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Abstract

The microlocal sheaf theory due to Kashiwara and Schapira can be regarded as Morse
theory with sheaf coefficients. It has many applications to the study of partial differential
equations and singularity theory. Recently it has been applied to symplectic geometry,
after the pioneering work of Tamarkin.

In this thesis, following Tamarkin’s sheaf-theoretic approach, we apply the microlocal
sheaf theory to several problems in symplectic geometry in cotangent bundles. In partic-
ular, using sheaf-theoretic methods, we study (i) the intersection of two compact exact
Lagrangian submanifolds, (ii) the displacement energy of two compact subsets.

First, in Chapter 3, we study intersections of compact exact Lagrangian submanifolds
in cotangent bundles. We show that the total Betti number of the clean intersection of
two compact exact Lagrangian submanifolds is bounded from below by the dimension of
the Hom space of sheaf quantizations of the Lagrangians in Tamarkin’s category. As a
corollary, we give a purely sheaf-theoretic proof of a result of Nadler and Fukaya-Seidel-
Smith, which asserts that the cardinality of the transverse intersection of two compact
exact Lagrangians is at least the total Betti number of the base manifold.

Second, in Chapter 4, we study the displacement energy of compact subsets of cotan-
gent bundles. We introduce a persistence-like pseudo-distance on Tamarkin’s category
and prove that the distance between an object and its Hamiltonian deformation is at most
the Hofer norm of the Hamiltonian function. Using the distance, we show a quantita-
tive version of Tamarkin’s non-displaceability theorem, which gives a lower bound of the
displacement energy of compact subsets of cotangent bundles. This theorem gives a sheaf-
theoretic proof of a result of Polterovich, which says the positivity of the displacement
energy of a compact subset whose interior is non-empty.

This thesis is based on the following papers of the author. Chapter 3 corresponds to
[Ikel7] and Chapter 4 corresponds to [AI17], which is a joint work with Tomohiro Asano.
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Chapter 1

Introduction

In this thesis, we study several problems in symplectic geometry in cotangent bundles
using the microlocal sheaf theory. First, we review the microlocal sheaf theory and pre-
vious results on its applications to symplectic geometry. Then we present the problems
(Problem 1.1.1 and Problem 1.1.2) which we will consider in this thesis.

1.1 Microlocal sheaf theory and symplectic geometry in
cotangent bundles

The microlocal sheaf theory was introduced and systematically developed by Kashiwara
and Schapira [KS90]. The theory can be regarded as Morse theory with sheaf coefficients.
One of the key ingredients of the theory is the notion of microsupports of sheaves, which
enable us to define “critical points of functions with respect to sheaves”. In the sequel, let
k be a field. Let moreover X be a C*°-manifold without boundary and denote by DP(X)
the bounded derived category of sheaves of k-vector spaces. For an object F € D"(X),
its microsupport SS(F') is defined as the set of directions in which the cohomology of F'
cannot be extended isomorphically. The microsupport is a closed subset of the cotangent
bundle 7*X of X and conic, that is, invariant under the action of Ryg on 7%*X. As a
generalization of classical Morse theory, we can prove that if the derivative dy of a C°-
function ¢: X — R does not meet SS(F’), then the cohomology of F' on the sublevel set
¢ 1((—00,c)) does not change. We also obtain the Morse inequality for sheaves, which
describes how the cohomology of F on ¢~ !((—o0, ¢)) changes when the derivative dy goes
across SS(F).

Cotangent bundles are typical symplectic manifolds and hence we can consider non-
displaceability problems as explained below. In what follows, let M be a non-empty con-
nected C'*°-manifold without boundary and denote by T*M its cotangent bundle. We also
denote by (x; &) a local homogeneous coordinate system. We regard T*M as an exact sym-
plectic manifold equipped with the Liouville 1-form arp«pr = (€, dz). Let I be an open in-
terval containing [0, 1]. A compactly supported C*°-function H = (Hs)sey: T"M x I — R
defines a time-dependent Hamiltonian vector field Xy = (Xp,)s on T*M. By the com-
pactness of the support, Xz generates a Hamiltonian isotopy ¢ = (¢)s: T*M x I —
T*M. Compact subsets A and B of T*M are said to be mutually non-displaceable if
AN ¢l (B) # 0 for any compactly supported function H. Here ¢! denotes the time-one
map of the Hamiltonian isotopy ¢f. The problem of determining whether or not compact
subsets, especially Lagrangians, are mutually non-displaceable is a central issue in sym-
plectic geometry. As a quantitative generalization, to give an estimate of the cardinality
#(ANgH (B)) is also an important problem. Nowadays, many symplectic geometers study
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the problems using pseudo-holomorphic curves and Lagrangian intersection Floer theory.

Tamarkin [Tam08] proposed a new approach to non-displaceability problems, which
is based on the microlocal sheaf theory. For a conic Lagrangian submanifold of 7% M,
a sheaf on M whose microsupport coincides with it (outside the zero-section) is called
a sheaf quantization of the Lagrangian. For a non-conic Lagrangian of T*M, one can
consider a sheaf quantization by adding one more variable to the base manifold M and
“conifying” it. Using sheaf quantizations, Tamarkin studied the non-displaceability of par-
ticular Lagrangian submanifolds. After his work, Guillermou-Kashiwara-Schapira [GKS12]
and Guillermou [Guil2, Guil6a] proved the existence of sheaf quantizations of graphs of
Hamiltonian isotopies and compact exact Lagrangian submanifolds in cotangent bundles,
respectively. See Section 2.2 for more details. Using sheaf quantization, they studied
the non-displaceability of the zero-sections of cotangent bundles and topological proper-
ties of compact exact Lagrangian submanifolds. Note that sheaf-theoretic approaches to
symplectic geometry also appeared in [KO01, NZ09, Nad09].

