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Chapter 1

Classification of irreducible
symmetric spaces admitting
compact standard
Clifford–Klein forms

Abstract

We give a complete classification of irreducible symmetric spaces which
admit standard compact Clifford–Klein forms by using representation the-
ory, embeddability of semisimple Lie algebras into simple Lie algebras and
the criterion for proper action on homogeneous space of reductive type by
T. Kobayashi.

1.1 Introduction

1.1.1 Background

A Clifford–Klein form is a double coset space Γ\G/H equipped with a man-
ifold structure, where G is a Lie group, H is a closed subgroup of G and Γ
is a discontinuous group for G/H (see Definition 1.2.1 for more details). For
example, symmetric spaces, Klein’s bottle and compact Riemannian surfaces
are Clifford–Klein forms. It is important to consider the existence of compact
Clifford–Klein forms in this field,

Problem A ([Ko89, Ko96b]). Which homogeneous space G/H admits a com-
pact Clifford–Klein form?

A special case of Problem A includes:

Fact 1.1.1 ([Bo63]). Let G be a linear reductive Lie group and H a compact
subgroup of G. Then G/H always admits compact Clifford–Klein forms.
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Opposite extremal case occurs if H is non-compact:

Fact 1.1.2 ([CM62]). Let Γ\O(n + 1, 1)/O(n, 1) (n ≥ 2) be a Clifford–Klein
form. Then Γ is a finite group. In particular, O(n+ 1, 1)/O(n, 1) never admits
compact Clifford–Klein forms.

On the other hand, in the case where H is non-compact, Kulkarni found
examples admitting compact Clifford–Klein forms:

Fact 1.1.3 ([Ku81]). Homogeneous spaces SO(2, 2n)/SO(1, 2n) and SO(4, 4n)/SO(3, 4n)
(n ≥ 1) admit compact Clifford–Klein forms.

These results are for specific homogeneous spaces, but in 1980’s, a systematic
study of the existence problem of compact Clifford Klein forms was started by
T. Kobayashi, which deals with a wide class of homogeneous spaces containing
pseudo-Riemannian symmetric space. His breakthrough on the problem is to
introduce “continuous analogue” of discontinuous group and to give a sufficient
condition for the existence of compact Clifford–Klein forms:

Fact 1.1.4 ([Ko89, Theorem 4.7]). A homogeneous spaceG/H of reductive type
has a compact Clifford–Klein form Γ\G/H if it admits a reductive subgroup L
of G whose natural action on G/H is proper and cocompact.

Then, Problem A is trivial for Riemannian symmetric spaces and group
manifolds.

Remark 1.1.5 (Trivial case). A group manifold (G′ × G′)/ diagτ G
′ admits a

compact Clifford–Klein form, where we put diagτ G
′ := {(g, τ(g)) : g ∈ G′} ⊂

G′ ×G′ for an involution τ on G′.

As other examples, T. Kobayashi found 12 series of irreducible symmetric
spaces which admit compact Clifford–Klein forms.

Fact 1.1.6 ([KY05, Corollary 3.3.7]). Symmetric spaces in the following Ta-
ble 1.1 admit compact Clifford–Klein forms. Here n = 1, 2, · · · .

Table 1.1: Symmetric spaces which admit compact Clifford–Klein forms.
G/H L

1 SU(2, 2n)/Sp(1, n) U(1, 2n)
2 SU(2, 2n)/U(1, 2n) Sp(1, n)
3 SO(2, 2n)/U(1, n) SO(1, 2n)
4 SO(2, 2n)/SO(1, 2n) U(1, n)
5 SO(4, 4n)/SO(3, 4n) Sp(1, n)
6 SO(4, 4)/SO(4, 1)× SO(3) Spin(4, 3)
7 SO(4, 3)/SO(4, 1)× SO(2) G2(2)

8 SO(8, 8)/SO(7, 8) Spin(1, 8)
9 SO(8,C)/SO(7,C) Spin(1, 7)
10 SO(8,C)/SO(7, 1) Spin(7,C)
11 SO∗(8)/U(3, 1) Spin(1, 6)
12 SO∗(8)/SO∗(6)× SO∗(2) Spin(1, 6)
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Remark 1.1.7. SO(6, 2)/U(3, 1), SO∗(8)/U(3, 1) and SO∗(8)/SO∗(6)×SO∗(2)
are infinitesimally isomorphic.

So far, Problem A has been attacked by not only T. Kobayashi but also
many other mathematicians. However, Problem A is not yet solved completely
even for irreducible symmetric spaces, which was classified by M. Berger [Br57].

1.1.2 Continuous analogue of Problem A and main theo-
rem

We want to consider a continuous analogue of Problem A based on Fact 1.1.4.

Problem B. Classify homogeneous spaces G/H of reductive type which have
a reductive subgroup L of G acting properly and cocompactly.

In this paper, we give a solution to this problem for irreducible symmetric
spaces:

Theorem 1.1.8. Let G/H be a noncompact irreducible symmetric space where
G is the group of displacements. Suppose that G/H admits a reductive sub-
group L of G acting on G/H properly and cocompactly. Then G/H is locally
isomorphic as a symmetric space to one of the following list:

• (trivial case) a Riemannian symmetric space,

• (trivial case) a group manifold,

• a symmetric space in Table 1.1.

Here, recall that T. Kobayashi gave the following:

Conjecture 1.1.9 ([KY05, Conjecture 3.3.10]). Let G/H be a homogeneous
space of reductive type. If G/H admits a compact Clifford–Klein form, then
G/H admits a reductive subgroup L of G acting on G/H properly and cocom-
pactly.

No counter example to Conjecture 1.1.9 has been known as of now. Evidence
of Conjecture 1.1.9 includes the nonexistence theorems of compact Clifford–
Klein forms in various settings proved by K. Ono [KO90], R.J Zimmer [Z94],
R. Lipsman [Li95], Y. Benoist [B96], F. Labourie, S. Mozes [LMZ95], G.A. Mar-
gulis [Ma97], H. Oh, D. Witte [OW00], T. Yoshino [KY05], Y. Morita [M15].

If this conjecture is true, then we complete the classification of irreducible
symmetric spaces admitting compact Clifford–Klein forms from Theorem 1.1.8.

Note that Theorem 1.1.8 only claims the existence of L. We also want to
classify such reductive subgroup L.

Problem C. Suppose G/H is locally isomorphic as a symmetric space to a
symmetric space in Table 1.1. Classify a reductive subgroup L of G acting on
G/H properly and cocompactly.

7



From the following Fact 1.1.10 , it is natural to deal with group manifolds
in Problem C.

Fact 1.1.10 ([Fl86, Theorem 2(iv)]). Let X be a symmetric space and G =
G(X) its group of displacements. Then X is irreducible if and only if either X
has dimension one or g is simple or g is the direct sum of two isomorphic simple
ideals, g = g1 ⊕ g1, and σ(X,Y ) = (Y,X) for all X,Y ∈ g1.

Remark 1.1.11. The classification of reductive subgroups acting properly and
cocompacly on group manifolds is more difficult than the case where G is simple.

We also give a solution to Problem C.

Theorem 1.1.12. Suppose G/H is locally isomorphic to a symmetric space in
Table 1.1 except for Lie(G) ≃ so(2, 2). Let L′ be a reductive subgroup of G
acting on G/H properly and cocompactly. Then L′ is locally isomorphic to the
corresponding L “up to compact factor”.

See Definition 1.2.25 for the definition of “up to compact factor”. Moreover,
we will give all the embeddings of l ⊂ g up to Int(g) in Section 1.5.

Remark 1.1.13. If Lie(G) is isomorphic to so(2, 2), then G/H is a group
manifold.

1.1.3 Observation on the results

Remark that symmetric spaces in Table 1.1 have the following good properties:

Observation 1. Suppose (G/H,L) is in Table 1.1. Then the following condi-
tions are satisfied:

• rankR H = 1 or rankR L = 1,

• rankR H + rankR L = rankR G.

The author does not know a direct proof of these conditions. However, the
proof of Theorem 1.1.8 could be simpler, if one has shown these conditions
directly for (G/H, L) satisfying the assumption of Theorem 1.1.8.

1.2 Preliminary, setting and strategy

1.2.1 Clifford–Klein form

In this subsection, we prepare terminology for our problem and definition of
Clifford–Klein forms of reductive type.

Proposition and Definition 1.2.1 (Clifford–Klein form (See [Ko96b, §0] for
more details.)). Let G be a Lie group and H a closed subgroup of G. Suppose
a discrete subgroup Γ of G acts on G/H properly discontinuously and freely,
then the quotient space Γ\G/H has the natural manifold structure such that
G/H → Γ\G/H is a C∞-covering map. We call the manifold Γ\G/H Clifford–
Klein form of G/H and the discrete subgroup Γ a discontinuous group.
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In Conjecture 1.1.9, T. Kobayashi assumed that G/H is of reductive type
and subgroup acting on G/H properly and cocompactly is a reductive in G. So,
let us recall:

Definition 1.2.2 ([Ko89]). Let G be a linear reductive Lie group and H a
reductive subgroup of G. We say the homogeneous space G/H is of reductive
type.

Throughout this paper, we shall work in the following:

Setting 1. G is a linear reductive Lie group. H and L are reductive subgroups
of G.

Let us recall the definition of “linear reductive” and “reductive subgroup”.

Definition 1.2.3 (linear reductive Lie group, See [Ko89] for more details ). Let
G be a Lie group. We say G is a linear reductive Lie group if G is contained
a connected complex reductive Lie group GC with Lie algebra isomorphism
Lie(G) ⊗R C ≃ Lie(GC) (see Definition [Ko89]). Then G has a global Car-
tan involution θ. We call the dimension of dimG/K = dim g−θ noncompact
dimension of G, which is denoted by d(G).

Definition 1.2.4 (reductive subgroup [Ko89]). Let G be a linear reductive Lie
group and H a closed subgroup of G. We say H is reductive in G or a reductive
subgroup of G if there exists a Cartan involution θ on G such that θ(H) = H
and H has finitely many connected components.

Definition 1.2.5 (reductive Lie subalgebra). Let G be a linear reductive Lie
group and g its Lie algebra. Let l be a subalgebra of g. We say l is a reductive
subalgebra of g if there exists a Cartan involution θ̃ on G such that dθ̃(l) = l.

By d(l) we denote its noncompact dimension dim l−dθ̃ of l.

Remark 1.2.6. Let G be a connected linear reductive Lie group and L a
connected closed subgroup of G. Then we have

L is reductive in G ⇐⇒ l is a reductive subalgebra of g.

Definition 1.2.7 (standard Clifford–Klein form [KK16]). Let G/H be a ho-
mogeneous space of reductive type and Γ a discontinuous group for G/H. A
Clifford–Klein form Γ\G/H is called standard if there exists a reductive sub-
group containing Γ and acting on G/H properly.

Remark 1.2.8. Problem B is equivalent to the classification of irreducible
symmetric spaces admitting standard compact Clifford–Klein forms.

Remark 1.2.9 ([KY05, Remark 3.3.11]). There exist non-standard compact
Clifford–Klein forms.
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1.2.2 Kobayashi’s criterion for proper action

In this subsection, we recall the criterion for proper action and cocompactness
by T. Kobayashi.

Definition 1.2.10. We call the action of L on G/H is proper if the following
subset LS ⊂ L is compact for all compact subsets S ⊂ G/H.

LS := {ℓ ∈ L : ℓS ∩ S ̸= ∅}.

Remark 1.2.11. For discrete subgroup Γ ⊂ G, Γ action is propely discontinu-
ous if and only if the action is proper.

Let us recall the definition of “proper in G” and “similar in G” to describe
useful criterion for proper action.

Definition 1.2.12 ([Ko96a]). We say the pair (H, L)

• is proper in G, denoted by H ⋔ L in G if For any compact subset S of G,
SHS−1 ∩ L is relatively compact.

• is similar in G, denoted by H ∼ L in G if there exists a compact subset
of G such that L ⊂ SHS−1 and H ⊂ SLS−1.

Fact 1.2.13 ([Ko96a]). Let G be a Lie group and L, L′ and H closed subgroup
of G. Then we have

L-action on G/H is proper ⇐⇒ L ⋔ H in G,

If L ∼ L′ in G, then L ⋔ H in G ⇐⇒ L′ ⋔ H in G.

Remark 1.2.14. Let L be a closed subgroup of G. Let L′ be a closed subgroup
of L such that L′ ⊂ L. If L-action on G/H is proper, then so is L′-action.

Fact 1.2.15 ([Ko89]). In Setting 1, we fix a Cartan involution on G and fix
a maximal abelian subspace a of p. Take Cartan involutions θ1 and θ2 on
G such that θ1(H) = H and θ2(L) = L. Take maximal abelian subspaces
a′H ⊂ h−θ1 and a′L ⊂ l−θ2 . Then we can and do take α1, α2 ∈ Int(g) such that
aH := α(a′H), aL := α2(a

′
L) ⊂ a. Then the following conditions are equivalent:

(i) the natural action of L on G/H is proper,

(ii) WaH ∩ aL = {0}.

Here W = W (g, a) is the Weyl group coming from the restricted root system of
g with maximal abelian subspace a of p.

From Fact 1.2.15, we obtain the following:

Remark 1.2.16. In Setting 1, if L-action on G/H is proper, then the following
inequality holds:

rankR L+ rankR H ≤ rankR G.
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Remark 1.2.17. From Fact 1.2.15, in Setting 1, we can consider the properness
in Lie algebra level.

Fact 1.2.18 ([Ko89, Theorem 4.7]). In Setting 1, under the assumption that
L-action on G/H is proper, the following conditions onG, H and L is equivalent:

(i) L\G/H is compact,

(ii) d(G) = d(L) + d(H).

1.2.3 Exact formulation of Problem C

Problem C has non-essential parts. So we elliminate them, namely

(i) conjugate for L (see Definition 1.2.21),

(ii) compact factor for L (see Definition 1.2.25).

Eventually, we reach the following:

Problem C’. Suppose G/H is locally isomorphic as a symmetric space to one
in Table 1.1. Classify a reductive subgroup L of G acting on G/H properly and
cocompactly up to conjugate and compact factor.

■ conjugate

Remark 1.2.19. Let Γ be a discontinuous group for G/H. Take g ∈ G. Then
Γ\G/H and gΓg−1\G/H are differmorphic as a (G,G/H)-manifold.

Definition 1.2.20 ((G,G/H)-structure, see [LMZ95, M15] for example). A
manifold M is said to be locally modelled on a homogeneous space of G/H or
said to be (G, G/H)-structure, if it is covered by open sets that are diffeomorphic
to open sets of G/H and the transition functions are locally given by transitions
by elements of G satisfying the cocycle condition.

From the above remark, we introduce the following equivalent relation on
reductive subgroup of G:

Definition 1.2.21. Let L1, L2 be reductive subgroups of G. We denote by
L1 ∼conj L2 in G if there exists an element g ∈ G0 such that g(L1)0g

−1 = (L2)0.

■ compact factor
For the problem for the existence of a reductive subgroup L acting on G/H
properly and cocompacly, “compact factor” of L is not essential. Therefore
we introduce a equivalence class in reductive subgroups of G which preserves
properness and cocompactness.

Fix a linear reductive Lie group G. Put g = Lie(G).

Definition 1.2.22. Let L1, L2 be reductive subgroups of G. We denote by
L1 <c L2 in G if there exists a compact subgroup K of G satisfying the following
two conditions:
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(i) K ⊂ ZG ((L1)0),

(ii) K(L1)0 = (L2)0.

Remark 1.2.23. A compact subgroup of a linear reductive Lie group is reduc-
tive in G.

Remark 1.2.24. The relation “<c” in reductive subgroups of G is pre-order.
Namely the following conditions hold:

(i) L1 <c L1,

(ii) L1 <c L2, L2 <c L3 =⇒ L1 <c L3.

However “L1 <c L2 and L2 <c L1 =⇒ L1 = L2” does not hold.

Proof. (i) is clear by definition. We show (ii). There exist compact reductive
subgroups K1 and K2 and such that

K1(L1)0 = (L2)0,K1 ⊂ ZG ((L1)0) ,

K2(L2)0 = (L3)0,K2 ⊂ ZG ((L2)0) .

Put K3 = K2K1. It is enough to show that K3 satisfies K3 ⊂ ZG((L1)0).These
comes from K1 ⊂ ZG((L1)0) and K2 ⊂ ZG((L2)0) = ZG(K1(L1)0).

Definition 1.2.25. Let ∼c be the equivalence relation of reductive subgroups
of G generated by the pre-order <c. We denote by L1 ∼c L2 in G if L1 is
equivalent to L2 in the sense of ∼c.

The equivalence relation “∼c” can be described in Lie algebra level.

Definition 1.2.26. Let l1, l2 be reductive subalgebras of g. We denote by
l1 <c l2 in g if there exists a compact Lie subalgebra k of g and satisfying the
following two conditions:

• [k, l1] = 0,

• k⊕ l1 = l2.

This is pre-order in reductive Lie subalgebras of g. Let ∼c be the equivalence
relation of reductive subalgebras of g generated by the pre-order <c. We denote
by l1 ∼c l2 in g if l1 is equivalent to l2 in the sense of ∼c.

Proposition 1.2.27. For reductive subgroups L1, L2 of a linear reductive Lie
group G and their Lie algebras l1 := Lie(L1), l2 := Lie(L2), the following
conditions are equivalent:

(i) L1 ∼c L2 in G,

(ii) l1 ∼c l2 in g.

Proof. It is enough to show that L1 <c L2 in G ⇐⇒ l1 <c l2 in g. This is clear
by definition.

Remark 1.2.28. For reductive subgroups L1 and L2 of G, d(L1) = d(L2) and
L1 ∼ L2 in G holds if L1 ∼c L2 in G.
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1.2.4 Strategy of our proof

Our proof depends on the following three theories:

(i) representation theory of semisimple Lie algebras,

(ii) criterion for embeddability of semisimple Lie algebras into simple Lie al-
gebras,

(iii) criterion for proper action on homogeneous spaces of reductive type.

Conditions of our problem can be described in terms of representation of Lie al-
gebra. From (i), we can parameterize representations of semisimple Lie algebras
in terms of highest weight and calculate the dimensions of the representations.
From (ii), we can reduce the candidates of reductive subgroups L by the crite-
rion for embedding semisimple Lie algebras into simple Lie algebras. From (iii),
we can determine whether or not the corresponding subgroup L acts on G/H
properly in Lie algebra level.

1.2.5 Methods and key idea

In this section, we see our strategy to prove Theorem 1.1.8 and 1.1.12 and
prepare methods and some lemmas used in common by the following proofs in
Section 1.3 and 1.4. Our methods depending on a representation theory of Lie
algebras works for both Problem B and C’, but for Problem C’, we investigate
Lie subalgebra more precisely after classification in the level of representations
of Lie algebras.

We overview our strategy for Problem B and C’ step by step.

step 1 We work on the classification of symmetric pair by M. Berger. We reduce
candidates of symmetric spaces G/H by using a necessary condition to
admit compact standard Clifford–Klein forms that the corresponding tan-
gential symmetric space Gθ/Hθ admits compact Clifford–Klein forms. In
this step, we reduce candidates as shown in Table 1.4.

step 2 We exclude the cases (G, H)=(Sp(2n,R), Sp(n,C)) (n ≥ 2) in Table 1.4
by Fact 1.2.35.

step 3 By step 2, candidates of symmetric pair (G, H) are classical types or
(E6(−14), F4(−20)). We consider the classical types here (we use other
methods for (E6(−14), F4(−20)). Then we describe conditions for a existence
of reductive subgroups acting properly and cocompactly in terms of a
existence of representations ρ of Lie algebras l = Lie(L).

step 4 For each candidate G/H, we obtain upper bound of dimension of repre-
sentation ρ coming from Fact 1.2.18 and Remark 1.2.16. By using Weyl’s
dimensionality formula, we obtain finite number of candidates of repre-
sentation of “primary simple factor“ (see 1.2.31 for the definition).
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step 5 We reduce candidates by using criterion for the embeddability of semisim-
ple Lie algebras into simple Lie algebras and properness.

step 6 For each pair of a Lie algebras and its representation (l, ρ) which induces
proper and cocompact L-action, we determine which images ρ(l) are con-
jugate by Int(g) (see Section 1.5).

key idea in step 4 and 5

In this subsection, we see the key idea (algorithm) to determine representations
of Lie algebras which induce reductive subgroups acting on G/H properly and
cocompactly, and prepare lemmas used in step 4 and 5.

We introduce an equivalent relation in pairs of a Lie algebra and its repre-
sentation as follows:

Definition 1.2.29. Let (l, ρ) and (l′, ρ′) be pairs of Lie algebras and their
representations. We say (l, ρ) is equivalent to (l′, ρ′) if there exists a Lie algebra
isomorphism φ : l → l′ such that ρ is equivalent to ρ′φ as a representation of l.

In the case where G/H with rankR G−rankR H = 1, which is easier case than
the case rankR G−rankR H ≥ 2, it is enough to consider simple Lie algebras with
real rank one such as so(k, 1), su(k, 1), sp(k, 1) and f4(−20) by Remark 1.2.16
and the following Table 1.2.

Table 1.2: Simple Lie algebras with rankR L = 1 and their noncompact
dimensions
l d(L)

sl(2,R) ≃ sp(1,R) ≃ su(1, 1) 2
sp(1,C) ≃ o(3,C) ≃ sl(2,C) ≃ o(3, 1) 3

su∗(4) ≃ o(1, 5) 5
so∗(6) ≃ su(1, 3) 6

so(k, 1) k
su(k, 1) 2k
sp(k, 1) 4k
f4(−20) 16

Next, we consider the case where G/H with rankR G−rankR H ≥ 2, which is
difficult case because there are a lot of possible combinations of representations
of reductive Lie algebras, which are not necessarily simple. Therefore we focus
on “primary simple factor”, which is “the largest” simple ideal of l in the sense
of ratio of the noncompact dimension to the real rank.

Assume that L is a reductive subgroup of G acting on G/H properly and
cocompacly. Since l := Lie(L) is a reductive, we have a Levi decomposition as
follows:

l = z⊕ lss,

lss = ⊕s
i=1li

Here z is the center of l, and lss is the semisimple ideal of l, and li (i = 1, · · · s)
are simple ideals of l.

14



Remark 1.2.30. For the classification of L up to compact factor, we can and
do assume that li (i = 1, · · · , s) are noncompact.

Then we label simple ideals as follows:

Setting 2.
d(Li)

rankR Li
≥ d(Li+1)

rankR Li+1
(i = 1, · · · , s− 1).

Definition 1.2.31. We call l1 primary simple factor.

We surmmarize properties related to primary factor of real rank and non-
compact dimension of semisimple Lie algebra.

Remark 1.2.32. Let lss = ⊕s
i=1li be a decomposition into simple Lie algebras.

Then we have the following:

(i) d(Lss) =
∑s

i=1 d(Li), rankR Lss =
∑s

i=1 rankR Li.

(ii) rankR L1 ≤ rankR Lss

Moreover, we assume that d(Li)
rankR Li

≥ d(Li+1)
rankR Li+1

(1 ≤ i ≤ s− 1). Then we have:

(iii) d(Lss)
rankR Lss ≤

∑ℓ
i=1 d(Li)∑ℓ

i=1 rankR Li
for any 1 ≤ ℓ ≤ s,

(iv) d(Lss)
rankR Lss ≤ d(L1)

rankR L1
.

Proof. Properties (i) and (ii) are clear. The inequality (iv) comes from (iii). So,
we prove (iii). This comes from the following inequalities about real numbers
with ai

bi
≥ ai+1

bi+1
(i = 1, · · · , n− 1) for fixed n ∈ N.

• ai+1

bi+1
≤ ai+ai+1

bi+bi+1
≤ ai

bi
,

•
∑n

i=n−ℓ+1 ai∑
i=n−ℓ+1 bi

≤
∑n

i=1 ai∑n
i=1 bi

≤
∑ℓ

i=1 ai∑ℓ
i=1 bi

for 1 ≤ ℓ ≤ n

These are easily checked. So, we omit the proof.

■ Outline of the proof for the case rankR G− rankR H ≥ 2:
From step 1 and 2, it is enough to consider the following three types of symmetric
spaces for classical types.

Table 1.3: possible symmetric spaces with rankR G− rankR H ≥ 2
step \G/H SO(8,C)/SO(7, 1) SU(2p, 2q)/Sp(p, q) SO0(2p, q + 1)/SO0(2p, 1)× SO(q)

step a Remark 1.4.40 Lemma 1.3.17 Lemma 1.3.49
step b Lemma 1.4.41 Lemma 1.3.20 Remark 1.3.52
step c Lemma 1.4.46 Lemma 1.3.30 Lemma 1.3.57
step d Remark 1.4.48 Remark 1.4.49 Lemma 1.3.59

• In step a: we give a upper bound of the dimension of irreducible compo-
nents π of the restriction of ρ to primary factor l1 and reduce candidates
of π.
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• In step b: By using criterion for embeddability of semisimple Lie lagebras
into simple Lie algebras, we reduce candidates of irreducible components
π of ρ|l1 .

• In step c: Considering possible combinations of the other factors li (i =
2, · · · , s), we determine possible pairs (lss, ρ|ssl ) of semisimple parts and
restriction of ρ to lss.

• In step d: By verifying that the center of l has no noncompact part or
possible parameter of p and q, we determine pairs (l, ρ).

1.2.6 Tangential symmetric space

In this subsection, we reduce candidates of symmetric spaces G/H admit-
ting reductive subgroups acting on G/H properly and cocompactly by using
Fact 1.2.33, 1.2.34 and 1.2.35.

Fact 1.2.33. Let G/H be a homogeneous space of reductive type. If G/H ad-
mits standard compact Clifford–Klein forms, then the tangential homogeneous
space Gθ/Hθ admits compact Clifford–Klein forms.

Proof. This comes form Fact 2.2.7.

Fact 1.2.34. Let G be a connected simple Lie group and G/H symmetric
space of reductive type with H noncompact. If the tangential symmetric space
Gθ/Hθ associated with G/H admits compact Clifford–Klein forms, then G/H
is infinitesimally isomorphic to one of the following symmetric spaces:

Table 1.4: possible candidates of symmetric spaces whose corresponding
tangential symmetric spaces admit compact Clifford–Klein forms

Symmetric space condition rankR G− rankR H
Sp(2n,R)/Sp(n,C) n ≥ 2 n

SO(p, q + 1)/SO(p, q) 1 ≤ q < HR(p) 1
SU(2p, 2q)/Sp(p, q) 1 ≤ q ≤ p q

SO(p, q + 1)/SO(p, 1)× SO(q) 2 ≤ q < HR(p) q
E6(−14)/F4(−20) 1

SU(2p, 2)/U(2p, 1) p ≥ 1 1
SO(2p, 2)/U(p, 1) p ≥ 2 1
SO(8,C)/SO(1, 7) 3
SO(8,C)/SO(7,C) 1
SO∗(8)/U(3, 1) 1

SO∗(8)/SO∗(6)× SO∗(2) 1

Here HR(n) is the Hurwitz–Radon number (see Fact 2.7.9, Remark 2.7.8 for
the definition of Hurwitz–Radon number).

Proof. This comes from classification of irreducible semisimple symmetric spaces
and Theorem 2.1.10, 2.1.11, 2.1.12 and 2.1.13.
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Fact 1.2.35 ([Ko89, Example (4.11)]). A symmetric space Sp(2n,R)/Sp(n,C)
does not admit compact Clifford–Klein forms for any positive integer n.

Remark 1.2.36. To show Theorem 1.1.8, from Fact 1.1.6, 1.2.34 and 1.2.35, it
is enough to consider the following symmetric spaces:

• SO(p, q + 1)/SO(p, q) (1 ≤ q < HR(p)),

• SO(p, q + 1)/SO(p, 1)× SO(q) (2 ≤ q < HR(p)),

• SU(2p, 2q)/Sp(p, q) (1 ≤ q ≤ p),

• E6(−14)/F4(−20).

1.2.7 Lemmas used in the following sections

In this subsection, we prepare facts and lemmas about representation of semisim-
ple Lie algebra, embeddability of semisimple Lie algebra into simple Lie alge-
bras and the relation between real representations and complex representations,
which are used in the following proofs.
■ representation of semisimple Lie algebras

Lemma 1.2.37. Let V be a vector space over C and π an irreducible component
of a representation ρ : l → sl(V ) of a semisimple Lie algebra l. Put m(l) :=
min{dimπ : π is a nontrivial irreducible representation of l}. If dimπ +m(l) >
dim ρ, then we have ρ = π ⊕⊕dim ρ−dimπtriv.

Proof. Let π′ be a nontrivial irreducible component of ρ. Then dimπ +m(l) ≤
dimπ + dimπ′ ≤ dim ρ.

Fact 1.2.38. Let lss be a semisimple Lie algebra and ρ : lss → sl(V ) a rep-
resentation of lss. Then we have the decomposition ρ = ⊕t

iρi into irreducible
components and have the following:

(i) dim ρ =
∑t

i=1 dim ρi,

(ii) each irreducible component ρi can be written as an external tensor product
(ρi = πi

1⊠ · · ·⊠πi
s, V

i
1 ⊗· · ·⊗V i

s ) where π
i
k is an irreducible representation

of lk.

(iii) dim ρi =
∏s

j=1 dimπi
j

(iv) dim ρ =
∑t

i=1

∏s
j=1 dimπi

j ≥
∑

(i,j)∈I dimπi
j .

Here I := {(i, j) ∈ {1, · · · , t}×{1, · · · , s} : πi
j is a nontrivial irreducible representation of lj}.

Proof. (iv) comes from that dimensions of nontrivial representations of simple
Lie algebras are greater than or equal to 2 and that the inequality ab ≥ a + b
holds for a, b ≥ 2.

17



Lemma 1.2.39. Assume ρ is injective. Let π be an irreducible component of
ρ|l1 . If the inequality dimπ + 2 > dim ρ holds, then we have lss = l1.

Proof. Since the minimum dimension of nontrivial irreducible representations
of simple Lie algebras is two, dimπ + 2 ≤ dim ρ if s ≥ 2.

■ Lemmas for embeddability of semisimple Lie algebras into simple Lie algebras
See Notation 1.6.15 for the definition of “⊂Int”, which is used in the following
lemmas.

Lemma 1.2.40. Let ρ : lss → sl(V ) be a representation of semisimple Lie
algebra lss = ⊕s

i=1li. Suppose an irreducible component π of ρ|l1 satisfies
2 dimπ > dim ρ. Then the following conditions hold:

(i) π ≃ π and indexτ1 π = 1 if ρ(lss) ⊂Int sl(n,R),

(ii) π ≃ π and indexτ1 π = −1 if ρ(lss) ⊂Int su
∗(2n

2 ),

(iii) π ≃ π∨ and indexθ1 π = 1 if ρ(lss) ⊂Int so(n,C),

(iv) π ≃ π∨ and indexθ1 π = −1 if ρ(lss) ⊂Int sp(
n
2 ,C),

(v) π ≃ π∗ if ρ(lss) ⊂Int su(p, q) for some p+ q = n (p, q ∈ Z≥0).

Here n = dimV , τ1 is the involution on lC1 defining l1 and θ1 is the Cartan
involution on lC1 .

Proof. We show the condition (i). The similar argument works for (ii), (iii), (iv)
and (v). If we put π ̸≃ π, then from Lemma 1.2.42, we have 2 dimπ ≤ dim ρ <
2 dimπ. This is contradiction. So we obtain π ≃ π. The same argument
induces m = [π : ρ|l1 ] = 1. By applying the criterion Proposition 1.6.17 to ρ|l1 ,
we obtain 1 = (indexτ1 π)

m = indexτ1 π.

Remark 1.2.41. For an irreducible representation π of simple Lie algebras, we
can easily check whether of not π is self-conjugate (or dual, adjoint) and the
indexτ π ∈ {±1} by using “diagram”. See Appendix or [Oni] for example.

Lemma 1.2.42. Let ρ : lss → sl(V ) be a representation of lss and π a irre-
ducible component of ρ|l1 , where l1 is a simple ideal of lss. Put n := dimV .
Then we have

(i) [π : ρ|l1 ] = [π : ρ|l1 ] if ρ(lss) ⊂Int sl(n,R) or ρ(lss) ⊂Int su
∗(2n

2 ),

(ii) [π : ρ|l1 ] = [π∨ : ρ|l1 ] if ρ(lss) ⊂Int so(n,C) or ρ(lss) ⊂Int sp(
n
2 ),

(iii) [π : ρ|l1 ] = [π∗ : ρ|l1 ] if ρ(lss) ⊂Int su(p, q) for some p+ q = n.

Proof. These come from Proposition 1.6.17, 1.6.18, 1.6.20, 1.6.21 and 1.6.22.

Lemma 1.2.43. Let ρ : lss → sl(V ) be a representation of lss. Suppose that
ρ(lss) ⊂Int so(p, q) for some p + q = dimV . (π ≃ π and indexτ1 π = −1) or
(π ≃ π∨, indexθ1 π = −1) implies [π : ρ|l1 ] is even.
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Proof. This comes from ρ|l1(l1) ⊂Int sl(n,R), ρ|l1(l1) ⊂Int so(n,C) and Propo-
sition 1.6.17 and 1.6.20. Here, n = dimV .

■ relation between complex representation and real representation

Remark 1.2.44. Let l be a Lie algebra over R and V be a complex vector
space and ρ : l → gl(V ) an representation. We consider the cofficient restricton
of ρ, denoted by ρR : l → gl(VR). Then we have (ρR)

C ≃ ρ ⊕ ρ, where (ρR)
C :

l → gl((VR)
C)

Proof. Let i be a complex structure of V and
√
−1 a complex structure of of

represetatkve (ρR)
C We define C-linear linear isomomorphism.

VR +
√
−1VR → V ⊕ V

v +
√
−1v′ 7→ (v + iv′, v − iv′)

The above map induces the equivalence between (ρR)
C and ρ⊕ ρ.

Remark 1.2.45. Let ρ : l → gl(V ) be a representation of real Lie algebra.
Then ρR ≃ (ρ)R holds.

Lemma 1.2.46. Let (ρ, l) be a representation of real semisimple Lie algebra
and π an irreducible representation of l. If (ρR)

C ≃ π ⊕ π then ρR ≃ πR(≃ πR).

Proof. From the above Remark 1.2.44 and the assumption, we have (ρR)
C ≃

ρ ⊕ ρ ≃ π ⊕ π. Since π is irreducible, we obtain π ≃ ρ or π ≃ ρ. Thus
ρR ≃ πR(≃ πR) holds.

1.3 Proof of non-existence part

From Remark 1.2.36 and a property of Hurwitz–Radon number, to show Theo-
rem 1.1.8, it is enough to conisider the following symmetric spaces G/H:

• SO(2p, q + 1)/SO(2p, q) (1 ≤ q < HR(2p)),

• SU(2p, 2q)/Sp(p, q) (1 ≤ q ≤ p),

• SO(2p, q + 1)/SO(2p, 1)× SO(q) (2 ≤ q < HR(2p)),

• E6(−14)/F4(−20).

Therefore we give a proof for the above four types of symmetric spaces in the
following subsections.
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1.3.1 (G, H)=(SO(2p, q + 1), SO(2p, q)) (1 ≤ q < HR(2p))

In this subsection, we consider the case (G,H) = (SO0(2p, q + 1), SO0(2p, q))
(1 ≤ q < HR(2p), p ≥ 2). Our goal is the following

Proposition 1.3.1. Let G/H = SO0(2p, q + 1)/SO0(2p, q) (1 ≤ q < HR(2p),
p ≥ 2). There exists a closed subgroup L which is reductive in G and acts on
G/H properly and cocompactly if and only if q = 1 or (q = 3 and p is even) or
(q = 7 and p = 4). Moreover, L is locally isomorphic to SU(1, p), Sp(1, p

2 ) or
Spin0(1, 8) respectively.

Proof. This comes from Lemma 1.3.2 and Proposition 1.3.3.

Lemma 1.3.2. Let G/H = SO0(2p, q + 1)/SO0(2p, q) (1 ≤ q < HR(2p),
p ≥ 2) and n = 2p + q + 1. There exists a reductive subgroup of G acting
on G/H properly and cocompactly if and only if there exist a pair of a simple
Lie algebra l and its faithful representation ρ : l → sl(n,C) of satisfying the
following conditions:

(i) ρ(l) ⊂ so(2p, q + 1) ⊂ sl(n,C),

(ii) ρ(l) is preserved by matrix transpose,

(iii) aL ∩WaH = {0},

(iv) d(L) = d(G)− d(H)(= 2p).

Here the inclusion so(2p, 2) ⊂ sl(n,C) is realized by the standard inclusion which
is preserved by matrix transpose, L is the analytic subgroup corresponding to
ρ(l) ⊂ so(2p, q + 1), and W ≃ NK(a)/ZK(a) is the Weyl group of G.

Proof. This comes from Fact 1.2.15 and 1.2.18.

Proposition 1.3.3. A pair of a simple Lie algebra l and its representation
satisfying the conditions (i) to (iv) in Lemma 1.3.2 is equivalent to one of the
following:

• the representation ρϖ1 ⊕ ρϖ1 : l = su(p, 1) → so(2p, 2) (p ≥ 2),

• the representation ρϖ1
⊕ ρϖ1

: l = sp(p′, 1) → so(4p′, 4) (p′ ≥ 1),

• the spin representation ρϖ4 : l = so(1, 8) → so(8, 8).

Here ρϖi denotes irreducible representation with highest weight ϖi and ρ de-
notes complex conjugate representation of ρ.

Proof. This follows from Lemma 1.3.7, 1.3.8, 1.3.9 1.3.10, 1.3.11 and 1.3.12.
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Remark 1.3.4. Suppose a pair (l, ρ) of Lie algebra and its representation
satisfies the conditions in Lemma 1.3.2. Then the following inequalities hold:

1 ≤ q < HR(2p) ≤ 2p

d(L) = 2p

dim ρ = 2p+ q + 1

In particular, we have dim ρ ≤ d(L) +HR(d(L)) ≤ 2d(L) ≥ 8.

Lemma 1.3.5. Suppose ρ : l → sl(2p+ 2,C) satisfies the conditions (i) to (iv)
of Lemma 1.3.2. Let π be a nontrivial irrreducible component of ρ. Then the
following conditions are satisfied:

(i) dimπ ≤ d(L) +HR(d(L)) ≤ 2d(L) ≥ 8,

(ii) 2 dimπ > d(L) +HR(d(L)) =⇒ π ≃ π ≃ π∨ and indexτ π = indexθ π =
1.

(iii) dimπ + m(l) > d(L) + HR(d(L)) =⇒ rankπ(X) = 2(q + 1) for any
X ∈ pL \ {0}.

Here τ is the involution on lC such that lτC = l and θ is the Cartan involution
on lC.

Proof. (i) This comes from Remark 1.3.4.

(ii) Assume that 2 dimπ > d(L) + HR(d(L)). Then we have 2 dimπ >
d(L) + HR(d(L)) ≥ dim ρ. Therefore we obtain the desired condition
by Lemma 1.2.40.

(iii) From Lemma 1.2.37 and 1.2.14, it is enough to show that for 0 ̸= X ∈ p ⊂
Sym(2p + q + 1,R), X ∈ Int(g)aH ⇐⇒ rankX ≤ 2(q + 1). This comes
from the fact that Ad(K)a = p and Int(g) action on g preserve the rank
as a matrix.

Remark 1.3.6. Since d(L) = 2p is even, for l = so(k′, 1) case, we consider the
case where k′ is even.

Lemma 1.3.7. Let (l, π) be a pair of a simple Lie algebra with rankR L = 1
and its irreducible representation over C. Suppose (l, π) satisfies the condition
(i) of Lemma 1.3.5. Then (l, π) is equivalent to one of the following list:
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Table 1.5: a pair of a simple Lie algebra and its irreducible representation
satisfying (i) in Lemma 1.3.5

l π dimπ not satisfy
so(2k, 1) (k ≥ 2) ϖ1 2k + 1 (iii)

so(8, 1) ϖ4 16
so(6, 1) ϖ3 8 (ii)

su(k, 1) (k ≥ 2) ϖ1, ϖk k + 1
su(4, 1) ϖ2, ϖ3 10 (ii)

2ϖ1, 2ϖ4 15 (ii)
su(3, 1) ϖ2 6 (ii)
su(2, 1) 2ϖ1, 2ϖ2 6 (ii)

ϖ1 +ϖ2 8 (iii)
sp(k, 1) (k ≥ 1) ϖ1 2k + 2

sp(2, 1) ϖ2 14 (iii)
ϖ3 14 (ii)

Lemma 1.3.8. Let (l, π) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (l, π)
does not satrisfy the condition (ii) of Lemma 1.3.5.

Table 1.6: pairs of a simple Lie algebra and its irreducible representation
which do not satisfy (ii) in Lemma 1.3.5

l π dimπ d(L) +HR(d(L)) selfconj? selfdual?
so(6, 1) ϖ3 8 8 indexτ π = −1
su(4, 1) ϖ2, ϖ3 10 16 π ̸≃ π

2ϖ1, 2ϖ4 15 16 π ̸≃ π
su(3, 1) ϖ2 6 8 indexτ π = −1
su(2, 1) 2ϖ1, 2ϖ2 6 8 π ̸≃ π
sp(2, 1) ϖ3 14 16 indexτ π = −1

Proof. This comes from the data in the above table. Here τ is the involution
on lC such that lτC = l.

Lemma 1.3.9. Let (l, π) be a pair of simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.7. Then (l, π)
does not satrisfy the condition (iii) of Lemma 1.3.5.

Table 1.7: pairs of a simple Lie algebra and its irreducible representation
which do not satisfy (iii) in Lemma 1.3.5

l π dimπ d(L)
so(2k, 1) ϖ1 2k + 1 2k
su(2, 1) ϖ1 +ϖ2 8 4
sp(2, 1) ϖ2 14 8

Proof. • In the case (l, π)=(so(2k, 1), ϖ1) (k ≥ 2).
Since the inequality dimπ+m(so(2k, 1)) ≥ (2k+1)+(2k) > 4k = 2d(L) ≥
d(L)+HR(d(L)) holds, it is enough to show that there exists X ∈ pL\{0}
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such that rankπ(X) < 2(q + 1). Take X = E1,2k+1 + E2k+1,1 ∈ pL, then
rankπ(X) = 2 < 2(q + 1).

• In the case (l, π)=(su(2, 1), ϖ1 +ϖ2).
Since the inequality dimπ+m(su(2, 1)) = 8+3 > 4+4 = d(L)+HR(d(L))
holds, it is enough to show that there exists 0 ̸= X ∈ pL such that
rankπ(X) < 2(q + 1). We have p = 2, q = 3 from d(L) = 4 = 2p
and 8 = dimπ ≤ dim ρ ≤ 2p + q + 1 and q < HR(2p). Therefore we
have π = ad : su(2, 1) → so(4, 4) ⊂ sl(su(2, 1)). Take 0 ̸= X ∈ pL then
rankπ(X) < 8 = 2(q+1). In fact, rankπ(X) < 8 means π(X) : su(2, 1) →
su(2, 1) is not injective and π(X)(X) = ad(X)(X) = 0.

• In the case (l, π)=(sp(2, 1), ϖ2).
Since the inequality dimπ+m(sp(2, 1)) = 14+6 > 8+8 = d(L)+HR(d(L))
holds, and we have p = 4 and 5 ≤ q ≤ 7 from 8 = d(L) = 2p, dimπ ≤
dim ρ = 2p + q + 1 and 1 ≤ q < HR(2p) coming from Remark 1.3.4. it
is enough to show that there exists X ∈ pL\{0} such that rankπ(X) ≤
10(< 2(q + 1)).

We realize sp(2, 1) = sp(3,C)τ as follows:

sp(3,C) = {X ∈ M(6,C) : tXJ + JX = 0},
τ :sp(3,C) → sp(3,C), X 7→ −I2,1;2,1X

∗I2,1;2,1,

where, J =

(
0 −I3
I3 0

)
and I2,1;2,1 = diag(1, 1,−1, 1, 1,−1). The repre-

sentation of sp(2, 1) with highest weight ϖ2 can be realized as follows

sp(2, 1)× kerφ → kerφ

(X, v ∧ w) 7→ Xv ∧ w + v ∧Xw

Here φ is the following linear map:

φ : C6 ∧ C6 → C, v ∧ w 7→ tvJw

Take X := S2,6 + S3,5 ∈ pL. It is enough to show that rankπ(X) ≤ 10,
that is dimkerπ(X) ≥ 4. Let v1 := −2e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6, v2 :=
e2 ∧ e3 + e5 ∧ e6, v3 := −e2 ∧ e6 + e3 ∧ e5, v4 := e2 ∧ e6 + e3 ∧ e5. Then vi
(i = 1, 2, 3, 4) are linearly independent and π(X)vi = 0.

Next, we consider the pairs (l, π)= (so(8, 1), ϖ4), (su(k, 1), ϖ1), (sp(k, 1),
ϖ1) (k ≥ 1).

Lemma 1.3.10. Let ρ be a representation of a simple Lie algebra so(8, 1)
satisfying the conditions (i) to (iv) of Lemma 1.3.2. Suppose that π ≃ ρϖ4 is
an irreducible component of ρ. Then we have ρ = π.

Proof. This comes from 16 = dimπ ≤ dim ρ ≤ d(L) + HR(d(L)) = 16 and
Lemma 1.2.37.

23



Lemma 1.3.11. Let ρ be a representation of a simple Lie algebra su(k, 1)
(k ≥ 2) satisfying the conditions (i) to (iv) of Lemma 1.3.2. Suppose that
π = ρϖ1

is an irreducible component of ρ. Then we have k = p, q = 1 and
ρ ≃ π ⊕ π.

Proof. From d(L) = 2k = 2p, we have k = p. Then, from Lemma 1.2.42
(i), Fact 1.2.38, and π ̸≃ π, we have 2[π : ρ](p + 1) ≤ dim ρ ≤ 4p, that is
[π : ρ] = [π : ρ] = 1. Let π′ be another irreducible component of ρ. Then π′ is
equivalent to one of Table 1.5 in Lemma 1.3.7. However, dimπ+dimπ+dimπ′ ≤
d(L) + HR(d(L)) does not hold. Therefore, ρ ≃ π ⊕ π⊕trivq−1 Then there
exists an element X ∈ pL such that rank ρ(X) = 4. From properness, we have
rank ρ(X) = 4 ≥ 2(q + 1) (See proof for Lemma 1.3.5(iii)). So, we have q = 1
and ρ ≃ π ⊕ π.

Lemma 1.3.12. Let ρ be a representation of a simple Lie algebra sp(k, 1)
(k ≥ 1) satisfying the conditions (i) to (iv) of Lemma 1.3.2. Suppose that
π = ρϖ1 is an irreducible component of ρ Then we have p is even, k = p

2 , q = 3
and ρ ≃ π ⊕ π.

Proof. From d(L) = 4k = 2p, we have p is even and k = p
2 . Moreover, from

indexτ π = −1, Lemma 1.2.43 and [π : ρ] dimπ = [π : ρ](p+2) ≤ 4p = 2d(L), we
have [π : ρ] = 2. Next, we show that q = 3, which induces that ρ = π ⊕ π from
2dimπ = 2p + 4 = dim ρ. From the inequality 2 dimπ = 2(p + 2) ≤ dim ρ =
2p+ q + 1, we obtain q ≥ 3.

Claim. There is no irreducible component other than ρϖ1 .

To prove this claim, it is enough to consider the case l = sp(2, 1) from
Table 1.5 and this claim can be easily checked by the ineqality about dimension
of the representation. Then for an appropriate 0 ̸= X ∈ pL, rankπ(X) = 8
holds by the definition of ϖ1. Therefore, from properness of L-action (see proof
for Lemma 1.3.5(iii)), we have 2(q + 1) ≤ 8, that is, q ≤ 3.

