > dim 7 + Z m(l;)
i=2

> dimw + Z(rankR L;+1)
i=2
=dim7 + rankg L®*® — rankg L1 + s — 1.
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step b: reduce candidates of primary factor by using criterion for
embeddability of semisimple Lie algebras

Lemma 1.3.45. Let p : [ — sl(n,C) be a representation satisfying the condi-
tions (i) to (iv) of Lemma [[L330 and 7 an irreducible component of p|;,. The
pair ([y, 7) satisfies the following conditions:

(i) (a) If the inequality dim7 > M; holds, then the following three condi-
tions are satisfied:
i. T~ 7 and index,, ™ =1,
ii. 7¥ ~ 7 and indexg, ™ = 1,
i, T~ 7*.
Here, 7 is the involution on [(53 detemining [; and 6; is the Cartan
involution on I§.
(b) If the inequality 2 dim 7 > M holds, then at least one of the following
conditions holds:
iLom~T,
ii. m~7Y,
iii. T~ 7*.
(c) Assume the following conditions:
i. 2dim7 > My,
ii. (r~7,index, m#=—1) or (x ~ 7" and indexy, 7 = —1)

Then we have 7* ~ 7 as a representation of [; and [7 : p|,] = 2.

(ii) dimm > M; and dim7 + m(ly) > rankg L; + My +1 = ranknw(A4) >4
for any A € pr, \ {0}.

Here m(l;) := min{dim#’ : 7’ is a nontrivial irreducible representation of I;}
(i=1,---,s).
Proof. (i) (a) This comes from Lemma [[L240] and dim p < 2Mj.
(b) This comes from Lemma [[L3.47] and dim p < 2Mj.
(¢) This comes from Lemma [[348 and dim p < 2M;.
(ii) It is enough to show that p|, = 7 @ @dmV-dimm4riy In fact, the rank
condition comes in the same way as the case (G, H)=(SO(2p,q + 1),
50(2p, q))-

From the assumption dim7 > My, we have [r : p|,]. Assume that p|,
has another nontrivial irreducible component 7’. From Lemma [[.2:38 and
injectivity of p, we have

dim 7 + dim 7" + Zm([i) < dim p < rankg L*° + M; + 1.
i=2
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From Remark [3.43] we have rankg L** < rankg L1 + > ._, m(l;). From
the above two inequalities and the assumption dim 7w +m(l;) > rankg L1 +
M + 1, we have

dim7 + dim 7’ < rankg L1 + M7 + 1 < dim7 + m(l;) < dim 7 + dim 7'

This is contradiction.
O

Remark 1.3.46. The rank condition (ii) of Lemma [[.3.45]is preserved by basis
transformation. So we can discuss properness up to equivalent class of repre-
sentation.

Lemma 1.3.47. Let p : I¥* = 1 & --- @ [, — sl(V) be a representation of
semisimple Lie algebra [ such that p(I°%) Cry s0(p, ¢) for some p,q € Z>( such
that p + ¢ = dimc V. Let [; be a simple ideal of [*®* and 7 an irreducible
component of p|;,. If the inequality 4 dim 7 > dim p holds, then at least one of
the following conditions holds:

(i) m >,

(ii) m~mY,

(iii) 7~ 7*.

Proof. We show the contraposition. Suppose m 2 7, m % 7¥ and 7 % 7*. From
ol (1) Cint s0(p,q) for some p + ¢ = dimV (p,q > 0), p|;, has at least one
m, 7, ¥ and 7* as an irreducible component respectively by Lemma
Therefore we have 4dim 7 < dim p. O

Lemma 1.3.48. Let p : [; & --- ® [ = [** — sl(V) be a representation of
semisimple Lie algebra such that p(I*¢) Cr, s0(p, q) for some p + g = dimc V.
Let [; be a simple ideal of ¥ and 77 an irreducible component of pl|;, satisfying
the two conditions:

(i) dimp < 4dimm,

(ii) (r ~7, index,, * = —1) or (r ~ 7" and indexy, 7 = —1)

Then we have 7* ~ 7 as a representation of [; and [7 : p|,] = 2.

Proof. Form Lemma [[Z2Z73] and the assumption (i), we have [7 : p|,] = 2 =
[7* : p|,]. If we put 7* % 7, then we have 4dim 7 < dim p < 4dim 7, which is
contradiction. So we obtain 7* ~ 7. O

Lemma 1.3.49. Suppose a pair (I, p) of a reductive Lie algebra and its faithful
representation satisfying the conditions (i) to (iv) of Lemma [[3306l Let [; be
a primary factor of [** and 7 a nontrivial irreducible component of p|,. Then
(Ih, m) is equivalent to one of the following:

36



Table 1.15: pairs of simple Lie algebras [ and their irreducible representations
7 which satisfy the condition (i) and (ii) of Lemma

not satisfy the condition

[ ™ dim 7 of Lemma
5l(n,C) (n > 3) w1 Mtriv, trivkeoy, n (i)
s((3,C) 2w Wtriv, trivik2eoy, 6 (i)
sl(4,C) wotriv, trivi¥w, 6 (i)
sl(5,C) woXtriv, wiXtriv, 10 (i)
sl(n,R) (n > 3) w1 n (i)
su*(2n) (n > 2) w1 2n (i)
su(k,?) (k+¢>3) W1, Whtt—1 k+10
su(2,1) 21, 200 6 (i)
su(3,1) w2 6
5u(4, 1) w9, W3 10 (1)
s02n+1,C) (n > 2) | w1 Xtriv, trivkeo, 2n+1
50(7,C) wsXtriv, trivios 8 (i)
50(2n,C) (n > 4) w1 Mtriv, triviko; 2n (i)
50(8,C) wsNtriv, wyMtriv 8 (i)
so(k,l) (k+¢>5) w1 k+¢ (ii)
50(6,1) w3 8 (i)
50(5,2) w3 8 (i)
s0(4,3) w3 8
s0(7,1) w3, Wy 8 (i)
50(6, 2) w3, W4 8 (l)
50(57 3) w3, W4 8 (1)
50*(4n) (n > 3) w1 dn (i)
50%(dn+2) (n > 2) w1 dn +2
sp(2,C) w1 Xtriv, triviko; 4
sp(n,C) (n >3) o Ntriv, trivka, 2n
sp(n,R) (n>2) w1 2n (1)
sp(k,l) (k+£>2) w1 2(k+¢)
gg w1 Xtriv, triviXo, 7
92(2) w1 7
Here k> (> 1,

Proof. This follows from the classification of simple Lie algebras and Weyl’s

dimensionality formula.

O

Lemma 1.3.50. The following pairs (I, m) of a simple Lie algebra and its
irrducible representation does not satisfy the condition (i) of Lemma [[L3.45]
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Table 1.16: simple Lie algebra which does not satisfy the condition (i) of

Lemma [[3.459]
[ 7r dimm | M data (a), (b) or (c)
sl(n,C) (n > 3) w1 Xtriv, trivikieo; n n+1l |7V Etngwnta (b)
s((3,C) 2w Mtriv, triviX2ow;, 6 4 TET (a)
sl(4,0C) woXtriv, triviow, 6 5 TAET (a)
s((5,C) woltriv, trivi¥cos 10 6 TET (a)
sl(n,R) (n > 3) w1, n nt2 TETY (a)
su*(2n) (n > 2) w1y 2n | 2n+1 ™ E T (c)
su(2,1) 2w 6 4 TRET (a)
su(4,1) wa 10 8 TAET (a)
s0(7,C) wsMtriv, trivixlos 8 7 TRET (a)
50(2n,C) (n > 4) | w1 Xtriv, trivikie, 2n | 2n-—1 TAET (a)
50(8,C) wsNtriv, wyXtriv 8 7 TET (a)
50(6,1) ws 8 6 index,, 7 = —1 (a)
50(5,2) ws 8 5 index,, 7 = —1 (a)
50(7,1) w3, Wi 8 7 TRET (a)
50(6,2) ws, Ty 8 6 index,, m = —1 (a)
s0(5,3) w3, W4 8 L TET (a)
50%(4n)(n > 3) w1 dn | 4n —2 index,, m = —1 (a)
sp(n,R) (n >2) w1 2n n+1 indexg, m = —1 (a)
Proof. This follows from the data in the above table. O

Lemma 1.3.51. Let p : [ = sl(V) be a faithful representation of a reductive
Lie algebra [ and I = so(k,¢) (k + ¢ > 5) the primary factor of [. If p|;, has
a irreducible component m ~ p,,, then p does not satisfy the conditions (i) to

(iv) of Lemma

Proof. We show this by using Lemma [[Z340] (iv). We have dimnw =k+¢ > k =
M, . Since we have m(so(k,¢)) > 4 for any k+¢ > 5, we have dimw+m(l;) > k+
£+4 > f+k+1 = rankg L1+ M;+1. However, for Sl,k+1 = El,k+1+Ek+1,1 €Epr,

we have rank 7(S7 x4+1) = 2.

O

Remark 1.3.52. Let p: [ = sl[(V) be a faithful representation of a reductive
Lie algebra satisfying the conditions (i) to (iv) of Lemma [[3361 Then a pair
(Iy, m) of primary factor and its irreducible representation is equivalent to one

of the following;:
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Table 1.17: pairs of a simple Lie algebra [ and its irreducible representation 7
which satisfy the condition (i), (i), (iii) and (iv) of Lemma [[.3.45]

[ T dim 7 rankg L1 + M7 + 1 | selfconj? index,, w
su(k,?) (k+¢>3) w1 k+¢ 2k+0+1 TET
su(3,1) wo 6 8 index,, m = —1
so(2n+1,C) (n > 2) | o Wtriv | 2n+1 3n+2 TET
s0(4,3) ws 8 8
50*(dn+2) (n > 2) w1 dn +2 5n+ 3 index,, m = —1
sp(2,0) w1 Ktriv 4 8
sp(n,C) (n > 3) w1 Ktriv 2n 3n+2 TET
sp(k,0) (k+€>1) w1 2(k+20) dk+0+1 index,, ™ = —1
a5 o1 Mtriv 7 10 TRET
92(2) w1 7 7

This comes from Lemma [[.3.49] [.3.50] and [.3.511

step ¢ : determine the pairs (I°%, p[®)

Lemma 1.3.53. Let p and ¢ be positive integers with 2 < ¢ < HR(2p). Sup-
pose a representation p : [ — sl(2p 4+ ¢ + 1, C) satisfies conditions (i) to (iv) of
Lemma Let [; be a primary simple factor of [ and 7 a nontrivial irre-
ducible component of p|;,. Assume at least one of the following two conditions
(i) and (ii) is satisfied:

(i) (m 27 or (r =7 and index,, 7 = —1)) and 2dim 7 > rankg Ly + M; + 1,
(ii) dim7 > rankg Ly + M7 + 1.

Then we have [*® = [;. Moreover, the last equality 2 dim 7 = rankg L, +M;+1 of
(i) is attained if the condition (i) is satisfied, and the equality dim 7 = rankg L1+
M + 1 is attained if the condition (ii) is satisfied.

Proof. Let I°* = @7_,1; be the decomposition into simple ideals, where [; (i =
1,---,8) are simple ideals.

(i) e In the case m 2 7 and 2dim 7w > rankg L1 + M7 + 1:
From Lemma[[3354] we have 2dim 7w+ (s—1) < rankg L1 + M7 +1 <
2dim 7. Thus we obtain s = 1. Note that we have 2dim 7 < dim p.

e In the case 7 ~ 7, index,, m = —1 and 2dim 7 > rankg L; + M; + 1:
We show this case in the same way as above by using Lemma [[.3.541
It is enough to show that [7 : p|;,] = 2. This comes from Lemmal[l[-243]
and 4dim 7w > 2(rankg Ly + My + 1) > 2M; > dim p.

In the both cases, from Lemma [[.3.40, we have
rankg L1+Mi1+1 < 2dim 7 < dim p < rankg L**+M?®°+1 = rankg L1+M;+1.

Thus we have 2dim 7w = rankg Ly + M; + 1.
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(ii) From Lemma [[33:44] and [33:40] we have
dim7 + s — 1 + rankg L*® — rankg Ly < dim p < rankg L°° + M; + 1.

Therefore we have dim 7w+ s — 1 < rankg L1 + M; + 1. By the assumption
rankg L1+ M;+1 < dim 7, we obtain s = 1 and dim 7 = rankg L1+ M7 +1.
O

Lemma 1.3.54. Let p and ¢ be positive integers with 2 < ¢ < HR(2p). Sup-
pose a representation p : [ — sl(2p + ¢ + 1, C) satisfies conditions (i) to (iv) of
Lemma [[.3.36] Let [; be a primary simple factor of [ and 7 a nontrivial irre-
ducible component of p|,. Assume at least one of the following two conditions
(i) and (ii) is satisfied:

(i) =,

(ii) [r:p|y] =2 and 7 = 7 and index,, 7 = —1.

Then we have

d(L
2dim7 + (s — 1) <rankg L; + ﬁ + 1.
Here s is the number of simple ideals of [°® = [[, I].

Proof. (i) In the case m #£ T
From Lemma [[242] [L2.3]] and injectivity of p, we have

2dimm + Y m(l;) < dimp < rankg L** + M; + 1.
1=2

From Remark [[.3.43] we have

rank L*° —rankp L1 +s—1 < Zm([i).

=2

Therefore, we obtain the desired inequality from the above two inequali-

ties.
(ii) In the case 7 ~ 7 and index,, m = —1 and [7 : p|,| = 2:
Let p|iss = @!_,p; be the decomposition into irreducible components.

From Lemma [[Z3.55] there exist j # j € {1,--- ,t} such that p; ~ 7Xtriv,
pjo =~ nitriv. Then from Lemma [[238 we have

2dim7 + Zm([i) < dim p.
i=2

Therefore we can prove this case in the same way as above.
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Lemma 1.3.55. Let p: [** = ®7_,[; = s[(V) be a representation of a semisim-
ple Lie algebra without compact factor, where [; (i = 1,---,s) are noncom-
pact simple ideals. Let p = @;lej be the decomposition into irreducible
components. Suppose that p([**) Cry sl(n,R), 7 ~ 7, index,, # = —1 and
[7: p|i,] = 2, where 7 is a nontrivial irreducible component of p|;,. Then there
exist j # j' € {1,---,t} such that p; = 7ltriv, p;; = 7 triv.

Proof. If there do not exist the above j, j/, then there exists j such that p; =
7 W7’ and dimn’ = 2 where 7’ is the irreducible representation of @&7_,l[;.
Nontrivial irreducible representations of noncompact simple Lie algebra with
dimension two are only the standard representations of s[(2,R) and s[(2,C). In
these cases, since index, p; = —1 for sl(2,R), p; # p; for sl(2,C), these do not
induce embeddings into sl(n, R) by Proposition [L6.17 O

Lemma 1.3.56. Let p : [ — gl(V) be a faithful representation of a reductive
Lie algebra [. If the pair (I;, 7) of the primary simple factor and its irreducible
component of p|; is equivalent to one of the following table, then p does not
satisfy the conditions (i) to (iv) of Lemma

Table 1.18: pairs of a simple Lie algebra [ and its irreducible representation 7

l4 T dim rankg Ly + M; + 1 | selfconj? index,, 7
su(k,?) (k+¢>3) w1 k44 2k+0+1 TET
su(3,1) wo 6 8 index,, m = —1
s02n+1,C) (n > 2) | w1 Ntriv | 2n+1 3n + 2 TET
50%(dn+2) (n > 2) w1 dn + 2 5n+3 index,, ™= —1
sp(n,C) (n > 3) w1 Ktriv 2n 3n+2 TET
sp(k,0) (k+£>1) w1 2(k+20) 4k +0+1 index,, m = —1
a5 w1 Rtriv 7 10 TAT

Proof. e In the case (I, m)=(su(k,?), pw,):
The assumption (i) of Lemma [[Z353] is satisfied. In fact, we have m £ 7
and 2dimm = 2(k + ¢) > 2k + ¢ + 1. Therefore we have [** = [; and
2(k+4¢) =k+2¢+ 1, that is, £ = 1. Then from Lemma [[.L3:47] we have

2k 4+t = 2pq,
2(k+1)=2p+q+1.

This implies ¢ = 1, which contradicts ¢ > 2.

e In the case (I1, m)=(su(3,1), pw,):
The assumpotion (i) of Lemma [[353]is satisfied. In fact, we have m# ~ 7
and index, = —1 and 2dim7 =12 > 146 + 1 = rankg Ly + M; + L.
However, we have 2dim 7 # rankg L1 + M; + 1, which is contradiction.

o In the case (I1, m)=(s0(2n + 1,C), pm,Rtriv) (n > 2):
The assumpotion (i) of Lemma [[3.53] is satisfied. In fact, we have m 2 7
and 2dim7 = 4n + 2 > 3n + 2 = rankg L1 + My + 1. However, we have
2dim 7 # rankg L1 + M; + 1, which is contradiction.
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e In the case (I3, m)=(s0*(4n + 2), pw,) (n > 2):
The assumpotion (i) of Lemma [[L3.53] is satisfied. In fact, we have 7 ~ 7,
index,, m = —1 and 2dim7 = 82 +4 > 5n + 3 = rankg L; + M; + 1.
However, we have 2dim 7 # rankg L; + M; + 1, which is contradiction.

e In the case (I3, m)=(sp(n, C), pr, Ktriv) (n > 3):
The assumption (i) of Lemma [[Z353] is satisfied. In fact, we have m £ 7
and 2dim7 = 4n > 3n + 2 = rankg L1 + My + 1. However, we have
2dim 7 # rankg L1 + M; + 1 if n > 3, which is contradiction.

o In the case (Iy, m)=(sp(k,{), pw,) (K+£>1):
The assumption (i) of Lemma [[.3.53 is satisfied. In fact, we have 7 ~ 7,
index,, # = —1 and 2dim7 =4(k+¢) > 4k +{+ 1 = rankg L1 + M; + 1.
However, we have 2dim 7 # rankg L1 + M; + 1, which is contradiction.

e In the case (I, 7)=(g5, po, Mtriv):
The assumption (i) of Lemma [[Z353] is satisfied. In fact, we have m £ 7
and 2dim 7 = 14 > 10 = rankg L + M; + 1. However, we have 2dim 7 #
rankg L1 + My + 1, which is contradiction.
O

Lemma 1.3.57. Let p: [ — gl(V') be a representation of a reductive Lie algebra
satisfying the conditions (i) to (iv) of Lemma [[.3:361 Then the pair (I°%, p|yss)
is equivalent to one of the following:

® (50(4,3), poy),
hd (92(2)7 pw1)7
o (5p(2,0), (p, Bltriv) @ (trivllps, ).

Proof. From Remark[[.3.52]and Lemma[L.3.50] it is enough to consider the pairs
(I, ™) =(50(4,3), pws), (82(2)5 P ), (5P(2,C), pe,Mtriv) of primary factor and
its irreducible component of p|y, .

(i) In the case (Iy, m)=(s0(4,3), pw,):
The assumpotion (ii) of Lemma [[353] is satisfied. In fact, dim7 = 8 =
rankg L1 + M7 + 1 holds. Therefore we obtain I°* = [; = s0(4,3) and
pliss = m from rankg L1 + M7 + 1 < dim7w = dim p < rankg L1 + M7 + 1.

(ii) In the case (I1, T)=(g2(2); Pow,):
The assumpotion (ii) of Lemma [[353] is satisfied. In fact, dim7 = 7 =
rankg L+ M;j+1 holds. Therefore we obtain [** = [; = gy(2) and p
from rankg Ly + M7 + 1 < dim7 = dim p < rankg L1 + M7 + 1.

[ss =T

(iii) In the case (I3, m)=(sp(2,C), pe, Ktriv):
The assumpotion (i) of Lemma [[353]is satisfied. In fact, we have m 2 7
and 2dim 7 = 8 = rankg Ly + M7 + 1. Therefore we obtain [*®* = [; and
plies = T@®T from [7: pliss] = [T : p|r==] and rankg L1+ M;+1 < 2dim7 =
dim p < rankg Li + M; + 1.

O

42



step d : determine the pairs ([, p)

Lemma 1.3.58. Let p : [ — sl(V) be a faithful representation of a reductive
Lie algebra. Suppose [°** ~ sp(2,C) and p|iss >~ (pw, Mtriv) & (trivipy, ). Then
there does not exist positive integers p,q with 2 < ¢ < HR(2p) satisfying the
conditions (i) to (iv) of Lemma [[Z3.36

Proof. From Lemma [[L3.4]] it is enough to show that there does not exist pos-
itive integers p, ¢ and non-negative integer ¢ such that

24+t <qg<2p—-1,
10+t = 2pq,
8=2p+q+1.

This can be easily checked. O

Lemma 1.3.59. Let p : [ — gl(V) be a representation of a reductive Lie
algebra satisfying the conditions (i) to (iv) of Lemma Suppose ([°%,
pliss) is equivalent to (s0(4,3), pws) OF (g2(2); Pw,). Then we have [ = [** and
2,3) if [~s0(4,3),
(pa) = (2,3) *3)
(2, 2) if [~ 92(2)

Proof. e In the case (I*%, p|i==) is equivalent to (s0(4,3), pws)
Let p, ¢ be positive integers and ¢ non-negative integer. It is enough to
show that the following inequalities implies (p, ¢) = (2, 3) and ¢t = 0, which
can be easily checked.

3+t<qg< HR(2p) <2p
12+t = 2pq
8=2p+qg+1

e In the case (I°°, p|iss) is equivalent to (g2(2), Poo;)
Let p, g be positive integers and ¢ non-negative integer. It is enough to
show that the following inequalities implies (p, ¢) = (2,2) and ¢t = 0, which
can be easily checked.

2+t<qg< HR(2p) <2p
8+t =2pqg
T=2p+q+1.

1.3.4 (G, H)=(Es(-11), Fa—20))

In this subsection, we consider the case (G, H)=(Eg(—14), Fi(—20)). Our goal in
this section is the following:
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Proposition 1.3.60. Let (G, H)=(Eg(—14), Fi(—20)). There does not exist a
reductive subgroup L of G acting on G/H properly and cocompactly.

Proof. From Lemma [[33:62] it is enough to consider the case [ ~ s0(16,1),
su(8,1), sp(4,1) and f4(_20). From Lemma [[.3.63] and [[L3.67] we obtain
the desired conclusion. O

We have the following data:

rankg G = 2,d(G) = 32,
rankg H = 1,d(H) = 16,
£~ 50(10) ® s0(2)

Remark 1.3.61. Since we have rankg G —rankg H = 1, it is enough to consider
simple Lie groups with real rank one from Remark [[.2. 16l

Lemma 1.3.62. Let L be a simple reductive subgroup of G acting on G/H
properly and cocompactly. Then [ := Lie(L) is isomorphic to one of the following
Lie algebras:

e 50(16,1),
e su(8,1),
e s5p(4,1),
® fi(—20)-

Proof. From Remark and Fact [L2I8 we have rankg L = 1 and d(L) =
d(G) — d(H) = 16. This lemma comes from the classification of simple Lie
algebras. O

Lemma 1.3.63. Lie algebras s0(16,1) and su(8,1) can not be realized as a
reductive subalgebra of eg(_14)-

Proof. This comes from Lemma [[33:64 rank K = 6, rank SO(16) = 8 and
rank U(8) = 8. O

Lemma 1.3.64. Let g be a linear reductive Lie algebra and [ a reductive sub-
algebra. Then rank K < rank K holds. Here K, K, is the analytic subgroups
of G, L corresponding to maximal compact subalgebras €, ¢, respectively.

Proof. This is clear by the definition of rank. O
Lemma 1.3.65. sp(4,1) can not be realized as a reductive subalgebra of eg(_14).

Proof. Assume that [ := sp(4,1) is a reductive subalgebra of g := ¢g(_14). Then
tr ~ sp(4) ® sp(1) is a reductive subalgebra of £ >~ 50(10) & s0(2).

Claim. ¢ ~ sp(4) @ sp(1) is containd in s0(10) C ¢.
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proof of Claim. Let v : ¢, — € ~ s0(10) @ s0(2) be the inclusion map and
pra : 50(10) @ s0(2) — so0(2) the projection map to the second component.
Assume that ¢ ¢ s0(10). Then the kernel ker pr, ¢ is a codimension one ideal of
£r,. However there are no such ideals in €7, ~ sp(4) & sp(1). O

By the above Claim and rank K, = rank SO(10), sp(4) @ sp(1) is a regular
subalgebra of s0(10). Here s0(10) is simply laced but sp(4) ®sp(1) is not simply
laced. This is contradiction by Lemma O

Lemma 1.3.66. Let gc be a simple Lie algebra over C and g a semisimple
subalgebra of gc with rank gc = rank gi.. If gc is simply laced, then each simple
ideal of g is simply laced.

Proof. Since g and gc are semisimple and rank gc = rank g¢, we can take com-
mon Cartan subalgebra b of g and gc. Therefore we have a natural inclusion
A(ge, h) € A(ge, ), which implies each simple ideal of g is simply laced. O

Lemma 1.3.67. There does not exist a simple Lie subgroup L of G such that
Lie(L) ~ f4(—20) acting on G//H properly and cocompactly.

Proof. Let L be a simple subgroup of G such that [ := Lie(L) ~ fy_20). We
show that there exists a hyperbolic orbit in g which meets both [ and §. From
Fact [[3.68 there exists an inner automorphism « € Int(g®) such that a(I%) =
hC ~ f$. Since a(l) and b are isomorphic as a real form of h® ~ §§, we can take
a € Int(g®) such that a(l) = h (Remark [[3.69). Take a hyperbolic element
0 # X € ling. Then o(X) € b is also a hyperbolic elment in gc. From
Fact [[3.24] we can take o’ € Int(g) such that o/(X) € . Thus the hyperbolic
orbit Int(g) X meets both [ and b. O

Fact 1.3.68 ([Dy52, Table 25, 39]). Let [ and I’ be a subalgebra over C of ¢
which are isomorphic to {§. Then there exists a € Int(eS) such that I' = a(1).

Remark 1.3.69. Let [, I be real forms with real rank one of f7. Then there
exists a € Int(f§) such that a(l) = [’

1.4 Classification of reductive subgroups in the
representation level

In this section, we deal with Problem C’ in the representation level. We classify
pairs of a reductive subalgebra [ and its faithful representation inducing proper

and cocompact action on each G/H in Table 1.1 up to compact factor. We shall
classify the embedding of I C g up to Int(g) in the following Chapter 1.5.
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141 (G, H)=(SU(2p,2), U(2p,1)) (p = 1)
Our goal in this subsection is the following

Proposition 1.4.1. Let G/H = SU(2p,2)/U(2p,1) (p > 1). There exists
a closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly. Moreover, L C G is locally isomorphic to Sp(p,1) up to compact
factor.

Proof. Tt is enough to show “moreover” part. From Lemma and Propo-
sition [[L43] it is enough to consider [ = sp(p,1) and p which has standard
representation w; as an irreducible component. Since the equality dim7 =
2p + 2 = dim p holds, we obtain p = 7 by Lemma [[.2.37 O

Lemma 1.4.2. Let G/H = SU(2p,2)/U(2p,1) (p > 1) and n = 2p + 2. There
exists a closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly if and only if there exist a faithful representation p : [ — sl(n,C)
of a simple Lie algebra [ satisfying the following conditions:

d(L) = d(G) — d(H)(= 4p).

Here, the above inclusion su(2p,2) C sl(n,C) is realized by the standard inclu-
sion which is preserved by matrix adjoint and L is the analytic subgroup of G
corresponding to p(l) C g.

Proof. This comes from Fact and [LZ18 O

Proposition 1.4.3. If a pair (I, p) of a simple Lie algebra and its representation
satisfies the conditions (i) to (iv) of Lemma [[LZ2] then (I, p) is equivalent to
(sp(p, 1), pw, (standard representation)).

Proof. Let m be an irreducible component of p. From Lemma [[Z6] it is
enough to consider the pair (I, m)~(su(k,1), wy) and (sp(k,1), @wy). A pair
(I, m)~(su(k, 1), wy) does not satisfy the condition (ii) of Lemma [[Z4] In the
case ([, m)~(sp(k, 1), @), we have k = p from d(L) = 4k = 4p = d(G) — d(H).
Since dim 7 = 2p + 2 = dim p holds, we obtain m ~ p from Lemma[[237 O

We reduce candidates of pairs of simple Lie algebras and their irreducible
components of p by the following:

Lemma 1.4.4. Suppose a representation p : [ — sl(2p 4+ 2, C) of a simple Lie
algebra [ satisfies the conditions (i) to (iv) of Lemmal[[lZ2l Let 7 be a nontrivial
irreducible component of p. Then 7 satisfies the following conditions:

(i) dimnm < d(L) + 2 and rankg L = 1,
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(i) dim7 +m(l) > 1d(L) +2 = ranknw(X) > 4 for any X € p; \ {0}.
Proof. (i) This comes from Lemma [[LZ.5]

(ii) From Lemmal[.2.37and[[.2.14] it is enough to show that for X € Ad(K)py <
rank 7(X) < 2. We realize g = su(2p,2) and h = u(2p, 1) as follows.
511(2]), 2) = {X S 5[(2}9 + 2, (C) : X*IQPQ + IQp’QX = 0}
T : s5u(2p, 2) — su(2p, 2)
X Ippi1a X130
u(2p, 1) := su(2p,2)”
Then we can identify p with M(2p,2;C) with K-action (kq,ks), X —

k1 Xky ', where ki € U(2p), ko € U(2). This action preserves matrix rank.

So, (ii) follows from the descrption of pg.
O

Lemma 1.4.5. Suppose a representation p : [ — sl(n, C) of a simple Lie algebra
satisfies the conditions (i) to (iv) in Lemmal[l.4.2] Then the following equalities
hold:

d(L) =d(G) —d(H) =4p
dimp =2p+2
In particular, we have dim p = 1d(L) + 2.
This is clear from Lemma [[.42] So we omit the proof.

Lemma 1.4.6. Suppose a pair ([, 7) of a simple Lie algebra and its irreducible
representation satisfies the condition (i) of Lemma [[44l Then ([, 7) is equiva-
lent to one of the following:

[ 7 (highest weight) | dim7 | not satisfy
su(k,1) k>1 W k+1 (ii)
sp(k, 1) k> 1 = % + 2

Proof. This comes from Weyl’s dimensionality formula (see Appendix[[.6.2]). O

1.4.2 (G,H)=(S00(2p,2), U(p,1)) (p = 2)
Our goal of this subsection is the following:

Proposition 1.4.7. Let G/H = SOy(2p,2)/U(p,1) (p > 2). There exists a
closed subgroup L which is reductive in G and acts on G/H properly and co-
compactly. Moreover, L C G is locally isomorphic to SOy (2p, 1) up to compact
factor.

Proof. This comes from Lemma [[L4.8 and Proposition [LZ.9] O
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Lemma 1.4.8. Let G/H = SOy (2p,2)/U(p,1) (p > 2) and n = 2p + 2. There
exists a closed subgroup L which is reductive in G and acts on G/ H properly and
cocompactly if and only if there exists a faithful representation p : [ — sl(n, C)
of a simple Lie algebra [ satisfying the following conditions:

(i) p(l) C s0(2p,2) C sl(n,C),
(ii) p(I

(ili) Int(g)p,y Nh = {0}

(iv) d(L) = d(G) — d(H)(= 2p).

Here the inclusion so(2p, 2) C sl(n, C) is realized by the standard inclusion which
is preserved by matrix transpose and p,) = p(1)~? for a Cartan involution on
g such that 0(p(l)) = p(I).

Proof. This comes from Fact and [L2.18 O

p
p

(1) is preserved by matrix transpose,

Proposition 1.4.9. Suppose a pair ([, p) of a simple Lie algebra and its rep-
resentation satisfying the conditions (i) to (iv) of Lemma [[L4.8 Then (I, p) is
equivalent to (s0(2p,1), pe, Btriv).