We give more precise explanation on results of Tamarkin [Tam08|, which we need to
state our results. See Subsection 2.2.2 for more details. He introduced the category D(M)
which is defined as a quotient category of DP(M x R). For a compact subset A of T*M,
Da(M) denotes the full subcategory of D(M) consisting of objects whose microsupports
are contained in the cone of A in T*(M x R). For an object F' € D(M) and ¢ € Rxg,
there is a canonical morphism 79 (F): F' — T, F, where T.: M x R — M x R is the
translation map (z,t) — (z,t+ c). Moreover, the category D(M) admits an internal Hom
functor Hom* such that Hompyp)(F, G) ~ HRIyix[o +00) (M x Ry Hom*(F,G)) for any
F,G € D(M). Denote by gr: M x R — R the projection and let A and B be compact
subsets of T*M. Tamarkin proved the following two theorems:

(i) (Tamarkin’s separation theorem) If there exist F' € Dy(M) and G € Dg(M) such
that Rqr, Hom*(F,G) # 0, then AN B # (.

(ii) (Tamarkin’s non-displaceability theorem) If there exist F' € D (M) and G € Dp(M)
such that 7o .(Rgr, Hom*(F,G)) # 0 for any ¢ € R>g, then A and B are mutually
non-displaceable.

The aim of this thesis is to give quantitative generalizations of Tamarkin’s theorems
in two different directions. More concretely, we consider the following two problems.

Problem 1.1.1. Guillermou dealt with only one Lagrangian submanifold and did not
consider the intersection of two Lagrangian submanifolds. Moreover, Tamarkin’s separa-
tion theorem concerns only the non-emptiness of the intersection and says nothing about
its cardinality. We wish to estimate the cardinality or the total Betti number of the
intersection using Guillermou’s sheaf quantizations and the functor Hom™.

Problem 1.1.2. Tamarkin dealt with only the non-displaceability of two compact subsets
and did not consider displaceable subsets. Even if two compact subsets are displaceable,
we would like to estimate their displacement energy using Tamarkin’s category D(M ).

We study Problem 1.1.1 in Chapter 3 and Problem 1.1.2 in Chapter 4. We state our
results for each problems in Section 1.2 and Section 1.3, respectively.

1.2 Compact exact Lagrangian intersections in cotangent

bundles via sheaf quantization

In Chapter 3, we prove that the cardinality of the transverse intersection of two compact
exact Lagrangian submanifolds in cotangent bundles is bounded from below by the dimen-
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sion of the local cohomology of Hom* applied to sheaf quantizations of the Lagrangians.
More generally, provided k = Fy = Z/27Z, we show that a clean version of the estimate
holds with “cardinality” replaced by “total Fo-Betti number”.

1.2.1 Owur results

In this part, we assume that M is compact. A submanifold L of dimension dim M in
T*M is said to be exact Lagrangian if ap«ps|r is exact. The main result of this part is
the following. See Section 2.2 for the definitions of simple sheaf quantizations and the
category T (M).

Theorem 1.2.1 (see Theorem 3.4.7). For i = 1,2, let L; be a compact connected exact
Lagrangian submanifolds and F; € DP(M x R) be a simple sheaf quantization associated
with L; and a function f;: L; — R satisfying df; = ap«pr|n, - Assume that Ly and Lo
intersect cleanly, that is, L1 N Ly is a submanifold of T*M and T),(L1 N Lg) = T, L1 N1, Lo
foranyp € LiNLs. Let L1NLy = U]_l C; be the decomposition into connected components
and define f21(C;) := fa(p) — fi(p) for some p € C; (independent of the choice of p). Let
moreover a,b € R with a < b ora € R,b = 400. Then, fork =Fy =7/27, one has

Z Z dlm]}?z C] 5 ]FQ)

(1<f21( )<b kEZ

(1.2.1)
> Z dimp, HkRFMX[mb)((—oo, b); Hom™(Fy, F1)).
kEZ
In particular,
ZZdlm}F? C],FQ > Zdlﬂl]ﬁ‘2 HOIIIT( )(FQ,Fl[k]). (1.2.2)
j=1keZ kEZ

If L1 and Ly intersect transversally, the inequalities hold for any field k, not only for Fs.

We also have
Homy () (Fy, Fi[k]) ~ H*(M; L) for any k € Z, (1.2.3)

where L is the locally constant sheaf of rank 1 on M associated with F} and F; (see Propo-
sition 3.1.2 for details). Combining this with Theorem 1.2.1, we obtain a purely sheaf-
theoretic proof of the following result of Nadler [Nad09] and Fukaya-Seidel-Smith [FSS08],
as a corollary.

Corollary 1.2.2 ([Nad09, Theorem 1.3.1] and [FSS08, Theorem 1]). Let L and Ly be
compact connected exact Lagrangian submanifolds of T* M intersecting transversally. Then

#(L1NLy) > Y dim H*(M; L) (1.2.4)
keZ

for any rank 1 locally constant sheaf L on M over any field k. In particular, #(LiNLg) >
> ez dim H*(M; k).

The proof of Theorem 1.2.1 goes as follows. First, we apply the Morse-Bott inequality
for sheaves (see Theorem 2.1.10) to the object H := Hom*(F, F}) and the function



M xR — R, (x,t) — t, and obtain

37 S dim HRT (M x {c}; RMaferso0)(H) s ()
a<c<bkeZ
> " dim H*RT yq,) (M x (—00,b); H).
kEZ

(1.2.5)

In order to calculate the left hand side of (1.2.5), we use the functor phom: DP(X)°P x
D"(X) — DP(T*X) introduced by Kashiwara-Schapira [KS90]. Using the functor, we
show the isomorphism

RI (M x {c}; RTnrxjero0)(H) arxqe}) = RE(Qp; phom(Te Fa, Fi)la, ), (1.2.6)

where T.: M xR — M xR, (z,t) — (z,t+c¢) and Q4 := {7 > 0} C T*(M x R) with (¢;7)
being the homogeneous symplectic coordinate on T*R. The object phom(T,.Fs, F1)|a,
is supported in {(x,t;7,7) | 7 > 0,(x;&) € L1 N Lo, t = fo(z;€) — fi(z;€) = ¢} and
isomorphic to a shift of the constant sheaf of rank 1 on the support. This completes the
proof.