1.3.2 (G, H)=(SU(2p, 2q), Sp(p, q)) (1 ≤ q ≤ p)

In this subsection, we consider the case (G, H)=(SU(2p, 2q), Sp(p, q)) (1 ≤ q ≤
p). Our goal in this subsection is the following:

Proposition 1.3.13. Let G/H = SU(2p, 2q)/Sp(p, q) (p ≥ q ≥ 1). There
exists a closed subgroup L which is reductive in G acting on G/H properly and
cocompactly if and only if q = 1. Moreover, L is locally isomorphic to SU(2p, 1)
up to compact factor.

Proof. This follows from Lemma 1.3.14 and Porposition 1.3.15.

Lemma 1.3.14. Let G/H = SU(2p, 2q)/Sp(p, q) (1 ≤ q ≤ p) and n := 2p+2q.
There exists a reductive subgroup ofG acting onG/H properly and cocompactly
if and only if there exists a reductive Lie algebra l and its faithful representation
ρ : l → sl(n,C) satisfying the following conditions:

(i) ρ(l) ⊂ su(2p, 2q) ⊂ sl(n,C),
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(ii) ρ(l) is preserved by matrix adjoint,

(iii) al ∩Wah = {0},

(iv) d(L) = d(G)− d(H).

Here the inclusion su(2p, 2q) ⊂ sl(n,C) is realized as the standard inclusion
which is preserved matrix adjoint, L is the analytic subgroup corresponding to
ρ(l) ⊂ su(2p, 2q) and W ≃ NK(a)/ZK(a) is the Weyl group of G.

Proof. This comes from Fact 1.2.15 and 1.2.18.

Proposition 1.3.15. There exists a reductive Lie algebra l and its faithful
representation ρ : l → sl(n,C) satisfying conditions (i) to (iv) of Lemma 1.3.14
if and only if q = 1. Moreover, such l is isomorphic to su(2p, 1) up to compact
factor and ρ is equivalent to ρϖ1⊕triv.

We devote this subsection below to showing Proposition 1.3.15.
First, for each symmetric pair (su(2p, 2q), sp(p, q)), we reduce candidates of

primary simple factors and their irreducible components.

Lemma 1.3.16. Suppose a (l, ρ) satisfies the conditions (i) to (iv) of Lemma 1.3.14
and l1 is the primary factor of l and π is a nontrivial irreducible component of
ρ|l1 . Then (l1, π) is equivalent to one of the following table

Table 1.8: pairs of a simple Lie algebra and its irreducible representation π
satisfying the conditions (i) and (ii) of Lemma 1.3.17

l π dimπ not satisfy 1.3.20
sl(n,C) (n ≥ 2) ϖ1⊠triv n (i)
su∗(2n) n ≥ 2 ϖ1 2n (i)

su(k, ℓ) (2 ≤ k ≥ ℓ ≥ 1) ϖ1 k + ℓ (ii) if ℓ ≥ 2
su(3, 1) ϖ2 6 (iii)

so(2n+ 1,C) (n ≥ 2) ϖ1⊠triv 2n+ 1 (i)
so∗(4n+ 2) (n ≥ 2) ϖ1 4n+ 2 (iii)
sp(n,C) (n ≥ 2) ϖ1⊠triv 2n (i)

sp(k, ℓ) (k ≥ ℓ ≥ 1) ϖ1 2(k + ℓ) (ii)
gC2 ϖ1⊠triv 7 (i)

Proof. This comes from Lemma 1.3.17 and Weyl’s dimensionality formula.

Lemma 1.3.17. Suppose a representation ρ : l → sl(V ) satisfies the conditions
(i) to (iv) of Lemma 1.3.14 and a pair (l1, π) of a primary factor of l and its
irreducible component of ρ|l1 . Then (l1, π) satisfies the following condition:

(i) dimπ ≤ d(L1)
rankR L1

,

(ii) max(4, 2
√
d(L1)) ≤ d(L1)

rankR L1
.

Proof. (i) From Lemma 1.3.18, 1.3.19, by taking A = rankR Lss, B = d(Lss)
and C = dim ρ, we have dimπ ≤ dim ρ|l1 = dim ρ ≤ 2 rankR Lss +

d(Lss)
2 rankR Lss ≤ d(L1)

rankR L1
. Here we used the inequality of Remark 1.2.32 (iv).
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(ii) We obtain in the same way as (i) above, that is, we have max(4, 2
√

d(L1)) ≤
max(4, 2

√
d(Lss)) ≤ dim ρ ≤ d(L1)

rankR L1
.

Lemma 1.3.18. Suppose a pair (l, ρ) of a reductive Lie algebra and its repre-
sentation satisfies the conditions (i) to (iv) of Lemma 1.3.14. Then the following
inequalities hold: 

rankR Lss + t ≤ q,

d(Lss) + t = 4pq,

dim ρ = 2(p+ q).

Here t = dim ρ(z)−θ, where z is the center of l.

Proof. The condition (ii) implies the condition (ii)’ rankR L ≤ rankR G−rankR H =
q.

Lemma 1.3.19. Let 1 ≤ A ≤ B and C ≥ 4. There exist 1 ≤ q ≤ p and t ≥ 0
such that 

A+ t ≤ q

B + t = 4pq

C = 2(p+ q)

if and only if max(4, 2
√
B) ≤ C ≤ 2A+ B

2A . Moreover, then we have 2A+ B
2A ≤

B
A .

Proof. This can be easily checked by a fudamental argument on inequalites. So,
we omit the proof.

Lemma 1.3.20. Suppose a representation ρ : l → sl(V ) satisfies the conditions
(i) to (iv) of Lemma 1.3.14 and a pair (l1, π) of a primary factor of l and its
nontrivial irreducible component of ρ|l1 . Then (l1, π) satisfies the following
conditions:

(i) π ≃ π∗,

(ii) dimπ + m(l1) > d(L1)
rankR L1

=⇒ π(X)π(X)∗ ∈ Herm(2p,C) has a odd
dimensional eigen space for any X ∈ pL \ {0}, where we identify p with
M(2p, 2q;C),

(iii) dimπ = d(L1)
rankR L1

=⇒ d(L1) ≤ 4(rankR L1)
2.

Here m(l1) := min{dimπ′ : π′ is a nontrivial irreducible representation of l1}.

Proof. (i) From Lemma 1.2.40, we have 2 dimπ ≤ d(L1)
rankR L1

or π ≃ π∗. From
Remark 1.3.21, we obtain the desired conclusion.
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(ii) From Lemma 1.2.37, we have ρ|l1 = π ⊕ ⊕dim ρ−dimπtriv. We identify p
with M(2p, 2q;C), where (k1, k2) ∈ S(U(2p)×U(2q)) acts on M(2p, 2q;C)
as X 7→ k1Xk−1

2 . Then it is enough to show that for X ∈ M(2p, 2q;C),
X ∈ Ad(K)pH holds if and only if the dimension of any eigenspace of
XX∗ ∈ Herm(2p,C) is even. This comes from that we can take maximal
abelian subspace of pH such as aH = {(a1, · · · , aq, a1, · · · , aq) ∈ R2q : ai ∈
R (i = 1, · · · , q)} by taking an appropriate coordinate, the Weyl group is
isomorphic to S2q ⋉ (Z2)

2q and the property that the dimension of any
eigenspace of XX∗ ∈ Herm(2p,C) is even is invariant under the action of
Ad(K).

(iii) Assume dimπ = d(L1)
rankR L1

. Then since we have the inequality d(L1)
rankR L1

=

dimπ ≤ dim ρ ≤ d(L1)
rankR L1

, we obtain lss = l1. Therefore we obtain d(L1) =

4(rankR L1)
2 from d(L1)

rankR L1
= dimπ = dim ρ ≤ 2 rankR L1 + d(L1)

2 rankR L1
≤

d(L1)
rankR L1

.

Remark 1.3.21. Let l be a noncompact simple Lie algebra and π a nontrivial

irreducible representation of l. Then a inequality 2 dimπ > d(L)
rankR L holds.

Proof. This comes from the classification of simple Lie algebras and Weyl’s
dimensionality formula.

In the case of g = su(2p, 2q), we can determine the properness by the equiv-
alent class of representation from the following:

Proposition 1.3.22. Suppose G is a linear reductive Lie group such that its Lie
algebra g is a noncompact real form of sl(n,C) and h is a reductive subalgebra
of g. Suppose l is a reductive Lie algebra and ρi : l → sl(n,C) (i = 1, 2) are
faithful representations of l such that ρi(l) (i = 1, 2) are reductive subalgebra of
g and G, H and Li (i = 1, 2) are analytic subgroups of SL(n,C). If ρ1 and ρ2
are equivalent as a representation of l, L1 action on G/H is proper if and only
if L2 action on G/H is proper.

Proof. Since we have ρ1 ≃ ρ2 as a complex representation, there exist α0 ∈
Int(sl(n,C)) such that ρ2 = α0ρ1. Assume that L1-action on G/H is not proper.
Then we have Ad(K)pρ1(l) ∩ pH ̸= {0} from Fact 1.2.15. Take 0 ̸= X ∈ pρ1(l)

and k ∈ K such that Ad(k)X ∈ pH . From Fact 1.4.16, it is enough to show the
following:

Claim. Int(g)ρ2(l) ∩ pH ̸= {0}.

From Remark 1.3.23, α0(X) ∈ ρ2(l) is hyperbolic in g. So, we can take α1 ∈
Int(g) such that α1(X) = α0(X). Therefore, 0 ̸= Ad(k)X = (Ad(k)(α1)

−1)α1(X) ∈
pH ∩ Int(g)ρ2(l).

Remark 1.3.23 (See [O13] for example). For X ∈ g ⊂ gC, X is hyperbolic in
g if and only if X is hyperbolic in gC.
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Fact 1.3.24 ([O13, Proposition 4.5 (i)]). Let g be a non-compact real form of
a complex semisimple Lie algebra gC. For a pair of hyperbolic elements A1 and
A2 in g, the following two conditions are equivalent:

• A1 and A2 are (Int g)-conjugate in g.

• A1 and A2 are (Int gC)-conjugate in gC.

Lemma 1.3.25. Let (l, π) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.9. Then (l, π)
does not satisfy the condition (i) of Lemma 1.3.20.

Table 1.9: pairs of a simple Lie algebra and its irreducible representation in
Table 1.8 which do not satisfy (i) of Lemma 1.3.20

l π
sl(n,C) n ≥ 2 ϖ1⊠triv
su∗(2n) n ≥ 2 ϖ1, ϖ2n−1

so(2n+ 1,C) n ≥ 2 ϖ1⊠triv
sp(n,C) n ≥ 2 ϖ1⊠triv

gC2 ϖ1⊠triv

Proof. The above irreducible representations π satisfy π ̸≃ π∗. See Appendix
or Table 5 [Oni] for example.

Lemma 1.3.26. Let (l, π) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (l, π)
does not satisfy the condition (ii) of Lemma 1.3.20.

Table 1.10: pairs of a simple Lie algebra and its irreducible representation in
Table 1.8 which do not satisfy (ii) of Lemma 1.3.20

l π
su(k, ℓ) (k ≥ ℓ ≥ 2) ϖ1

sp(k, ℓ) (k ≥ ℓ ≥ 1) ϖ1

Proof. • In the case l1 = su(k, ℓ) (k ≥ ℓ ≥ 2):

We have dimπ = k+ℓ = m(su(k, ℓ)) and d(L1)
rankR L1

= 2k. So, the inequality

dimπ+m(l1) >
d(L1)

rankR L1
holds. We realize su(k, ℓ) ⊂ sl(k+ℓ,C) as follows:

σ : sl(k + ℓ,C) → sl(k + ℓ,C)
X 7→ −Ik,ℓX

∗Ik,ℓ

su(k, ℓ) := sl(k + ℓ,C)σ

We take X ∈ pL as follows:

X :=

(
B

B∗

)
, B :=



1
1

0
. . .

0


∈ M(k, ℓ;C).
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Then we have ρϖ1
(X)ρϖ1

(X)∗ = BB∗ = diag(1, 1, 0, · · · , 0) ∈ Herm(2p,C)
under the identification p ≃ M(2p, 2q;C). Since dimensions of all the
eigenspaces of diag(1, 1, 0, · · · 0) are even, the condition (ii) of Lemma 1.3.20
is not satisfied.

• In the case l1 = sp(k, ℓ) (k ≥ ℓ ≥ 1):

We have dimπ = 2(k + ℓ) = m(sp(k, ℓ)) and d(L1)
rankR L1

= 4k. So, the

inequality dimπ+m(l1) >
d(L1)

rankR L1
holds. We realize sp(k, ℓ) ⊂ su(2k, 2ℓ)

as follows:

σ : su(2k, 2ℓ) → su(2k, 2ℓ),

X 7→ (J ⊗ Ik+ℓ)X(J ⊗ Ik+ℓ)
−1,

sp(k, ℓ) := su(2k, 2ℓ)σ.

We take X ∈ pL as follows:

X :=

(
B

B∗

)
, B :=



1
1

0
. . .

0


∈ M(2k, 2ℓ;C).

Then we can prove that the condition (ii) of Lemma 1.3.20 is not satisfied
in the same way as the above case l1 = su(k, ℓ) (k ≥ ℓ ≥ 2).

Lemma 1.3.27. Let (l, π) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following table. Then (l, π)
does not satisfy the condition (iii) of Lemma 1.3.20.

Table 1.11: pairs of a simple Lie algebra and its irreducible representation in
Table 1.8 which do not satisfy (iii) of Lemma 1.3.20

l π dimπ d(L)
rankR L d(L) rankR L1

su(3, 1) ϖ2 6 6 6 1
so∗(4n+ 2) n ≥ 2 ϖ1 4n+ 2 4n+ 2 2n(2n+ 1) n

Proof. We can easily check from the data in table above.

Lemma 1.3.28. Suppose a reprensetation ρ of l satisfies the conditions (i) to
(iv) of Lemma 1.3.14 and π is an irreducible component of ρ|l1 . Then (l1, π) is
equivalent to one of the following Table 1.12.

Table 1.12: pairs of simple Lie algebras l1 and their irreducible representation
which satisfy conditions (i) to (iii) of Lemma 1.3.20

l1 π
su(k, 1) (k ≥ 2) ϖ1
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Proof. This comes from Lemma 1.3.16, 1.3.20, 1.3.25, 1.3.26 and 1.3.27.

Next, we determine the pair (lss, ρ|ssl ). It is enough to consider the case
l1 = su(k, 1) (k ≥ 2) from Lemma 1.3.28. We show the following:

Lemma 1.3.29. (lss, ρ|lss) is one of the following Table 1.13:

Table 1.13: candidates of pairs of semisimple Lie algebras lss and their
representation ρ|lss

lss ρ|lss
su(k, 1) (k ≥ 2) ϖ1 ⊕⊕2(p+q)−(k+1)triv

Proof. From Lemma 1.3.30, it is enough to show that (l1, π) satisfies the in-
equality d(L1) < 2 dimπ− 1. Since we have d(L1) = 2k and dimπ = k+1, this
inequality holds.

Lemma 1.3.30. Let G/H = SU(2p, 2q)/Sp(p, q) (p ≥ q ≥ 1). If a pair (l1, π)
of a simple Lie algebra and its nontrivial representation satisfies the conditions
rankR L1 = 1 and d(L1) < 2 dimπ − 1, then we have lss = l1.

Proof. Assume that d(L1) < 2 dimπ − 1 and that there exists another simple

factor l2, which satisfies d(L1) ≥ d(L2)
rankR L2

≥ d(Li)
rankR Li

for 2 ≤ i ≤ s. Then
by the injectivity of ρ, there exists an irreducible representation π′ of l2 such

that dimπ + dimπ′ ≤ dim ρ ≤ d(L1)+d(L2)
1+rankR L2

. From Lemma 1.3.31, we have

dimπ′ < d(L2)
rankR L2

− 1. From Weyl’s dimensionality formula, a pair (l2, π
′) of a

simple Lie algebra and its nontrivial representation is a standard representation
of sp(k′, ℓ′) or su(k′, ℓ′). From Lemma 1.3.32 and 1.3.33, we have 2 dimπ+ 2 ≤
d(L1) < 2 dimπ − 1. This is contradiction.

The following Lemmas 1.3.31, 1.3.32 and 1.3.33 are used to prove Lemma 1.3.30.
We apply Lemma 1.3.31 by substituting d(L1), dimπ, rankR L2 and d(L2)

for B, C, p and q respectively.

Lemma 1.3.31. Let 1 ≤ B, 2 ≤ C. The following conditions on B and C are
equivalent:

• For any p, q ∈ R, if 1 ≤ p ≤ q, q
p ≤ B, then B+q

1+p − C < q
p − 1,

• B < 2C − 1.

Proof. We prove that the following negative propositions are equivalent:

• There exist p, q ∈ R such that 1 ≤ p ≤ q, q
p ≤ B and B+q

1+p − C ≥ q
p − 1.

• B ≥ 2C − 1.

B+q
1+p − C ≥ q

p − 1 ⇐⇒ q ≤ −(C − 1)p(p − B+1−C
C−1 ) =: f(p). Then there exist

such p, q if and only if
f(1) ≥ 1.
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We can easily obtain the above equivalence by considering pq plane with convex
curve q = f(p). This is equivalent to the following:

B ≥ 2C − 1.

The following lemma is for the case l2 = sp(k′, ℓ′) (k′ ≥ ℓ′ ≥ 1).

Lemma 1.3.32. Let 1 ≤ B, 2 ≤ C. If there exist 1 ≤ ℓ′ ≤ k′ such that{
4k′ ≤ B

C ≤ B+4k′ℓ′

1+ℓ′ − 2(k′ + ℓ′)
,

then we have 2C + 4 ≤ B.

Proof. This comes from the following:

C ≤ B + 4k′ℓ′

1 + ℓ′
− 2(k′ + ℓ′)

=
B + 4k′(1 + ℓ′)− 4k′

1 + ℓ′
− 2(k′ + ℓ′)

=
B − 4k′

1 + ℓ′
+ 2k′ − 2ℓ′

≤ B

2
− 2.

Here we have the last inequality by substituting 1 for ℓ′ considering that B−4k′

1+ℓ′ +
2k′ − 2ℓ′ is monotone decreasing with regard to ℓ′.

The following lemma is for the case l2 = su(k′, ℓ′) (k′ ≥ ℓ′ ≥ 1).

Lemma 1.3.33. If there exist 1 ≤ ℓ′ ≤ k′ such that{
2k′ ≤ B

C ≤ B+2k′ℓ′

1+ℓ′ − (k′ + ℓ′)

then 2C + 2 ≤ B.

Proof. We can prove this by the similar argument with Lemma 1.3.32.

Finally, we determine pairs (l, ρ) satisfying the conditions (i) to (iv) of
Lemma 1.3.14.

Lemma 1.3.34. If a pair (l, ρ) of a reductive Lie algebra and its faithful rep-
resentation satisfies the conditions (i) to (iv) of Lemma 1.3.14, then (l, ρ) is
equivalent to one of the following table:
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Table 1.14: candidates of pairs of reductive Lie algebras l and their
representation ρ.

l ρ
su(2p, 1) ϖ1⊕triv

Proof. We show l = lss = su(2p, 1) (i.e. k = 2p, q = 1), and ρ = ϖ1⊕triv.
Suppose lss = su(k, 1) satisfies conditions (i) to (iv) of Lemma 1.3.14. Then we
have the following inequalities

1 ≤ q ≤ p

1 + t ≤ q

2k + t = 4pq

k + 1 ≤ 2(p+ q)

Here t = dim ρ(z)−θ, where z is the center of l. It is enough to show t = 0 by
Remark 1.4.49. Assume t ≥ 1. Then we have

4pq = 2k+ t ≤ (1+ t)k+(1+ t)−1 ≤ (1+ t)(k+1)−1 ≤ 2(p+q)q−1 ≤ 4pq−1.

This is contradiction. So we obtain t = 0. Then we have k = 2pq from the
third equality. From the fourth inequality, we have 2pq + 1 ≤ 2(p + q) ⇐⇒
(p − 1)(q − 1) ≤ 1

2 , which implies q = 1, k = 2p. As a result, we obtain
ρ = π⊕triv.

1.3.3 (G, H)=(SO(p, q+1), SO(p, 1)×SO(q)) (2 ≤ q < HR(p))

In this subsection, we consider the case (G, H)=(SO(p, q+1), SO(p, 1)×SO(q))
(2 ≤ q < HR(p)). Our goal in this subsection is the following:

Proposition 1.3.35. Let G = SO(p, q+1) and H = SO(p, 1)×SO(q) (2 ≤ q <
HR(p)). If there exists a reductive subgroup L of G acting on G/H properly
and cocompactly, then (p, q) = (4, 3) or (4, 2). Moreover L is locally isomorphic
to Spin(4, 3) or G2(2) respectively up to compact factor.

Proof. This comes from Lemma 1.3.36 and Proposition 1.3.37.

The condition 2 ≤ q < HR(p) implies that p is even and p ≥ 4. So, we
consider the case (g, h)=(so(2p, q + 1), so(2p, 1)⊕ so(q)) with 2 ≤ q < HR(2p)
and p ≥ 2 .

Lemma 1.3.36. Let p, q be integers satisfying 2 ≤ q < HR(2p) and G/H =
SO0(2p, q + 1)/SO0(2p, 1) × SO(q). There exists a reductive subgroup of G
acting on G/H properly and cocompactly if and only if there exists a reductive
Lie algebra l and its faithful representation ρ : l → sl(2p + q + 1,C) satisfying
the following conditions:

(i) ρ(l) ⊂ so(2p, q + 1) ⊂ sl(2p+ q + 1,C),

(ii) ρ(l) is preserved by matrix transpose,
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(iii) aL ∩WaH = {0},

(iv) d(L) = d(G)− d(H).

Here W is the Weyl group of SO0(2p, q + 1) and L is the analytic subgroup of
G corresponding to ρ(l) ⊂ so(2p, q+1). We consider subalgebra so(2p, q+1) ⊂
sl(2p+q+1,C) as standard inclusion preserverd by matrix transpose (X 7→ tX),

Proof. This comes from Fact 1.2.15 and 1.2.18.

Proposition 1.3.37. Let p, q be integers satisfying 2 ≤ q < HR(2p) and
G/H = SO0(2p, q+1)/SO0(2p, 1)×SO(q). There exists a reductive Lie algebra
l and its faithful representation ρ : l → sl(2p+q+1,C) satisfying the conditions
(i) to (iv) of Lemma 1.3.36 if and only if (p, q) = (2, 3) or (2, 2). Moreover, such
pair (l, ρ) is equivalent to (so(4, 3), ρϖ3) or (g2(2), ρϖ1) up to compact factor.

Proof. Our proof consists of step a, b, c and d (see Outline of the proof for the
case rankR G−rankR H ≥ 2 in subsection 1.2.5). This comes from Lemma 1.3.7,
Remark 1.3.52, Lemma 1.3.57 and 1.3.59.

Notation 1.3.38. We put Mss = d(Lss)
rankR Lss , M1 := d(L1)

rankR L1
.

step a : reduce candidates by upper bound of the dimension of rep-
resentations

Lemma 1.3.39. Let ρ : l → sl(n,C) be a representation satisfying the condi-
tions (i) to (iv) of Proposition 1.3.36 and π an irreducible component of ρ|l1 .
Then the pair (l1, π) satisfies the following conditions:

(i) dimπ ≤ min (rankR L1 +M1 + 1, 2M1),

(ii) max(7, 1 +
√
4d(L1) + 1) ≤ 2M1.

Proof. The condition (ii) and the inequality dimπ ≤ 2M1 in (i) of Lemma 1.3.39
comes from Lemma 1.3.40, d(Lss) ≤ d(L1) and Mss ≤ M1. Next we show the
inequality dimπ ≤ rankR L1 +M1 + 1. From Lemma 1.3.40, we have dim ρ ≤
rankR Lss +Mss + 1 ≤ rankR Lss +M1 + 1. So, it is enough to show that

dimπ − rankR L1 ≤ dim ρ− rankR Lss.

This comes from Lemma 1.3.44.

Lemma 1.3.40. Suppose a reductive Lie algebra l and its faithful representa-
tion ρ : l → sl(V ) satisfy the conditions (i) to (iv) of Lemma 1.3.36 for some
positive integers p, q with 2 ≤ q < HR(2p). Then the following inequality holds:

max(7, 1 +
√
4d(Lss) + 1) ≤ dim ρ ≤ rankR Lss +Mss + 1 ≤ 2Mss.

Proof. This comes from the following Lemmas 1.3.41 and 1.3.42.
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Lemma 1.3.41. Fix positive integers p, q with 2 ≤ q < HR(2p). Suppose a
reductive Lie algebra l and its faithful representation ρ : l → sl(n,C) (n :=
2p+ q+1) satisfy the conditions (i) to (iv) in Proposition 1.3.36. Then we have
the following inequalities:

rankR Lss + t ≤ q ≤ 2p− 1,

d(Lss) + t = 2pq,

7 ≤ dim ρ = 2p+ q + 1.

Here d(Lss), rankR Lss are the noncompact dimension, real rank of semisimple
Lie subalgebra lss of l respectively and t = dim ρ(z)−θ, where z is the center of
l.

Proof. This comes from Remark 1.2.16 and Fact 1.2.18.

Lemma 1.3.42. Let 1 ≤ A ≤ B and C ≥ 6. There exist real numbers 1 ≤ p, q
and t ≥ 0 such that 

A+ t ≤ q ≤ 2p− 1

B + t = 2pq

C = 2p+ q + 1

if and only if max(6, 1 +
√
4B + 1) ≤ dim ρ ≤ A + B

A + 1. Moreover, then we

have A+ B
A + 1 ≤ 2B

A .

Proof. We can easily check this lemma by fundamental argument on inequality.
So, we omit the proof.

Remark 1.3.43. Let l be a simple Lie algebra over R and π a nontrivial irre-
ducible representation. Then we have

dimπ ≥ rankR L+ 1.

This comes from the classification of simple Lie algebras.

Lemma 1.3.44. Let ρ : lss → sl(V ) be a faithful representation of semisimple
Lie algebra lss = ⊕s

i=1li. Let π be a nontrivial irreducible component of ρ|l1 .
Then the following inequality holds:

dimπ − rankR L1 − 1 ≤ dim ρ− rankR Lss − s.

Proof. From Remark 1.2.38(iv), the injectivity of ρ and Remark 1.3.43,

dim ρ ≥ dimπ +
s∑

i=2

m(li)

≥ dimπ +
s∑

i=2

(rankR Li + 1)

= dimπ + rankR Lss − rankR L1 + s− 1.
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step b: reduce candidates of primary factor by using criterion for
embeddability of semisimple Lie algebras

Lemma 1.3.45. Let ρ : l → sl(n,C) be a representation satisfying the condi-
tions (i) to (iv) of Lemma 1.3.36 and π an irreducible component of ρ|l1 . The
pair (l1, π) satisfies the following conditions:

(i) (a) If the inequality dimπ > M1 holds, then the following three condi-
tions are satisfied:

i. π ≃ π and indexτ1 π = 1,

ii. π∨ ≃ π and indexθ1 π = 1,

iii. π ≃ π∗.

Here, τ1 is the involution on lC1 detemining l1 and θ1 is the Cartan
involution on lC1 .

(b) If the inequality 2 dimπ > M1 holds, then at least one of the following
conditions holds:

i. π ≃ π,

ii. π ≃ π∨,

iii. π ≃ π∗.

(c) Assume the following conditions:

i. 2 dimπ > M1,

ii. (π ≃ π, indexτ1 π = −1) or (π ≃ π∨ and indexθ1 π = −1)

Then we have π∗ ≃ π as a representation of l1 and [π : ρ|l1 ] = 2.

(ii) dimπ > M1 and dimπ +m(l1) > rankR L1 +M1 + 1 =⇒ rankπ(A) ≥ 4
for any A ∈ pL1 \ {0}.

Here m(li) := min{dimπ′ : π′ is a nontrivial irreducible representation of li}
(i = 1, · · · , s).

Proof. (i) (a) This comes from Lemma 1.2.40 and dim ρ ≤ 2M1.

(b) This comes from Lemma 1.3.47 and dim ρ ≤ 2M1.

(c) This comes from Lemma 1.3.48 and dim ρ ≤ 2M1.

(ii) It is enough to show that ρ|l1 = π ⊕ ⊕dimV−dimπtriv. In fact, the rank
condition comes in the same way as the case (G, H)=(SO(2p, q + 1),
SO(2p, q)).

From the assumption dimπ > M1, we have [π : ρ|l1 ]. Assume that ρ|l1
has another nontrivial irreducible component π′. From Lemma 1.2.38 and
injectivity of ρ, we have

dimπ + dimπ′ +
s∑

i=2

m(li) ≤ dim ρ ≤ rankR Lss +M1 + 1.
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From Remark 1.3.43, we have rankR Lss ≤ rankR L1 +
∑s

i=2 m(li). From
the above two inequalities and the assumption dimπ+m(l1) > rankR L1+
M1 + 1, we have

dimπ + dimπ′ ≤ rankR L1 +M1 + 1 < dimπ +m(l1) ≤ dimπ + dimπ′.

This is contradiction.

Remark 1.3.46. The rank condition (ii) of Lemma 1.3.45 is preserved by basis
transformation. So we can discuss properness up to equivalent class of repre-
sentation.

Lemma 1.3.47. Let ρ : lss = l1 ⊕ · · · ⊕ lk → sl(V ) be a representation of
semisimple Lie algebra l such that ρ(lss) ⊂Int so(p, q) for some p, q ∈ Z≥0 such
that p + q = dimC V . Let l1 be a simple ideal of lss and π an irreducible
component of ρ|l1 . If the inequality 4 dimπ > dim ρ holds, then at least one of
the following conditions holds:

(i) π ≃ π,

(ii) π ≃ π∨,

(iii) π ≃ π∗.

Proof. We show the contraposition. Suppose π ̸≃ π, π ̸≃ π∨ and π ̸≃ π∗. From
ρ|l1(l1) ⊂Int so(p, q) for some p + q = dimV (p, q ≥ 0), ρ|l1 has at least one
π, π, π∨ and π∗ as an irreducible component respectively by Lemma 1.2.42.
Therefore we have 4 dimπ ≤ dim ρ.

Lemma 1.3.48. Let ρ : l1 ⊕ · · · ⊕ lk = lss → sl(V ) be a representation of
semisimple Lie algebra such that ρ(lss) ⊂Int so(p, q) for some p + q = dimC V .
Let l1 be a simple ideal of lss and π1 an irreducible component of ρ|l1 satisfying
the two conditions:

(i) dim ρ < 4 dimπ1,

(ii) (π ≃ π, indexτ1 π = −1) or (π ≃ π∨ and indexθ1 π = −1)

Then we have π∗ ≃ π as a representation of l1 and [π : ρ|l1 ] = 2.

Proof. Form Lemma 1.2.43 and the assumption (i), we have [π : ρ|l1 ] = 2 =
[π∗ : ρ|l1 ]. If we put π∗ ̸≃ π, then we have 4 dimπ ≤ dim ρ < 4 dimπ, which is
contradiction. So we obtain π∗ ≃ π.

Lemma 1.3.49. Suppose a pair (l, ρ) of a reductive Lie algebra and its faithful
representation satisfying the conditions (i) to (iv) of Lemma 1.3.36. Let l1 be
a primary factor of lss and π a nontrivial irreducible component of ρ|l1 . Then
(l1, π) is equivalent to one of the following:
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Table 1.15: pairs of simple Lie algebras l and their irreducible representations
π which satisfy the condition (i) and (ii) of Lemma 1.3.39

not satisfy the condition
l π dimπ of Lemma 1.3.45

sl(n,C) (n ≥ 3) ϖ1⊠triv, triv⊠ϖ1, n (i)
sl(3,C) 2ϖ1⊠triv, triv⊠2ϖ1, 6 (i)
sl(4,C) ϖ2⊠triv, triv⊠ϖ2 6 (i)
sl(5,C) ϖ2⊠triv, ϖ3⊠triv, 10 (i)

sl(n,R) (n ≥ 3) ϖ1 n (i)
su∗(2n) (n ≥ 2) ϖ1 2n (i)

su(k, ℓ) (k + ℓ ≥ 3) ϖ1, ϖk+ℓ−1 k + ℓ
su(2, 1) 2ϖ1, 2ϖ2 6 (i)
su(3, 1) ϖ2 6
su(4, 1) ϖ2, ϖ3 10 (i)

so(2n+ 1,C) (n ≥ 2) ϖ1⊠triv, triv⊠ϖ1 2n+ 1
so(7,C) ϖ3⊠triv, triv⊠ϖ3 8 (i)

so(2n,C) (n ≥ 4) ϖ1⊠triv, triv⊠ϖ1 2n (i)
so(8,C) ϖ3⊠triv, ϖ4⊠triv 8 (i)

so(k, ℓ) (k + ℓ ≥ 5) ϖ1 k + ℓ (ii)
so(6, 1) ϖ3 8 (i)
so(5, 2) ϖ3 8 (i)
so(4, 3) ϖ3 8
so(7, 1) ϖ3, ϖ4 8 (i)
so(6, 2) ϖ3, ϖ4 8 (i)
so(5, 3) ϖ3, ϖ4 8 (i)

so∗(4n) (n ≥ 3) ϖ1 4n (i)
so∗(4n+ 2) (n ≥ 2) ϖ1 4n+ 2

sp(2,C) ϖ1⊠triv, triv⊠ϖ1 4
sp(n,C) (n ≥ 3) ϖ1⊠triv, triv⊠ϖ1 2n
sp(n,R) (n ≥ 2) ϖ1 2n (i)

sp(k, ℓ) (k + ℓ ≥ 2) ϖ1 2(k + ℓ)
gC2 ϖ1⊠triv, triv⊠ϖ1 7
g2(2) ϖ1 7

Here k ≥ ℓ ≥ 1,

Proof. This follows from the classification of simple Lie algebras and Weyl’s
dimensionality formula.

Lemma 1.3.50. The following pairs (l, π) of a simple Lie algebra and its
irrducible representation does not satisfy the condition (i) of Lemma 1.3.45.
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Table 1.16: simple Lie algebra which does not satisfy the condition (i) of
Lemma 1.3.45

l π dimπ M1 data (a), (b) or (c)
sl(n,C) (n ≥ 3) ϖ1⊠triv, triv⊠ϖ1 n n+ 1 π∨ ̸≃ π ̸≃ π, π ̸≃ π∗ (b)

sl(3,C) 2ϖ1⊠triv, triv⊠2ϖ1, 6 4 π ̸≃ π (a)
sl(4,C) ϖ2⊠triv, triv⊠ϖ2 6 5 π ̸≃ π (a)
sl(5,C) ϖ2⊠triv, triv⊠ϖ2 10 6 π ̸≃ π (a)

sl(n,R) (n ≥ 3) ϖ1 n n+2
2 π ̸≃ π∨ (a)

su∗(2n) (n ≥ 2) ϖ1 2n 2n+ 1 π∗ ̸≃ π (c)
su(2, 1) 2ϖ1 6 4 π ̸≃ π (a)
su(4, 1) ϖ2 10 8 π ̸≃ π (a)
so(7,C) ϖ3⊠triv, triv⊠ϖ3 8 7 π ̸≃ π (a)

so(2n,C) (n ≥ 4) ϖ1⊠triv, triv⊠ϖ1 2n 2n− 1 π ̸≃ π (a)
so(8,C) ϖ3⊠triv, ϖ4⊠triv 8 7 π ̸≃ π (a)
so(6, 1) ϖ3 8 6 indexτ1 π = −1 (a)
so(5, 2) ϖ3 8 5 indexτ1 π = −1 (a)
so(7, 1) ϖ3, ϖ4 8 7 π ̸≃ π (a)
so(6, 2) ϖ3, ϖ4 8 6 indexτ1 π = −1 (a)
so(5, 3) ϖ3, ϖ4 8 15

2 π ̸≃ π (a)
so∗(4n)(n ≥ 3) ϖ1 4n 4n− 2 indexτ1 π = −1 (a)
sp(n,R) (n ≥ 2) ϖ1 2n n+ 1 indexθ1 π = −1 (a)

Proof. This follows from the data in the above table.

Lemma 1.3.51. Let ρ : l → sl(V ) be a faithful representation of a reductive
Lie algebra l and l1 = so(k, ℓ) (k + ℓ ≥ 5) the primary factor of l. If ρ|l1 has
a irreducible component π ≃ ρϖ1 , then ρ does not satisfy the conditions (i) to
(iv) of Lemma 1.3.36.

Proof. We show this by using Lemma 1.3.45 (iv). We have dimπ = k+ ℓ > k =
M1. Since we havem(so(k, ℓ)) ≥ 4 for any k+ℓ ≥ 5, we have dimπ+m(l1) ≥ k+
ℓ+4 > ℓ+k+1 = rankR L1+M1+1. However, for S1,k+1 = E1,k+1+Ek+1,1 ∈ pL,
we have rankπ(S1,k+1) = 2.

Remark 1.3.52. Let ρ : l → sl(V ) be a faithful representation of a reductive
Lie algebra satisfying the conditions (i) to (iv) of Lemma 1.3.36. Then a pair
(l1, π) of primary factor and its irreducible representation is equivalent to one
of the following:
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Table 1.17: pairs of a simple Lie algebra l and its irreducible representation π
which satisfy the condition (i), (ii), (iii) and (iv) of Lemma 1.3.45

l π dimπ rankR L1 +M1 + 1 selfconj? indexτ1 π
su(k, ℓ) (k + ℓ ≥ 3) ϖ1 k + ℓ 2k + ℓ+ 1 π ̸≃ π

su(3, 1) ϖ2 6 8 indexτ1 π = −1
so(2n+ 1,C) (n ≥ 2) ϖ1⊠triv 2n+ 1 3n+ 2 π ̸≃ π

so(4, 3) ϖ3 8 8
so∗(4n+ 2) (n ≥ 2) ϖ1 4n+ 2 5n+ 3 indexτ1 π = −1

sp(2,C) ϖ1⊠triv 4 8
sp(n,C) (n ≥ 3) ϖ1⊠triv 2n 3n+ 2 π ̸≃ π

sp(k, ℓ) (k + ℓ ≥ 1) ϖ1 2(k + ℓ) 4k + ℓ+ 1 indexτ1 π = −1
gC2 ϖ1⊠triv 7 10 π ̸≃ π
g2(2) ϖ1 7 7

This comes from Lemma 1.3.49, 1.3.50 and 1.3.51.

step c : determine the pairs (lss, ρ|ssl )

Lemma 1.3.53. Let p and q be positive integers with 2 ≤ q < HR(2p). Sup-
pose a representation ρ : l → sl(2p + q + 1,C) satisfies conditions (i) to (iv) of
Lemma 1.3.36. Let l1 be a primary simple factor of l and π a nontrivial irre-
ducible component of ρ|l1 . Assume at least one of the following two conditions
(i) and (ii) is satisfied:

(i) (π ̸≃ π or (π ≃ π and indexτ1 π = −1)) and 2 dimπ ≥ rankR L1 +M1 +1,

(ii) dimπ ≥ rankR L1 +M1 + 1.

Then we have lss = l1. Moreover, the last equality 2 dimπ = rankR L1+M1+1 of
(i) is attained if the condition (i) is satisfied, and the equality dimπ = rankR L1+
M1 + 1 is attained if the condition (ii) is satisfied.

Proof. Let lss = ⊕s
i=1li be the decomposition into simple ideals, where li (i =

1, · · · , s) are simple ideals.

(i) • In the case π ̸≃ π and 2 dimπ ≥ rankR L1 +M1 + 1:
From Lemma 1.3.54, we have 2 dimπ+(s−1) ≤ rankR L1+M1+1 ≤
2 dimπ. Thus we obtain s = 1. Note that we have 2 dimπ ≤ dim ρ.

• In the case π ≃ π, indexτ1 π = −1 and 2 dimπ ≥ rankR L1 +M1 + 1:
We show this case in the same way as above by using Lemma 1.3.54.
It is enough to show that [π : ρ|l1 ] = 2. This comes from Lemma 1.2.43
and 4 dimπ ≥ 2(rankR L1 +M1 + 1) > 2M1 ≥ dim ρ.

In the both cases, from Lemma 1.3.40, we have

rankR L1+M1+1 ≤ 2 dimπ ≤ dim ρ ≤ rankR Lss+Mss+1 = rankR L1+M1+1.

Thus we have 2 dimπ = rankR L1 +M1 + 1.
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(ii) From Lemma 1.3.44 and 1.3.40, we have

dimπ + s− 1 + rankR Lss − rankR L1 ≤ dim ρ ≤ rankR Lss +M1 + 1.

Therefore we have dimπ+ s− 1 ≤ rankR L1+M1+1. By the assumption
rankR L1+M1+1 ≤ dimπ, we obtain s = 1 and dimπ = rankR L1+M1+1.

Lemma 1.3.54. Let p and q be positive integers with 2 ≤ q < HR(2p). Sup-
pose a representation ρ : l → sl(2p + q + 1,C) satisfies conditions (i) to (iv) of
Lemma 1.3.36. Let l1 be a primary simple factor of l and π a nontrivial irre-
ducible component of ρ|l1 . Assume at least one of the following two conditions
(i) and (ii) is satisfied:

(i) π ̸≃ π,

(ii) [π : ρ|l1 ] = 2 and π ≃ π and indexτ1 π = −1.

Then we have

2 dimπ + (s− 1) ≤ rankR L1 +
d(L1)

rankR L1
+ 1.

Here s is the number of simple ideals of lss = [l, l].

Proof. (i) In the case π ̸≃ π:
From Lemma 1.2.42, 1.2.38 and injectivity of ρ, we have

2 dimπ +

s∑
i=2

m(li) ≤ dim ρ ≤ rankR Lss +M1 + 1.

From Remark 1.3.43, we have

rankLss − rankR L1 + s− 1 ≤
s∑

i=2

m(li).

Therefore, we obtain the desired inequality from the above two inequali-
ties.

(ii) In the case π ≃ π and indexτ1 π = −1 and [π : ρ|l1 ] = 2:
Let ρ|lss = ⊕t

i=1ρi be the decomposition into irreducible components.
From Lemma 1.3.55, there exist j ̸= j′ ∈ {1, · · · , t} such that ρj ≃ π⊠triv,
ρj′ ≃ π⊠triv. Then from Lemma 1.2.38, we have

2 dimπ +
s∑

i=2

m(li) ≤ dim ρ.

Therefore we can prove this case in the same way as above.
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Lemma 1.3.55. Let ρ : lss = ⊕s
i=1li → sl(V ) be a representation of a semisim-

ple Lie algebra without compact factor, where li (i = 1, · · · , s) are noncom-
pact simple ideals. Let ρ = ⊕t

j=1ρj be the decomposition into irreducible
components. Suppose that ρ(lss) ⊂Int sl(n,R), π ≃ π, indexτ1 π = −1 and
[π : ρ|l1 ] = 2, where π is a nontrivial irreducible component of ρ|l1 . Then there
exist j ̸= j′ ∈ {1, · · · , t} such that ρj = π⊠triv, ρj′ = π⊠ triv.

Proof. If there do not exist the above j, j′, then there exists j such that ρj =
π ⊠ π′ and dimπ′ = 2 where π′ is the irreducible representation of ⊕s

i=2li.
Nontrivial irreducible representations of noncompact simple Lie algebra with
dimension two are only the standard representations of sl(2,R) and sl(2,C). In
these cases, since indexτ ρj = −1 for sl(2,R), ρj ̸≃ ρj for sl(2,C), these do not
induce embeddings into sl(n,R) by Proposition 1.6.17.

Lemma 1.3.56. Let ρ : l → gl(V ) be a faithful representation of a reductive
Lie algebra l. If the pair (l1, π) of the primary simple factor and its irreducible
component of ρ|l is equivalent to one of the following table, then ρ does not
satisfy the conditions (i) to (iv) of Lemma 1.3.36.

Table 1.18: pairs of a simple Lie algebra l and its irreducible representation π
l1 π dimπ rankR L1 +M1 + 1 selfconj? indexτ1 π

su(k, ℓ) (k + ℓ ≥ 3) ϖ1 k + ℓ 2k + ℓ+ 1 π ̸≃ π
su(3, 1) ϖ2 6 8 indexτ1 π = −1

so(2n+ 1,C) (n ≥ 2) ϖ1⊠triv 2n+ 1 3n+ 2 π ̸≃ π
so∗(4n+ 2) (n ≥ 2) ϖ1 4n+ 2 5n+ 3 indexτ1 π = −1
sp(n,C) (n ≥ 3) ϖ1⊠triv 2n 3n+ 2 π ̸≃ π

sp(k, ℓ) (k + ℓ ≥ 1) ϖ1 2(k + ℓ) 4k + ℓ+ 1 indexτ1 π = −1
gC2 ϖ1⊠triv 7 10 π ̸≃ π

Proof. • In the case (l1, π)=(su(k, ℓ), ρϖ1):
The assumption (i) of Lemma 1.3.53 is satisfied. In fact, we have π ̸≃ π
and 2 dimπ = 2(k + ℓ) ≥ 2k + ℓ + 1. Therefore we have lss = l1 and
2(k + ℓ) = k + 2ℓ+ 1, that is, ℓ = 1. Then from Lemma 1.3.41, we have

1 + t ≤ q ≤ 2p− 1,

2k + t = 2pq,

2(k + 1) = 2p+ q + 1.

This implies q = 1, which contradicts q ≥ 2.

• In the case (l1, π)=(su(3, 1), ρϖ2):
The assumpotion (i) of Lemma 1.3.53 is satisfied. In fact, we have π ≃ π
and indexτ1 = −1 and 2 dimπ = 12 ≥ 1 + 6 + 1 = rankR L1 + M1 + 1.
However, we have 2 dimπ ̸= rankR L1 +M1 + 1, which is contradiction.

• In the case (l1, π)=(so(2n+ 1,C), ρϖ1⊠triv) (n ≥ 2):
The assumpotion (i) of Lemma 1.3.53 is satisfied. In fact, we have π ̸≃ π
and 2 dimπ = 4n + 2 ≥ 3n + 2 = rankR L1 +M1 + 1. However, we have
2 dimπ ̸= rankR L1 +M1 + 1, which is contradiction.
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• In the case (l1, π)=(so∗(4n+ 2), ρϖ1
) (n ≥ 2):

The assumpotion (i) of Lemma 1.3.53 is satisfied. In fact, we have π ≃ π,
indexτ1 π = −1 and 2 dimπ = 8n + 4 ≥ 5n + 3 = rankR L1 + M1 + 1.
However, we have 2 dimπ ̸= rankR L1 +M1 + 1, which is contradiction.

• In the case (l1, π)=(sp(n,C), ρϖ1⊠triv) (n ≥ 3):
The assumption (i) of Lemma 1.3.53 is satisfied. In fact, we have π ̸≃ π
and 2 dimπ = 4n ≥ 3n + 2 = rankR L1 + M1 + 1. However, we have
2 dimπ ̸= rankR L1 +M1 + 1 if n ≥ 3, which is contradiction.

• In the case (l1, π)=(sp(k, ℓ), ρϖ1) (k + ℓ ≥ 1):
The assumption (i) of Lemma 1.3.53 is satisfied. In fact, we have π ≃ π,
indexτ1 π = −1 and 2 dimπ = 4(k+ ℓ) ≥ 4k+ ℓ+ 1 = rankR L1 +M1 + 1.
However, we have 2 dimπ ̸= rankR L1 +M1 + 1, which is contradiction.

• In the case (l1, π)=(gC2 , ρϖ1⊠triv):
The assumption (i) of Lemma 1.3.53 is satisfied. In fact, we have π ̸≃ π
and 2 dimπ = 14 ≥ 10 = rankR L1 +M1 +1. However, we have 2 dimπ ̸=
rankR L1 +M1 + 1, which is contradiction.