Proof. From Lemmal[ZZT2and [[ZT3)] it is enough to consider the cases (I,m)=(s0(1, 2k)
(k > 2), @), (su(l,k) (k > 2), wy). Moreover, from Lemma [[ZT4] it is
enough to consider the case (I,m)=(so(1,2k) (k > 2), wyi). We have k = p,
dimm = 2p + 1 by d(L) = 2k = 2p. (l,p) is equivalent to (so(1,2p), 7Htriv)
from Lemma [[L2.37 O

Lemma 1.4.10. Suppose a representation p : [ — s[(2p + 2, C) of a simple Lie
algebra satisfies the conditions (i) to (iv) of Lemma[[Z.8 Let 7 be a nontrivial
irreducible component of p. Then 7 satisfies the following conditions:

(i) dimn < d(L) +2 > 6,
(ii) 2dim7 > d(L) +2 = 7w ~7T~7" and index, 7 = indexg 7 = 1.

Here 7 is the real structure on [¢ such that [ = [ and 6 is a Cartan involution
on Ic.

Proof. (i) This comes from Lemma [[4T11] and dim7 < dim p.

(ii) This comes from Lemma [[LZZ0 and p([) C s0(2p,2) Crt s0(2p + 2,C),
s[(2p + 2,R).
0

Lemma 1.4.11. Suppose a representation p : [ — sl(n,C) of a simple Lie
algebra satisfies the conditions (i) to (iv) in Lemma [[L48 Then the following
inequalities hold:

{d(L) =2p

dimp=2p+2>6.

In particular, we have dimp = d(L) + 2 > 6.
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We can easily checked the above lemma. So we omit the proof.

Lemma 1.4.12. Suppose a pair ([, m) of a simple Lie algebra and its irre-
ducible representation satisfies the condition (i) of Lemma [[LZTI0 Then (I, 7)
is equivalent to one of the following Table 1.19:

Table 1.19: pairs of simple Lie algebras [ and their irreducible representations

7 which satisfy the conditions (i) in Lemma [[LZT0l

[ T dim7 | does not satisfy

so0(1,2k) (k> 2) w1 2k +1

s0(1,6) w3 8 (i)

s0(1,4) wo 4 (ii)
su(l, k) (k> 2) w1 E+1

su(1,4) wa, w3 10 (i)

su(l,3) wo 6 (i)

su(1,2) 2wy, 2wy | 6 (i)
sp(L k) (k>1) w1 2k +2 (i)

Proof. This comes from Weyl’s dimensionality formula (see Appendix[[.6.2). O

Lemma 1.4.13. Let (I, 7) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.20. Then (I,
) does not satisfy the condition (ii) of Lemma [[LZ.T0l

Table 1.20: pairs of simple Lie algebras [ and their irreducible representations

7 which do not satisfy the conditions (ii) in Lemma [[LZ.10l

[ T dimm | d(L)+2 property
50(1,6) ws 8 8 index, 7 = —1
s50(1,4) wo 4 6 index, 7 = —1
su(1,4) | wa, ws 10 10 TET
su(1,3) wo 6 8 index, 7= —1
su(1,2) | 2wy, 2wy 6 6 TAET
sp(1,k) w1 2k+2 | 4k+2 | index,m= -1

Proof. This is clear from the data in Table 1.20 (see Appendix to check the

property).

O

Lemma 1.4.14. Suppose a representation p : [ — s[(2p + 2,C) of a simple
Lie algebra [ satisfies the conditions (i) to (iv) in Lemma [[[Z8 and 7 is a
nontrivial irreducible component of p. Then ([, 7) is not equivalent to (su(k, 1),
@) (k>2).

Proof. Assume that p : [ — sl(2p + 2,C) satisfies the conditions (i), (ii) and
(iv) in Lemma and 7 is an irreducible component of p such that ([,7) is
equivalent to (su(k, 1), pw, ). We show that p does not satisfy the condition (iii)
of Lemma[[Z8 From (iv), we have k = p.

Claim. p =~ po, & Poy -
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Here this claim comes from [p, : p] = [Pm; : p], which comes from Lemmal[l[:2:42]

the properties pm, % 0oy, dimps, = p+ 1 and dimp = 2p + 2. We can re-
gard the representation p as a real representation pg : [ — sl(2p + 2, R) with
(0)€ = p =~ pw, ® Pm,. From Lemma [[246] we have py ~ (pw, )r as a real
representation. From Remark [[LZ15 it is enough to check that action on G/H
induced by one of the representatives does not satisfy the condition (iii). There
exist a representative ro € Homg(l,g) and an element a € Int(so(2p,2)) such
that a(ro(l)) C h. Take 0 # X € a(l) C ro([), then we have a(X) € b, which
implies that the condition (iii) is not satisfied. O

Remark 1.4.15. To discuss properness of the action induced from the above
representation [ps,] : [ — s0(2p,2) C sl(2p + 2,R), we can choose any represen-
tative:

Let g = s0(2p,2) (p > 2) and [ = su(p,1). Suppose Lie algebra embedding
@ : | — g satisfies 1o ~ (po,)r : | = s[(2p + 2,R) as a real representation
of [ where ¢ : g — sl(2p + 2,R) is a natural embedding. Then we have [p] €
{[r], [Ad(T2p-1,1.,2)7], [Ad(I2p,1,1)7], [Ad(Lop—1,1,1,1)r]} C Int(g)\ Homo(L, g)/ Aut(l)
(see Section [L55] for more details). Int(g)a(l) coincide for noncompact part a(l)
coming from the above representatives. In particular, Therefore, from the crite-

rion Fact[[L4.16] the properness does not depend on the choice of representatives.

Here we prepare criterion Fact for properness in terms of hyperbolic
orbit for the proof above. Let G be a linear reductive Lie group, g = Lie(G) a
semisimple Lie algebra over R, and H, L reductive subgroups of G. Take Cartan
involutions # on G and 6,65 which preserve H, L respectively and maximal
abelian subspaces a(h), a(l) of g=%, g=%. We can and do take oy, as € Int(g)
such that ap := aq(a(h)), ar := az(a(l)) C a. Then we have the following:

Fact 1.4.16 ([Ko89]). In Setting [Il the following conditions on G, H, L are
equivalent:

(i) the natural L action on G/H is proper
(ii) agNW(g,a)ay = {0}
(iif) Int(g)a(f) Na(h) = {0}

Moreover in the case h = g7 for some involution o on g, (iii) is equivalent to the
following condition:

Int(g)a(l) Ng” = {0}.

In the same setting, the criterion of proper action can be described in terms
of hyperbolic orbit as follows:

Fact 1.4.17 ([O13], Theorem 4.1). The following conditions on G, H, L is
equivalent:

(i) The natural L-action on G/H is proper,

(ii) No hyperbolic orbit meets both I and b other than zero-orbit.
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1.4.3 (G, H)=(SO*(8), U(3,1))
Our goal of this subsection is the following:

Proposition 1.4.18. Let G/H = SO*(8)/U(3,1). There exists a reductive
subgroup L of G acting on G/H properly and cocompactly. Moreover, L is
locally isomorphic to Spin(1,6) up to compact factor.

Proof. This comes from Lemma [[4.T9 and Proposition [[4.20 O

Lemma 1.4.19. Let G/H = SO*(8)/U(3,1). There exists a reductive sub-
group L of G acting on G/H properly and cocompactly if and only if there
exists a faithful representation p : [ — s((8,C) of a simple Lie algebra [ satisfy-
ing the following conditions:

(i

) p(I) C 50%(8) C 5I(8,C),
(ii) p

i)

v)

(1) is preserved by matrix adjoint,
(iii) Int(g)p,y Nb = {0},
(iv) d(L) = <G> —d() = 6.

Here the inclusion s0*(8) C s[(8, C) is realized by the standard inclusion which
is preserved by matrix adjoint.

Proof. This comes from Fact and [LZ18 O

Proposition 1.4.20. Suppose a pair ([, p) of a simple Lie algebra and its
representation satisfying the conditions (i) to (iv) of Lemma [[LZT9l Then (I, p)
is equivalent to (s0(6,1), pw,)-

Proof. From Lemma [[.4.23] and [[L4.26] it is enough to show p ~ 7
for the case (I, m)=(50(6,1), pw,). This comes from dim7 = dim p = 8. O

Lemma 1.4.21. Suppose a representation p : [ — sl(8,C) of a simple Lie
algebra [ satisfies the conditions (i) to (iv) of Lemma[l.ZT9l Let 7 be a nontrivial
irreducible component of p. Then 7 satisfies the following conditions:

(i) dimm <8,

)
(ii) rankg L =1, d(L) = 6,
(iii) dim7m >5=>7m~7"

v)

(i

Here 7 is the real structure on [¢ such that [ = [ and 6 is a Cartan involution
on [c.

~ 7 and indexy m = 1 and index, 7 = —1,

dim 7 + m(l) > 8 = rank7(X) = 8 for any X € pr, \ {0}.

Proof. (i) This is clear.
(i) This is clear from Remark [[2.16] Fact 218
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(iii) This comes from Lemma [[2:40

(iv) From Lemma[[2:37 and Remark [2.T4] it is enough to show that for X €
p, X € Ad(K)py <= rankn(X) < 7. We realize h = u(3,1) C s0*(8) as
follows:

50%(8) = {X €51(8,C) : JX = XJ,’X + X =0},
o 150*(8) — 50*(8),X — 1371;3’1Y1371;3)1,
u(3,1) :=s0"(8)°.

Then we have

ai bl
s A B i o as o b2 n.
pH_{Z(B _A)A_ as 7B_ b3 7a17b26R}
—ap —az —as —br —by —bs

cp={i (g _BA> A,B € Alt(4,R)}.
Adjoint action of K ~ U(4) on p ~ Alt(4, C) is equivalent to the action of
U(4) on Alt(4,C), (k, A) — kA% where k € U(4) and A € Alt(4,C). This
action preserves rank. By the description of p and py, the rank of X € p
is divided by four and X € Ad(K)pg holds if and only if rank X < 4.
Therefore we obtain X € Ad(K)py <= rank X <7 for X € p.

O

Remark 1.4.22. The rank condition (iii) of Lemma [[[4.2]] is preserved by
basis transformation. So we can discuss properness up to equivalent class of
representations.

Lemma 1.4.23. Suppose a representation p : [ — sl(8,C) of a simple Lie
algebra satisfies the conditions (i) to (iv) of Lemmal[lZZT9 and  is an irreducible
component of p. Then (I, 7) is equivalent to one of the following table.

Table 1.21: a pairs ([, ) of a simple Lie algebra and its irreducible
representation satisfying (i) and (ii)

[ 7 | dim7 | not satisfy
50(6,1) | o 7 (iii)
w3 8
su(3,1) | wy 4
wo 6 (iv)

Proof. This comes from the conditions (i) and (ii) of Lemma [[Z.2T] and Weyl’s
dimensionality formula. O

Lemma 1.4.24. Let p : s0(6,1) — s[(8,C) be a representation with the irre-
ducible component 7 ~ p,,. Then p does not satisfy the conditions (i) to (iv)
of Lemma [[.4.T9]
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Proof. We use Lemma [L42T[(iii). The assumption dimzx = 7 > 5 is satisfied.
However, we have index, 7 = 1. O

Lemma 1.4.25. Let p : su(3,1) — sl(8,C) be a representation with an irre-
ducible component ™ ~ p,. Then p does not satisfy the conditions (i) to (iv)

of LemmadI. 4,191

Proof. We use Lemma [[LZ2T|iv). The assumption dimm + m(l[) = 6+4 > 8
is satisfied. Take X := S14 € pr \ {0}. Then it is obvious that rank 7(X) < 6
holds from the dimension of . O

Lemma 1.4.26. Let p: su(3,1) — sl(8,C) be a representation of su(3,1) with
an irreducible component m ~ p,. Then p does not satisfy the conditions (i)
to (iv) of Lemmd.ZT9].

Proof. From Lemma [[L2:42] we have [7 : p] = [T : p]. Since we have po, % oy
and 2dim 7w = 8, we obtain p ~ 7 @ 7. Take 0 # S13 = E1 3+ E31 € pr. Then
we have rank p(S13) = 4. Therefore the L-action on G/H is not proper. O

1.4.4 (G, H)=(SO*(8), SO*(6) x SO*(2))
Our goal of this subsection is the following:

Proposition 1.4.27. Let G/H = SO*(8)/S0*(6) x SO*(2). There exists a
reductive subgroup L of G acting on G/H properly and cocompactly. Moreover,
L is locally isomorphic to Spin(1,6) up to compact factor.

Proof. This comes from Lemma [[.4.28] and Proposition [[.4.29 O

Lemma 1.4.28. Let G/H = SO*(8)/S0O*(6) x SO*(2). There exists a reduc-
tive subgroup of G acting on G/H properly and cocompactly if and only if there
exists a faithful representation p : [ — sl(8, C) of a simple Lie algebra [ satisfying
the following conditions:
(1) p(h) C s0*(8) C sl(8,C),

(ii) p(I) is preserved by matrix adjoint,

(iii) Int(g)p,my Nb = {0},

(iv) d(L) = (G)—d(H)=6~

Here the inclusion s0*(8) C s((8, C) is realized by the standard inclusion which is
preserved by matrix adjoint and L is the analytic subgroup of G corresponding

to p(I) C g.
Proof. This comes from Fact and [[2.T8 O

Proposition 1.4.29. Suppose a pair ([, p) of a simple Lie algebra and its
representation satisfying the conditions (i) to (iv) of Lemma [[LZ28 Then (I, p)
is equivalent to (s0(6,1), pws)-
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Proof. We can prove this proposition in the same way as Proposition [[.4.20]
because conditions key Lemma [[.4.30] and properness conditions are same as
the case G/H = SO*(8)/U(3,1). O

Lemma 1.4.30. Suppose a representation p: I — sl(8,C) satisfies the condi-
tions (i) to (iv) of Lemma [I.7 Let 7 be a nontrivial irreducible component
of p. Then 7 satisfies the followmg conditions:

(i

)
(ii) rankg L =1, d(L) = 6,
)
v)

dim7m <8,

(iii) dimm >5=m~7"

(i

Proof. We can prove this in the same way as Lemma [[LZ.2]] for the case G/H =
SO*(8)/U(3,1) in the previous subsection. O

~ 7 and indexy, 7 = 1 and index,, m = —1,

dim 7 + m(l) > 8 = rank7w(X) = 8 for any X € py, \ {0}.

145 (G,H)=(SO(8,C), SO(7,C))
Our goal of this subsection is the following:

Proposition 1.4.31. Let G/H = SO(8,C)/SO(7,C). Then there exists a
closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly. Moreover, L is isomorphic to Spin(1,7) up to compact factor.

Proof. This comes from Lemma [[L4.32] and Proposition [[4.33 O

Lemma 1.4.32. Let G/H = SO(8,C)/SO(7,C). If there exists a closed sub-
group which is reductive in G and acts on G/H properly and cocompactly if and
only if there exists a simple Lie algebra [ and its representation p : [ — s[(8, C)
satisfying the following conditions:

(i) p(f) C s0(8,C) Csl(8,C),

(ii) p(1) is preserved by matrix adjoint,
(iii) ar N Wag = {0},

(iv) d(L) = d(G) —d(H) =17.

Here the inclusion so(8, C) C sl(8, C) is realized by the standard inclusion which
is preserved by matrix adjoint and L is the analytic subgroup of G corresponding

to p(l) C g.
Proof. This comes from Fact and [LZ18 O

Proposition 1.4.33. Suppose a pair ([, p) of a simple Lie algebra and its
representation satisfies the conditions (i) to (iv) of Lemma [I4 Then (I, p)
is equivalent to (s0(1,7), pews)-
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Proof. From Remark and Lemma[T[.4.30] it is enough to consider the case
(I, m)=(s0(1,7), w3). From dimm = 8 = dimp and Lemma [[Z37 we obtain
T~ p. U

Lemma 1.4.34. Suppose a representation p : [ — sl(8,C) of a simple Lie
algebra [ satisfies the conditions (i) to (iv) of Lemma[[l432] Let 7 be a nontrivial
irreducible component of p. Then the following conditions are satisfied:

(i) dimn < 8,
(ii) rankg L =1, d(L) =7,
(iii) dim7 + m(l) > 8 = rankn(X) =8 for any X € py, \ {0}.
Proof. (i) This is clear from dim 7 < dimp = 8.
(if) This is clear from Remark and Fact [[218

(iii) From Lemma [[2237 and [LZT4] it is enough to show that for X € p =
i0(8), X € Ad(K)py <= rankw(X) < 7. This comes from that the
adjoint action of K on p = i0(8) preserves rank.

O

Remark 1.4.35. The conditions (i) and (ii) of Lemma [[Z34] imply that (I, 7)
is equivalent to one of the following:

[ ‘ m ‘ not satisfy
s0(1,7) | w1 (iii)
w3

Lemma 1.4.36. A pair of a simple Lie algebra and an irreducible component
of p satisfies the conditions (i) to (iii) of Lemma [[Z:34] then (I, ) is equivalent
to (s0(7,1), puws)-

Proof. From Remark [[LZ30] it is enough to show that the pair (s0(7,1), pw,)
does not satisfy the condition (iii) of Lemma [[434 Put X = i(E; s — Es 1) €
Pso(7,1) Then we have rank 7(X) = 2. O

1.4.6 (G, H)=(SO(8,C), SOy(7,1))
Our goal of this subsection is the following:

Proposition 1.4.37. Let G/H = SO(8,C)/SOy(7,1). Then there exists a
closed subgroup L of G which is reductive in G and acts on G/H properly and
cocompactly. Moreover L is locally isomorphic to Spin(7,C) up to compact
factor.

Proof. This comes Lemma [[.4.38 and Proposition [[.4.39] O

Lemma 1.4.38. Let G/H = SO(8,C)/SO¢(7,1). There exists a reductive
subgroup of G acting on G/H properly and cocompactly if and only if there
exists a reductive Lie algebra [ and its faithful representation p : [ — sl(8,C)
satisfying the following conditions:
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Here the inclusion so(8, C) C sl(8, C) is realized by the standard inclusion which
is preserved matrix adjoint and L is the analytic subgroup of G corresponding

to p(l) C g.

Proof. This comes from Fact and [LZ.18 O
Proposition 1.4.39. Let G/H = SO(8,C)/SO(7,1). If a pair (I, p) of re-
ductive Lie algebra and its representation satisfies the conditions (i) to (iv) of

Lemma [[Z32] then ([, p) is equivalent to (so(7,C), po,Xtriv) up to compact
factor.

Proof. This comes from Remark [[4.40] Lemma [[.4.44] and [[4.47] (see
Outline of the proof for the case rankg G — rankg H > 2 in Section [[2.H). O

First we reduce candidates by upper bound of the dimension of representa-
tions by the following:

Remark 1.4.40. Suppose a representation p : [ — s[(8,C) of a reductive Lie
algebra [ satisfies conditions (i) to (iv) of Lemma [[4Z338 and 7 is an irreducible
component of p|;,. Then 7 satisfies dim 7 < 8.

From Weyl’s dimensionality formula, we have the following list of pairs of a
simple Lie algebra and its irreducible representation 7 satisfying dim 7 < 8:
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Table 1.22: pairs of simple Lie algebras [ and their irreducible representations
7 which satisfy dim7 < 8.
[ T not satisfy
5l(n,C) (5<n<8) w1 X triv (1)
5l(n,C) (2<n<4) w1 X triv (i)
sl(4,C) wol triv (ii)
s((3,C) (w1 + wa)X triv (ii)
s[(2,C) kw1 X triv (ii)
su(4,4) w1 (1)
su(4,0) (1<£<3) w1 (iv)
su(k,0) (1<£<k<3) w1 (ii)
sl(n,R) (5 <n <8) w1 (i)
sl(n,R) (2<n <4) w1 (i)
su*(2n) (3 < n <4) w1 (iv)
5u*(4) w1, W2 (ll)
su(k,f) (k+£=4) ws (i)
sl(4,R) wo (ii)
sl(3,R) w1 + @y (i)
511(2, 1) w1 + w2 (ll)
sl(2,R) kwp (1<k<T) (ii)
50(7,0C) w1 Xtriv (v)
s50(5,C) w1 X triv (ii)
s0(7,C) w3 triv
s0(5,C) w3 triv (ii)
so(k, ) (k+4=T7) w1, W3 (ii)
Eﬁ(k,é) (k + 0= 5) w1, W2 (ll)
sp(4,C) w1 Mtriv (i)
sp(3,C) w1 Mtriv (iv)
(4, R) = 0
sp(k,0) (k+¢=14) w1 (iii)
s5p(3,R) w1 (ii)
sp(2,1) w1 (iv)
s0(8,C) w1 Ktriv (i)
50(4,4) w1, W3, W4 (1)
50(5,3) w1, W3, W4 (ll)
50(6,2) w1, W3, Wy (ii)
50(7, 1) w1, W3, W4 (111)
50*<8) w1, W3, W4 (ii)
05 w1 Ntriv (iii)
92(2) w1 (i)

Next, we reduce candidates of pairs of primary simple factor [, and its irre-
ducible representation 7 by using the following;:

Lemma 1.4.41. If a representation p : [ — s[(8, C) of a reductive Lie algebra [
satisfies conditions (i) to (iv) of Lemma [[Z38 then irreducible components 7
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of p|y, satisfy the following conditions, where [; is the primary simple factor of
[:

(i) rankg L1 <3

)
(i)
(i)
)
)

d(L1)
rankR L1 ’

7<

dimm >7 = d(L;1) — rankg L1 > 18,
(iv) dim7 >5 = 7¥ ~ 7 and indexy, ™ = 1,
(v

Here m(ly) := min{dim#’ : 7’ is a nontrivial irreducible representation of [y }
and 60 is a Cartan involution on (I1)c.

dim7 +m(ly) > 9 = rankn(X) > 3 for any X € p, \ {0}.

Proof. (i) This is clear from Remark [[2.14] and [[2.16

(ii) From Lemma [[443] we have dim7 < dimp = 8 < r;fl(lgz)ss +1 <
d(L1) 1
rankg L1 + 1

(iii) If the number of simple factors in [*¢ is greater than or equal to two, then
we have dim 7+ 2 < dim p = 8. So, we have [** = I if dim7; > 7. In this
case, the equality 21 — d(L1) < 3 — rankg L7 holds from Lemma

(iv) This comes form Lemma [[L2Z40)

(v) It is enough to show p|;, = w®triv if the inequality dim m+m([1) > 9 holds.
We show the contraposition. If there exists another irreducible component

7" in p|(,, we have dim7+m(l;) < dim7+dim 7’ < dim p|;, = dimp = 8.

O

The following lemma comes from Remark [[.L2.T6] immediately.

Lemma 1.4.42. Suppose a representation (p, V') of [ satisfies conditions (i) to
(iv) in Lemma [[LZ:38] then the following inequalities hold:

rankg L*° + ¢t < 3(= rankg G — rankg H),
d(L*®) +t =21(=d(G) — d(H)).

Here ¢ := dim p(3) ™% and 3 is the center of [ and 6 is a Cartan involution on g
such that 0(p(1)) = p(1).

Lemma 1.4.43. There exists t > 0 such that

rankg L%+t <3
d(L**)+t =21

if and only if 0 < 21 — d(L*%) < 3 — rankg L°°, which implies dimp = 8 <
d(LSS)
rankp L% + 1.
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This can be easily checked by a fundamental argument on inequalities. So,
we omit the proof.

By using Lemma [[LZ4]], we obtain the candidates of pairs of a primary
simple factor [; and its irreducible component of p|y, :

Lemma 1.4.44. Suppose a representation p : [ — s[(8,C) of a reductive Lie
algebra [ satisfies conditions (i) to (iv) of Lemma [[4.38 and  is an irreducible
component of p|,, where [; is the primary simple factor of I. Then (I3, 7) is
equivalent to one of the following Table 1.23:

Table 1.23: pairs of simple Lie algebras [ and their irreducible representations
7 which satisfy the conditions (i) to (v) Lemma [[Z4]] with dim 7 < 8.

[1 ‘ ™
50(7,C) | wsXitriv

Proof. This comes from Remark [[L4.40] and Lemma [[.Z.41] and Tables 1.22, 24,
95, 26, 27, 28. O

Table 1.24: pairs of simple Lie algebras [ and their irreducible representations
7 which do not satisfy the condition (i) of Lemma [[.44T]

[ T rankg L
sl(n,C) (5<n<8) | @ triv n
su(4,4) w1 4
sl(n,R) (5<n <8) w1 n
sp(4,C) w1y Ktriv 4
5}3(47 R) w1 4
50(8,C) w1 Ktriv 4
50(4,4) w1, W3, Wy 4
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Table 1.25: pairs of simple Lie algebras [ and their irreducible representations
7 which do not satisfy the condition (ii) of Lemma [[.Z.4T]

[ ™ M1

sl(n,C) (2<n<4) w1 X triv n+1
5((4,C) wol triv 5
5[(3,@) (wl + ’WQ)@ triv 4
50(2,C) kw1 X triv 3
su(k,f) (1 <l<k<3) w1 2k
sl(n,R) (2<n <4) w1 nt2
su*(4) w1 5
su(k,?) (k+(=4) ) 2k
s((4,R) ws 3
5u*(4) w2 )
5[(3,R) w1 + w2 %
5u(2, 1) w1 + o 4
sl(2,R) ko 1<k<T) 2
50(5,C) w1 X triv 5
50(5,C) w3 triv 5
EO(R,E) (k +/= 7) w1, W3 k
so(k,f) (k+£=05) w1, Wo k
5p(3,R) w1 4
50(5,3) w1, W3, W4 5
50(6,2) w1, W3, W4 6
50*(8> w1, W3, W4 6
92(2) w1 4

Table 1.26: pairs of simple Lie algebras [ and their irreducible representations
7 which do not satisfy the condition (iii) of Lemma [[4.4]]

[ | ™ | dim7 | d(L) — rankg L
sp(k,0) (k+4=4) w1 8 4k — ¢
s0(7,1) w1, W3, W4 8 6
a5 w1 Ntriv 7 12

Table 1.27: pairs of simple Lie algebras [ and their irreducible representations
7 which do not satisfy the condition (iv) of Lemma [[Z4T]

[ ‘ T ‘ dim ‘ selfdual?
su(4,¢4) (1<¢<3) w1 447 Tty
su*(2n) (3<n <4) w1 2n Tty

5p(3,0) o Xtriv 6 indexg (o Ktriv) = —1
sp(2,1) w1 6 indexg wy = —1
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Table 1.28: pairs of simple Lie algebras [ and their irreducible representations
7 which do not satisfy the condition (v) of Lemma [[Z.41]

[ ‘ T ‘ not satisfy
50(7,C) | @1 Xtriv | (v)

Next, we determine the pair (*%, p|i«) as follows:

Lemma 1.4.45. (I°*5,p

1ss) is eqivalent to one of the following Table 1.29

Table 1.29: pairs of semisimple Lie algebras [** and their representations p

[ss.

[SS ‘ p|[ss
50(7,C) | wsXitriv

Proof. This comes from Lemma [[Z44] and dim 7 = 8. O

Lemma 1.4.46. If irreducible component 7 of p|, satisfies dim7 = dim p = 8,
then we have ¥ = [; and p|i= = 7.

Proof. 1*® = [; comes from Lemma[[.2.39and p|ss = 7 comes from Lemma[l.2.37
p

O
Finally we determine the pair (I, p) as follows:
Lemma 1.4.47. (I, p) is equivalent to one of the following Table 1.30:
Table 1.30: candidates of pairs of reductive Lie algebras [ and their
representations p.
[ ‘ P
50(7,C) | wsXitriv
Proof. This comes from Lemma and Remark [[4.48] O

Remark 1.4.48. If rankg L®*® = rankg G — rankg H, then L = L*° up to
compact factor.

Remark 1.4.49. To show [** = [ up to compact factor, it is enough to prove
dim p(3)~% = 0. Here 3 is the center of [ and 6 is a Cartan involution on g such

that 0(p(1))  p(1).

1.5 Classification of embeddings of [ up to Int(g)

To solve Problem C’; we classify reductive subalgebras [ C g which induces
proper and cocompact action on G/H up to conjugate by Int(g). In Sec-
tion and [[L4] we classified reductive subalgebras in the representation level,
namely up to conjugate by Ad(SL(n,C)) or Ad(GL(n,R)), where g C sl(n,C)
or gl(n,R) is a natural realization. In the representation level, we identify [ and
I which are not conjugate by Int(g) but are conjugate by Ad(SL(n,C)) ( or
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Ad(GL(n,R)) ). To distinguish them, it is enough to investigate the inverse
image of the following maps ®¢ and Pg, where ¢ : g — sl(n,C) or gl(n,R) is a
fixed realization.

D¢ : D(I, g) := Int(g)\ Homg(l, g)/ Aut(l) = Ad(SL(n,C))\ Homg(l, sl(n,C))/ Aut(l) =: D(I,sl(n,C))
[w] = [1o =]

O : D(I, g) := Int(g)\ Homg(l, g)/ Aut(l) = Ad(GL(n,R))\ Homg (L, sl(n,R))/ Aut(l) =: D([, sl(n,R))
[w] — [i o w]

Here Homg(l,g) := {f : [ = g : f is an injective homomorphism}, and Aut([)

acts on Homg([, g) as follows:

Homyg (I, g) x Aut(l) — Homy([, g)

(fia) = foa

1.5.1 general method

We want to determine the set @z ([t 0 pg]) for (g, [, po) in Table 1.31, where po
is the element of Homy([, g) which induces proper and cocompact L-action on
G/H. Here we consider a realization G C SL(n,C) or G C GL(n,R). For our
purpose, we use some methods (Lemma [[57] [[5.2) 53] and [CE5).

Lemma 1.5.1. Let 7 be an involution on SL(n,C). Put G := SL(n,C)7,
g := Lie(GQ), 7 := d7 : 5l(n,C) — sl(n,C) and
M = {g € SL(n,C) | g~'7(g) € End,,)(C")}.

Let F' be a set of generators of M as a Gp-set. Then we have

@ ([0 po]) = {[Ad(f)po] | f € F}.

Proof. First, we prove @z ([topo]) D {[Ad(f)po] | f € F}. It is enough to show
that ®c([Ad(f)po]) = [t © po] for any f € F, namely, there exists g € SL(n,C)
such that Ad(g) Ad(f)po(l) = po(l). By taking g := f~1 € SL(n,C), we get the
desired equality.

Next, we prove 021 ([u o po]) © {[Ad()po] | f € F. Let [¢] € 95 ([t po).
Then there exists g € SL(n,C) such that Ad(g)po(l) = ¢(I) C g = sl(n,C)7,
that is, Ad(¢g~'7(g))X = X for any X € po(l). Therefore we have g € M. From
the definition of F', there exist gg € Gy and f € F such that g = gof. Thus we

have Ad(go) Ad(f)po(l) = ¢ (1), namely, [¢] = [Ad(f)po]- L

Lemma 1.5.2. Let 7 be an involution on GL(n,R) such that 7(SL(n,R)) =
SL(n,R). Put G := SL(n,R)7, g := Lie(G), 7 := d7 : gl(n,R) — gl(n,R) and

M ={g € GL(n,R) | g~'7(g) € End,,(y(R")}.
Let F' be a set of generators of M as a Gp-set. Then we have

D" ([to po]) = {[Ad(f)po] | f € F}.
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This can be proved in the same way as Lemma [[L5.1l So, we omit the proof.
Lemma 1.5.3. Let 7; : SL(n,C) — SL(n,C) be involutions (i = 1,2) such

that 7172 = 7»71. Put G := (SL(n,C)™)™, g := Lie(GQ), 7; := d7; : sl(n,C) —
sl(n,C) and

M :={g e SL(n,C) | g"'7i(g) € End,,y(C") (i =1,2)},

where M admits Gy-left action. Let F' be a set of generators of M as a Gy-set.
Then we have

@ ([0 po]) = {[Ad(f)po] | f € F}.

This can be proved in the same way as Lemma [[L5.1l So, we omit the proof.
For cases where pq is irredusible, the following fact is useful:

Fact 1.5.4 ([Ta96, Theorem 8.7]). Let [ be a real Lie algebra, p : [ — gl(V)
its complex irreducible representation and r : | — gl(E) the corresponding
irreducible real representation by Cartan’s fundamental theorem. Then we have

End,y(E) := {f € End(E) : fr(X) =r(X)f for all X €[}
R if p ~p and index, p = 1,
~ cHif p~p and index, p = —1,
Cif p#£p.
Here 7 is the involution on [¢ such that [ = [.