Remark 1.2.3. Even if the intersection is degenerate, (1.2.5) and (1.2.6) still hold, but
the object phom(T..Fa, F1)|q, is not necessarily locally constant on the support. In this
sense, the family of sheaves {phom (Tt Fs, F1)|o, }. encodes the “contribution” from each
possibly degenerate component of the intersection L; N Lo. We will also explore the
contribution in degenerate cases in Section 3.A Appendix I.

1.2.2 Relation to Lagrangian intersection Floer theory

Although our approach is purely sheaf-theoretic, it seems to be closely related to Floer
cohomology and Fukaya categories. We briefly remark the relation below. The category
T (M) has the following properties:

(i) Hamiltonian invariance ([Tam08, GS14]),

(ii) the dimension of the cohomology of the clean intersection of two compact exact
Lagrangian submanifolds is bounded from below by the dimension of the Hom space
of simple sheaf quantizations (Theorem 1.2.1).

Moreover, as pointed out by T. Kuwagaki, the following also holds in 7 (M):

(iii) a simple sheaf quantization associated with any compact connected exact Lagrangian
submanifold is isomorphic to a simple sheaf quantization associated with the zero-
section of T*M (see Proposition 3.1.4).

The Floer cohomology H F*(Ls, L1) has similar properties to (i) and (ii), though the ap-
proach is totally different. Floer cohomology for clean Lagrangian intersections was studied
by Pozniak [Poz99], Frauenfelder [Fra04], Fukaya-Oh-Ohta-Ono [FOOO09a, FOOO09b],
and Schmaéschke [Sch16]. Moreover, Nadler [Nad09] and Fukaya-Seidel-Smith [FSS08,
FSS09] proved the following, which corresponds to (iii): in the infinitesimal Fukaya cat-
egory of T* M, any relatively spin compact connected exact Lagrangian submanifold of
T*M with vanishing Maslov class is isomorphic to a shift of the zero-section. Note that
their assumptions of relatively spin and vanishing Maslov class can be removed, thanks
to results of Abouzaid [Abol2], and Abouzaid and Kragh [Kral3], respectively. We also
remark that Guillermou [Guil2, Guil6a] gave a sheaf-theoretic proof for the relatively spin
property and the vanishing of the Maslov class.
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1.3 Persistence-like distance on Tamarkin’s category and
symplectic displacement energy

In Chapter 4, we introduce a pseudo-distance on Tamarkin’s category, inspired by the
recent work by Kashiwara-Schapira [KS17] on the sheaf-theoretic interpretation of the in-
terleaving distance for persistence modules. We also propose a new sheaf-theoretic method
to estimate the displacement energy of compact subsets of cotangent bundles, which is a
quantitative generalization of Tamarkin’s non-displaceability theorem.

For a compact subset of a symplectic manifold, its displacement energy measures the
minimal energy of Hamiltonian isotopies which displace the subset. In this part, we
consider the displacement energy of subsets of cotangent bundles. Following Hofer [Hof90],
we define the norm of a compactly supported Hamiltonian function H: T*M x I — R by

j# = [ (o)~ i ) ) s (13.1)

p

For compact subsets A and B of T*M, we define their displacement energy e(A, B) by

e(A, B) := inf {||H| (1.3.2)

H:T*M x I — R with compact support,
Angl(B) =0 '

Note that if e(A, B) = 400, then AN ¢ (B) # ) for any compactly supported function
H. In this part, we give a lower bound of e(A4, B) in terms of the microlocal sheaf theory.

1.3.1 Main results

First, using the R-direction of M x R, we introduce the following pseudo-distance dp(x)
on Tamarkin’s category D(M ), which is similar to the interleaving distance for persistence
modules (see [CCSGT09, CdSGO16]). Our definition is inspired by the pseudo-distances
on the derived categories of sheaves on vector spaces recently introduced by Kashiwara-
Schapira [KS17]. See also Remark 4.2.7 for their relation.

Definition 1.3.1.

(i) Let F,G € D(M) and a,b € R>g. Then F is said to be (a,b)-isomorphic to G if
there exist morphisms «,6: F — T,,G and 5,v: G — Ty, F satisfying the following
conditions:

(1) F % TG 20 T, F is equal to moapp(F): F — Tary,F and G 2

1
Ty F ELIEN Totb, G is equal to 70 445(G): G = Ty4p, G,

(2) T4,2q(G) 0 = T4,24(G) 06 and 7y 24 (F') 0 f = Tp2p(F) 0 .
(ii) For objects F,G € D(M), one defines
dp(vy(F, G) = inf{a+b € R>o | a,b € Rx, I is (a, b)-isomorphic to G}, (1.3.3)
and calls dp(yp) the translation distance.

Now, let us consider the distance between an object in D(M) and its Hamiltonian
deformation. Let H: T*M x I — R be a compactly supported Hamiltonian function.
Then, using the sheaf quantization associated with the Hamiltonian isotopy ¢ due to
Guillermou-Kashiwara-Schapira [GKS12] one can define a functor Wi: D(M) — D(M),
which induces a functor Wi: Dy (M) — Dyt (a) (M) for any compact subset A of T*M.
Our first result is the following:



Theorem 1.3.2 (see Theorem 4.2.13). Let G € D(M) and H: T*M x I — R be a
compactly supported Hamiltonian function. Then dp) (G, U (G)) < || H]|.

The outline of the proof is as follows. First we prove that the distance between two
objects is controlled by the angle of a cone which contains the microsupport of a “homotopy
sheaf” connecting them. Then using the sheaf quantization associated with ¢, we can
construct a homotopy sheaf G’ € D(M xR x I) such that G'xrx{oy = G, G’ prxrxq1y =~
UH(@G) and SS(G') C T*M x vy, where

YH = {(tv ST, 0)

We thus obtain the result.

Next, we use the above result to estimate the displacement energy. Recall that one
can define an internal Hom functor Hom™ on the category D(M). Let gr: M x R — R
denote the projection as before. Using these notions, we make the following definition.