Lemma 1.3.57. Let ρ : l → gl(V ) be a representation of a reductive Lie algebra
satisfying the conditions (i) to (iv) of Lemma 1.3.36. Then the pair (lss, ρ|lss)
is equivalent to one of the following:

• (so(4, 3), ρϖ3),

• (g2(2), ρϖ1),

• (sp(2,C), (ρϖ1⊠triv)⊕ (triv⊠ρϖ1)).

Proof. From Remark 1.3.52 and Lemma 1.3.56, it is enough to consider the pairs
(l1, π) =(so(4, 3), ρϖ3

), (g2(2), ρϖ1
), (sp(2,C), ρϖ1

⊠triv) of primary factor and
its irreducible component of ρ|l1 .
(i) In the case (l1, π)=(so(4, 3), ρϖ3):

The assumpotion (ii) of Lemma 1.3.53 is satisfied. In fact, dimπ = 8 =
rankR L1 + M1 + 1 holds. Therefore we obtain lss = l1 = so(4, 3) and
ρ|lss = π from rankR L1 +M1 + 1 ≤ dimπ = dim ρ ≤ rankR L1 +M1 + 1.

(ii) In the case (l1, π)=(g2(2), ρϖ1):
The assumpotion (ii) of Lemma 1.3.53 is satisfied. In fact, dimπ = 7 =
rankR L1+M1+1 holds. Therefore we obtain lss = l1 = g2(2) and ρ|lss = π
from rankR L1 +M1 + 1 ≤ dimπ = dim ρ ≤ rankR L1 +M1 + 1.

(iii) In the case (l1, π)=(sp(2,C), ρϖ1⊠triv):
The assumpotion (i) of Lemma 1.3.53 is satisfied. In fact, we have π ̸≃ π
and 2 dimπ = 8 = rankR L1 +M1 + 1. Therefore we obtain lss = l1 and
ρ|lss = π⊕π from [π : ρ|lss ] = [π : ρ|lss ] and rankR L1+M1+1 ≤ 2 dimπ =
dim ρ ≤ rankR L1 +M1 + 1.
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step d : determine the pairs (l, ρ)

Lemma 1.3.58. Let ρ : l → sl(V ) be a faithful representation of a reductive
Lie algebra. Suppose lss ≃ sp(2,C) and ρ|lss ≃ (ρϖ1⊠triv)⊕ (triv⊠ρϖ1). Then
there does not exist positive integers p, q with 2 ≤ q < HR(2p) satisfying the
conditions (i) to (iv) of Lemma 1.3.36.

Proof. From Lemma 1.3.41, it is enough to show that there does not exist pos-
itive integers p, q and non-negative integer t such that

2 + t ≤ q ≤ 2p− 1,

10 + t = 2pq,

8 = 2p+ q + 1.

This can be easily checked.

Lemma 1.3.59. Let ρ : l → gl(V ) be a representation of a reductive Lie
algebra satisfying the conditions (i) to (iv) of Lemma 1.3.36. Suppose (lss,
ρ|lss) is equivalent to (so(4, 3), ρϖ3) or (g2(2), ρϖ1). Then we have l = lss and

(p, q) =

{
(2, 3) if l ≃ so(4, 3),

(2, 2) if l ≃ g2(2)
.

Proof. • In the case (lss, ρ|lss) is equivalent to (so(4, 3), ρϖ3)
Let p, q be positive integers and t non-negative integer. It is enough to
show that the following inequalities implies (p, q) = (2, 3) and t = 0, which
can be easily checked.

3 + t ≤ q < HR(2p) ≤ 2p

12 + t = 2pq

8 = 2p+ q + 1.

• In the case (lss, ρ|lss) is equivalent to (g2(2), ρϖ1)
Let p, q be positive integers and t non-negative integer. It is enough to
show that the following inequalities implies (p, q) = (2, 2) and t = 0, which
can be easily checked.

2 + t ≤ q < HR(2p) ≤ 2p

8 + t = 2pq

7 = 2p+ q + 1.

1.3.4 (G, H)=(E6(−14), F4(−20))

In this subsection, we consider the case (G, H)=(E6(−14), F4(−20)). Our goal in
this section is the following:
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Proposition 1.3.60. Let (G, H)=(E6(−14), F4(−20)). There does not exist a
reductive subgroup L of G acting on G/H properly and cocompactly.

Proof. From Lemma 1.3.62, it is enough to consider the case l ≃ so(16, 1),
su(8, 1), sp(4, 1) and f4(−20). From Lemma 1.3.63, 1.3.65 and 1.3.67, we obtain
the desired conclusion.

We have the following data:

rankR G = 2, d(G) = 32,

rankR H = 1, d(H) = 16,

k ≃ so(10)⊕ so(2)

Remark 1.3.61. Since we have rankR G−rankR H = 1, it is enough to consider
simple Lie groups with real rank one from Remark 1.2.16.

Lemma 1.3.62. Let L be a simple reductive subgroup of G acting on G/H
properly and cocompactly. Then l := Lie(L) is isomorphic to one of the following
Lie algebras:

• so(16, 1),

• su(8, 1),

• sp(4, 1),

• f4(−20).

Proof. From Remark 1.2.16 and Fact 1.2.18, we have rankR L = 1 and d(L) =
d(G) − d(H) = 16. This lemma comes from the classification of simple Lie
algebras.

Lemma 1.3.63. Lie algebras so(16, 1) and su(8, 1) can not be realized as a
reductive subalgebra of e6(−14).

Proof. This comes from Lemma 1.3.64, rankK = 6, rankSO(16) = 8 and
rankU(8) = 8.

Lemma 1.3.64. Let g be a linear reductive Lie algebra and l a reductive sub-
algebra. Then rankKL ≤ rankK holds. Here K, KL is the analytic subgroups
of G, L corresponding to maximal compact subalgebras k, kL respectively.

Proof. This is clear by the definition of rank.

Lemma 1.3.65. sp(4, 1) can not be realized as a reductive subalgebra of e6(−14).

Proof. Assume that l := sp(4, 1) is a reductive subalgebra of g := e6(−14). Then
kL ≃ sp(4)⊕ sp(1) is a reductive subalgebra of k ≃ so(10)⊕ so(2).

Claim. kL ≃ sp(4)⊕ sp(1) is containd in so(10) ⊂ k.
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proof of Claim. Let ι : kL → k ≃ so(10) ⊕ so(2) be the inclusion map and
pr2 : so(10) ⊕ so(2) → so(2) the projection map to the second component.
Assume that k ̸⊂ so(10). Then the kernel ker pr2 ι is a codimension one ideal of
kL. However there are no such ideals in kL ≃ sp(4)⊕ sp(1).

By the above Claim and rankKL = rankSO(10), sp(4)⊕ sp(1) is a regular
subalgebra of so(10). Here so(10) is simply laced but sp(4)⊕sp(1) is not simply
laced. This is contradiction by Lemma 1.3.66.

Lemma 1.3.66. Let gC be a simple Lie algebra over C and g′C a semisimple
subalgebra of gC with rank gC = rank g′C. If gC is simply laced, then each simple
ideal of g′C is simply laced.

Proof. Since g′C and gC are semisimple and rank gC = rank g′C, we can take com-
mon Cartan subalgebra h of g′C and gC. Therefore we have a natural inclusion
∆(g′C, h) ⊂ ∆(gC, h), which implies each simple ideal of g′C is simply laced.

Lemma 1.3.67. There does not exist a simple Lie subgroup L of G such that
Lie(L) ≃ f4(−20) acting on G/H properly and cocompactly.

Proof. Let L be a simple subgroup of G such that l := Lie(L) ≃ f4(−20). We
show that there exists a hyperbolic orbit in g which meets both l and h. From
Fact 1.3.68, there exists an inner automorphism α ∈ Int(gC) such that α(lC) =
hC ≃ fC4 . Since α(l) and h are isomorphic as a real form of hC ≃ fC4 , we can take
α ∈ Int(gC) such that α(l) = h (Remark 1.3.69). Take a hyperbolic element
0 ̸= X ∈ l in g. Then α(X) ∈ h is also a hyperbolic elment in gC. From
Fact 1.3.24, we can take α′ ∈ Int(g) such that α′(X) ∈ h. Thus the hyperbolic
orbit Int(g)X meets both l and h.

Fact 1.3.68 ([Dy52, Table 25, 39]). Let l and l′ be a subalgebra over C of eC6
which are isomorphic to fC4 . Then there exists α ∈ Int(eC6 ) such that l′ = α(l).

Remark 1.3.69. Let l, l′ be real forms with real rank one of fC4 . Then there
exists α ∈ Int(fC4 ) such that α(l) = l′.

1.4 Classification of reductive subgroups in the
representation level

In this section, we deal with Problem C’ in the representation level. We classify
pairs of a reductive subalgebra l and its faithful representation inducing proper
and cocompact action on each G/H in Table 1.1 up to compact factor. We shall
classify the embedding of l ⊂ g up to Int(g) in the following Chapter 1.5.
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1.4.1 (G, H)=(SU(2p, 2), U(2p, 1)) (p ≥ 1)

Our goal in this subsection is the following

Proposition 1.4.1. Let G/H = SU(2p, 2)/U(2p, 1) (p ≥ 1). There exists
a closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly. Moreover, L ⊂ G is locally isomorphic to Sp(p, 1) up to compact
factor.

Proof. It is enough to show “moreover” part. From Lemma 1.4.2 and Propo-
sition 1.4.3, it is enough to consider l = sp(p, 1) and ρ which has standard
representation ϖ1 as an irreducible component. Since the equality dimπ =
2p+ 2 = dim ρ holds, we obtain ρ = π by Lemma 1.2.37.

Lemma 1.4.2. Let G/H = SU(2p, 2)/U(2p, 1) (p ≥ 1) and n = 2p+ 2. There
exists a closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly if and only if there exist a faithful representation ρ : l → sl(n,C)
of a simple Lie algebra l satisfying the following conditions:

(i) ρ(l) ⊂ su(2p, 2) ⊂ sl(n,C),

(ii) ρ(l) is preserved by matrix adjoint,

(iii) aL ∩WaH = {0},

(iv) d(L) = d(G)− d(H)(= 4p).

Here, the above inclusion su(2p, 2) ⊂ sl(n,C) is realized by the standard inclu-
sion which is preserved by matrix adjoint and L is the analytic subgroup of G
corresponding to ρ(l) ⊂ g.

Proof. This comes from Fact 1.2.15 and 1.2.18.

Proposition 1.4.3. If a pair (l, ρ) of a simple Lie algebra and its representation
satisfies the conditions (i) to (iv) of Lemma 1.4.2, then (l, ρ) is equivalent to
(sp(p, 1), ρϖ1(standard representation)).

Proof. Let π be an irreducible component of ρ. From Lemma 1.4.6, it is
enough to consider the pair (l, π)≃(su(k, 1), ϖ1) and (sp(k, 1), ϖ1). A pair
(l, π)≃(su(k, 1), ϖ1) does not satisfy the condition (ii) of Lemma 1.4.4. In the
case (l, π)≃(sp(k, 1), ϖ1), we have k = p from d(L) = 4k = 4p = d(G)− d(H).
Since dimπ = 2p+ 2 = dim ρ holds, we obtain π ≃ ρ from Lemma 1.2.37.

We reduce candidates of pairs of simple Lie algebras and their irreducible
components of ρ by the following:

Lemma 1.4.4. Suppose a representation ρ : l → sl(2p + 2,C) of a simple Lie
algebra l satisfies the conditions (i) to (iv) of Lemma 1.4.2. Let π be a nontrivial
irreducible component of ρ. Then π satisfies the following conditions:

(i) dimπ ≤ 1
2d(L) + 2 and rankR L = 1,
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(ii) dimπ +m(l) > 1
2d(L) + 2 =⇒ rankπ(X) ≥ 4 for any X ∈ pL \ {0}.

Proof. (i) This comes from Lemma 1.4.5.

(ii) From Lemma 1.2.37 and 1.2.14, it is enough to show that forX ∈ Ad(K)pH ⇐⇒
rankπ(X) ≤ 2. We realize g = su(2p, 2) and h = u(2p, 1) as follows.

su(2p, 2) := {X ∈ sl(2p+ 2,C) : X∗I2p,2 + I2p,2X = 0}
τ : su(2p, 2) → su(2p, 2)

X 7→ I2p+1,1XI−1
2p+1,1

u(2p, 1) := su(2p, 2)τ

Then we can identify p with M(2p, 2;C) with K-action (k1, k2), X 7→
k1Xk−1

2 , where k1 ∈ U(2p), k2 ∈ U(2). This action preserves matrix rank.
So, (ii) follows from the descrption of pH .

Lemma 1.4.5. Suppose a representation ρ : l → sl(n,C) of a simple Lie algebra
satisfies the conditions (i) to (iv) in Lemma 1.4.2. Then the following equalities
hold: {

d(L) = d(G)− d(H) = 4p

dim ρ = 2p+ 2

In particular, we have dim ρ = 1
2d(L) + 2.

This is clear from Lemma 1.4.2. So we omit the proof.

Lemma 1.4.6. Suppose a pair (l, π) of a simple Lie algebra and its irreducible
representation satisfies the condition (i) of Lemma 1.4.4. Then (l, π) is equiva-
lent to one of the following:

l π (highest weight) dimπ not satisfy
su(k, 1) k ≥ 1 ϖ1 k + 1 (ii)
sp(k, 1) k ≥ 1 ϖ1 2k + 2

Proof. This comes fromWeyl’s dimensionality formula (see Appendix 1.6.2).

1.4.2 (G,H)=(SO0(2p, 2), U(p, 1)) (p ≥ 2)

Our goal of this subsection is the following:

Proposition 1.4.7. Let G/H = SO0(2p, 2)/U(p, 1) (p ≥ 2). There exists a
closed subgroup L which is reductive in G and acts on G/H properly and co-
compactly. Moreover, L ⊂ G is locally isomorphic to SO0(2p, 1) up to compact
factor.

Proof. This comes from Lemma 1.4.8 and Proposition 1.4.9.
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Lemma 1.4.8. Let G/H = SO0(2p, 2)/U(p, 1) (p ≥ 2) and n = 2p+ 2. There
exists a closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly if and only if there exists a faithful representation ρ : l → sl(n,C)
of a simple Lie algebra l satisfying the following conditions:

(i) ρ(l) ⊂ so(2p, 2) ⊂ sl(n,C),

(ii) ρ(l) is preserved by matrix transpose,

(iii) Int(g)pρ(l) ∩ h = {0}

(iv) d(L) = d(G)− d(H)(= 2p).

Here the inclusion so(2p, 2) ⊂ sl(n,C) is realized by the standard inclusion which
is preserved by matrix transpose and pρ(l) = ρ(l)−θ for a Cartan involution on
g such that θ(ρ(l)) = ρ(l).

Proof. This comes from Fact 1.4.16 and 1.2.18.

Proposition 1.4.9. Suppose a pair (l, ρ) of a simple Lie algebra and its rep-
resentation satisfying the conditions (i) to (iv) of Lemma 1.4.8. Then (l, ρ) is
equivalent to (so(2p, 1), ρϖ1⊕triv).

Proof. From Lemma 1.4.12 and 1.4.13, it is enough to consider the cases (l,π)=(so(1, 2k)
(k ≥ 2), ϖ1), (su(1, k) (k ≥ 2), ϖ1). Moreover, from Lemma 1.4.14, it is
enough to consider the case (l,π)=(so(1, 2k) (k ≥ 2), ϖ1). We have k = p,
dimπ = 2p + 1 by d(L) = 2k = 2p. (l, ρ) is equivalent to (so(1, 2p), π⊕triv)
from Lemma 1.2.37.

Lemma 1.4.10. Suppose a representation ρ : l → sl(2p+ 2,C) of a simple Lie
algebra satisfies the conditions (i) to (iv) of Lemma 1.4.8. Let π be a nontrivial
irreducible component of ρ. Then π satisfies the following conditions:

(i) dimπ ≤ d(L) + 2 ≥ 6,

(ii) 2 dimπ > d(L) + 2 =⇒ π ≃ π ≃ π∨ and indexτ π = indexθ π = 1.

Here τ is the real structure on lC such that lτC = l and θ is a Cartan involution
on lC.

Proof. (i) This comes from Lemma 1.4.11 and dimπ ≤ dim ρ.

(ii) This comes from Lemma 1.2.40 and ρ(l) ⊂ so(2p, 2) ⊂Int so(2p + 2,C),
sl(2p+ 2,R).

Lemma 1.4.11. Suppose a representation ρ : l → sl(n,C) of a simple Lie
algebra satisfies the conditions (i) to (iv) in Lemma 1.4.8. Then the following
inequalities hold: {

d(L) = 2p

dim ρ = 2p+ 2 ≥ 6.

In particular, we have dim ρ = d(L) + 2 ≥ 6.
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We can easily checked the above lemma. So we omit the proof.

Lemma 1.4.12. Suppose a pair (l, π) of a simple Lie algebra and its irre-
ducible representation satisfies the condition (i) of Lemma 1.4.10. Then (l, π)
is equivalent to one of the following Table 1.19:

Table 1.19: pairs of simple Lie algebras l and their irreducible representations
π which satisfy the conditions (i) in Lemma 1.4.10.

l π dimπ does not satisfy
so(1, 2k) (k ≥ 2) ϖ1 2k + 1

so(1, 6) ϖ3 8 (ii)
so(1, 4) ϖ2 4 (ii)

su(1, k) (k ≥ 2) ϖ1 k + 1
su(1, 4) ϖ2, ϖ3 10 (ii)
su(1, 3) ϖ2 6 (ii)
su(1, 2) 2ϖ1, 2ϖ2 6 (ii)

sp(1, k) (k ≥ 1) ϖ1 2k + 2 (ii)

Proof. This comes fromWeyl’s dimensionality formula (see Appendix 1.6.2).

Lemma 1.4.13. Let (l, π) be a pair of a simple Lie algebra and its irreducible
representation which is equivalent to one of the following Table 1.20. Then (l,
π) does not satisfy the condition (ii) of Lemma 1.4.10.

Table 1.20: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the conditions (ii) in Lemma 1.4.10.

l π dimπ d(L) + 2 property
so(1, 6) ϖ3 8 8 indexτ π = −1
so(1, 4) ϖ2 4 6 indexτ π = −1
su(1, 4) ϖ2, ϖ3 10 10 π ̸≃ π
su(1, 3) ϖ2 6 8 indexτ π = −1
su(1, 2) 2ϖ1, 2ϖ2 6 6 π ̸≃ π
sp(1, k) ϖ1 2k + 2 4k + 2 indexτ π = −1

Proof. This is clear from the data in Table 1.20 (see Appendix to check the
property).

Lemma 1.4.14. Suppose a representation ρ : l → sl(2p + 2,C) of a simple
Lie algebra l satisfies the conditions (i) to (iv) in Lemma 1.4.8 and π is a
nontrivial irreducible component of ρ. Then (l, π) is not equivalent to (su(k, 1),
ϖ1) (k ≥ 2).

Proof. Assume that ρ : l → sl(2p + 2,C) satisfies the conditions (i), (ii) and
(iv) in Lemma 1.4.8 and π is an irreducible component of ρ such that (l, π) is
equivalent to (su(k, 1), ρϖ1). We show that ρ does not satisfy the condition (iii)
of Lemma 1.4.8. From (iv), we have k = p.

Claim. ρ ≃ ρϖ1 ⊕ ρϖ1 .
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Here this claim comes from [ρϖ1
: ρ] = [ρϖ1

: ρ], which comes from Lemma 1.2.42,
the properties ρϖ1 ̸≃ ρϖ1 , dim ρϖ1 = p + 1 and dim ρ = 2p + 2. We can re-
gard the representation ρ as a real representation ρ0 : l → sl(2p + 2,R) with
(ρ0)

C = ρ ≃ ρϖ1 ⊕ ρϖ1 . From Lemma 1.2.46, we have ρ0 ≃ (ρϖ1)R as a real
representation. From Remark 1.4.15, it is enough to check that action on G/H
induced by one of the representatives does not satisfy the condition (iii). There
exist a representative r0 ∈ Hom0(l, g) and an element α ∈ Int(so(2p, 2)) such
that α(r0(l)) ⊂ h. Take 0 ̸= X ∈ a(l) ⊂ r0(l), then we have α(X) ∈ h, which
implies that the condition (iii) is not satisfied.

Remark 1.4.15. To discuss properness of the action induced from the above
representation [ρϖ1 ] : l → so(2p, 2) ⊂ sl(2p+2,R), we can choose any represen-
tative:
Let g = so(2p, 2) (p ≥ 2) and l = su(p, 1). Suppose Lie algebra embedding
φ : l → g satisfies ιφ ≃ (ρϖ1)R : l → sl(2p + 2,R) as a real representation
of l where ι : g → sl(2p + 2,R) is a natural embedding. Then we have [φ] ∈
{[r], [Ad(I2p−1,1,2)r], [Ad(I2p,1,1)r], [Ad(I2p−1,1,1,1)r]} ⊂ Int(g)\Hom0(l, g)/Aut(l)
(see Section 1.5.5 for more details). Int(g)a(l) coincide for noncompact part a(l)
coming from the above representatives. In particular, Therefore, from the crite-
rion Fact 1.4.16, the properness does not depend on the choice of representatives.

Here we prepare criterion Fact 1.4.16 for properness in terms of hyperbolic
orbit for the proof above. Let G be a linear reductive Lie group, g = Lie(G) a
semisimple Lie algebra over R, and H, L reductive subgroups of G. Take Cartan
involutions θ on G and θ1, θ2 which preserve H, L respectively and maximal
abelian subspaces a(h), a(l) of g−θ1 , g−θ2 . We can and do take α1, α2 ∈ Int(g)
such that ah := α1(a(h)), al := α2(a(l)) ⊂ a. Then we have the following:

Fact 1.4.16 ([Ko89]). In Setting 1, the following conditions on G,H,L are
equivalent:

(i) the natural L action on G/H is proper

(ii) al ∩W (g, a)ah = {0}

(iii) Int(g)a(l) ∩ a(h) = {0}

Moreover in the case h = gσ for some involution σ on g, (iii) is equivalent to the
following condition:

Int(g)a(l) ∩ gσ = {0}.

In the same setting, the criterion of proper action can be described in terms
of hyperbolic orbit as follows:

Fact 1.4.17 ([O13], Theorem 4.1). The following conditions on G, H, L is
equivalent:

(i) The natural L-action on G/H is proper,

(ii) No hyperbolic orbit meets both l and h other than zero-orbit.
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1.4.3 (G, H)=(SO∗(8), U(3, 1))

Our goal of this subsection is the following:

Proposition 1.4.18. Let G/H = SO∗(8)/U(3, 1). There exists a reductive
subgroup L of G acting on G/H properly and cocompactly. Moreover, L is
locally isomorphic to Spin(1, 6) up to compact factor.

Proof. This comes from Lemma 1.4.19 and Proposition 1.4.20.

Lemma 1.4.19. Let G/H = SO∗(8)/U(3, 1). There exists a reductive sub-
group L of G acting on G/H properly and cocompactly if and only if there
exists a faithful representation ρ : l → sl(8,C) of a simple Lie algebra l satisfy-
ing the following conditions:

(i) ρ(l) ⊂ so∗(8) ⊂ sl(8,C),

(ii) ρ(l) is preserved by matrix adjoint,

(iii) Int(g)pρ(l) ∩ h = {0},

(iv) d(L) = d(G)− d(H) = 6.

Here the inclusion so∗(8) ⊂ sl(8,C) is realized by the standard inclusion which
is preserved by matrix adjoint.

Proof. This comes from Fact 1.4.16 and 1.2.18.

Proposition 1.4.20. Suppose a pair (l, ρ) of a simple Lie algebra and its
representation satisfying the conditions (i) to (iv) of Lemma 1.4.19. Then (l, ρ)
is equivalent to (so(6, 1), ρϖ3).

Proof. From Lemma 1.4.23, 1.4.24, 1.4.25 and 1.4.26, it is enough to show ρ ≃ π
for the case (l, π)=(so(6, 1), ρϖ3). This comes from dimπ = dim ρ = 8.

Lemma 1.4.21. Suppose a representation ρ : l → sl(8,C) of a simple Lie
algebra l satisfies the conditions (i) to (iv) of Lemma 1.4.19. Let π be a nontrivial
irreducible component of ρ. Then π satisfies the following conditions:

(i) dimπ ≤ 8,

(ii) rankR L = 1, d(L) = 6,

(iii) dimπ ≥ 5 ⇒ π ≃ π∨ ≃ π and indexθ π = 1 and indexτ π = −1,

(iv) dimπ +m(l) > 8 ⇒ rankπ(X) = 8 for any X ∈ pL \ {0}.

Here τ is the real structure on lC such that lτC = l and θ is a Cartan involution
on lC.

Proof. (i) This is clear.

(ii) This is clear from Remark 1.2.16, Fact 1.2.18.
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(iii) This comes from Lemma 1.2.40.

(iv) From Lemma 1.2.37 and Remark 1.2.14, it is enough to show that for X ∈
p, X ∈ Ad(K)pH ⇐⇒ rankπ(X) ≤ 7. We realize h = u(3, 1) ⊂ so∗(8) as
follows:

so∗(8) = {X ∈ sl(8,C) : JX = XJ, tX +X = 0},
σ : so∗(8) → so∗(8), X 7→ I3,1;3,1XI3,1;3,1,

u(3, 1) := so∗(8)σ.

Then we have

pH = {i
(
A B
B −A

)
: A =


a1
a2
a3

−a1 −a2 −a3

 , B =


b1
b2
b3

−b1 −b2 −b3

 , ai, bi ∈ R}

⊂ p = {i
(
A B
B −A

)
A,B ∈ Alt(4,R)}.

Adjoint action of K ≃ U(4) on p ≃ Alt(4,C) is equivalent to the action of
U(4) on Alt(4,C), (k,A) 7→ kAtk where k ∈ U(4) and A ∈ Alt(4,C). This
action preserves rank. By the description of p and pH , the rank of X ∈ p
is divided by four and X ∈ Ad(K)pH holds if and only if rankX ≤ 4.
Therefore we obtain X ∈ Ad(K)pH ⇐⇒ rankX ≤ 7 for X ∈ p.

Remark 1.4.22. The rank condition (iii) of Lemma 1.4.21 is preserved by
basis transformation. So we can discuss properness up to equivalent class of
representations.

Lemma 1.4.23. Suppose a representation ρ : l → sl(8,C) of a simple Lie
algebra satisfies the conditions (i) to (iv) of Lemma 1.4.19 and π is an irreducible
component of ρ. Then (l, π) is equivalent to one of the following table.

Table 1.21: a pairs (l, π) of a simple Lie algebra and its irreducible
representation satisfying (i) and (ii)

l π dimπ not satisfy
so(6, 1) ϖ1 7 (iii)

ϖ3 8
su(3, 1) ϖ1 4

ϖ2 6 (iv)

Proof. This comes from the conditions (i) and (ii) of Lemma 1.4.21 and Weyl’s
dimensionality formula.

Lemma 1.4.24. Let ρ : so(6, 1) → sl(8,C) be a representation with the irre-
ducible component π ≃ ρϖ1 . Then ρ does not satisfy the conditions (i) to (iv)
of Lemma 1.4.19.
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Proof. We use Lemma 1.4.21(iii). The assumption dimπ = 7 ≥ 5 is satisfied.
However, we have indexτ π = 1.

Lemma 1.4.25. Let ρ : su(3, 1) → sl(8,C) be a representation with an irre-
ducible component π ≃ ρϖ2 . Then ρ does not satisfy the conditions (i) to (iv)
of Lemma1.4.19.

Proof. We use Lemma 1.4.21(iv). The assumption dimπ + m(l) = 6 + 4 > 8
is satisfied. Take X := S14 ∈ pL \ {0}. Then it is obvious that rankπ(X) ≤ 6
holds from the dimension of π.

Lemma 1.4.26. Let ρ : su(3, 1) → sl(8,C) be a representation of su(3, 1) with
an irreducible component π ≃ ρϖ1 . Then ρ does not satisfy the conditions (i)
to (iv) of Lemma1.4.19 .

Proof. From Lemma 1.2.42, we have [π : ρ] = [π : ρ]. Since we have ρϖ1 ̸≃ ρϖ1

and 2 dimπ = 8, we obtain ρ ≃ π ⊕ π. Take 0 ̸= S13 = E1,3 + E3,1 ∈ pL. Then
we have rank ρ(S13) = 4. Therefore the L-action on G/H is not proper.

1.4.4 (G, H)=(SO∗(8), SO∗(6)× SO∗(2))

Our goal of this subsection is the following:

Proposition 1.4.27. Let G/H = SO∗(8)/SO∗(6) × SO∗(2). There exists a
reductive subgroup L of G acting on G/H properly and cocompactly. Moreover,
L is locally isomorphic to Spin(1, 6) up to compact factor.

Proof. This comes from Lemma 1.4.28 and Proposition 1.4.29.

Lemma 1.4.28. Let G/H = SO∗(8)/SO∗(6)× SO∗(2). There exists a reduc-
tive subgroup of G acting on G/H properly and cocompactly if and only if there
exists a faithful representation ρ : l → sl(8,C) of a simple Lie algebra l satisfying
the following conditions:

(i) ρ(l) ⊂ so∗(8) ⊂ sl(8,C),

(ii) ρ(l) is preserved by matrix adjoint,

(iii) Int(g)pρ(l) ∩ h = {0},

(iv) d(L) = d(G)− d(H) = 6.

Here the inclusion so∗(8) ⊂ sl(8,C) is realized by the standard inclusion which is
preserved by matrix adjoint and L is the analytic subgroup of G corresponding
to ρ(l) ⊂ g.

Proof. This comes from Fact 1.4.16 and 1.2.18.

Proposition 1.4.29. Suppose a pair (l, ρ) of a simple Lie algebra and its
representation satisfying the conditions (i) to (iv) of Lemma 1.4.28. Then (l, ρ)
is equivalent to (so(6, 1), ρϖ3).

53



Proof. We can prove this proposition in the same way as Proposition 1.4.20
because conditions key Lemma 1.4.30 and properness conditions are same as
the case G/H = SO∗(8)/U(3, 1).

Lemma 1.4.30. Suppose a representation ρ : l → sl(8,C) satisfies the condi-
tions (i) to (iv) of Lemma 1.4.28. Let π be a nontrivial irreducible component
of ρ. Then π satisfies the following conditions:

(i) dimπ ≤ 8,

(ii) rankR L = 1, d(L) = 6,

(iii) dimπ ≥ 5 ⇒ π ≃ π∨ ≃ π and indexθ1 π = 1 and indexτ1 π = −1,

(iv) dimπ +m(l) > 8 ⇒ rankπ(X) = 8 for any X ∈ pL \ {0}.

Proof. We can prove this in the same way as Lemma 1.4.21 for the case G/H =
SO∗(8)/U(3, 1) in the previous subsection.

1.4.5 (G,H)=(SO(8,C), SO(7,C))
Our goal of this subsection is the following:

Proposition 1.4.31. Let G/H = SO(8,C)/SO(7,C). Then there exists a
closed subgroup L which is reductive in G and acts on G/H properly and
cocompactly. Moreover, L is isomorphic to Spin(1, 7) up to compact factor.

Proof. This comes from Lemma 1.4.32 and Proposition 1.4.33.

Lemma 1.4.32. Let G/H = SO(8,C)/SO(7,C). If there exists a closed sub-
group which is reductive in G and acts on G/H properly and cocompactly if and
only if there exists a simple Lie algebra l and its representation ρ : l → sl(8,C)
satisfying the following conditions:

(i) ρ(l) ⊂ so(8,C) ⊂ sl(8,C),

(ii) ρ(l) is preserved by matrix adjoint,

(iii) aL ∩WaH = {0},

(iv) d(L) = d(G)− d(H) = 7.

Here the inclusion so(8,C) ⊂ sl(8,C) is realized by the standard inclusion which
is preserved by matrix adjoint and L is the analytic subgroup of G corresponding
to ρ(l) ⊂ g.

Proof. This comes from Fact 1.2.15 and 1.2.18.

Proposition 1.4.33. Suppose a pair (l, ρ) of a simple Lie algebra and its
representation satisfies the conditions (i) to (iv) of Lemma 1.4.32. Then (l, ρ)
is equivalent to (so(1, 7), ρϖ3).

54



Proof. From Remark 1.4.35 and Lemma 1.4.36, it is enough to consider the case
(l, π)=(so(1, 7), ϖ3). From dimπ = 8 = dim ρ and Lemma 1.2.37, we obtain
π ≃ ρ.

Lemma 1.4.34. Suppose a representation ρ : l → sl(8,C) of a simple Lie
algebra l satisfies the conditions (i) to (iv) of Lemma 1.4.32. Let π be a nontrivial
irreducible component of ρ. Then the following conditions are satisfied:

(i) dimπ ≤ 8,

(ii) rankR L = 1, d(L) = 7,

(iii) dimπ +m(l) > 8 =⇒ rankπ(X) = 8 for any X ∈ pL \ {0}.

Proof. (i) This is clear from dimπ ≤ dim ρ = 8.

(ii) This is clear from Remark 1.2.16 and Fact 1.2.18.

(iii) From Lemma 1.2.37 and 1.2.14, it is enough to show that for X ∈ p =
io(8), X ∈ Ad(K)pH ⇐⇒ rankπ(X) ≤ 7. This comes from that the
adjoint action of K on p = io(8) preserves rank.

Remark 1.4.35. The conditions (i) and (ii) of Lemma 1.4.34 imply that (l, π)
is equivalent to one of the following:

l π not satisfy
so(1, 7) ϖ1 (iii)

ϖ3

Lemma 1.4.36. A pair of a simple Lie algebra and an irreducible component
of ρ satisfies the conditions (i) to (iii) of Lemma 1.4.34, then (l, π) is equivalent
to (so(7, 1), ρϖ3).

Proof. From Remark 1.4.35, it is enough to show that the pair (so(7, 1), ρϖ1)
does not satisfy the condition (iii) of Lemma 1.4.34. Put X = i(E1,8 − E8,1) ∈
pso(7,1) Then we have rankπ(X) = 2.

1.4.6 (G, H)=(SO(8,C), SO0(7, 1))

Our goal of this subsection is the following:

Proposition 1.4.37. Let G/H = SO(8,C)/SO0(7, 1). Then there exists a
closed subgroup L of G which is reductive in G and acts on G/H properly and
cocompactly. Moreover L is locally isomorphic to Spin(7,C) up to compact
factor.

Proof. This comes Lemma 1.4.38 and Proposition 1.4.39.

Lemma 1.4.38. Let G/H = SO(8,C)/SO0(7, 1). There exists a reductive
subgroup of G acting on G/H properly and cocompactly if and only if there
exists a reductive Lie algebra l and its faithful representation ρ : l → sl(8,C)
satisfying the following conditions:
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(i) ρ(l) ⊂ so(8,C) ⊂ sl(8,C),

(ii) ρ(l) is preserved by matrix adjoint,

(iii) al ∩Wah = {0},

(iv) d(L) = d(G)− d(H).

Here the inclusion so(8,C) ⊂ sl(8,C) is realized by the standard inclusion which
is preserved matrix adjoint and L is the analytic subgroup of G corresponding
to ρ(l) ⊂ g.

Proof. This comes from Fact 1.4.16 and 1.2.18.

Proposition 1.4.39. Let G/H = SO(8,C)/SO0(7, 1). If a pair (l, ρ) of re-
ductive Lie algebra and its representation satisfies the conditions (i) to (iv) of
Lemma 1.4.32, then (l, ρ) is equivalent to (so(7,C), ρϖ3⊠triv) up to compact
factor.

Proof. This comes from Remark 1.4.40, Lemma 1.4.44, 1.4.45 and 1.4.47 (see
Outline of the proof for the case rankR G− rankR H ≥ 2 in Section 1.2.5).

First we reduce candidates by upper bound of the dimension of representa-
tions by the following:

Remark 1.4.40. Suppose a representation ρ : l → sl(8,C) of a reductive Lie
algebra l satisfies conditions (i) to (iv) of Lemma 1.4.38 and π is an irreducible
component of ρ|l1 . Then π satisfies dimπ ≤ 8.

From Weyl’s dimensionality formula, we have the following list of pairs of a
simple Lie algebra and its irreducible representation π satisfying dimπ ≤ 8:
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Table 1.22: pairs of simple Lie algebras l and their irreducible representations
π which satisfy dimπ ≤ 8.

l π not satisfy
sl(n,C) (5 ≤ n ≤ 8) ϖ1⊠ triv (i)
sl(n,C) (2 ≤ n ≤ 4) ϖ1⊠ triv (ii)

sl(4,C) ϖ2⊠ triv (ii)
sl(3,C) (ϖ1 +ϖ2)⊠ triv (ii)
sl(2,C) kϖ1⊠ triv (ii)
su(4, 4) ϖ1 (i)

su(4, ℓ) (1 ≤ ℓ ≤ 3) ϖ1 (iv)
su(k, ℓ) (1 ≤ ℓ ≤ k ≤ 3) ϖ1 (ii)
sl(n,R) (5 ≤ n ≤ 8) ϖ1 (i)
sl(n,R) (2 ≤ n ≤ 4) ϖ1 (ii)
su∗(2n) (3 ≤ n ≤ 4) ϖ1 (iv)

su∗(4) ϖ1, ϖ2 (ii)
su(k, ℓ) (k + ℓ = 4) ϖ2 (ii)

sl(4,R) ϖ2 (ii)
sl(3,R) ϖ1 +ϖ2 (ii)
su(2, 1) ϖ1 +ϖ2 (ii)
sl(2,R) kϖ1 (1 ≤ k ≤ 7) (ii)
so(7,C) ϖ1⊠triv (v)
so(5,C) ϖ1⊠ triv (ii)
so(7,C) ϖ3⊠ triv
so(5,C) ϖ3⊠ triv (ii)

so(k, ℓ) (k + ℓ = 7) ϖ1, ϖ3 (ii)
so(k, ℓ) (k + ℓ = 5) ϖ1, ϖ2 (ii)

sp(4,C) ϖ1⊠triv (i)
sp(3,C) ϖ1⊠triv (iv)
sp(4,R) ϖ1 (i)

sp(k, ℓ) (k + ℓ = 4) ϖ1 (iii)
sp(3,R) ϖ1 (ii)
sp(2, 1) ϖ1 (iv)
so(8,C) ϖ1⊠triv (i)
so(4, 4) ϖ1, ϖ3, ϖ4 (i)
so(5, 3) ϖ1, ϖ3, ϖ4 (ii)
so(6, 2) ϖ1, ϖ3, ϖ4 (ii)
so(7, 1) ϖ1, ϖ3, ϖ4 (iii)
so∗(8) ϖ1, ϖ3, ϖ4 (ii)
gC2 ϖ1⊠triv (iii)
g2(2) ϖ1 (ii)

Next, we reduce candidates of pairs of primary simple factor l1 and its irre-
ducible representation π by using the following:

Lemma 1.4.41. If a representation ρ : l → sl(8,C) of a reductive Lie algebra l
satisfies conditions (i) to (iv) of Lemma 1.4.38, then irreducible components π
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of ρ|l1 satisfy the following conditions, where l1 is the primary simple factor of
l:

(i) rankR L1 ≤ 3

(ii) 7 ≤ d(L1)
rankR L1

,

(iii) dimπ1 ≥ 7 =⇒ d(L1)− rankR L1 ≥ 18,

(iv) dimπ ≥ 5 =⇒ π∨ ≃ π and indexθ1 π = 1,

(v) dimπ +m(l1) ≥ 9 =⇒ rankπ(X) ≥ 3 for any X ∈ pL \ {0}.

Here m(l1) := min{dimπ′ : π′ is a nontrivial irreducible representation of l1}
and θ1 is a Cartan involution on (l1)C.

Proof. (i) This is clear from Remark 1.2.14 and 1.2.16.

(ii) From Lemma 1.4.43, we have dimπ ≤ dim ρ = 8 ≤ d(Lss)
rankR Lss + 1 ≤

d(L1)
rankR L1

+ 1.

(iii) If the number of simple factors in lss is greater than or equal to two, then
we have dimπ+2 ≤ dim ρ = 8. So, we have lss = l1 if dimπ1 ≥ 7. In this
case, the equality 21− d(L1) ≤ 3− rankR L1 holds from Lemma 1.4.43.

(iv) This comes form Lemma 1.2.40.

(v) It is enough to show ρ|l1 = π⊕triv if the inequality dimπ+m(l1) ≥ 9 holds.
We show the contraposition. If there exists another irreducible component
π′ in ρ|l1 , we have dimπ+m(l1) ≤ dimπ+dimπ′ ≤ dim ρ|l1 = dim ρ = 8.

The following lemma comes from Remark 1.2.16 immediately.

Lemma 1.4.42. Suppose a representation (ρ, V ) of l satisfies conditions (i) to
(iv) in Lemma 1.4.38, then the following inequalities hold:{

rankR Lss + t ≤ 3(= rankR G− rankR H),

d(Lss) + t = 21(= d(G)− d(H)).

Here t := dim ρ(z)−θ and z is the center of l and θ is a Cartan involution on g
such that θ(ρ(l)) = ρ(l).

Lemma 1.4.43. There exists t ≥ 0 such that{
rankR Lss + t ≤ 3

d(Lss) + t = 21

if and only if 0 ≤ 21 − d(Lss) ≤ 3 − rankR Lss, which implies dim ρ = 8 ≤
d(Lss)

rankR Lss + 1.
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This can be easily checked by a fundamental argument on inequalities. So,
we omit the proof.

By using Lemma 1.4.41, we obtain the candidates of pairs of a primary
simple factor l1 and its irreducible component of ρ|l1 :

Lemma 1.4.44. Suppose a representation ρ : l → sl(8,C) of a reductive Lie
algebra l satisfies conditions (i) to (iv) of Lemma 1.4.38 and π is an irreducible
component of ρ|l1 , where l1 is the primary simple factor of l. Then (l1, π) is
equivalent to one of the following Table 1.23:

Table 1.23: pairs of simple Lie algebras l and their irreducible representations
π which satisfy the conditions (i) to (v) Lemma 1.4.41 with dimπ ≤ 8.

l1 π
so(7,C) ϖ3⊠triv

Proof. This comes from Remark 1.4.40 and Lemma 1.4.41 and Tables 1.22, 24,
25, 26, 27, 28.

Table 1.24: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the condition (i) of Lemma 1.4.41.

l π rankR L
sl(n,C) (5 ≤ n ≤ 8) ϖ1⊠ triv n

su(4, 4) ϖ1 4
sl(n,R) (5 ≤ n ≤ 8) ϖ1 n

sp(4,C) ϖ1⊠triv 4
sp(4,R) ϖ1 4
so(8,C) ϖ1⊠triv 4
so(4, 4) ϖ1, ϖ3, ϖ4 4
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Table 1.25: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the condition (ii) of Lemma 1.4.41.

l π M1

sl(n,C) (2 ≤ n ≤ 4) ϖ1⊠ triv n+ 1
sl(4,C) ϖ2⊠ triv 5
sl(3,C) (ϖ1 +ϖ2)⊠ triv 4
sl(2,C) kϖ1⊠ triv 3

su(k, ℓ) (1 ≤ ℓ ≤ k ≤ 3) ϖ1 2k
sl(n,R) (2 ≤ n ≤ 4) ϖ1

n+2
2

su∗(4) ϖ1 5
su(k, ℓ) (k + ℓ = 4) ϖ2 2k

sl(4,R) ϖ2 3
su∗(4) ϖ2 5
sl(3,R) ϖ1 +ϖ2

5
2

su(2, 1) ϖ1 +ϖ2 4
sl(2,R) kϖ1 (1 ≤ k ≤ 7) 2
so(5,C) ϖ1⊠ triv 5
so(5,C) ϖ3⊠ triv 5

so(k, ℓ) (k + ℓ = 7) ϖ1, ϖ3 k
so(k, ℓ) (k + ℓ = 5) ϖ1, ϖ2 k

sp(3,R) ϖ1 4
so(5, 3) ϖ1, ϖ3, ϖ4 5
so(6, 2) ϖ1, ϖ3, ϖ4 6
so∗(8) ϖ1, ϖ3, ϖ4 6
g2(2) ϖ1 4

Table 1.26: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the condition (iii) of Lemma 1.4.41.

l π dimπ d(L)− rankR L
sp(k, ℓ) (k + ℓ = 4) ϖ1 8 4k − ℓ

so(7, 1) ϖ1, ϖ3, ϖ4 8 6
gC2 ϖ1⊠triv 7 12

Table 1.27: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the condition (iv) of Lemma 1.4.41.

l π dimπ selfdual?
su(4, ℓ) (1 ≤ ℓ ≤ 3) ϖ1 4 + ℓ π ̸≃ π∨

su∗(2n) (3 ≤ n ≤ 4) ϖ1 2n π ̸≃ π∨

sp(3,C) ϖ1⊠triv 6 indexθ(ϖ1⊠triv) = −1
sp(2, 1) ϖ1 6 indexθ ϖ1 = −1
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Table 1.28: pairs of simple Lie algebras l and their irreducible representations
π which do not satisfy the condition (v) of Lemma 1.4.41.

l1 π not satisfy
so(7,C) ϖ1⊠triv (v)

Next, we determine the pair (lss, ρ|lss) as follows:

Lemma 1.4.45. (lss, ρ|lss) is eqivalent to one of the following Table 1.29

Table 1.29: pairs of semisimple Lie algebras lss and their representations ρ|lss .

lss ρ|lss
so(7,C) ϖ3⊠triv

Proof. This comes from Lemma 1.4.44, 1.4.46 and dimπ = 8.

Lemma 1.4.46. If irreducible component π of ρ|l1 satisfies dimπ = dim ρ = 8,
then we have lss = l1 and ρ|lss = π.

Proof. lss = l1 comes from Lemma 1.2.39 and ρ|ss = π comes from Lemma 1.2.37.

Finally we determine the pair (l, ρ) as follows:

Lemma 1.4.47. (l, ρ) is equivalent to one of the following Table 1.30:

Table 1.30: candidates of pairs of reductive Lie algebras l and their
representations ρ.

l ρ
so(7,C) ϖ3⊠triv

Proof. This comes from Lemma 1.4.45 and Remark 1.4.48.

Remark 1.4.48. If rankR Lss = rankR G − rankR H, then L = Lss up to
compact factor.

Remark 1.4.49. To show lss = l up to compact factor, it is enough to prove
dim ρ(z)−θ = 0. Here z is the center of l and θ is a Cartan involution on g such
that θ(ρ(l)) ⊂ ρ(l).

1.5 Classification of embeddings of l up to Int(g)

To solve Problem C’, we classify reductive subalgebras l ⊂ g which induces
proper and cocompact action on G/H up to conjugate by Int(g). In Sec-
tion 1.3 and 1.4, we classified reductive subalgebras in the representation level,
namely up to conjugate by Ad(SL(n,C)) or Ad(GL(n,R)), where g ⊂ sl(n,C)
or gl(n,R) is a natural realization. In the representation level, we identify l and
l′ which are not conjugate by Int(g) but are conjugate by Ad(SL(n,C)) ( or
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Ad(GL(n,R)) ). To distinguish them, it is enough to investigate the inverse
image of the following maps ΦC and ΦR, where ι : g → sl(n,C) or gl(n,R) is a
fixed realization.