Lemma 1.5.5. Let G be a connected linear reductive Lie group and g its
Lie algebra. Fix a Cartan involution on g. Let [; (i = 1,2) be semisimple
subalgebras of g such that 0([;) = [;. If there exists an element « € Int(g) such
that a(l;) = Iy, then there exists an element k € K = G such that Ad(k)l; = [5.

Proof. Take eXk € G such that o = Ad(eXk). Then we have Ad(eX)(Ad(k)p;) =
po C p and Ad(k)p; C p. From Fact[[5.6, for any H € Ad(k)p1, Ad(eX)H = H
holds. Therefore we have Ad(k)py = po. Since we have I; = [p;, p;] + p; from
semisimplicity of [; (i = 1,2), we obtain Ad(k)l; = lo. O

The following fact, which is used in the proof of the above lemma, was proved
by Takayuki Okuda in his master thesis.

Fact 1.5.6. Fix H € p. Take Hy € p. If exp(ad(Hp))H € p holds, then
exp(ad(Hy))H = H holds.

Proof. Let 6 be the Cartan involution on g. Since exp(ad(Hy))H € p holds, we
have O(exp(ad(Hy))H) = —exp(ad(Hp))H. On the other hand, we have

O(exp(ad(Ho))H) = exp(ad(6(Ho)))0(H)
= exp(ad(—Ho))(—H)
= —exp(ad(—Hy))H.
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Therefore, we have H € ker(exp(ad(Hp)) — exp(ad(—Hp))). Since all the
eigenvalues of ad(Hp) are in R and ad(Hp) is diagonalizable, exp(ad(Hp)) —
exp(ad(—Hp)) acts on Vy as a scalar e® — e™*, where Vj is A-eigenspace of
ad(Hyp). So, we have H € ker(ad(Hp)). Thus we obtain exp(ad(Hp))H = H. O

We consider the cases which appear in the classification of (g,b,[) in the
level of representation. Let py be an embedding of [ into g induced by the fixed
representation which induces proper and cocompact action of L on G/H. In
the following table, the number of ®;'([po]) means the number of embeddings
which is distinguished by Int(g). We see what kinds of embeddings appear in
the following subsections.

Table 1.31: The cardinarity of the inverse image ®5 ' ([tpo]) for reductive
subalgebras [ which induce proper and cocompact action on G/H

g [ o ([1p0)) b
su(2p,2) | sp(p,1) (p>1) one point u(2p, 1)
su(2p.2) | su(2p.1) (p > 1) {tWO polnts 170 =7 sp(p, 1)

one point if p > 2
50(2p,2) | so(2p,1) (p > 2) one point u(p, 1)
s0(2p,2) | su(p,1) (p>2) two points 50(2p, 1)
s0(4p,4) | sp(p,1) (p>1) four points s0(4p, 3)
$0(8,8) spin(1, 8) four points 50(7,8)
50(4,4) spin(3,4) four points 50(4,1) @ so(3)
s0(4,3) 92(2) two points 50(4,1) B so(2)
50(8,0C) spin(1,7) two points 50(7,C)
50(8,C) spin(7,C) two points s0(7,1)
s0*(8) spin(1,6) one point u(3,1)
50%(6) B 50%(2)

We describe all the points in @' ([¢po]) in the following subsection for each
pair (g, po(l)).

1.5.2 (g,0) = (su(2p,2),sp(p, 1)) (p 2 1)

In this subsection, we consider the case (g, [)=(su(2p, 2), sp(p, 1)) for the sym-
metric pair (g, h)=(su(2p,2), u(2p,1)). From Proposition [[43] it is enough
to consider the standard representation py := pgm, : sp(p,1) — su(2p,2) C
s[(2p + 2,C). Our goal of this subsection is the following:

Proposition 1.5.7. &' ([po]) € D(I, g) consists of one point, namely, &z ([po]) =

{[po]}-

We realize G = SU(2p,2) := SL(2p+2)7, g = su(2p,2) :=sl(2p +2,C)™ by
the following involutions 7, 7. Let pg : [ — g be the standard embedding, which
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image po(l) = sp(p, 1) C su(2p,2) is described as follows.

7:SL(2p+2,C) — SL(2p+2,C),
9 Topag" Iy
7:5l(2p+2,C) — sl(2p + 2,C),
X = —Ipp 2 XI5},
o :su(2p,2) — su(2p,2)

-1
(Y « (Jp
o () ()

sp(p, 1) = su(2p, 2)”
Proof of Proposition [I.5.7. We use Lemma [[5.11
Claim.

) SU2,2) {ly, @ J}ifp=1
CSU(2p,2) ifp>2

proof of Claim. The inclusion D is clear by definition. We show the inclusion

C. Let g € M. Since we have End,,)(C**2) = Clsp42 from Lemma [[5.8

we have 7(g) = ag, that is, ag*ls, 29 = Iz 2 for some a € C*. By taking

determinant and adjoint, we have a € {1}. In the case p > 2, from Sylvester’s

law of inertia, we obtain that @ = 1, that is, g € SU(2p,2). In the case p =1
and a = —1, we have gJ; ' € SU(2,2), namely, g € SU(2,2)(I> ® J). O

From the above Claim, we can take F' of Lemma [[.5.1] as follows:

o s, hbeJtifp=1
{I2p+2} 1fp 2 2

Since Ad(J2) preserves sp(1, 1), we have the desired conclusion from Lemma[[5.1]
O

Lemma 1.5.8. We have
Endpo([)((c2p+2) ={alyp9:a€C}~C.

Proof. This comes from Schur’s lemma over C and that the representation ¢pg :
sp(p, 1) — su(2p,2) C sl(2p + 2, C) is irreducible. O

1.5.3  (g,1) = (su(2p,2),5u(2p, 1)) (p = 1)

In this subsection, we consider the case (g,[) = (su(2p,2),s5u(2p,1)) (p > 1)
for a symmetric pair (g, h)=(su(2p,2), sp(p,1)). From Proposition [L3TH it
is enough to consider the standard representation pg = p, ®triv: su(2p,1) —
su(2p,2) C sl(2p+2,C). Our goal in this subsection is the following:
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Proposition 1.5.9. We have

L [l w22,
D (e pOD_{{[pO],[Ad(JQ),OO]} (p=1).
—1I

Here J; := <12 2)'

We realize G = SU(2p,2) = SL(2p +2,C)7, g = su(2p,2) = sl(2p + 2,C)7
by the following involutions 7, 7:

7:SL(2p+2,C) = SL(2p+2,C), g — Ipp2g" ' 13,),
T:8l(2p+2,C) > sl(2p+2,C), X — —Ip 2 XI5 ).
We fix pg : su(2p, 1) — su(2p, 2) as follows:

Po : 5u(2p, 1) - Su(2pa 2)7
X
X = < 0) .

End,, ) (C*?) = {(GIZ”“

Lemma 1.5.10. We have

b) e M(2p+2,C):a,beC}.

Proof. This immediately comes from Schur’s lemma over C. O

Proof of Proposition[.5.9. We use Lemma [[.5.11

Claim.
) SU(2,2) - {14, I, ® J} - {diag(als,a™?) :a > 0} if p=1
| SU(2p,2) - {diag(alapi1,a” 2P 1) s a > 0} if p > 2

proof of Claim. The inclusion D is clear by definition. We show the inclusion
C. Let g € M. From Lemma [L5.I0 there exist a,b € C such that ¢g~'7(g) =

<a12p+1

b= q—(2p+1),

b)' By taking matrix adjoint and determinant, we obtain a,b € R*,

e in the case p > 2: By Sylvester’s law of inertia, we have a > 0. Then we
have Iy, o = g*Izp 0g diag(a, -+ ,a,a *71) < gdiag(v/a, - ,va,Va 1) €
SU(2p,2). So, there exists an element go € SU(2p,2) such that g =

g0 diag(\/aa Ty \/av Vv a72p71)*1.

e in the case p = 1: If a > 0, we get g € SU(2,2) - {diag(alz,a™3) : a > 0}
in the same way above. If a < 0, we have

9*12,29 diag(aa a, a, a—3) = 12,2

> (gdiag(v/—a,vV—a,vV—a,V—a=3)Jy ) I, 2(g diag(v/—a, vV—a,vV—a,\/ —a=3)Jy ) = Izs.
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Therefore, we get g diag(v/—a, v—a,/—a, \/—a_?’)J{l € SU(2,2), namely,
g€ SU((2,2) - {Iy® J} - {diag(al3,a™3) : a > 0}.

O

From the above Claim, we can take F' of Lemma [[.5.1] as follows:

{I4, I, ® J} - {diag(alz,a=3) :a >0} if p=1
{diag(alopt1,a™?P71) 1 a >0} if p>2

Since Ad(diag(alzp+1,a™%)) preserve the image po(l) for p > 1, it is enough
to show the following:

Claim. [pg] # [Ad(J2)po] € D(I, g), namely, po(l) = su(2,1) is not Int(su(2,2))-
conjugate to Ad(J2)po(l).

proof of Claim. Assume there exists an element g € SU(2,2) such that g~ 'su(2,1)g =
Josu(2,1)J, 1. Put X = idiag(0,0,1,—1) € Josu(2,1)J,*. Then we have

gXg~! € su(2,1). We describe g = (A B

c D) Then by direct calculation, we

have

-1 Bdiag(—l, 1)B* Bdiag(L —l)D*

So there exists d’ € R such that D diag(1, —1)D* = diag(id’,0). But Since D is
in GL(2,C) by Remark [L5TT] this is contradiction.

Remark 1.5.11. For g = (A B

C D) € SL(4,C), A,B,C,D € M(2,C), we have

. A*A—C*C A*B—C*D
gESU(2,2)<:>gI2’Qg:I2,2<:> ( >_122

B*A-D*C B*B—-D*D

So, we have D*D = I, +B*B € Herms(2,C) = {H € Herm(2,C) : det H > 0}.

1.5.4 (g,l) = (s0(2p,2),s0(2p,1)) (p > 2)

In this subsection, we consider the case (g, [)=(s0(2p,2), s0(2p,1)) (p > 2) for
the symmetric pair (g,5) = (so(2p,2),u(p,1)). It is enough to consider the
representation p ~ pg, @triv: [ — sl(2p + 2,C) from Proposition The
representation pn, Gtrivial factors so(2p,2), so we denote the embedding into
50(2p,2) C sl(2p + 2,R) by pg. Moreover, such pg is unique up to equivalence
class as a real representation of so(2p, 1) by Cartan’s fundamental theorem (see
Appendix [[L63]). Our goal in this subsection is the following:
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Proposition 1.5.12. ®;'([t o po]) is a one point set, namely, ®z*([¢ 0 po]) =

{[po]}-
We realize G = SO(2p,2), g = s0(2p, 2) as follows:

7:GL(2p+2,R) - GL(2p + 2, R),

g Izp,2t9711'27,;1,2,

G :=SL(2p+2,R)7,

T:8(2p+ 2,R) — sl(2p + 2, R),

T(X) = =Ly ' X1, )
s50(2p,2) :=sl(2p+ 2,R)".

Moreover, we realize pg, @triv as follows:
50(2p, 1) — s0(2p,2) C sl(2p + 2,R)
X
X = ( 0)
Lemma 1.5.13. we have

End,,, <R2p+2) — {(a12p+1 b) € M(2p+2,R):a,beR}.

Proof. This immediately comes from Schur’s lemma over R (Fact [L5.4). O

Proof of Proposition[.5.12. We use Lemma [[5.2]

Claim. M = 500(2])7 2)'{12p+2a diag(Igp,l, —1, 1, 1), diag([2p+1, —1), diag(Igp,l, —17 1, —1)}
{diag(al2pt1,b) : a,b > 0}.

proof of Claim. The inclusion D is clear by definition. We show the inclusion
C. Let g € M. From Lemma [[5.13] there exists a,b € R such that ¢g='7(g) =

<a12p + b>’ By Sylvester’s law of inertia, we have a > 0 and b > 0. Therefore

we have g diag(y/alzpi1, Vb) € O(2p,2), which implies the desired conclusion.
O

From the above Claim, we can take F' of Lemma as follows:
F = {Igp+2, diag(Igp_l, —1, 17 1), diag([2p+1, —1), diag(Igp_l, —1, 1, —1)} . {diag(a12p+1, b) ta, b> 0}

Here, Ad(z) (z € {I,diag(I2p—1,—1,1,1),diag(lop+1, —1), diag(lzp—1,—1,1,—1)})
and Ad(diag(v/alops1, VD) (a,b > 0) preserve po(l). Therefore, we obtain
@5 ([t o po]) = {[po]} from Lemma O

68



1.5.5 (g,1) = (s0(2p,2),s5u(p,1)) (p=2)

In this subsection, we consider the case (g,[) = (s0(2p,2),su(p,1)) (p > 2)
for the symmetric pair (g, h)=(s0(2p,2), so(2p,1)). It is enough to consider
the irreducible representation py = (pw, )r over R from Proposition [[33] and
Remark [[L2.44] and Lemma Our goal in this subsection is the following:

Proposition 1.5.14. &' ([po]) consists of two points. Moreover, the two points
are given as follows:

{lpol, [Ad(diag(l2p-1, —1, I2))po] }-

We realize G = SO(2p,2), g = s0(2p, 2) in the same way as Subsection [[5.4]
and realize su(p,1) C so0(2p,2) as follows:

o :50(2p,2) — s0(2p,2),
X = (J@ L) X(J ® L),

p+1
su(p, 1) = {X = (mi,j) S 50(2]7, 2)6 : Zx%,%—l = O}
1=1

From Fact [[54] and the realization of su(p, 1), we have

Lemma 1.5.15.
Endpo([) (R2p+2) = {a12p+2 + le &® Ip+1 La, be R} ~ C.

Proof of Proposition [1.5.17} We use Lemma [[.5.7]

Claim. M = SOy (2p,2)-{Isp+2,diag(lop—1,—1,1,1),diag(Iops1, —1), diag(lop—1,—1,1,—1)}
{a[2p+2 ta > 0}

proof of Claim. The inclusion D is clear by definition. We show the inclu-
sion C. Let ¢ € M. From Lemma [[5I5] there exist a,b € R such that
g oy ol op o = alopio+bJ1 ®1,41. By taking transpose and Sylvester’s law
of inertia, we have b = 0 and @ > 0. Therefore we obtain g € O(2p, 2)\/671I2p+2,
which implies the desired conclusion. O

From the above Claim, we can take F' of Lemma as follows:
F= {12p+2; diag(IQ;D—la -1,1, 1)3 diag(IQP-‘rlﬂ 71)3 diag(IQP—lv -1,1, 71)} : {diag(aIQP-‘r?) ta > 0}

Here Ad(alapy2) preserves po(l) for a > 0. From Lemma [I5.106] po(l) and
Ad(diag(l2p—1, —1, I2))po(l) is not Int(g)-conjugate. Moreover,

e In the case p is even: Ad(diag(lap,1,—1))po(l) is conjugate to po(l) and
Ad(diag(I2p—1,—1,1,—1))po(l) is conjugate to Ad(diag(l2p—1, —1, I2))po(l).

o In the case pis odd: Ad(diag(Izp, 1, —1))po(l) is conjugate to Ad(diag(I2p—1, —1,I2)
and Ad(diag(lzp—1,—1,1, —1))po(l) is conjugate to po(l).
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Thus, we obtain the desired conclusion.
O

Lemma 1.5.16. Ad(diag(I2p—1,—1,12))po(l) is not Int(g)-conjugate to po(l).
Proof. Let 0 be a Cartan involution 6 on g as follows:
6:9—g X — —X.

Put pr = (Ad(diag(I2p—1,—1,12))po(1)) . Assume Ad(Iz,—1,—1,12))po(1)
is Int(g)-conjugate. Then, there exists k € K = SO(2p) x SO(2) such that
Ad(k)pL =P = Ad(diag(Igp,l, —1, Ig))pL, that is Ad(k71 diag(Igp,l, —1, IQ))]JL =
pr. This is contradiction by Lemma [[5.T8 O

Lemma 1.5.17. Ad(diag(lsp,1,—1))po(l) is Int(g)-conjugate to po(l) if and
only if p is even. Moreover, Ad(diag(lzp—1,—1,1,—1))po(l) is Int(g)-conjugate
to po(l) if and only if p is odd.

Proof. We can prove “Moreover part” in the same way as tha former part. So,
we only prove the former part. Let 6 be a Cartan involution 6 on g as follows:

0:9—g X —'X.
Then po(l) and Ad(diag(I2p, 1, —1))po(l) are f-stable and their noncompact part
pr = po(1)~? and pr. := (Ad(diag(lap, 1, —1))po(1))~? are described as follows:
_ (v, (J @ L)v)Y 2p
pL_{(t<,U7(J®Ip)U) cv € RPY,
pr = Ad(dlag(S, T 7S7 IQ))F‘L

Here S := diag(1, —1), S apears p times in diag(S, - - - , S, S, I2). From Lemmal[l[:5.5]
we have

Ad(diag(Iap, 1, —1))po(l) is Int(g)-conjugate
<= there exist k € SO(2p) x SO(2) such that Ad(k)pr =pr
<= there exist k € SO(2p) x SO(2) such that Ad(kdiag(S,---,S,12))prL =pr
<= pis even.

Here, in the last implication, we used Lemma [[.5.18]
O

Lemma 1.5.18. Put p;, := po(I)™% and A = {g = (g1,k2) € GL(2p,R) x
SO(2) : Ad(g)pr = pr}. Then we have

A={(g1.}2) €02p) x SO2) : g:(J © 1) = (J ® T,)gn}.

In particular, we have det g1 > 0 if g = (g1, k2) € A.
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Proof. “In particular” part is clear from the description of A. So, we show
the former part. We can easily check that Ad(I,,ks2)pr = pr. Therefore for
(g1, ko) € GL(2p,R) x SO(2), we have

Ad(g1,k2)pr = pr,
d(g1, I2)pr =1,

€ py, for all v € R?P,

g1(v, (J & Ip)v)>

for all v € R??,

A
{91(J ® L)v=(J® I,)g1v,

1.5.6 (g,1) = (so(4p,4),sp(p,1)) (p 2 1)

In this subsection, we consider the case (g, ) = (s0(4p,4),sp(p, 1)) for the sym-
metric pair (g, h)=(so0(4p,4), so(4p, 3)). It is enough to consider the irreducible
representation pg = pm, : $p(p,1) — s0(4p,4) over R from Proposition [[3.3]
Remark [[2.44] and Lemma Our goal in this subsection is the following:

Proposition 1.5.19. ®3'([po]) consists of four points. Moreover, the four
points are given as follows:

{[pOL [Ad(dia‘g(l‘lp—la 717 14))/)0]7 [Ad(dlag(l‘lpa 135 71))p0]7 [Ad(diag(l‘lp—la 717 I3a

We realize G = SO(4p,4) = SL(4p + 4,R)7, sp(p,1) C so(4p,4) = sl(4p +
4,R)7 as follows:
sl(dp+4,R) = sl(4p+4,R), X — —Lyp ' X1, ",
:GL (4p—|—4 R) = GL(4p+4,R), g — Lipa'g ' I,
1:50(4p,4) = s0(dp,4), X = (J@ L@ [,1)X(J R L ® 1),
4) = s0(dp,4), X = (S@J @ ,11)X(S®@J @ I41) ",
) == (s0(4p,4)7")72,

o2 : 50(4p,
sp(p, 1
By

—1))pol}-

pL — B . B; € Respan{ly, J® 8,1 ® J,J ® T}

‘B, ... 'B,

1
1
tion of sp(p, 1), we have the following:

Here S = diag(1,—1),T = € GL(2,R). By Fact [[54] and the realiza-
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Lemma 1.5.20.
End,,, ) (R 1) = R-span{lup 44, JOI®I,11, SRIRIp11, TRJIDI,1 1 € M(4p+4,R)}.

Proof of Proposition[.5. 19 We use Lemma [[.5.2)

SOo(4p, 4) - {1apta,diag(lap—1, —1, L), diag(lap, Is, —1), diag(lap—1, —1, I3, —1)}
f{alypyaia >0} ifp > 2

Claim. M =
SO0o(4,4) - {Is, diag(I3, —1, 1), diag(I4, I3, —1), diag(l3, —1, I3, —1)}
falg:a>0}-{Is, J4u} if p=1.

proof of Claim. The inclusion D is clear by definition. We show the inclu-
sion C. Let g € M. From Lemma [[.L5.20] there exist a,b,c,d € R such that
971]4p74t971[4p74 = aI4p+4 +bJRI® Ip+1 +eSRJR Ip+1 +dT®J ®Ip+1. By
taking matrix transpose, we have b = c=d = 0.

e In the case p > 2: By Sylvester’s law of inertia, we obtain a > 0. therefore
we have g € O(4p, 4)\/671I4p+4, which implies the desired conclusion.

e In the case p = 1: we have {(/|a|g)Is4(\/|alg) = Is4 or —I44, namely,
g€ 0(4,4)/] |_1 -{Is, J4}, which implies the desired conclusion.

O

From the above Claim, we can take F' of Lemma [[.5.2] as follows:

{Lsp+a, diag(lsp—1, —1, 1), diag(Lsy, I3, —1), diag(lsp—1, —1, I3, —1)}
{diag(alspta) :a >0} if p > 2,

F =
{Is, diag(Is, —1, 1), diag(l4, Is, —1), diag(Is, —1,I5,—1)}
{diag(als) :a >0} - {Is, Ja} if p=1.

Since Ad(alyp+4) (a > 0) preserves po(l) for p > 1 and Ad(Jy) preserves po()
for p =1, it is enough to consider Ad(f)po for f € {Iip+a, diag(lyp—1,—1,I4),
diag(lup, I3, —1), diag(lap—1,—1,I3,—1)}. From Lemma [[52T] we obtain the
desired conclusion.

O

Lemma 1.5.21. po(l), Ad(diag(lsp—1,—1,14))po(l), Ad(diag(lap, I3, —1))po(l),
and Ad(diag(lsp—1,—1,1I3,—1))po(l) are not Int(g)-conjugate each other.

Proof. Assume two subalgebras m, m’ of them such that m # m’ are conjugate
by Int(g). From Lemma [[55] there exist k£ € K = SO(4p) x SO(4) such
that Ad(k)m = m’. Then we have Ad(diag(k1, k2))pr = pr where k1 € O(4p),
ko € O(4). Here we have det k; = —1 or det ko = —1. This is contradiction by
Lemma O
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Lemma 1.5.22. Suppose that (k1, k2) € O(4dp) x O(4) satisfies Ad(ky, k2)pr =
pr. Then we have det k1, det ko > 0.

Proof. We identify p ~ M (4p,4;R) with the action X — ki X} for (ki,kb) €
O(4p) x O(4). By taking {0,--- ,1I4,---0) € pr, we can describe ky as follows
for some v; € pp, C M(4p,4;R) (i=1,---,p).

B = (1, 0p) diag(ka, -+ ha).
Here (v1,---,vp) € O(4p).

k1 X%, € pr, for all X € pr,
<= (v1,- - v,) diag(ka, -+ , ko) X'ka € pr, for all X € py,
<= diag(ky, - ,ko)X'%ky € py for all X € py, (.- Remark [[5.23)

=det kg > 0.
Here we used Remark and for the last implication. The condition
det k1 > 0 comes from k1 = (v1,--- ,v,)diag(ks, -+ ,k2) and (vy, -+ ,vp) €
SO(4p). O

Remark 1.5.23. R-span{ly, J® S, I®J,J®T} C M(4,R) is closed by matrix
transpose and matrix multiplication.

Remark 1.5.24. For B € Alt(2n,R), Pfaff(¢B'g) = det g Pfaff(B), where
Pfaff(B) means pfaffian of B.

Remark 1.5.25. For 0 # X € ImH(4,R) := R-span{J ® S, I ® J,J @ T},
Pfaff(X) < 0 holds.

1.5.7 (g, D=(s0(3,4), ga(z))

In this subsection, we consider (g, [)=(50(3,4), ga(2)) for the symmetric pair
(g,h) = (s0(3,4),50(2) ® s0(1,4)). From Proposition [[.3:37 and Cartan’s fun-
damental theorem (see Fact [LG.0)), it is enough to consider the irreducible rep-
resentation pg 1= pw, : g2(2) — 50(3,4) over R. Our goal in this subsection is
the following:

Proposition 1.5.26. Let (g,[) = (s0(3,4), ga(2)). The inverse image ®5" ([t o
po]) consists of two points. Moreover, the two points are given as follows:

{[po], [Ad(diag (s, I3,1))po]}-

Here, po is the standard embedding of gy(2) by the standard representation p,
with highest weight .

Remark 1.5.27. The irreducible representation p, of ga(2) factors so(3,4) C
s[(7,R) and it is unique as a real representation up to equivalence by Cartan’s
fundamental theorem.
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From Lemma [[.5.4] we have
Lemma 1.5.28.

End,, () (R") = RI;.

We realize G = SO(3,4) = SL(7,R)™ by a involution 7 : GL(7,R) —
GL(7,R), g+ I3 4'g ' I5 ;.

Proof of Proposition[1.5.20. We use Lemma [[.5.7]

Claim. M = 500(374) . {I7,diag(13, .7371),diag(IQ,l,I4),diag(12,1,fg,1)} . {G,I7 :
a > 0}

proof of Claim. The inclusion D is clear by definition. We show the inclusion C.
Let g € M. From Lemma [[5.28 there exists a € R* such that g~ '7(g) = al7.
By Sylvester’s law of inertia, we have a > 0. Therefore we have the desired
conclusion. O

From the above Claim, we can take F' of Lemma as follows
F= {177diag(Ig,I3’1)7diag(Ig)1, 14)7diag(12)1, 13’1)} ) {aI7 ta > 0}

Since Ad(al7) preserves po(l) for a > 0, it is enough to show that po(l) and
Ad(diag(Is, I3,1))po(l) are not Int(g)-conjugate, and po () and Ad(diag(l2,1,14))po(l)
are Int(g)-conjugate. These comes from Lemma [[5:29

O

Lemma 1.5.29. po(I) and Ad(diag(Is, I3.1))po(l) are not Int(g)-conjugate. po(1)
and Ad(diag(ls,1,14))po(l) are Int(g)-conjugate.

To prove the above Lemma [[5.29] we realize noncompact part py, of po(l),
which can be considered as a subspace of M(4,3;R) ~ p and its orthogonal
complement subspace pt of pr, in M(4,3; R) with regard to the following Ad(K)
invariant inner product:

M(4,3;R) x M(4,3;R) —» R,
(X,Y) > trace(XY).
We use the elements Hy, Hy, X; and Y; € go(2) (i = 1,---6) with relation given
in Table 22.1 of the book [FH| and weight vectors vy, vs, v1, u, wy, wy and wy of
standard representation p, in Lecture 22 of the book [FH|. We realize s0(3,4)
as follows:
7:8l(7,R) — sl(7,R),
X — 7[374tX1374
s0(3,4) :=sl(7,R)"
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Therefore we have the following description of p;, C M(4,3;R) ~ p:

2f 2e 2c
—e—g d+f 2a-0
c—h —a+b d-f

a c+h —e+g

pL:{ Za,b,C7d,€7f7g,h€R}

Therefore its orthogonal complement subspace pt of py, is given as follows:

a b —c¢
pJL‘:{ i :?i —d ca,b,c,d € R}
d ¢ b

={(v,(=J @S, (I @ J)v:v e R}

Lemma 1.5.30. Put 2 := {(k;, k2) € O(4) x O(3) : kiptks ' C pt}. Then we
have det k; > 0 if (]Ch ]{72) e .

Proof. Let (ki,ke) € 2. and pro : s0(4) ® s0(3) — s0(3) the second projec-
tion. Since the composition map of pry o p0|352(2) D gy = sp(1) @ sp(l) —
s0(4) @ s0(3) — so0(3) is surjective, there exist kr € K such that (k1,ke) =
(', diag(I2,€))ky, for some k' € O(4), ¢ € {+1}, where K is the analytic
subgroup of €. It is enough to show that det &’ > 0.

kiwprksy ' Cpr
— k'pt diag(ls, ) C pt
— (K'v, k' (=J @ S)v,ek'(I ® J)v) € pt for all v € R*
ISt =—J@Sand kI N =1®J

From the second condition, &" has the following form:

. A -B
k' = diag(Is,ely) (B ) > .

Here A, B € M(2,R). Therefore, we have det &’ > 0. O

Proof of Lemma[L5.29. First we show that po(lI) and Ad(I3,I31)po(l) are not
Int(g)-conjugate. Assume p(l) and Ad(Is, I51)po(l) are Int(g)-conjugate. Then
from Lemma[[5.5] there exist (ky1, k2) € SO(4) x SO(3) such that ki I3 1prks - C
pr. Since we have kl.[gylkagl C pp <= kll—g’lpi‘kz C pJL-, we have
(klfg,l, kg) € 2. This is contradict det(k1]371) < 0.

Next, we show that po(l) and Ad(I21,I4)po(l) are Int(g)-conjugate. It is
enough to show that there exists (k1, ko) € SO(4)® SO(3) such that kippk, ' =
pilzy. Take ky := I ® S, ko = I3. Then we have kipiky ' = pilas. O
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1.5.8 (g, )=(s0(4,4), spin(3,4))

In this subsection, we consider (g, [)=(s0(4,4), spin(3,4)) for the symmetric
pair (g,h)=(s0(4,4), so(4,1) ® s0(3)). From Proposition [3:37 and Cartan’s
fundamental theorem (see Fact [[L6.5]), it is enough to consider the irreducible
representation pg 1= pg, : 50(3,4) — s0(4,4) over R. Our goal of this subsection
is the following;:

Proposition 1.5.31. ®3'([po]) consists of four points. Moreover, the four
points are given as follows:

{[pol, [Ad(diag(I3 1, I4))po], [Ad(diag(l4, I31))pol, [Ad(diag([3 1, I3,1))po] }

We realize SO(4,4) = SL(8,R)7, s0(4,4) = s(8,R)™ by the following invo-
lutions 7, 7:
7 :5l(8,R) — sl(8,R),
X —Ia'XI
7:GL(8,R) - GL(8,R),

g — 1474tg_1l4_7i.
From Lemma [[.5.4] we have

Lemma 1.5.32.
End,, ;) (R®) = RIs.