Definition 1.3.3. For F,G € D(M), one defines
eD(M) (F, G) = d’D(pt) (RQR* Hom*(F, G), 0)
= inf{c S RZO ‘ T07C(RQ]R* Hom*(F, G)) = O}.
Our main theorem is the following:

Theorem 1.3.4 (see Theorem 4.3.2). Let A and B be compact subsets of T*M. Then,
for any F € Do(M) and G € Dp(M), one has

—maXHS(p)~T§0§—mian(p)'T} CT (R xI). (1.3.4)
P 2

(1.3.5)

e(A, B) > epn) (F, G). (1.3.6)
In particular, for any F' € Da(M) and G € Dp(M),
e(A, B) > inf{c € R>q | Homp(pp) (F, G) — Hompp) (F, TeG) is zero}. (1.3.7)

This theorem implies, in particular, that 79 .(Rgr, Hom*(F,G)) is non-zero for any
¢ € R, then A and B are mutually non-displaceable. In this sense, the theorem is
a quantitative version of Tamarkin’s non-displaceability theorem (see Tamarkin [TamO08,
Theorem 3.1] and Guillermou-Schapira [GS14, Theorem 6.2]).

Theorem 1.3.4 is proved by Tamarkin’s separation theorem and Theorem 1.3.2 as fol-
lows. Suppose that a compactly supported Hamiltonian function H satisfies AN ¢ (B) =
(). Then, by Tamarkin’s separation theorem, Rgr, Hom*(F, ¥ (G)) ~ 0. Thus, by fun-
damental properties of dp(yr) and Theorem 1.3.2, we obtain

e'D(M) (F, G) = d'D(pt) (RQR* Hom*(F, G), 0)
< dpn (Hom*(F, G), Hom*(F, V{1 (G))) (1.3.8)
< dpn) (G, ¥ (G)) < [|H].

As an application of Theorem 1.3.4, we prove that the displacement energy of the
image of the compact exact Lagrangian immersion

S™={(z,y) e R xR | HCCH2 +y? = 1} — T'R™ ~ R?™, (x,y) — (z;yx) (1.3.9)

is greater than or equal to 2/3 (see Example 4.4.1). Using this estimate, we give a purely
sheaf-theoretic proof of the following theorem of Polterovich [Pol93], for subsets of cotan-
gent bundles. Note that he proved the result for more general class of symplectic manifolds,
using pseudo-holomorphic curves.

Proposition 1.3.5 ([Pol93, Corollary 1.6]). Let A be a compact subset of T*M whose
interior is non-empty. Then the displacement energy of A is positive: e(A, A) > 0.

6



1.3.2 Related topics

The interleaving distance for persistence modules is now widely used in topological data
analysis (see, for example, [CCSGT09, CdSGO16]). Recently, Kashiwara-Schapira [KS17]
interpreted the distance as that on the derived category of sheaves. In symplectic geometry,
the notion of persistence modules was introduced by Polterovich-Shelukhin [PS16] (see
also Polterovich-Shelukhin-Stojisavljevi¢ [PSS17]). For barcodes of chain complexes over
Novikov fields such as Floer cohomology complexes, see also Usher-Zhang [UZ16]. Note
also that Theorem 1.3.2 seems to be related to the results of Schwarz [Sch00] and Oh [Oh05]
for continuation maps, although they did not use persistence modules.

As remarked in Tamarkin [Tam08, Section 1], for F,G € D(M), one can associate a
submodule H(F,G) of [[.cg Homp(ar)(F, TeG), which is a module over a Novikov ring
Aonov(k) (with a formal variable T'). Using this module, we can express (1.3.7) in Theo-
rem 1.3.4 as

e(A, B) > inf{c € R>¢ | H(F,G) is T*-torsion}. (1.3.10)

See Remark 4.3.5 for more details. This inequality seems to be closely related to the esti-
mate of the displacement energy discussed in Fukaya-Oh-Ohta-Ono [FOOO09a, FOOO09b,
Theorem J] and [FOOO13, Theorem 6.1].

1.4 Organization

This thesis is organized as follows.

Chapter 2 is devoted to an introduction of some notions and a review of previous
results. In Section 2.1, we recall some definitions and results in the microlocal sheaf
theory due to Kashiwara and Schapira [KS90]. In Section 2.2, we review results of
[Tam08, GKS12, GS14, Guil2, Guil6a] about Tamarkin’s non-displaceability theorem,
and sheaf quantization of Hamiltonian isotopies and compact exact Lagrangian submani-
folds in cotangent bundles.

Chapter 3 concerns compact exact Lagrangian intersections in cotangent bundles. In
Section 3.1, we prove the isomorphism (1.2.3) and the non-displaceability of two compact
exact Lagrangian submanifolds as a corollary. In Section 3.2, we apply the Morse-Bott
inequality for sheaves to Hom* and obtain (1.2.5). Then, in Section 3.3, we interpret
the local cohomology in the left hand side of (1.2.5) using the phom functor. Finally, in
Section 3.4, we prove Theorem 1.2.1. In Section 3.A Appendix I, we briefly remark that our
method can deal with degenerate Lagrangian intersections, using very simple examples. In
Section 3.B Appendix I, we prove the “functoriality” of simple sheaf quantizations with
respect to Hamiltonian isotopies. In Section 3.C Appendix Il by Tomohiro Asano, we
relate the shift of a simple sheaf quantization of a Lagrangian to the grading in Lagrangian
intersection Floer cohomology theory.

Chapter 4 concerns the relation between the displacement energy and Tamarkin’s the-
orem. In Section 4.1, we give a complementary result on torsion objects. In Section 4.2,
we introduce the translation distance dp(yr) on Tamarkin’s category and prove Theo-
rem 1.3.2. Then, in Section 4.3, we show Theorem 1.3.4. Finally, in Section 4.4, we give
some examples and applications.



Chapter 2

Preliminaries on microlocal sheaf
theory and its applications to
symplectic geometry

2.1 Preliminaries on microlocal sheaf theory

In this thesis, all manifolds are assumed to be real manifolds of class C*° without boundary.
Throughout this thesis, let k be a field.