ΦC : D(l, g) := Int(g)\Hom0(l, g)/Aut(l) → Ad(SL(n,C))\Hom0(l, sl(n,C))/Aut(l) =: D(l, sl(n,C))
[ϖ] 7→ [ι ◦ϖ]

ΦR : D(l, g) := Int(g)\Hom0(l, g)/Aut(l) → Ad(GL(n,R))\Hom0(l, sl(n,R))/Aut(l) =: D(l, sl(n,R))
[ϖ] 7→ [ι ◦ϖ]

Here Hom0(l, g) := {f : l → g : f is an injective homomorphism}, and Aut(l)
acts on Hom0(l, g) as follows:

Hom0(l, g)×Aut(l) → Hom0(l, g)

(f, α) 7→ f ◦ α

1.5.1 general method

We want to determine the set Φ−1
K ([ι ◦ ρ0]) for (g, l, ρ0) in Table 1.31, where ρ0

is the element of Hom0(l, g) which induces proper and cocompact L-action on
G/H. Here we consider a realization G ⊂ SL(n,C) or G ⊂ GL(n,R). For our
purpose, we use some methods (Lemma 1.5.1, 1.5.2, 1.5.3 and 1.5.5).

Lemma 1.5.1. Let τ̃ be an involution on SL(n,C). Put G := SL(n,C)τ̃ ,
g := Lie(G), τ := dτ̃ : sl(n,C) → sl(n,C) and

M = {g ∈ SL(n,C) | g−1τ̃(g) ∈ Endρ0(l)(C
n)}.

Let F be a set of generators of M as a G0-set. Then we have

Φ−1
C ([ι ◦ ρ0]) = {[Ad(f)ρ0] | f ∈ F}.

Proof. First, we prove Φ−1
C ([ι◦ρ0]) ⊃ {[Ad(f)ρ0] | f ∈ F}. It is enough to show

that ΦC([Ad(f)ρ0]) = [ι ◦ ρ0] for any f ∈ F , namely, there exists g ∈ SL(n,C)
such that Ad(g)Ad(f)ρ0(l) = ρ0(l). By taking g := f−1 ∈ SL(n,C), we get the
desired equality.

Next, we prove Φ−1
C ([ι ◦ ρ0]) ⊂ {[Ad(f)ρ0] | f ∈ F}. Let [φ] ∈ Φ−1

C ([ι ◦ ρ0]).
Then there exists g ∈ SL(n,C) such that Ad(g)ρ0(l) = φ(l) ⊂ g = sl(n,C)τ ,
that is, Ad(g−1τ̃(g))X = X for any X ∈ ρ0(l). Therefore we have g ∈ M . From
the definition of F , there exist g0 ∈ G0 and f ∈ F such that g = g0f . Thus we
have Ad(g0)Ad(f)ρ0(l) = φ(l), namely, [φ] = [Ad(f)ρ0].

Lemma 1.5.2. Let τ̃ be an involution on GL(n,R) such that τ̃(SL(n,R)) =
SL(n,R). Put G := SL(n,R)τ̃ , g := Lie(G), τ := dτ̃ : gl(n,R) → gl(n,R) and

M = {g ∈ GL(n,R) | g−1τ̃(g) ∈ Endρ0(l)(R
n)}.

Let F be a set of generators of M as a G0-set. Then we have

Φ−1
R ([ι ◦ ρ0]) = {[Ad(f)ρ0] | f ∈ F}.
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This can be proved in the same way as Lemma 1.5.1. So, we omit the proof.

Lemma 1.5.3. Let τ̃i : SL(n,C) → SL(n,C) be involutions (i = 1, 2) such
that τ̃1τ̃2 = τ̃2τ̃1. Put G := (SL(n,C)τ̃1)τ̃2 , g := Lie(G), τi := dτ̃i : sl(n,C) →
sl(n,C) and

M := {g ∈ SL(n,C) | g−1τ̃i(g) ∈ Endρ0(l)(C
n) (i = 1, 2)},

where M admits G0-left action. Let F be a set of generators of M as a G0-set.
Then we have

Φ−1
C ([ι ◦ ρ0]) = {[Ad(f)ρ0] | f ∈ F}.

This can be proved in the same way as Lemma 1.5.1. So, we omit the proof.
For cases where ρ0 is irredusible, the following fact is useful:

Fact 1.5.4 ([Ta96, Theorem 8.7]). Let l be a real Lie algebra, ρ : l → gl(V )
its complex irreducible representation and r : l → gl(E) the corresponding
irreducible real representation by Cartan’s fundamental theorem. Then we have

Endr(l)(E) := {f ∈ End(E) : fr(X) = r(X)f for all X ∈ l}

≃


R if ρ ≃ ρ and indexτ ρ = 1,

H if ρ ≃ ρ and indexτ ρ = −1,

C if ρ ̸≃ ρ.

Here τ is the involution on lC such that lτC = l.

Lemma 1.5.5. Let G be a connected linear reductive Lie group and g its
Lie algebra. Fix a Cartan involution on g. Let li (i = 1, 2) be semisimple
subalgebras of g such that θ(li) = li. If there exists an element α ∈ Int(g) such
that α(l1) = l2, then there exists an element k ∈ K = Gθ such that Ad(k)l1 = l2.

Proof. Take eXk ∈ G such that α = Ad(eXk). Then we have Ad(eX)(Ad(k)p1) =
p2 ⊂ p and Ad(k)p1 ⊂ p. From Fact 1.5.6, for any H ∈ Ad(k)p1, Ad(eX)H = H
holds. Therefore we have Ad(k)p1 = p2. Since we have li = [pi, pi] + pi from
semisimplicity of li (i = 1, 2), we obtain Ad(k)l1 = l2.

The following fact, which is used in the proof of the above lemma, was proved
by Takayuki Okuda in his master thesis.

Fact 1.5.6. Fix H ∈ p. Take H0 ∈ p. If exp(ad(H0))H ∈ p holds, then
exp(ad(H0))H = H holds.

Proof. Let θ be the Cartan involution on g. Since exp(ad(H0))H ∈ p holds, we
have θ(exp(ad(H0))H) = − exp(ad(H0))H. On the other hand, we have

θ(exp(ad(H0))H) = exp(ad(θ(H0)))θ(H)

= exp(ad(−H0))(−H)

= − exp(ad(−H0))H.
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Therefore, we have H ∈ ker(exp(ad(H0)) − exp(ad(−H0))). Since all the
eigenvalues of ad(H0) are in R and ad(H0) is diagonalizable, exp(ad(H0)) −
exp(ad(−H0)) acts on Vλ as a scalar eλ − e−λ, where Vλ is λ-eigenspace of
ad(H0). So, we haveH ∈ ker(ad(H0)). Thus we obtain exp(ad(H0))H = H.

We consider the cases which appear in the classification of (g, h, l) in the
level of representation. Let ρ0 be an embedding of l into g induced by the fixed
representation which induces proper and cocompact action of L on G/H. In
the following table, the number of Φ−1

K ([ιρ0]) means the number of embeddings
which is distinguished by Int(g). We see what kinds of embeddings appear in
the following subsections.

Table 1.31: The cardinarity of the inverse image Φ−1
K ([ιρ0]) for reductive

subalgebras l which induce proper and cocompact action on G/H
g l Φ−1

K ([ιρ0]) h
su(2p, 2) sp(p, 1) (p ≥ 1) one point u(2p, 1)

su(2p, 2) su(2p, 1) (p ≥ 1)

{
two points if p = 1

one point if p ≥ 2
sp(p, 1)

so(2p, 2) so(2p, 1) (p ≥ 2) one point u(p, 1)
so(2p, 2) su(p, 1) (p ≥ 2) two points so(2p, 1)
so(4p, 4) sp(p, 1) (p ≥ 1) four points so(4p, 3)
so(8, 8) spin(1, 8) four points so(7, 8)
so(4, 4) spin(3, 4) four points so(4, 1)⊕ so(3)
so(4, 3) g2(2) two points so(4, 1)⊕ so(2)
so(8,C) spin(1, 7) two points so(7,C)
so(8,C) spin(7,C) two points so(7, 1)
so∗(8) spin(1, 6) one point u(3, 1)

so∗(6)⊕ so∗(2)

We describe all the points in Φ−1
K ([ιρ0]) in the following subsection for each

pair (g, ρ0(l)).

1.5.2 (g, l) = (su(2p, 2), sp(p, 1)) (p ≥ 1)

In this subsection, we consider the case (g, l)=(su(2p, 2), sp(p, 1)) for the sym-
metric pair (g, h)=(su(2p, 2), u(2p, 1)). From Proposition 1.4.3, it is enough
to consider the standard representation ρ0 := ρϖ1 : sp(p, 1) → su(2p, 2) ⊂
sl(2p+ 2,C). Our goal of this subsection is the following:

Proposition 1.5.7. Φ−1
C ([ρ0]) ⊂ D(l, g) consists of one point, namely, Φ−1

C ([ρ0]) =
{[ρ0]}.

We realize G = SU(2p, 2) := SL(2p+ 2)τ̃ , g = su(2p, 2) := sl(2p+ 2,C)τ by
the following involutions τ̃ , τ . Let ρ0 : l → g be the standard embedding, which
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image ρ0(l) = sp(p, 1) ⊂ su(2p, 2) is described as follows.

τ̃ : SL(2p+ 2,C) → SL(2p+ 2,C),
g 7→ I2p,2g

∗−1I−1
2p,2

τ : sl(2p+ 2,C) → sl(2p+ 2,C),
X 7→ −I2p,2X

∗I−1
2p,2,

σ : su(2p, 2) → su(2p, 2)

X 7→ −
(
Jp

J1

)
X∗
(
Jp

J1

)−1

sp(p, 1) = su(2p, 2)σ

Proof of Proposition 1.5.7. We use Lemma 1.5.1.

Claim.

M =

{
SU(2, 2) · {I4, I2 ⊗ J} if p = 1

SU(2p, 2) if p ≥ 2

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion
⊂. Let g ∈ M . Since we have Endρ0(l)(C2p+2) = CI2p+2 from Lemma 1.5.8,
we have τ̃(g) = ag, that is, ag∗I2p,2g = I2p,2 for some a ∈ C∗. By taking
determinant and adjoint, we have a ∈ {±1}. In the case p ≥ 2, from Sylvester’s
law of inertia, we obtain that a = 1, that is, g ∈ SU(2p, 2). In the case p = 1
and a = −1, we have gJ−1

2 ∈ SU(2, 2), namely, g ∈ SU(2, 2)(I2 ⊗ J).

From the above Claim, we can take F of Lemma 1.5.1 as follows:

F =

{
{I4, I2 ⊗ J} if p = 1

{I2p+2} if p ≥ 2

Since Ad(J2) preserves sp(1, 1), we have the desired conclusion from Lemma 1.5.1.

Lemma 1.5.8. We have

Endρ0(l)(C
2p+2) = {aI2p+2 : a ∈ C} ≃ C.

Proof. This comes from Schur’s lemma over C and that the representation ιρ0 :
sp(p, 1) → su(2p, 2) ⊂ sl(2p+ 2,C) is irreducible.

1.5.3 (g, l) = (su(2p, 2), su(2p, 1)) (p ≥ 1)

In this subsection, we consider the case (g, l) = (su(2p, 2), su(2p, 1)) (p ≥ 1)
for a symmetric pair (g, h)=(su(2p, 2), sp(p, 1)). From Proposition 1.3.15, it
is enough to consider the standard representation ρ0 = ρϖ1⊕triv: su(2p, 1) →
su(2p, 2) ⊂ sl(2p+ 2,C). Our goal in this subsection is the following:
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Proposition 1.5.9. We have

Φ−1
C ([ι ◦ ρ0]) =

{
{[ρ0]} (p ≥ 2),

{[ρ0], [Ad(J2)ρ0]} (p = 1).

Here J2 :=

(
−I2

I2

)
.

We realize G = SU(2p, 2) = SL(2p + 2,C)τ̃ , g = su(2p, 2) = sl(2p + 2,C)τ
by the following involutions τ̃ , τ :

τ̃ : SL(2p+ 2,C) → SL(2p+ 2,C), g 7→ I2p,2g
∗−1I−1

2p,2,

τ : sl(2p+ 2,C) → sl(2p+ 2,C), X 7→ −I2p,2X
∗I−1

2p,2.

We fix ρ0 : su(2p, 1) → su(2p, 2) as follows:

ρ0 : su(2p, 1) → su(2p, 2),

X 7→
(
X

0

)
.

Lemma 1.5.10. We have

Endρ0(l)(C
2p+2) = {

(
aI2p+1

b

)
∈ M(2p+ 2,C) : a, b ∈ C}.

Proof. This immediately comes from Schur’s lemma over C.

Proof of Proposition 1.5.9. We use Lemma 1.5.1.

Claim.

M =

{
SU(2, 2) · {I4, I2 ⊗ J} · {diag(aI3, a−3) : a > 0} if p = 1

SU(2p, 2) · {diag(aI2p+1, a
−2p−1) : a > 0} if p ≥ 2

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion
⊂. Let g ∈ M . From Lemma 1.5.10, there exist a, b ∈ C such that g−1τ̃(g) =(
aI2p+1

b

)
. By taking matrix adjoint and determinant, we obtain a, b ∈ R×,

b = a−(2p+1).

• in the case p ≥ 2: By Sylvester’s law of inertia, we have a > 0. Then we
have I2p,2 = g∗I2p,2g diag(a, · · · , a, a−2p−1) ⇐⇒ g diag(

√
a, · · · ,

√
a,
√
a−2p−1) ∈

SU(2p, 2). So, there exists an element g0 ∈ SU(2p, 2) such that g =

g0 diag(
√
a, · · · ,

√
a,
√
a−2p−1)−1.

• in the case p = 1: If a > 0, we get g ∈ SU(2, 2) · {diag(aI3, a−3) : a > 0}
in the same way above. If a < 0, we have

g∗I2,2g diag(a, a, a, a
−3) = I2,2

⇐⇒ (g diag(
√
−a,

√
−a,

√
−a,

√
−a−3)J−1

2 )∗I2,2(g diag(
√
−a,

√
−a,

√
−a,

√
−a−3)J−1

2 ) = I2,2.
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Therefore, we get g diag(
√
−a,

√
−a,

√
−a,

√
−a−3)J−1

2 ∈ SU(2, 2), namely,
g ∈ SU(2, 2) · {I2 ⊗ J} · {diag(aI3, a−3) : a > 0}.

From the above Claim, we can take F of Lemma 1.5.1 as follows:

F =

{
{I4, I2 ⊗ J} · {diag(aI3, a−3) : a > 0} if p = 1

{diag(aI2p+1, a
−2p−1) : a > 0} if p ≥ 2

Since Ad(diag(aI2p+1, a
−3)) preserve the image ρ0(l) for p ≥ 1, it is enough

to show the following:

Claim. [ρ0] ̸= [Ad(J2)ρ0] ∈ D(l, g), namely, ρ0(l) = su(2, 1) is not Int(su(2, 2))-
conjugate to Ad(J2)ρ0(l).

proof of Claim. Assume there exists an element g ∈ SU(2, 2) such that g−1su(2, 1)g =
J2su(2, 1)J

−1
2 . Put X = idiag(0, 0, 1,−1) ∈ J2su(2, 1)J

−1
2 . Then we have

gXg−1 ∈ su(2, 1). We describe g =

(
A B
C D

)
. Then by direct calculation, we

have

gXg−1 = i

(
B diag(−1, 1)B∗ B diag(1,−1)D∗

D diag(−1, 1)B∗ D diag(1,−1)D∗

)
∈ su(2, 1)

So there exists d′ ∈ R such that D diag(1,−1)D∗ = diag(id′, 0). But Since D is
in GL(2,C) by Remark 1.5.11, this is contradiction.

Remark 1.5.11. For g =

(
A B
C D

)
∈ SL(4,C), A,B,C,D ∈ M(2,C), we have

g ∈ SU(2, 2) ⇐⇒ g∗I2,2g = I2,2 ⇐⇒
(
A∗A− C∗C A∗B − C∗D
B∗A−D∗C B∗B −D∗D

)
= I2,2

So, we have D∗D = I2+B∗B ∈ Herm>0(2,C) = {H ∈ Herm(2,C) : detH > 0}.

1.5.4 (g, l) = (so(2p, 2), so(2p, 1)) (p ≥ 2)

In this subsection, we consider the case (g, l)=(so(2p, 2), so(2p, 1)) (p ≥ 2) for
the symmetric pair (g, h) = (so(2p, 2), u(p, 1)). It is enough to consider the
representation ρ ≃ ρϖ1⊕triv: l → sl(2p + 2,C) from Proposition 1.4.9. The
representation ρϖ1⊕trivial factors so(2p, 2), so we denote the embedding into
so(2p, 2) ⊂ sl(2p + 2,R) by ρ0. Moreover, such ρ0 is unique up to equivalence
class as a real representation of so(2p, 1) by Cartan’s fundamental theorem (see
Appendix 1.6.3). Our goal in this subsection is the following:
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Proposition 1.5.12. Φ−1
R ([ι ◦ ρ0]) is a one point set, namely, Φ−1

R ([ι ◦ ρ0]) =
{[ρ0]}.

We realize G = SO(2p, 2), g = so(2p, 2) as follows:

τ̃ : GL(2p+ 2,R) → GL(2p+ 2,R),
g 7→ I2p,2

tg−1I−1
2p,2,

G := SL(2p+ 2,R)τ̃ ,
τ : sl(2p+ 2,R) → sl(2p+ 2,R),

τ(X) := −I2p,2
tXI−1

2p,2

so(2p, 2) := sl(2p+ 2,R)τ .

Moreover, we realize ρϖ1⊕triv as follows:

so(2p, 1) → so(2p, 2) ⊂ sl(2p+ 2,R)

X 7→
(
X

0

)
Lemma 1.5.13. we have

Endρ0(l)(R
2p+2) = {

(
aI2p+1

b

)
∈ M(2p+ 2,R) : a, b ∈ R}.

Proof. This immediately comes from Schur’s lemma over R (Fact 1.5.4).

Proof of Proposition 1.5.12. We use Lemma 1.5.2.

Claim. M = SO0(2p, 2)·{I2p+2, diag(I2p−1,−1, 1, 1), diag(I2p+1,−1), diag(I2p−1,−1, 1,−1)}·
{diag(aI2p+1, b) : a, b > 0}.

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion
⊂. Let g ∈ M . From Lemma 1.5.13, there exists a, b ∈ R such that g−1τ̃(g) =(
aI2p+1

b

)
. By Sylvester’s law of inertia, we have a > 0 and b > 0. Therefore

we have g diag(
√
aI2p+1,

√
b) ∈ O(2p, 2), which implies the desired conclusion.

From the above Claim, we can take F of Lemma 1.5.2 as follows:

F = {I2p+2,diag(I2p−1,−1, 1, 1),diag(I2p+1,−1),diag(I2p−1,−1, 1,−1)} · {diag(aI2p+1, b) : a, b > 0}.

Here, Ad(x) (x ∈ {I, diag(I2p−1,−1, 1, 1),diag(I2p+1,−1),diag(I2p−1,−1, 1,−1)})
and Ad(diag(

√
aI2p+1,

√
b) (a, b > 0) preserve ρ0(l). Therefore, we obtain

Φ−1
R ([ι ◦ ρ0]) = {[ρ0]} from Lemma 1.5.2.
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1.5.5 (g, l) = (so(2p, 2), su(p, 1)) (p ≥ 2)

In this subsection, we consider the case (g, l) = (so(2p, 2), su(p, 1)) (p ≥ 2)
for the symmetric pair (g, h)=(so(2p, 2), so(2p, 1)). It is enough to consider
the irreducible representation ρ0 = (ρϖ1)R over R from Proposition 1.3.3 and
Remark 1.2.44 and Lemma 1.2.46. Our goal in this subsection is the following:

Proposition 1.5.14. Φ−1
R ([ρ0]) consists of two points. Moreover, the two points

are given as follows:

{[ρ0], [Ad(diag(I2p−1,−1, I2))ρ0]}.

We realize G = SO(2p, 2), g = so(2p, 2) in the same way as Subsection 1.5.4
and realize su(p, 1) ⊂ so(2p, 2) as follows:

σ : so(2p, 2) → so(2p, 2),

X 7→ (J ⊗ Ip+1)X(J ⊗ Ip+1)
−1,

su(p, 1) := {X = (xi,j) ∈ so(2p, 2)σ :

p+1∑
i=1

x2i,2i−1 = 0}.

From Fact 1.5.4 and the realization of su(p, 1), we have

Lemma 1.5.15.

Endρ0(l)(R
2p+2) = {aI2p+2 + bJ1 ⊗ Ip+1 : a, b ∈ R} ≃ C.

Proof of Proposition 1.5.14. We use Lemma 1.5.2.

Claim. M = SO0(2p, 2)·{I2p+2, diag(I2p−1,−1, 1, 1), diag(I2p+1,−1), diag(I2p−1,−1, 1,−1)}·
{aI2p+2 : a > 0}.

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclu-
sion ⊂. Let g ∈ M . From Lemma 1.5.15, there exist a, b ∈ R such that
g−1I2p,2

tg−1I2p,2 = aI2p+2+bJ1⊗Ip+1. By taking transpose and Sylvester’s law

of inertia, we have b = 0 and a > 0. Therefore we obtain g ∈ O(2p, 2)
√
a
−1

I2p+2,
which implies the desired conclusion.

From the above Claim, we can take F of Lemma 1.5.2 as follows:

F = {I2p+2,diag(I2p−1,−1, 1, 1),diag(I2p+1,−1),diag(I2p−1,−1, 1,−1)} · {diag(aI2p+2) : a > 0}.

Here Ad(aI2p+2) preserves ρ0(l) for a > 0. From Lemma 1.5.16, ρ0(l) and
Ad(diag(I2p−1,−1, I2))ρ0(l) is not Int(g)-conjugate. Moreover,

• In the case p is even: Ad(diag(I2p, 1,−1))ρ0(l) is conjugate to ρ0(l) and
Ad(diag(I2p−1,−1, 1,−1))ρ0(l) is conjugate to Ad(diag(I2p−1,−1, I2))ρ0(l).

• In the case p is odd: Ad(diag(I2p, 1,−1))ρ0(l) is conjugate to Ad(diag(I2p−1,−1, I2)
and Ad(diag(I2p−1,−1, 1,−1))ρ0(l) is conjugate to ρ0(l).
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Thus, we obtain the desired conclusion.

Lemma 1.5.16. Ad(diag(I2p−1,−1, I2))ρ0(l) is not Int(g)-conjugate to ρ0(l).

Proof. Let θ be a Cartan involution θ on g as follows:

θ : g → g, X → −tX.

Put pL′ := (Ad(diag(I2p−1,−1, I2))ρ0(l))
−θ. Assume Ad(I2p−1,−1, I2))ρ0(l)

is Int(g)-conjugate. Then, there exists k ∈ K = SO(2p) × SO(2) such that
Ad(k)pL = pL′ = Ad(diag(I2p−1,−1, I2))pL, that is Ad(k−1 diag(I2p−1,−1, I2))pL =
pL. This is contradiction by Lemma 1.5.18.

Lemma 1.5.17. Ad(diag(I2p, 1,−1))ρ0(l) is Int(g)-conjugate to ρ0(l) if and
only if p is even. Moreover, Ad(diag(I2p−1,−1, 1,−1))ρ0(l) is Int(g)-conjugate
to ρ0(l) if and only if p is odd.

Proof. We can prove “Moreover part” in the same way as tha former part. So,
we only prove the former part. Let θ be a Cartan involution θ on g as follows:

θ : g → g, X 7→ −tX.

Then ρ0(l) and Ad(diag(I2p, 1,−1))ρ0(l) are θ-stable and their noncompact part
pL := ρ0(l)

−θ and pL′ := (Ad(diag(I2p, 1,−1))ρ0(l))
−θ are described as follows:

pL = {
( (

v, (J ⊗ Ip)v
)

t
(
v, (J ⊗ Ip)v

) )
: v ∈ R2p},

pL′ = Ad(diag(S, · · · , S, I2))pL.

Here S := diag(1,−1), S apears p times in diag(S, · · · , S, S, I2). From Lemma 1.5.5,
we have

Ad(diag(I2p, 1,−1))ρ0(l) is Int(g)-conjugate

⇐⇒ there exist k ∈ SO(2p)× SO(2) such that Ad(k)pL′ = pL

⇐⇒ there exist k ∈ SO(2p)× SO(2) such that Ad(k diag(S, · · · , S, I2))pL = pL

⇐⇒ p is even.

Here, in the last implication, we used Lemma 1.5.18.

Lemma 1.5.18. Put pL := ρ0(l)
−θ and A = {g = (g1, k2) ∈ GL(2p,R) ×

SO(2) : Ad(g)pL = pL}. Then we have

A = {(g1, k2) ∈ O(2p)× SO(2) : g1(J ⊗ Ip) = (J ⊗ Ip)g1}.

In particular, we have det g1 > 0 if g = (g1, k2) ∈ A.
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Proof. “In particular” part is clear from the description of A. So, we show
the former part. We can easily check that Ad(Ip, k2)pL = pL. Therefore for
(g1, k2) ∈ GL(2p,R)× SO(2), we have

Ad(g1, k2)pL = pL,

⇐⇒ Ad(g1, I2)pL = pL,

⇐⇒
(

g1(v, (J ⊗ Ip)v)
t(v, (J ⊗ Ip)v)g

−1
1

)
∈ pL for all v ∈ R2p,

⇐⇒

{
g1(J ⊗ Ip)v = (J ⊗ Ip)g1v,
t(g1v) =

tvg−1
1

for all v ∈ R2p,

⇐⇒

{
g1(J ⊗ Ip) = (J ⊗ Ip)g1,
tg1g1 = I2p.

1.5.6 (g, l) = (so(4p, 4), sp(p, 1)) (p ≥ 1)

In this subsection, we consider the case (g, l) = (so(4p, 4), sp(p, 1)) for the sym-
metric pair (g, h)=(so(4p, 4), so(4p, 3)). It is enough to consider the irreducible
representation ρ0 = ρϖ1 : sp(p, 1) → so(4p, 4) over R from Proposition 1.3.3,
Remark 1.2.44 and Lemma 1.2.46. Our goal in this subsection is the following:

Proposition 1.5.19. Φ−1
R ([ρ0]) consists of four points. Moreover, the four

points are given as follows:

{[ρ0], [Ad(diag(I4p−1,−1, I4))ρ0], [Ad(diag(I4p, I3,−1))ρ0], [Ad(diag(I4p−1,−1, I3,−1))ρ0]}.

We realize G = SO(4p, 4) = SL(4p + 4,R)τ̃ , sp(p, 1) ⊂ so(4p, 4) = sl(4p +
4,R)τ as follows:

τ : sl(4p+ 4,R) → sl(4p+ 4,R), X 7→ −I4p,4
tXI−1

4p,4,

τ̃ : GL(4p+ 4,R) → GL(4p+ 4,R), g 7→ I4p,4
tg−1I−1

4p,4,

σ1 : so(4p, 4) → so(4p, 4), X 7→ (J ⊗ I2 ⊗ Ip+1)X(J ⊗ I2 ⊗ Ip+1)
−1,

σ2 : so(4p, 4) → so(4p, 4), X 7→ (S ⊗ J ⊗ Ip+1)X(S ⊗ J ⊗ Ip+1)
−1,

sp(p, 1) := (so(4p, 4)σ1)σ2 ,

pL =




B1

...
Bp

tB1 . . . tBp

 : Bi ∈ R-span{I4, J ⊗ S, I ⊗ J, J ⊗ T}

 .

Here S = diag(1,−1), T =

(
1

1

)
∈ GL(2,R). By Fact 1.5.4 and the realiza-

tion of sp(p, 1), we have the following:
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Lemma 1.5.20.

Endρ0(l)(R
4p+4) = R-span{I4p+4, J⊗I⊗Ip+1, S⊗J⊗Ip+1, T⊗J⊗Ip+1 ∈ M(4p+4,R)}.

Proof of Proposition 1.5.19. We use Lemma 1.5.2.

Claim. M =



SO0(4p, 4) · {I4p+4,diag(I4p−1,−1, I4), diag(I4p, I3,−1), diag(I4p−1,−1, I3,−1)}
·{aI4p+4 : a > 0} if p ≥ 2,

SO0(4, 4) · {I8, diag(I3,−1, I4), diag(I4, I3,−1),diag(I3,−1, I3,−1)}
·{aI8 : a > 0} · {I8, J4} if p = 1.

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclu-
sion ⊂. Let g ∈ M . From Lemma 1.5.20, there exist a, b, c, d ∈ R such that
g−1I4p,4

tg−1I4p,4 = aI4p+4 + bJ ⊗ I ⊗ Ip+1 + cS⊗ J ⊗ Ip+1 + dT ⊗ J ⊗ Ip+1. By
taking matrix transpose, we have b = c = d = 0.

• In the case p ≥ 2: By Sylvester’s law of inertia, we obtain a > 0. therefore
we have g ∈ O(4p, 4)

√
a
−1

I4p+4, which implies the desired conclusion.

• In the case p = 1: we have t(
√

|a|g)I4,4(
√
|a|g) = I4,4 or −I4,4, namely,

g ∈ O(4, 4)
√
|a|

−1
· {I8, J4}, which implies the desired conclusion.

From the above Claim, we can take F of Lemma 1.5.2 as follows:

F =



{I4p+4, diag(I4p−1,−1, I4),diag(I4p, I3,−1),diag(I4p−1,−1, I3,−1)}
·{diag(aI4p+4) : a > 0} if p ≥ 2,

{I8, diag(I3,−1, I4), diag(I4, I3,−1), diag(I3,−1, I3,−1)}
·{diag(aI8) : a > 0} · {I8, J4} if p = 1.

Since Ad(aI4p+4) (a > 0) preserves ρ0(l) for p ≥ 1 and Ad(J4) preserves ρ0(l)
for p = 1, it is enough to consider Ad(f)ρ0 for f ∈ {I4p+4, diag(I4p−1,−1, I4),
diag(I4p, I3,−1), diag(I4p−1,−1, I3,−1)}. From Lemma 1.5.21, we obtain the
desired conclusion.

Lemma 1.5.21. ρ0(l), Ad(diag(I4p−1,−1, I4))ρ0(l), Ad(diag(I4p, I3,−1))ρ0(l),
and Ad(diag(I4p−1,−1, I3,−1))ρ0(l) are not Int(g)-conjugate each other.

Proof. Assume two subalgebras m, m′ of them such that m ̸= m′ are conjugate
by Int(g). From Lemma 1.5.5, there exist k ∈ K = SO(4p) × SO(4) such
that Ad(k)m = m′. Then we have Ad(diag(k1, k2))pL = pL where k1 ∈ O(4p),
k2 ∈ O(4). Here we have det k1 = −1 or det k2 = −1. This is contradiction by
Lemma 1.5.22.
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Lemma 1.5.22. Suppose that (k1, k2) ∈ O(4p)×O(4) satisfies Ad(k1, k2)pL =
pL. Then we have det k1, det k2 > 0.

Proof. We identify p ≃ M(4p, 4;R) with the action X 7→ k′1X
tk′2 for (k′1, k

′
2) ∈

O(4p) × O(4). By taking t(0, · · · , I4, · · · 0) ∈ pL, we can describe k1 as follows
for some vi ∈ pL ⊂ M(4p, 4;R) (i = 1, · · · , p).

k1 = (v1, · · · vp) diag(k2, · · · , k2).

Here (v1, · · · , vp) ∈ O(4p).

k1X
tk2 ∈ pL for all X ∈ pL

⇐⇒ (v1, · · · vp) diag(k2, · · · , k2)Xtk2 ∈ pL for all X ∈ pL

⇐⇒ diag(k2, · · · , k2)Xtk2 ∈ pL for all X ∈ pL (∵ Remark 1.5.23)

⇒det k2 > 0.

Here we used Remark 1.5.25 and 1.5.24 for the last implication. The condition
det k1 > 0 comes from k1 = (v1, · · · , vp) diag(k2, · · · , k2) and (v1, · · · , vp) ∈
SO(4p).

Remark 1.5.23. R-span{I4, J ⊗S, I⊗J, J ⊗T} ⊂ M(4,R) is closed by matrix
transpose and matrix multiplication.

Remark 1.5.24. For B ∈ Alt(2n,R), Pfaff(gBtg) = det gPfaff(B), where
Pfaff(B) means pfaffian of B.

Remark 1.5.25. For 0 ̸= X ∈ ImH(4,R) := R-span{J ⊗ S, I ⊗ J, J ⊗ T},
Pfaff(X) < 0 holds.

1.5.7 (g, l)=(so(3, 4), g2(2))

In this subsection, we consider (g, l)=(so(3, 4), g2(2)) for the symmetric pair
(g, h) = (so(3, 4), so(2) ⊕ so(1, 4)). From Proposition 1.3.37 and Cartan’s fun-
damental theorem (see Fact 1.6.5), it is enough to consider the irreducible rep-
resentation ρ0 := ρϖ1

: g2(2) → so(3, 4) over R. Our goal in this subsection is
the following:

Proposition 1.5.26. Let (g, l) = (so(3, 4), g2(2)). The inverse image Φ−1
R ([ι ◦

ρ0]) consists of two points. Moreover, the two points are given as follows:

{[ρ0], [Ad(diag(I3, I3,1))ρ0]}.

Here, ρ0 is the standard embedding of g2(2) by the standard representation ρϖ1

with highest weight ϖ1.

Remark 1.5.27. The irreducible representation ρϖ1 of g2(2) factors so(3, 4) ⊂
sl(7,R) and it is unique as a real representation up to equivalence by Cartan’s
fundamental theorem.
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From Lemma 1.5.4, we have

Lemma 1.5.28.

Endρ0(l)(R
7) = RI7.

We realize G = SO(3, 4) = SL(7,R)τ̃ by a involution τ̃ : GL(7,R) →
GL(7,R), g 7→ I3,4

tg−1I−1
3,4 .

Proof of Proposition 1.5.26. We use Lemma 1.5.2.

Claim. M = SO0(3, 4) · {I7, diag(I3, I3,1), diag(I2,1, I4),diag(I2,1, I3,1)} · {aI7 :
a > 0}

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion ⊂.
Let g ∈ M . From Lemma 1.5.28, there exists a ∈ R× such that g−1τ̃(g) = aI7.
By Sylvester’s law of inertia, we have a > 0. Therefore we have the desired
conclusion.

From the above Claim, we can take F of Lemma 1.5.2 as follows

F = {I7,diag(I3, I3,1), diag(I2,1, I4), diag(I2,1, I3,1)} · {aI7 : a > 0}.

Since Ad(aI7) preserves ρ0(l) for a > 0, it is enough to show that ρ0(l) and
Ad(diag(I3, I3,1))ρ0(l) are not Int(g)-conjugate, and ρ0(l) and Ad(diag(I2,1, I4))ρ0(l)
are Int(g)-conjugate. These comes from Lemma 1.5.29.

Lemma 1.5.29. ρ0(l) and Ad(diag(I3, I3,1))ρ0(l) are not Int(g)-conjugate. ρ0(l)
and Ad(diag(I2,1, I4))ρ0(l) are Int(g)-conjugate.

To prove the above Lemma 1.5.29, we realize noncompact part pL of ρ0(l),
which can be considered as a subspace of M(4, 3;R) ≃ p and its orthogonal
complement subspace p⊥L of pL in M(4, 3;R) with regard to the following Ad(K)
invariant inner product:

M(4, 3;R)×M(4, 3;R) → R,
(X,Y ) 7→ trace(tXY ).

We use the elements H1, H2, Xi and Yi ∈ g2(2) (i = 1, · · · 6) with relation given
in Table 22.1 of the book [FH] and weight vectors v4, v3, v1, u, w1, w3 and w4 of
standard representation ρϖ1 in Lecture 22 of the book [FH]. We realize so(3, 4)
as follows:

τ : sl(7,R) → sl(7,R),
X 7→ −I3,4

tXI3,4

so(3, 4) := sl(7,R)τ
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First, we describe pL as a subspaceM(4, 3;R) ≃ p. Take a basis {v+4 , v
+
3 , v

+
1 , u, v

−
1 , v

−
3 , v

−
4 }

on the representation space of the standard representation of g2(2) as follows:

v+4 := v4 + w4,

v+3 := v3 + w3,

v+1 := v1 + w1,

v−1 := v1 − w1

v−3 := v3 − w3

v−4 := v4 − w4.

Then we have the following matrix representation of a basis {H1,H2, X1 +
Y1, X2 + Y2, X3 + Y3, X4 + Y4, X5 + Y5, X6 + Y6} of pg2(2)

with regard to the
above basis:

ρ(H1) =



0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0


, ρ(H2) =



0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0


,

ρ(X1 + Y1) =



0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 2 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0


, ρ(X2 + Y2) =



0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0


,

ρ(X3 + Y3) =



0 0 0 0 −1 0 0
0 0 0 2 0 0 0
0 0 0 0 0 0 −1
0 2 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0


, ρ(X4 + Y4) =



0 0 0 2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0


,

ρ(X5 + Y5) =



0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0


, ρ(X6 + Y6) =



0 0 0 0 0 −1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 1 0 0 0 0 0


.
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Therefore we have the following description of pL ⊂ M(4, 3;R) ≃ p:

pL = {


2f 2e 2c

−e− g d+ f 2a− b
c− h −a+ b d− f
a c+ h −e+ g

 : a, b, c, d, e, f, g, h ∈ R}

Therefore its orthogonal complement subspace p⊥L of pL is given as follows:

p⊥L = {


a b −c
b −a −d
c −d a
d c b

 : a, b, c, d ∈ R}

= {(v, (−J ⊗ S)v, (I ⊗ J)v : v ∈ R4}.

Lemma 1.5.30. Put A := {(k1, k2) ∈ O(4)×O(3) : k1p
⊥
Lk

−1
2 ⊂ p⊥L}. Then we

have det k1 > 0 if (k1, k2) ∈ A.

Proof. Let (k1, k2) ∈ A. and pr2 : so(4) ⊕ so(3) → so(3) the second projec-
tion. Since the composition map of pr2 ◦ ρ0|kg2(2)

: kg2(2)
≃ sp(1) ⊕ sp(1) →

so(4) ⊕ so(3) → so(3) is surjective, there exist kL ∈ KL such that (k1, k2) =
(k′, diag(I2, ε))kL for some k′ ∈ O(4), ε ∈ {±1}, where KL is the analytic
subgroup of kL. It is enough to show that det k′ > 0.

k1p
⊥
Lk

−1
2 ⊂ p⊥L

⇐⇒ k′p⊥L diag(I2, ε) ⊂ p⊥L

⇐⇒ (k′v, k′(−J ⊗ S)v, εk′(I ⊗ J)v) ∈ p⊥L for all v ∈ R4

⇐⇒ k′(−J ⊗ S)k′−1 = −J ⊗ S and εk′(I ⊗ J)k′−1 = I ⊗ J

From the second condition, k′ has the following form:

k′ = diag(I2, εI2)

(
A −B
B A

)
.

Here A,B ∈ M(2,R). Therefore, we have det k′ > 0.

Proof of Lemma 1.5.29. First we show that ρ0(l) and Ad(I3, I3,1)ρ0(l) are not
Int(g)-conjugate. Assume ρ0(l) and Ad(I3, I3,1)ρ0(l) are Int(g)-conjugate. Then
from Lemma 1.5.5, there exist (k1, k2) ∈ SO(4)×SO(3) such that k1I3,1pLk

−1
2 ⊂

pL. Since we have k1I3,1pLk
−1
2 ⊂ pL ⇐⇒ k1I3,1p

⊥
Lk2 ⊂ p⊥L , we have

(k1I3,1, k2) ∈ A. This is contradict det(k1I3,1) < 0.
Next, we show that ρ0(l) and Ad(I2,1, I4)ρ0(l) are Int(g)-conjugate. It is

enough to show that there exists (k1, k2) ∈ SO(4)⊗SO(3) such that k1p
⊥
Lk

−1
2 =

p⊥LI2,1. Take k1 := I ⊗ S, k2 = I3. Then we have k1p
⊥
Lk

−1
2 = p⊥LI2,1.
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1.5.8 (g, l)=(so(4, 4), spin(3, 4))

In this subsection, we consider (g, l)=(so(4, 4), spin(3, 4)) for the symmetric
pair (g, h)=(so(4, 4), so(4, 1) ⊕ so(3)). From Proposition 1.3.37 and Cartan’s
fundamental theorem (see Fact 1.6.5), it is enough to consider the irreducible
representation ρ0 := ρϖ3 : so(3, 4) → so(4, 4) over R. Our goal of this subsection
is the following:

Proposition 1.5.31. Φ−1
R ([ρ0]) consists of four points. Moreover, the four

points are given as follows:

{[ρ0], [Ad(diag(I3,1, I4))ρ0], [Ad(diag(I4, I3,1))ρ0], [Ad(diag(I3,1, I3,1))ρ0]}

We realize SO(4, 4) = SL(8,R)τ̃ , so(4, 4) = sl(8,R)τ by the following invo-
lutions τ , τ̃ :

τ : sl(8,R) → sl(8,R),
X 7→ −I4,4

tXI−1
4,4 ,

τ̃ : GL(8,R) → GL(8,R),
g 7→ I4,4

tg−1I−1
4,4 .

From Lemma 1.5.4, we have

Lemma 1.5.32.
Endρ0(l)(R

8) = RI8.

Proof of Proposition 1.5.31. We use Lemma 1.5.2.

Claim.

M = SO0(4, 4)·{I8, diag(I3,1, I4), diag(I4, I3,1),diag(I3,1, I3,1)}·{I8, I⊗I⊗J}·{aI8 : a > 0}.

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion ⊂.
Let g ∈ M . From Lemma 1.5.32, there exists a ∈ R such that g−1τ̃(g) = aI8,
that is, atgI4,4g = I4,4, which implies the desired conclusion.

From the above Claim, we can take F of Lemma 1.5.2 as follows:

F = {I8, diag(I3,1, I4), diag(I4, I3,1), diag(I3,1, I3,1)}·{I8, I⊗I⊗J}·{aI8 : a > 0}.

Since Ad(aI8) (a > 0) and Ad(I ⊗ I ⊗ J) preserves the image of ρ0 from
the description of spin representation below, it is enough to show that ρ0(l),
Ad(diag(I3,1, I4))ρ0(l), Ad(diag(I4, I3,1))ρ0(l) and Ad(diag(I3,1, I3,1))ρ0(l) are
not Int(g)-conjugate each other. Assume that two subalgebras Ad(k1)ρ0(l),
Ad(k2)ρ0(l) of them are Int(g)-conjugate, where k1, k2 ∈ {I8, diag(I3,1, I4), diag(I4, I3,1), diag(I3,1, I3,1)}
such that k1 ̸= k2. Then from Lemma 1.5.5, there exists k ∈ SO(4)×SO(4) such
that Ad(k)Ad(k1)pL = Ad(k2)pL, which is equivalent to Ad(k−1

2 kk1)p
⊥
L = p⊥L .

From Lemma 1.5.34, this is contradiction.
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We consider the following realization ρ0 := φ3φ2φ1 of spin representation
(see section 4 in [KY05] for more details): Put Aij = −Eij+Eji, Sij = Eij+Eji.

so(3, 4) := {X ∈ sl(7,R) : tXI3,4 + I3,4X = 0}
φ1 : so(3, 4) → Ceven(3, 4)

Ai,j 7→ −1

2
v+i v

+
j (1 ≤ i < j ≤ 3)

Ai+3,j+3 7→ 1

2
v−i v

−
j (1 ≤ i < j ≤ 4)

Si,j+3 7→ 1

2
v+i v

−
j (1 ≤ i ≤ 3, 1 ≤ j ≤ 4)

φ2 : Ceven(3, 4) → C(3, 3) → C(1, 1)⊗ C(1, 1)⊗ C(1, 1) ≃ M(8,R)

Here we use the maps in the following Fact 1.5.33 (i), (ii) and (iv):

Fact 1.5.33 ([KY05]). (i) Put so(p, q) := {X ∈ sl(p+q,R) : tXIp,q+Ip,qX =
0}. Then the following map gives an Lie algebra injective map:

so(p, q) → Ceven(p, q)

Ai,j 7→ −1

2
v+i v

+
j (1 ≤ i < j ≤ p)

Ai+p,j+p 7→ 1

2
v−i v

−
j (1 ≤ i < j ≤ q)

Si,j+p 7→ 1

2
v+i v

−
j (1 ≤ i ≤ p, 1 ≤ j ≤ q)

Here Ai,j := −Ei,j + Ej,i and Si,j := Ei,j + Ej,i.

(ii) For p ≥ 0, q ≥ 1, the following map gives an algebra isomorphism:

C(p, q − 1) → Ceven(p, q)

v+i 7→ v+i v
−
q (1 ≤ i ≤ p)

v−j 7→ v−j v
−
q (1 ≤ j ≤ q − 1)

(iii) Let K = (k+, k−) and L = (p, q) ∈ Z2
≥0, the following map gives an

algebra isomorphism if k+ − k− ≡ 1 (mod 4):

C(K + L) → C(K + L∨)

v+i 7→ v+i (1 ≤ i ≤ k+)

v−j 7→ v−j (1 ≤ j ≤ k−)

v+k++i 7→ VKv−k−+i (1 ≤ i ≤ p)

v−k−+j 7→ VKv+k++j (1 ≤ j ≤ q)

Here VK := v+1 · · · v+k+v
−
1 · · · v−k− .
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(iv) For non-negative integers p and q, the following map gives an algebra
isomorphism:

C(p+ 1, q + 1) → C(1, 1)⊗ C(p, q)

v+1 7→ v+1 ⊗ 1

v−1 7→ v−1 ⊗ 1

v+i+1 7→ v+1 v
−
1 ⊗ v+i (1 ≤ i ≤ p)

v−j+1 7→ v+1 v
−
1 ⊗ v−j (1 ≤ j ≤ q)

We use the following identification:

C(1, 1) → M(2,R)

v+1 7→ T :=

(
1

1

)
,

v−1 7→ J :=

(
−1

1

)
,

v+1 v
−
1 7→ S :=

(
1

−1

)
.

Let (, ) be a standard inner product on R8. Then φ2φ1(so(3, 4))-invariant scalar
product B on R8 is given as follows:

B(v, w) := tv(J ⊗ T ⊗ J)w.

Put g0 := 1√
2
(I ⊗ I ⊗ I − J ⊗ T ⊗ T ) and compose the basis transformation φ3

to φ2φ1

φ3 : M(8,R) → M(8,R),
X 7→ g0Xg−1

0

ρ0 := φ3φ2φ1

Then ρ0(so(3, 4))-invariant scalar product B0 on R8 is given as follows:

B0(v, w) :=
tvI ⊗ I ⊗ Sw.
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Moreover the image pL of pso(3,4) by ρ0 is given as follows:

so(4, 4) := {X ∈ M(8,R) : tX(I ⊗ I ⊗ S) + (I ⊗ I ⊗ S)X = 0}
so(3, 4) → so(4, 4)

2S14 7→ −T ⊗ T ⊗ T

2S15 7→ I ⊗ S ⊗ T

2S16 7→ J ⊗ S ⊗ J

2S17 7→ S ⊗ T ⊗ T

2S24 7→ S ⊗ I ⊗ T

2S25 7→ −J ⊗ J ⊗ T

2S26 7→ I ⊗ J ⊗ J

2S27 7→ T ⊗ I ⊗ T

2S34 7→ −T ⊗ S ⊗ T

2S35 7→ I ⊗ T ⊗ T

2S36 7→ −J ⊗ T ⊗ J

2S37 7→ S ⊗ S ⊗ T

We definie Ad(K)-invariant inner product on M(4,R) ≃ p by

M(4,R)×M(4,R) → R
(X,Y ) 7→ trace(tXY )

Take the orthogonal complement subspace p⊥L of pL in p ≃ M(4,R) with respect
to the above inner product. Then we have:

p⊥L =




a −b c −d
b a −d −c
−c d a −b
d c b a

 : a, b, c, d ∈ R


= R(I ⊗ I) + R(J ⊗ I) + R(S ⊗ J) + R(T ⊗ J) ≃ H.

Lemma 1.5.34. If (k1, k2) ∈ O(4)×O(4) satisfies k1p
⊥
Lk

−1
2 ⊂ p⊥L , then det k1 =

det k2 = 1.