Proof of Proposition [[.5.31. We use Lemma [[.5.2)

Claim.
M = 500(4,4)~{Ig,diag(13,1,I4),diag(I4,13,1),diag(Ig,1,Ig’l)}-{Ig7I®I®J}-{aIg ra > 0}

proof of Claim. The inclusion D is clear by definition. We show the inclusion C.
Let g € M. From Lemma [[5.32 there exists a € R such that g~ 17(g) = als,
that is, ath4,4g = I, 4, which implies the desired conclusion. O

From the above Claim, we can take F' of Lemma as follows:
F = {Ig, diag(Igyl, 14), diag(I4, I371), diag(I&l, 13,1)}'{183 I®I®J}{a[8 La > 0}

Since Ad(alg) (@ > 0) and Ad(/ ® I ® J) preserves the image of py from
the description of spin representation below, it is enough to show that pg(l),
Ad(diag([3,1,14))po(l), Ad(diag(l4,I3,1))po(l) and Ad(diag(ls,1,13,1))po(l) are
not Int(g)-conjugate each other. Assume that two subalgebras Ad(k1)po(l),
Ad(k2)po(1) of them are Int(g)-conjugate, where k1, ko € {Ig, diag(Is 1, I4), diag(ly, Is 1), diag(I31,13,1)}
such that k1 # k2. Then from Lemmal[[.55] there exists k& € SO(4) x SO(4) such
that Ad(k) Ad(k1)pr = Ad(ko)py, which is equivalent to Ad(k; *kk)pt = pt.
From Lemma [[L5.34] this is contradiction. O

(s



We consider the following realization pg := @s3@2p1 of spin representation
(see section 4 in [KY05] for more details): Put A;; = —E;;+Ej;, Sij = Eij+Ej;.
50(3,4) = {X S 5[(7, R) : tXI3’4 + 134X = 0}
©1:50(3,4) = Cepen(3,4)

1 . .
Ai7j|—>—§vj'vj (1<i<j<3)

1
Ai+3,j+3 = 5’0-_1); (1 <i<j< 4)

K2

1. _ . ‘
Si,'+3H§”i+’Uj I=i<3l<j<4)

02 1 Cepen(3,4) = C(3,3) - C(1,1) @ C(1,1) ® C(1,1) ~ M(8,R)

Here we use the maps in the following Fact [[5.33) (i), (ii) and (iv):

Fact 1.5.33 (JKY05]). (i) Putso(p,q) :={X €sl(p+¢q,R) : 'XI, o+, ,X =
0}. Then the following map gives an Lie algebra injective map:

ﬁﬁ(p, q) — Oeven(p7 q)

1 .
Ai —§v;rv;-r (1<i<j<p)
1 _ . .
Aitpjtp = 3V Y (I<i<j<q
1 _ . .
Sigipr guiv; (1<i<pl<j<q)
Here Ai,j = *Ei,j -+ Ejﬂ' and Si,j = Ei,j -+ Ej,i'
(ii) For p > 0, ¢ > 1, the following map gives an algebra isomorphism:

C(p,q - 1) — Ceven(pa q)
vf»—)v;rvq_ (1<i<p)

oy, (1<j<qg-—1)

Y;

(ili) Let K = (kT,k7) and L = (p,q) € Z%,, the following map gives an
algebra isomorphism if k¥ — k= =1 (mod 4):
C(K + L) = C(K + LY)

v ol (1<i <k

vy =y (1<j<kT)
U,j++i = ViU, (1<i<p)
Vg 7 Vil (1S5 <)

Here Vi = Uf---vlj+vl_-~-vk__.
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(iv) For non-negative integers p and ¢, the following map gives an algebra
isomorphism:
Clp+1,q+1)—=C(1,1)® C(p,q)
vf‘ — vf‘ ®1
vy —v; ®1
Uiu vavf ®v;r (1<i<p)

v ooy @u; (1< <q)

We use the following identification:

C(1,1) » M(2,R)

vi"»—>T::<1 1),
1)1»—>J::<1 _1>,
v = S = (1 _1>.

Let (,) be a standard inner product on R®. Then @21 (s50(3,4))-invariant scalar
product B on R?® is given as follows:

Bv,w) :="v(J®T® J)w.

Put g := %(I RI®I—J®T®T) and compose the basis transformation @3
to w21

p3 - M(8,R) — M(8,R),
X — gOXga1
Po ‘= P3P2¥1

Then po(s0(3,4))-invariant scalar product By on R® is given as follows:

Bo(v,w) =" ® I ® Sw.
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Moreover the image pr, of pso(3,4) by po is given as follows:

50(4,4) ={X e MBR):'X(I®I®S)+(I®I®S)X =0}

50(3,4) — s0(4,4)
2514 T RTRT
2515 > IRS®RT
2516 = J RS J
2517 = ST T
2504 > SQRIRT
25955 > —J@JT
2856 =1 J®J
257 —»TRI®T
2534 -TQRSQT
2535 > IRT®T
2536 > —JRT®J
2853: > S®S®T

We definie Ad(K)-invariant inner product on M (4,R) ~ p by
M(4,R) x M(4,R) — R
(X,Y) > trace(‘*XY)

Take the orthogonal complement subspace pt of py, in p ~ M (4, R) with respect
to the above inner product. Then we have:

a —-b ¢ —=d

1 b a —-d —c
PL = —c d a b
d c b a

—RISQD+RISI)+R(S®J)+R(T®.J) ~H.

ra,be,deR

Lemma 1.5.34. If (k;, k2) € O(4) x O(4) satisfies k1pt ks * C pt, then det & =
det Ifg =1.

Proof. Take Iy € p7. There exists v € p7 such that klkgl =v. Take J® I €
pf Since pi is closed by matrix transpose and multiplication, Then we have
k1(J @ Dky* € pt, that is, ko(J @ I)s € pi. Here, we have

det ko Pfaff(J ® I) = Pfaff (ko(J @ I)'%s) > 0.
Therefore we have det kg = detk; = 1. O

1.5.9 (g, N=(s0(8,8), spin(1,8))

In this subsection, we consider (g, [)=(s0(8, 8), spin(8, 1)) for the symmetric pair
(g, h)=(s0(8,8), s0(8,7)). From Proposition [[33] and Cartan’s fundamental
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theorem (see Fact [LG.H]), it is enough to consider the irreducible representation
P0 := pPw, : 50(8,1) = 50(8,8). Our goal of this subsection is the following:

Proposition 1.5.35. The inverse image ®5 "' ([t o po]) consists of four points.
Moreover, the four points are given as follows:

{[po], [Ad(diag(I71, I3))po], [Ad(diag(Is, I7,1))pol, [Ad(diag(I7,1, I7,1))po] }-

We realize G = SO(8,8) = SL(16,R)7, 50(8,8) = sl(8,R)™ by the following

involutions 7, 7:

7: GL(16,R) — GL(16,R),
g Iss'g ' Igg,
7 :5l(8,R) — sI(8,R),
X —Igs'XIgg.

From Lemma [[.5.4] we have

Lemma 1.5.36.
End,,(y(R'®) = {alis : a > 0}.

Proof of Proposition[1.5.35 We use Lemma [[.5.2]

Claim.
M = 500(8, 8)-{]16,diag(lm,lg),diag(lg, I771),diag(l771,I7,1)}-{116, Jg}-{ahﬁ La > 0}

This claim can be proved in the same way as the case (g, [) = s0(4,4), spin(3,4))
in Subsection [L5.8 So, we omit the proof.
From the above Claim, we can take F' of Lemma as follows:

F = {Is,diag(I7,1, I3), diag(Is, Ir,1), diag(I7,1, I7,1)} - {116, Js} - {adis : @ > 0}.

Here Ad(al16) (@ > 0) and Ad(Jg) preserve the image po([), which can be proved
by the description of spin representation of so(8,1).

So, it is enough to show that the following four subalgebras po(l), Ad(diag(l7,1, Is))po(l),
Ad(diag(Is, I7.1))po(l), Ad(diag(I71,I71))po(l) are not Int(g)-conjugate each
other.

Since the other cases can be proved in the same way, we show only pg([) and
Ad(diag(I7.1, Is))po(l) are not Int(g)-conjugate. Assume po(l) and Ad(diag(l7,1,Is))po()
are Int(g)-conjugate. Then, from Lemma [[.5.0] there exists k € SO(8) x SO(8)
such that Ad(k)po(pr) = Ad(diag(I7 1, Is))po(pL), that is, Ad(k~! diag(I7.1, Is))pr =
pr. Therefore we have k=! diag(I7 1, Is) € 2 of Lemma[[5.37 This contradict
kL diag(b,l,[g) g 50(8) X 50(8) O

Lemma 1.5.37. Put A := {k = (k1,k2) € O(8) x O(8) : Ad(k)pr C pr}. Then
we have A = {(Is, Is), (—Is, Is)} - K1 C SO(8) x SO(8) where K|, is the analytic
subgroup of £j,.
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Proof. {(Is,Is), (—1Is,Is)} - K;, C 2 is clear by the definition of 2. We show
that A € {(Is,Is),(—Is,Is)} - K. First we consider the description of py..
spin(8,1) C s0(8,8) = g is given as a image of spin representation of s0(8,1).
In this proof, we realize spin(8,1) C s0(8,8) := {X € M(16,R) : X(I®I®S®
N+ (I®I®S®IX} by the image of the composition of the following two
maps ¢ and .

t:50(8,1) = Cepen(8,1) = C(8,0) — C(5,3)
- C(1,1 (1,)®C(1,1) ® C(2,0)
- C(1,1 (1,1)®C(1,1)C(1,1)
- M(2,R)® M(2,R) ® M(2,R) ® M(2,R)

)®C
)@ C

Here we used maps in Fact [[5.33] (i) to (iv) and the following isomorphisim
C(2,0) = C(1,1),
v = o,
+ +

) l—>’Ul’U1.

Put g := $(IQI®IRI+JRTQT®I) € SO(16). Then we have ¢i(s0(8,1)) C
50(8,8). We consider the following basis transformation ¢:

o M(2,R)® M(2,R) ® M(2,R) @ M(2,R) — M(2,R) @ M(2,R) @ M(2,R) ® M(2,R)
X — gy ' Xgo

By identification p with M (8,R) which compatible with the Ad(K) action, we
have the following description of pr, C M (8,R):

pr =Rspan{S@TRI,TRIRI,S®SRXI,T®JRT,
TRJSS®JJ,JI®JI®I®J}
= {(v, Ayv, Agv, Azv, Ayv, Asv, Agv, A7v) € M(8,R) : v € R®}.
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Here A; € GL(8,R) (i =1,---,7) are given as follows

—J S
—J -5
A= J , Ay = 7l
—J 1
-T —I
T -5
Ag = g1 A4 = I 3
J S
—J S
T —I
A5 = —J y AG - I ’
e -5
=T
—J
Ar=|
T

Let (ki,ks) € 2. From the simplicity of s0(8) C s0(8,1) and the description of
spin representation, the maps pr; o o t|sos) — 50(8) (i = 1,2) are surjective.
Therefore, we can take ky, € K, such that (k1, k2) = (k, diag(I7,€))kr for some
k € O(8), diag(Il7,e) € O(8) (¢ € {£1}). Thus it is enough to show that
k= :t]g, e=1.

Ad(ky, k2)pr C pL
< Ad(k,diag(I7,e))pr C pr
= (kv, kA1, kAgv, kAsv, kAyv, kAsv, ek Agv) € pr, for any v € R®
— kAR = A4; (1 =1,2,3,4,5,6) and ekA7k™ = A;

By direct calculation, we obtain k = +1g and € = 1. O

1.5.10 (g,[) = (s0*(8),spin(1,6))

In this subsection, we consider (g, [) = (s0*(8), spin(1,6)) for the symmetric pairs
(g, h)=(s0%(8), u(3,1)) and (s0*(8), 50*(6) & s0*(2)). From Proposition [[L4.20]
and it is enough to consider the irreducible representation py 1= pw, :
50(1,6) — s0*(8). Our goal of this subsection is the following:

Proposition 1.5.38. The inverse image <I>(El([L o pg]) consists of one point,
namely @z " ([t © po]) = {[po]}.
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We realize s0*(8) and SO*(8) as follows:

71,72 : 6l(8,C) — s((8,C),
n(X) = -'X,
(X) = JXJ
50" (8) :={X €5sl(8,C) : (X)) = X = »(X)},
71,72 : SL(8,C) — SL(8,C)
i(g) =9,
72(g) == JagJi ",
S0*(8) :={g € SL(8,C) : 71(9) = g = 7a(9)}-
Remark 1.5.39. For g € GL(2n,C), the conditions Ygg = I3, and J,§ = gJ,,
implies det g = 1. Therefore, we have SO*(8) = {g € GL(n,C) : 71(g ) =g=
T2(g)}, where 71 and 75 are natural extension of the above maps to GL(2n,C) —

GL(2n,C).
The image po(l) C s0*(8) is given by the composition of the following injec-
tive maps ¢; and Ag,.
11 1 50(1,6) = Cyen(1,6) — C(1,5)
— C(1,1) ® C(0,4)
- C(1,1)®C(1,3)
- C(1,1))@C(1,1)®C(0,2)
- M(2,R)® M(2,R) ® M(2,C)
Here we use Fact and the following injective map:
c(0,2) = M(2,C),
vy =,
vy — 15,
vy Uy T
Put gg := %(I RIQI+J®T ® Ji). We define Ay, : 5((8,C) — sl(8,C) by
Agy X = go_ngg.
From Schur’s lemma, we have

Lemma 1.5.40.
End,,1)(C*) = {als : a € C}.

Proof of Proposition [[.5.38. We use Lemme [[.5.3

Claim.
M =8S0*(8) {Is,,® I, ® S} -{als: a € C,a® = 1}.
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proof of Claim. The inclusion D is clear by definition. We show the inclusion C.
Let g € M. From Lemmal[[5.40 there exists a € C* such that g=17(g) = als.
Therefore there exist h € O(8,C) and 8 € C* such that ¢ = Sh. Since we
have g~ '72(g) = B7'Bh'72(h) € End,,)(C®) = {als : a € C}, there exists
v € C* such that thJsh = +Js. By taking matrix adjoint and determinant,
we obtain v € {£1}, which implies h € SO*(8) - {Is,Io ® I ® S}. Since
g = Bh € SL(8,C) holds, we have 3% = 1 by taking determinant. Thus we
obtain M = SO*(8) - {Is, I ® Iy ® S} - {als : a € C,a® = 1}. O

From the above Claim, we can take F' of Lemma as follows.
F= {ISaI2 ®IQ®S} . {0,18 La e C,as = 1}

Here, Ad(alg) (a € C*) and Ad(I®I®S) preserves po([), which can be checked
by the above realization.Thus we obtain the desired conclusion.
O

1.5.11 (g, )=(s0(8,C), spin(1,7))

In this subsection, we consider (g, [)=(s0(8, C), spin(1, 7)) for the symmetric pair
(g, h)=(s0(8,C), s0(7,C)). From Proposition [[L33] it is enough to consider
the irreducible representation py := p,. Note that the representation ps, of
s0(1,7) is equivalent to pg, in the sense of Definition Our goal of this
subsection is the following:

Proposition 1.5.41. ®~1([pg]) consists of two points. Moreover the two points
given as follows:

{lpol, [Ad(I7,1)pol}-

We realize G = SO(8,C) := SL(S,(C)f7 g = 50(8,C)

: SL(8,C) — SL(8,C), g — g~ ', 7 : 5l(8,C) — sl(8,
using maps in Fact [[5.33] we obtain a reahzatlon of spin(1,
composition of the following maps ¢; and Ag,:

:= 5l(8,C)", where
C), X — —'X. By
7) C 50(8,C) by the

11 :60(1,7) = Cepen(1,7) = C(1,6) — C(3,4)
- C(L,1)el(1,1)eC(1,1)®C(0,1)
~M(2,R)®@ M(2,R)® M(2,R)® C

Put g¢ := %(I@I@I—i— J®T ® Ji) € GL(8,C). We define Ay, : M(8,C) —

M(8,C) by
Ag X = gnggo.

Then we have Ay t1(s0(1,7)) = spin(1,7) C s0(8,C).
From Schur’s lemma, we have

Lemma 1.5.42.
End,, ;) (C*) = Cls.
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Proof of Proposition[1.5.71. We use Lemma [[L5.11

Claim.
M = SO(S,C) . {18717,1} . {(1]8 : a8 = 1,(1 S C}

proof of Claim. The inclusion D is clear by definition. We show the inclusion
C. Let g € M. From Lemma [[[5.42] there exists a € C such that algg = Is.
Therefore we have g € SO(8,C) - {Is, I71}blg for some b € C. Since we have
g € SL(8,C), we get b® = 1. O

From the above Claim, we can take F' of Lemma [[.5.1] as follows.
F={IgI;1}-{alg: a® = 1,a € C}.

Since Ad(alg) (a € C*) preserves po(l), it is enough to show that po(l) and
Ad(I7.1)po(l) are not Int(g)-conjugate. This comes from Fact [[5431 Take a
Cartan involution 6 : X — —X* on s0(8,C) and a maximal abelian subspace
a := R-span{iAi2,iAs.4,1A456,iA7s}. Then we can take a, = RJ® S ® Si =
RAg1(S1,5) C spin(1,7). Since we have Ad(I71)J®S®Si ¢ War, where W ~
&4 X (Zy)?3 is the Weyl group of s0(8,C), the images of the Cartan projection
of po(l) and Ad(I7,1)po(l) do not coincide. O

Fact 1.5.43 (See [Ko96D] for example). Let G be a linear reductive Lie group
and g its Lie algebra and [ and I’ reductive subalgebras of g. If there exists
a € Int(g) such that ' = a(l), then the images of Cartan projection of L and
L' coincide, where L and L’ are analytic subgroups of [ and I'.

1.5.12 (g, )=(s0(8,C), spin(7,C))

In this subsection, we consider (g, [)=(s0(8,C), spin(7,C)) for the symmetric
pair (g, h)=(s0(8,C), s0(7,1)). From Proposition[[.Z:39)] it is enough to consider
the irreducible representation py := po,Xtriv of so(7,C). Our goal of this
subsection is the following:

Proposition 1.5.44. ®:"'([po]) consists of two points. Moreover the two points
given as follows:

{lpol, [Ad(I7.1)pol}-

We can prove in the same way as the case (s0(8,C), spin(1,7)) by using
Fact [L5431

We realize s0(8,C) = s[(8,C)™ and SO(8,C) = SL(8,C)” in the same way
as subsection [L5.J1l By using maps in Fact [[5.33] we obtain realization of
spin(7,C) C s0(8,C) by the complexification of the following map ¢;.

112 50(7) = Clpen(0,7) = C(0,6) — C(3,3)
- C(1,1)®C(1,1)®C(1,1)
~ M(2,R)® M(2,R) ® M(2,R).
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Proof of Proposition [1.5.7. We use Lemma [[L51l Since End, (C®) = ClIs,
we obtain the same M and can take F' as in Subsection [[5.11l Thus it is enough
to show that po(l) and Ad(I71)po(l) are not Int(g)-conjugate. This comes from
Fact Take a Cartan involution 6 : s0(8,C) — s0(8,C), X — —X*
and a maximal abelian subspace a := R-span{iAiz,1A3 4,945,478} of p :=
50(8,C)~%. Then we can take

ar, = R-span{ipo(A1,7),ipo(A2,6),ip0(A3,5)}
=R-span{iJ @I Q@ [,iJ@I® S,iJ ® S® I}

~ {(a1,a2,as3,a4) € R*: a1 + ay = as + az},
where we used the coordinate by {iA; 2,1A3 4,945 6,1A7 s}. Therefore we obtain
Ad([771)CLL §Z WCLL = CL(L)

Here W ~ &, x (Z3)3 is the Weyl group of so(8, C). O

1.6 Appendix

1.6.1 dimension of irreducible representation of simple Lie
algebra

We prepare the Weyl’s dimensionality formula: We consider simple Lie algebras
over C. Let {a;}"; be a simple system and AT the set of positive roots.

Fact 1.6.1 (see [Kn| for example). Let A = Y | k;w; be a highest weight,
where w; (i = 1,---,n) are the fundamental weights for the corresponding
types. Then the dimension of the irreducible representation with highest weights
A is given as follows:

11 2 (ki + Vmi(ai, ai)

dim py =
S mpen €At >omi(ay, o)

Here m; (i = 1,---n) are non-negative integers.

We summarize the each factor coming from positive roots for classical case
below:

e Type A, (n>1),
Then the dimension of the irreducible representation with highest weight
A is given by the multiplication of the following factors:

ki+-kj+j—i+1
j—i+1

(1<i<j<n)
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e Type B, (n > 2),
the dimension of the irreducible representation with highest weight A is
given by the multiplication of the following factors:

kit kj+j—i+1

(1<i<j<n-1)

j—i+1
2(/%+-~~+kn_1)fkvb+2”‘21+l (1<i<n-1)
2n—21+1
kn+1
k1) 20k an—jmizl
(oot bya) #2004 b ) bbb 20— —im 1
2n—j—i+1
ki 4+ Ky kn —i+1 :
(it dhu) +hutn—it (1<i<n-1)
n—i+1

e Type C,, (n > 2),
the dimension of the irreducible representation with highest weight A is
given by the multiplication of the following factors:

ki+-kj+j—i+1

(1<i<j<n-—1)

j—t+1
Byt ok tn—it1 |
+ +n U (1<i<n)
n—i+1
(ki+"'+kj—1)+2(kj-l'-"t—‘-kn)—}-?rl—j—Z—|—2 (1<i<j<n)
n—j3—i+2

e Type D, (n > 2),
Then the dimension of the irreducible representation with highest weight
A is given by the multiplication of the following factors:

ki+-ki+j—i+1

(1<i<j<n-—1)

j—i+1
ki+- ki1 +2(kj+ -+ Ep P14 kn 420 —j—i <]
SRR R e e N Y PIET
2n—j—1
n—i+1
k‘z‘+"'k‘n—2+.k”+n_z (1§i§’ﬂ—2)
mn—1
ko + 1

We use the following data in our proof.

Fact 1.6.2 (minmum dimension). Minimum dimension of non trivial irreducible
representations of exeptional Lie algebra g is given as follows

e g=9g5:7
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g=ff:26

o g=¢5:27
e g=2¢%: 56
o g=-cf: 248

The second smallest dimension of non trivial irreducible representations of g
is 14.

1.6.2 dimension of irreducible representation of real rank
one Lie algebras

We list irreducible representations 7 of real rank one Lie algebras [ = f4(_30),
s0(1,2p), su(1,p) and sp(1,p) to use in Section [[3T] [LAT] satisfying the
following:

respectively.

Remark 1.6.3. We have d(fy—20)) = 16. Only 26-dimensional representa-
tion satisfies dimm < 2d(L) among nontrivial irreducible representations of
[= f4(—20)-

B Irreducible representation of [ = so(1,2p)(p > 2) satisfying dim7 <
4p=2d(L),2p+2=d(L)+2,p+2 = 3d(L) +2

The following tables are lists of irreducible representations 7 of so(1,2p)
satisfying dim 7 < 4p, 2p 4+ 2 and p + 2 respectively:

P ‘ T ‘ dim 7 P ‘ T ‘ dim 7

242 @1 2101;1 >2 | w | 2p+1 p ‘ T ‘ dim

S I 3 |ws| 8 2|wp]| 4
w3 2 w9 4

2 wo 4

Here w; are fundamental weights of so(2p + 1,C).

B irreducible representation 7 of [ = su(l,p)(p > 1) satisfying dimn <
4p=2d(L), 2p+2=d(L) +2, p+2 = 1d(L) + 2 respectively

The following tables are lists of irreducible representations 7 of su(1,p) sat-
isfying dim 7 < 4p, 2p 4+ 2 and p + 2 respectively:
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P T dim 7
Z 1 wl, wp p + 1
7 w2, We 28
6 w2, @s 21 p T dim
O e S O = e
) w?;g ?8 4 o, W3 10 p T dim 7
2w17 s 15 3 ()] 6 >1 | wy, Wy | P+ 1
. 2 2@1, Q’WQ 6 1 2@1 3
3 w2 6 1 2@'1 3
2w, 2w3 10
3@1 4
2 2’@17 2’@2 6
w1 + w2 8
1 2@1 3
3’W1 4

B irreducible representations of [ = sp(1,p) (p > 2) satisfying dim7 <
8p=2d(L), 4p+2=d(L) +2 and 2p+ 2 = 3d(L) + 2 respectively

The following tables are lists of irreducible representations 7 of sp(1,p) sat-
isfying dim 7 < 8p, 4p + 2 and 2p + 2 respectively:

P m | dim7
>1 | @y | 2p+2 P ‘ m ‘dimw P ‘ T ‘dimw
2 [w| 14 >1[w [2p4+2 >1]w |2p+2

w3 14
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B nontrivial irreducible representation 7 of simple Lie algebras with
dimnm <8

Table 1.32: pairs (I, 7) of a noncompact simple Lie algebra and its nontrivial
irreducible representation with dimzw < 8

[ ™ dim 7
5l(n,C)(2<n<8) w; Mtriv n
sl(4,C) wotriv 6
sl(3,0C) 2¢01 Xtriv 6
s((3,0) (w1 + we)X triv 8

51(2,C) ko Ritriv (L <k <7) | k41
sl(n,C)™ (2<n<8) w1 n
5[(4, (C)T w9 6
s1(3,C)7 21 6
s1(3,C)7 @1 + s 8

sl(2,C)" koo (1<k<7) | k+1
50(7,C) w1 Ktriv 7
s50(5,C) w1 Ktriv 5
s0(7,C) wsKtriv 8
s0(5,C) woNtriv 4
50(7,C)7 w1 7
s50(5,C)" w1 5
s50(7,C)7 w3 8
50(5,C)7 wo 4
sp(4,C) w1y Ktriv 8
5p(3,C) w1 Ktriv 6
sp(4,C)7 w1 8
sp(3,C)" w1 6
50(8,C) w1 Ktriv 8
50(8,@)7- w1, W3, W4 8
05 o1 Ktriv 7
(05)" w1 7

Here 7 means a real structure.

1.6.3 Cartan’s fundamental theorem and Iwahori’s crite-
rion

In this subsection, we quickly review Cartan’s fundamental theorem (Fact [[.G.5])
and Iwahori’s criterion (Fact [LG.8]). See [Iwh9] for more details.

Setting 3. Let g be a complex semisimple Lie algebra and 7 : g — g an anti-
holomorphic involution.

To state Cartan’s fundamental theorem and Iwahori’s criterion, we introduce
the following:
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Notation 1.6.4. We use the following notation;

C(g7) :={ an irreducible complex representation of g7.}/ ~
R(g") := { an irreducible real representation of g".}/ ~
C'(g7) := {p € C(g7)| pr is not irreducible.},
C'(g7) :={p e C(g7)| pr is irreducible.},
RI(g™) :={p € R(g")| pc is irreducible as a complex representation.},
RM"(g™) := {p € R(g™)| pc is not irreducible as a complex representation.}.

Here, for complex representation p : g — gl(V'), we write pg for the correspond-
ing real representation pg : g — gl(Vr). For real representation p : g — gl(E),
we write pc for the corresponding complex representation pc : g — gl(E @ C).
V', E are vector spaces over C, R respectively. We write Vx instead of V' when
we regard it as a real vector space.

Zs acts on C(g7) by taking the complex conjugate representation. We put

C(g7) = C(g7)/Za-

Since pg =~ (p)r holds, the Zs-action on C(g7) preserves the subsets C(g™) and
CH(g™). So, we put R
CH(g7) = C"(g7)/ Lo,

Fact 1.6.5 ([Iw59, Theorem 1] Cartan’s fundamental theorem). The following
maps are bijective;
Ry (a7) — Cp(g), (p:g” = gl(E)) = (pc: g” = gl(E®C)),
Chl(a7) = Ryn(a"), (p:g" = gl(V)) = (pr: g" — gl(Va)).

Here, the subscripts n and 2n means the dimensions of representations.

By Cartan’s fundamental theorem, to study real representations, the prob-
lem is to determine which classes given complex representation belongs to. Iwa-
hori’s criterion gives the solution. To state Iwahori’s criterion, we prepare the
terms “self conjugate” and “index, p € {£1}".

Definition 1.6.6 ([Iw59, §9] Definition of index). e We call representation
(p, V) of g7 self conjugate if p ~ p as a representation of g7.

e Let (p, V) be a self conjugate irreducible representation of g”. Then we can
take an anti holomorphic isomorphism J such that J? = cidy (¢ € RX)
given by Remark [[6.7 so we put

. 1 (¢>0),
index, p := {_1( (c <)O)

This is independent on the choice of J.
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Remark 1.6.7. (i) A representation (p, V) of g7 is self conjugate if and only
if there exists an anti holomorphic isomorphism J : V — V satisfying
Jp(X) = p(X)J for all X € g". Moreover if p is irreducible, then there
exists ¢ € C* such that J? = cidy from Schur’s Lemma.

(ii) If J : V — V is a anti holomorphic isomorphism satisfying J? = cidy for
some ¢ € C*, then ¢ € R* holds.

(iii) The signature of ¢ € R* given by (i), (ii) above is independent of the
choice of J.

We can now state the following:

Fact 1.6.8 ([Iwb9, Lemma 4]). Let (p, V) be a complex irreducible representa-
tion of Lie algebra g7. Then p: g™ — gl(V) is of class C!(g7) if and only if the
following conditions (i) and (ii) are satisfied:

(i) p is self conjugate (i.e. p ~ p as a representation of g7),
(ii) index,p =1 € {%1}.

In Setting Ml we can check the condition (i) and (ii) of Fact [[6.8] easily by
using “diagram” (see Fact [[6.12)).

Notation 1.6.9. Take a Cartan subalgebra t of g, a corresponding root system
A C tf and a simple system II := {aq,---,a,} C A. Let 6 be a Cartan
involution on g, o the split real structure on g associated with II, which satisfy
fc = of. For an anti holomorphic involution 7 on g, there exists a € Int(g)
such that ara™10 = ara™! and ara™to = cara™! (see [Oni] §4 Theorem 2).
Put 7 = ara~!. Let pri be the first projection Aut(II) x Int(g) — Aut(II).
Then we put

s_:=prip(t'o) € Aut(Il)

8. := prip(7'0)

sy = prip(ob),
where ¢ is the map of Remark [LE6.10 below. The elements s_, s, and s\ are
uniquely well-defined for a real form g”. An element of Aut(Il) induces the
action on t§. So, for A € ty, the notation s_(\), s«(\) and sy(\) make sense.

Moreover, s_, s, and sy € Aut(Il) induce automorphisms of Dynkin diagram
of g.

Remark 1.6.10 (see [Oni] §4 Theorem 1). We have a natural bijection as
follows:

v Aut(g) — Aut(Il) x Int g

Here Aut(II) := {p € O(ty) : pII = II}.
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Remark 1.6.11. For a highest weight A € t, we have the following:

Px = ps_(») as a representation of g7,
P\ = Ps,(n) as a representation of g7,

p}\/ 2 P, (n) @S a representation of g.

These comes from p ~ po ~ p*0 ~ pVof (as a representation of g).

Fact 1.6.12 ([Iw59, Theorem 2]). Let p : g7 — sl(V) be an irreducible repre-
sentation with a highest weight A = " | m;w;, where w; (i = 1,---n) are the
fundamental weights. Then the following conditions are equivalent:

(i) p ~ p as a representation of g™ (self conjugate),
(i) m; = myp).

Here p € 6,, is the permutation induced by s_ € Aut(Il), namely s_(«a;) =
ay(i)- Moreover, for the self conjugate irreducible representation, we have

index, p = H (index; pe, )™
i€{l,-,n}?

Here, i € {1,--- ,n}? <= p(i) =i and py, is the fundamental representation
with fundamental weight w;.

We can check the above conditions by seeing each simple factor. Suppose
g" = ®jg;" is the decomposition into simple ideals g;* (: = 1,---,s) and p :
g” — sl(V) is an irreducible representation of g7. Then p has the description
p1 - ps, where p; is an irreducible representation of g]*. Then we have the
following:

Fact 1.6.13 ([Iwb9, Lemma 6]). p ~ p holds as a representation of g if and
only if p; ~ p; holds as a representation of g;* for any ¢ € {1,---,s}. In this
case, we have

S

index, p = H index, p;-

i=1

Notation 1.6.14 (Iwahori diagram, see [Oni] Table 5 also). From Fact [[6.12]
for given irreducible representation p of g”, we can determine whether or not p
is self conjugate and calculate index; p by the permutation p € G,, induced by
s— € Aut(Il) and index, pg, for i € {1,--- ,n}?. We describe the information
on Dynkin diagram. We connect the nodes a; and ay;y by arrows if p(i) # i
(i =1,---,n) and use black nodes e for corresponding simple roots «; if i €
{1,-- ,n}? and index; pm, = —1 and use white nodes o otherwise. We call the
diagram Iwahori diagram of g7. For simple Lie algebras, Iwahori diagram was
drawn as in Table 1.33.
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1.6.4 embeddability of semisimple Lie algebras into sl(n, R),
su*(2n), so(n,C) and sp(n,C)

We consider embeddability by representation of semisimple Lie algebras into
simple Lie algebras such as sl(n,R), su*(2n), so(n,C) and sp(n,C). Our goals
in this subsection are Proposition [[6.17, [L6.I8] and [L6.2T1

Notation 1.6.15. Let g be a Lie algabra and [ and h Lie subalgebra of g.
[ Cint b denotes if there exist o € Int(g) such that a(l) C b.

Setting 4. In this subsection, g is a semisimple Lie algebra over C. T is an anti
holomorphic involution on g and € is a Cartan involution on g. p: g — sl(V) is
a representation over C. Put n := dim¢ V.