In this section, we recall some definitions and results from [KS90]. We mainly follow
the notation in [KS90]. Until the end of this section, let X be a C°°-manifold without
boundary.

2.1.1 Geometric notions ([KS90, §4.3, §A.2])

For a locally closed subset A of X, we denote by A its closure and by Int(A) its interior.
We also denote by Ax or simply A the diagonal of X x X. We denote by 7x: TX — X
the tangent bundle of X, and by wx: T*X — X the cotangent bundle of X. If there is
no risk of confusion, we simply write 7 and 7 instead of 7x and mx, respectively. For a
submanifold M of X, we denote by T, X the normal bundle to M in X, and by T, X the
conormal bundle to M in X. In particular, 7% X denotes the zero-section of 7" X. We set
T*X :=T*X \ T% X. For two subsets S; and Sy of X, we denote by C(S1,S52) C TX the
normal cone of the pair (Si,.52).

Let f: X — Y be a morphism of manifolds. With f we associate the following mor-
phisms and commutative diagram:

T*X < x xy 7Y Ty

WXJ/ lw lw (2.1.1)

X=—s—-X Y,

where f; is the projection and fy is induced by the transpose of the tangent map f': TX —
X xy TY.

We denote by (z;€) a local homogeneous coordinate system on 7% X. The cotangent
bundle 7% X is an exact symplectic manifold with the Liouville 1-form ag+x = (£, dx). We
denote by a: T*X — T*X, (x;€) — (z; —&) the antipodal map. For a subset A of T*X,
we denote by A® its image under the map a. We also denote by h: T*T*X = TT*X the
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Hamiltonian isomorphism given in local coordinates by h(dz;) = —0/9¢; and h(d¢;) =

2.1.2 Microsupports of sheaves ([KS90, §5.1, §5.4, §6.1])

We denote by kx the constant sheaf with stalk k and by Mod(ky) the abelian category
of sheaves of k-vector spaces on X. Moreover we denote by DP(X) = D?(Mod(kx)) the
bounded derived category of Mod(ky). One can define Grothendieck’s six operations be-
tween derived categories of sheaves RHom, ®, Rfy, f ', Rfi, f* for a morphism of manifolds

f: X — Y. Since we work over the field k, we simply write ® instead of (ELQ Moreover, for
F € D*(X) and G € DP(Y), we define their external tensor product F X G € D?(X x Y)
by FXG := q;(lF@q{,lG, where gx: X XY — X and gy : X XY — Y are the projections.
For a locally closed subset Z of X, we denote by kz the zero-extension of the constant
sheaf with stalk k on Z to X, extended by 0 on X \ Z. Moreover, for a locally closed
subset Z of X and F € DP(X), we define Fz, RI['7(F) € D(X) by

Fy; :=F®ky, sz(F) = RHom(kZ, F) (2.1.2)

One denotes by wy € DP(X) the dualizing complex on X, that is, wy := a'yk, where
ax: X — pt is the natural morphism. Note that wx is isomorphic to orx[dim X]|, where
orx is the orientation sheaf on X. More generally, for a morphism of manifolds f: X — Y,
we denote by wy = wx/y = f'ky ~ wx ® f*1w§_1 the relative dualizing complex. For
F € D"(X), we define the Verdier dual of F by DxF := RHom(F,wx).

Let us recall the definition of the microsupport SS(F) of an object F' € DP(X).

Definition 2.1.1 ([KS90, Definition 5.1.2]). Let FF € DP(X) and p € T*X. One says
that p ¢ SS(F) if there is a neighborhood U of p in T*X such that for any zp € X and
any C'*°-function ¢ on X (defined on a neighborhood of x() satisfying dy(z¢) € U, one
has RI(u>p(z0)} (F)ze = 0.

One can check the following properties:

(i) The microsupport of an object in DP(X) is a conic (i.e., invariant under the action
of Ryg on T*X) closed subset of T*X.

(ii) For an object F € DP(X), one has SS(F) N T%X = 7(SS(F)) = Supp(F).

(iii) The microsupports satisfy the triangle inequality: if F; — Fy — Fj s a
distinguished triangle in DP(X), then SS(F;) C SS(F}) U SS(Fy) for j # k.

We also use the notation SS(F) := SS(F) NT*X = SS(F) \TxX.
Example 2.1.2. (i) If F'is a locally constant sheaf on X, then SS(F') C T3 X. Conversely,
if SS(F) C T%X then the cohomology sheaves H¥(F) are locally constant for all k € Z.

(ii) Let M be a closed submanifold of X. Then SS(kys) = T3, X C T*X.

(iii) Let ¢: X — R be a C*°-function and assume that dp(z) # 0 for any = € ¢~1(0). Set
U:={zeX|¢(x)>0}and Z :={z € X | ¢(x) > 0}. Then

SS(ky) = Tx X|v U {(x; Ade(z)) | (x) = 0,

A= 0}, (2.1.3)
SS(kz) = Tx X|z U {(z; Mdp(z)) | p(z) = 0,A > 0} -



The following proposition is called (a particular case of) the microlocal Morse lemma.
See [KS90, Proposition 5.4.17 and Corollary 5.4.19] for more details. The classical theory
corresponds to the case F' is the constant sheaf kx.

Proposition 2.1.3. Let F € DP(X) and ¢: X — R be a C*®-function. Let moreover
a,be R witha <boraeR,b=+00. Assume

(1) ¢ is proper on Supp(F),
(2) do(x) & SS(F) for any = € ¢™*([a,b)).

Then the canonical morphism
RI(p7 ((—00,b)); F) — R (9™ ((—00,a)); F) (2.1.4)
is an isomorphism.

By using microsupports, we can microlocalize the category D(X). Let A ¢ T*X
be a subset and set Q = T*X \ A. We denote by DY (X) the subcategory of DP(X)
consisting of sheaves whose microsupports are contained in A. By the triangle inequality,
the subcategory DY (X) is a triangulated subcategory. We define DP(X;Q) as the local-
ization of DP(X) by DY (X): DP(X;Q) := DP(X)/DY%(X). A morphism u: F — G in
DP(X) becomes an isomorphism in DP(X; Q) if u is embedded in a distinguished triangle
F - G — H % with SS(H) N Q = (. For a closed subset B of Q, D%(X;Q) denotes
the full triangulated subcategory of DP(X; Q) consisting of F with SS(F)NQ C B. In the
case Q = {p} with p € T*X, we simply write D°(X;p) instead of D(X;{p}). Note that
our notation is the same as in [KS90] and slightly differs from that of [Guil2, Guil6a].