Proof. Take I4 ∈ p⊥L . There exists v ∈ p⊥L such that k1k
−1
2 = v. Take J ⊗ I ∈

p⊥L . Since p⊥L is closed by matrix transpose and multiplication, Then we have
k1(J ⊗ I)k−1

2 ∈ p⊥L , that is, k2(J ⊗ I)tk2 ∈ p⊥L . Here, we have

det k2 Pfaff(J ⊗ I) = Pfaff(k2(J ⊗ I)tk2) > 0.

Therefore we have det k2 = det k1 = 1.

1.5.9 (g, l)=(so(8, 8), spin(1, 8))

In this subsection, we consider (g, l)=(so(8, 8), spin(8, 1)) for the symmetric pair
(g, h)=(so(8, 8), so(8, 7)). From Proposition 1.3.3 and Cartan’s fundamental
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theorem (see Fact 1.6.5), it is enough to consider the irreducible representation
ρ0 := ρϖ4 : so(8, 1) → so(8, 8). Our goal of this subsection is the following:

Proposition 1.5.35. The inverse image Φ−1
R ([ι ◦ ρ0]) consists of four points.

Moreover, the four points are given as follows:

{[ρ0], [Ad(diag(I7,1, I8))ρ0], [Ad(diag(I8, I7,1))ρ0], [Ad(diag(I7,1, I7,1))ρ0]}.

We realize G = SO(8, 8) = SL(16,R)τ̃ , so(8, 8) = sl(8,R)τ by the following
involutions τ̃ , τ :

τ̃ : GL(16,R) → GL(16,R),
g 7→ I8,8

tg−1I−1
8,8 ,

τ : sl(8,R) → sl(8,R),
X 7→ −I8,8

tXI−1
8,8 .

From Lemma 1.5.4, we have

Lemma 1.5.36.
Endρ0(l)(R

16) = {aI16 : a > 0}.

Proof of Proposition 1.5.35. We use Lemma 1.5.2.

Claim.

M = SO0(8, 8)·{I16, diag(I7,1, I8),diag(I8, I7,1), diag(I7,1, I7,1)}·{I16, J8}·{aI16 : a > 0}.

This claim can be proved in the same way as the case (g, l) = so(4, 4), spin(3, 4))
in Subsection 1.5.8. So, we omit the proof.

From the above Claim, we can take F of Lemma 1.5.2 as follows:

F = {I16,diag(I7,1, I8), diag(I8, I7,1), diag(I7,1, I7,1)} · {I16, J8} · {aI16 : a > 0}.

Here Ad(aI16) (a > 0) and Ad(J8) preserve the image ρ0(l), which can be proved
by the description of spin representation of so(8, 1).

So, it is enough to show that the following four subalgebras ρ0(l), Ad(diag(I7,1, I8))ρ0(l),
Ad(diag(I8, I7,1))ρ0(l), Ad(diag(I7,1, I7,1))ρ0(l) are not Int(g)-conjugate each
other.

Since the other cases can be proved in the same way, we show only ρ0(l) and
Ad(diag(I7,1, I8))ρ0(l) are not Int(g)-conjugate. Assume ρ0(l) and Ad(diag(I7,1, I8))ρ0(l)
are Int(g)-conjugate. Then, from Lemma 1.5.5, there exists k ∈ SO(8)×SO(8)
such that Ad(k)ρ0(pL) = Ad(diag(I7,1, I8))ρ0(pL), that is, Ad(k−1 diag(I7,1, I8))pL =
pL. Therefore we have k−1 diag(I7,1, I8) ∈ A of Lemma 1.5.37. This contradict
k−1 diag(I7,1, I8) ̸∈ SO(8)× SO(8).

Lemma 1.5.37. Put A := {k = (k1, k2) ∈ O(8)×O(8) : Ad(k)pL ⊂ pL}. Then
we have A = {(I8, I8), (−I8, I8)}·KL ⊂ SO(8)×SO(8) where KL is the analytic
subgroup of kL.
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Proof. {(I8, I8), (−I8, I8)} · KL ⊂ A is clear by the definition of A. We show
that A ∈ {(I8, I8), (−I8, I8)} · KL. First we consider the description of pL.
spin(8, 1) ⊂ so(8, 8) = g is given as a image of spin representation of so(8, 1).
In this proof, we realize spin(8, 1) ⊂ so(8, 8) := {X ∈ M(16,R) : tX(I ⊗ I ⊗S⊗
I) + (I ⊗ I ⊗ S ⊗ I)X} by the image of the composition of the following two
maps ι and φ.

ι : so(8, 1) → Ceven(8, 1) → C(8, 0) → C(5, 3)

→ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(2, 0)

→ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)

→ M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R)

Here we used maps in Fact 1.5.33 (i) to (iv) and the following isomorphisim

C(2, 0) → C(1, 1),

v+1 7→ v+1 ,

v+2 7→ v+1 v
−
1 .

Put g0 := 1
2 (I⊗I⊗I⊗I+J⊗T⊗T⊗I) ∈ SO(16). Then we have φι(so(8, 1)) ⊂

so(8, 8). We consider the following basis transformation φ:

φ : M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R) → M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R)
X 7→ g−1

0 Xg0

By identification p with M(8,R) which compatible with the Ad(K) action, we
have the following description of pL ⊂ M(8,R):

pL = R-span{S ⊗ T ⊗ I, T ⊗ I ⊗ I, S ⊗ S ⊗ I, T ⊗ J ⊗ T,

T ⊗ J ⊗ S, S ⊗ J ⊗ J, J ⊗ I ⊗ J, I ⊗ I ⊗ J}
= {(v,A1v,A2v,A3v,A4v,A5v,A6v,A7v) ∈ M(8,R) : v ∈ R8}.
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Here Ai ∈ GL(8,R) (i = 1, · · · , 7) are given as follows

A1 :=


−J

−J
J

−J

 , A2 :=


S

−S
−I

I

 ,

A3 :=


−T

T
J

J

 , A4 :=


−I

−S
I

S

 ,

A5 :=


−J

T
−J

−T

 , A6 :=


S

−I
I

−S

 ,

A7 :=


−T

−J
−J

T

 .

Let (k1, k2) ∈ A. From the simplicity of so(8) ⊂ so(8, 1) and the description of
spin representation, the maps pri ◦φ ◦ ι|so(8) → so(8) (i = 1, 2) are surjective.
Therefore, we can take kL ∈ KL such that (k1, k2) = (k, diag(I7, ε))kL for some
k ∈ O(8), diag(I7, ε) ∈ O(8) (ε ∈ {±1}). Thus it is enough to show that
k = ±I8, ε = 1.

Ad(k1, k2)pL ⊂ pL

⇐⇒ Ad(k,diag(I7, ε))pL ⊂ pL

⇐⇒ (kv, kA1v, kA2v, kA3v, kA4v, kA5v, εkA6v) ∈ pL for any v ∈ R8

⇐⇒ kAik
−1 = Ai (i = 1, 2, 3, 4, 5, 6) and εkA7k

−1 = A7

By direct calculation, we obtain k = ±I8 and ε = 1.

1.5.10 (g, l) = (so∗(8), spin(1, 6))

In this subsection, we consider (g, l) = (so∗(8), spin(1, 6)) for the symmetric pairs
(g, h)=(so∗(8), u(3, 1)) and (so∗(8), so∗(6) ⊕ so∗(2)). From Proposition 1.4.20
and 1.4.29, it is enough to consider the irreducible representation ρ0 := ρϖ3 :
so(1, 6) → so∗(8). Our goal of this subsection is the following:

Proposition 1.5.38. The inverse image Φ−1
C ([ι ◦ ρ0]) consists of one point,

namely Φ−1
C ([ι ◦ ρ0]) = {[ρ0]}.

83



We realize so∗(8) and SO∗(8) as follows:

τ1, τ2 : sl(8,C) → sl(8,C),
τ1(X) := −tX,

τ2(X) := JXJ−1,

so∗(8) := {X ∈ sl(8,C) : τ1(X) = X = τ2(X)},
τ̃1, τ̃2 : SL(8,C) → SL(8,C)

τ̃1(g) :=
tg−1,

τ̃2(g) := J4gJ
−1
4 ,

SO∗(8) := {g ∈ SL(8,C) : τ̃1(g) = g = τ̃2(g)}.

Remark 1.5.39. For g ∈ GL(2n,C), the conditions tgg = I2n and Jng = gJn
implies det g = 1. Therefore, we have SO∗(8) = {g ∈ GL(n,C) : τ̃1(g) = g =
τ̃2(g)}, where τ̃1 and τ̃2 are natural extension of the above maps to GL(2n,C) →
GL(2n,C).

The image ρ0(l) ⊂ so∗(8) is given by the composition of the following injec-
tive maps ι1 and Ag0 .

ι1 : so(1, 6) → Ceven(1, 6) → C(1, 5)

→ C(1, 1)⊗ C(0, 4)

→ C(1, 1)⊗ C(1, 3)

→ C(1, 1)⊗ C(1, 1)⊗ C(0, 2)

→ M(2,R)⊗M(2,R)⊗M(2,C)

Here we use Fact 1.5.33 and the following injective map:

C(0, 2) → M(2,C),
v−1 7→ J,

v−2 7→ iS,

v−1 v
−
2 7→ iT.

Put g0 := 1√
2
(I ⊗ I ⊗ I + J ⊗ T ⊗ Ji). We define Ag0 : sl(8,C) → sl(8,C) by

Ag0X := g−1
0 Xg0.

From Schur’s lemma, we have

Lemma 1.5.40.
Endρ0(l)(C

8) = {aI8 : a ∈ C}.

Proof of Proposition 1.5.38. We use Lemme 1.5.3.

Claim.
M = SO∗(8) · {I8, I2 ⊗ I2 ⊗ S} · {aI8 : a ∈ C, a8 = 1}.
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proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion ⊂.
Let g ∈ M . From Lemma 1.5.40, there exists α ∈ C× such that g−1τ̃1(g) = αI8.
Therefore there exist h ∈ O(8,C) and β ∈ C× such that g = βh. Since we
have g−1τ̃2(g) = β−1βh−1τ̃2(h) ∈ Endρ0(l)(C8) = {aI8 : a ∈ C}, there exists

γ ∈ C× such that thJ4h = γJ4. By taking matrix adjoint and determinant,
we obtain γ ∈ {±1}, which implies h ∈ SO∗(8) · {I8, I2 ⊗ I2 ⊗ S}. Since
g = βh ∈ SL(8,C) holds, we have β8 = 1 by taking determinant. Thus we
obtain M = SO∗(8) · {I8, I2 ⊗ I2 ⊗ S} · {aI8 : a ∈ C, a8 = 1}.

From the above Claim, we can take F of Lemma 1.5.3 as follows.

F = {I8, I2 ⊗ I2 ⊗ S} · {aI8 : a ∈ C, a8 = 1}.

Here, Ad(aI8) (a ∈ C×) and Ad(I⊗I⊗S) preserves ρ0(l), which can be checked
by the above realization.Thus we obtain the desired conclusion.

1.5.11 (g, l)=(so(8,C), spin(1, 7))
In this subsection, we consider (g, l)=(so(8,C), spin(1, 7)) for the symmetric pair
(g, h)=(so(8,C), so(7,C)). From Proposition 1.4.33, it is enough to consider
the irreducible representation ρ0 := ρϖ3 . Note that the representation ρϖ4 of
so(1, 7) is equivalent to ρϖ3 in the sense of Definition 1.2.29. Our goal of this
subsection is the following:

Proposition 1.5.41. Φ−1([ρ0]) consists of two points. Moreover the two points
given as follows:

{[ρ0], [Ad(I7,1)ρ0]}.

We realize G = SO(8,C) := SL(8,C)τ̃ , g = so(8,C) := sl(8,C)τ , where
τ̃ : SL(8,C) → SL(8,C), g 7→ tg−1, τ : sl(8,C) → sl(8,C), X 7→ −tX. By
using maps in Fact 1.5.33, we obtain a realization of spin(1, 7) ⊂ so(8,C) by the
composition of the following maps ι1 and Ag0 :

ι1 : so(1, 7) → Ceven(1, 7) → C(1, 6) → C(3, 4)

→ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(0, 1)

≃ M(2,R)⊗M(2,R)⊗M(2,R)⊗ C

Put g0 := 1√
2
(I ⊗ I ⊗ I + J ⊗ T ⊗ Ji) ∈ GL(8,C). We define Ag0 : M(8,C) →

M(8,C) by
Ag0X := g−1

0 Xg0.

Then we have Ag0ι1(so(1, 7)) = spin(1, 7) ⊂ so(8,C).
From Schur’s lemma, we have

Lemma 1.5.42.
Endρ0(l)(C

8) = CI8.
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Proof of Proposition 1.5.41. We use Lemma 1.5.1.

Claim.
M = SO(8,C) · {I8, I7,1} · {aI8 : a8 = 1, a ∈ C}.

proof of Claim. The inclusion ⊃ is clear by definition. We show the inclusion
⊂. Let g ∈ M . From Lemma 1.5.42, there exists a ∈ C such that atgg = I8.
Therefore we have g ∈ SO(8,C) · {I8, I7,1}bI8 for some b ∈ C. Since we have
g ∈ SL(8,C), we get b8 = 1.

From the above Claim, we can take F of Lemma 1.5.1 as follows.

F = ·{I8, I7,1} · {aI8 : a8 = 1, a ∈ C}.

Since Ad(aI8) (a ∈ C×) preserves ρ0(l), it is enough to show that ρ0(l) and
Ad(I7,1)ρ0(l) are not Int(g)-conjugate. This comes from Fact 1.5.43. Take a
Cartan involution θ : X 7→ −X∗ on so(8,C) and a maximal abelian subspace
a := R-span{iA12, iA3,4, iA5,6, iA7,8}. Then we can take aL = RJ ⊗ S ⊗ Si =
RAg0ι1(S1,5) ⊂ spin(1, 7). Since we have Ad(I7,1)J⊗S⊗Si ̸∈ WaL, where W ≃
S4 ⋉ (Z2)

3 is the Weyl group of so(8,C), the images of the Cartan projection
of ρ0(l) and Ad(I7,1)ρ0(l) do not coincide.

Fact 1.5.43 (See [Ko96b] for example). Let G be a linear reductive Lie group
and g its Lie algebra and l and l′ reductive subalgebras of g. If there exists
α ∈ Int(g) such that l′ = α(l), then the images of Cartan projection of L and
L′ coincide, where L and L′ are analytic subgroups of l and l′.

1.5.12 (g, l)=(so(8,C), spin(7,C))
In this subsection, we consider (g, l)=(so(8,C), spin(7,C)) for the symmetric
pair (g, h)=(so(8,C), so(7, 1)). From Proposition 1.4.39, it is enough to consider
the irreducible representation ρ0 := ρϖ3⊠triv of so(7,C). Our goal of this
subsection is the following:

Proposition 1.5.44. Φ−1
C ([ρ0]) consists of two points. Moreover the two points

given as follows:

{[ρ0], [Ad(I7,1)ρ0]}.

We can prove in the same way as the case (so(8,C), spin(1, 7)) by using
Fact 1.5.43.

We realize so(8,C) = sl(8,C)τ and SO(8,C) = SL(8,C)τ̃ in the same way
as subsection 1.5.11. By using maps in Fact 1.5.33, we obtain realization of
spin(7,C) ⊂ so(8,C) by the complexification of the following map ι1.

ι1 : so(7) → Ceven(0, 7) → C(0, 6) → C(3, 3)

→ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)

≃ M(2,R)⊗M(2,R)⊗M(2,R).
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Proof of Proposition 1.5.44. We use Lemma 1.5.1. Since Endρ0(l)(C8) = CI8,
we obtain the same M and can take F as in Subsection 1.5.11. Thus it is enough
to show that ρ0(l) and Ad(I7,1)ρ0(l) are not Int(g)-conjugate. This comes from
Fact 1.5.43. Take a Cartan involution θ : so(8,C) → so(8,C), X 7→ −X∗

and a maximal abelian subspace a := R-span{iA12, iA3,4, iA5,6, iA7,8} of p :=
so(8,C)−θ. Then we can take

aL = R-span{iρ0(A1,7), iρ0(A2,6), iρ0(A3,5)}
= R-span{iJ ⊗ I ⊗ I, iJ ⊗ I ⊗ S, iJ ⊗ S ⊗ I}
≃ {(a1, a2, a3, a4) ∈ R4 : a1 + a4 = a2 + a3},

where we used the coordinate by {iA1,2, iA3,4, iA5,6, iA7,8}. Therefore we obtain

Ad(I7,1)aL ̸⊂ WaL = a(L).

Here W ≃ S4 ⋉ (Z2)
3 is the Weyl group of so(8,C).

1.6 Appendix

1.6.1 dimension of irreducible representation of simple Lie
algebra

We prepare the Weyl’s dimensionality formula: We consider simple Lie algebras
over C. Let {αi}ni=1 be a simple system and ∆+ the set of positive roots.

Fact 1.6.1 (see [Kn] for example). Let λ =
∑n

i=1 kiϖi be a highest weight,
where ϖi (i = 1, · · · , n) are the fundamental weights for the corresponding
types. Then the dimension of the irreducible representation with highest weights
λ is given as follows:

dim ρλ =
∏

∑
miαi∈∆+

∑
(ki + 1)mi(αi, αi)∑

mi(αi, αi)
.

Here mi (i = 1, · · ·n) are non-negative integers.

We summarize the each factor coming from positive roots for classical case
below:

• Type An (n ≥ 1),
Then the dimension of the irreducible representation with highest weight
λ is given by the multiplication of the following factors:

ki + · · · kj + j − i+ 1

j − i+ 1
(1 ≤ i ≤ j ≤ n)
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• Type Bn (n ≥ 2),
the dimension of the irreducible representation with highest weight λ is
given by the multiplication of the following factors:

ki + · · · kj + j − i+ 1

j − i+ 1
(1 ≤ i ≤ j ≤ n− 1)

2(ki + · · ·+ kn−1) + kn + 2n− 2i+ 1

2n− 2i+ 1
(1 ≤ i ≤ n− 1)

kn + 1

(ki + · · ·+ kj−1) + 2(kj + · · ·+ kn−1) + kn + 2n− j − i− 1

2n− j − i+ 1
(1 ≤ i < j ≤ n− 1)

(ki + · · ·+ kn−1) + kn + n− i+ 1

n− i+ 1
(1 ≤ i ≤ n− 1)

• Type Cn (n ≥ 2),
the dimension of the irreducible representation with highest weight λ is
given by the multiplication of the following factors:

ki + · · · kj + j − i+ 1

j − i+ 1
(1 ≤ i ≤ j ≤ n− 1)

ki + · · · kn + n− i+ 1

n− i+ 1
(1 ≤ i ≤ n)

(ki + · · ·+ kj−1) + 2(kj + · · ·+ kn) + 2n− j − i+ 2

2n− j − i+ 2
(1 ≤ i < j ≤ n)

• Type Dn (n ≥ 2),
Then the dimension of the irreducible representation with highest weight
λ is given by the multiplication of the following factors:

ki + · · · kj + j − i+ 1

j − i+ 1
(1 ≤ i ≤ j ≤ n− 1)

ki + · · · kj−1 + 2(kj + · · ·+ kn−2) + kn−1 + kn + 2n− j − i

2n− j − i
(1 ≤ i < j ≤ n− 2)

ki + · · ·+ kn−1 + kn + n− i+ 1

n− i+ 1
(1 ≤ i ≤ n− 2)

ki + · · · kn−2 + kn + n− i

n− i
(1 ≤ i ≤ n− 2)

kn + 1

We use the following data in our proof.

Fact 1.6.2 (minmum dimension). Minimum dimension of non trivial irreducible
representations of exeptional Lie algebra g is given as follows

• g = gC2 : 7
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• g = fC4 : 26

• g = eC6 : 27

• g = eC7 : 56

• g = eC8 : 248

The second smallest dimension of non trivial irreducible representations of gC2
is 14.

1.6.2 dimension of irreducible representation of real rank
one Lie algebras

We list irreducible representations π of real rank one Lie algebras l = f4(−20),
so(1, 2p), su(1, p) and sp(1, p) to use in Section 1.3.1, 1.4.1, 1.4.2 satisfying the
following:

dimπ ≤


2d(L)
1
2d(L) + 2

d(L) + 2

respectively.

Remark 1.6.3. We have d(f4(−20)) = 16. Only 26-dimensional representa-
tion satisfies dimπ ≤ 2d(L) among nontrivial irreducible representations of
l = f4(−20).

■ Irreducible representation of l = so(1, 2p)(p ≥ 2) satisfying dimπ ≤
4p = 2d(L), 2p+ 2 = d(L) + 2, p+ 2 = 1

2d(L) + 2
The following tables are lists of irreducible representations π of so(1, 2p)

satisfying dimπ ≤ 4p, 2p+ 2 and p+ 2 respectively:
p π dimπ

≥ 2 ϖ1 2p+ 1
4 ϖ4 16
3 ϖ3 8
2 ϖ2 4

p π dimπ
≥ 2 ϖ1 2p+ 1
3 ϖ3 8
2 ϖ2 4

p π dimπ
2 ϖ2 4

Here ϖi are fundamental weights of so(2p+ 1,C).

■ irreducible representation π of l = su(1, p)(p ≥ 1) satisfying dimπ ≤
4p = 2d(L), 2p+ 2 = d(L) + 2, p+ 2 = 1

2d(L) + 2 respectively
The following tables are lists of irreducible representations π of su(1, p) sat-

isfying dimπ ≤ 4p, 2p+ 2 and p+ 2 respectively:
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p π dimπ
≥ 1 ϖ1, ϖp p+ 1
7 ϖ2, ϖ6 28
6 ϖ2, ϖ5 21
5 ϖ2, ϖ4 15

ϖ3 20
4 ϖ2, ϖ3 10

2ϖ1, 2ϖ4 15
3 ϖ2 6

2ϖ1, 2ϖ3 10
2 2ϖ1, 2ϖ2 6

ϖ1 +ϖ2 8
1 2ϖ1 3

3ϖ1 4

p π dimπ
≥ 1 ϖ1, ϖp p+ 1
4 ϖ2, ϖ3 10
3 ϖ2 6
2 2ϖ1, 2ϖ2 6
1 2ϖ1 3

3ϖ1 4

p π dimπ
≥ 1 ϖ1, ϖp p+ 1
1 2ϖ1 3

■ irreducible representations of l = sp(1, p) (p ≥ 2) satisfying dimπ ≤
8p = 2d(L), 4p+ 2 = d(L) + 2 and 2p+ 2 = 1

2d(L) + 2 respectively
The following tables are lists of irreducible representations π of sp(1, p) sat-

isfying dimπ ≤ 8p, 4p+ 2 and 2p+ 2 respectively:
p π dimπ

≥ 1 ϖ1 2p+ 2
2 ϖ2 14

ϖ3 14

p π dimπ
≥ 1 ϖ1 2p+ 2

p π dimπ
≥ 1 ϖ1 2p+ 2
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■ nontrivial irreducible representation π of simple Lie algebras with
dimπ ≤ 8

Table 1.32: pairs (l, π) of a noncompact simple Lie algebra and its nontrivial
irreducible representation with dimπ ≤ 8

l π dimπ
sl(n,C)(2 ≤ n ≤ 8) ϖ1⊠triv n

sl(4,C) ϖ2⊠triv 6
sl(3,C) 2ϖ1⊠triv 6
sl(3,C) (ϖ1 +ϖ2)⊠ triv 8
sl(2,C) kϖ1⊠triv (1 ≤ k ≤ 7) k + 1

sl(n,C)τ (2 ≤ n ≤ 8) ϖ1 n
sl(4,C)τ ϖ2 6
sl(3,C)τ 2ϖ1 6
sl(3,C)τ ϖ1 +ϖ2 8
sl(2,C)τ kϖ1 (1 ≤ k ≤ 7) k + 1
so(7,C) ϖ1⊠triv 7
so(5,C) ϖ1⊠triv 5
so(7,C) ϖ3⊠triv 8
so(5,C) ϖ2⊠triv 4
so(7,C)τ ϖ1 7
so(5,C)τ ϖ1 5
so(7,C)τ ϖ3 8
so(5,C)τ ϖ2 4
sp(4,C) ϖ1⊠triv 8
sp(3,C) ϖ1⊠triv 6
sp(4,C)τ ϖ1 8
sp(3,C)τ ϖ1 6
so(8,C) ϖ1⊠triv 8
so(8,C)τ ϖ1, ϖ3, ϖ4 8

gC2 ϖ1⊠triv 7
(gC2 )

τ ϖ1 7
Here τ means a real structure.

1.6.3 Cartan’s fundamental theorem and Iwahori’s crite-
rion

In this subsection, we quickly review Cartan’s fundamental theorem (Fact 1.6.5)
and Iwahori’s criterion (Fact 1.6.8). See [Iw59] for more details.

Setting 3. Let g be a complex semisimple Lie algebra and τ : g → g an anti-
holomorphic involution.

To state Cartan’s fundamental theorem and Iwahori’s criterion, we introduce
the following:
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Notation 1.6.4. We use the following notation;

C(gτ ) := { an irreducible complex representation of gτ .}/ ≃,

R(gτ ) := { an irreducible real representation of gτ .}/ ≃,

CI(gτ ) := {ρ ∈ C(gτ )| ρR is not irreducible.},
CII(gτ ) := {ρ ∈ C(gτ )| ρR is irreducible.},
RI(gτ ) := {ρ ∈ R(gτ )| ρC is irreducible as a complex representation.},
RII(gτ ) := {ρ ∈ R(gτ )| ρC is not irreducible as a complex representation.}.

Here, for complex representation ρ : g → gl(V ), we write ρR for the correspond-
ing real representation ρR : g → gl(VR). For real representation ρ : g → gl(E),
we write ρC for the corresponding complex representation ρC : g → gl(E ⊗ C).
V , E are vector spaces over C, R respectively. We write VR instead of V when
we regard it as a real vector space.

Z2 acts on C(gτ ) by taking the complex conjugate representation. We put

Ĉ(gτ ) := C(gτ )/Z2.

Since ρR ≃ (ρ)R holds, the Z2-action on C(gτ ) preserves the subsets CI(gτ ) and
CII(gτ ). So, we put

ĈII(gτ ) := CII(gτ )/Z2.

Fact 1.6.5 ([Iw59, Theorem 1] Cartan’s fundamental theorem). The following
maps are bijective;

RI
n(g

τ ) → CI
n(g

τ ), (ρ : gτ → gl(E)) 7→ (ρC : gτ → gl(E ⊗ C)),

ĈII
n (gτ ) → RII

2n(g
τ ), (ρ : gτ → gl(V )) 7→ (ρR : gτ → gl(VR)).

Here, the subscripts n and 2n means the dimensions of representations.

By Cartan’s fundamental theorem, to study real representations, the prob-
lem is to determine which classes given complex representation belongs to. Iwa-
hori’s criterion gives the solution. To state Iwahori’s criterion, we prepare the
terms “self conjugate” and “indexτ ρ ∈ {±1}”.

Definition 1.6.6 ([Iw59, §9] Definition of index). • We call representation
(ρ, V ) of gτ self conjugate if ρ ≃ ρ as a representation of gτ .

• Let (ρ, V ) be a self conjugate irreducible representation of gτ . Then we can
take an anti holomorphic isomorphism J such that J2 = c idV (c ∈ R×)
given by Remark 1.6.7, so we put

indexτ ρ :=

{
1 (c > 0),

−1 (c < 0).

This is independent on the choice of J .
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Remark 1.6.7. (i) A representation (ρ, V ) of gτ is self conjugate if and only
if there exists an anti holomorphic isomorphism J : V → V satisfying
Jρ(X) = ρ(X)J for all X ∈ gτ . Moreover if ρ is irreducible, then there
exists c ∈ C× such that J2 = c idV from Schur’s Lemma.

(ii) If J : V → V is a anti holomorphic isomorphism satisfying J2 = c idV for
some c ∈ C×, then c ∈ R× holds.

(iii) The signature of c ∈ R× given by (i), (ii) above is independent of the
choice of J .

We can now state the following:

Fact 1.6.8 ([Iw59, Lemma 4]). Let (ρ, V ) be a complex irreducible representa-
tion of Lie algebra gτ . Then ρ : gτ → gl(V ) is of class CI(gτ ) if and only if the
following conditions (i) and (ii) are satisfied:

(i) ρ is self conjugate (i.e. ρ ≃ ρ as a representation of gτ ),

(ii) indexτ ρ = 1 ∈ {±1}.

In Setting 4, we can check the condition (i) and (ii) of Fact 1.6.8 easily by
using “diagram” (see Fact 1.6.12).

Notation 1.6.9. Take a Cartan subalgebra t of g, a corresponding root system
∆ ⊂ t∨R and a simple system Π := {α1, · · · , αn} ⊂ ∆. Let θ be a Cartan
involution on g, σ the split real structure on g associated with Π, which satisfy
θσ = σθ. For an anti holomorphic involution τ on g, there exists α ∈ Int(g)
such that ατα−1θ = θατα−1 and ατα−1σ = σατα−1 (see [Oni] §4 Theorem 2).
Put τ ′ = ατα−1. Let pr1 be the first projection Aut(Π) ⋉ Int(g) → Aut(Π).
Then we put

s− := pr1φ(τ
′σ) ∈ Aut(Π)

s∗ := pr1φ(τ
′θ)

s∨ := pr1φ(σθ),

where φ is the map of Remark 1.6.10 below. The elements s−, s∗ and s∨ are
uniquely well-defined for a real form gτ . An element of Aut(Π) induces the
action on t∨R . So, for λ ∈ t∨R , the notation s−(λ), s∗(λ) and s∨(λ) make sense.
Moreover, s−, s∗ and s∨ ∈ Aut(Π) induce automorphisms of Dynkin diagram
of g.

Remark 1.6.10 (see [Oni] §4 Theorem 1). We have a natural bijection as
follows:

φ : Aut(g) → Aut(Π)⋉ Int g

Here Aut(Π) := {φ ∈ O(t∨R) : φΠ = Π}.
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Remark 1.6.11. For a highest weight λ ∈ t∨R , we have the following:

ρλ ≃ ρs−(λ) as a representation of gτ ,

ρ∗λ ≃ ρs∗(λ) as a representation of gτ ,

ρ∨λ ≃ ρs∨(λ) as a representation of g.

These comes from ρ ≃ ρσ ≃ ρ∗θ ≃ ρ∨σθ (as a representation of g).

Fact 1.6.12 ([Iw59, Theorem 2]). Let ρ : gτ → sl(V ) be an irreducible repre-
sentation with a highest weight λ =

∑n
i=1 miϖi, where ϖi (i = 1, · · ·n) are the

fundamental weights. Then the following conditions are equivalent:

(i) ρ ≃ ρ as a representation of gτ (self conjugate),

(ii) mi = mp(i).

Here p ∈ Sn is the permutation induced by s− ∈ Aut(Π), namely s−(αi) =
αp(i). Moreover, for the self conjugate irreducible representation, we have

indexτ ρ =
∏

i∈{1,··· ,n}p

(indexτ ρϖi)
mi .

Here, i ∈ {1, · · · , n}p ⇐⇒ p(i) = i and ρϖi is the fundamental representation
with fundamental weight ϖi.

We can check the above conditions by seeing each simple factor. Suppose
gτ = ⊕s

ig
τi
i is the decomposition into simple ideals gτii (i = 1, · · · , s) and ρ :

gτ → sl(V ) is an irreducible representation of gτ . Then ρ has the description
ρ1 ⊠ · · ·⊠ ρs, where ρi is an irreducible representation of gτii . Then we have the
following:

Fact 1.6.13 ([Iw59, Lemma 6]). ρ ≃ ρ holds as a representation of gτ if and
only if ρi ≃ ρi holds as a representation of gτii for any i ∈ {1, · · · , s}. In this
case, we have

indexτ ρ =

s∏
i=1

indexτi ρi.

Notation 1.6.14 (Iwahori diagram, see [Oni] Table 5 also). From Fact 1.6.12,
for given irreducible representation ρ of gτ , we can determine whether or not ρ
is self conjugate and calculate indexτ ρ by the permutation p ∈ Sn induced by
s− ∈ Aut(Π) and indexτ ρϖi for i ∈ {1, · · · , n}p. We describe the information
on Dynkin diagram. We connect the nodes αi and αp(i) by arrows if p(i) ̸= i
(i = 1, · · · , n) and use black nodes • for corresponding simple roots αi if i ∈
{1, · · · , n}p and indexτ ρϖi = −1 and use white nodes ◦ otherwise. We call the
diagram Iwahori diagram of gτ . For simple Lie algebras, Iwahori diagram was
drawn as in Table 1.33.
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1.6.4 embeddability of semisimple Lie algebras into sl(n,R),
su∗(2n), so(n,C) and sp(n,C)

We consider embeddability by representation of semisimple Lie algebras into
simple Lie algebras such as sl(n,R), su∗(2n), so(n,C) and sp(n,C). Our goals
in this subsection are Proposition 1.6.17, 1.6.18, 1.6.20 and 1.6.21.

Notation 1.6.15. Let g be a Lie algabra and l and h Lie subalgebra of g.
l ⊂Int h denotes if there exist α ∈ Int(g) such that α(l) ⊂ h.

Setting 4. In this subsection, g is a semisimple Lie algebra over C. τ is an anti
holomorphic involution on g and θ is a Cartan involution on g. ρ : g → sl(V ) is
a representation over C. Put n := dimC V .

Remark 1.6.16. We have a natural bijection as follows:

{a representation ρ : g → gl(V )} → {a representation ρ : gτ → gl(V )}
ρ 7→ ρ|gτ

We sometimes identify ρ|gτ with ρ. To clearify the domain if necessaly, we say
“as a representation of gτ”.

Proposition 1.6.17. In Setting 4, the following conditions are equivalent:

(i) ρ(gτ ) ⊂Int sl(n,R),

(ii) ρ ≃ ρ as a representation of gτ and (indexτ π)
mπ = 1 for any π ∈

SCIR(gτ ).

Here mπ = [π : ρ] is the multiplicity of π and

SCIR(gτ ) = {π ∈ C(gτ ) : π ≃ π}
= {self conjugate irreducible representation of gτ}/ ∼ .

Proposition 1.6.18. In Setting 4, the following conditions are equivalent:

(i) ρ(gτ ) ⊂Int su
∗(2n

2 )

(ii) ρ ≃ ρ as a representation of gτ and (− indexτ π)
mπ = 1 for any π ∈

SCIR(gτ ),

where mπ = [π : ρ].

Remark 1.6.19. In the above Proposition 1.6.17 and 1.6.18, sl(n,R), su∗(2n
2 ) ⊂

sl(V ) are subalgebras coming from involtutions on sl(V ). They are unique up
to Int(sl(V )).

Proposition 1.6.20. In Setting 4, the following conditions are equivalent:

(i) ρ(gτ ) ⊂Int so(n,C),
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(ii) ρ ≃ ρ∨ as a representation of g and (indexθ π)
mπ = 1 for any π ∈

SCIR(gθ),

where mπ = [π : ρ].

Proposition 1.6.21. In Setting 4, the following conditions are equivalent:

(i) ρ(gτ ) ⊂Int sp(
n
2 ,C),

(ii) ρ ≃ ρ∨ as a representation of g and (− indexθ π)
mπ = 1 for any π ∈

SCIR(gθ) ,

where mπ = [π : ρ].

Proposition 1.6.22 (see [Oni, Theorem 3] for an irreducible representation
case). In Setting 4, the following conditions are equivalent:

(i) ρ(gτ ) ⊂Int su(p, q) for some p, q ∈ Z≥0 such that p+ q = n,

(ii) ρ ≃ ρ∗ as a representation of gτ .

Proof. (i) holds if and only if there exists a ρ(gτ )-invariant Hermitian form h
on V . This is equivalent to (ii), which comes from h♯ : V → V ∗, v 7→ h(v, ·)
induces intertwining operator between ρ and ρ∗.

Remark 1.6.23. In the above Proposition 1.6.20 and 1.6.21, so(n,C), sp(n2 ,C) ⊂
sl(V ) are subalgebras coming from involutions on sl(V ). They are unique up to
Int(sl(V )).

Proof of Proposition 1.6.17 and 1.6.18. This comes from Lemma 1.6.24 and 1.6.25.

Lemma 1.6.24. Let g0 a real Lie algebra and ρ : g0 → sl(V ) be a representation
of g0 over C. Put n = dimC V . ρ(g0) ⊂Int sl(n,R) (resp. su∗(2n

2 )) if and only
if there exists anti-holomorphic map J : V → V such that ρ(X)J = Jρ(X) for
all X ∈ g0 and J2 = id (resp. − id).

Proof. only if part: This comes from classification of anti-holomorphic involu-
tion on sl(V ).
if part: Define a anti-holomorphic involution J̃ on sl(V ) by f 7→ JfJ−1. Then,

we have sl(V )J̃ ≃

{
sl(n,R) (J2 = id)

su∗(2n
2 ) (J

2 = − id)
and ρ(g0) ⊂ sl(V )J̃ .

Lemma 1.6.25. In Setting 4, the following conditions are equivalent

(i) There exists an anti-holomorphic linear isomorphism J : V → V such that
Jρ(X) = ρ(X)J for all X ∈ gτ ,

(ii) ρ ≃ ρ as a representation of gτ ,
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Moreover, for ε ∈ {±1}, there exists an anti-holomorphic linear isomorphism
J : V → V such that J2 = ε idV and Jρ(X) = ρ(X)J for all X ∈ gτ if and only
if (ε indexτ π)

mπ = 1 for all π ∈ SCIR(gτ ), where mπ := [π : ρ].

Proof. Former part is clear by the definition of complex conjugate representa-
tion. So we prove “Moreover” part.
only if part: Let π ∈ SCIR(gτ ). Let Vπ be a representation space of π. Then

there exists an C-linear isomorphism φ : Vπ → Vπ such that π(X)φ = φπ(X)
for all X ∈ gτ . Take σ1 : Vπ → Vπ, v 7→ v. We can describe J |Vπ⊗Cmπ :
Vπ ⊗Cmπ → Vπ ⊗Cmπ as J |Vπ⊗Cmπ = σ−1(φ⊗A) for some A ∈ GL(mπ,C) by
Schur’s Lemma. Here σ = σ1 ⊗ σ2 and σ2 : Cmπ → Cmπ , w 7→ w. Therefore we
have

ε id |Vπ⊗Cmπ = J |2Vπ⊗Cmπ = σ−1
1 φσ−1

1 φ⊗σ−1
2 Aσ−1

2 A = a(indexτ π) idVπ ⊗σ−1
2 Aσ−1

2 A,

for some positive number a ∈ R, which implies ε idCmπ = a(indexτ π)σ
−1
2 Aσ−1

2 A.
By taking determinant of both sides, we obtain (ε indexτ π)

mπamπ | detA|2 = 1,
which implies (ε indexτ π)

mπ = 1.
if part: Assume (ε indexτ π)

mπ = 1 for all π ∈ SCIR(gτ ). In the case mπ :=
[π, ρ] ≥ 1, it is enough to show that there exists an anti-holomorphic map J
with J2 = ε idV commuting with ρ(X) for all X ∈ gτ on

(i) Vπ ⊕ Vπ for π ̸∈ SCIR(gτ ) ,

(ii) ⊕mπVπ for π ∈ SCIR(gτ ).

(i): Define an anti-holomorphic map J : Vπ⊕Vπ → Vπ⊕Vπ by J(v, w) = (εw, v).
Then the following two conditions are satisfied

• J2 = ε id,

• (π ⊕ π)(X)J = J(π ⊕ π)(X) for all X ∈ gτ .

(ii): It is enough to show the following:

Claim. Let π ∈ SCIR(gτ ). For µ ∈ {±1}, there exists an anti-holomorphic
map J : Vλ⊕Vλ → Vλ⊕Vλ such that J2 = µ id and J(π⊕π)(X) = (π⊕π)(X)J
for all X ∈ gτ .

proof of Claim. Take an anti-holomorphic map Jπ : Vπ → Vπ such that J2
π =

indexτ π id and π(X)Jπ = Jππ(X) for all X ∈ gτ .

• in the case when indexτ π = µ:
Put J := Jπ ⊕ Jπ : Vπ ⊕ Vπ → Vπ ⊕ Vπ, (v, w) 7→ (Jπv, Jπw). Then J is
the desired map.

• in the case when indexπ = −µ:
Put J : Vπ ⊕ Vπ → Vπ ⊕ Vπ, (v, w) 7→ (Jπw,−Jπv). Then J is the desired
map.
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Proof of Proposition 1.6.20 and 1.6.21. This comes from Proposition 1.6.17, 1.6.18,
Example 1.6.30 and that ρ(gτ )cu = ρ(g)u =Int ρ(g

θ).

1.6.5 associated duality for semisimple Lie algebra

Our goal of this subsection is the following:

Proposition 1.6.26. Let g be a semisimple Lie algebra over C and l and h real
semisimple Lie subalgerbras of g. Then we have lcu ⊂Int h ⇐⇒ l ⊂Int huc.

Definition 1.6.27. Fix a semisimple Lie algebra g over C. Let h be a semisim-
ple Lie subalgebra over R. hc denotes inner complexification of h in g. hu
denotes maximal compact subalgebra of h, which is well-defined up to Int(h).

Lemma 1.6.28. The operation c and u have the following properties.

(i) c2 = c (i.e. (hc)c =Int hc),

(ii) u2 = u (i.e. (hu)u =Int hu),

(iii) cuc = c (i.e. ((hc)u)c =Int hc),

(iv) ucu = u (i.e. ((hu)c)u =Int hu),

(v) For a subalgebra h ⊂ g, we have hu ⊂ h ⊂ hc.

(vi) l ⊂Int h =⇒ lC ⊂Int hC, lu ⊂Int hu.

Here “h =Int l” means there exists α ∈ Int(g) such that α(h) = l.

Proof. This can be easily checked. So we omit the proof.

Proposition 1.6.29. Let g be a semisimple Lie algebra over C and h and l real
semisimple Lie subalgebras of g. Then the following conditions are equivalent:

(i) lcu ⊂Int h,

(ii) lcu ⊂Int hu,

(iii) lc ⊂Int huc,

(iv) l ⊂Int huc.

Proof. (ii) =⇒ (i): This comes from hu ⊂ h
(i) =⇒ (ii): Take u to the both sides.
(ii) =⇒ (iii): Take c to the both sides.

(iii) =⇒ (ii): Take u to the both sides．
(iv) =⇒ (iii): Take c to the both sides.
(iii) =⇒ (iv): This comes from l ⊂ lC.
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Example 1.6.30. Put h = sl(n,R) ⊂ sl(n,C) =: g. Then for a semisimple Lie
subalgebra l ⊂ g, The following conditions are equivalent:

(i) lcu ⊂Int sl(n,R),

(ii) lcu ⊂Int so(n),

(iii) lc ⊂Int so(n,C),

(iv) l ⊂Int so(n,C).

Put h = su∗(2n) ⊂ sl(2n,C) =: g. Then for a semisimple Lie subalgebra l ⊂ g,
The following conditions are equivalent:

(i) lcu ⊂Int su
∗(2n),

(ii) lcu ⊂Int sp(n),

(iii) lc ⊂Int sp(n,C),

(iv) l ⊂Int sp(n,C).

1.6.6 embeddability for an irreducible representation

Our goal of this section is the following Propositions 1.6.31, 1.6.32, 1.6.33 and
1.6.34:

Setting 5. Let g be a complex semisimple Lie algebra, τ a real structure on g
and (ρ, V ) an irreducible representation of gτ . Put n := dimC V .

Proposition 1.6.31. In Setting 5, The following conditions are equivalent:

(i) ρ(gτ ) ⊂Int so(p, q) for some p, q ∈ Z≥0 such that p+ q = n,

(ii) ρ ≃ ρ ≃ ρ∨ and indexτ ρ = 1 = indexθ ρ.

Proposition 1.6.32. In Setting 5, The following conditions are equivalent:

(i) ρ(gτ ) ⊂Int sp(
n
2 ,R),

(ii) ρ ≃ ρ ≃ ρ∨ and indexτ ρ = 1 = − indexθ ρ.

Proposition 1.6.33. In Setting 5, The following conditions are equivalent:

(i) ρ(gτ ) ⊂Int so
∗(2n

2 ),

(ii) ρ ≃ ρ ≃ ρ∨ and − indexτ ρ = 1 = indexθ ρ.

Proposition 1.6.34. In Setting 5, The following conditions are equivalent:

(i) ρ(gτ ) ⊂Int sp(p, q) for some p, q ∈ Z≥0 such that p+ q = n
2 ,

(ii) ρ ≃ ρ ≃ ρ∨ and indexτ ρ = −1 = indexθ ρ.
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Remark 1.6.35. In Setting 5, we have the following table, which means ρ(gτ )
is contained in the simple Lie algebra by Int(g) if the conditions of left side and
up side are satisfied.

conditions ρ ≃ ρ∨, indexθ ρ = 1 ρ ≃ ρ∨, indexθ ρ = 1 ρ ̸≃ ρ∨

ρ ≃ ρ, indexτ ρ = 1 so(p, q) (p+ q = n) sp(n2 ,R) sl(n,R)
ρ ≃ ρ, indexτ ρ = −1 so∗(2n

2 ) sp(p, q) (p+ q = n
2 ) su∗(n2 )

ρ ̸≃ ρ so(n,C) sp(n2 ,C) su(p, q) (p+ q = n)
if ρ ≃ ρ∗

In the following part of this subsection, we prove Propositions 1.6.31, 1.6.32,
1.6.33 and 1.6.34. The implication (i) to (ii) is clear from Propositions 1.6.17,
1.6.18, 1.6.20 and 1.6.21. A key argument to show the implication (ii) to (i) is
the commutativity of two involutions (see Lemma 1.6.42).

Notation 1.6.36 ([Oni] §6). Let g and h be Lie algebras and τ and τ̃ Lie
algebra endomorphisms of g and h respectively. Suppose f : g → h is a Lie
algebra homomorphism. We denote by τ ↑f τ̃ if fτ = τ̃ f holds.

First we prove (ii) =⇒ (i) of Propositions 1.6.31, 1.6.32, 1.6.33 and 1.6.34
by using Lemma 1.6.42.

Proof of (ii) =⇒ (i) of Propositions 1.6.31, 1.6.32, 1.6.33 and 1.6.34. From the
assumption (ii), there exists an anti holomorphic involution τ̃ on sl(V ) and holo-
morphic involution ω̃ on sl(V ) such that τ ↑ρ τ̃ , idg ↑ρ ω̃ and

sl(V )τ̃ ≃

{
sl(n,R) if indexτ ρ = 1,

su∗(2n
2 ) if indexθ ρ = −1,

and sl(V )ω̃ ≃

{
so(n,C) if indexθ ρ = 1,

sp(n2 ,C) if indexθ ρ = −1.

It is enough to show that τ̃ ω̃ = ω̃τ̃ from Fact 1.6.37 and the classification of
simple Lie algebras. This comes from Lemma 1.6.42.

Fact 1.6.37 ([Oni, Proposition 1 in §6]). Let g and h be complex Lie algebras
and τ and τ̃ anti-holomorphic involutions on g and h respectively. Let f : g → h
be a homomorphism of complex Lie algebra. Then f(gτ ) ⊂ hτ̃ if and only if
τ ↑f τ̃ holds.

We devote the remaining part of this subsection to showing Lemmma 1.6.42.
We use the concept of “S-homomorphism” and Fact 1.6.39.

Definition 1.6.38 (see [Oni] for more details). Let f : g → h be a homomor-
phism of complex Lie algebras g and h. f is said to be a S-homomorphism if
idg ↑f φ implies φ = idh for any φ ∈ Int(h).