Remark 1.6.16. We have a natural bijection as follows:
{a representation p : g — gl(V')} — {a representation p : g" — gl(V)}
p = plgr

We sometimes identify p|g- with p. To clearify the domain if necessaly, we say

“as a representation of g7”.

Proposition 1.6.17. In Setting @ the following conditions are equivalent:
(i) p(g7) Ciue sl(n, R),

(ii) p ~ p as a representation of g7 and (index, 7)™~ = 1 for any © €
SCIR(g™).

Here m, = [r : p] is the multiplicity of 7 and

SCIR(g™) = {r € C(g7) : 7 ~ 7}

= {self conjugate irreducible representation of g”}/ ~ .

Proposition 1.6.18. In Setting [ the following conditions are equivalent:

(i) p(g7) Crnt 5u"(25)

ii ~ p as a representation of g7 and (—index, 7)™~ = 1 for any w €
p=p g y

SCIR(g"),
where m, = [7: p|.

Remark 1.6.19. In the above Proposition[L6.I7and[[L6.I8, sl(n, R), su*(2%) C
s[(V') are subalgebras coming from involtutions on s[(V'). They are unique up
to Int(sl(V)).

Proposition 1.6.20. In Setting [ the following conditions are equivalent:

(i) p(@7) Crns 50(n, C),
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(ii) p >~ p" as a representation of g and (indexy 7)™ = 1 for any 7 €
SCIR(g%),

where m, = [ : p].
Proposition 1.6.21. In Setting @ the following conditions are equivalent:
(i> p(QT) Cint 5p(%,(C),

(ii) p =~ p"Y as a representation of g and (—indexy 7)™~ = 1 for any 7 €
SCIR(g%) ,

where m, = [ : p].

Proposition 1.6.22 (see [Onil Theorem 3] for an irreducible representation
case). In Setting @l the following conditions are equivalent:

(1) p(g7) Cint su(p, q) for some p, g € Z>¢ such that p+ ¢ =n,
(ii) p ~ p* as a representation of g7.

Proof. (i) holds if and only if there exists a p(g™)-invariant Hermitian form h
on V. This is equivalent to (ii), which comes from hf : V' — V* v+ h(v,-)
induces intertwining operator between p and p*. O

Remark 1.6.23. In the above Proposition[.6.20and[L6.21] so(n, C),sp(%,C) C
s[(V') are subalgebras coming from involutions on s[(V'). They are unique up to
Int(sl(V)).

Proof of Proposition[1.6.17 and[L.6.18 This comes from Lemmal[l.6.24]land [1.6.25]
O

Lemma 1.6.24. Let go areal Lie algebra and p : go — s[(V') be a representation

of go over C. Put n = dimc V. p(go) Cns 5l(n,R) (resp. su*(2%)) if and only
if there exists anti-holomorphic map J : V' — V such that p(X)J = Jp(X) for

all X € go and J2 =id (resp. —id).

Proof. only if part: This comes from classification of anti-holomorphic involu-
tion on sl(V). )
if part: Define a anti-holomorphic involution J on sl(V) by f +~ JfJ 1. Then,

7 [sl(n,R) (J2 =id)
we have s[(V)7 ~ {5u*(22) (J? = —id)

and p(go) C sl(V)”. O

Lemma 1.6.25. In Setting @ the following conditions are equivalent

(i) There exists an anti-holomorphic linear isomorphism J : V' — V such that
Jp(X) =p(X)J forall X € g7,

(ii) p ~ p as a representation of g7,
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Moreover, for € € {£1}, there exists an anti-holomorphic linear isomorphism
J :V — V such that J? = cidy and Jp(X) = p(X)J for all X € g" if and only
if (eindex, 7)™~ =1 for all 7 € SCIR(g"), where m, := [r : p].

Proof. Former part is clear by the definition of complex conjugate representa-
tion. So we prove “Moreover” part.
only if part: Let 7 € SCIR(g"). Let V; be a representation space of . Then

there exists an C-linear isomorphism ¢ : V; — V. such that m(X)p = pr(X)
for all X € g". Take 01 : Vx — Vi, v = ©. We can describe J|y._gcm~ :
V,@Cm= — V, @ C™ as J|v,gcms = 0 (p® A) for some A € GL(m,,C) by
Schur’s Lemma. Here 0 = 01 ® 03 and o5 : C™* — C™=, w — w. Therefore we

have

eid|v, gems = I3 goms = 07 o1 @0y Aoy T A = a(index, ) idy, ®0y ' Ao A,

for some positive number a € R, which implies & idgm» = a(index, 7)oy 1AJ; 1A,
By taking determinant of both sides, we obtain (e index, 7)™=a™ | det A|? = 1,
which implies (e index, m)" = 1.

if part: Assume (eindex, 7)™~ = 1 for all 7 € SCIR(g™). In the case m, :=
[m,p] > 1, it is enough to show that there exists an anti-holomorphic map J
with J? = ¢idy commuting with p(X) for all X € g" on

(i) Vo @V, for m ¢ SCIR(g7) ,
(ii) @™~V for m € SCIR(g").

(i): Define an anti-holomorphic map J : V, ®V, — Vo ®V, by J(v,W) = (sw,v).
Then the following two conditions are satisfied

o J2 =¢id,
o (mem)(X)J=J(ra7)(X) forall X € g".
(ii): It is enough to show the following:

Claim. Let 7 € SCIR(g™). For p € {£1}, there exists an anti-holomorphic
map J : Va@Vy — Va @V, such that J? = pid and J(r@m)(X) = (rd7)(X)J
forall X e g".

proof of Claim. Take an anti-holomorphic map J, : Vx — V, such that J2 =
index, wid and 7(X)J, = J,7(X) for all X € g¢".

e in the case when index, 7 = u:
PuwJ =J,@J: VadVy = Ve ® Ve, (v,w) = (Jrv, Jrw). Then J is
the desired map.

e in the case when indexm = —pu:
PuwJ: V@V = Vi@V, (v,w) — (Jrw, —Jrv). Then J is the desired
map.

O
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O

Proof of Proposition [Z.6.20 and[1.6.21l. This comes from Proposition[[.6.17, [.6.18]
Example [LE30 and that p(g7)ew = p(a)u =1t p(a”). 0

1.6.5 associated duality for semisimple Lie algebra
Our goal of this subsection is the following:

Proposition 1.6.26. Let g be a semisimple Lie algebra over C and [ and § real
semisimple Lie subalgerbras of g. Then we have ., Cint h <= [ Cint Huc-

Definition 1.6.27. Fix a semisimple Lie algebra g over C. Let b be a semisim-
ple Lie subalgebra over R. b, denotes inner complexification of h in g. b,
denotes maximal compact subalgebra of h, which is well-defined up to Int(h).

Lemma 1.6.28. The operation ¢ and u have the following properties.
(i) ¢ =c (ie (h)e =t be),

i) u® =u (e (hu)u =tne bu),

(iii) cuc=c (i.e. ((he)u)e =mt be),
(iv) ucu =u (i.e. ((bu)e)u =Int Hu),

(v) For a subalgebra h C g, we have b, C h C b,.
(vi)

Here “fh =yt 7 means there exists o € Int(g) such that a(h) = [.

[CInt h g [(C Cint hCa Cint bu

Proof. This can be easily checked. So we omit the proof. O

Proposition 1.6.29. Let g be a semisimple Lie algebra over C and h and [ real
semisimple Lie subalgebras of g. Then the following conditions are equivalent:

(i)

(i) Tew Cint bus
i)
)

[cu Cint ba

m [c Cint buca

iv) [ Cint huc-

(i

(i
Proof. (ii) = (i): This comes from b, C b
(i) = (ii): Take u to the both sides.
(ii) = (iii): Take c to the both sides.
(iii) = (ii): Take w to the both sides.
(iv) = (iil): Take c to the both sides.

( (

ili) = (iv): This comes from [ C I¢. O
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Example 1.6.30. Put h = sl(n,R) C sl(n,C) =: g. Then for a semisimple Lie
subalgebra [ C g, The following conditions are equivalent:

(i) lew Crnt 5I(n, R),
(i)

(iii) [ Cint s0(n,C),
(iv) [ Crnt s0(n, C).

[cu CInt 50(”);

Put h = su*(2n) C sl(2n,C) =: g. Then for a semisimple Lie subalgebra [ C g,
The following conditions are equivalent:

(i) lew Crnt 5U*(2n),
(ii) lew Crnt sp(n),
(iii) Lo Crns 5p(n, C),
(iv) [ Crnt sp(n,C).

1.6.6 embeddability for an irreducible representation

Our goal of this section is the following Propositions [[LG.31] [[.6.32] [.6.33] and
634

Setting 5. Let g be a complex semisimple Lie algebra, 7 a real structure on g
and (p, V) an irreducible representation of g7. Put n := dim¢ V.

Proposition 1.6.31. In Setting Bl The following conditions are equivalent:
(1) p(g7) Cint S0(p, ) for some p,q € Z>o such that p+ g =n,
(ii) p~ p =~ p" and index, p = 1 = indexy p.

Proposition 1.6.32. In Setting Bl The following conditions are equivalent:
(i) p(g7) Cne sp(2,R),
(ii) p~ p ~pY and index, p = 1 = — indexy p.

Proposition 1.6.33. In Setting 5] The following conditions are equivalent:
(i) p(g7) Crnt 507(2%),
(ii) p~ p~ p" and —index, p = 1 = indexy p.

Proposition 1.6.34. In Setting 5] The following conditions are equivalent:
(i) p(g7) Crut 59(p, q) for some p,q € Z>o such that p+q = 2,

(ii) p~ p~ p" and index, p = —1 = indexg p.
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Remark 1.6.35. In Setting Bl we have the following table, which means p(g™)
is contained in the simple Lie algebra by Int(g) if the conditions of left side and
up side are satisfied.

conditions | p~p",indexgp=1| p~pY, indexgp=1 | pEpY

p~p,index, p=1 s0(p,q) (p+qg=n) sp(5,R) sl(n,R)

p = p, index, p = —1 50"(23) sp(p,q) (p+q=1%) su*(3)
pPED s0(n,C) sp(5,C) su(p,q) (p+q=n)

if p~ p*

In the following part of this subsection, we prove Propositions [L6.31] [[6.32]
[L6.33 and [LE634l The implication (i) to (ii) is clear from Propositions [[LE6.17]
LCEI8 and [[6.2T1 A key argument to show the implication (ii) to (i) is
the commutativity of two involutions (see Lemma [[L6.42)).

Notation 1.6.36 ([Oni] §6). Let g and h be Lie algebras and 7 and 7 Lie
algebra endomorphisms of g and h respectively. Suppose f : g — b is a Lie
algebra homomorphism. We denote by 7 1, 7 if fr = 7 f holds.

First we prove (ii) = (i) of Propositions [[L6.31] [[.6.32] [[.6.33] and [[.6.34]
by using Lemma [1.6.42]

Proof of (ii) = (i) of Propositions[[.6.31), [1.6.52, [[.6.33 and[1.6.3j From the
assumption (ii), there exists an anti holomorphic involution 7 on sl(V') and holo-
morphic involution @ on sl(V') such that 71, 7, idy 1, @ and

sl(V)T ~

su*(2%) if indexg p = —1,

~ R 'f 1 =1 ~
{sl(n, ) if index, p =1, and s(V) ~

s0(n,C) if indexgp =1,
sp(5,C) if indexgp = —1.

It is enough to show that 7@ = &7 from Fact [[6.37 and the classification of
simple Lie algebras. This comes from Lemma [1.6.42] O

Fact 1.6.37 ([Oni, Proposition 1 in §6]). Let g and h be complex Lie algebras
and 7 and 7 anti-holomorphic involutions on g and h respectively. Let f:g — b
be a homomorphism of complex Lie algebra. Then f(g7) C b7 if and only if
T 15 T holds.

We devote the remaining part of this subsection to showing Lemmma [1.6.47]
We use the concept of “S-homomorphism” and Fact [[.6.39]

Definition 1.6.38 (see [Oni] for more details). Let f : g — h be a homomor-
phism of complex Lie algebras g and h. f is said to be a S-homomorphism if
idg 1 ¢ implies ¢ = idy for any ¢ € Int(h).

Fact 1.6.39 ([Onil, §6, Lemma 1]). Let g and h be complex Lie algebras. Let
f:9— b Cgl(V) be an irreducible complex representation of g. Then f is a
S-homomorphism. Conversely, if a representation f : g — s[(V') of a semisimple
complex Lie algebra g is an S-homomorphism, then f is irreducible.
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A key lemma to prove Lemma [[.6.42] is the following:

Lemma 1.6.40. Let g be a semisimple Lie algebra over C and p a irreducible
representation of g. Suppose 7 : g — g and 7 : s[(V) — s[(V') are holomorphic
or anti-holomorphic and 7 1, 7. If 7 is involutive, then so is 7.

Proof of Lemma[I.6.40 If 7, 7 are holomorphic, it is clear from idy 1, 72 €
Int(sl(V)) and Fact So, we consider the case where 7 and 7 are anti
holomorphic. Take Cartan involutions 6 : g — g, 6 : sI(V) — sl(V) such that
01, 6 and 70 = 67. It is enough to show that 7070 = id and 67 = 76. These
imply that 72 = id. In fact, id = 76070 = 7007 = 72.

e Let us show 7676 = id. This follows from id = 7676 1o 7070 and (70)? €
Int(sl(V)).

e Let us show 70710 = id, which is equivalent to 07 = 7.
id = 707710 1, 70710. So, it is enough to show 70710 = (70)(§7)~! €
Int(sl(V)). This follows from Remark[[.6.4Tland the structure of Aut(sl(V'))/ Int(sl(V)).
O

Remark 1.6.41. Let V be a complex vector space. Suppose a and [ €
Autg(sl(V)) are anti-holomorphic. Then af € Int(s[(V')) implies Sa € Int(sl(V)),

Lemma 1.6.42. Let g be a semisimple Lie algebra over C and p an irreducible
representation of g. Suppose 7; : g — g and 7; : sl(V) — sl(V) are holomorphic
or anti-holomorphic homomorphisms such that 7; 1 7; (¢ = 1,2). If 71 and 7
are commutative involutions on g, then 77 and 75 are commutative involutions
on sl(V).

Proof. From Lemmal[l.6.40, we get 712 = id, 732 = id. By applying Lemma[[6.40]
to an involution 775 = T»7, we obtain (7:1772)2 =1id. Since 71, T2 are involutive,
7:17:2 = 7:27:1 holds. O
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Table 1.33:

Iwahori diagrams of simple Lie algebras

aq (€3] Qp—1 (7%
o o o o
sl(n + 1,C)
(n=1)
o o o o
/ / ’ /
251 Qg Q1 an,
aq Q2 Qp—1 Qp
o (e] O——— >0
so(2n+1,C)
(n>1)
o o O——— =0
/ / ’ /
851 Qg Q1 an,
ay Q2 Ap—1 Qp
o o oO&E—— o0
sp(n,C)
(n=2)
e} o O&E———0
/ / ’ /
ay y Q, _q a,
O On-—1
[e%1 (o2 Q2
(@] (@] o]
so0(2n,C) on/ Qn
(n>4) o\ al_y
o ¢} e}
/ / ’
« o o,
1 2 n—2 o Oé%

102



Q2

aq

o

|

aq

<—————0

Qg

as

Q2

O<——>0

i

S o<=——o0

% 0<—>0
0
3 \\)/
o \o fo)
/ ~ 00
N 3
m, O0O<—>0
% oO<~—>0
w/_ o<——>0
al O=<—>0
Do
o
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compact Lie algebra

5u-(n +1) o Ty o ay,
n is even LT
[¢] oO— O —-O0 [¢]
su(n + 1)
n =1 (mod 4) a1 a2 L Un-1 On
o (] O L) O o o
su(n + 1)
n =3 (mod 4) a1 a2 o — An—1 Qn
O——oO O o o o
s0(2n + 1) Qi Qi Qp—1 an
n =0 or 3 (mod 4) o o o o0—>0
so(2n+1) aq Qi Qn—1 an
n=0or3 (mod4) o o o o——0
sp(n) ay Q2 Qs Qp—1 Qi
n is even ° o ° — o e&i———0
5p(n) aq (%) %] Ap—1 Qpn
n is odd o— o o — e ok———9
o and e appear alternately
o 6% Qp—2 ° Ont
s50(2n) (n > 4) . o o .
n =0 (mod 4)
o
(2n) o 6% Op—2 ° Ont
s50(2n
n =2 (mod 4) ° ° o °
o a,
(2n) o1 e%) Oy —2 O\\an_l
s0(2n
n =1 or 3 (mod 4) ° ° ° /
o an
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g2
o&———————o
a1 (%) Q3 Qg
f4
(e] O——>0 o
o0y
(43 aq (€5 a3 Qs (673}
[¢] [¢] @] O o]
\\WM/
[ Yo q
€7
aq Q2 Qa3 Oy Qs &7
° o ° o o o
oQg
€s
aq Q2 as Oy Qs Qg ar
o o o o (e} o o
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non-compact simple Lie algebra

sl(n + 1,R) Qi (e%) Qp—1 ap
(n>1) o o e o o
su*(2n) aq Qg Qg Qop—2  Q2p-1
n is even e o—o —e o .

su(k, ) (1<e<k)
k + ¢ is odd

su(k,?) (1 <L<k)
k + ¢ is even, a;

ai///\ ak’-"é—l

— T

k—¢=0 (mod 4) & & 5 ° o ro R

su(k,?) (1 <L<k)

k + lis even, (6751 Ol//_’—\ Qk4r—1
= - T

k—¢=2 (mod 4) & 5 G e > S

so(k,0) (1 < ¢ < k)

a Qn— Qn
k—¢=1or7 (mod 8) ' ? '
5<k+l=2n+1 © © - o0
50 k,g (]. < 14 < k) aq [6%) Qpn—1 (&7
k—¢=3o0rb5 (mod8) o 0o — o0 o———>e

« a o Oy o,
p(n,R) 1 2 3 1
e} e} e} —O0 O<LZ———o0
spk,f) (1<e<k) @ Qi a3 Qftp
k + ¢ is even ° o ° — o et——o0
sp(k, ) (1<e<k) @ Qi Qg Qftp
k + /¢ is odd ° o ° o— e oL—-—0
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so(k,l) (1 <4 < k) ™ Qs Qp—2
8<k+{¢=2niseven, o o o
k—£¢=0 (mod 8)
o (e70)
Uy
so(k,0) (1 <4 < k) ™ Qg 2 ° 1
8<k+{¢=2niseven, o o o
k—¢=4 (mod 8)
° oy,
Oy
50(ka€) (]— < ¢ < k) a1 Q2 Ap—2 O\ !
8<k+/¢=2niseven, o o o )
k—/¢=2or6 ds8
or 6 (mod 8) O/ .
e %1 Q2 Qs Qok—1 ox @2
s0*(2(2k +1)) (2< k), o o . . \
0/062k+1
ai Qg Qa3 Q2f—2 * %1
s50%(2(2k)) (2 < k), . o o o
o Qo
« «
92(2) ! 2
o&——o0
aq (&%) Qa3 (e 7))
fa(a)
o O—— >0 o
aq (6%) a3 (7]
fa(—20)
e} O——— >0 o
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o0y

Qg
(073 O
Qs O
(65 !
(651 o
o a6
€6(6) . |
a5
(6 %3 O
(%) J
2 O\_~..~/
[¢]
€6(2) \::’//;6
(074 o
Qa3 O
[6%) J
ks O\W/
[¢]
’ R ———
€6(—1 £ a6
(073 O
Qa3 o
(%) J
Qaq g - a6
o
€6(—26) ' a5
6 : |
Qa3 !
(%) O
aq g - aG
7) : a5 |
27( a4 |
Qa3 !
[6%) .
a1 g - aﬁ
—5) : a5 |
67( a4 |
Q3 !
Qo R - a7
(65) O aG |
o
€7(—25) . as
Qg !
Q3 v
Qo K - a7
a1 : a6 |
) - as |
€8(8
( a4 |
(6% v
(65 ;
a1 O
€3(—24) ‘
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Chapter 2

Obstruction for the
existence of tangential
symmetric spaces

Abstract

For a homogeneous space G/H of reductive type, we consider the
tangential homogeneous space Gg/Hp. In this paper, we give obstruc-
tions for the existence of compact Clifford—Klein forms for such tangen-
tial symmetric spaces and obtain new tangential symmetric spaces which
do not admit compact Clifford—Klein forms. As a result, in the class of
irreducible semisimple symmetric spaces, we have only three types of sym-
metric spaces which are not proved not to admit compact Clifford—Klein
forms.

The existence problem of compact Clifford—Klein forms for homoge-
neous spaces of reductive type, which was initiated by T. Kobayashi in
1980’s, has been studied by various methods but is not completely solved
yet. On the other hand, one for tangential homogeneous spaces has been
studied since 2000’s and a criterion was already obtained by T. Yoshino.
Our obstructions for the existence of compact Clifford—Klein forms for
tangential symmetric spaces depend on the criterion and are related to
various fields of Mathematics such as associated pair of symmetric space,
Calabi-Markus phenomenon, trivializability of vector bundle (paralleliz-
ability, Pontrjagin class), Hurwitz—Radon number and Pfister’s theorem
(the existence problem of common zero points of polynomials of odd de-
gree).

2.1 Introduction and Main results
In this paper, we give some obstructions for the existence of compact Clifford—

Klein forms of tangential symmetric spaces and obtain new examples which do
not admit compact Clifford—Klein forms.
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Let G be a Lie group and H a closed subgroup of G. Geometry of Clifford—
Klein forms has been enriched by the following:

Open Problem 2.1.1 ([Ko96bl Problem 1.7(2)]). When does G/H admit com-
pact Clifford—Klein forms?

This is still open even if we restrict the problem to semisimple irreducible
symmetric spaces, although M. Berger [Br57] classified them. A systematical
study was initiated and Open Problem [ZTT] was raised by T. Kobayashi in
1980’s. These results are summarized in the papers [Ko96b, [16, [KY05].

In this paper, we consider Problem P.1.1] for tangential symmetric spaces
Gy/Hy (See Definition 2223) corresponding to semisimple symmetric pairs (G,

Problem 2.1.2 (tangential case). Classify semisimple irreducible symmetric
spaces G/H with regard to whether or not the corresponding tangential sym-
metric spaces Gg/Hy admit compact Clifford—Klein forms.

For Problem 212 the following Fact B2T.3] ZT.4 and ZT1.8 are known as
partial solutions:

Fact 2.1.3 ([19, Theorem 3]). Let G/H be an irreducible symmetric space, and
G a complex reductive Lie group. Gy/Hy has a compact Clifford—Klein form if
and only if G/H is locally isomorphic to one of the following list:

e a Riemannian symmetric spaces G/ K,

e Group manifolds (G x G)/(diag, G), where we put diag, G := {(g,7(9)) :
g € G} C G x G for each involution 7 on G,

e SO(8,C)/S0O(7,C),
e SO(8,C)/S0Oy(7,1).
The unpublished paper [19] will be published.

Fact 2.1.4 (JKY05, Proposition 5.5.1]). The following conditions on the pair
(p,q) of positive integers are equivalent:

(i) The tangential symmetric space of SOq(p,q+1)/SO(p, q) admits a com-
pact Clifford—Klein form.

(i) ¢ < p(p,R).
Here, p(p,R) is Hurwitz-Randon number (see Definition 27.7).

The main parts of the above two facts are non-existence results for tangential
symmetric space. On the other hand, existence results are also known. To state
it, we introduce the notion of standard Clifford—Klein form:

Definition 2.1.5 ([IIl Definition 1.4]). Let G be a linear reductive Lie group.
A Clifford—-Klein form I'\G/H of G/H is standard if I" is contained in some
reductive subgroup L of G acting properly on G/H.
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Remark 2.1.6. If there exists a standard compact Clifford—Klein form of G/H
of reductive type, then its tangential homogeneous space G/ Hy admits a com-
pact Clifford-Klein form. That is, non-existence of compact Clifford—Klein
forms of G/ Hy implies non-existence of standard compact Clifford—Klein forms
of homogeneous space G/ H of reductive type. See Section [2.2.2for more details.

Remark 2.1.7. Any tangential symmetric spaces associated with Riemannian
symmetric spaces G/K and group manifolds (G x G)/(diag, G) admit standard
compact Clifford—Klein forms. Therefore, for Problem 2.1.2] we focus on the
case where G is simple and H is not compact.

Fact 2.1.8 ([KY05], Corollary 3.3.7]). Let (G, H) be a symmetric pair which is
locally isomorphic to one in Table 2.1 and suppose that G is connected. Then
the tangential symmetric space Gy/Hp corresponding to symmetric space G/H
in the following table admits compact Clifford—Klein forms.

Table 2.1: Symmetric pairs (G, H) which admit compact standard

Clifford—Klein forms.

G H L G H L
SO0p(2,2n) SOp(1,2n) U(1l,n) SU(2,2n) U(1,2n) Sp(1,n)
SOo(4,4n) SO0y(3,4n) Sp(1,m) SU(2,2n) Sp(1,n) U(1,2n)

SOp(4,4) | SOo(4,1) x SO(3) | Spin(4,3) || SO(8,C) SO(7,C) Spin(1,7)
SO(4,3)o SOO( 1) x SO(2) Ga2) S0(8,C) SO(7,1) Spin(7,C)
S00(8,8) 0o(7,8) Spin(1,8) SO*(8) | SO*(6) x SO*(2) | Spin(1,6)
S00(2,2n) U(1,n) SO0 (1,2n) SO*(8) U(3,1) Spin(1,6)

Here L is a reductive subgroup of G acting on G/H properly and cocompactly.

Remark 2.1.9. For a symmetric pair (G, H), both of implications between
the conditions “Existence of compact Clifford—Klein forms for G/H” and the
condition “Existence of compact Clifford—Klein forms for Gy/Hy” have not been
proved in the existence literatures.

In this paper, we give new examples which do not admit compact compact
Clifford—Klein forms in the class of irreducible semisimple tangential symmetric
spaces. To show the non-existence of compact Clifford—Klein forms of tangential
symmetric spaces, it is enough to consider symmetric spaces up to associated
pairs. This is one of the reasons why Our Problem is easier to deal with
than the case when G/H is of reductive type. We see it in Proposition 2Z2.10
in the following section.

We use the following five methods to give necessary conditions for the ex-
istence of compact Clifford—Klein forms of tangential symmetric spaces (Theo-

rem 23] 24T, 2571 2X6.T)):

(i) Calabi-Markus phenomenon,
(ii) Applications of Pfister’s theorem.

(iii) Maximality of non-compactness,
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(iv) Non-triviality of symmetric spaces as vector bundles,
(v) Applications of Adams’s theorem,

The following tangential symmetric spaces Gy /Hy are typical examples which
are proved not to admit compact Clifford—Klein forms by each method:

(i) SL(n,C)e/SL(n,R)y (n = 2),

(ii) SL(2n,R)e/Sp(n,R)y (n > 2).

(ili) SOo(p1 + p2, 1 +a2)a/(SO0(p1,q1) X SOo(p2,42))e (0 <p1 < p2,q1,42),
(iv) SO0(2p,29)o/U(p,q)e (2<p < q),

(v) SU(p,2)o/U(p;1)o (pis odd),

Lists of non-existence results obtained by each method shall be given in the
corresponding section.

Theorem 2.1.10. Let (G, H) be a symmetric pair which is locally isomorphic
to one in Table 2.2 and suppose that G is connected. Then the tangential
symmetric space Gg/Hy does not admit compact Clifford-Klein forms:

Table 2.2: Symmetric pairs whose tangential symmetric spaces Gy/Hy do not

admit compact Clifford—Klein forms.

G H G H
SL(p+4q,C) | S(GL(p,C) x GL(q,C)) | Sp(p+¢,C) | Sp(p,C) x Sp(q,C)
(p,g>1) SU(p.q) (p,g>1) Sp(p, q)
SL(n,C) SL(n,R) Sp(n,C) Sp(n,R)
(n>2) SO(n,C) (n>1) GL(n,C)
SL(p+4q,R) | S(GL(p,R) x GL(¢q,R)) || Sp(p+¢,R) | Sp(p,R) x Sp(q,R)
(p,g>1) SOo(p; q) (p,g>1) Ul(p,q)
SU(p.q) SOo(p, q) Sp(p, q) U(p,q)
(p,g>1) (p,g>1)
SU(n,n) GL*(n,C) SU(n,n) Sp(n,R)
(n>1) (n>2) SO*(2n)
SU*(2n) S'L(n,C) SO(2n,C) GL(n,C)
(n>2) SO*(2n) (n>2) SO*(2n)
SU*(2(p+4q) | SU(2p) x U*(2q)) Sp(n,R) GL(n,R)
(p,qg=>1) Sp(p, q) (n>1)
SOg(n,m) GL(n,R) Sp(n,n) U*(2n)
(n>1) SO(n,C) (n>1) Sp(n,C)
SO*(2n) SO(n,C) SO*(4n) U*(2n)
(n>2) (n>1)

GL*(n,C) is the subgroup of SU(n,n), which have the following realization:

sutn =tge oz (; ")a=(; ")

GLi(n,(C) ={geSUn,n):gl,,

115

= In,ng}-



SL'(n,C) is the subgroup of SU*(2n), which have the following realization:

SU*(2n) = {g € SL(2n,C) : §J,, = Jng},
S'L(n,C) ={g € SU*(2n) : g = g}.

See Proposition 2.3 for the proof.

Theorem 2.1.11. Let (G, H) be a symmetric pair, where G is a connected
linear reducitive Lie group. Suppose corresponding symmetric pair (g, h) is
one of the Table 2.5" or Table 2.5”7. Then Gy/Hy does not admit compact
Clifford-Klein forms.

See Proposition 2.3.5] for the proof.

Theorem 2.1.12. Let (G, H) be a symmetric pair, where G is a connected
linear reductive Lie group. Suppose corresponding symmetric pair (g, §) is one
of the following table. Then Gy/Hp does not admit compact Clifford—Klein
forms.

Table 2.3: symmetric pairs whose corresponding tangential symmetric space
Gy/Hy does not admit compact Clifford-Klein forms

g b
¢ fi
€6(—26)

¢g2) | 50%(10) ©u(l)
o) | Su(6) @ su(2)
faca)
e7(—5) | Ce(—14) ® 50(2)
er(r) | su(2) @ so*(12)
¢s(2) O 50(2)
es(s) e7(—5) D su(2)

See Section for the proof.
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Theorem 2.1.13. Let (G, H) be a symmetric pair which is locally isomorphic
to one in Table 2.4 and suppose that G is connected. Then the tangential
symmetric space Gg/Hy does not admit compact Clifford-Klein froms.

Table 2.4: symmetric pairs (G, H) whose tangential symmetric spaces Go/Hg
do not admit compact Clifford—Klein forms.

G H condition
SO*(2(p+q)) 507(2p) x SO*(2q) p>2or(q¢#1andq#3)
Ulp,g) 1<p<gq)
SO(p +¢,C) SO(p,C) x SO(q,C) (p,q) # (1,1),(1,3),(1,7)
S00(p,q) (1<p<gq)
SOo(p,q) SOo(p1,q1) x SOo(p2, q2) p1>1or (g1 > 2and g > 2)
(0<p1 <p2,q1,q2 > 1)
SU(p,q) S(Up1,q1) x U(p2,q2)) | p1=>1orq >2or gy > 2 or ps is odd.
(0<p1 <p2,q1,q2>1)
Sp(p, q) Sp(p1,q1) x Sp(p1,p2) 0<p1<p2q1,q2>1
(0<p1 <po,q1,q2 > 1)
SL(2n,C) Sp(n,C) (n > 2) n>2
SU*(2n)
SL(2n,R) Sp(n,R) (n > 2) n>2
S'L(n,C)
S00(2p, 2q) Ulp,q) (1<p<q) p>2

Here, S'L(n,C) is a subgroup of SL(2n,R) realized as follows:
S'L(n,C) :={g € SL(2n,R) : gJ,, = Jng}, Jn := (I I”) .