2.1.3 Functorial operations ([KS90, §5.4])

We consider bounds for the microsupports of proper direct images, non-characteristic
inverse images, and RHom.

Definition 2.1.4 ([KS90, Definition 5.4.12]). Let f: X — Y be a morphism of manifolds
and A be a closed conic subset of T*Y. The morphism f is said to be non-characteristic
for A if

FHAN N (TX) C X xy TyY. (2.1.5)

s

See (2.1.1) for the notation fr and fy. In particular, any submersion from X to Y is
non-characteristic for any closed conic subset of T*Y. Note that submersions are called
smooth morphisms in [KS90]. One can show that if f: X — Y is non-characteristic for a
closed conic subset A of T*Y, then f;f-1(A) is a closed conic subset of T*X.

Theorem 2.1.5 ([KS90, Proposition 5.4.4 and Proposition 5.4.13]). Let f: X — Y be a
morphism of manifolds, F € D(X), and G € D®(Y).

(i) Assume that f is proper on Supp(F). Then SS(Rf.F) C frf; (SS(F)).

(ii) Assume that f is non-characteristic for SS(G). Then the canonical morphism
G ®wr — f'G is an isomorphism and SS(f~1G) USS(f'G) C faf7 (SS(G)).

Proposition 2.1.6 ([KS90, Proposition 5.4.2]). For i = 1,2, let X; be a manifold and
denote by q; the projection X1 x Xo — X;. Let moreover F; € D(X;) fori=1,2. Then

SS(RHom(qy ' Fo, q; ' Fy)) C SS(F1) x SS(Fy). (2.1.6)
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For closed conic subsets A and B of T* X, let us denote by A+ B the fiberwise sum of
A and B, that is,

A+ B:={(r;a+b) |z en(A)Nn(B),ac ANt (x),be Bna (x)} Cc T*X. (2.1.7)
Proposition 2.1.7 ([KS90, Proposition 5.4.14]). Let F,G € DP(X).
(i) If SS(F)NSS(G)* C T4 X, then
SS(F ® G) C SS(F) + SS(G). (2.1.8)

(ii) If SS(F)NSS(G) C Tx X, then
SS(RHom(F,G)) C SS(F)* + SS(G). (2.1.9)
Moreover if F' is cohomologically constructible (see [KS90, §3.4] for the definition),
the natural morphism RHom(F, kx) ® G — RHom(F,G) is an isomorphism.

2.1.4 Non-proper direct images ([Tam08, GS14])

We consider estimates of the microsupports of non-proper direct images in special cases.
Let V4 and V4 be finite-dimensional real vector spaces and consider a constant linear map
u: X x Vi = X x V5. That is, we assume that there exists a linear map uy: V3 — V5
satisfying v = idx xuy. The map w induces the maps

T*X x Vi x V5
/ \
T*X x Vi x V}f T*X x Vo x Vi (2.1.10)

T*X x Vo x VI

Note that for a subset A of T*(X x Vi), we have ur(u;'(A)) = v (v:(A)).

Definition 2.1.8. Let u: X x V; — X X V5 be a constant linear map and A C T*(X x V1)
be a closed subset. One sets

ug(A) = v’ (m) . (2.1.11)

Proposition 2.1.9 ([Tam08, Lemma 3.3] and [GS14, Theorem 1.16]). Let u: X x V; —
X x Vi be a constant linear map and F € DP(X x V;). Then

SS(Ru+F') USS(Rw F') C ug(SS(F)). (2.1.12)

2.1.5 Morse-Bott inequality for sheaves ([ST92])

In this subsection, we give the Morse-Bott inequality for sheaves, which is a slight gen-
eralization of the Morse inequality for sheaves by Kashiwara-Schapira [KS90, Proposi-
tion 5.4.20] and was proved by Schapira-Tose [ST92]. For a bounded complex W of
k-vector spaces with finite-dimensional cohomology, we set

bj(W) = dim H/ (W), bj (W) == (=1)' Y "(=1)7b;(W). (2.1.13)
Jj<l
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Let F € DP(X) and ¢: X — R be a C*™-function. We set
Lap = {(z;dp(z)) |z € X} CT*X. (2.1.14)
We consider the following assumptions:
(1) Supp(F)N ¢~ 1((—o0,t]) is compact for any t € R,
(2) the set (7 (SS(F) NTy,)) is finite, say {ci,...,en} with ¢; <--- < ep,
(3) the object
Wi = RI (¢~ (ci); RE{pzey (F)lp1(cy)) (2.1.15)
has finite-dimensional cohomology for any ¢ = 1,..., N.

Theorem 2.1.10 ([ST92, Theorem 1.1], see also [KS90, Proposition 5.4.20]). Assume
that (1)—(3) are satisfied. Then

(i) RI'(X; F) has finite-dimensional cohomology,

(ii) one has
N
bR F) < 3 b (W) (2.1.16)
i=1

for anyl € Z.
The proof is the same as [KS90, Proposition 5.4.20], since
RIY 400y (Rou F)e ~ RT (7 (1); RI (o) (F)|o-1r)) - (2.1.17)
Note also that (2.1.16) implies

N
bh(RO(X; F)) <Y be(W5) (2.1.18)
=1
for any k € Z.

2.1.6 Kernels ([KS90, §3.6])

For i = 1,2, 3, let X; be a manifold. We write X;; := X; x X; and Xj23 := X7 X X3 x X3
for short. We use the same symbol ¢; for the projections X;; — X; and X123 — X;. We
also denote by ¢;; the projection X123 — X;;. Similarly, we denote by p;; the projection
T* X123 — T*X;j. One denotes by pi2« the composite of pi2 and the antipodal map on
T*X5.