Fact 1.6.39 ([Oni, §6, Lemma 1]). Let g and h be complex Lie algebras. Let
f : g → h ⊂ gl(V ) be an irreducible complex representation of g. Then f is a
S-homomorphism. Conversely, if a representation f : g → sl(V ) of a semisimple
complex Lie algebra g is an S-homomorphism, then f is irreducible.
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A key lemma to prove Lemma 1.6.42 is the following:

Lemma 1.6.40. Let g be a semisimple Lie algebra over C and ρ a irreducible
representation of g. Suppose τ : g → g and τ̃ : sl(V ) → sl(V ) are holomorphic
or anti-holomorphic and τ ↑ρ τ̃ . If τ is involutive, then so is τ̃ .

Proof of Lemma 1.6.40. If τ , τ̃ are holomorphic, it is clear from idg ↑ρ τ̃2 ∈
Int(sl(V )) and Fact 1.6.39. So, we consider the case where τ and τ̃ are anti
holomorphic. Take Cartan involutions θ : g → g, θ̃ : sl(V ) → sl(V ) such that
θ ↑ρ θ̃ and τθ = θτ . It is enough to show that τ̃ θ̃τ̃ θ̃ = id and θ̃τ̃ = τ̃ θ̃. These

imply that τ̃2 = id. In fact, id = τ̃ θ̃τ̃ θ̃ = τ̃ θ̃θ̃τ̃ = τ̃2.

• Let us show τ̃ θ̃τ̃ θ̃ = id. This follows from id = τθτθ ↑ρ τ̃ θ̃τ̃ θ̃ and (τ̃ θ̃)2 ∈
Int(sl(V )).

• Let us show τ̃ θ̃τ̃−1θ̃ = id, which is equivalent to θ̃τ̃ = τ̃ θ̃.

id = τθτ−1θ ↑ρ τ̃ θ̃τ̃−1θ̃. So, it is enough to show τ̃ θ̃τ̃−1θ̃ = (τ̃ θ̃)(θ̃τ̃)−1 ∈
Int(sl(V )). This follows from Remark 1.6.41 and the structure of Aut(sl(V ))/ Int(sl(V )).

Remark 1.6.41. Let V be a complex vector space. Suppose α and β ∈
AutR(sl(V )) are anti-holomorphic. Then αβ ∈ Int(sl(V )) implies βα ∈ Int(sl(V )),

Lemma 1.6.42. Let g be a semisimple Lie algebra over C and ρ an irreducible
representation of g. Suppose τi : g → g and τ̃i : sl(V ) → sl(V ) are holomorphic
or anti-holomorphic homomorphisms such that τi ↑ τ̃i (i = 1, 2). If τ1 and τ2
are commutative involutions on g, then τ̃1 and τ̃2 are commutative involutions
on sl(V ).

Proof. From Lemma 1.6.40, we get τ̃1
2 = id, τ̃2

2 = id. By applying Lemma 1.6.40
to an involution τ1τ2 = τ2τ1, we obtain (τ̃1τ̃2)

2 = id. Since τ̃1, τ̃2 are involutive,
τ̃1τ̃2 = τ̃2τ̃1 holds.
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Table 1.33: Iwahori diagrams of simple Lie algebras

sl(n + 1,C)
(n ≥ 1)

◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

◦
α′
1

◦
α′
2

· · · ◦
α′
n−1

◦
α′
n

OO

��

OO

��

OO

��

OO

��

so(2n+ 1,C)
(n ≥ 1)

◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

◦
α′
1

◦
α′
2

· · · ◦
α′
n−1

◦
α′
n

+3

+3

OO

��

OO

��

OO

��

OO

��

sp(n,C)
(n ≥ 2)

◦
α1

◦
α2

· · · ◦
αn−1

◦
αn

◦
α′
1

◦
α′
2

· · · ◦
α′
n−1

◦
α′
n

ks

ks

OO

��

OO

��

OO

��

OO

��

so(2n,C)
(n ≥ 4)

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

◦ αn

◦
α′
1

◦
α′
2

· · · ◦
α′
n−2

◦ α′
n−1

◦ α′
n

ppppppppp

NNN
NNN

NNN

qqqqqqqqq

NNN
NNN

NNN

OO

��

OO

��

OO

��

\\

��

\\

��
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gC2

◦
α1

◦
α2

◦
α′
1

◦
α′
2

_jt

_jt

OO

��

OO

��

fC4

◦
α1

◦
α2

◦
α3

◦
α4

◦
α′
1

◦
α′
2

◦
α′
3

◦
α′
4

+3OO

��

OO

��

OO

��

OO

��+3

eC6

◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

◦
α′
1

◦
α′
2

◦
α′
3

◦
α′
4

◦
α′
5

◦
α′
6

OO

��

OO

��

bb

||

<<

""
OO

��

OO

��

eC7

◦
α1

◦
α2

◦
α3

◦
α4

◦α7

◦
α5

◦
α6

◦
α′
1

◦
α′
2

◦
α′
3

◦
α′
4

◦
α′
7

◦
α′
5

◦
α′
6

OO

��

OO

��

OO

��

bb

||

<<

""
OO

��

OO

��

eC8

◦
α1

◦
α2

◦
α3

◦
α4

◦
α5

◦α8

◦
α6

◦
α7

◦
α′
1

◦
α′
2

◦
α′
3

◦
α′
4

◦
α′
5

◦
α′
8

◦
α′
6

◦
α′
7

OO

��

OO

��

OO

��

bb

||

<<

""
OO

��

OO

��

OO

��
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compact Lie algebra

su(n + 1)
n is even

◦
α1

◦
α2

· · · ◦ ◦ · · · ◦
αn−1

◦
αn

ww ''vv ((xx &&

su(n + 1)
n ≡ 1 (mod 4)

◦
α1

◦
α2

· · · ◦ • ◦ · · · ◦
αn−1

◦
αnuu ))tt **ss ++

su(n + 1)
n ≡ 3 (mod 4)

◦
α1

◦
α2

· · · ◦ ◦ ◦ · · · ◦
αn−1

◦
αnuu ))tt **ss ++

so(2n+ 1)
n ≡ 0 or 3 (mod 4) ◦

α1

◦
α2

· · · ◦ ◦
αn−1

◦
αn

+3

so(2n+ 1)
n ≡ 0 or 3 (mod 4) ◦

α1

◦
α2

· · · ◦ ◦
αn−1

•
αn

+3

sp(n)
n is even •

α1

◦
α2

•
α3

· · · ◦ •
αn−1

◦
αn

ks

sp(n)
n is odd •

α1

◦
α2

•
α3

· · · • ◦
αn−1

•
αn

ks

◦ and • appear alternately

so(2n) (n ≥ 4)
n ≡ 0 (mod 4)

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

◦ αn

ppppppppp

NNN
NNN

NNN

so(2n)
n ≡ 2 (mod 4)

◦
α1

◦
α2

· · · ◦
αn−2

• αn−1

• αn

ppppppppp

NNN
NNN

NNN

so(2n)
n ≡ 1 or 3 (mod 4)

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

◦ αn

ppppppppp

NNN
NNN

NNN

aa

}}
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g2 ◦
α1

◦
α2

_jt

f4 ◦
α1

◦
α2

◦
α3

◦
α4

+3

e6 ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

jj 44kk 33

e7

•
α1

◦
α2

•
α3

◦
α4

•α7

◦
α5

◦
α6

e8

◦
α1

◦
α2

◦
α3

◦
α4

◦
α5

◦α8

◦
α6

◦
α7
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non-compact simple Lie algebra

sl(n + 1,R)
(n ≥ 1) ◦

α1

◦
α2

· · · ◦
αn−1

◦
αn

su∗(2n)
n is even •

α1

◦
α2

•
α3

· · · • ◦
α2n−2

•
α2n−1

◦ and • appear alternately

su(k, ℓ) (1 ≤ ℓ ≤ k)
k + ℓ is odd

◦
α1

◦
α2

· · · ◦ ◦ · · · ◦ ◦
αk+ℓ−1

ww ''vv ((xx &&

su(k, ℓ) (1 ≤ ℓ ≤ k)
k + ℓ is even,
k − ℓ ≡ 0 (mod 4) ◦

α1

◦
α2

· · · ◦ ◦ ◦ · · · ◦ ◦
αk+ℓ−1

uu ))tt **ss ++

su(k, ℓ) (1 ≤ ℓ ≤ k)
k + ℓ is even,
k − ℓ ≡ 2 (mod 4) ◦

α1

◦
α2

· · · ◦ • ◦ · · · ◦ ◦
αk+ℓ−1

uu ))tt **ss ++

so(k, ℓ) (1 ≤ ℓ ≤ k)
k − ℓ ≡ 1 or 7 (mod 8)
5 ≤ k + ℓ = 2n+ 1

◦
α1

◦
α2

· · · ◦ ◦
αn−1

◦
αn

+3

so(k, ℓ) (1 ≤ ℓ ≤ k)
k − ℓ ≡ 3 or 5 (mod 8) ◦

α1

◦
α2

· · · ◦ ◦
αn−1

•
αn

+3

sp(n,R)
◦
α1

◦
α2

◦
α3

· · · ◦ ◦
αn−1

◦
αn

ks

sp(k, ℓ) (1 ≤ ℓ ≤ k)
k + ℓ is even •

α1

◦
α2

•
α3

· · · ◦ • ◦
αk+ℓ

ks

sp(k, ℓ) (1 ≤ ℓ ≤ k)
k + ℓ is odd •

α1

◦
α2

•
α3

· · · • ◦ •
αk+ℓ

ks

◦ and • appear alternately
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so(k, ℓ) (1 ≤ ℓ ≤ k)
8 ≤ k+ ℓ = 2n is even,
k − ℓ ≡ 0 (mod 8)

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

◦ αn

ppppppppp

NNN
NNN

NNN

so(k, ℓ) (1 ≤ ℓ ≤ k)
8 ≤ k+ ℓ = 2n is even,
k − ℓ ≡ 4 (mod 8)

◦
α1

◦
α2

· · · ◦
αn−2

• αn−1

• αn

ppppppppp

NNN
NNN

NNN

so(k, ℓ) (1 ≤ ℓ ≤ k)
8 ≤ k+ ℓ = 2n is even,
k − ℓ ≡ 2 or 6 (mod 8)

◦
α1

◦
α2

· · · ◦
αn−2

◦ αn−1

◦ αn

ppppppppp

NNN
NNN

NNN

aa

}}

so∗(2(2k + 1)) (2 ≤ k), •
α1

◦
α2

•
α3

· · · •
α2k−1

◦ α2k

◦ α2k+1

ppppppppp

NNN
NNN

NNN

aa

}}

so∗(2(2k)) (2 ≤ k), •
α1

◦
α2

•
α3

· · · ◦
α2k−2

• α2k−1

◦ α2k

ppppppppp

NNN
NNN

NNN

g2(2)
◦
α1

◦
α2

_jt

f4(4) ◦
α1

◦
α2

◦
α3

◦
α4

+3

f4(−20) ◦
α1

◦
α2

◦
α3

◦
α4

+3
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e6(6)

◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

e6(2) ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

ii 55ii 55

e6(−14) ◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

ii 55ii 55

e6(−26)

◦
α1

◦
α2

◦
α3

◦α4

◦
α5

◦
α6

e7(7)

◦
α1

◦
α2

◦
α3

◦
α4

◦α7

◦
α5

◦
α6

e7(−5)

•
α1

◦
α2

•
α3

◦
α4

•α7

◦
α5

◦
α6

e7(−25)

◦
α1

◦
α2

◦
α3

◦
α4

◦α7

◦
α5

◦
α6

e8(8)

◦
α1

◦
α2

◦
α3

◦
α4

◦
α5

◦α8

◦
α6

◦
α7

e8(−24)

◦
α1

◦
α2

◦
α3

◦
α4

◦
α5

◦α8

◦
α6

◦
α7
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of Math. (2) 144 (1996), 315-347.

[Br57] M. Berger, Les espaces symétriques non compacts, Ann. Sci. École
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Chapter 2

Obstruction for the
existence of tangential
symmetric spaces

Abstract

For a homogeneous space G/H of reductive type, we consider the
tangential homogeneous space Gθ/Hθ. In this paper, we give obstruc-
tions for the existence of compact Clifford–Klein forms for such tangen-
tial symmetric spaces and obtain new tangential symmetric spaces which
do not admit compact Clifford–Klein forms. As a result, in the class of
irreducible semisimple symmetric spaces, we have only three types of sym-
metric spaces which are not proved not to admit compact Clifford–Klein
forms.

The existence problem of compact Clifford–Klein forms for homoge-
neous spaces of reductive type, which was initiated by T. Kobayashi in
1980’s, has been studied by various methods but is not completely solved
yet. On the other hand, one for tangential homogeneous spaces has been
studied since 2000’s and a criterion was already obtained by T. Yoshino.
Our obstructions for the existence of compact Clifford–Klein forms for
tangential symmetric spaces depend on the criterion and are related to
various fields of Mathematics such as associated pair of symmetric space,
Calabi-Markus phenomenon, trivializability of vector bundle (paralleliz-
ability, Pontrjagin class), Hurwitz–Radon number and Pfister’s theorem
(the existence problem of common zero points of polynomials of odd de-
gree).

2.1 Introduction and Main results

In this paper, we give some obstructions for the existence of compact Clifford–
Klein forms of tangential symmetric spaces and obtain new examples which do
not admit compact Clifford–Klein forms.
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Let G be a Lie group and H a closed subgroup of G. Geometry of Clifford–
Klein forms has been enriched by the following:

Open Problem 2.1.1 ([Ko96b, Problem 1.7(2)]). When does G/H admit com-
pact Clifford–Klein forms?

This is still open even if we restrict the problem to semisimple irreducible
symmetric spaces, although M. Berger [Br57] classified them. A systematical
study was initiated and Open Problem 2.1.1 was raised by T. Kobayashi in
1980’s. These results are summarized in the papers [Ko96b, 16, KY05].

In this paper, we consider Problem 2.1.1 for tangential symmetric spaces
Gθ/Hθ (See Definition 2.2.3) corresponding to semisimple symmetric pairs (G,
H).

Problem 2.1.2 (tangential case). Classify semisimple irreducible symmetric
spaces G/H with regard to whether or not the corresponding tangential sym-
metric spaces Gθ/Hθ admit compact Clifford–Klein forms.

For Problem 2.1.2, the following Fact 2.1.3, 2.1.4 and 2.1.8 are known as
partial solutions:

Fact 2.1.3 ([19, Theorem 3]). Let G/H be an irreducible symmetric space, and
G a complex reductive Lie group. Gθ/Hθ has a compact Clifford–Klein form if
and only if G/H is locally isomorphic to one of the following list:

• a Riemannian symmetric spaces G/K,

• Group manifolds (G×G)/(diagτ G), where we put diagτ G := {(g, τ(g)) :
g ∈ G} ⊂ G×G for each involution τ on G,

• SO(8,C)/SO(7,C),

• SO(8,C)/SO0(7, 1).

The unpublished paper [19] will be published.

Fact 2.1.4 ([KY05, Proposition 5.5.1]). The following conditions on the pair
(p, q) of positive integers are equivalent:

(i) The tangential symmetric space of SO0(p, q+1)/SO0(p, q) admits a com-
pact Clifford–Klein form.

(ii) q < ρ(p,R).

Here, ρ(p,R) is Hurwitz-Randon number (see Definition 2.7.7).

The main parts of the above two facts are non-existence results for tangential
symmetric space. On the other hand, existence results are also known. To state
it, we introduce the notion of standard Clifford–Klein form:

Definition 2.1.5 ([11, Definition 1.4]). Let G be a linear reductive Lie group.
A Clifford–Klein form Γ\G/H of G/H is standard if Γ is contained in some
reductive subgroup L of G acting properly on G/H.
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Remark 2.1.6. If there exists a standard compact Clifford–Klein form of G/H
of reductive type, then its tangential homogeneous space Gθ/Hθ admits a com-
pact Clifford–Klein form. That is, non-existence of compact Clifford–Klein
forms of Gθ/Hθ implies non-existence of standard compact Clifford–Klein forms
of homogeneous space G/H of reductive type. See Section 2.2.2 for more details.

Remark 2.1.7. Any tangential symmetric spaces associated with Riemannian
symmetric spaces G/K and group manifolds (G×G)/(diagτ G) admit standard
compact Clifford–Klein forms. Therefore, for Problem 2.1.2, we focus on the
case where G is simple and H is not compact.

Fact 2.1.8 ([KY05, Corollary 3.3.7]). Let (G, H) be a symmetric pair which is
locally isomorphic to one in Table 2.1 and suppose that G is connected. Then
the tangential symmetric space Gθ/Hθ corresponding to symmetric space G/H
in the following table admits compact Clifford–Klein forms.

Table 2.1: Symmetric pairs (G,H) which admit compact standard
Clifford–Klein forms.

G H L G H L
SO0(2, 2n) SO0(1, 2n) U(1, n) SU(2, 2n) U(1, 2n) Sp(1, n)
SO0(4, 4n) SO0(3, 4n) Sp(1, n) SU(2, 2n) Sp(1, n) U(1, 2n)
SO0(4, 4) SO0(4, 1)× SO(3) Spin(4, 3) SO(8,C) SO(7,C) Spin(1, 7)
SO(4, 3)0 SO0(4, 1)× SO(2) G2(2) SO(8,C) SO(7, 1) Spin(7,C)
SO0(8, 8) SO0(7, 8) Spin(1, 8) SO∗(8) SO∗(6)× SO∗(2) Spin(1, 6)
SO0(2, 2n) U(1, n) SO0(1, 2n) SO∗(8) U(3, 1) Spin(1, 6)

Here L is a reductive subgroup of G acting on G/H properly and cocompactly.

Remark 2.1.9. For a symmetric pair (G,H), both of implications between
the conditions “Existence of compact Clifford–Klein forms for G/H” and the
condition “Existence of compact Clifford–Klein forms for Gθ/Hθ” have not been
proved in the existence literatures.

In this paper, we give new examples which do not admit compact compact
Clifford–Klein forms in the class of irreducible semisimple tangential symmetric
spaces. To show the non-existence of compact Clifford–Klein forms of tangential
symmetric spaces, it is enough to consider symmetric spaces up to associated
pairs. This is one of the reasons why Our Problem 2.1.2 is easier to deal with
than the case when G/H is of reductive type. We see it in Proposition 2.2.10
in the following section.

We use the following five methods to give necessary conditions for the ex-
istence of compact Clifford–Klein forms of tangential symmetric spaces (Theo-
rem 2.3.1, 2.4.1, 2.5.1, 2.6.1):

(i) Calabi-Markus phenomenon,

(ii) Applications of Pfister’s theorem.

(iii) Maximality of non-compactness,
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(iv) Non-triviality of symmetric spaces as vector bundles,

(v) Applications of Adams’s theorem,

The following tangential symmetric spacesGθ/Hθ are typical examples which
are proved not to admit compact Clifford–Klein forms by each method:

(i) SL(n,C)θ/SL(n,R)θ (n ≥ 2),

(ii) SL(2n,R)θ/Sp(n,R)θ (n ≥ 2).

(iii) SO0(p1 + p2, q1 + q2)θ/(SO0(p1, q1)× SO0(p2, q2))θ (0 < p1 ≤ p2, q1, q2),

(iv) SO0(2p, 2q)θ/U(p, q)θ (2 ≤ p ≤ q),

(v) SU(p, 2)θ/U(p, 1)θ (p is odd),

Lists of non-existence results obtained by each method shall be given in the
corresponding section.

Theorem 2.1.10. Let (G, H) be a symmetric pair which is locally isomorphic
to one in Table 2.2 and suppose that G is connected. Then the tangential
symmetric space Gθ/Hθ does not admit compact Clifford–Klein forms:
Table 2.2: Symmetric pairs whose tangential symmetric spaces Gθ/Hθ do not
admit compact Clifford–Klein forms.

G H G H
SL(p+ q,C) S(GL(p,C)×GL(q,C)) Sp(p+ q,C) Sp(p,C)× Sp(q,C)
(p, q ≥ 1) SU(p, q) (p, q ≥ 1) Sp(p, q)
SL(n,C) SL(n,R) Sp(n,C) Sp(n,R)
(n ≥ 2) SO(n,C) (n ≥ 1) GL(n,C)

SL(p+ q,R) S(GL(p,R)×GL(q,R)) Sp(p+ q,R) Sp(p,R)× Sp(q,R)
(p, q ≥ 1) SO0(p, q) (p, q ≥ 1) U(p, q)
SU(p, q) SO0(p, q) Sp(p, q) U(p, q)
(p, q ≥ 1) (p, q ≥ 1)
SU(n, n) GL±(n,C) SU(n, n) Sp(n,R)
(n ≥ 1) (n ≥ 2) SO∗(2n)
SU∗(2n) S′L(n,C) SO(2n,C) GL(n,C)
(n ≥ 2) SO∗(2n) (n ≥ 2) SO∗(2n)

SU∗(2(p+ q)) S(U∗(2p)× U∗(2q)) Sp(n,R) GL(n,R)
(p, q ≥ 1) Sp(p, q) (n ≥ 1)
SO0(n, n) GL(n,R) Sp(n, n) U∗(2n)
(n ≥ 1) SO(n,C) (n ≥ 1) Sp(n,C)
SO∗(2n) SO(n,C) SO∗(4n) U∗(2n)
(n ≥ 2) (n ≥ 1)

GL±(n,C) is the subgroup of SU(n, n), which have the following realization:

SU(n, n) = {g ∈ GL(2n,C) : g∗
(

In
In

)
g =

(
In

In

)
},

GL±(n,C) = {g ∈ SU(n, n) : gIn,n = In,ng}.
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SL′(n,C) is the subgroup of SU∗(2n), which have the following realization:

SU∗(2n) = {g ∈ SL(2n,C) : gJn = Jng},
S′L(n,C) = {g ∈ SU∗(2n) : g = g}.

See Proposition 2.3.4 for the proof.

Theorem 2.1.11. Let (G,H) be a symmetric pair, where G is a connected
linear reducitive Lie group. Suppose corresponding symmetric pair (g, h) is
one of the Table 2.5’ or Table 2.5”. Then Gθ/Hθ does not admit compact
Clifford–Klein forms.

See Proposition 2.3.5 for the proof.

Theorem 2.1.12. Let (G, H) be a symmetric pair, where G is a connected
linear reductive Lie group. Suppose corresponding symmetric pair (g, h) is one
of the following table. Then Gθ/Hθ does not admit compact Clifford–Klein
forms.

Table 2.3: symmetric pairs whose corresponding tangential symmetric space
Gθ/Hθ does not admit compact Clifford–Klein forms

g h
eC6 fC4

e6(−26)

e6(2) so∗(10)⊕ u(1)
e6(6) su∗(6)⊕ su(2)

f4(4)
e7(−5) e6(−14) ⊕ so(2)
e7(7) su(2)⊕ so∗(12)

e6(2) ⊕ so(2)
e8(8) e7(−5) ⊕ su(2)

See Section 2.6 for the proof.
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Theorem 2.1.13. Let (G, H) be a symmetric pair which is locally isomorphic
to one in Table 2.4 and suppose that G is connected. Then the tangential
symmetric space Gθ/Hθ does not admit compact Clifford–Klein froms.

Table 2.4: symmetric pairs (G,H) whose tangential symmetric spaces Gθ/Hθ

do not admit compact Clifford–Klein forms.
G H condition

SO∗(2(p+ q)) SO∗(2p)× SO∗(2q) p ≥ 2 or (q ̸= 1 and q ̸= 3)
U(p, q) (1 ≤ p ≤ q)

SO(p+ q,C) SO(p,C)× SO(q,C) (p, q) ̸= (1, 1), (1, 3), (1, 7)
SO0(p, q) (1 ≤ p ≤ q)

SO0(p, q) SO0(p1, q1)× SO0(p2, q2) p1 ≥ 1 or (q1 ≥ 2 and q2 ≥ 2)
(0 ≤ p1 ≤ p2, q1, q2 ≥ 1)

SU(p, q) S(U(p1, q1)× U(p2, q2)) p1 ≥ 1 or q1 ≥ 2 or q2 ≥ 2 or p2 is odd.
(0 ≤ p1 ≤ p2, q1, q2 ≥ 1)

Sp(p, q) Sp(p1, q1)× Sp(p1, p2) 0 ≤ p1 ≤ p2, q1, q2 ≥ 1
(0 ≤ p1 ≤ p2, q1, q2 ≥ 1)

SL(2n,C) Sp(n,C) (n ≥ 2) n ≥ 2
SU∗(2n)

SL(2n,R) Sp(n,R) (n ≥ 2) n ≥ 2
S′L(n,C)

SO0(2p, 2q) U(p, q) (1 ≤ p ≤ q) p ≥ 2

Here, S′L(n,C) is a subgroup of SL(2n,R) realized as follows:

S′L(n,C) := {g ∈ SL(2n,R) : gJn = Jng}, Jn :=

(
−In

In

)
.

Proof. Theorem 2.1.13 follows from Proposition 2.3.3, 2.4.3, 2.5.4, 2.6.5 and
2.7.1.

Remark 2.1.14. From the above theorems, we reached the complete classi-
fication of tangential symmetric spaces associated with irreducible semisimple
symmetric spaces which admit compact Clifford–Klein forms except for three
types. In the class of irreducible semisimple symmetric spaces, for the following
semisimple symmetric pairs (G,H), corresponding tangential symmetric spaces
Gθ/Hθ was not proved not to admit compact Clifford–Klein forms.

• (Sp(2n,R), Sp(n,C)) (n ≥ 2),

• (SU(2p, 2q), Sp(p, q)) (2 ≤ p, q),

• (E6(−14), F4(−20)).

Remark 2.1.15. Sp(2,R)θ/Sp(1,C)θ does not admit compact Clifford–Klein
forms. This comes from that symmetric pairs (sp(2,R), sp(1,C)) and (so(3, 2), so(3, 1))
are isomorphic to each other and that SO0(3, 2)θ/SO0(3, 1)θ do not admit com-
pact Clifford–Klein forms (see Fact 2.1.4).
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2.2 Preliminary

In this chapter, we consider tangential symmetric spaces Gθ/Hθ associated with
irreducible semisimple symmetric space G/H. We prepare the precise setting
and notions in Subsection 2.2.1. In the next subsection, we review a criterion
for the existence of compact Clifford–Klein forms for tangential homogeneous
spaces given by [KY05]. In Subsection 2.2.3, we see that it is enough to consider
symmetric spaces up to associated pair for our problem.

2.2.1 Setting and Notation

Throughout this paper, unless otherwise noted, we assume that G is a linear
reductive and connected semisimple Lie group and thatH is an open subgroup of
Gσ := {g ∈ G : σg = g}, where σ is the involution determining symmetric pair.
Then, the symmetric space G/H is of reductive type ([Ko96b, Example 2.6.3]).

Remark 2.2.1. The existence problem of compact Clifford–Klein forms for
tangential homogeneous spaces associated with homogeneous spaces of reductive
type depends only on the set of orbits Ad(K)pH of the adjoint action of the
maximal compact subgroup K of G on p (see Fact 2.2.5). So, we can assume
that H is the identity component of Gσ for our purpose.

Now, we recall the definition of a tangential homogeneous space Gθ/Hθ for
a homogeneous space G/H of reductive type.

Definition 2.2.2 (Cartan motion group, See [KY05, Subsection 5.1]). Let θ be
a Cartan involution of G. The Cartan motion group Gθ of G is defined by

Gθ := K ⋉Ad p.

Here K = Gθ is a maximal compact Lie subgroup of G and p = g−θ.

Let G/H be a homogeneous space of reductive type, then we can take a
Cartan involution θ of G such that θ|H is also a Cartan involution of H. Then
we get a closed subgroup Hθ := KH ⋉ pH of Gθ where KH = K ∩ H and
pH = p ∩ h.

Definition 2.2.3 ([KY05, Definition 5.1.2]). We call (G/H)θ := Gθ/Hθ the
tangential homogeneous space of G/H.

Remark 2.2.4. If (G, H) is a symmetric pair, then so is (Gθ, Hθ).

2.2.2 Tangential analogue of Kobayashi’s criterion

By the following fact, the existence problem of compact Clifford–Klein form
for a tangential homogeneous space Gθ/Hθ reduces to how large subspace of p
satisfying condition Fact 2.2.5 (ii) we can take.
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Fact 2.2.5 ([KY05, Theorem 5.3.2]). Let Gθ/Hθ be a tangential homogeneous
space of a homogeneous space G/H of reductive type. Then, the following two
conditions are equivalent:

(i) The homogeneous space Gθ/Hθ admits compact Clifford–Klein forms.

(ii) There exists a subspace W in p satisfying the following two conditions (a)
and (b).

(a) a(W ) ∩ a(H) = {0},
(b) dimW + d(H) = d(G).

Here, a is a fixed maximally abelian subspace of p and d(G) = dim p,
d(H) = dim pH are non-compact dimension of G, H respectively ([Ko89]).
For a subset L in the Cartan motion group G = K ⋉ p, we put a(L) :=
KLK ∩ a.

Remark 2.2.6. In Fact 2.2.5, the condition (ii)(a) is equivalent to the following
condition (ii)(a’):

(ii)(a’) W ∩Ad(K)pH = {0}.

Proof of Remark 2.2.6. We have a(H) = a∩Ad(K)pH and a(W ) = a∩Ad(K)W .
Therefore, we have

a(W ) ∩ a(H) = a ∩Ad(K)W ∩Ad(K)pH

= a ∩Ad(K)(W ∩Ad(K)pH)

= a(W ∩Ad(K)pH).

Thus, Remark 2.2.6 follows from the observation that for a subset X of p con-
taining 0, X = {0} holds if and only if a(X) = {0} holds.

Let us see Remark 2.1.6 in detail. The implication in Remark 2.1.6 comes
from the following Fact 2.2.7, 2.2.8 by taking pL as W in Fact 2.2.5.

Fact 2.2.7 ([Ko89, Theorem 4.1]). Let H, L be reductive subgroups of a real
reductive linear group G. Then the following conditions on H, L are equivalent:

(i) The L-action on G/H is proper,

(ii) Ad(K)pH ∩ pL = {0}.

Fact 2.2.8 ([Ko89, Theorem 4.7]). Let H, L be reductive subgroups of a real
reductive linear group G. Under the conditions in Fact 2.2.7, the following
conditions are equivalent:

(i) The double coset space L\G/H is compact,

(ii) d(G) = d(H) + d(L).
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2.2.3 Associated pair

In this subsection, we show that the existence problem of compact Clifford–Klein
forms for the tangential symmetric space corresponding to a symmetric pair (G,
H) is equivalent to that for the tangential symmetric pair corresponding to (G,
Ha), where (G, Ha) is the associated pair of (G, H) defined as follows:

Let σ be an involution of G which define the symmetric pair (G, H). We
take a Cartan involution θ of G satisfying θ ◦ σ = σ ◦ θ. Then θ|H is also a
Cartan involution of H and θ ◦ σ is also an involution of G.

Definition 2.2.9 ([20]). We call the symmetric pair (G,Ha) defined by θ ◦ σ
the associated pair of (G,H).

By the definition of θ and σ, one can easily see that the associated pair of
(G, Ha) is (G, H).

Proposition 2.2.10 ([19, Theorem 20]). Let (G,H) be a semisimple symmetric
pair and (G,Ha) the associated pair of (G,H). Then Gθ/Hθ admits compact
Clifford–Klein forms if and only if Gθ/H

a
θ admits compact Clifford–Klein forms.

Proof of Proposition 2.2.10. It is enough to show “only if” part. Let B be the
restriction on p of the Killing form on g. Take a subspace V in p such that
dimV = d(G) − d(H) = d(Ha) and Ad(K)pH ∩ V = {0}. By taking the
orthogonal complement of V , we obtain the subspace V ⊥ in p satisfying the two
conditions, dimV ⊥ = d(G) − d(Ha) and Ad(K)pHa ∩ V ⊥ = {0}, which follow
from the fact that the representation Ad is unitary and orthogonal complement
of pH is pHa with regard to B.

Remark 2.2.11. Proposition 2.2.10 holds for a symmetric pair of reductive
type without semisimplicity. We can prove it in the same way by taking a
Ad(G)-invariant and dσ-invariant inner product on p.

2.3 Calabi-Markus phenomenon

In this section, we see that a necessary condition of the existence of compact
Clifford–Klein forms of homogeneous spaces G/H of reductive type is also one
of tangential homogeneous spaces Gθ/Hθ.

Theorem 2.3.1. If a homogeneous space G/H of reductive type satisfies that
rankR G = rankR H and G/H is non-compact, then its tangential homogeneous
space Gθ/Hθ does not admit compact Clifford–Klein forms.

Proof. This comes from Fact 2.2.5 and the fact that the condition rankR G =
rankR H implies Ad(K)pH = p.

Remark 2.3.2. The condition rankR G = rankR H is a criterion of the Calabi-
Markus phenomenon [Ko89, Corollary (4.4)] for a homogeneous space G/H
of reductive type. By a similar argument to the reductive case, we can see
that only a finite subgroup of Gθ can acts properly on Gθ/Hθ if the condition
rankR G = rankR H is satisfied.

120



Proposition 2.3.3. Let (G, H) and (G, Ha) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Gθ/Hθ nor Gθ/H

a
θ admit compact Clifford–Klein forms.

• (G,H,Ha) = (SO∗(2(p+ q)), SO∗(2p)× SO∗(2q), U(p, q))

• (G,H,Ha) = (SO(p+ q,C), SO(p,C)× SO(q,C), SO0(p, q))

Here, p and q are positive integers and p or q is even.

Proof. This follows form the Fact 2.3.1 and rankR G−rankR H = ⌊p+q
2 ⌋−(⌊p

2⌋+
⌊ q
2⌋).
For a semisimple irreducible symmetric pair (G,H), we consider the following

two conditions A and B.

A : rankR G = rankR H,

B : the associated pair satisfies the condition A.

Proposition 2.3.4. Let (G,H) be a symmetric pair which is locally isomorphic
to one in Table 2.5 and suppose that G is connected. Then Gθ/Hθ does not
admit compact Clifford–Klein forms.
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Table 2.5: Symmetric pairs (G,H) satisfying A or B.
G H rankR G rankR H A or B

SL(p+ q,C) S(GL(p,C)×GL(q,C)) p+ q − 1 p+ q − 1 A
p, q ≥ 1 SU(p, q) min(p, q) B
SL(n,C) SL(n,R) n− 1 n− 1 A
n ≥ 2 SO(n,C) ⌊n

2 ⌋ B
SL(p+ q,R) S(GL(p,R)×GL(q,R)) p+ q − 1 p+ q − 1 A

p, q ≥ 1 SO0(p, q) min(p, q) B
SO(2n,C) GL(n,C) n n A

n ≥ 2 SO∗(2n) ⌊n
2 ⌋ B

SO0(n, n) GL(n,R) n n A
n ≥ 1 SO(n,C) ⌊n

2 ⌋ B
SU(n, n) n ≥ 1 GL±(n,C) n n A

SU(n, n) Sp(n,R) n n A
n ≥ 1 SO∗(2n) ⌊n

2 ⌋ B
SU(p, q) p, q ≥ 1 SO0(p, q) min(p, q) min(p, q) A

Sp(n, n) U∗(2n) n n A
n ≥ 1 Sp(n,C) n A

Sp(p, q) p, q ≥ 1 U(p, q) min(p, q) min(p, q) A
Sp(p+ q,C) Sp(p,C)× Sp(q,C) n n A

p, q ≥ 1 Sp(p, q) min(p, q) B
Sp(n,C) Sp(n,R) n n A
n ≥ 1 GL(n,C) n A

Sp(n,R) n ≥ 1 GL(n,R) n n A
Sp(p+ q,R) p, q ≥ 1 Sp(p,R)× Sp(q,R) n n A

U(p, q) min(p, q) B
SU∗(2n) S′L(n,C) n− 1 n− 1 A
n ≥ 2 SO∗(2n) ⌊n

2 ⌋ B
SU∗(2(p+ q)) S(U∗(2p)× U∗(2q)) n− 1 n− 1 A

p, q ≥ 1 Sp(p, q) min(p, q) B
SO∗(2n) SO(n,C) ⌊n

2 ⌋ ⌊n
2 ⌋ A

SO∗(4n) n ≥ 1 U∗(2n) n n A
Here Ha coming from the associated pair of (G,H) is written in the same cell

with H.
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Proposition 2.3.5. Let (G,H) be a symmetric pair withG connected. Suppose
corresponding symmetric pair (g, h) is one of the following table. Then Gθ/Hθ

does not admit compact Clifford–Klein froms.

Table 2.5’: symmetric pairs (g, h) which satisfy rankR G− rankR H = 0 or
rankR G− rankR Ha = 0.

g h rankR G rankR H A or B
gC2 g2(2) 2 2 A

sp(1,C)⊕ sp(1,C) 2 2 A
g2(2) sp(1,R)⊕ sp(1,R) 2 2 A
fC4 f4(−20) 4 1 B

so(9,C) 4 4 A
fC4 sp(1,C)⊕ sp(3,C) 4 4 A

f4(4) 4 4 A
f4(4) sp(2, 1)⊕ su(2) 4 1 B

so(4, 5) 4 4 A
f4(4) sp(1,R)⊕ sp(3,R) 4 4 A

f4(−20) sp(1)⊕ sp(1, 2) 1 1 A
f4(−20) sp(1, 8) 1 1 A
eC6 e6(2) 6 4 B

sp(1,C)⊕ sl(6,C) 6 6 A
e6(−14) 6 2 B

so(2,C)⊕ so(10,C) 6 6 A
sp(4,C) 6 4 B
e6(6) 6 6 A

e6(6) sp(2, 2) 6 2 B
R⊕ so(5, 5) 6 6 A

sp(1,R)⊕ sl(6,R) 6 6 A
sp(4,R) 6 4 B

e6(2) su(4, 2)⊕ su(2) 4 2 B
u(1)⊕ so(6, 4) 4 4 A

sp(3, 1) 4 1 B
f4(4) 4 4 A

sp(1,R)⊕ su(3, 3) 4 4 A
sp(4,R) 4 4 A

e6(−14) sp(1)⊕ su(2, 4) 2 2 A
sp(1,R)⊕ su(5, 1) 2 2 A
u(1)⊕ so∗(10) 2 2 A
u(1)⊕ so(8, 2) 2 2 A

sp(2, 2) 2 2 A
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Table 2.5”: symmetric pairs (g, h) which satisfy rankR G− rankR H = 0 or
rankR G− rankR Ha = 0.

g h, ha rankR G rankR H A or B
e6(−26) sp(1)⊕ su∗(6)) 2 2 A

sp(1, 3) 2 1 B
R⊕ so(1, 9) 2 2 A

f4(−20) 2 1 B
eC7 e7(−5) 7 4 B

sl(2,C)⊕ so(12,C) 7 7 A
e7(−25) 7 3 B
C⊕ eC6 7 7 A
sl(8,C) 7 7 A
e7(7) 7 7 A

e7(7) e6(2) ⊕ so(2) 7 4 3
su(2)⊕ so ∗ (12) 7 3 4

su(4, 4) 7 4 B
sl(2,R)⊕ so(6, 6) 7 6 A

su∗(8) 7 3 B
R⊕ e6(6) 7 7 A
sl(8,R) 7 7 A

e7(−5) su(6, 2) 4 2 B
u(1)⊕ e6(2) 4 4 A
su(4, 4) 4 4 A

su(2)⊕ so(8.4) 4 4 A
sl(2,R)⊕ so∗(12) 4 4 A

e7(−25) e6(−14) ⊕ so(2) 3 2 B
sl(2,R)⊕ so(2, 10) 3 3 A

su(6, 2) 3 2 B
su(2)⊕ so∗(12) 3 3 A
R⊕ e6(−26) 3 3 A

su∗(8) 3 3 A
eC8 e8(24) 8 4 B

sl(2,C)⊕ eC7 8 8 A
so(16,C) 8 8 A

e8(8) 8 8 A
e8(8) sl(2,R)⊕ e7(7) 8 8 A

so∗(16) 8 4 B
so(8, 8) 8 8 A

e8(−24) sl(2,R)⊕ e7(−25) 4 4 A
su(2)⊕ e7(−5) 4 4 A

so(4, 12) 4 4 A
so∗(16) 4 4 A
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Table 2.6: classical irreducible symmetric pairs we consider in the following
sections.

G H methods
SO∗(2(2p+ 2q + 2)) SO∗(2(2p+ 1))× SO∗(2(2q + 1)) (iii) Maximality,
p, q ≥ 0, (p, q) ̸= (0, 0) U(2p+ 1, 2q + 1) (v) Applications of Adams’s theorem
SO(2p+ 2q + 2,C) SO(2p+ 1,C)× SO(2q + 1,C)) (v) Applications of Adams’s theorem

p, q ≥ 0, (p, q) ̸= (0, 0) SO0(2p+ 1, 2q + 1)
SO0(p1 + p2, q1 + q2) SO0(p1, q1)× SO0(p2, q2) (iii) Maximality, (iv) Non-triviality,
0 ≤ p1 ≤ p2, q1, q2 ≥ 1 (v) Applications of Adams’s theorem
SU(p1 + p2, q1 + q2) S(U(p1, q1)× U(p2, q2)) (iii) Maximality, (iv) Non-triviality,
0 ≤ p1 ≤ p2, q1, q2 ≥ 1 (v) Applications of Adams’s theorem
Sp(p1 + p2, q1 + q2) Sp(p1, q1)× Sp(p2, q2) (iii) Maximality, (iv) Non-triviality

0 ≤ p1 ≤ p2, q1, q2 ≥ 1
SL(2n,C) Sp(n,C) (ii) Pfister’s Theorem
n ≥ 2 SU∗(2n)

SL(2n,R) Sp(n,R) (ii) Pfister’s Theorem
n ≥ 2 S′L(n,C)

SO0(2p, 2q) 1 ≤ p ≤ q U(p, q) (iv) Non-triviality

2.4 Applications of Pfister’s theorem

In this section, we give a necessary condition for the existence of compact
Clifford–Klein forms for tangential symmetric spaces (Theorem 2.4.1) and apply
it to two types of symmetric pairs (Proposition 2.4.3). We use Pfister’s theorem
(see Fact 2.4.2) to prove Theorem 2.4.1.

Theorem 2.4.1. Let G/H be a semisimple symmetric space and g ⊂ sl(2n,K)
a subalgebra, where K = R or C. If the following two conditions are satisfied,
then Gθ/Hθ does not admit compact Clifford–Klein forms.

(i) d(G)− d(H) ≥ n,

(ii) For X ∈ p ⊂ M(2n,K), if the characteristic polynomial of X over K is
even, then X is in Ad(K)pH .

Fact 2.4.2 ([21]. See also [8, Example 13.1(c)]). Let V be a real vector space
with dimension n + 1. Suppose fi : V → R (i = 1, · · · , n) are homogeneous
polynomial functions on V of odd degree. Then {fi}ni=1 has common zero points
in V \ {0}.
Proof of Theorem 2.4.1. From Fact 2.2.5, it is enough to prove that for any
R-subspace V with dimension n of p, Ad(K)pH ∩ V ̸= {0} holds. By the
assumption, it is enough to show that there exists a non-zero element X ∈ V
such that fX(x) is even, where fX denotes the characteristic polynomial of
X ∈ V ⊂ M2n(K). Let V be a subspace of p such that dimR V = n. We define
maps τi : V → R (i = 0, 1, · · · , 2n) by

fX(x) = det(xI −X) =

2n∑
i=0

τi(X)xi for X ∈ V.
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Then τ2n = 1, τ2n−1(X) = trace(X) = 0 for all X ∈ V by definition. Since
τ2i−1 (i = 1, 2, · · · , n− 1) are homogeneous polynomials on V of odd degree, by
using the Fact 2.4.2, we can take a non-zero element X ∈ V such that fX(x) is
even.

Proposition 2.4.3. Let (G, H) and (G, Ha) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Gθ/Hθ nor Gθ/H

a
θ admit compact Clifford–Klein forms.

• (G,H,Ha) = (SL(2n,R), Sp(n,R), S′L(n,C)) (n ≥ 2),

• (G,H,Ha) = (SL(2n,C), Sp(n,C), SU∗(2n)) (n ≥ 2).

Proof. Let (G,H) be a symmetric pair (SL(2n,K), Sp(n,K)) where K = R or
C. This comes from Theorem 2.4.1, Lemma 2.4.4 and n ≤ d(G) − d(H) ={
n2 − 1 (K = R),
2n2 − n− 1 (K = C)

for n ≥ 2.

We consider the case when (G, H)=(SL(2n,K), Sp(n,K)) K = R or C. We
realize a symmetric pair (SL(2n,K), Sp(n,K)) as follows.

SL(2n,K) = {g ∈ GL(2n,K) : det g = 1},
Sp(n,K) = {g ∈ SL(2n,K) : tgJng = Jn},

where Jn =

(
0 −In
In 0

)
. Then, by taking a Cartan involution θ : g 7→ tg−1, we

have

K =

{
SO(2n) (K = R),
SU(2n) (K = C),

p = Herm0(2n,K) = {X ∈ M(2n,K) : tX = X, traceX = 0},

pH =

{(
A B
B −A

)
: A ∈ Herm0(n,K), B ∈ Sym(n,K)

}
.

We take a maximal split abelian subspace aH of pH as follows.

aH = {diag(a1, · · · , an,−a1, · · · ,−an) : ai ∈ R (i = 1, · · · , n)}.

Lemma 2.4.4. For X ∈ p = Sym0(2n,R), the following conditions are equiva-
lent:

(i) X ∈ Ad(K)pH ,

(ii) the characteristic polynomial fX(x) = det(xI −X) is even.

Proof. The implication (i) =⇒ (ii) comes from the property that Ad(K)-action
on p preserve the eigenvalues. Next, we prove (ii) =⇒ (i). Suppose that X ∈ p
and that the characteristic polynomial fX(x) is even. It means that there exists
k ∈ K such that Ad(k)X = diag(a1, · · · , an,−a1, · · · ,−an) ∈ aH ⊂ pH .
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2.5 Maximality of non-compactness

In this section, we give a necessary condition for the existence of compact
Clifford–Klein forms for tangential symmetric spaces (Theorem 2.5.1) and apply
it to five types of symmetric pairs (Proposition 2.5.4).

Theorem 2.5.1. If a symmetric space G/H of reductive type satisfies the
assumption of the following Fact 2.5.2, then the corresponding tangential sym-
metric space Gθ/Hθ does not admit compact Clifford–Klein forms.

Proof. This comes from the fact that a(G′) ⊂ WG · a(H) is equivalent to the
condition pG′ ⊂ Ad(K)pH .

Fact 2.5.2 ([14, Theorem 1.5]). Let G/H be a homogeneous space of reductive
type. If there exist a closed subgroup G′ reductive in G satisfying the following
two conditions, then G/H does not admit compact Clifford–Klein forms.

(i) a(G′) ⊂ WG · a(H),

(ii) d(G′) > d(H).

Here, WG := NG(a)/ZG(a) is the Weyl group.

Remark 2.5.3. Since the assumptions are same in Theorem 2.5.1 and Fact 2.5.2,
Non-existence results of compact Clifford–Klein forms for symmetric spaces
G/H of reductive type obtained by Fact 2.5.2 imply one for corresponding tan-
gential symmetric spaces Gθ/Hθ.

Proposition 2.5.4. Let (G, H) be a symmetric pair which is locally isomorphic
to one of the following list and suppose that G is connected. Then the tangential
symmetric space Gθ/Hθ does not admit compact Clifford–Klein forms.

• (G,H) = (SO∗(2(p+ q)), SO∗(2p)× SO∗(2q)) (2 ≤ p, q),

• (G,H) = (SO∗(2(p+ q)), U(p, q)) (2 ≤ p, q)

• (G,H) = (SO0(p, q), SO0(p1, q1)× SO(p2, q2)) (0 < p1, p2, q1, q2),

• (G,H) = (SU(p, q), S(U(p1, q1)× U(p2, q2))) (0 < p1, p2, q1, q2),

• (G,H) = (Sp(p, q), Sp(p1, q1)× Sp(p2, q2)) (0 < p1, p2, q1, q2).