Proof. Theorem 2.T.13] follows from Proposition 2.3.3] 2.4.3] 2.5.4 and
271 O

Remark 2.1.14. From the above theorems, we reached the complete classi-
fication of tangential symmetric spaces associated with irreducible semisimple
symmetric spaces which admit compact Clifford—Klein forms except for three
types. In the class of irreducible semisimple symmetric spaces, for the following
semisimple symmetric pairs (G, H), corresponding tangential symmetric spaces
Gy/Hy was not proved not to admit compact Clifford—Klein forms.

e (Sp(2n,R), Sp(n,C)) (n > 2),
e (SU(2p,2q),Sp(p,q)) (2 <p,q),
o (Eg(—14); Fia(—20))-

Remark 2.1.15. Sp(2,R)y/Sp(1,C)s does not admit compact Clifford-Klein
forms. This comes from that symmetric pairs (sp(2,R), sp(1,C)) and (s0(3,2),s0(3,1))
are isomorphic to each other and that SOy (3,2)9/SO(3,1)s do not admit com-

pact Clifford—Klein forms (see Fact 21.7]).
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2.2 Preliminary

In this chapter, we consider tangential symmetric spaces Gy /Hj associated with
irreducible semisimple symmetric space G/H. We prepare the precise setting
and notions in Subsection 2.2l In the next subsection, we review a criterion
for the existence of compact Clifford-Klein forms for tangential homogeneous
spaces given by [KY05]. In Subsection2.2.3] we see that it is enough to consider
symmetric spaces up to associated pair for our problem.

2.2.1 Setting and Notation

Throughout this paper, unless otherwise noted, we assume that G is a linear
reductive and connected semisimple Lie group and that H is an open subgroup of
G :={g € G:0g = g}, where o is the involution determining symmetric pair.
Then, the symmetric space G/H is of reductive type ([Ko96b, Example 2.6.3]).

Remark 2.2.1. The existence problem of compact Clifford—Klein forms for
tangential homogeneous spaces associated with homogeneous spaces of reductive
type depends only on the set of orbits Ad(K)py of the adjoint action of the
maximal compact subgroup K of G on p (see Fact Z2Z0]). So, we can assume
that H is the identity component of G for our purpose.

Now, we recall the definition of a tangential homogeneous space Gy/Hy for
a homogeneous space G/H of reductive type.

Definition 2.2.2 (Cartan motion group, See [KY05, Subsection 5.1]). Let  be
a Cartan involution of G. The Cartan motion group Gy of G is defined by

GQ :=Kl><Adp.

Here K = G? is a maximal compact Lie subgroup of G and p = g=*.

Let G/H be a homogeneous space of reductive type, then we can take a
Cartan involution 6 of G such that 6| is also a Cartan involution of H. Then
we get a closed subgroup Hy := Ky X py of Gy where Ky = K N H and

pg =pnNh.

Definition 2.2.3 ([KY05, Definition 5.1.2]). We call (G/H)g = Go/Hp the
tangential homogeneous space of G/H.

Remark 2.2.4. If (G, H) is a symmetric pair, then so is (Gy, Hy).

2.2.2 Tangential analogue of Kobayashi’s criterion

By the following fact, the existence problem of compact Clifford—Klein form
for a tangential homogeneous space Gy/Hy reduces to how large subspace of p
satisfying condition Fact 2220l (ii) we can take.
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Fact 2.2.5 ([KY05, Theorem 5.3.2]). Let Gy/Hp be a tangential homogeneous
space of a homogeneous space G/H of reductive type. Then, the following two
conditions are equivalent:

(i) The homogeneous space Gg/Hyp admits compact Clifford—Klein forms.

(ii) There exists a subspace W in p satisfying the following two conditions (a)
and (b).
(a) a(W)na(H) = {0},
(b) dim W + d(H) = d(G).
Here, a is a fixed maximally abelian subspace of p and d(G) = dimp,
d(H) = dimpy are non-compact dimension of G, H respectively ([Ko89]).

For a subset L in the Cartan motion group G = K X p, we put a(L) :=
KLK Na.

Remark 2.2.6. In Fact[ZZH the condition (ii)(a) is equivalent to the following
condition (ii)(a’):
(ii)(a) WNAd(K)py = {0}.

Proof of Remark[2Z2.0. We have a(H) = aNAd(K)pg and a(W) = anAd(K)W.
Therefore, we have

aW)na(H) =anAdK)W NAA(K)pu
=aNAdK)(WNAd(K)py)
=a(WNAA(K)pg).

Thus, Remark follows from the observation that for a subset X of p con-
taining 0, X = {0} holds if and only if a(X) = {0} holds. O

Let us see Remark 2.1.6] in detail. The implication in Remark 2.1.6] comes
from the following Fact 2277 228 by taking py, as W in Fact 223

Fact 2.2.7 ([Ko89, Theorem 4.1]). Let H, L be reductive subgroups of a real
reductive linear group G. Then the following conditions on H, L are equivalent:

(i) The L-action on G/H is proper,
(ii) Ad(K)pm Npr = {0}.

Fact 2.2.8 ([Ko89, Theorem 4.7]). Let H, L be reductive subgroups of a real
reductive linear group G. Under the conditions in Fact 22277 the following
conditions are equivalent:

(i) The double coset space L\G/H is compact,
(ii) d(G) =d(H) +d(L).
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2.2.3 Associated pair

In this subsection, we show that the existence problem of compact Clifford—Klein
forms for the tangential symmetric space corresponding to a symmetric pair (G,
H) is equivalent to that for the tangential symmetric pair corresponding to (G,
H*®), where (G, H%) is the associated pair of (G, H) defined as follows:

Let ¢ be an involution of G which define the symmetric pair (G, H). We
take a Cartan involution 6 of G satisfying 6 o 0 = 0 0 6. Then 0|y is also a
Cartan involution of H and 6 o ¢ is also an involution of G.

Definition 2.2.9 ([20]). We call the symmetric pair (G, H*) defined by 6 o o
the associated pair of (G, H).

By the definition of  and o, one can easily see that the associated pair of
(G, H*) is (G, H).

Proposition 2.2.10 (|19, Theorem 20]). Let (G, H) be a semisimple symmetric
pair and (G, H*) the associated pair of (G, H). Then Gy/Hy admits compact
Clifford-Klein forms if and only if Gy/H admits compact Clifford-Klein forms.

Proof of Proposition[2Z.2.10. Tt is enough to show “only if” part. Let B be the
restriction on p of the Killing form on g. Take a subspace V in p such that
dimV = d(G) — d(H) = d(H*) and Ad(K)pg NV = {0}. By taking the
orthogonal complement of V| we obtain the subspace V' in p satisfying the two
conditions, dim V+ = d(G) — d(H?®) and Ad(K)pg. NV+ = {0}, which follow
from the fact that the representation Ad is unitary and orthogonal complement
of py is pye with regard to B. O

Remark 2.2.11. Proposition 2.22.10] holds for a symmetric pair of reductive
type without semisimplicity. We can prove it in the same way by taking a
Ad(G)-invariant and do-invariant inner product on p.

2.3 Calabi-Markus phenomenon

In this section, we see that a necessary condition of the existence of compact
Clifford—Klein forms of homogeneous spaces G/H of reductive type is also one
of tangential homogeneous spaces Gy /Hp.

Theorem 2.3.1. If a homogeneous space G/H of reductive type satisfies that
rankg G = rankg H and G/H is non-compact, then its tangential homogeneous
space G/ Hy does not admit compact Clifford—Klein forms.

Proof. This comes from Fact and the fact that the condition rankg G =
rankg H implies Ad(K)pg = p. O

Remark 2.3.2. The condition rankg G = rankgr H is a criterion of the Calabi-
Markus phenomenon [Ko89, Corollary (4.4)] for a homogeneous space G/H
of reductive type. By a similar argument to the reductive case, we can see
that only a finite subgroup of Gy can acts properly on Gy/Hy if the condition
rankg G = rankg H is satisfied.
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Proposition 2.3.3. Let (G, H) and (G, H*) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Go/Hy nor Go/H§ admit compact Clifford-Klein forms.

o (G,H,H") = (SO*(2(p+q)),SO*(2p) x SO*(29),U(p,q))
L4 (G7 Ha Ha) = (SO(p + Q7(C)a SO(p7 (C) X SO(Qv(C)’ SOO(p7 q))
Here, p and ¢ are positive integers and p or ¢ is even.

Proof. This follows form the Fact 23 I]and rankg G —rankg H = LPTWJ —([5]+
14])- O

For a semisimple irreducible symmetric pair (G, H), we consider the following
two conditions A and B.

A : rankg G = rankg H,
B : the associated pair satisfies the condition A.
Proposition 2.3.4. Let (G, H) be a symmetric pair which is locally isomorphic

to one in Table 2.5 and suppose that G is connected. Then Gy/Hy does not
admit compact Clifford—Klein forms.
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Table 2.5: Symmetric pairs (G, H) satisfying A or B.

G H rankg G | rankg H | A or
SL(p+q,C) S(GL(p,C) x GL(¢q,C)) | p+q—1|p+qg—1 A
pg=>1 SU(p,q) min(p, q) B
SL(n,C) SL(n,R) n—1 n—1 A
n>2 SO(n,C) 5] B
SL(p+ q,R) S(GL(p,R) x GL(¢,R)) | p+q—1|p+q—1 A
p.g>1 SO (p,q) min(p, q) B
SO(2n,C) GL(n,C) n n A
n>2 SO*(2n) 15 B
SOp(n,n) GL(n,R) n n A
n>1 SO(n,C) 5] B
SU(n,n)n>1 GL*(n,C) n n A
SU(n,n) Sp(n,R) n n A
n>1 SO*(2n) 5] B
Sp(n,n) U*(2n) n n A
n>1 Sp(n,C) n A
Sp(p,q) p,g>1 Ul(p,q) min(p,¢) | min(p,q) A
Sp(p +¢,C) Sp(p,C) x Sp(q,C) n n A
p.g>1 Sp(p.q) min(p, q) B
Sp(n,C) Sp(n,R) n n A
n>1 GL(n,C) n A
Sp(n,R) n >1 GL(n,R) n n A
Splp+q¢,R) p,g>1| Sp(p,R) x Sp(q,R) n n A
Ulp.q) min(p, q) B

SU*(2n) S'L(n,C) n—1 n—1 A
n>2 SO*(2n) L%J B
SU*(2(p+ q)) S(U*(2p) x U*(2q)) n—1 n—1 A
pg>1 Sp(p.q) min(p, q) B
SO*(2n) SO(n,C) 5] 5] A
SO*(4n) n > 1 U*(2n) n n A

Here H® coming from the associated pair of (G, H) is written in the same cell

with H.
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Proposition 2.3.5. Let (G, H) be a symmetric pair with G connected. Suppose
corresponding symmetric pair (g, h) is one of the following table. Then Go/Hy

does not admit compact Clifford—Klein froms.

Table 2.57:

rankg G — rankg H* = 0.

b

rankg G

rankg H

symmetric pairs (g, h) which satisfy rankg G — rankg H

AorB

92(2)
sp(1,C) @ sp(1,C)

2

2

sp(1,R) @ sp(1,R)

fa(—20)
50(9,C)

sp(1,C) @ sp(3,C)
faa)

sp(2,1) @ su(2)
s0(4,5)

sp(L,R) ®sp(3,R)

sp(1) @ sp(l,2)

sp(1,8)

€6(2)
sp(1,C) @ sl(6,C)

€6(—14)

50(2,C) & 50(10,C)

sp(4,C)

¢6(6)

%6(6)

5p(2,2)
R @ s0(5,5)

sp(1,R) @ sl(6,R)
sp(4,R)

€6(2)

su(4,2) @ su(2)
u(l) & so0(6,4)

sp(3,1)
faa)

sp(1,R) @ su(3, 3)

sp(4,R)

€6(—14)

sp(1) @ su(2,4)
sp(1,R) @ su(5,1)

17
u(l *(10)
a

) B s0
u(1) & s0(8,2)
sp(2,2)
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Table 2.5”: symmetric pairs (g, h) which satisfy rankg G — rankg H = 0 or

9

rankg G — rankg H* = 0.

b, h*

rankr G

rankg H

AorB

€6(—26)

sp(1) & su*(6))
sp(1,3)

2

2

R @ s0(1,9)
fa(—20)

€7(—5)
sl(2,C) & s0(12,C)

€7(—25
C®Deg

s[(8,C)
€7 (1)

€7(7)

eg(2) D 50(2)
su(2) ¢ so * (12)

su(4,4)
sl(2,R) @ s0(6,6)

su*(8)
Reo £6(6)

s[(8,R)

€7(—5)

s5u(6,2)
u(l) S¥ 26(2)

su(4,4)

su(2) @ so0(8.4)

sl(2,R) @ s0*(12)

€7(—25)

eg(—14) D 50(2)
sl(2,R) & s0(2,10)

s5u(6,2)
su(2) @ so*(12)

R @ e(—26)

su*(8)

€8(24)
sl(2,C) @ ¢%

s0(16,C)
€8(8)

£8(8)

5[(2, R) S7] e7(7)
50*(16)

50(8,8)

€8(—24)

5[(2, R) SY €7(—25)

511(2) SY €7(—5)
50(4,12)

50*(16)

W > [ | 00| OO OO 0O 00| 00 CO| W | W WIW WKk ks BT [ | |~ (3 )0 90 NN
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Table 2.6: classical irreducible symmetric pairs we consider in the following

G

sections.

methods

SO*(2(2p + 2qg + 2))
p,q >0, (p,q) #(0,0)

SO*(2(2p+ 1)) x SO*(2(2q + 1))
U2p+1,2g+1)

(iil) Maximality,
(v) Applications of Adams’s theorem

SO(2p+2q+2,C)
p,q >0, (p,q) #(0,0)

SO(2p+1,C) x SO(2¢ +1,0C))
SOp(2p+1,2¢g+1)

(v) Applications of Adams’s theorem

SOo(p1 + p2.q1 + q2)
ngl SanQI7q2 2 1

SOo(p1,q1) x SOo(p2,q2)

(iil) Maximality, (iv) Non-triviality,
(v) Applications of Adams’s theorem

SU(p1 + p2, 1 + ¢2)
0<p1 <p2,q1,92 > 1

S(U(p1,q1) x U(p2,q2))

(iil) Maximality, (iv) Non-triviality,
(v) Applications of Adams’s theorem

Sp(p1 + p2, 1 + q2)
0<p1 <p2,q1,q2 > 1

Sp(p1,q1) % Sp(p2, q2)

(iii) Maximality, (iv) Non-triviality

SL(2n,C) Sp(n,C) (ii) Pfister’s Theorem
n>2 SU*(2n)
SL(2n,R) Sp(n,R) (ii) Pfister’s Theorem
n>2 S'L(n,C)
SOp(2p,29) 1 <p<gq Ul(p,q) (iv) Non-triviality

2.4 Applications of Pfister’s theorem

In this section, we give a necessary condition for the existence of compact
Clifford—Klein forms for tangential symmetric spaces (Theorem 2-4.T]) and apply
it to two types of symmetric pairs (Proposition 2.43]). We use Pfister’s theorem
(see Fact 24.2) to prove Theorem 2471

Theorem 2.4.1. Let G/H be a semisimple symmetric space and g C s{(2n,K)
a subalgebra, where K = R or C. If the following two conditions are satisfied,
then G/ Hy does not admit compact Clifford—Klein forms.

(i) d(G) - d(H) = n,

(ii) For X € p C M(2n,K), if the characteristic polynomial of X over K is
even, then X is in Ad(K)py.

Fact 2.4.2 ([2I]. See also [8, Example 13.1(c)]). Let V be a real vector space
with dimension n 4+ 1. Suppose f; : V — R (i = 1,---,n) are homogeneous
polynomial functions on V of odd degree. Then {f;}~; has common zero points
in V'\ {0}.
Proof of Theorem [2.4.1l From Fact it is enough to prove that for any
R-subspace V' with dimension n of p, Ad(K)pg NV # {0} holds. By the
assumption, it is enough to show that there exists a non-zero element X € V
such that fx(z) is even, where fx denotes the characteristic polynomial of
X € V C My,(K). Let V be a subspace of p such that dimg V = n. We define
maps 7; : V- R (i =0,1,--- ,2n) by

2n

fx(z) =det(al — X) = ZTi(X)xi for X e V.
i=0
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Then 7o, = 1, T2p,—1(X) = trace(X) = 0 for all X € V by definition. Since

Tai—1 (1 =1,2,--+ ,n— 1) are homogeneous polynomials on V of odd degree, by
using the Fact 22421 we can take a non-zero element X € V such that fx(x) is
even. O

Proposition 2.4.3. Let (G, H) and (G, H*) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Go/Hy nor Go/H§ admit compact Clifford—Klein forms.

b (Ga H, Ha) - (SL(2n,R),Sp(n,R),S’L(n,C)) (’Il > 2)7
e (G,H,H*) = (SL(2n,C), Sp(n,C),SU*(2n)) (n > 2).

Proof. Let (G, H) be a symmetric pair (SL(2n,K), Sp(n,K)) where K = R or
C. This comes from Theorem [ZZ41] Lemma 244 and n < d(G) — d(H) =

2 _ —
n® —1(K=R), for n > 2. O
2n?2 —n—1(K=C)

We consider the case when (G, H)=(SL(2n,K), Sp(n,K)) K=R or C. We
realize a symmetric pair (SL(2n,K), Sp(n, K)) as follows.

SL(2n,K) = {g € GL(2n,K) : det g = 1},
Sp(n,K) = {g € SL(2n,K) : "g.Jng = Ju},

0 -I,
I, O

1

where J, = < ) Then, by taking a Cartan involution 8 : g — g~ !, we

have

SU(2n) (K =C),
p = Hermo(2n,K) = {X € M(2n,K) : *X = X, trace X = 0},

_ {SO(2n) (K =R),

We take a maximal split abelian subspace ay of py as follows.
ag = {diag(a1, -+ ,an,—a1, -+ ,—an):a; ER (i=1,--- ,n)}.

Lemma 2.4.4. For X € p = Sym(2n,R), the following conditions are equiva-
lent:

(i) X € Ad(K)pm,
(ii) the characteristic polynomial fx(z) = det(z — X) is even.

Proof. The implication (i) = (ii) comes from the property that Ad(K)-action
on p preserve the eigenvalues. Next, we prove (ii) = (i). Suppose that X € p
and that the characteristic polynomial fx (z) is even. It means that there exists
k € K such that Ad(k)X = diag(a1,--- ,an,—a1, - ,—a,) € ag C py. O
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2.5 Maximality of non-compactness

In this section, we give a necessary condition for the existence of compact
Clifford—Klein forms for tangential symmetric spaces (Theorem Z51]) and apply
it to five types of symmetric pairs (Proposition [Z5.4).

Theorem 2.5.1. If a symmetric space G/H of reductive type satisfies the
assumption of the following Fact 5.2 then the corresponding tangential sym-
metric space Gg/Hy does not admit compact Clifford—Klein forms.

Proof. This comes from the fact that a(G") C W¢ - a(H) is equivalent to the
condition pgr C Ad(K)py. O

Fact 2.5.2 ([14, Theorem 1.5]). Let G/H be a homogeneous space of reductive
type. If there exist a closed subgroup G’ reductive in G satisfying the following
two conditions, then G/H does not admit compact Clifford-Klein forms.

(i) a(G") C Wg - a(H),
(ii) d(G") > d(H).
Here, W¢ := Ng(a)/Zg(a) is the Weyl group.

Remark 2.5.3. Since the assumptions are same in Theorem 2.5 J]and Fact[2.5.2]
Non-existence results of compact Clifford—Klein forms for symmetric spaces
G/H of reductive type obtained by Fact imply one for corresponding tan-
gential symmetric spaces Gg/Hy.

Proposition 2.5.4. Let (G, H) be a symmetric pair which is locally isomorphic
to one of the following list and suppose that G is connected. Then the tangential
symmetric space Gg/Hy does not admit compact Clifford—Klein forms.

) = (SO (2(p + q)), SO*(2p) x SO*(29)) (2 < p,q),
)= (50"(2(p+4q)),U(p,q)) (2<p,q)
G, H) = (S00(p,q), 5O00(p1,q1) x SO(p2,q2)) (0 < p1,p2. q1,¢2),
) = (5U(p,q), S(U(p1,q1) x U(p2,42))) (0 < p1,p2,q1,q2),
)= (

Sp(p,q), Sp(p1,q1) x Sp(p2,q2)) (0 < p1,p2,q1,92)-

Proof. This comes from Theorem 251l See [I4, Example 1.7], [KY05, Re-
mark 3.5.8, Corollary 3.5.9]. O

Theorem [Z.5.1] can be generalized as follows:

Fact 2.5.5 ([KY05, Corollary to Kobayashi-Yoshino, Theorem 5.3.2]). If there
exists a linear subspace W of p such that W C Ad(K)py and dimg W > dimpgy,
then Gy/Hy does not admit compact Clifford-Klein forms.
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2.6 Non-triviality of symmetric spaces as vector
bundles

2.6.1 general method

In this subsection, we show the following necessary condition for the existence of
compact Clifford—Klein forms of tangential homogeneous spaces (Theorem [Z.6.T])
and list up examples which are proved not to admit compact Clifford Klein forms
by using the obstruction (Proposition and Theorem 2T.12)).

Theorem 2.6.1. Let G/H be a semisimple symmetric space as in Section 22211
If the associated vector bundle K X (g, ,,,) (0/pr) — K/Kp is not trivial

bundle, then Gy/Hy does not admit compact Clifford—Klein forms.

Proof. This follows from the Fact 22251 Remark and Lemma 2.6.3 by
taking (o,V) = (Ad,p) and W7 = ppy. O

Remark 2.6.2 ([Ko89, Lemma 2.7]). Let G/H be a homogeneous space of
reductive type. Then, there is a diffeomorphism G/H ~ K Xk, p/pg as a
manifold. Here, this is the associated bundle with regard to the representation
Ady/p, ¢+ Kg — GL(p/pu) which is induced by the adjoint representation
Ad: Ky — GL(p) such that Ad(Kg)py C pp.

The following Lemma, is used to show Theorem 2.6.11

Lemma 2.6.3. Let K be a Lie group, Ky a closed Lie subgroup of K and
(0,V) be a finite dimensional representation of K. Let W; be a o(Kr)-invariant
subspace of V and W5 a subspace of V satisfying that o(K)W; N Wy = {0}.
Then there exists a injective bundle map K/Kyg x Wo — K X g, V/Wy over
K/Kp.

Remark 2.6.4. In the above Lemma [2.6.3] the coefficient field of vector spaces
V, W can be considered as both R and C. Moreover, we can replace the assump-
tion that K is Lie group and Ky is a closed subgroup of K by an assumption
that K is a topological group and Ky is a closed subgroup of K.

Proof of Lemmal2.6.3. We define a map 7 by
T: K x Wy = K x V/W1, (k,ws) — (k,o(k™Hwy + W1).

Then 7 is a injective K py-equivariant bundle map over K. Here, right Kpy-
actions are as follows:

(K x W) x Ky — K x Wa,  ((k,w2), ki) = (kki,w2),
(K X V/Wl) x Kg — K x V/Wl, ((k‘,’U + Wl)J{?H) — (k‘k‘H,O'(kﬁl)U-i- Wl)

Therefore, we get the induced bundle map 7 : K/Kg x Wo — K Xk, V/W;
over K /Ky, which is the desired injective bundle map. O
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In this section, we show the tangential symmetric spaces associated with the
following symmetric pair do not admit compact Clifford—Klein forms.

Proposition 2.6.5. Let p,q1, g2 be positive integers and (G, H) a symmetric
pair which is locally isomorphic to one of the following list and suppose that G
is connected. Then Gy/Hy does not admit compact Clifford—Klein forms.

SOo(p,q1 + q2),50(q1) x SOo(p,q2)) (1 > 2 and ¢ > 2),
SU(p,q1 +q2),S(U(q1) x U(p, q2))) (q1 > 2 or g2 > 2),
Sp(pa q1 + Q2)7SP(Q1) X Sp(p7 QQ)) (p 2 17 q1, 42 Z 1)a

SO00(2p,29),U(p,q)) (2 <p,q).

Proof. This comes from Theorem 2.6.1] Fact2.6.9and Proposition 2.6.11] 2.6. 12
O

(G H) = (
(G H) = (
(G H) = (
(G H) = (

Proposition 2.6.6. Let (G, H, H*)=(E§, Ff, FEg(~26)). Then neither Gy/Hg
nor Gg/Hg admit compact compact Clifford-Klein forms.

Proof. For G/H = ES/FY, K Xf, p/pm is equivalent to the tangent bundle
over Fg/Fy as a vector bundle. From the following Facts 267 K X i, p/pm is
not trivial. Therefore, from Theorem 2.6.1] and 22,10, We obtain the desired

conclusion. 0
Fact 2.6.7 ([24, Theorem 2]). Eg/F, is not stably parallelizable.

Remark 2.6.8. If a tangent bundle over K/Kj; is trivial, then K/Kj is stably
parallelizable.

To show the non-triviality of real vector bundle, we use Pontrjagin class.
The naturality of characteristic classes implies the following:

Fact 2.6.9 (See [7] for example). Let E — M be a real vector bundle. If the
i-th Pontrjagin class p;(E — M) € HE (M, R) does not vanish for some i > 1,
then the bundle £ — M is not trivial.

By using the following fact, we can easily calculate the Pontrjagin class of
associated bundles. This statement is not new, but for the sake of completeness,
we give a proof in Section

Fact 2.6.10 (See [7] for example.). Let G be a connected compact Lie group,
w : P — M a principal G-bundle, p : G — SO(V) a representation of G and
E := P x¢ V the associated bundle. Then for any f € S*(so(V)*)5°(V), the
following equality holds.

[f(R)] =wodp"(f) € HEp(M,R),
where R is a curvature on E and w : S(g*)¢ — Hjx(M,R) is the Chern-Weil

map.
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By calculations of the Pontrjagin classes in the following subsections, we
obtain the following Proposition 2.6.11], 2.6.12]

Proposition 2.6.11. Let p, g1, g2 be positive integers.

(a) Let (G, H)=(SOo(p,q1 + g2), SO(q1) x SO0(p,q2)). If g1 > 2 and g2 > 2,
then the first Pontrjagin class of the vector bundle K x i, p/py — K/ Ky
does not vanish.

(b) Let (G, H)=(SU(p,q1 + g2), S(U(q1) x U(p,g2))). M g1 > 2 0r g2 > 2,
then the first Pontrjagin class of the vector bundle K X i, p/py — K/Kpy
does not vanish.

(c¢) Let (G, H) = (Sp(p,q1+4q2),Sp(q1) X Sp(p, g2)). The first Pontrjagin class
of the vector bundle K X g, p/pg — K/Kp does not vanish.

Proposition 2.6.12. Let (G, H) = (SO (2p,2q), U(p,q)) (1 <p <q). Ifp > 2,
then the first Pontrjagin class of the vector bundle K X g, p/py — K/Kp does
not vanish.

2.6.2 Calculation of first Pontrjagin class for Grassmani-
ann manifolds

In this subsection, we show Proposition Z.G.ITl by calculating the first Pontrjagin
class of corresponding vector bundles K X i, (p/pr). Here, we use Fact [Z6.10l
More precisely,

(i) Let p1 € S%(so(p/pg)*) C®/PH) be all the sum of principal minors of
degree two.

(ii) To determine whether [p;(R)] = woad*(p1) € H*(K/Ky,R) vanishes or
not, we check whether ad*(p1) € kerw holds or not.

More precisely, we calculate the first Pontrjagin class as follows. Here we
identify S(€*)X and S(&%)%# with S(t)" and S(ty)"# respectively by the
restriction, where t and ty are maximal tori of £ and £y respectively.

step(0) We realize the above symmetric pairs (G, H) and (K, Kpy) as matrix
groups.

step(1) We rewrite K X g, p/ppg to an easier form to calculate Pontrjagin class.

step(2) Fix a coordinates of t = Lie(T) and ty = Lie(Ty), where T and Ty are
maximal tori of K and Ky respectively.

step(3) We write S(t*)" and S(t;;)"V# with regard to the above coordinates.
step(4) We write kerw by using Fact 2.6.20]

step(5) We write ad*(p1) € S(t5;)"W# with regard to the above coordinates.
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step(6) We check whether ad*(p1) € kerw holds or not.

B step(0): Realization of (G, H) and (K, Kp) as matrix groups.
We realize G = SOy(p,q) or SU(p,q) (¢ = ¢1 + q2) as the identity component
of the following matrix group.

{9€e GL(p+¢,K):¢"L, ,9 =1, det g =1}.
Here K =R or C. We realize G = Sp(p, ¢) by the following matrix group.
{g € GL(p+q,H): g*Ip,qg = Ip,q}~
We define a involution o of G by

0:G =G, g Ipg0:91p,91,0:

where I, 4, .4, = —1Iy, . We define subgroup H of G as the identity
I(IQ

component of G°. Then, we can identify p/py with the following Ad(Ky)-

invariant subspace of M (p + ¢, K).

0 B 0
B* 0 0| eMp+q¢K):Be M(p,q;K)
0 0 O

By taking a Cartan involution 0: g + (g*)~!, which is commuting with o, we
obtain the realization of (K, Kg).

B step(1): Rewrite K Xk, p/pm to easier form.

In this step, we prove the following;:

Lemma 2.6.13. There exists SO(q), U(q) and Sp(q) equivariant vector bundle
isomorphisms respectively as follows:

SO(q) X 50(q1)xS0(q2) p/pH
(when (a) : (G, H) = (SOo(p, q1 + q2), SO(q1) x SOu(p,q2))),

N Ul(q) XU(q1)xU(qz) p/pH
FXRu DI = (hen (8) - (G, H) = (SU(p,0), SU (@) x Ulp,02))),
Sp(q) X sp(q1)xSp(az) P/PH

(when (c) : (G, H) = (Sp(p,q), Sp(q1) x Sp(p, g2)))-

Here in the right hand side, actions of SO(q1) x SO(q2), U(q1) x U(qz) and
Sp(q1) x Sp(ge) on p/py are given by the restriction of the action of Ky
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Remark 2.6.14. From the above Lemma 2.6.13] to calculate the Pontrjagin
class of K Xk, p/pm, we can and do calculate it of the vector bundles in the
right hand side. Thus, in the following steps, we use the notation, (K, Kg) =

(SO(q), SO(q1) x SO(g2)), (U(q),U(q1) x U(gz)) and (Sp(q), Sp(q1) x Sp(gz))
respectively.

Lemma 2.6.13] follows from the following Fact and Remark

Fact 2.6.15 ([I7, Theorem 10.32]). Let G be a Lie group, E, M manifolds and
m: E — M a G-equivariant vector bundle. Assume G acts on M transitively
and fix m € M. Then we get the following isomorphism ( f.f ) from E — M to
an associated bundle G x g V — G/H as a G-equivariant vector bundle.

E—LGxyv
Trl O l
M—Loq/H

Here H = G,, is the stabilizer subgroup of G at m and V = 7~ *(m).

Remark 2.6.16. Let G be a Lie group and H, L Lie subgroups of G. Then
the following two conditions are equivalent.

(i) L acts on G/H transitively,
(i) G=L- H.

Remark 2.6.17. We consider the following realization of U(q) in S(U(p) x
U(q))-

det g1
Ulg) = Ip,—1 €SWUp) xUlqg) : g€ Ulq)
g

B step(2): Fix coordinates of maximal tori t and ty of ¢ = Lie(K) and ¢y =
Lie(K ) respectively in the sense of Remark 2.6.141
We use the following notation.

Aij=Eij — Ej € M(p+q,K),

where FE;; is a matrix unit.
We fix maximal tori t, tg of € €5 respectively as follows.

(a) (Ga HL) :J (SOO(pa q1 +Q2)750(Q1) X SOO(pv q2))a ql = L%Ja qll = L%Ja
a3 = %2 :
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e In the case when ether ¢; or ¢ is even.