Let A C T*X15 and B C T* X93. We set

Ao B = p13(praa AN pyy B) C T X3, (2.1.19)
We define the operation of composition of kernels as follows:

)? : Db(Xlg) X Db(ng) — Db(X13)
2

. » (2.1.20)
(K12, K23) — K12 2 Ka3 := Rq3) (q15 K12 ® qo3 Ko3).
2

If there is no risk of confusion, we simply write o instead of 2. By Theorem 2.1.5 and
2

Proposition 2.1.7, we have the following:
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Proposition 2.1.11. Let K;; € D*(X;;) and set A;; == SS(K;;) C T*X;; (ij = 12,23).
Assume

(1) q13 is proper on q1_21 Supp(Ki12) N (]2_31 Supp(Ka3),
(2) pl_zlaAlQ ﬂp2_31A23 N (T)*(le x T* X9 X T)*(3X3) C T}123X123.
Then

SS(K12 )? Kgg) C Aig 0 Ags. (2.1.21)
2

2.1.7 Microlocalization and phom functors ([KS90, §4.3, §4.4])

Let M be a closed submanifold of X. The microlocalization functor along M is a functor
piar s DP(X) — DP (T, X) (see [KS90, §4.3] for more details). Microlocalization is related
to local cohomology as follows. Let p € T*X and p: X = R be a C*°-function such that
¢(m(p)) = 0 and dp(7(p)) = p. Then, for F' € D(X), we have

BI04 (F)r(p) = po=1(0) (F)p- (2.1.22)

Under suitable assumptions, the functoriality of microlocalization with respect to
proper direct images and non-characteristic inverse images holds as follows:

Proposition 2.1.12 ([KS90, Proposition 4.3.4 and Corollary 6.7.3]). Let f: X — Y be
a morphism of manifolds. Let moreover N be a closed submanifold of Y and assume that
M = f~Y(N) is also a closed submanifold of X. Denote by fara: M XN T3HY — Ti X the
morphism induced by fq and by fyr: M Xy TxY — TxNY the morphism induced by fr
(see (2.1.1)).

(i) Let F € DP(X). Assume that f is proper on Supp(F) and farg: M xyT%Y — Ti X
18 surjective. Then

Rfatmfazg in(F) =5 un (RfF). (2.1.23)

(i) Let G € DP(Y). Assume that f is non-characteristic for SS(F) and flpr: M — N
is a submersion. Then

par(f'G) = Rfras figr v (G). (2.1.24)

We also recall the functor phom. Let g1,q2: X x X — X be the projections. We
identify TX (X x X) with 7" X through the first projection (z,z;§, —¢) = (z;§).

Definition 2.1.13 ([KS90, Definition 4.4.1]). For F,G € DP(X), one defines
phom(F, G) := pa RHom(g; 'F,¢|G) € DP(T*X). (2.1.25)
Proposition 2.1.14 ([KS90, Proposition 4.4.2 and Proposition 4.4.3]). Let F, G € DP(X).
(i) Rmephom(F,G) ~ RHom(F,G).

(ii) If F is cohomologically constructible (see [KS90, §3.4] for the definition), then
Rmphom(F,G) ~ RHom(F, kx) ® G.

(iii) For a closed submanifold M of X, phom(knr, F) ~ iypup (F'), wherei: Ty, X — T*M
1s the embedding.
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Proposition 2.1.15 ([KS90, Corollary 5.4.10 and Corollary 6.4.3]). Let F,G € DP(X).
Then

Supp(uhom(F,G)) C SS(F) N SS(G),

1 (2.1.26)
SS(uhom(F,G)) © —h~{(C(SS(Q), SS(F))),

where C(S1,S2) is the normal cone and h: T*T*X = TT*X is the Hamiltonian isomor-
phism (see Subsection 2.1.1).

Proposition 2.1.16. Let ¢: X — R be a C*®-function and assume that dp(x) # 0 for
any x € = 1(0). Set M := p~1(0) and define an open subset Ty X of Ty, X by

Tif X = {(x; Mdyp()) | x € M, > 0}. (2.1.27)
Denote moreover by mars: Thf X — M the projection. Let F € D*(X). Then
RIpz01(F)|a = Brarg ophom(Kipzop, F)lper x = Bonrp oo (F)|pes o (2.1.28)
In particular,
RI(M; RT {0y (F) ) ~ RT (T,*;X; it (F) X) . (2.1.29)
Proof. Consider the distinguished triangle
Rmyphom (K01, F) — Rwpphom(Kys0y, F) = Ritcihom(Kgosops F)ljey = - (2.1.30)

By Proposition 2.1.15, Supp(phom(ki,>0y, F)ljwx) C Tj(jX. Hence we have

Rt phom(Kgs0y, Bl = (Rrars ihom(K(gsop, Fly x ) (2.1.31)

x
On the other hand, since ky,>0} is cohomologically constructible, by Proposition 2.1.14 (i)
and (ii), we get

Rﬂ'!uhom(k{@zo}, F) ~ R/HOm(k{wZO}, kx) Q F ~ RF{@EO}(kX) ® F|

(2.1.32)
Rmphom(kio>oy, F) = RHom(kyy>oy, F) = RI{,>0) (F).