Proof. This comes from Theorem 2.5.1. See [14, Example 1.7], [KY05, Re-
mark 3.5.8, Corollary 3.5.9].

Theorem 2.5.1 can be generalized as follows:

Fact 2.5.5 ([KY05, Corollary to Kobayashi-Yoshino, Theorem 5.3.2]). If there
exists a linear subspaceW of p such thatW ⊂ Ad(K)pH and dimR W > dim pH ,
then Gθ/Hθ does not admit compact Clifford–Klein forms.
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2.6 Non-triviality of symmetric spaces as vector
bundles

2.6.1 general method

In this subsection, we show the following necessary condition for the existence of
compact Clifford–Klein forms of tangential homogeneous spaces (Theorem 2.6.1)
and list up examples which are proved not to admit compact Clifford Klein forms
by using the obstruction (Proposition 2.6.5 and Theorem 2.1.12).

Theorem 2.6.1. Let G/H be a semisimple symmetric space as in Section 2.2.1.
If the associated vector bundle K ×(KH ,Adp/pH

) (p/pH) → K/KH is not trivial

bundle, then Gθ/Hθ does not admit compact Clifford–Klein forms.

Proof. This follows from the Fact 2.2.5, Remark 2.2.6 and Lemma 2.6.3 by
taking (σ, V ) = (Ad, p) and W1 = pH .

Remark 2.6.2 ([Ko89, Lemma 2.7]). Let G/H be a homogeneous space of
reductive type. Then, there is a diffeomorphism G/H ≃ K ×KH p/pH as a
manifold. Here, this is the associated bundle with regard to the representation
Adp/pH

: KH → GL(p/pH) which is induced by the adjoint representation
Ad : KH → GL(p) such that Ad(KH)pH ⊂ pH .

The following Lemma 2.6.3 is used to show Theorem 2.6.1.

Lemma 2.6.3. Let K be a Lie group, KH a closed Lie subgroup of K and
(σ, V ) be a finite dimensional representation of K. Let W1 be a σ(KH)-invariant
subspace of V and W2 a subspace of V satisfying that σ(K)W1 ∩ W2 = {0}.
Then there exists a injective bundle map K/KH × W2 ↪→ K ×KH V/W1 over
K/KH .

Remark 2.6.4. In the above Lemma 2.6.3, the coefficient field of vector spaces
V,W can be considered as both R and C. Moreover, we can replace the assump-
tion that K is Lie group and KH is a closed subgroup of K by an assumption
that K is a topological group and KH is a closed subgroup of K.

Proof of Lemma 2.6.3. We define a map τ by

τ : K ×W2 → K × V/W1, (k,w2) 7→ (k, σ(k−1)w2 +W1).

Then τ is a injective KH -equivariant bundle map over K. Here, right KH -
actions are as follows:

(K ×W2)×KH → K ×W2, ((k,w2), kH) 7→ (kkH , w2),

(K × V/W1)×KH → K × V/W1, ((k, v +W1), kH) 7→ (kkH , σ(k−1
H )v +W1).

Therefore, we get the induced bundle map τ̃ : K/KH × W2 → K ×KH
V/W1

over K/KH , which is the desired injective bundle map.
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In this section, we show the tangential symmetric spaces associated with the
following symmetric pair do not admit compact Clifford–Klein forms.

Proposition 2.6.5. Let p, q1, q2 be positive integers and (G, H) a symmetric
pair which is locally isomorphic to one of the following list and suppose that G
is connected. Then Gθ/Hθ does not admit compact Clifford–Klein forms.

• (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2)) (q1 ≥ 2 and q2 ≥ 2),

• (G,H) = (SU(p, q1 + q2), S(U(q1)× U(p, q2))) (q1 ≥ 2 or q2 ≥ 2),

• (G,H) = (Sp(p, q1 + q2), Sp(q1)× Sp(p, q2)) (p ≥ 1, q1, q2 ≥ 1),

• (G,H) = (SO0(2p, 2q), U(p, q)) (2 ≤ p, q).

Proof. This comes from Theorem 2.6.1, Fact 2.6.9 and Proposition 2.6.11, 2.6.12.

Proposition 2.6.6. Let (G, H, Ha)=(EC
6 , F

C
4 , E6(−26)). Then neither Gθ/Hθ

nor Gθ/H
a
θ admit compact compact Clifford–Klein forms.

Proof. For G/H = EC
6 /F

C
4 , K ×KH

p/pH is equivalent to the tangent bundle
over E6/F4 as a vector bundle. From the following Facts 2.6.7, K ×KH p/pH is
not trivial. Therefore, from Theorem 2.6.1 and 2.2.10, We obtain the desired
conclusion.

Fact 2.6.7 ([24, Theorem 2]). E6/F4 is not stably parallelizable.

Remark 2.6.8. If a tangent bundle over K/KH is trivial, then K/KH is stably
parallelizable.

To show the non-triviality of real vector bundle, we use Pontrjagin class.
The naturality of characteristic classes implies the following:

Fact 2.6.9 (See [7] for example). Let E → M be a real vector bundle. If the
i-th Pontrjagin class pi(E → M) ∈ H4i

DR(M,R) does not vanish for some i ≥ 1,
then the bundle E → M is not trivial.

By using the following fact, we can easily calculate the Pontrjagin class of
associated bundles. This statement is not new, but for the sake of completeness,
we give a proof in Section 2.8.

Fact 2.6.10 (See [7] for example.). Let G be a connected compact Lie group,
ϖ : P → M a principal G-bundle, ρ : G → SO(V ) a representation of G and
E := P ×G V the associated bundle. Then for any f ∈ Sk(so(V )∗)SO(V ), the
following equality holds.

[f(R)] = ω ◦ dρ∗(f) ∈ H2k
DR(M,R),

where R is a curvature on E and ω : S(g∗)G → H∗
DR(M,R) is the Chern-Weil

map.
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By calculations of the Pontrjagin classes in the following subsections, we
obtain the following Proposition 2.6.11, 2.6.12:

Proposition 2.6.11. Let p, q1, q2 be positive integers.

(a) Let (G, H)=(SO0(p, q1 + q2), SO(q1)× SO0(p, q2)). If q1 ≥ 2 and q2 ≥ 2,
then the first Pontrjagin class of the vector bundle K×KH p/pH → K/KH

does not vanish.

(b) Let (G, H)=(SU(p, q1 + q2), S(U(q1) × U(p, q2))). If q1 ≥ 2 or q2 ≥ 2,
then the first Pontrjagin class of the vector bundle K×KH

p/pH → K/KH

does not vanish.

(c) Let (G,H) = (Sp(p, q1+q2), Sp(q1)×Sp(p, q2)). The first Pontrjagin class
of the vector bundle K ×KH p/pH → K/KH does not vanish.

Proposition 2.6.12. Let (G,H) = (SO0(2p, 2q), U(p, q)) (1 ≤ p ≤ q). If p ≥ 2,
then the first Pontrjagin class of the vector bundle K×KH p/pH → K/KH does
not vanish.

2.6.2 Calculation of first Pontrjagin class for Grassmani-
ann manifolds

In this subsection, we show Proposition 2.6.11 by calculating the first Pontrjagin
class of corresponding vector bundles K ×KH

(p/pH). Here, we use Fact 2.6.10.
More precisely,

(i) Let p̃1 ∈ S2(so(p/pH)∗)SO(p/pH) be all the sum of principal minors of
degree two.

(ii) To determine whether [p̃1(R)] = ω ◦ ad∗(p̃1) ∈ H4(K/KH ,R) vanishes or
not, we check whether ad∗(p̃1) ∈ kerω holds or not.

More precisely, we calculate the first Pontrjagin class as follows. Here we
identify S(k∗)K and S(k∗H)KH with S(t)W and S(tH)WH respectively by the
restriction, where t and tH are maximal tori of k and kH respectively.

step(0) We realize the above symmetric pairs (G, H) and (K, KH) as matrix
groups.

step(1) We rewrite K ×KH
p/pH to an easier form to calculate Pontrjagin class.

step(2) Fix a coordinates of t = Lie(T ) and tH = Lie(TH), where T and TH are
maximal tori of K and KH respectively.

step(3) We write S(t∗)W and S(t∗H)WH with regard to the above coordinates.

step(4) We write kerω by using Fact 2.6.20.

step(5) We write ad∗(p̃1) ∈ S(t∗H)WH with regard to the above coordinates.
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step(6) We check whether ad∗(p̃1) ∈ kerω holds or not.

■ step(0): Realization of (G, H) and (K, KH) as matrix groups.
We realize G = SO0(p, q) or SU(p, q) (q = q1 + q2) as the identity component
of the following matrix group.

{g ∈ GL(p+ q,K) : g∗Ip,qg = Ip,q, det g = 1}.

Here K = R or C. We realize G = Sp(p, q) by the following matrix group.

{g ∈ GL(p+ q,H) : g∗Ip,qg = Ip,q}.

We define a involution σ of G by

σ : G → G, g 7→ Ip,q1,q2gIp,q1,q2 ,

where Ip,q1,q2 =

Ip
−Iq1

Iq2

. We define subgroup H of G as the identity

component of Gσ. Then, we can identify p/pH with the following Ad(KH)-
invariant subspace of M(p+ q,K).

 0 B 0
B∗ 0 0
0 0 0

 ∈ M(p+ q,K) : B ∈ M(p, q1;K)

 .

By taking a Cartan involution θ: g 7→ (g∗)−1, which is commuting with σ, we
obtain the realization of (K, KH).
■ step(1): Rewrite K ×KH

p/pH to easier form.
In this step, we prove the following:

Lemma 2.6.13. There exists SO(q), U(q) and Sp(q) equivariant vector bundle
isomorphisms respectively as follows:

K ×KH
p/pH ≃



SO(q)×SO(q1)×SO(q2) p/pH

(when (a) : (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2))),

U(q)×U(q1)×U(q2) p/pH

(when (b) : (G,H) = (SU(p, q), S(U(q1)× U(p, q2))),

Sp(q)×Sp(q1)×Sp(q2) p/pH

(when (c) : (G,H) = (Sp(p, q), Sp(q1)× Sp(p, q2))).

Here in the right hand side, actions of SO(q1) × SO(q2), U(q1) × U(q2) and
Sp(q1)× Sp(q2) on p/pH are given by the restriction of the action of KH
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Remark 2.6.14. From the above Lemma 2.6.13, to calculate the Pontrjagin
class of K ×KH

p/pH , we can and do calculate it of the vector bundles in the
right hand side. Thus, in the following steps, we use the notation, (K,KH) =
(SO(q), SO(q1) × SO(q2)), (U(q), U(q1) × U(q2)) and (Sp(q), Sp(q1) × Sp(q2))
respectively.

Lemma 2.6.13 follows from the following Fact 2.6.15 and Remark 2.6.16.

Fact 2.6.15 ([17, Theorem 10.32]). Let G be a Lie group, E, M manifolds and
π : E → M a G-equivariant vector bundle. Assume G acts on M transitively
and fix m ∈ M . Then we get the following isomorphism (f̃ , f) from E → M to
an associated bundle G×H V → G/H as a G-equivariant vector bundle.

E
f̃ //

π

��
⟳

G×H V

��
M

f // G/H

Here H = Gm is the stabilizer subgroup of G at m and V = π−1(m).

Remark 2.6.16. Let G be a Lie group and H, L Lie subgroups of G. Then
the following two conditions are equivalent.

(i) L acts on G/H transitively,

(ii) G = L ·H.

Remark 2.6.17. We consider the following realization of U(q) in S(U(p) ×
U(q)).

U(q) =


det g−1

Ip2−1

g

 ∈ S(U(p)× U(q)) : g ∈ U(q)

 .

■ step(2): Fix coordinates of maximal tori t and tH of k = Lie(K) and kH =
Lie(KH) respectively in the sense of Remark 2.6.14.

We use the following notation.

Ai,j = Eij − Eji ∈ M(p+ q,K),

where Eij is a matrix unit.
We fix maximal tori t, tH of k, kH respectively as follows.

(a) (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2)), q
′ = ⌊ q1+q2

2 ⌋, q′1 = ⌊ q1
2 ⌋,

q′2 = ⌊ q2
2 ⌋.
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• In the case when ether q1 or q2 is even.

t =tH = {
q′1∑
i=1

tiAp+2i−1,p+2i +

q′2∑
i=1

tq′1+iAp+q1+2i−1,p+q1+2i

∈ M(p+ q,R) : ti ∈ R (i = 1, · · · , q′(= q′1 + q′2))}

={



0
. . .

0
0 t1

−t1 0
. . .

0 tq′1
−tq′1 0

0 tq′1+1

−tq′1+1 0
. . .

0 tq′

−tq′ 0


: ti ∈ R (i = 1, · · · , q′)}.
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• In the case when both q1 and q2 are odd.

t ={
q′1∑
i=1

tiAp+2i−1,p+2i + tq′Ap+q1,p+q1+1 +

q′2∑
i=1

tq′1+iAp+q1+2i,p+q1+2i+1

∈ M(p+ q,R) : ti ∈ R (i = 1, · · · , q′(= q′1 + q′2 + 1))}

{



0
. . .

0
0 t1

−t1 0
. . .

0 tq′1
−tq′1 0

0 tq′
−tq′ 0

0 tq′1+1

−tq′1+1 0
. . .

0 tq′1+q′2
−tq′1+q′2

0


: ti ∈ R (i = 1, · · · , q′)}

tH ={
q′1∑
i=1

tiAp+2i−1,p+2i +

q′2∑
i=1

tq′+iAp+q1+2i,p+q1+2i+1

∈ M(p+ q,R) : ti ∈ R (i = 1, · · · , q′1 + q′2)}

= {



0
. . .

0
0 t1

−t1 0
. . .

0 tq′1
−tq′1 0

0 0
0 0

0 tq′1+1

−tq′1+1 0
. . .

0 tq′1+q′2
−tq′1+q′2

0


: ti ∈ R (i = 1, · · · , q′)}.
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Take coordinates {ti}q
′

i=1, {ti}
q′1+q′2
i=1 of t, tH by the above basis respectively.

(b) (G,H) = (SU(p, q), S(U(q1)× U(p, q2)))

t = tH =

{
√
−1

q∑
i=1

ti(−E11 + Ep+i p+i) ∈ M(p+ q,C) : ti ∈ R (i = 1, · · · , q)

}

=


√
−1



−
∑q

i=1 ti
0

. . .

0
t1

. . .

tq


: ti ∈ R (i = 1, · · · , q)


.

Take a coordinate {ti}qi=1 of t and tH by the above basis.

(c) (G,H) = (Sp(p, q), Sp(q1)× Sp(p, q2))

t = tH =

{
i

q∑
ℓ=1

tℓEp+ℓ p+ℓ ∈ M(p+ q,H) : tℓ ∈ R (ℓ = 1, · · · , q)

}

=


i



0
0

. . .

0
t1

. . .

tq


: tℓ ∈ R (ℓ = 1, · · · , q)


.

Here we consider H as a R algebra spanned by 1, i, j, k satisfying that
i2 = j2 = k2 = −1, ijk = −1. Take a coordinate {tℓ}qℓ=1 of t and tH by
the above basis.

■ step(3): Description of S(t∗)W and S(t∗H)WH .
We use the following notation to describe S(t∗)W and S(t∗H)WH .

Notation 2.6.18. For 1 ≤ p ≤ q ≤ n, we denote fundamental symmetric
polynomials of variables {t2p, · · · , t2q}, {tp, · · · , tq} by ak(p,q) ∈ S2k((Rn)∗), bk(p,q) ∈
Sk((Rn)∗):

ak(p,q) : R
n → R, t = (t1, · · · , tn) 7→

∑
p≤i1<···<ik≤q

t2i1 · · · t
2
ik
,

bk(p,q) : R
n → R, t = (t1, · · · , tn) 7→

∑
p≤i1<···<ik≤q

ti1 · · · tik .
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Remark 2.6.19. For (G,H) = (SO0(p, q1+q2), SO(q1)×SO0(p, q2)), (SU(p, q),
S(U(q1) × U(p, q2))) and (Sp(p, q), Sp(q1) × Sp(p, q2)), S(t

∗)W and S(t∗H)WH

can be written as follows by using the above coordinates. Here W and WH are
the Weyl groups of K and KH respectively.

(a) (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2))

S(t∗)W =

{
R
[
a1(1,q′), · · · , a

q′

(1,q′), b
q′

(1,q′)

]
if q = q1 + q2 is even,

R
[
a1(1,q′), · · · , a

q′

(1,q′)

]
otherwise.

S(t∗H)WH =



R
[
a1(1,q′1)

, · · · , aq
′
1

(1,q′1)
, a1(q′1+1,q′1+q′2)

, · · · , aq
′
2

(q′1+1,q′1+q′2)
, b

q′1
(1,q′1)

, b
q′2
(q′1+1,q′1+q′2)

]
if q1 and q2 are even,

R
[
a1(1,q′1)

, · · · , aq
′
1

(1,q′1)
, a1(q′1+1,q′1+q′2)

, · · · , aq
′
2

(q′1+1,q′1+q′2)
, b

q′1
(1,q′1)

]
if q1 is even and q2 is odd,

R
[
a1(1,q′1)

, · · · , aq
′
1

(1,q′1)
, a1(q′1+1,q′1+q′2)

, · · · , aq
′
2

(q′1+1,q′1+q′2)
, b

q′2
(q′1+1,q′1+q′2)

]
if q1 is odd and q2 is even,

R
[
a1(1,q′1)

, · · · , aq
′
1

(1,q′1)
, a1(q′1+1,q′1+q′2)

, · · · , aq
′
2

(q′1+1,q′1+q′2)

]
if q1 and q2 are odd.

(b) (G,H) = (SU(p, q), S(U(q1)× U(p, q2)))

S(t∗)W = R[b1(1,q), · · · , b
q
(1,q)],

S(t∗H)WH = R[b1(1,q1), · · · , b
q1
(1,q1)

, b1(q1+1,q1+q2)
, · · · , bq2(q1+1,q1+q2)

].

(c) (G,H) = (Sp(p, q), Sp(q1)× Sp(p, q2))

S(t∗)W = R[a1(1,q), · · · , a
q
(1,q)],

S(t∗H)WH = R[a1(1,q1), · · · , a
q1
(1,q1)

, a1(q1+1,q1+q2)
, · · · , aq2(q1+1,q1+q2)

].

■ step(4): Description of kerω.
Under the identification S(k∗)K ≃ S(t∗)W , S(k∗H)KH ≃ S(t∗H)WH , we use the
following:

Fact 2.6.20 ([6], See also [9]). Let K be a connected compact Lie group and
KH its closed connected subgroup of K. Let ω : S(t∗H)WH → H∗

DR(K/KH ;R)
be the Chern-Weil map. Then kerω can be written as follows.

kerω = (ideal generated by
∞⊕
k=1

Im(rest : Sk(t∗)W → Sk(t∗H)WH ) in S(t∗H)WH ),

where rest is the restriction map.
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Lemma 2.6.21. For (G, H) = (SO0(p, q1+q2), SO(q1)×SO0(p, q2)), (SU(p, q),
S(U(q1)× U(p, q2))) and (Sp(p, q), Sp(q1)× Sp(p, q2)), kerω can be written as
follows respectively by using the above coordinates.

(a) (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2))

kerω = ideal generated by{
a1(1,q′), · · · , a

q′

(1,q′), b
q′

(1,q′) (if both q1 and q2 are even),

a1(1,q′1+q′2)
, · · · , aq

′
1+q′2

(1,q′1+q′2)
(otherwise)

on S(t∗H)WH .

(b) (G,H) = (SU(p, q), S(U(q1)× U(p, q2)))

kerω = ideal generated by

b1(1,q), · · · , b
q
(1,q)

on S(t∗H)WH .

(c) (G,H) = (Sp(p, q), Sp(q1)× Sp(p, q2))

kerω = ideal generated by

a1(1,q), · · · , a
q
(1,q)

on S(t∗H)WH .

■ step(5): Description of ad∗(p̃1) ∈ S(t∗H)WH for the SO(p/pH)-invariant poly-
nomial p̃1 on so(p/pH) of degree two.
By direct computation, we get:

Lemma 2.6.22. For (G,H)=(SO0(p, q1+ q2), SO(q1)×SO0(p, q2)), (SU(p, q),
S(U(q1)×U(p, q2))), (Sp(p, q), Sp(q1)×Sp(p, q2)), ad

∗(p̃1) is written as follows.

(a) (G,H) = (SO0(p, q1 + q2), SO(q1)× SO0(p, q2))

ad∗(p̃1) = pa1(1,q′1),

(b) (G,H) = (SU(p, q), S(U(q1)× U(p, q2)))

ad∗(p̃1) = pa1(1,q1) + (q1b
1
(1,q) + 2b1(1,q1))b

1
(1,q),

(c) (G,H) = (Sp(p, q), Sp(q1)× Sp(p, q2))

ad∗(p̃1) = 2pa1(1,q1),

where p̃1 is all the sum of principal minors of degree two, which is a
SO(p/pH)-invariant polynomial of degree two on so(p/pH).
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■ step(6): Check whether ad∗(p̃1) ∈ kerω or not.

Proof of Proposition 2.6.11(a). It is enough to show the following:

q′1, q
′
2 ≥ 1 ⇒ ad∗(p̃1) ̸∈ kerω.

Suppose q′1, q
′
2 ≥ 1. From Lemma 2.6.22(a), we get ad∗(p̃1) = p2a

1
(1,q′1)

. Since

there is no generator of degree one of kerω, if a1(1,q′1)
∈ kerω, then we can write

a1(1,q′1)
as a R-linear combination of generators of degree 2 of kerω. However, it

is impossible to do so by seeing kerω.

Remark 2.6.23. We proved that if q1, q2 ≥ 2, then the first Pontrjagin class
of K ×KH p/pH does not vanish above. In fact, the converse is also true. That
is, if q1 = 1 or q2 = 1, then the first Pontrjagin class of K ×KH

p/pH vanishes.

Proof of Proposition 2.6.11(b). Suppose q1 ≥ 2 or q2 ≥ 2. From Lemma 2.6.22(b),
we get ad∗(p̃1) = pa1(1,q1) + (q1b

1
(1,q) + 2b1(1,q1))b

1
(1,q). Since b1(1,q) ∈ kerω, it is

enough to show a1(1,q1) ̸∈ kerω. That is, we show that there is no (c1, c2, c3) ∈ R3

such that

a1(1,q1) = (c1b
1
(1,q1)

+ c2b
1
(q1+1,q1+q2)

)b1(1,q) + c3b
2
(1,q).

By direct computation, we can find that this is true under the assumption that
q1 ≥ 2 or q2 ≥ 2.

Remark 2.6.24. We proved that if q1 ≥ 2 or q2 ≥ 2, then the first Pontrjagin
class p1(K ×KH p/pH) does not vanish. In fact, the converse is also true. That
is, if q1 = q2 = 1 then p1(K ×KH

p/pH) vanish. This follows from the following
equality:

a1(1,q1) = b1(1,q1)b
1
(1,q1+q2)

− b2(1,q1+q2)
.

Proof of Proposition 2.6.11(c). We show ad∗(p̃1) ̸∈ kerω. This comes from
Lemma 2.6.22(c), ad∗(p̃1) = 2pa1(1,q1) and Lemma 2.6.21(c). We can find this
by seeing the degree of generators of kerω.

2.6.3 Calculation of first Pontrjagin class of SO0(2p, 2q)/SU(p, q)

We prove Proposition 2.6.12 by calculating the first Pontrjagin class of the
corresponding vector bundle K ×KH (p/pH). We take the same steps with the
previous subsection except for step(1).
■ step(0): Realization of (G, H) and (K, KH) as a matrix groups.
We realize a symmetric pair (G, H) = (SO0(2p, 2q), U(p, q)) as follows.

G = {g ∈ GL(2(p+ q),R) : tgI2p,2qg = I2p,2q, det g = 1}0,

H =

{
g ∈ G : g

(
Jp

Jq

)
=

(
Jp

Jq

)
g

}
.
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Then, by taking a Cartan involution θ : g 7→ tg−1, we have:

K = SO(2p)× SO(2q) =

{(
k1

k2

)
: k1 ∈ SO(2p), k2 ∈ SO(2q)

}
,

p =

{(
0 B
tB 0

)
∈ M(2(p+ q),R) : B ∈ M(2p, 2q;R)

}
,

pH =

{(
0 B
tB 0

)
∈ M(2(p+ q),R) : B =

(
A1 −A2

A2 A1

)
, A1, A2 ∈ M(p, q;R)

}
.

We can identify p/pH with the following Ad(KH)-invariant subspace of M(2(p+
q),R).

p/pH ≃
{(

0 B
tB 0

)
∈ M(2(p+ q),R) : B =

(
B1 B2

B2 −B1

)
, B1, B2 ∈ M(p, q : R)

}
.

■ step(2): Fix a coordinates of maximal tori t and tH of k = Lie(K) and
kH = Lie(KH) respectively.
Fix maximal tori t, tH of k, kH respectively as follows.

t = tH =


p∑

i=1

tiAi,p+i +

q∑
j=1

tp+jA2p+j,2p+q+j : ti ∈ R (i = 1, · · · , p+ q)



=





t1
. . .

tp
−t1

. . .

−tp
tp+1

. . .

tp+q

−tp+1

. . .

−tp+q



: ti ∈ R (i = 1, · · · , p+ q)



.

We take a coordinate {ti}p+q
i=1 of t = tH by the above basis.

■ step(3): Description of S(t∗)W and S(t∗H)WH .
Then we get

S(t∗)W = R[a1(1,p), · · · , a
p
(1,p), b

p
(1,p), a

1
(p+1,p+q), · · · , a

q
(p+1,p+q), b

q
(p+1,p+q)],

S(t∗H)WH = R[b1(1,p), · · · , b
p
(1,p), b

1
(p+1,p+q), · · · , b

q
(p+1,p+q)].

■ step(4): Description of kerω.
Since t = tH , we get:
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Lemma 2.6.25.

kerω = ideal generated by

a1(1,p), · · · , a
p
(1,p), b

p
(1,p), a

1
(p+1,p+q), · · · , a

q
(p+1,p+q), b

q
(p+1,p+q)

on S(t∗H)WH .

■ step(5): Description of ad∗(p̃1) ∈ S(t∗H)WH for the SO(p/pH)-invariant poly-
nomial p̃1 on so(p/pH) of degree two.
By direct computation, we get:

Lemma 2.6.26.

ad∗(p̃1) = qa1(1,p) + pa1(p+1,p+q) + 2b1(1,p)b
1
(p+1,p+q).

■ step(6): Check whether ad∗(p̃1) ∈ kerω or not.
We prove ad∗(p̃1) ̸∈ kerω if 2 ≤ p(≤ q).

Proof of Proposition 2.6.12. Suppose p ≥ 2. From Lemma 2.6.26, we get ad∗(p̃1) =
qa1(1,p) + pa1(p+1,p+q) + 2b1(1,p)b

1
(p+1,p+q). Since a1(1,p) and a1(p+1,p+q) are in kerω

from Lemma 2.6.25, it is enough to show that b1(1,p)b
1
(p+1,p+q) ̸∈ kerω. Since

there is no generator of degree one of kerω, if b1(1,p)b
1
(p+1,p+q) ∈ kerω, it can be

written as a R-linear combination of generators of degree two of kerω. However
it is impossible. Thus, b1(1,p)b

1
(p+1,p+q) ̸∈ kerω.

2.6.4 Calculation of the first Pontrjagin class of (g, h, ha) =
(e6(6), su

∗(6)⊕ su(2), f4(4))

In this section, we consider the symmetric pair (G,H,Ha) where G is a con-
nected linear reductive Lie group and corresponding Lie algebras are (e6(6), su

∗(6)⊕
su(2), f4(4)). Here d(G) = dim p = 42, d(H) = dim pH = 14, d(Ha) = 28.

Our goal in this subsection is the following:

Proposition 2.6.27. Neithere Gθ/Hθ nor Gθ/H
a
θ admit compact Clifford–

Klein forms.

Proof. This comes from Lemma 2.6.29.

Lemma 2.6.28. Let g be a semisimple Lie algebra without compact simple
ideal. Then the isotropy representation adk : k → gl(p) is faithful. Moreover,
adk is irreducible if and only if g is simple.

Proof. ker adk ⊂ k ⊂ g is an ideal of g contained in k. Since g has no compact
simple ideal, we obtain ker adk = {0}.

Lemma 2.6.29. The associated bundle K ×(KH ,Ad) p/pH over K/KH is not
trivial.

Proof. This comes from the following lemma.
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Lemma 2.6.30. The first Pontrjagin class of the associated bundle K×(KH ,Ad)

p/pH over K/KH does not vanish.

Proof. This comes from Fact 2.6.10 and Lemma 2.6.37.

We give a realization of the symmetric pair k = sp(4) ⊃ sp(3)⊕ sp(1) = kH
as follows:

sp(4) := {X ∈ sl(8,C) : tXJ + JX = 0, X∗ +X = 0}

=

{(
A −B
B A

)
: A ∈ su(4), B ∈ Sym(4,C)

}
,

τ : sp(4) → sp(4), X 7→ I3,1:3,1XI−1
3,1:3,1

sp(3) : = sp(4)τ = {X ∈ sp(4) :


A1 −B1

α −β
B1 A1

β α

 : A1 ∈ su(3), B1 ∈ Sym(3,C), α, β ∈ C}

We take maximal tori of k, kH as follows:

t = tH = {idiag(t1, t2, t3, t4,−t1,−t2,−t3,−t4) : tk ∈ R (k = 1, 2, 3, 4)}.

Then we have

S(t∗)W = R
[
t21 + t22 + t23 + t24, t

2
1t

2
2 + t21t

2
3 + t21t

2
4 + t22t

2
3 + t22t

2
4 + t23t

2
4, t

2
1t

2
2t

3
3 + t21t

2
2t

2
4 + t21t

2
3t

2
4 + t22t

2
3t

2
4, t

2
1t

2
2t

2
3t

2
4

]
S(t∗H)WH = R

[
t21 + t22 + t23, t

2
1t

2
2 + t21t

2
3 + t22t

2
3, t

2
1t

2
2t

2
3, t

2
4

]
From Fact 2.6.20, we have

kerω = ideal generated by

t21 + t22 + t23 + t24,

t21t
2
2 + t21t

2
3 + t21t

2
4 + t22t

2
3 + t22t

2
4 + t23t

2
4,

t21t
2
2t

3
3 + t21t

2
2t

2
4 + t21t

2
3t

2
4 + t22t

2
3t

2
4,

t21t
2
2t

2
3t

2
4

on S(t∗H)WH

We consider isotropy representation of Ha, which is equivalent to the action
of kH on p/pH from Remark 2.6.42.

Claim. adkHa : kHa = sp(3)⊕ sp(1) → sl(pHa) is the irreducible representation
corresponding to one with the highest weight ϖ3⊠ϖ1 by Cartan’s fundamental
theorem.

Proof. Since adk is irreducible, adk can be π ⊠ π′ where π, π′ are irreducible
representations of sp(3), sp(1) respectively. The dimensions of irreducible rep-
resentations of sp(3) are 1, 6, 14(twice), 21, 64, 70, · · · . Since the dimension
divide 28, the possible representations of sp(3) are trivial, ϖ2 or ϖ3. From
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Lemma 2.6.28, π is ϖ2 or ϖ3. On the other hand, from Lemma 2.6.28 and
dimension of adk, we have π′ = ϖ1, which is two dimensional representation.
Since indexθ2 ϖ1 = −1, indexθ1 π = −1 holds, where θi (i = 1, 2) are Cartan
involutions such that sp(3,C)θ1 = sp(3) and sp(1,C)θ2 = sp(1). So we obtain
π = ϖ3.

Next, we consider a realization of isotropy representation of G and Ha. we
realize adkHa : sp(3) ⊕ sp(1) → sl(R28) on the subspace of ((

∧3 C6) ⊗ C2)σ
′
.

Here

σ′ : (
3∧
C6)⊗ C2 → (

3∧
C6)⊗ C2, (v1 ∧ v2 ∧ v3)⊗ w 7→ (J3v1 ∧ J3v2 ∧ J3v3)⊗ J1w

Remark 2.6.31. The adjoint representation k ↷ p ≃ R42 is equivalent to
one corresponding to (sp(4), ϖ4) by Cartan’s fundamental theorem (see Ap-
pendix 1.6.3), which is in class CI(sp(4)). The representation space can be
described as follows:

Define a anti holomorphic involution σk on
∧k C8 by

σk(v1 ∧ · · · ∧ vk) = J4v1 ∧ · · · ∧ J4vk.

Define C-linear map φk :
∧k C8 →

∧k−2 C8 by

v1 ∧ · · · ∧ vk 7→
∑

1≤i<j≤k

Q(vi, vj)(−1)i+j−1v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk.

Here C-bilinear form Q : C8 × C8 → C is defined by Q(v, w) := tvJ4w.

Remark 2.6.32. We have φkσk = σk−2φk and σk◦(
∧k

ρ
(8)
ϖ1(X)) = (

∧k
ρ
(8)
ϖ1(X))◦

σk for all X ∈ sp(4). Here
∧k

ρ
(8)
ϖ1 is the representation induced by ρϖ1 on∧k C8.

Fact 2.6.33 (see [FH] for example). The fundamental representation with high-
est weight ϖk is realized by kerφk.

For any X ∈ sp(3)⊕ sp(1), the following diagram commutes:

(
∧3 C6)⊗ C2

(
∧3 ρ(6)

ϖ1
⊠ρ(2)

ϖ1
)(X)

��

ι // ∧4 C8

∧4 ρ(8)
ϖ1

(X)

��
(
∧3 C6)⊗ C2 ι //

σ′

��

∧4 C8

σ

��
(
∧3 C6)⊗ C2

ι
// ∧4 C8
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Here

ι : (

3∧
C6)⊗ C2 →

4∧
C8, (v1 ∧ v2 ∧ v3)⊗ w 7→ ι1(v1) ∧ ι1(v2) ∧ ι1(v3) ∧ ι2(w)

ι1 : C6 → C8, t(z1, z2, z3, z4, z5, z6) 7→ t(z1, z2, z3, 0, z4, z5, z6, 0)

ι2 : C2 → C8, t(w1, w2) 7→ t(0, 0, 0, w1, 0, 0, 0, w2)

We define Hermitian form on
∧4 C8 by

H(v, w) :=
1

2
det ((vi, wj))

for v = v1 ∧ v2 ∧ v3 ∧ v4, w = w1 ∧ w2 ∧ w3 ∧ w4. Here (·, ·) : C8 × C8 → C is

the standard Hermitian form on C8. H is
∧4

ρ(sp(4))-invariant by definition.

Remark 2.6.34. H(v, w) = H(v, w) if v, w ∈ (
∧4 C8)σ. So we have the sym-

metric nondegenerate bilinear form H0 : (
∧4 C8)σ × (

∧4 C8)σ → R.

We construct an orthonormal basis of the representation space V of the
irreducible representation ρϖ3 ⊠ ρϖ1 of sp(3)⊕ sp(1). To calculate matrix rep-
resentation easily, we make use of weight vectors.

Fact 2.6.35. Let ρ
(3)
ϖ3 ⊠ ρ

(1)
ϖ1 : sp(3)⊕ sp(1) → sl(V ) be an irreducible represen-

tation with highest weight ϖ3 ⊕ ϖ1. The weights W (ρ
(3)
ϖ3 ⊠ ρ

(1)
ϖ1) are given as

follows:

W (ρ(3)ϖ3
⊠ ρ(1)ϖ1

) ={±ε1 ± ε2 ± ε3 ± ε4,±ε1 ± ε4,±ε2 ± ε4,±ε3 ± ε4, }

Remark 2.6.36. For λ ∈ W (ρ
(3)
ϖ3 ⊠ ρ

(1)
ϖ1), the relation σ(Vλ) = V−λ holds.

Put I0 = {1, 2, 3, 4, 5, 6, 7, 8}. For I = (i1, i2, i3, i4) ∈ I40 , we describe the
element ei1 ∧ ei2 ∧ ei3 ∧ ei4 by eI .

weight weight vector weight weight vector
ε1 + ε2 + ε3 + ε4 e(1,2,3,4) −(ε1 + ε2 + ε3 + ε4) e(5,6,7,8) = σ(e(1,2,3,4))
ε1 + ε2 − ε3 + ε4 e(1,2,7,4) −(ε1 + ε2 + ε3 + ε4) −e(5,6,2,8) = σ(e(1,2,7,4))
ε1 − ε2 + ε3 + ε4 e(1,6,3,4) −(ε1 − ε2 + ε3 + ε4) −e(5,2,7,8) = σ(e(1,6,3,4))
ε1 − ε2 − ε3 + ε4 e(1,6,7,4) −(ε1 − ε2 − ε3 + ε4) e(5,2,3,8) = σ(e(1,6,7,4))
−ε1 + ε2 + ε3 + ε4 e(5,2,3,4) −(−ε1 + ε2 + ε3 + ε4) −e(1,6,7,8) = σ(e(5,2,3,4))
−ε1 + ε2 − ε3 + ε4 e(5,2,7,4) −(−ε1 + ε2 − ε3 + ε4) e(1,6,3,8) = σ(e(5,2,7,4))
−ε1 − ε2 + ε3 + ε4 e(5,6,3,4) −(−ε1 − ε2 + ε3 + ε4) e(1,2,7,8) = σ(e(5,6,3,4))
−ε1 − ε2 − ε3 + ε4 e(5,6,7,4) −(−ε1 − ε2 − ε3 + ε4) −e(1,2,3,8) = σ(e(5,6,7,4))

ε1 + ε4 e(1,2,6,4) − e(1,3,7,4) −(ε1 + ε4) e(5,2,6,8) − e(5,3,7,8)
−ε1 + ε4 e(5,2,6,4) − e(5,3,7,4) −(−ε1 + ε4) −(e(1,2,6,8) − e(1,3,7,8))
ε2 + ε4 e(2,1,5,4) − e(2,3,7,4) −(ε2 + ε4) e(6,1,5,4) − e(6,3,7,8)
−ε2 + ε4 e(6,1,5,4) − e(6,3,7,4) −(−ε2 + ε4) −(e(2,1,5,8) − e(2,3,7,8))
ε3 + ε4 e(3,1,5,4) − e(3,2,6,4) −(ε3 + ε4) e(7,1,5,8) − e(7,2,6,8)
−ε3 + ε4 e(7,1,5,4) − e(7,2,6,4) −(−ε1 + ε4) −(e(3,1,5,8) − e(3,2,6,8))
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We take an orthonormal basis on the representation space of ρ
(3)
ϖ3 ⊠ ρ

(1)
ϖ1 as

follows:

eI+σ(eI),
√
−1(eI − σ(eI)), I ∈ {1, 5} × {2, 6} × {3, 7} × {4}

w+
1 :=

√
1
2 (e(1,2,6,4) − e(1,3,7,4) + σ(e(1,2,6,4) − e(1,3,7,4))),

w−
1 :=

√
−1
2 (e(1,2,6,4) − e(1,3,7,4) − σ(e(1,2,6,4) − e(1,3,7,4)))

w+
2 :=

√
1
2 (e(5,2,6,4) − e(5,3,7,4) + σ(e(5,2,6,4) − e(5,3,7,4)))

w−
2 :=

√
−1
2 (e(5,2,6,4) − e(5,3,7,4) − σ(e(5,2,6,4) − e(5,3,7,4)))

w+
3 :=

√
1
2 (e(2,1,5,4) − e(2,3,7,4) + σ(e(2,1,5,4) − e(2,3,7,4)))

w−
3 :=

√
−1
2 (e(2,1,5,4) − e(2,3,7,4) − σ(e(2,1,5,4) − e(2,3,7,4)))

w+
4 :=

√
1
2 (e(6,1,5,4) − e(6,3,7,4) + σ(e(6,1,5,4) − e(6,3,7,4)))

w−
4 :=

√
−1
2 (e(6,1,5,4) − e(6,3,7,4) − σ(e(6,1,5,4) − e(6,3,7,4)))

w+
5 :=

√
1
2 (e(3,1,5,4) − e(3,2,6,4) + σ(e(3,1,5,4) − e(3,2,6,4)))

w−
5 :=

√
−1
2 (e(3,1,5,4) − e(3,2,6,4) − σ(e(3,1,5,4) − e(3,2,6,4)))

w+
6 :=

√
1
2 (e(7,1,5,4) − e(7,2,6,4) + σ(e(7,1,5,4) − e(7,2,6,4)))

w−
6 :=

√
−1
2 (e(7,1,5,4) − e(7,2,6,4) − σ(e(7,1,5,4) − e(7,2,6,4)))

Let t =
√
−1 diag(t1, t2, t3, t4,−t1,−t2,−t3,−t4) ∈ t. Then we have for I ∈
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{1, 5} × {2, 6} × {3, 7} × {4}

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)(eI + σ(eI)) = ((−1)⌊i1/4⌋t1 + (−1)⌊i2/4⌋t2 + (−1)⌊i3/4⌋t3 + t4))(eI − σ(eI)),

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)
√
−1(eI − σ(eI)) = −((−1)⌊i1/4⌋t1 + (−1)⌊i2/4⌋t2 + (−1)⌊i3/4⌋t3 + t4))(eI + σ(eI)),

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
1 = (t1 + t4)w

−
1

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
1 = −(t1 + t4)w

+
1

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
2 = (−t1 + t4)w

−
2

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
2 = −(−t1 + t4)w

+
2

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
3 = (t2 + t4)w

−
3

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
3 = −(t2 + t4)w

+
3

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
4 = (−t2 + t4)w

−
4

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
4 = −(t2 + t4)w

+
4

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
5 = (t3 + t4)w

−
5

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
5 = −(t3 + t4)w

+
5

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w+
6 = (−t3 + t4)w

−
6

(ρ(3)ϖ3
⊠ ρ(1)ϖ1

)(t)w−
6 = −(−t3 + t4)w

+
6

Lemma 2.6.37. (i) ad∗(p̃1) = 10(t21 + t22 + t23 + t24) + 4t24,

(ii) ad∗(p̃1) ̸∈ kerω.
Here p̃1 ∈ S2(p∗Ha)SO(pHa ) be all the sum of principal minors of degree two.

Proof. (i) By using the above basis,

ad∗(p̃1) = (t1 + t2 + t3 + t4)
2 + (t1 + t2 − t3 + t4)

2

+ (t1 − t2 + t3 + t4)
2 + (t1 − t2 − t3 + t4)

2

+ (−t1 + t2 + t3 + t4)
2 + (−t1 + t2 − t3 + t4)

2

+ (−t1 − t2 + t3 + t4)
2 + (−t1 − t2 − t3 + t4)

2

+ (t1 + t4)
2 + (−t1 + t4)

2

+ (t2 + t4)
2 + (−t2 + t4)

2

+ (t3 + t4)
2 + (−t3 + t4)

2

= 10(t21 + t22 + t23 + t24) + 4t24

(ii) This comes from (i) and the description of kerω given above.

2.6.5 Calculation of the first Pontrjagin class of (g, h, ha) =
(e7(7), su(2)⊕ so∗(12), e6(2) ⊕ so(2))

In this section, we consider the symmetric pair (G,H,Ha) where G is a con-
nected linear reductive Lie group and corresponding Lie algebras are (e7(7), su(2)⊕
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so∗(12), e6(2) ⊕ so(2)). Here dim p = 70, dim pH = 30 and dim pHa = 40.
Our goal in this subsection is the following:

Proposition 2.6.38. Neither Gθ/Hθ nor Gθ/H
a
θ admit compact Clifford–Klein

forms.

Proof. This comes from Lemma 2.6.39.

Lemma 2.6.39. The associated bundle K ×(KH ,Ad) p/pH is not trivial.

Proof. This comes from the following Lemma 2.6.40.

Lemma 2.6.40. The first Pontrjagin class of the associated bundle K×(KH ,Ad)

p/pH over K/KH does not vanish.

Lemma 2.6.41. ad : k = su(8) → gl(p) comes from fundamental representation
ρϖ4 through Cartan’s fundamental theorem.

Proof. Since e7(7) is simple, ad : k → gl(p) is an irreducible representation. So,
this lemma comes from Cartan’s fundamental theorem and Weyl’s dimension-
ality formula.

Remark 2.6.42. Let ρ : g → gl(V ) a representation equipped with invariant
bilinear form B on V and W a invariant subspace of V . Then the following
representations are equivalent:

• ρ1 : g → gl(V/W ), ρ1(X)(v +W ) := ρ(X)v +W ,

• ρ2 : g → gl(W⊥), ρ2(X)w⊥ := ρ(X)w⊥.

Here W⊥ := {v ∈ V : B(v, w) = 0 for all X ∈ V }.

Lemma 2.6.43. The representation ad |kH : kH → gl(p/pH) is equivalent to
ad |kHa : kHa → gl(pHa). Moreover, the restriction of ad |kHa to su(6) ⊕ su(2)
comes from ρϖ3 ⊠ ρϖ1 through Cartan’s fundamental theorem.

Proof. This comes from Lemma 2.6.42. For the latter statement, it is equivalent
to consider the isotropy representation of e6(2). Since e6(2) is simple, the isotropy
representation ρ is irreducible. From Cartan’s fundamental theorem and Weyl’s
dimensionality formula, we obtain the “Moreover part”.

We consider a realization of ad : k → gl(p) to realize adkHa : kHa → gl(pHa).

The representation space p is given by fixed points of the star operator on
∧4 C8.

We recall the definition on star operator. Set an inner product H on
∧
Cn

by
H(v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp) := det((vi, wj)).

Here (, ) is the standard inner product on Cn and H(v, w) = 0 if v ∈
∧p Cn,

w ∈
∧q Cn and p ̸= q. Fix an orthonormal basis e1, · · · , en.

Definition 2.6.44. We define an anti holomorphic linear isomorphism ∗n :∧
Cn →

∧
Cn as follows:

146



(i) ∗n(e1 ∧ · · · ∧ en) = 1,

(ii) For v ∈
∧p Cn, ∗nv is determined by ∗n(v ∧ w) = H(w, ∗nv) for all w ∈∧n−p Cn.

Remark 2.6.45. The star operator on (
∧
Cn,H) is determined up to signature

depending on the choice of orthonormal basis.

Fact 2.6.46. For v ∈ ∧pCn, ∗2nv = (−1)p(n−p)v holds.

Corollary 2.6.47. The restriction of ∗2n on
∧n C2n satisfies

∗22n =

{
1 if n is even,

−1 if n is odd.

We realize k = su(8) and kHa = kH ≃ su(6)⊕ su(2)⊕ u(1) as follows:

su(8) := {X ∈ sl(8,C) : X∗ +X = 0}
σ : su(8) → su(8), X 7→ I3,1;3,1XI−1

3,1;3,1

kHa = kH = kσ

We take a maximal tori t = tH as follows:

t = tH = {idiag(t1, t2, t3, t4, t5, t6, t7, t8) : ti ∈ R,
8∑

i=1

ti = 0}.

Remark 2.6.48.

S(t∗)W ≃ R[s1, s2, s3, s4, s5, s6, s7, s8]/(s1)t
S(t∗H)WH ≃ R[s′1, s′2, s′3, s′4, s′5, s′6, s′′1 , s′′2 ]/(s1)tH

Here si, s
′
j and s′′k are the fundamental symmetric polynomial of degree i, j

and k with respect to {t1, · · · , t8}, {t1, t2, t3, t5, t6, t7} and {t4, t8} respectively.
(s1)t and (s1)tH are ideals generated by s1 over R[s1, s2, s3, s4, s5, s6, s7, s8] and
R[s′1, s′2, s′3, s′4, s′5, s′6, s′′1 , s′′2 ] respectively.