’
q1

’
a2

t=tyg = {Z tiAp+2i—1,p+2i + Z tq’1+11Ap+q1+211—17p+q1+2i

i=1

i=1

eEMp+qR):t;eR(i=1,---,¢(=d + @)}
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e In the case when both ¢; and ¢» are odd.

(H q;
t :{Z tidp+ai-1,p+2i + g Aprarpra+1 + Z ta;+iAp+ai+2ip+ar+2i+1
=t i=1
eMp+qR):t,eR(i=1,--,¢d(=q\ +¢+1)}
0
0
0 #
—t1 0
0ty
{ —tg; 0
0ty
_tq, O
0 tgp+1
_tq§+1 0
heR(@GE=1,--- ,q')}
a @
tr =D tidpizi-tprai+ D teiAprat2iptan i
i=1 i=1
0
0
0 t
0ty
0 0
0 0
0ty
_tqu 0

-tzeR(Z:17- ’q/)}.
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Take coordinates {ti}flzl, {t; gf{qé of t, ty by the above basis respectively.
(b) (G, H) = (SU(p,q), S(U(q1) x U(p, 42)))
q
t=ty = {V—lzti<—E11 + Eptipri) EM(p+¢,C):t; eR (i =1, ,Q)}
i=1

- Z:'I:I ti
0

=<¢v-1 0 t, eR(i=1,---,q)

ty

tq
Take a coordinate {t;}7_, of t and ty by the above basis.

(c) (G,H) = (Sp(p,q), Sp(qr) x Sp(p, q2))

q
t=tg = {iZtZEp+£p+Z EMp+qgH):t,eR({=1,--- 7Q)}
=1

0

=<1 0 tyeR(U=1,---,q)
i1

tq

Here we consider H as a R algebra spanned by 1,4, j, k satisfying that
i? = j2 = k? = —1,ijk = —1. Take a coordinate {t;}7_, of t and ty by
the above basis.

B step(3): Description of S(t*)" and S(t};)"#.
We use the following notation to describe S(t*)" and S(t3;)"V*.

Notation 2.6.18. For 1 < p < ¢ < n, we denote fundamental symmetric
polynomials of variables {tf), e ,t3}7 {t,, -+ ,ty} by al(cp}q) € S2k((R™)*), b?p,q) c
Sk((Rn)*)

Al RS R, E=(tr, b)Yt et

11 1K
p<i1<--<ip<q

blgP1Q):Rn_>R7 t=(t1, - ,tn) Z iy -+ tiy

p<i1<---<ixp<q
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Remark 2.6.19. For (G, H) = (SOo(p, q1+q2), SO(q1)xSOo(p, 42)), (SU(p, q),

S(U(q1) x U(p,q2))) and (Sp(p,q), Sp(a1) x Sp(p, g2)), S(t*)" and S(t;;)""
can be written as follows by using the above coordinates. Here W and Wy are
the Weyl groups of K and Ky respectively.

(a) (G,H) = (SO0(p,q1 + q2),SO(q1) x SOu(p, q2))

S(t*)w = R[a%l’q/)’ ,a‘(I )’bgl,q')] if g = q1 + g2 is even,
afy

1 e
R[a(Lq,), i Ly )} otherwise.
/ ’
1 . e 1 . e q ql q2
R[%,q;)’ vau,q;w Ugi+1,05+a5) " 7 O +1a+a5) OLat)> Oy 41, q1+q2>]

if ¢; and ¢ are even,

1 e ql .. q2 ql
R[%,q;)’ A1) “<q1+1,q1+q2> gy +1,0)+a5) b(l,ql)]
if g1 is even and g5 is odd,
St =
L g g a5
R[a(l-,qi)’ 1Q(1,q)) a(q1+1 q1+35)° ) (q1+1,q1+q2)’b(q1+1,q1+q2)}

if g1 is odd and ¢ is even,

!’
1 ... ql 1 ... q2
R[%,q;w 1A,y M +1,a+a5) T g+, q1+q2>]

if ¢; and ¢ are odd.

(b) (G, H) = (SU(p,q),S(U(aq1) x U(p,q2)))
S(t*)w = R[b%l,q)’ T ’b?1 q)]

W 1 1
S(t) " = R[b(qu), o ’b(l ql)’b(Q1+1,q1+Q2 a ’b(21+17q1+q2)]

(c) (G,H) = (Sp(p,q),Sp(q1) x Sp(p, q2))

S(t*)w = R[a%l,q)’ T vaqu)],

W _ R[,1 q 1 q
S(th)" " =Rlagq,), - ’a(i#h)’ Ugi+1,q1+92)0 "7 ’a(;1+1,q1+q2)}'
B step(4): Description of kerw.

Under the identification S(£*)5 ~ S(t*)W, S(&5) 5% ~ S(t5,)"# | we use the
following:

Fact 2.6.20 ([6], See also [9]). Let K be a connected compact Lie group and
Ky its closed connected subgroup of K. Let w: S(ti)V# — Hpp(K/Km;R)
be the Chern-Weil map. Then ker w can be written as follows.

ker w = (ideal generated by @Im(rest S SEE)W = SF(E) ) in S(tg)VH),
k=1

where rest is the restriction map.
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Lemma 2.6.21. For (G, H) = (SOy(p, ¢1+¢2), SO(q1) xS0 (p, g2)), (SU(p, q),
S(U(q1) x U(p,q2))) and (Sp(p,q), Sp(q1) x Sp(p, q2)), kerw can be written as
follows respectively by using the above coordinates.

(a) (G,H) = (SOo(p,q1 + q2),50(q1) x SOo(p, g2))

ker w = ideal generated by

qy +QQ

a%m/)? e ’a‘(zl,q/); b‘(l}’q,) (if both ¢; and g9 are even),
» ¢

1 .
O gitay) (otherwise)

on S(ty)"H.

1,q1+45)

(b) (G,H) = (SU(p,q), S(U(q1) x U(p,q2)))
ker w = ideal generated by

1 q
bir,g)s 019

on S(ty)"H.
(c) (G,H) = (Sp(p,q),Sp(q1) x Sp(p, q2))

ker w = ideal generated by
1 q
Urq) " Y(1,q)

on S(ty)"H.

B step(5): Description of ad*(p1) € S(ti)"# for the SO(p/pu)-invariant poly-
nomial p; on so(p/pr) of degree two.
By direct computation, we get:

Lemma 2.6.22. For (G,H)=(SOy(p, q1 + q2), SO(q1) x SOo(p, g2)), (SU(p, q),
S(U(q1) xU(p,q2))), (Sp(p, ), Sp(q1) x Sp(p, ¢2)), ad™(p1) is written as follows.

(a) (G,H) = (SOo(p,q1 + g2),SO(q1) x SO¢(p,q2))
ad”(p1) = pah,q;),
(b) (G, H) = (SU(p,q),S(U(q1) x U(p,q2)))
ad”(p1) = paél,ql) + ((hb%LrJ) + 2b%1,Q1))b%17q)’
(c) (G,H) = (Sp(p,q),Sp(q1) x Sp(p. ¢2))

ad” (p1) = 2pagy 4,

where p; is all the sum of principal minors of degree two, which is a
SO(p/pm)-invariant polynomial of degree two on so(p/pm).
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B step(6): Check whether ad”(p;) € kerw or not.
Proof of Proposition[2Z.6.11l(a). Tt is enough to show the following:

¢, ¢b > 1= ad*(p1) & kerw.

Suppose ¢;,q5 > 1. From Lemma 2:6.22)(a), we get ad*(p1) = pQG%Lqi)' Since
there is no generator of degree one of kerw, if a’(ll,qi) € ker w, then we can write
a%L ) 858 R-linear combination of generators of degree 2 of ker w. However, it
is impossible to do so by seeing ker w. O

Remark 2.6.23. We proved that if ¢q1,g> > 2, then the first Pontrjagin class
of K X, p/pr does not vanish above. In fact, the converse is also true. That
is, if ¢ = 1 or g2 = 1, then the first Pontrjagin class of K X g, p/pg vanishes.

Proof of Proposition[Z6.11(b). Suppose g1 > 2or g2 > 2. From Lemmal[Z622(b),
we get ad*(p1) = pa%lyql) + (qlb%17q) + Zb%l,ql))b%l,q)‘ Since b%l,q) € kerw, it is
enough to show aél,m) ¢ ker w. That is, we show that there is no (c1, ¢z, c3) € R?
such that

1 1 1 1 2
a(1,g) = (€1b(1,,) + €2b(g, 41,01 14))0(1,0) T 3b(1.,q)-

By direct computation, we can find that this is true under the assumption that
q1>2o0r qo > 2. O

Remark 2.6.24. We proved that if g1 > 2 or g3 > 2, then the first Pontrjagin
class p1 (K Xk, p/pr) does not vanish. In fact, the converse is also true. That
is, if 1 = g2 = 1 then py (K Xk, p/pr) vanish. This follows from the following
equality:
1 _ 1 1 2
A(1q1) = P10 (101402) ~ UL +an)-

Proof of Proposition[Z6.11l(c). We show ad*(p1) ¢ kerw. This comes from
Lemma 2:622(c), ad”(p1) = 2pa%1 4 and Lemma 2.621)(c). We can find this
by seeing the degree of generators of ker w. O

2.6.3 Calculation of first Pontrjagin class of SOy (2p,2q)/SU (p, q)

We prove Proposition by calculating the first Pontrjagin class of the
corresponding vector bundle K X, (p/pr). We take the same steps with the
previous subsection except for step(1).

B step(0): Realization of (G, H) and (K, Kp) as a matrix groups.

We realize a symmetric pair (G, H) = (SO¢(2p,2q), U(p, q)) as follows.

G = {g S GL(2(p -+ q),R) : thQPVqu = Igp’gq, detg = 1}07

e )-C )}
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1

Then, by taking a Cartan involution 0 : g — ‘g, we have:

K = SO(2p) x SO(2q) — {(’“1 k2> k1 € SO(2p), ks € SO(2q)} ,
p={( ©)MCa.R): B MR,
P = {(t% ﬁ) €M(2(p+9),R): B = (ﬁ; _f) A1 4; € M(p,q;R)}~

We can identify p/p gy with the following Ad(K g )-invariant subspace of M (2(p+
q),R).

pion={ (5 o) emp+ar: 5= (g ") mmeMpom],

B step(2): Fix a coordinates of maximal tori t and ty of ¢ = Lie(K) and
ty = Lie(Kp) respectively.
Fix maximal tori t, ty of & £z respectively as follows.

p q
b=ty =9 tidiprit+ Y tyyjAspjopigrs it ER (i=1,-+ ,p+q)
i=1 j=1
ty
tp
—t
—t, .
= :t; €R (Z =
tp+1
tptq
—tp1
—tpiq
We take a coordinate {t;}’*7 of t = ty by the above basis.
B step(3): Description of S(t*)" and S(t})"#.
Then we get
AW _ o1 P P 1 q q
S(E)" =Rlag ), 1 0(1,p)2 O1p) UptLpta) " Uptd pa) b(p+1,p+q)}’
Wi _ iyl P 1 q
S(t)™" =Ry 0y Vpt1pta) ’b(p+1,p+q)]'

W step(4): Description of kerw.
Since t = ty, we get:
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Lemma 2.6.25.

ker w = ideal generated by

b

1 - p V4 1 .. q q
U1p) " 1Ay U1y Upt1pra) > Yptpt)? Vot Lipa)

on S(t5)".

B step(5): Description of ad*(p1) € S(t;;)"V# for the SO(p/pp)-invariant poly-
nomial p; on so(p/py) of degree two.
By direct computation, we get:

Lemma 2.6.26.
d*( ~ ) _ 1 4 1 + 2b1 bl
ad \P1) = q0(1,p) T PA(p41,p+q) (1,p)%(p+1,p+q)

B step(6): Check whether ad*(p;) € kerw or not.
We prove ad™(p1) € kerw if 2 < p(< q).

Proof of Proposition[226.13. Suppose p > 2. From Lemma[2.6.20] we get ad™(p1) =
qa%l’p) +pa%p+1,p+q) + 2b%1,p)b%p+1,p+q)' Since aél,p) and a%p+1,p+q) are in kerw
from Lemma 2.6.20] it is enough to show that b%l p)b%p_H ) & kerw. Since

there is no generator of degree one of ker w, if b%l’p)b%p+1~p+q) € kerw, it can be

written as a R-linear combination of generators of degree two of kerw. However

it is impossible. Thus, bf; ,)b(, 1 1) & kerw. O

2.6.4 Calculation of the first Pontrjagin class of (g,0,h*) =
(e6(6), 5u(6) & s1(2), fa(s))

In this section, we consider the symmetric pair (G, H, H*) where G is a con-
nected linear reductive Lie group and corresponding Lie algebras are (eg ), 5u*(6)®
su(2), faqay). Here d(G) = dimp = 42, d(H) = dimpy = 14, d(H*) = 28.

Our goal in this subsection is the following:

Proposition 2.6.27. Neithere Gy/Hg nor Gy/Hj admit compact Clifford—-
Klein forms.

Proof. This comes from Lemma [2.6.29] O

Lemma 2.6.28. Let g be a semisimple Lie algebra without compact simple
ideal. Then the isotropy representation ade : € — gl(p) is faithful. Moreover,
ady is irreducible if and only if g is simple.

Proof. kerade C £ C g is an ideal of g contained in €. Since g has no compact
simple ideal, we obtain ker ad, = {0}. O

Lemma 2.6.29. The associated bundle K X (g, aqy p/pr over K/Ky is not
trivial.

Proof. This comes from the following lemma. U
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Lemma 2.6.30. The first Pontrjagin class of the associated bundle K X (g, aq)
p/pm over K/Kp does not vanish.

Proof. This comes from Fact and Lemma 2.6.37 O

We give a realization of the symmetric pair ¢ = sp(4) D sp(3) @ sp(1) = tx
as follows:

sp(4) :=={X €5l(8,C) : 'XJ+JX =0,X"+ X =0}

_ {(fB‘ f) . A € su(4), B € Sym(4, c)}7

Tiap(4) = sp(4), X — I3 131 X515,
Al _Bl
o -

sp(3) :=sp(4)" ={X €sp(4) : B v 1 Ay € su(3), By € Sym(3,C),a, p € C}

B a
We take maximal tori of ¢, £y as follows:
t =ty = {idiag(ty, to, ts, ta, —t1, —tg, —ts3, —t4) 1t € R (k =1,2,3,4)}.
Then we have
SV =R [t +13 +15 + 13,1113 + 1145 + t1t7 + 1385 + t5t5 + 1313, t1tats + 115t + 11655 + t3t3es, tit5t5t]]
SV = R[] + 13 + 13,4313 + 1143 + t5t3, 1513, 5]
From Fact 2.6.20, we have

ker w = ideal generated by
2+t 413 4+,
15 + t15 + t1t] + 1515 + 3t + 1385,
tHats + 611585 + 15t + tatats,
titstts
on S(ty)V

We consider isotropy representation of H®, which is equivalent to the action
of ¢y on p/py from Remark 2642

Claim. adg,,. : tga = sp(3) ®sp(l) — sl(pya) is the irreducible representation
corresponding to one with the highest weight w3 Xw; by Cartan’s fundamental
theorem.

Proof. Since adp is irreducible, ade can be 7 X 7’ where 7, 7’ are irreducible
representations of sp(3), sp(1) respectively. The dimensions of irreducible rep-
resentations of sp(3) are 1, 6, 14(twice), 21, 64, 70, ---. Since the dimension
divide 28, the possible representations of sp(3) are trivial, ws or ws. From
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Lemma 2.6.28] 7 is ws or ws. On the other hand, from Lemma [2.6.28 and
dimension of ade, we have 7’ = w;, which is two dimensional representation.

Since indexg, t; = —1, indexp, # = —1 holds, where §; (i = 1,2) are Cartan
involutions such that sp(3,C)% = sp(3) and sp(1,C)% = sp(1). So we obtain
T = ws. O

Next, we consider a realization of isotropy representation of G and H*. we
realize ade,, : sp(3) @ sp(1) — sI(R28) on the subspace of ((A\*C%) @ C2)".
Here

3 3
o' (A\CH@C? = (\CH@C, (v Ava Avs) @ w — (JsT1 A JsTz A J5T5) © Sy

Remark 2.6.31. The adjoint representation € ~ p ~ R*? is equivalent to
one corresponding to (sp(4), ws) by Cartan’s fundamental theorem (see Ap-
pendix [L6.3)), which is in class C’(sp(4)). The representation space can be
described as follows:

Define a anti holomorphic involution o on /\k C® by

O’k(vl /\"'/\Uk) = J4Ur N A J4U.
Define C-linear map ¢ : A¥ C8 — AF72C8 by

VA AT Y Qi v (=) T oy A AT A AT A A
1<i<j<k

Here C-bilinear form @Q : C® x C® — C is defined by Q(v,w) := wJyw.

Remark 2.6.32. We have pr0r = 0,2 and O'kO(/\k pgf (X)) = (/\k pgz (X))o
o for all X € sp(4). Here /\k pgz is the representation induced by pm, on
N CB.

Fact 2.6.33 (see [FH] for example). The fundamental representation with high-
est weight wy, is realized by ker ¢y.

For any X € sp(3) @ sp(1), the following diagram commutes:
(A*C*) ®C? —— A'CP
(N pﬁ?;@pg;)ml l/\“ P (X)
(A*C) ®C* — A'CP

)

(N CHeC? —=N\'CB
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Here

3 4
L (/\(C6) ®C? — /\(Cs, (v1 Avg Avg) @ w i 11 (v1) A er(v2) Aer(vs) A ta(w)

L1:(C6—>(C8,

L22(C2—>(Cg,

t t
(Zla 22, %3, 74,25, ZG) — (Zlv 22, 23707 24, Z57Z670)

t(wh w2) — t(Oa 07 07 wy, 07 07 Oa w2)

We define Hermitian form on /\4 C® by

H(v,w):= %det ((vs, wy))

for v = vy Avg Avg Avg, w = wy Awy Awz Awy. Here (-,+) : C8 x C® — C is
the standard Hermitian form on C®. H is A* p(sp(4))-invariant by definition.

Remark 2.6.34. H(v,w) = H(v,w) if v,w € (A\*C3)?. So we have the sym-
metric nondegenerate bilinear form Hy : (A" C8)7 x (A* C8)” — R.

We construct an orthonormal basis of the representation space V of the
irreducible representation po, X po, of sp(3) @ sp(1). To calculate matrix rep-
resentation easily, we make use of weight vectors.

3

Fact 2.6.35. Let p&) &pgﬂlz :5p(3) ®sp(1l) — sl(V) be an irreducible represen-
tation with highest weight w3 @ w;. The weights W(pg’g X pgz) are given as

follows:

W(pl) R pl)) ={tes £y teg L ey, tey ey, tep £eg, ez L ey, }

Remark 2.6.36. For A € W(pgg X pgz), the relation o(Vy) = V_, holds.

Put Iy = {1,2,3,4,5,6,7,8}. For I = (iy,iq,i3,i4) € I3, we describe the
element e;, Ae;, Aei, ANei, by er.

weight

weight vector

weight

weight vector

€1+ex+ €3+ ¢4
€1+€e2—€3+¢€y
€1 — €2 t¢€3téey
€1 — €2 — €3+ &4
—€1+¢E2+€E3+¢Ey
—€1+tex—€e3+¢éq
—€1 — €2+ €3+ &4
—€1 —€&2—€3+¢&4
€1+ €4
—€1 t €4
€9+ €4
—€g t &4
€3+ €4
—E&3 + €4

€(1,2,3,4)
€(1,2,7,4)
€(1,6,3,4)
€(1,6,7,4)
€(5,2,3,4)
€(5,2,7,4)
€(5,6,3,4)
€(5,6,7,4)
€(1,2,6,4) — €(1,3,7,4)
€(5,2,6,4) — €(5,3,7,4)
€(2,1,5,4) — €(2,3,7,4)
€(6,1,5,4) — €(6,3,7,4)
€(3,1,5,4) — €(3,2,6,4)
€(7,1,5,4) — €(7,2,6,4)
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—(
—(
—(

_(_
_(_
_(_
_(_

€1 +82+E3+€4)
€1+ex+e3+¢4)
€1 —ea+egteq)
€1 — €2 —€3+¢€4)
€1 +€2+€3+E4)
€1 +¢e2 —e3+¢€4)
€1 —€2+E3+€4)
€1 — €2 — €3 +¢€4)
*(61 +€4)
—(—e1 +e4)
—(e2 +ea)
—(—e2 +¢4)
—(e3 +¢€4)
*(*51 +€4)

€(5,6,7,8) = 0(6(1,2,3,4))
—€(5,6,2,8) = 0(6(1,2,7,4))
—€(5,2,7,8) = 0(6(1,6,3,4))
€(5,2,3,8) — 0(6(1,6,7,4))
—€(1,6,7,8) = 0(6(5,2,3,4))
€(1,6,3,8) = 0(6(5,2,7,4))
€(1,2,7,8) = 0(6(5,6,3,4))
—€(1,2,3,8) = 0(6(5,677,4))
€(5,2,6,8) — €(5,3,7,8)
—(6(1,2,6,8) - 6(1,3,7,8))
€(6,1,5,4) — €(6,3,7,8)
—(6(2,1,5,8) - 6(2,3,7,8))
€(7,1,5,8) — €(7,2,6,8)
*(6(3,1,5,8) - 6(3,2,6,8))



We take an orthonormal basis on the representation space of pg’z X pgz as
follows:

erto(er),V—1(er —aler)), I € {1,5} x {2,6} x {3,7} x {4}

wi = \/%(6(1,2,6,4) —e@s,7,4) +0o(eq,264 —€1,374)),

£
i
I

(6(1,2,6,4) — €(1,3,7,4) — 0(6(1,2,6,4) - 6(1,3,7,4)))

S
N
li
=

(€(5,2,6,4) — €(5,3,7,4) + T(€(5,2,6,4) — €(5,3,7,4)))

1

g
[~}

|
[ V)

(8(5,2,6,4) — €(5,3,7,4) — 0(6(5,2,6,4) - 6(5,3,7,4)))

(e(2,1,5,4) — €(2,3,7,4) + T(€(2,1,5,4) — €(2,3,7,4)))

&
li

=

(6(2,1,5,4) — €(2,3,7,4) — 0(6(2,1,5,4) - 6(2,3,7,4)))

S
w

|
[ V)

(€6,1,5,4) — €(6,3,7,4) + (€(6,1,5,4) — €(6,3,7,4)))

&,
li

[

(6(6,1,5,4) — €(6,3,7,4) — 0(6(6,1,5,4) - 6(6,3,7,4)))

g
W~

Il
N

(8(3,1,5,4) —€(3,2,6,4) T 0(6(3,1,5,4) - 6(3,2,6,4)))

S
o
li

=

(6(3,1,5,4) — €(3,2,6,4) — 0(6(3,1,5,4) - 6(3,2,6,4)))

g
(o3}

[
v

(8(7,1,5,4) —€(7,2,6,4) T 0(6(7,1,5,4) - 6(7,2,6,4)))

&
li

=

2 (6(7,1,5,4) — €(7,2,6,4) — 0(6(7,1,5,4) - 6(7,2,6,4)))

g
[=2]
|

Let t = v/—1diag(ty,to,ts,ta, —t1, —ta, —t3, —t4) € t. Then we have for I €
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{1,5} x {2,6} x {3,7} x {4}

(P2 B pW) () (er + a(er)) = (1) /Mty + (1)l 4ty + (-1
(¥ pgf)( OV=1(es —o(er)) = —((—1)I /4ty + ()b, 4 (-
(P2 B pD) (tywi = (t1 + ta)w;
(ng, sz)(t)wf (t1 + ta)w]
(P2 X p N(ws = (=t + ta)w;
(pf;?’i IN(Hwy = —(—t1 + ta)w;
(P & p N(wy = (t2 + ta)w;
(PwS N (Hws = —(t2 + ta)w;
@%ﬁp D(Bwy = (—ts + ta)wy
() B pON) (ywy = —(ts + ta)w]
() ® S (Hwi = (ts + ta)wy
(PP = Pwl)(t)wg —(t3 + ta)wy
(P8 R pI)) (tywd = (—ts + ta)wg
(P & L)) (wg = —(—t3 + ta)wg
Lemma 2.6.37. (i) ad*(p1) = 10(¢2 + 3 + 2 +12) + 412,

(ii) ad*(p1) € ker w.
Here p1 € S%(p3%

)/ 4tg +t4))(er — o(er)),
1)/ 4ty 4 14))(er + o(er)),

Ha)SO(pH“) be all the sum of principal minors of degree two.

Proof. (i) By using the above basis,

ad*(p1) = (t1 + ta + ts + ta)” + (t1 + to — t3 + 1g)°
+(t—to+ts+ta)>+ (t —to —ty+t4)°
+(—ti+to+t3+ta)? + (—t1 +to — t3 + tg)?
+(—t1 —ta+t3+ta)® + (—t1 —to — tg + t4)?
+ (t1 4+ ta)? + (—t1 + t4)?
+ (t2 + ta)* + (—t2 + t1)?
+ (t3 +ta)® + (—t3 + ta)?

= 10(t] + 13 + 3 + 13) + 443

(ii) This comes from (i) and the description of kerw given above.

2.6.5 Calculation of the first Pontrjagin class of (g,h,h*) =

(e7(7),5U(2) B 50*(12), eg(2) D 50(2))

In this section, we consider the symmetric pair (G, H, H*) where G is a con-
nected linear reductive Lie group and corresponding Lie algebras are (e(7), su(2)®
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50%(12), eg(2) ® 50(2)). Here dimp = 70, dimpy = 30 and dim pya = 40.
Our goal in this subsection is the following:

Proposition 2.6.38. Neither Gy/Hg nor Gg/Hj admit compact Clifford-Klein
forms.

Proof. This comes from Lemma 2.6.39 O
Lemma 2.6.39. The associated bundle K Xk, aq) p/px is not trivial.
Proof. This comes from the following Lemma 2.6.401 O

Lemma 2.6.40. The first Pontrjagin class of the associated bundle K X (g, aq)
p/pm over K/Kp does not vanish.

Lemma 2.6.41. ad : t = su(8) — gl(p) comes from fundamental representation
Pw, through Cartan’s fundamental theorem.

Proof. Since e7(7) is simple, ad : € — gl(p) is an irreducible representation. So,
this lemma comes from Cartan’s fundamental theorem and Weyl’s dimension-
ality formula. O

Remark 2.6.42. Let p : g — gl(V) a representation equipped with invariant
bilinear form B on V and W a invariant subspace of V. Then the following
representations are equivalent:

o p1:8 = ol(V/W), pi(X)(v+ W)= p(X)v+ W,
o paig— gl(Wh), p2(X)w' = p(X)w.
Here Wt :={v €V : B(v,w) =0 for all X € V}.

Lemma 2.6.43. The representation ad ¢, : ¢g — gl(p/pp) is equivalent to
ad |eye ¢ € — gl(pgae). Moreover, the restriction of ad |¢,. to su(6) & su(2)
comes from pg, X pg, through Cartan’s fundamental theorem.

Proof. This comes from Lemma[2.6.42] For the latter statement, it is equivalent
to consider the isotropy representation of eg(2). Since eg(g) is simple, the isotropy
representation p is irreducible. From Cartan’s fundamental theorem and Weyl’s
dimensionality formula, we obtain the “Moreover part”. O

We consider a realization of ad : € — gl(p) to realize ad¢,,. : tga — gl(pra).
The representation space p is given by fixed points of the star operator on /\4 C8.
We recall the definition on star operator. Set an inner product H on A C"
by
H(vi A ANvp,wr A - Awy) = det((vg, wy)).
Here (,) is the standard inner product on C" and H(v,w) = 0 if v € A" C",
w € A?C™ and p # q. Fix an orthonormal basis e, -+ ,e,.

Definition 2.6.44. We define an anti holomorphic linear isomorphism x,, :
AC" — AC" as follows:
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(i) *p(er A--- Aey) =1,
(ii) For v € A’ C", %,v is determined by *,(v A w) = H(w, *,v) for all w €
N PCn.
Remark 2.6.45. The star operator on (A C", H) is determined up to signature
depending on the choice of orthonormal basis.
Fact 2.6.46. For v € APC", x2v = (—1)P("~P)y holds.
Corollary 2.6.47. The restriction of x, on A" C?" satisfies
*gn _ {1 if n is even,
—1if n is odd.
We realize £ = su(8) and tg. = €y ~ su(6) @ su(2) ® u(1) as follows:
su(8):={X €sl(8,C): X* + X =0}
o :su(8) — su(8),X — I3131 X151,
by =ty =7

We take a maximal tori t = tg as follows:

8

t= tH - {7’ dia’g(tlat25t37t47t57t6at77t8) 1t € R,Ztl = 0}
i=1

Remark 2.6.48.
S(t)W ~ R[s1, 52, 53, 54, 55, 56, 57, 58]/ (51)+
S(t*H)WH = R[Sllv 3/27 Sév 521) Sg’)v 5/67 8/1/’ Sg]/(sl)tH
Here s;, sj and sj are the fundamental symmetric polynomial of degree i, j
and k with respect to {t1,--- ,ts}, {t1,t2,t3, 5,6, t7} and {t4,ts} respectively.

(s1)¢ and (s1)¢, are ideals generated by s; over R[sy, sa, S3, S4, S5, S¢, 57, Ss] and
R[s!, sh, s5, 84, S5, S, S, 5] respectively.

We take an orthonormal basis on ((A\® C6®C2))* c A\* C8 as follows, where
¢ is given in the previous subsection:

er \Neg+ *(61 A\ 64)
ier Aeq + x(ier Aeyg)

Here I € I :={I C {1,2,3,5,6,7} : #I = 3}. Then we have:
Lemma 2.6.49. Let ¢ = idiag(ty, ta, t3, t4, s, te, t7,ts) € t. Then we have

Pws(t)(er Neg+x(er Ney)) = (Z t; + t4> (ier N eq + x(ief Neyq)),
iel

Pw, () (ier Aeg + x(ier Ney)) = — (Z t; + t4> (er Nes+x(er Aey)).
iel
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This claim can be easily checked by direct calculation. So we omit the proof.
Lemma 2.6.50. kerw C S(t3;)"V# is described as follows:
ker w ~ ideal generated by s, s3, 54, S5, S¢, 57, 53 on S(t)VH#
Proof. This comes from Fact O

Remark 2.6.51. For any X € £y« = £y, the following diagram commutes:

(N’COH @2 — A CB
(Pwy xpwl)(X)l lpm(X)
(N’ C®) @ C? —— A'C®
MW% l“
(A*C) ®C* — A'CP
Here the center of £ = £y« acts on (A C®) @ C2 trivially.

Lemma 2.6.52. Let g be a Lie algebra satisfying g = [g, g] and p : g — gl(C™)
an unitary representation with respect to standard inner product on C". Then
Ap g — gl(AC™) is also unitary representation with respect to the above
standard inner product H. Moreover, (A p(X))* = *(Ap(X)) : APC* —
N"PC™ forall X € g (0 <p <n). Here Ap: ANC* — AC" is defined as
follows:

/\p(X) : /\(C” — /\(C",/\p(X)(vl/\--~/\vp) = Zvl/\n-/\p(X)vi/\uJ\vp

Proof. It is enough to show H (w, (A p(X))*(v1A---Avp)) = H(w, *(A p(X)(v1A
< Awp))) for all w € A\""PC" for any X € g. This comes from that A p is
unitary and one dimensional representation is trivial:

/\P # (V1A Ap))
=—H/\p *(v1 A Awy))

(v A - /\p
:—*(/\P(X)(vlA"'AvaU))+*((/\P(X)(01A"'Avp))AW)

—((\P(X) (01 A+~ A vy) Aw)
—H (w, *(Ap(X))(v1 A -+~ A vy)).
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Remark 2.6.53. For a Lie algebra g, the following conditions are equivalent:

(i) [o,0] =,
(ii) one dimensional representation of g is trivial.

Lemma 2.6.54.

ad®(p1) = — Ztlu{4}t(1u{4})c + (s1)

Iel
Here for J C {1,---,8}, put t; := Zjethv and J¢ means complement subset
of Jin {1,---,8}.
Proof. This comes from Lemma [2.6.49 O

Lemma 2.6.55. ad*(p;) ¢ ker w.