We take an orthonormal basis on (ι(
∧3 C6⊗C2))∗ ⊂

∧4 C8 as follows, where
ι is given in the previous subsection:

eI ∧ e4 + ∗(eI ∧ e4)

ieI ∧ e4 + ∗(ieI ∧ e4)

Here I ∈ Ĩ := {I ⊂ {1, 2, 3, 5, 6, 7} : #I = 3}. Then we have:

Lemma 2.6.49. Let t = idiag(t1, t2, t3, t4, t5, t6, t7, t8) ∈ t. Then we have

ρϖ4(t)(eI ∧ e4 + ∗(eI ∧ e4)) =

(∑
i∈I

ti + t4

)
(ieI ∧ e4 + ∗(ieI ∧ e4)),

ρϖ4(t)(ieI ∧ e4 + ∗(ieI ∧ e4)) = −

(∑
i∈I

ti + t4

)
(eI ∧ e4 + ∗(eI ∧ e4)).
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This claim can be easily checked by direct calculation. So we omit the proof.

Lemma 2.6.50. kerω ⊂ S(t∗H)WH is described as follows:

kerω ≃ ideal generated by s2, s3, s4, s5, s6, s7, s8 on S(t∗H)WH .

Proof. This comes from Fact 2.6.20.

Remark 2.6.51. For any X ∈ kHa = kH , the following diagram commutes:

(
∧3 C6)⊗ C2

(ρϖ3⊠ρϖ1 )(X)

��

ι // ∧4 C8

ρϖ4 (X)

��
(
∧3 C6)⊗ C2

∗6⊗∗2

��

ι // ∧4 C8

∗8

��
(
∧3 C6)⊗ C2 ι // ∧4 C8

Here the center of kH = kHa acts on (
∧3 C6)⊗ C2 trivially.

Lemma 2.6.52. Let g be a Lie algebra satisfying g = [g, g] and ρ : g → gl(Cn)
an unitary representation with respect to standard inner product on Cn. Then∧
ρ : g → gl(

∧
Cn) is also unitary representation with respect to the above

standard inner product H. Moreover, (
∧
ρ(X))∗ = ∗(

∧
ρ(X)) :

∧p Cn →∧n−p Cn for all X ∈ g (0 ≤ p ≤ n). Here
∧

ρ :
∧
Cn →

∧
Cn is defined as

follows:∧
ρ(X) :

p∧
Cn →

p∧
Cn,

∧
ρ(X)(v1∧· · ·∧vp) :=

p∑
i=1

v1∧· · ·∧ρ(X)vi∧· · ·∧vp

Proof. It is enough to showH(w, (
∧
ρ(X))∗(v1∧· · ·∧vp)) = H(w, ∗(

∧
ρ(X)(v1∧

· · · ∧ vp))) for all w ∈
∧n−p Cn for any X ∈ g. This comes from that

∧
ρ is

unitary and one dimensional representation is trivial:

H(w, (
∧

ρ(X)) ∗ (v1 ∧ · · · ∧ vp))

=−H(
∧

ρ(X)w, ∗(v1 ∧ · · · ∧ vp))

=− ∗(v1 ∧ · · · vp ∧ (
∧

ρ(X)w))

=− ∗(
∧

ρ(X)(v1 ∧ · · · ∧ vp ∧ w)) + ∗((
∧

ρ(X)(v1 ∧ · · · ∧ vp)) ∧ w)

=∗((
∧

ρ(X)(v1 ∧ · · · ∧ vp)) ∧ w)

=H(w, ∗(∧ρ(X))(v1 ∧ · · · ∧ vp)).
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Remark 2.6.53. For a Lie algebra g, the following conditions are equivalent:

(i) [g, g] = g,

(ii) one dimensional representation of g is trivial.

Lemma 2.6.54.

ad∗(p̃1) = −
∑
I∈Ĩ

tI∪{4}t(I∪{4})c + (s1)

Here for J ⊂ {1, · · · , 8}, put tJ :=
∑

j∈J tj , and Jc means complement subset
of J in {1, · · · , 8}.

Proof. This comes from Lemma 2.6.49.

Lemma 2.6.55. ad∗(p1) ̸∈ kerω.

Proof. we have the following:

Claim. Let f(t)+(s1) ∈ S(t∗H)WH , where f(t) ∈ R[s′1, s′2, s′3, s′4, s′5, s′6, s′′1 , s′′2 ] ⊂
R[t1, · · · , t8] is homogeneous polynomial of degree two. Then the following
conditions are equivalent:

(i) f(t) + (s1) ∈ kerω,

(ii) There exist real numbers a, b, c, d ∈ R such that f(t) = a · s2 + (b · s′1 + c ·
s′′1 + d)s1.

This claim can be easily checked by the description of kerω. Assume that
there exist real numbers a, b, c, d ∈ R satifying∑

I∈Ĩ

tI∪{4}t(I∪{4})c = as2 + (bs′1 + cs′′1 + d)s1.

Put t1 = −t5, t2 = −t6, t3 = −t7, t4 = −t8. Then the left hand side is
12(t21 + tt2 + t23) + 20t24 and the right hand side is a(t21 + t22 + t23 + t24). This is
contradiction.

2.6.6 Calculation of the first Pontrjagin class of (g, h ≃
ha) = (e6(2), so

∗(10)⊕ u(1))

In this section, we consider the symmetric pair (G,H) where G is a connected
linear reductive Lie group and corresponding Lie algebras are (e6(2), so

∗(10) ⊕
u(1)). Here dim p = 40, dim pH = 20, k ≃ su(6)⊕ su(2) and kH ≃ u(5)⊕ u(1).

Our goal of this subsection is the following:

Proposition 2.6.56. Gθ/Hθ does not admit compact Clifford–Klein forms.

This comes from the following:
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Lemma 2.6.57. The associated bundle K ×Ad,KH
p/pH is not trivial.

This comes from the following:

Lemma 2.6.58. The first Pontrjagin class of the associated bundle K ×Ad,KH

p/pH does not vanish.

Proof. This comes from Fact 2.6.10 and Lemma 2.6.66.

Fix a realization of k = su(6)⊕ su(2) and kH = u(5)⊕ u(1) as follows in the
same way as the case (g, h, ha) = (e7(7), su(2)⊕ so∗(12), e6(2) ⊕ so(2)):

su(6)⊕ su(2) = {


A1 −B

α −β
B∗ A2

β α

 :

(
A1 −B
B∗ A2

)
∈ su(6),

(
α −β

β α

)
∈ su(2), A1, A2 ∈ su(3)}

σ : su(6)⊕ su(2) → su(6)⊕ su(2), X 7→ I6,2XI−1
6,2

u(5)⊕ u(1) = (su(6)⊕ su(2))σ

We take maximal tori t = tHa as follows:

t = tHa = {i diag(t1, t2, t3, t4, t5, t6, t7, t8) : ti ∈ R, t1 + t2 + t3 + t5 + t6 + t7 = 0, t4 + t8 = 0}.

Remark 2.6.59.

S(t∗)W ≃ R[s1, s2, s3, s4, s5, s6, σ1, σ2]/(s1, σ1)

S(t∗Ha)WHa ≃ R[s′1, s′2, s′3, s′4, s′5, t7, t4, t8]/(s1, σ1)

Here, si, s
′
i and σi are the fundamental symmetric polynomial of degree i with

respect to {t1, t2, t3, t5, t6, t7}, {t1, t2, t3, t5, t6} and {t4, t8} respectively.

Remark 2.6.60. ad : k = su(6) ⊕ su(2) → gl(p) is equivalent to the represen-

tation (ρϖ3 ⊠ ρϖ1 , (
∧3 C6 ⊗ C2)∗6⊗∗2).

Proof. We already checked this remark in the previous subsection.

Lemma 2.6.61. ad |kaH : kHa → gl(pHa), which is equivalent to ad |kH : kH →
gl(p/pH), is equivalent to the coefficient restriction to R of ρϖ2 ⊠ 2i ⊠ triv :

su(5)⊕ u(1)⊕ u(1) → gl(
∧2 C5 ⊗C C⊗C C):

su(5)⊕ u(1)⊕ u(1)× (
2∧
C5)⊗ C⊗ C → (

2∧
C5)⊗ C⊗ C ≃

2∧
C5

((X, it1, it2), v ⊗ z1 ⊗ z2) 7→ ρϖ2(X)v ⊗ z1 ⊗ z2 + v ⊗ (2it1)z1 ⊗ z2

where t1, t2 ∈ R.

Proof. Since we have h ≃ ha ≃ so∗(10) ⊕ u(1), kHa = su(5) ⊕ u(1) ⊕ u(1),
the isotropy representation on pHa consists of trivial representaion of u(1) and
isotropy representation of so∗(10). We can easily check that isotropy represen-
tation of so∗(10) is equivalent to coefficient restriction to R of ρϖ2 ⊠ 2i as a real
representation.
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To calculate ad∗(p̃1) by using a reasonable orthonormal basis, we consider the

following emmbedding into ((
∧2 C6) ⊗ C2)∗6⊗∗2 , which is used in the previous

section.
We define R-linear injective map µ :

∧2 C5 → ((
∧3 C6)⊗C2)∗6⊗∗2 as follows

µ(v) := ι′(∗5(v))⊗ e1 + (∗6 ⊗ ∗2)(ι′(∗5(v))⊗ e1)

where ι′ :
∧3 C5 →

∧3 C6 is the natural inclusion induced by C5 → C6,
t(x1, · · · , x5) 7→ t(x1, · · · , x5, 0).

Remark 2.6.62. The R-linear map µ is compatible with the representation of
su(5)⊕u(1)⊕u(1) ⊂ su(6)⊕su(2) = k from Lemma 2.6.52. Here the embedding
u(1)⊕ u(1) into su(6)⊕ su(2) ⊂ su(8) is given as follows:

u(1)⊕ u(1) → su(6)⊕ su(2)

(it1, it2) 7→ idiag(t1, t1, t1,−t1, t1, t1,−5t1, t1) + idiag(t2, t2, t2,−3t2, t2, t2,−5t2, 3t2)

We use the following orthonormal basis on (
∧3 C6 ⊗ C2)∗6⊗∗2 :

eI ⊗ e1 + (∗6 ⊗ ∗2)(eI ⊗ e1)

ieI ⊗ e1 + (∗6 ⊗ ∗2)(ieI ⊗ e1)

Here I ∈ Ĩ := {I ⊂ {1, 2, 3, 4, 5} : #I = 3}. To make our calculation easier, we

take an orthonormal basis on (
∧4 C8)∗8 ⊃ (

∧3 C6 ⊗ C2)∗6⊗∗2 (see the previous
subsection for the embedding) corresponding to the above orthonormal basis as
follows:

eJ ∧ e4 + ∗8(eJ ∧ e4)

ieJ ∧ e4 + ∗8(ieJ ∧ e4)

Here J ⊂ J̃ := {J ⊂ {1, 2, 3, 5, 6} : #J = 3}

Lemma 2.6.63. Let t := i diag(t1, t2, t3, t4, t5, t6, t7, t8) ∈ tH .

ad(t)(eJ ∧ e4 + ∗8(eJ ∧ e4)) =

∑
j∈J

tj + t4

 (ieJ ∧ e4 + ∗8(ieJ ∧ e4)

ad(t)(ieJ ∧ e4 + ∗8(ieJ ∧ e4)) = −

∑
j∈J

tj + t4

 (eJ ∧ e4 + ∗8(eJ ∧ e4))

Lemma 2.6.64.
ad∗(p1) = −

∑
J∈J̃

tJ∪{4}t(J∪{4})c .

Here for J ⊂ {1, · · · , 8}, put tJ :=
∑

j∈J tj , and Jc means complement subset
of J in {1, · · · , 8}.
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Proof. This comes from Lemma 2.6.63.

Lemma 2.6.65. We have

kerω = ideal generated by s2, s3, s4, s5, s6, σ2 on S(t∗H)WH

Proof. This comes from Fact 2.6.20.

Lemma 2.6.66. ad∗(p1) ̸∈ kerω.

Proof.

Claim. Let f(t)+(s1, σ1) ∈ S(t∗H)WH , where f(t) ∈ R[s′1, s′2, s′3, s′4, s′5, t7, t4, t8] ⊂
R[t1, · · · , t8] is homogeneous polynomial of degree two. Then the following con-
ditions are equivalent:

(i) f(t) + (s1, σ1) ∈ kerω,

(ii) There exist real numbers a, b, c, d, e, a′, b′, c′, d′, e′ ∈ R such that f(t) =
as2 + (bs′1 + ct7 + dt4 + et8)s1 + a′σ2 + (bs′1 + ct7 + dt4 + et8)σ1.

This claim can be easily checked by the description of kerω. Assume that
there exist real numbers a, b, c, d, e, a′, b′, c′, d′, e′ ∈ R such that

∑
J∈J̃ tJ∪{4}t

c
J∪{4} =

as2 + (bs′1 + ct7 + dt4 + et8)s1 + a′σ2 + (bs′1 + ct7 + dt4 + et8)σ1. Put t5 = −t1,
t6 = −t2, t7 = −t3 and t8 = −t4. Then the left hand side is −6(t21 + t22 +
t23) − 10t4 − 12t3t4 and the right hand side is −a(t21 + t22 + t23) − a′t24. This is
contradiction.

2.6.7 Calculation of the first Pontrjagin class of (g, h ≃
ha) = (e8(8), e7(−5) ⊕ su(2))

In this section, we consider the symmetric pair (G,H) where G is a connected
linear reductive Lie group and corresponding Lie algebras are (e8(8), e7(−5) ⊕
su(2)). Here dim p = 128, dim pH = 64, k ≃ so(16) and kH ≃ su(2) ⊕ so(12) ⊕
su(2) ≃ so(12)⊕ so(4). Our goal of this subsection is the following:

Proposition 2.6.67. Gθ/Hθ does not admit compact Clifford–Klein forms.

Proof. This comes from the following lemma.

Lemma 2.6.68. The associated bundle K ×(Ad,KH) p/pH over K/KH is not
trivial.

Proof. This comes form the following lemma.

Lemma 2.6.69. The first Pontrjagin class of the associated bundle K×(Ad,KH)

p/pH over K/KH does not vanish.

Lemma 2.6.70. ad : kHa ≃ so(12)⊕su(2)⊕su(2) → gl(pHa) is equivalent to the
representation corresponding to ρϖi⊠ρϖ1⊠trivial∈ CI(so(12)⊕su(2)⊕su(2)) by
the Cartan’s fundamental theorem, where i = 5 or 6 (half spin representation).
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Proof. Since h ≃ ha = e7(−5) ⊕ su(2), it is enough to check that the isotropy
representation of e7(−5) is equivalent to the representation corresponding to
ρϖi

⊠ ρϖ1
for some i = 5 or 6 by Cartan’s fundamental theorem.

Proof of Lemma 2.6.69. (i) We put k = so(16) = {X ∈ M(16,R) : tX +X =
0}, and realize kHa = kσ by the involution σ(X) = I12,4XI−1

12,4, maximal
tori t and tH as follows:

t = tH =

{
8∑

i=1

tiA2i−1,2i : ti ∈ R (i = 1, · · · , 8)

}
.

(ii) We have the following description of S(t∗)W and S(t∗H)WH :

S(t∗)W = R
[ 8∑

i=1

t2i ,
∑

1≤i<j≤8

t2i t
2
j ,

∑
1≤i<j<k≤8

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤8

t2i t
2
j t

2
kt

2
ℓ ,

∑
1≤i<j<k<ℓ<m≤8

t2i t
2
j t

2
kt

2
ℓ t

2
m,

∑
1≤i<j<k<ℓ<m<n≤8

t2i t
2
j t

2
kt

2
ℓ t

2
mt2n,

∑
1≤i<j<k<ℓ<m<n<o≤8

t2i t
2
j t

2
kt

2
ℓ t

2
mt2nt

2
o, t1t2t3t4t5t6t7t8

]

S(t∗H)WH = R
[ 6∑

i=1

t2i ,
∑

1≤i<j≤6

t2i t
2
j ,

∑
1≤i<j<k≤6

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤6

t2i t
2
j t

2
kt

2
ℓ ,

∑
1≤i<j<k<ℓ<m≤6

t2i t
2
j t

2
kt

2
ℓ t

2
m,

t1t2t3t4t5t6, t
2
7 + t28, t7t8

]
(iii) From Fact 2.6.20, we have the following description of kerω:

kerω = ideal generated on S(t∗H)WH by generators

8∑
i=1

t2i ,
∑

1≤i<j<k≤8

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤8

t2i t
2
j t

2
kt

2
ℓ ,

∑
1≤i<j<k<ℓ<m≤8

t2i t
2
j t

2
kt

2
ℓ t

2
m,

∑
1≤i<j<k<ℓ<m<n≤8

t2i t
2
j t

2
kt

2
ℓ t

2
mt2n,

∑
1≤i<j<k<ℓ<m<n<o≤8

t2i t
2
j t

2
kt

2
ℓ t

2
mt2nt

2
o, t1t2t3t4t5t6t7t8.

(iv) We describe ad∗(tH) and check whether it is in kerω:

Claim. ad∗(tH) ̸∈ kerω.

Proof. Let ρ1 : so(12) → sl(V1) be a half spin representation and ρ2 :
su(2) → sl(V2) a standard representation. From Lemma 2.6.70, there
exists an anti-holomorphic involution J on V1 ⊗ V2 such that ρ1 ⊠ ρ2 :
so(12)⊕su(2)⊕su(2) → sl((V1⊗V2)

J ) is equivalent to ad : kHa → gl(pHa).
It is well-known thatW (ρ1) = { 1

2 (±ε1±ε2±ε3±ε4±ε5±ε6)} where all the
weight have an odd (or even) number of minus signs and W (ρ2) = {±ε′},
so we have W (ρ1 ⊠ ρ2) = { 1

2 (±ε1 ± ε2 ± ε3 ± ε4 ± ε5 ± ε6)± ε′) with odd
(even) number of minus signs for εi. We can take an orthonormal vectors
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on (V1 ⊠ V2)
J for some ρ1 ⊠ ρ2-invariant Hermitian form on V1 ⊠ V2 as

follows:

vλ + Jvλ,

ivλ + J(ivλ),

where vλ ∈ W ( 12 (±ε1 ± ε2 ± ε3 ± ε4 ± ε5 ± ε6) + ε′) Then for the element

t in the maximal torus {(
∑6

i=1 tiA2i−1,2i, diag(it
′,−it′) : ti, t

′ ∈ R (i =
1, · · · , 6)} ⊂ so(12)⊕ su(2), we have

(ρ1 ⊠ ρ2)(t)(vλ + Jvλ) = (
1

2
(±t1 ± t2 ± t3 ± t4 ± t5 ± t6) + t′)(ivλ + J(ivλ))

(ρ1 ⊠ ρ2)(t)(ivλ + J(ivλ)) = (−1

2
(±t1 ± t2 ± t3 ± t4 ± t5 ± t6)− t′)(vλ + J(vλ)),

So we have

ad∗(p1) =
∑

with odd (even) number of minus signs

(
1

2
(±t1 ± t2 ± t3 ± t4 ± t5 ± t6) + t′)2

= 8(t21 + t22 + t23 + t24 + t25 + t26) + 32t′2.

Here we can write t′ = at7+bt8 for some (a, b) ∈ R2 \{0} from the isomor-

phism so(4) ≃ su(2)⊕su(2). Then we have ad∗(p1) = 8
∑6

i=1 t
2
i+32(a2t27+

2abt7t8+b2t28). Thus, we obtain ad∗(p1) ̸∈ kerω from the description kerω
and S(t∗H)WH .

2.6.8 Calculation of the first Pontrjagin class of (g, h ≃
ha) = (e7(−5), e6(−14) ⊕ so(2))

In this section, we consider the symmetric pair (G,H) where G is a connected
linear reductive Lie group and corresponding Lie algebras are (e7(−5), e6(−14) ⊕
so(2)). Here dim p = 64, dim pH = 32, k ≃ so(12) ⊕ su(2) and kH ≃ so(2) ⊕
so(10)⊕ u(1). Our goal of this subsection is the following:

Proposition 2.6.71. The symmetric space Gθ/Hθ does not admit compact
Clifford–Klein forms.

Proof. This comes from the following Lemma 2.6.72.

Lemma 2.6.72. The associated vector bundle K ×(Ad,KH) p/pH over K/KH

is not trivial.

Proof. This comes from the following Lemma 2.6.73.

Lemma 2.6.73. The first Pontrjagin class of the associated vector bundle
K ×(Ad,KH) p/pH over K/KH does not vanish.
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To prove the above lemma, we prepare some lemmas below.

Lemma 2.6.74. The restriction of the isotropy representation ad |so(10) : so(10) →
gl(pHa) is an irreducible representation and it is the coefficient restriction to R
of the half spin representation (ρϖi , V ) (i = 4 or 5) of so(10). Moreover, the
center of kHa acts on V as a scalar multiplication and the scalar is not zero for
the action of u(1) ⊂ su(2).

Remark 2.6.75. The u(1) ⊂ su(2) acts on pHa nontrivially, namely the scalar
is not zero. This comes from that u(1)-action is the restriction of standard
representation of su(2).

Proof of Lemma 2.6.74. The isotropy representation of h is irreducible since
the representation space pHa comes from the simple Lie algebra e6(−14). So, the
former part is clear. “Moreover part” is also clear from Cartan’s fundamental
theorem and Schur’s lemma.

We fix a realization of k = so(12)⊕su(2) and kH = kHa = so(10)⊕so(2)⊕u(1)
as follows:

k = so(12)⊕ su(2) = {(X,Y ) ∈ M(12,R)⊕M(2,C) : tX +X = 0, Y ∗ + Y = 0},
σ : k → k, (X,Y ) 7→ (I10,2XI−1

10,2, I1,1Y I−1
1,1 ),

kH = kHa = kσ.

We realize spin representation on M(32,R) as follows:

so(10) → Ceven(0, 10) ≃ C(0, 9) ≃ C(6, 3)

≃ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(3, 0)

≃ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(1, 2)

≃ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(1, 1)⊗ C(0, 1)

→ M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R)

Here we use maps of Fact 1.5.33, the following isomorphism and inclusion:

C(1, 1) ≃ M(2,R), C(0, 1) → M(2,R)

v+1 7→
(

1
1

)
, v−1 7→

(
−1

1

)
,

v−1 7→
(

−1
1

)
.

Then we obtain the following matrix representation of tori tHa by the above
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realization of spin representation and Lemma 2.6.74:

so(12) → M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R)⊗M(2,R),

(A1,2, 0) 7→
1

2
(T ⊗ J ⊗ 1⊗ 1⊗ 1),

(A3,4, 0) 7→ −1

2
(1⊗ J ⊗ 1⊗ 1⊗ 1),

(A5,6, 0) 7→ −1

2
(1⊗ J ⊗ T ⊗ 1⊗ 1),

(A7,8, 0) 7→ −1

2
(1⊗ 1⊗ 1⊗ J ⊗ 1),

(A9,10, 0) 7→
1

2
(T ⊗ J ⊗ T ⊗ J ⊗ J),

(A11,12, 0) 7→ a(1⊗ 1⊗ 1⊗ 1⊗ J),

(0, i

(
1

−1

)
) 7→ b(1⊗ 1⊗ 1⊗ 1⊗ J),

for some (a, b) ∈ R2 \ {0}. Moreover b ̸= 0 holds from Remark 2.6.75. Thus we
obtain

ad∗(p̃1) = 4(t21 + t22 + t23 + t24 + t25) + 16(at6 + bt7)
2.

Proof of Lemma 2.6.73. It is enough to show that p1(K ×KH
p/pH) ̸= 0 ∈

H4
DR(K/KH ,R), namely, ad∗(p̃1) ̸∈ kerω

(i) Put maximal tori t and tHa of k and kH respectively as follows:

t = tH =

{
(

6∑
i=1

tiA2i−1,2i,

(
it7

−it7

)
) ∈ so(12)⊕ su(2) : ti ∈ R (i = 1, · · · , 7)

}

(ii) We have the following description of S(t∗)W and S(t∗H)WH :

S(t∗)W = R
[ 6∑
i=1

t2i ,
∑

1≤i<j≤6

t2i t
2
j ,

∑
1≤i<j<k≤6

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤6

t2i t
2
j t

2
kt

2
ℓ ,∑

1≤i<j<k<ℓ<m≤6

t2i t
2
j t

2
kt

2
ℓ t

2
m, t1t2t3t4t5t6, t

2
7

]
S(t∗H)WH = R

[ 5∑
i=1

t2i ,
∑

1≤i<j≤5

t2i t
2
j ,

∑
1≤i<j<k≤5

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤5

t2i t
2
j t

2
kt

2
ℓ ,∑

1≤i<j<k<ℓ<m≤5

t2i t
2
j t

2
kt

2
ℓ t

2
m, t1t2t3t4t5, t6, t7

]
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(iii) description of kerω:

kerω = ideal generated by
6∑

i=1

t2i ,
∑

1≤i<j≤6

t2i t
2
j ,

∑
1≤i<j<k≤6

t2i t
2
j t

2
k,

∑
1≤i<j<k<ℓ≤6

t2i t
2
j t

2
kt

2
ℓ ,∑

1≤i<j<k<ℓ<m≤6

t2i t
2
j t

2
kt

2
ℓ t

2
m, t1t2t3t4t5t6, t

2
7 on S(t∗H)WH

Therefore we obtain ad∗(p̃1) = 4(t21+t22+t23+t24+t25)+16(at6+bt7)
2 ̸∈ kerω

from b ̸= 0 and the above description of kerω.

2.7 Applications of Adams’s theorem

The goal of this section is to prove the following:

Proposition 2.7.1. Let (G, H) and (G, Ha) be symmetric pairs which are
locally isomorphic to one of the following list and suppose that G is connected.
Then neither Gθ/Hθ nor Gθ/H

a
θ admit compact Clifford–Klein forms.

• (G,H,Ha) = (SO0(p, q + 1), SO0(p, q), SO0(p, 1)× SO(q)) (q ≥ ρ(p,R)),

• (G,H = Ha) = (SU(p, 2), S(U(p, 1)× U(1))) (p is odd).

• (G,H,Ha) = (SO∗(2(2p)), SO∗(2(2p−1))×SO∗(2), U(2p−1, 1)) (p ≥ 3),

• (G,H,Ha) = (SO(2(p+q)−2,C), SO(2p−1,C)×SO(2q−1,C), SO0(2p−
1, 2q − 1)) (1 ≤ p ≤ q and (p, q) ̸= (1, 1), (1, 2), (1, 4)).

Remark 2.7.2. A part of Proposition 2.7.1 was obtained in the non peer-
reviewed paper [26].

We apply Adams’s theorem to show the above Proposition 2.7.1. To state
Adams’s theorem, we introduce the following Definition 2.7.3 and recall Defini-
tion 2.7.4, 2.7.7.

Definition 2.7.3. For a R-subspace V ⊂ M(p, q;K), we define rankV as fol-
lows.

rankV := min{rank v : v ∈ V \ {0}}.

Here, K = R, C or H.

Definition 2.7.4 ([23]). We use the following notation.

ℓ(p, q, r;K) := max{dimV : V ⊂ M(p, q;K) is a R-subspace such that rankV ≥ r},
a(n, r;K) := max{dimV : V ⊂ Alt(n,K) is a R-subspace such that rankV ≥ r}.

where Alt(n,K) := {X ∈ M(n,K) : tX +X = 0} and K = R, C or H,
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Remark 2.7.5. The above notation ℓ(p, q, r;K) corresponds to the notation
LK(p, q; r) on page 380 of the book [23].

Remark 2.7.6. Since the rank of alternative matrix over R or C is even, the
following equality holds.

a(n, 2r;K) = a(n, 2r − 1;K),

where K is R or C.

Definition 2.7.7 ([1, 2, 25]).

ρ(n,R) := ℓ(n, n, n;R),
ρA(n,R) := a(n, n;R),
ρ(n,C) := ℓ(n, n, n;C).

Remark 2.7.8. Here, ρ(n,R) is called Hurwitz–Radon number ([10, 22]) and
the numbers ℓ(m,n, r;K) and a(n, r;K) are its generalization.

Fact 2.7.9 ([1, 2, 25]). For a positive integer n, when we write n = 2k(2ℓ+1),
k = 4α+β (k, ℓ, α, β ∈ Z≥0, 0 ≤ β ≤ 3) uniquely, the following equalities holds:

ρ(n,R) = 8α+ 2β ,

ρA(n,R) = ρ(n,R)− 1,

ρ(n,C) = 2k + 2.

Remark 2.7.10. In the light of Fact 2.7.9, the following inequalities hold.

(i) ρ(n,R) ≤ n,

(ii) ρA(n,R) ≤ n− 1.

Here, the equalities are attained if and only if n = 1, 2, 4 or 8.

We introduce the number s(G,H) for a homogeneous spaceG/H of reductive
type as in Section 2.2.1, which describes how large subspace of p satisfying
Fact 2.2.5 (ii) we can take.

Definition 2.7.11. For a homogeneous space G/H of reductive type, we set

s(G,H) := max{dimV : V ⊂ p is a R-subspace such that V ∩Ad(K)pH = {0}}.

Remark 2.7.12. The value s(G,H) is well-defined since it is independent of
the choice of a Cartan involution.

Remark 2.7.13. By using s(G,H), Fact 2.2.5 is reformulated as follows. For
a homogeneous space G/H of reductive type, the following two conditions are
equivalent:

(i) Gθ/Hθ admits compact Clifford–Klein forms,
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(ii) s(G,H) = d(G)− d(H)(= dim p− dim pH).

To apply Adams’s theorem to the above symmetric pairs, we describe s(G,H)
as a linear algebraic condition by using the notation in Definition 2.7.4.

Proposition 2.7.14. • For (G,H) = (SO0(p1 + p2, q1 + q2), SO0(p1, q1)×
SO0(p2, q2)), (SU(p1 + p2, q1 + q2), S(U(p1, q1) × U(p2, q2))), (Sp(p1 +
p2, q1 + q2), Sp(p1, q1)× Sp(p2, q2)), we have

s(G,H) = ℓ(p1 + p2, q1 + q2,min(p1, q1) + min(p2, q2) + 1;K)

where K is R, C, H respectively.

• For (G,H,Ha) = (SO∗(2(p+ q)), SO∗(2p)× SO∗(2q), U(p, q)), we have

s(G,H) = a(p+ q, 2(
⌊
p
2

⌋
+
⌊
q
2

⌋
) + 1;C),

s(G,Ha) = a(p+ q, 2min(p, q) + 1;C).

• For (G,H,Ha) = (SO(p+ q,C), SO(p,C)×SO(q,C), SO0(p, q)), we have

s(G,H) = a(p+ q, 2(⌊p
2⌋+ ⌊ q

2⌋) + 1;R),
s(G,Ha) = a(p+ q, 2min(p, q) + 1;R).

We prove only the case when (G, H)=(SO0(p, q), SO0(p1, q1)×SO0(p2, q2))
in the above symmetric pairs. The other cases are proved similarly. We realize
a symmetric pair (G, H)=(SO0(p, q), SO0(p1, q1)× SO0(p2, q2)) as follows:

G := {g ∈ GL(p+ q,R) : tgIp,qg = Ip,q}0,
H := {g ∈ G : gIp1,p2,q1,q2 = Ip1,p2,q1,q2g}0,

where Ip,q =

(
Ip

−Iq

)
, Ip1,p2,q1,q2 =

(
Ip1,p2

Iq1,q2

)
and “0” means taking

the identity component. Then, by taking a Cartan involution θ : g 7→ tg−1, we
have

K = SO(p)× SO(q) =

{(
k1

k2

)
: k1 ∈ SO(p), k2 ∈ SO(q)

}
,

p =

{(
0 B
tB 0

)
∈ M(p+ q,R) : B ∈ M(p, q;R)

}
,

pH =

{(
0 B
tB 0

)
∈ M(p+ q,R) : B =

(
B1 0
0 B2

)
, B1 ∈ M(p1, q1;R), B2 ∈ M(p2, q2;R)

}
.

To prove the above proposition for (G,H)=(SO0(p, q), SO0(p1, q1)×SO0(p2, q2)),
it is enough to show the following:

Lemma 2.7.15. Let (G, H) = (SO0(p, q), SO0(p1, q1) × SO0(p2, q2)). We
identify p with M(p, q;R). For X ∈ M(p, q;R) the following conditions are
equivalent.
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(i) X ∈ K · pH ,

(ii) rankX ≤ min(p1, q1) + min(p2, q2).

Remark 2.7.16. The adjoint representation of K = SO(p) × SO(q) on p is
equivalent to the following representation σ on M(p, q;R).

σ

(
k1 0
0 k2

)
: M(p, q;R) → M(p, q;R), X 7→ k1Xk−1

2 for

(
k1 0
0 k2

)
∈ K.

We identify the adjoint representation with the above representation. Then we
regard pH under the above identification as the following subspace of M(p, q;R):

pH ≃
{(

B1 0
0 B2

)
: B1 ∈ M(p1, q1;R), B2 ∈ M(p2, q2;R)

}
.

Proof of Lemma 2.7.15. Put r := min(p1, q1) + min(p2, q2). The implication
(i)⇒(ii) follows from that rankX ≤ r for any X ∈ pH and that the K-action
on M(p, q;R) preserves the rank. On the other hand, we prove (ii)⇒(i). Take
X ∈ M(p, q,R) such that rankX ≤ r. Now, we take a maximal split abelian
subspace a of p as follows.

a ≃ {diag(a1, · · · , amin(p,q)) ∈ M(p, q;R) : ai ∈ R (i = 1, · · · ,min(p, q))}.

From Ad(K)a = p, we can take k ∈ K such that k·X = diag(a1, · · · , ar, 0, · · · , 0).
Thus, by taking appropriate k′ ∈ K, we get k′k ·X ∈ pH .

Proof of Proposition 2.7.1. • For the case where (G,H,Ha) = (SO0(p, q +
1), SO0(p, q), SO0(p, 1) × SO(q)): This comes from Fact 2.7.18 and the
fact that Ad(O(p) × O(q + 1)) · pH = Ad(SO(p) × SO(q + 1)) · pH in
p ≃ M(p, q + 1;R).

• For the case where (G,H) = (SU(p, 2), S(U(p, 1) × U(1))): This comes
from Proposition 2.7.14, Lemma 2.7.19(b) and d(G)− d(H) = 2p.

• For the case where (G,H,Ha) = (SO∗(2(2p)), SO∗(2(2p−1))×SO∗(2), U(2p−
1, 1)): Since s(G,H) = a(2p, 2p − 1,C) = a(2p, 2p,C) ≤ ρ(2p,C) and
d(G)−d(H) = 2(2p−1) hold, this comes from the following Lemma 2.7.17.

• For the case where (G,H,Ha) = (SO(2(p + q) − 2,C), SO(2p − 1,C) ×
SO(2q− 1,C)), SO0(2p− 1, 2q− 1)) (1 ≤ p ≤ q): Since s(G,H) = a(2(p+
q)−2, 2(p+q)−3;R) = a(2(p+q)−2, 2(p+q)−2;R) = ρA(2(p+q)−2,R)
and d(G)−d(H) = (2p−1)(2q−1) hold, this comes from the Lemma 2.7.22
and Remark 2.7.10.

Lemma 2.7.17. Let n ∈ Z>0 be even. If n ≥ 6, then ρ(n,C) < 2(n− 1).
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Proof. Let n = 2k(2ℓ − 1) (k, ℓ ∈ Z>0). Then, n ≥ 6 if and only if k ≥ 3 or
ℓ ≥ 2. Thus,

2(n− 1)− ρC(n) = 2k+1(2ℓ− 1)− 2k − 4

≥

{
16(2ℓ− 1)− 10 > 0 (k ≥ 3)

2k+13− 2k − 4 ≥ 223− 8 > 0 (ℓ ≥ 2).

Here, we use Fact 2.7.9 and the fact that 2k − k is monotone increasing for
k ∈ Z>0.

Fact 2.7.18 ([KY05, Proposition 5.5.1]). The following conditions on the pair
(p, q) of positive integers are equivalent:

(i) The tangential symmetric space of O(p, q + 1)/O(p, q) admits a compact
Clifford–Klein form.

(ii) q < ρ(p,R).

Lemma 2.7.19. (a) Let m,n be positive integers. Then

ℓ(n,m,m;R) ≥ n ⇔ ρ(n,R) ≥ m.

(b) Let n be a positive integer. Then

ℓ(n, 2, 2;C) ≥ 2n ⇔ n is even.

Proof. (a): This comes from the following (see Definition 2.7.20 for non-singularity):

ℓ(n,m,m;R) ≥ n,

⇔ There exists a linear injective map ϕ : Rn → M(n,m;R) such that

rankϕ(v) ≥ m for all v ∈ Rn \ {0},
⇔ There exists a non-singular bilinear map ϕ : Rm × Rn → Rn,

⇔ There exists a linear injective map ϕ : Rm → M(n,R) such that

rankϕ(v) ≥ n for all v ∈ Rn \ {0}
⇔ ℓ(n, n, n;R) ≥ m

⇔ ρ(n,R) ≥ m.

(b): (⇒): Suppose ℓ(n, 2, 2;C) ≥ 2n. Then, the inequality ℓ(2n, 4, 4;R) ≥ 2n
follows from Lemma 2.7.21. Therefore,

ℓ(2n, 4, 4;R) ≥ 2n ⇔ ρ(2n,R) ≥ 4

⇔ n is even.

(⇐): Assume n is even. It is enough to construct a R-subspace V of M(n, 2;C)
such that dimV = 2n and rankV = 2. Such a V is given by:

V :=

{
X = t

(
α1 −β1 · · · αn

2
−βn

2

β1 α1 · · · βn
2

αn
2

)
: αi, βi ∈ C (i = 1, · · · , n

2 )

}
.
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In fact, we can easily check the above conditions by X∗X =
∑n

2
i=1(|αi|2 +

|βi|2)I2.

Definition 2.7.20. Let U , V and W be vector spaces. A bilinear map f :
U × V → W is said to be non-singular if f satisfies that

f(u, v) = 0 only if u = 0 or v = 0.

Lemma 2.7.21. The following inequality holds.

ℓ(m,n, r;C) ≤ ℓ(2m, 2n, 2r;R).

Proof. The following linear map ϕ is injective and has the property that rankϕ(X) =
2 rankX for X = A+Bi ∈ M(m,n;C) (A,B ∈ M(m,n;R)).

ϕ : M(m,n;C) → M(2m, 2n;R), A+Bi →
(
A −B
B A

)
.

Lemma 2.7.22. For positive integers p, q, the following inequality holds:

p+ q − 1 ≤ pq.

Here, the equality is attained if and only if p = 1 or q = 1.

2.8 Appendix

We give a proof of Fact 2.6.10 for the sake of completeness.
Let G be a connected compact Lie group, ϖ : P → M a principal G-bundle,

ρ : G → SO(V ) a representation of G and E := P ×G V the associated bundle.
We construct a curvature R∇θ on the vector bundle E from a curvature form θ
on the principal G-bundle ϖ : P → M by using dρ : g → so(V ) and see that the
curvature R∇θ is compatible with the Chern-Weil map ω : S(g∗)G → H∗(M,R).

We denote V -valued differential forms of degree q on P by Aq(P, V ).

Definition 2.8.1 ([12, p146]). We introduce the following subset of Aq(P, V ).

Aq
B(P, V ) := {ω ∈ Aq(P, V ) satisfying the following conditions (i),(ii)},

(i) i(X♯)ω = 0 for any X ∈ g,

(ii) R∗
gω = ρ(g)−1ω for any g ∈ G,

where X♯ is the fundamental vector field on P associated with X ∈ g.

We can define a map ϖ∗
q : Γ(E ⊗

∧q
T ∗M) =: Aq(E) → Aq

B(P, V ) for any
q ∈ Z≥0 by

(ϖ∗
qs)p(X1, · · ·Xq) = p−1sϖ(p)(ϖ∗X1, · · · , ϖ∗Xq),

where s ∈ Aq(E), p ∈ P,X1, · · · , Xq ∈ TpP and p−1 is the inverse map of the
linear isomorphism p : V → Eϖ(p), v 7→ [p, v]. Then, we get the following:
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Fact 2.8.2 ([12, Proposition 6.2.3]). The map ϖ∗
q : Aq(E) → Aq

B(P, V ) is
R-linear isomorphism.

Fact 2.8.3 ([12, Proposition 6.3.3]). Let θ ∈ A1(P, g) be a connection form on
P . Then ∇θ := ϖ∗

1
−1 ◦ (d+ dρ(θ)) ◦ϖ∗

0 is a connection on E.

Let d∇θ be a exterior covariant differentiation defined by the connection ∇θ

and Ω ∈ A2(P, g) the curvature form defined by θ. Then following fact holds.

Fact 2.8.4 ([12, Proposition 6.3.3 and 6.3.10]). (i) d∇θ is commutative with
d+ dρ(θ) through ϖ∗

q , i.e. ϖ
∗
q+1 ◦ d∇θ = (d+ dρ(θ)) ◦ϖ∗

q for any q ∈ Z≥0.

(ii) (d+dρ(θ))◦(d+dρ(θ)) = dρ(Ω) : Aq
B(P, V ) → Aq+2

B (P, V ) for any q ∈ Z≥0.

From the above Fact 2.8.4(i), for each q ∈ Z≥0, we get the following com-
mutative diagram.

Aq(E)

⟳ϖ∗
q

��

d∇θ // Aq+1(E)

⟳ϖ∗
q+1

��

d∇θ // Aq+2(E)

ϖ∗
q+2

��
Aq(P, V )

d+dρ(θ)// Aq+1(P, V )
d+dρ(θ)// Aq+2(P, V )

In particular, considering the case when q = 0 and Fact 2.8.4(ii), we can describe
the curvature R∇θ defined by ∇θ on E as follows:

R∇θ = ϖ∗
2
−1 ◦ dρ(Ω) ◦ϖ∗

0 .

For basic differential form α ∈ Aq(P ) (i.e. α ∈ ϖ∗(Aq(M))), we denote the
corresponding differential form on M by α ∈ Aq(M).

proof of Fact 2.6.10. We can easily check that ϖ∗(f(ϖ∗
2
−1 ◦ dρ(Ω) ◦ ϖ∗

0)) =
f(dρ(Ω)). Therefore, we get f(ϖ∗

2
−1 ◦ dρ(Ω) ◦ϖ∗

0) = f(dρ(Ω)). Thus,

[f(R)] = [f(R∇θ )]

= [f(ϖ∗
2
−1 ◦ dρ(Ω) ◦ϖ∗

0)]

= [f(dρ(Ω))]

= ω ◦ dρ∗(f).
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59, (1979), 115–123.

[22] J. Radon, Lineare Scharen orthogonalen Matrizen, Abh. Math. Sem.
Univ.Hamburg 1 (1922), 1–14.

[23] D. B. Shapiro, Compositions of Quadratic Forms, Walter de Gruyter
Berlin New York, (2000).

[24] W. Singhof and D. Wemmer, Parallelizability of Homogeneous Spaces,
II, Math. Ann. 274 (1986) 157–176.

[25] Y.-H. Au-Yeung, On Matrices whose Real Linear Combinations are Non-
singular, Proc. Amer. Math. Soc. 29, No.1 (1971) 17–22.

[26] T. Yoshino, On compact Clifford–Klein forms of rank one tangential sym-
metric spaces and division algebra, Proceedings of the Symposium on Rep-
resentation Theory, (2005), 22–32.

[27] I. Yokota, Realizations of Involutive Automorphisms and Gσ of Exep-
tional Linear Lie Groups G, Part I, G = G2, F4 and E6, Tsukuba J.Math.
Vol. 14 No. 1 (1990), 185–223.

[27] I. Yokota, Realizations of Involutive Automorphisms and Gσ of Exep-
tional Linear Lie Groups G, Part II, G = E7, Tsukuba J.Math. Vol. 14
No. 2 (1990), 379–404.

[28] I. Yokota, Realizations of Involutive Automorphisms and Gσ of Exep-
tional Linear Lie Groups G, Part III, G = E8, Tsukuba J.Math. Vol. 15
No. 2 (1991), 301–314.

165


	Classification of irreducible symmetric spaces admitting compact standard Clifford–Klein forms
	Introduction
	Background
	Continuous analogue of Problem A and main theorem
	Observation on the results

	Preliminary, setting and strategy
	Clifford–Klein form
	Kobayashi's criterion for proper action
	Exact formulation of Problem C
	Strategy of our proof
	Methods and key idea
	key idea in step 4 and 5

	Tangential symmetric space
	Lemmas used in the following sections

	Proof of non-existence part
	(G, H)=(SO(2p,q+1), SO(2p,q)) (1q<HR(2p))
	(G, H)=(SU(2p,2q), Sp(p,q)) (1qp)
	(G, H)=(SO(p,q+1), SO(p,1)SO(q)) (2q<HR(p))
	step a : reduce candidates by upper bound of the dimension of representations
	step b: reduce candidates of primary factor by using criterion for embeddability of semisimple Lie algebras
	step c : determine the pairs (lss, |lss) 
	step d : determine the pairs (l,)

	(G, H)=(E6(-14), F4(-20))

	Classification of reductive subgroups in the representation level 
	(G, H)=(SU(2p,2), U(2p,1)) (p1)
	(G,H)=(SO0(2p,2), U(p,1)) (p2)
	(G, H)=(SO*(8), U(3,1))
	(G, H)=(SO*(8), SO*(6)SO*(2))
	(G,H)=(SO(8,C), SO(7,C))
	(G, H)=(SO(8,C), SO0(7,1))

	Classification of embeddings of l up to Int(g)
	general method
	(g,l)=(su(2p,2), sp(p,1)) (p1)
	(g,l)=(su(2p,2), su(2p,1)) (p1)
	(g,l)=(so(2p,2), so(2p,1)) (p2)
	(g,l)=(so(2p,2), su(p,1)) (p2)
	(g,l)=(so(4p,4), sp(p,1)) (p1)
	(g, l)=(so(3,4), g2(2))
	(g, l)=(so(4,4), spin(3,4))
	(g, l)=(so(8,8), spin(1,8))
	(g,l)=(so*(8), spin(1,6))
	(g, l)=(so(8,C), spin(1,7))
	(g, l)=(so(8,C), spin(7,C))

	Appendix
	dimension of irreducible representation of simple Lie algebra
	dimension of irreducible representation of real rank one Lie algebras
	Cartan's fundamental theorem and Iwahori's criterion
	embeddability of semisimple Lie algebras into sl(n,R), su*(2n), so(n,C) and sp(n,C)
	associated duality for semisimple Lie algebra
	embeddability for an irreducible representation

	Bibliography

	Obstruction for the existence of tangential symmetric spaces
	Introduction and Main results
	Preliminary
	Setting and Notation
	Tangential analogue of Kobayashi's criterion
	Associated pair

	Calabi-Markus phenomenon
	Applications of Pfister's theorem
	Maximality of non-compactness
	Non-triviality of symmetric spaces as vector bundles
	general method
	Calculation of first Pontrjagin class for Grassmaniann manifolds
	Calculation of first Pontrjagin class of SO0(2p,2q)/SU(p,q)
	Calculation of the first Pontrjagin class of (g,h,ha)=(e6(6), su*(6)su(2), f4(4))
	Calculation of the first Pontrjagin class of (g,h,ha)=(e7(7), su(2)so*(12),e6(2)so(2))
	Calculation of the first Pontrjagin class of (g,hha)=(e6(2),so*(10)u(1))
	Calculation of the first Pontrjagin class of (g,hha)=(e8(8),e7(-5)su(2))
	Calculation of the first Pontrjagin class of (g,hha)=(e7(-5), e6(-14)so(2))

	Applications of Adams's theorem
	Appendix
	Acknowledgement
	Bibliography