Proof. we have the following:

Claim. Let f(t)+ (s1) € S(ti)"V#, where f(t) € R[s}, sb, s4, s}, 85, 55, 87, s4] C
R[t1,- - ,tg] is homogeneous polynomial of degree two. Then the following
conditions are equivalent:

(i) f(t)+ (s1) € kerw,

(ii) There exist real numbers a,b, ¢, d € R such that f(t) =a-s2+ (b-s) +c-
s+ d)s;.

This claim can be easily checked by the description of kerw. Assume that
there exist real numbers a, b, ¢,d € R satifying

Zt]u{4}t([u{4})c = ass + (bsll + C.Slll + d)sl.

Iel
Put t1 = —t5, to = —tg, t3 = —ty, t4 = —tg. Then the left hand side is
12(#2 + 4 + ¢2) + 20¢2 and the right hand side is a(t? + ¢2 + t2 + ¢3). This is
contradiction. O

12

2.6.6 Calculation of the first Pontrjagin class of (g,b
h?) = (e6(2),50"(10) B u(1))

In this section, we consider the symmetric pair (G, H) where G is a connected

linear reductive Lie group and corresponding Lie algebras are (eg(2),50*(10) ©

u(1)). Here dimp = 40, dimpy = 20, € ~ su(6) ® su(2) and €5 ~ u(5) ® u(1).
Our goal of this subsection is the following:

Proposition 2.6.56. Gy/Hy does not admit compact Clifford—Klein forms.

This comes from the following:
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Lemma 2.6.57. The associated bundle K X a4 i, P/Pm is not trivial.
This comes from the following:

Lemma 2.6.58. The first Pontrjagin class of the associated bundle K x aq, k,
p/pu does not vanish.

Proof. This comes from Fact 2.6.10] and Lemma [2.6.66 O

Fix a realization of £ = su(6) ® su(2) and ¢y = u(5) ® u(1) as follows in the
same way as the case (g,h,h*) = (e7(7), 5u(2) @ 50*(12), e(2) © 50(2)):

Aq -B
o « —5 . Al —-B « —B
su(6) @ su(2) = { BT A : (B* A2> € su(6), (ﬂ = ) € su(2), 41, Az € su(3)}
I5} o
o : su(6) @ su(2) — su(6) ® su(2), X > L2 XI5,
u(5) ®u(l) = (su(6) & su(2))?
We take maximal tori t = tg« as follows:
t=1tga = {Z diag(tl,tg,tg,, tq, s, t6,t7,t8) i €ER Gy FtoF+t3 15+t + 1t =014 + 15 = 0}
Remark 2.6.59.
S(t*)W ~ Rsy, 59, 83, 54, 85, 6, 01, 0] / (51, 01)

S(t*Ha)WHa = R[Sllv 5/27 Sév 5217 Sévt7’t4’t8]/(5170'1)

Here, s;, s; and o; are the fundamental symmetric polynomial of degree i with
respect to {tl, tQ, t3, t5, tﬁ, t7}, {tl, tQ, tg, t5, tﬁ} and {t47 tg} respectively.

Remark 2.6.60. ad : ¢ = su(6) @ su(2) — gl(p) is equivalent to the represen-
tation (pw, X pe,, (A CO @ C2)*6®*2),

Proof. We already checked this remark in the previous subsection. O

Lemma 2.6.61. ad |es, : €y — gl(ppe), which is equivalent to ad e, : tn —
gl(p/pr), is equivalent to the coefficient restriction to R of py, X 2i X triv :
su(5) & u(l) ®u(l) — gl(A?> C3 @¢ C ¢ C):

2 2 2
su(5) du(l) @u(l) x (AC)eCaC— (AC)acCeC~ \C
((X,it1,it2), v ® 21 ® 22) > Py (X)V ® 21 ® 20 + v ® (2it1)21 ® 22

where t1,t; € R.

Proof. Since we have h ~ h* ~ s50*(10) ® u(l), €y = su(5) @ u(l) ® u(1),
the isotropy representation on pga consists of trivial representaion of u(1) and
isotropy representation of s0*(10). We can easily check that isotropy represen-
tation of s0*(10) is equivalent to coefficient restriction to R of p, K 2i as a real
representation. ]
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To calculate ad™(p1 ) by using a reasonable orthonormal basis, we consider the
following emmbedding into ((A\? C%) ® C2)*6®*2 which is used in the previous
section.

We define R-linear injective map s : A”C® — ((A\® C%) @ C2)*®*2 as follows

(v) =1 (x5(v)) ® €1 + (x6 © *2) (¢ (*5(v)) @ €1)

where «/ : A*C® — A’CS is the natural inclusion induced by C5 — C8,
(@1, 25) = (21,0, 25,0).
Remark 2.6.62. The R-linear map p is compatible with the representation of

su(5)du(l)du(l) C su(6) dsu(2) = ¢ from Lemma[Z.6.52 Here the embedding
u(1) @ u(l) into su(6) & su(2) C su(8) is given as follows:

u(l) e u(l

(itq, ity

— s5u(6) @ su(2)
»—)zdlag(ththtl, tl,tl,tl,—5t1,t1)—‘r—idiag(tg,tg,tg,—3t2,t2,t2,—5t2,3t2)

)
)
We use the following orthonormal basis on (A® C® ® C2)*s®*2;

er ®er + (%6 @ *2)(er ® eq)
ey ®eq + (*6 ® *2)(i6[ & 61)

Here I € I := {I C {1,2,3,4,5} : #I = 3}. To make our calculation easier, we
take an orthonormal basis on (A* C8)*s 5 (A® C® ® C2)*®*2 (see the previous
subsection for the embedding) corresponding to the above orthonormal basis as
follows:

eg Neg+ xs(es Aey)
ieg Aeq + xg(ieg Aey)

Here J C J := {J C{1,2,3,5,6}: #J =3}

Lemma 2.6.63. Let ¢ := idiag(t1, to, t3, t4, t5, te, t7, ts) € ta.

ad(t)(es N eqg+ xg(es Aey)) Zt +tg | (ieg Aeqg+ xg(iey Aey)
jeJ
ad(t)(ies N eq+ *xg(ieg Aey)) Zt +1ty | (eg Neg+*g(eg Ney))
JEJ

Lemma 2.6.64.

ad*(p1) = Z trofayt(sugay)e-
Jej

Here for J C {1,---,8}, put t; := > . ;t;, and J¢ means complement subset
of Jin {1,---,8}.
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Proof. This comes from Lemma 2.6.63 O
Lemma 2.6.65. We have

kerw = ideal generated by ss, s3, 54, S5, g, 02 On S(t}})WH
Proof. This comes from Fact O
Lemma 2.6.66. ad*(p;) € kerw.

Proof.
Claim. Let f(t)+(s1,01) € S(t3;)"V#, where f(t) € R[s}, sh, 84, 84, 85, t7,ta, ts] C
R[t1,- - ,tg] is homogeneous polynomial of degree two. Then the following con-

ditions are equivalent:
(i) f()+ (s1,01) € kerw,

(ii) There exist real numbers a,b,c,d,e,a’, b’ ¢/, d',;e’ € R such that f(t) =
ass + (bsy + ct7 + dty + etg)s1 + a’o2 + (bs) + ctr + dty + etg)oy.

This claim can be easily checked by the description of ker w. Assume that
there exist real numbers a, b, ¢, d,e,a’, v, ¢/, d’,¢’ € Rsuch that ) ;5 troatupey =
asg + (bs) + ctr + dty + etg)sy + a'oo + (bs + ct7 + dt4 + etg)oy. Put t5 = —ty,
t¢ = —to, ty = —t3 and tg = —t4. Then the left hand side is —6(¢3 + 3 +
t2) — 10t* — 12t3t4 and the right hand side is —a(t} + t3 + t3) — a’t3. This is
contradiction. O

12

2.6.7 Calculation of the first Pontrjagin class of (g, b
h) = (es(s), e7(—5) © 5U(2))

In this section, we consider the symmetric pair (G, H) where G is a connected
linear reductive Lie group and corresponding Lie algebras are (egs),¢7(—5) @
su(2)). Here dimp = 128, dimpy = 64, € ~ s50(16) and ¢y ~ su(2) @ so(12) ®
su(2) ~ s50(12) @ so(4). Our goal of this subsection is the following:

Proposition 2.6.67. Gy/Hy does not admit compact Clifford—Klein forms.
Proof. This comes from the following lemma. O

Lemma 2.6.68. The associated bundle K X (aq ) p/pa over K/Kp is not
trivial.

Proof. This comes form the following lemma. O

Lemma 2.6.69. The first Pontrjagin class of the associated bundle K X (a4, k)
p/pm over K/Kp does not vanish.

Lemma 2.6.70. ad : £y« ~ s0(12)®su(2)@su(2) — gl(pya) is equivalent to the
representation corresponding to po, Xp., Ktriviale C(s0(12)®su(2)@su(2)) by
the Cartan’s fundamental theorem, where i = 5 or 6 (half spin representation).
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Proof. Since b ~ h* = e7(_5) @ su(2), it is enough to check that the isotropy
representation of er_5) is equivalent to the representation corresponding to
Pw; M pe, for some ¢ =5 or 6 by Cartan’s fundamental theorem. O

Proof of LemmalZ.6.69. (i) We put £ =s0(16) = {X € M(16,R) : ‘X + X =
0}, and realize ¢5. = €7 by the involution o(X) = 112,4X11_2%4, maximal
tori t and tg as follows:

8
t=tg = {ZtiA%l,Qi:ti eR (i:1,~'- ,8)}

i=1

ii) We have the following description of S(t*)" and S(t%,)"V#:
H

8
S(t*)W:R[Zt?, Moo, > geg, > gy, > 2R3,
=1

1<i<j<8 1<i<j<k<8 1<i<j<k<t<8 1<i<j<k<€<m<8

Z TR T R Z Rttt t1t2t3t4t5t6t7ts}
1<i<j<k<f<m<n<8 1<i<j<k<l<m<n<o<$

6
* \Wy __ 2:2 2: 2,2 2: 242,2 2: 212,242 E: 242424242
S(tH) 7= ]R[ tia titjv titjtka titjtktb titjtktétmv
i=1 1<i<j<6 1<i<j<k<6 1<i<j<k<t<6 1<i<j<k<l<m<6

titotstytste, t2 + t2, t7t8]

(iii) From Fact 620, we have the following description of ker w:

kerw = ideal generated on S(tj;)"V* by generators

2 242,2 2,2,2,2 2,2,2,2,2
> ot D t2317, > e, > CeH
i=1  1<i<j<k<8 1<i<j<k<f<8 1<i<j<k<f<m<8
242,2,2,2 42 242,2,2,2 42,2
> O, > Ot 122, titatstatstetrts.
1<i<j<k<l<m<n<8 1<i<j<k<t<m<n<o<8

(iv) We describe ad*(tg) and check whether it is in ker w:

Claim. ad”(tg) € ker w.

Proof. Let p1 : s0(12) — sl(V4) be a half spin representation and ps :
su(2) — sl(Vz) a standard representation. From Lemma [Z6.70] there
exists an anti-holomorphic involution J on V3 ® V45 such that p; X ps :
50(12) @su(2) Dsu(2) — sl((Vi®@Va)7) is equivalent to ad : €ga — gl(paa).
It is well-known that W (p1) = {3 (e teateztestes+eg)} where all the
weight have an odd (or even) number of minus signs and W{ps) = {£e'},
so we have W (py W po) = {4 (te1 £ eg Fe3+ e+ 65+ 66) £€’) with odd
(even) number of minus signs for €;. We can take an orthonormal vectors
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2.6.8 Calculation of the first Pontrjagin class of (g,b

on (1 X Vg)‘] for some p; X po-invariant Hermitian form on V3 X V5 as
follows:

v + JU}\)
1wy + J(im\),

where vy € W(%(:I:sl tegteztestesteg)+¢’) Then for the element
t in the maximal torus {(Zle t; A1 04, diag(it’, —it') : t;,t' € R (i =
1,---,6)} Cs0(12) ® su(2), we have

(91 8 po) () (0x + Jon) = (%(itl bty g by 15 £ o) + ) (ion + J(i02))
(p1 B p2) (1) (iwx + J(ivy)) = (—%(itl by by by £ by £ L) — ) (0n + T (02)),
So we have
ad*(p1) = > (%(:I:tlzlztgzlztg:tt4:tt5:tt6)+t')2

with odd (even) number of minus signs

=8(13 4+ t3 + 15+ 15 + 12 +12) + 327

Here we can write t' = at7 +btg for some (a,b) € R?\ {0} from the isomor-
phism s0(4) ~ su(2)®su(2). Then we have ad*(p1) = 8 Z?Zl t2+32(a?t2+
2abt;tg+b%t2). Thus, we obtain ad”(p;) ¢ ker w from the description ker w
and S(ty)"Vn. O

O

12

h?) = (er(—5), e6(—14) © 50(2))

In this section, we consider the symmetric pair (G, H) where G is a connected
linear reductive Lie group and corresponding Lie algebras are (27(_5), eo(—14) B
50(2)). Here dimp = 64, dimpy = 32, £ ~ s0(12) @ su(2) and ty ~ s0(2) B
$0(10) @ u(1). Our goal of this subsection is the following:

Proposition 2.6.71. The symmetric space Go/Hy does not admit compact
Clifford—Klein forms.

Proof. This comes from the following Lemma 2.6.72] O

Lemma 2.6.72. The associated vector bundle K X (aq,x,) b/pua over K/Ky
is not trivial.

Proof. This comes from the following Lemma 2673 O

Lemma 2.6.73. The first Pontrjagin class of the associated vector bundle
K X (Ad,ky) P/PE over K/Kp does not vanish.
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To prove the above lemma, we prepare some lemmas below.

Lemma 2.6.74. The restriction of the isotropy representation ad |s4(10) : 50(10) —
gl(pge) is an irreducible representation and it is the coefficient restriction to R
of the half spin representation (p,,V) (i = 4 or 5) of s0(10). Moreover, the
center of £y« acts on V as a scalar multiplication and the scalar is not zero for
the action of u(1) C su(2).

Remark 2.6.75. The u(1) C su(2) acts on py« nontrivially, namely the scalar
is not zero. This comes from that u(1l)-action is the restriction of standard
representation of su(2).

Proof of Lemma[2.6.74 The isotropy representation of § is irreducible since
the representation space pya comes from the simple Lie algebra eg(_14). So, the
former part is clear. “Moreover part” is also clear from Cartan’s fundamental
theorem and Schur’s lemma. O

We fix a realization of £ = 50(12)®su(2) and ¢y = €5« = 50(10)®s0(2)Pu(1)
as follows:

t=s50(12) Psu(2) = {(X,Y) e M(12,R) ® M(2,C) : '’X + X =0,Y* +Y =0},
ot (XY) > (Lo XIgy 11 Y1),

by = by = £

We realize spin representation on M (32, R) as follows:

iy
o
8
S
(an)
B
3
3
uO
=
(an)
[
Q
—~
uO
Ne)
|2
Q
Q
JCD
w
~—

(
~ (C(1,1) )
~ C(1,1) )
~ (C(1,1) (1,1) ® C(1, ,1)®C(0,1)

- M2,R)@ M(2,R)® M(2,R) @ M(2,R) ® M(2,R)

®C
®C
®C

Here we use maps of Fact [[L5.33] the following isomorphism and inclusion:

C(1,1) ~ M(2,R), C(0,1) — M(2,R)

vf»—>(1 1), v1H(1 _1>,

Then we obtain the following matrix representation of tori ty. by the above
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realization of spin representation and Lemma [2.6.74
s0(12) = M(2,R) ® M(2,R) ® M(2,R) ® M(2,R) ® M(2,R),
(A12,0) — %(T®J®1®1®1),
(A3.4,0) — —%(1 ®JR1®1®1),
(As56,0) — —%(1 JIRT®1®1),
(A7,0) — f%(l leleJ®1l),

1
(Ag.10,0) — §(T®J®T®J®J),
(A11,12,0) » a(l1®1® 11 J),

(071'(1 _1>)»—>b(1®1®1®1®J),

for some (a,b) € R?\ {0}. Moreover b # 0 holds from Remark Thus we
obtain

ad*(p1) = 4(t] + 13 + 13 + 13 + t2) + 16(ats + bt7)>.

Proof of Lemma[2.6.73 It is enough to show that pi(K Xk, p/pu) # 0 €
H} R (K/Ky,R), namely, ad*(p;) € kerw

(i) Put maximal tori t and tgy. of € and €y respectively as follows:
; it
t=tyg = {(ZtiAZil,?h (Z 7 . >) S 50(12) 695u(2) 1t € R (Z = 17' . ,7)}
Py —Zt7
(i) We have the following description of S(t*)" and S(t};)"# :

6
SOV =R[> e, Y g, Y geg, Y. g6,
i=1

1<i<j<6 1<i<j<k<6 1<i<j<k<f<6
242,2,2,2 2
E L5ttty titatstytste, 3]
1<i<j<k<l<m<6
5
* \Wg __ 2 2,2 2,242 2,2,2,2
St = R[E 2, E tit3, § 5ty E AT
i=1  1<i<j<5 1<i<j<k<5 1<i<j<k<t<5
24242,2,2
E Lttty titatstyts, te, tr]
1<i<j<k<t<m<5
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(iii) description of ker w:

6
kerw = ideal generated by Y 7, Y £, > By, > G4,
i=1  1<i<j<6 1<i<j<k<6 1<i<j<k<t<6

> G2, titotstatste, t2 on S(th) V"

1<i<j<k<f<m<6

Therefore we obtain ad*(py) = 4(¢2 +t3+t3+t3+12)+16(ats+bt7)? & kerw
from b # 0 and the above description of ker w.

O

2.7 Applications of Adams’s theorem

The goal of this section is to prove the following:

Proposition 2.7.1. Let (G, H) and (G, H*) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Gg/Hg nor Gg/H{ admit compact Clifford-Klein forms.

e (G,H,H®*) = (SO0(p,q+1),500(p,q),SO0(p,1) x SO(q)) (g > p(p,R)),

e (G,H=H*) = (SU(p,2),S(U(p,1) x U(1))) (p is odd).

e (G,H,H") = (50"(2(2p)), SO*(2(2p—1)) x SO*(2),U(2p—1,1)) (p > 3),
(

e (G,H,H*) = (S0(2(p+q)—2,C),SO(2p—1,C) x SO(2¢—1,C), SO¢(2p—
1,2¢—1)) 1 <p<qand (p,q) # (1,1),(1,2),(1,4)).

Remark 2.7.2. A part of Proposition 2.7.1] was obtained in the non peer-
reviewed paper [20].

We apply Adams’s theorem to show the above Proposition 7.1l To state
Adams’s theorem, we introduce the following Definition 273 and recall Defini-

tion 2741 27710

Definition 2.7.3. For a R-subspace V' C M(p,q;K), we define rankV as fol-
lows.

rankV := min{rankv : v € V'\ {0}}.
Here, K =R, C or H.
Definition 2.7.4 ([23]). We use the following notation.

L(p,q,m; K) :=max{dimV : V C M(p, ¢;K) is a R-subspace such that rankV > r},
a(n,r;K) := max{dim V : V C Alt(n,K) is a R-subspace such that rankV" > r}.

where Alt(n,K) :={X € M(n,K) : X + X =0} and K=R, C or H,
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Remark 2.7.5. The above notation £(p, q,r;K) corresponds to the notation
Lx(p, g;r) on page 380 of the book [23].

Remark 2.7.6. Since the rank of alternative matrix over R or C is even, the
following equality holds.

a(n,2r;K) = a(n,2r — 1;K),
where K is R or C.
Definition 2.7.7 ([I 2l 25]).

p(n,R) := L(n,n,n; R),
pa(n,R) :=a(n,n;R),
p(n,C) = £(n, m,7;C).

Remark 2.7.8. Here, p(n,R) is called Hurwitz—Radon number ([10, 22]) and
the numbers ¢(m, n,r; K) and a(n,r;K) are its generalization.

Fact 2.7.9 ([1, 2, 25]). For a positive integer n, when we write n = 2¥(2¢+ 1),
k=4da+p (k,l,a,B € Z>o, 0 < < 3) uniquely, the following equalities holds:

p(n,R) = 8a + 27,
pA('l%R) = p(naR) - 1a
p(n,C) =2k + 2.

Remark 2.7.10. In the light of Fact 277.9] the following inequalities hold.
(i) p(n,R) <n,
(ii)) pa(n,R) <n—1.

Here, the equalities are attained if and only if n =1, 2, 4 or 8.

We introduce the number s(G, H) for a homogeneous space G/ H of reductive
type as in Section .21l which describes how large subspace of p satisfying
Fact 2.2.5] (ii) we can take.

Definition 2.7.11. For a homogeneous space G/H of reductive type, we set
(G, H) := max{dimV : V C p is a R-subspace such that V N Ad(K)py = {0}}.

Remark 2.7.12. The value s(G, H) is well-defined since it is independent of
the choice of a Cartan involution.

Remark 2.7.13. By using s(G, H), Fact 2225l is reformulated as follows. For
a homogeneous space G/H of reductive type, the following two conditions are
equivalent:

(i) Go/Hp admits compact Clifford—Klein forms,
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(ii) s(G,H) =d(G) —d(H)(=dimp — dimpg).

To apply Adams’s theorem to the above symmetric pairs, we describe s(G, H)
as a linear algebraic condition by using the notation in Definition 2.7.41

Proposition 2.7.14. e For (G,H) = (SOo(p1 + p2,q1 + q2), SO0 (p1,q1) %
SO0(p2,42)), (SU(p1 + p2, 1 + 42), S(U(p1,q1) x U(p2,q2))), (Sp(p1 +
P2, q1 + q2), Sp(p1,q1) % Sp(p2,q2)), we have

s(G,H) = {(p1 + p2,q1 + g2, min(p1, ¢1) + min(p2, ¢2) + 1; K)
where K is R, C, H respectively.
e For (G,H,H®) = (SO*(2(p+q)), SO*(2p) x SO*(2q),U(p,q)), we have
s(G,H) =a(p+q.2(|2] + %]+ 1;,C),
s(G,H") = a(p+ ¢, 2min(p, q) + 1;C).
e For (G,H,H*) = (SO(p+¢,C),SO(p,C) x SO(q,C), SO¢(p, q)), we have

s(G,H) =a(p+q.2(l5] + [3]) + LiR),
s(G,H") = a(p + ¢,2min(p, q) + L;R).

We prove only the case when (G, H)=(SO0(p,q), SOo(p1,q1) x SO (p2, ¢2))
in the above symmetric pairs. The other cases are proved similarly. We realize
a symmetric pair (G, H)=(SO¢(p, q), SO¢(p1,q1) X SOq(p2,q2)) as follows:

G:={g€GL(p+qR):'9l,.9=1,4}0,
H = {g €G: 9Ipy p2ar,a2 = pl,pz,qhng}O?

I
where I, , = ( P Iq>7 Ip: posgia: = (
t,—1

the identity component. Then, by taking a Cartan involution 6 : g — ‘g™, we
have

I .
p1.p2 and “0” means taking
q1,92

K:SO(p)xSO(q):{(kl kz):klesO(p),kQGSO(q)},
P{(% ?)EM(p+q,R)¢B€M(p,q;R)}7
pH:{(t% g)eM(erq,R):B:(%l §2>,Bl6M(phun),BzGM(pmqg;R)}-

To prove the above proposition for (G, H)=(SOq(p, q), SOo(p1, q1)xSO0(p2, q2)),
it is enough to show the following:

Lemma 2.7.15. Let (G, H) = (SOo(p,q), SOo(p1,q1) x SOo(p2,q2)). We
identify p with M(p,q;R). For X € M(p,q;R) the following conditions are
equivalent.
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(1) X e K -py,
(ii) rank X < min(p1,q1) + min(ps, ¢2).

Remark 2.7.16. The adjoint representation of K = SO(p) x SO(q) on p is
equivalent to the following representation o on M(p, ¢;R).

(%1 /S) M(p,q;R) — M(p,¢;R), X = k1 Xky ' for (%1 IS) e K.
2

We identify the adjoint representation with the above representation. Then we
regard py under the above identification as the following subspace of M (p, ¢; R):

B 0
P~ {( 01 Bg) : By € M(p1,q1;R), By € M(PQ,(D;R)}

Proof of Lemma[2.7.19 Put r := min(p1,¢1) + min(pe, ¢g2). The implication
(i)=(ii) follows from that rank X < r for any X € ppy and that the K-action
on M(p, q;R) preserves the rank. On the other hand, we prove (ii)=-(i). Take
X € M(p,q,R) such that rank X < r. Now, we take a maximal split abelian
subspace a of p as follows.

a~ {diag(ai, -, min(p,q)) € M(p,;R) :a; €R (i =1,--- ,min(p,q))}.

From Ad(K)a = p, we can take k € K such that k-X = diag(as,- -+ ,a,,0,---,0).
Thus, by taking appropriate k' € K, we get k'k - X € pg. O

Proof of Proposition [2.7.1]. e For the case where (G, H, H*) = (SO (p,q +
1), S00(p,q), SOo(p,1) x SO(q)): This comes from Fact Z77TI8 and the
fact that Ad(O(p) x O(q + 1)) - pg = Ad(SO(p) x SO(qg + 1)) - py in
p~M(p,q+LR).

e For the case where (G, H) = (SU(p,2),S(U(p,1) x U(1))): This comes
from Proposition 2.7.14] Lemma 27.19(b) and d(G) — d(H) = 2p.

e For the case where (G, H, H*) = (SO*(2(2p)), SO*(2(2p—1))xSO*(2),U (2p—
1,1)): Since s(G,H) = a(2p,2p — 1,C) = a(2p,2p,C) < p(2p,C) and
d(G)—d(H) = 2(2p—1) hold, this comes from the following Lemma 2717

e For the case where (G, H,H*) = (SO(2(p + ¢) — 2,C),SO(2p — 1,C) x
SO(2¢—1,0C)), SOO(Qp— 1,2¢—1)) (1 < p < q): Since s(G,H) = a(2(p+
7)—2,2(p+q) —3;R) =a(2(p+¢) —2,2(p+¢) — 2 R) = pa(2(p+q) -2, R)
and d(G)fd(H) (2p—1)(2¢—1) hold, this comes from the Lemma 2722
and Remark 27101

O

Lemma 2.7.17. Let n € Z~¢ be even. If n > 6, then p(n,C) < 2(n — 1).
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Proof. Let n = 2¥(20 — 1) (k,¢ € Z~o). Then, n > 6 if and only if k¥ > 3 or
{ > 2. Thus,

2(n — 1) — pe(n) = 2" (20 — 1) — 2k — 4
_[6ee-1-10>0 (k>3
T2k 3 -2k —4>223-8>0 (£>2).
Here, we use Fact and the fact that 2¥ — k is monotone increasing for

Fact 2.7.18 ([KYO05, Proposition 5.5.1]). The following conditions on the pair
(p, q) of positive integers are equivalent:

(i) The tangential symmetric space of O(p,q + 1)/O(p, ¢) admits a compact
Clifford—Klein form.

(ii) ¢ < p(p,R).

Lemma 2.7.19. (a) Let m,n be positive integers. Then

Ln,m,m;R) > n < p(n,R) > m.

(b) Let n be a positive integer. Then
£(n,2,2;C) > 2n &< n is even.
Proof. (a): This comes from the following (see Definition 27720l for non-singularity):
g(na m,m; R) > n,
< There exists a linear injective map ¢ : R™ — M (n, m;R) such that
rank ¢(v) > m for all v € R™ \ {0},
< There exists a non-singular bilinear map ¢ : R™ x R" — R",
< There exists a linear injective map ¢ : R™ — M (n,R) such that
rank ¢(v) > n for all v € R™ \ {0}
< l(n,n,n;R) >m
< p(n,R) > m.
(b): (=): Suppose £(n,2,2;C) > 2n. Then, the inequality ¢(2n,4,4;R) > 2n
follows from Lemma 2.7.211 Therefore,
£(2n,4,4;R) > 2n < p(2n,R) > 4
& n s even.

(«): Assume n is even. It is enough to construct a R-subspace V' of M(n,2;C)
such that dim V' = 2n and rankV = 2. Such a V is given by:

V.—{X— (51 ar - 5% ag).az,ﬁze(:(z—l, 72)}.
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In fact, we can easily check the above conditions by X*X = Zil(\ai\Q +
|Bil*) 2. O

Definition 2.7.20. Let U, V and W be vector spaces. A bilinear map f :
U xV — W is said to be non-singular if f satisfies that

f(u,v) =0only ifu=0o0rv=0.
Lemma 2.7.21. The following inequality holds.
L(m,n,r;C) < £(2m,2n, 2r; R).

Proof. The following linear map ¢ is injective and has the property that rank ¢(X) =
2rank X for X = A+ Bi € M(m,n;C) (A, B € M(m,n;R)).

6 : M(m,n;C) — M(2m,2n:R), A+ Bi— <g _AB>.

Lemma 2.7.22. For positive integers p, q, the following inequality holds:

p+q—1=<pq
Here, the equality is attained if and only if p =1 or ¢ = 1.

2.8 Appendix

We give a proof of Fact 2.6.10l for the sake of completeness.
Let G be a connected compact Lie group, w : P — M a principal G-bundle,
p: G — SO(V) arepresentation of G and E := P xg V the associated bundle.
We construct a curvature RV¢ on the vector bundle E from a curvature form 6
on the principal G-bundle w : P — M by using dp : g — s0(V') and see that the
curvature RV¢ is compatible with the Chern-Weil map w : S(g*)¢ — H*(M,R).
We denote V-valued differential forms of degree g on P by (P, V).

Definition 2.8.1 ([12] p146]). We introduce the following subset of A9(P, V).
AL(P,V) := {w € AY(P,V) satisfying the following conditions (i),(ii)},
(i) i(X*)w =0 for any X € g,
(i) Ryw = p(g9)"tw for any g € G,
where X* is the fundamental vector field on P associated with X € g.

We can define a map @) : [(E @ \"T*M) =: A9(E) — A%L(P,V) for any
q € Z>o by

(WZS)p(Xh e Xq) = p_lsw(P)(w*Xl’ e ’w*Xq)v

where s € A9(E), p € P, Xy, ,X, € T,P and p~! is the inverse map of the
linear isomorphism p : V' — E ), v — [p,v]. Then, we get the following:
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Fact 2.8.2 ([I2, Proposition 6.2.3]). The map w; : AY(E) — AL(P,V) is
R-linear isomorphism.

Fact 2.8.3 ([12, Proposition 6.3.3]). Let 8 € 2!(P, g) be a connection form on
P. Then Vj := wi ' o(d+dp(h)) o w is a connection on E.

Let dV¢ be a exterior covariant differentiation defined by the connection Vg
and Q € A2(P, g) the curvature form defined by 6. Then following fact holds.

Fact 2.8.4 ([I2, Proposition 6.3.3 and 6.3.10]). (i) dV¢ is commutative with
d+dp(0) through @}, i.e. @), 0dV? = (d+dp(h))ow; for any q € Zxo.
(it) (d+dp(0))o(d+dp(8)) = dp(Q) : A%L(P,V) — AL (P, V) for any q € Z>.

From the above Fact 2Z8.4i), for each ¢ € Z>, we get the following com-
mutative diagram.

AI(E) _dve A+ (E) _dve A+2(E)

lw; O J{w;l O iwaa
(P, V) L a1 (p,v) EE 2 (v

In particular, considering the case when ¢ = 0 and Fact [2Z.84)(ii), we can describe
the curvature RV defined by V4 on E as follows:

RV = @ odp(Q) 0w,

For basic differential form o € 2A9(P) (i.e. a € w*(~A9(M))), we denote the
corresponding differential form on M by @ € A9(M).

proof of Fact[Z6.10. We can easily check that w*(f(ws ' o dp(Q) o @) =
f(dp(Q)). Therefore, we get f(ws ' o dp(Q) o w) = f(dp(Q)). Thus,

[f(R)] = [f(RY)]
[f (@5~ 0 dp(Q) o )]

Il
(o
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