Since RIf,>0)(kx)|a = 0, restricting the distinguished triangle (2.1.30) to M, we obtain
the first isomorphism in (2.1.28). Moreover since SS(kg,s01) N Ty X = 0, by Proposi-
tion 2.1.15, we have

uhOm(k{QpZO}, F) |T]T/[+X l) /LhOm(k{Lpzo}, F) |T;I+X' (2.1.33)
Thus the second isomorphism in (2.1.28) follows from Proposition 2.1.14 (iii). O

2.1.8 Simple sheaves and quantized contact transformations ([KS90,

§7.5])

Let A C T*X be a locally closed conic Lagrangian submanifold and p € A. Simple sheaves

along A at p are defined in [KS90, Definition 7.5.4]. In this subsection, we recall them.
Let ¢: X — R be a C*°-function such that ¢(m(p)) = 0 and Iy, intersects A transver-

sally at p. For p € I'g, N A, we define the following Lagrangian subspaces in 7,7 X:

Aoo(P) = Tp(T7(nX):  Aa(p) :==THA,  Ap(p) == Tpldp. (2.1.34)
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Here, our notation A\ (p) is different from that of [KS90], where the authors write \o(p)
for Tp(T7,)X). In this thesis, we do not use the symbol Xo(p). We briefly recall the
definition of the inertia index of a triple of Lagrangian subspaces (see [KS90, §A.3]). Let
(E, o) be a symplectic vector space and A1, A2, A3 be three Lagrangian subspaces of E. We
define a quadratic form g on A\ & Ay @ A3 by q(vi,v2,v3) = o(v1,v2) +0(v2,v3) + 0 (v3,v1).
Then the inertia index Tp(Aoo, A1, A3) of the triple is defined as the signature of ¢q. Using
the inertia index and the notation (2.1.34), one sets

To = Tpp := TT,T* X (Moo (D), AA (D), Ap(D)). (2.1.35)

Proposition 2.1.17 ([KS90, Proposition 7.5.3]). Fori = 1,2, let ¢;: X — R be a C*°-
function such that p;(m(p)) = 0 and Tqy, intersects A transversally at p. Let F € DP(X)
and assume that SS(F') C A in a neighborhood of p. Then

RIp 501 (F)r(p) = BIp,>01 (F)r(p) [%(Twz - Tam)] . (2.1.36)

Definition 2.1.18 ([KS90, Definition 7.5.4]). In the situation of Proposition 2.1.17, F is
said to have microlocal type L € DP(Mod(k)) with shift d € Z at p if

R (oz0) (F)r(p) = L [d - %dimX - %Ts@] (2.1.37)

for some (hence for any) C*°-function ¢ such that ¢(7(p)) = 0 and I'y, intersects A
transversally at p. If moreover L ~ k, I is said to be simple along A at p. If F' is simple
at all points of A, one says that F' is simple along A.

One can prove that if F € DP(X) is simple along A, then phom(F, F)|y ~ ky. When
A is a conormal bundle to a closed submanifold M of X in a neighborhood of p, that is,
7la: A — X has constant rank, then F' € DP(X) is simple along A at p if F' ~ kj;[d] in
D" (X;p) for some d € Z.
Example 2.1.19. Let X = R""! and consider the hyperplane M = R"™ x {0}. Then ks
is simple with shift 1/2 along T, X.

We also recall the notion of quantized contact transformations. Let x: T*X D Q; =
Qo C T*X be a contact transformation. A quantized contact transformation associated
with x is a kernel K € DP(X x X) which is simple along (idx xa)~!Graph(y) in Qg x Q¢
and satisfies some properties (see [KS90, §7.2] for details). A quantized contact transfor-
mation K induces an equivalence of categories

Ko (x): DP(X;0Q1) = DP(X; ). (2.1.38)

Proposition 2.1.20 ([KS90, Theorem 7.2.1]). Let K € D*(X x X) be a quantized contact
transformation associated with a contact transformation x: T*X D O = Qo C T*X. Let
moreover F,G € D?(X;Qy). Then

phom(K o F, K o G)|q, ~ x«(phom(F,G)|q,)- (2.1.39)

The behavior of the shift of a simple sheaf under a quantized contact transformation
is described by the inertia index.
Proposition 2.1.21 ([KS90, Proposition 7.5.6 and Theorem 7.5.11]). Let F € DP(X)
and assume that F is simple with shift d along A at p. Let x: T*X D Q1 = Qo C T*X
be a contact transformation defined in a neighborhood of p and K € DP(X x X) be a
quantized contact transformation associated with x. Assume that K is simple with shift d’
along (idx xa)~'Graph(x) at (x(p),p®). Then K o F is simple with shift d+d — § along

X(A) at x(p), where

5= 3 dim X 4 S One(p), M), X e (). (2.1.40)
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2.2 Sheaf quantization and Tamarkin’s non-displaceability
theorem

In what follows, until the end of this thesis, let M be a non-empty connected manifold
without boundary.

In this section, we review Tamarkin’s approach to non-displaceability problems in sym-
plectic geometry based on the microlocal sheaf theory. We also review sheaf quantization of
Hamiltonian isotopies and compact exact Lagrangian submanifolds in cotangent bundles.

2.2.1 Sheaf quantization of Hamiltonian isotopies ([GKS12])

Guillermou-Kashiwara-Schapira [GKS12] constructed sheaf quantizations of Hamiltonian
isotopies. Since the microsupports of sheaves are conic subsets of cotangent bundles, the
microlocal sheaf theory is related to the exact (homogeneous) symplectic structures rather
than the symplectic structures of cotangent bundles. For the sheaf-theoretic study of non-
homogeneous Hamiltonian isotopies and non-conic Lagrangian submanifolds of cotangent
bundles, an important trick is to add one more variable to the base manifolds and “conify”
the Lagrangians, which is an idea of Tamarkin.

Denote by (z;€) a local homogeneous symplectic coordinate system on 7*M and by
(t;7) the homogeneous symplectic coordinate system on T*R. We set Q4 := {7 > 0} =
{(z,t;¢,7) | 7> 0} C T*(M x R) and define the map

p: Q4 M
w w (2.2.1)
(z,4:€,7) —— (z;¢/7).

Let I be an open interval in R containing 0. Let moreover H: T*M x I — R be a
compactly supported Hamiltonian function and denote by ¢ = (¢f),er: T*M x I —
T*M the Hamiltonian isotopy generated by H. Note that the Hamiltonian vector field is
defined by dag«pn(Xn,,*) = —dHs and #H is the identity for s = 0. One can conify ¢
and construct a homogeneous lift ¢ of oM as follows. Define H:T*M xT*Rx I - R
by Hs(x,t;€,7) == 7 Hs(z;£/7). Note that H is homogeneous of degree 1, that is,
ffs(x,t;cg,CT) =c- ﬁ[s(x,t;f,T) for any ¢ € Ryg. The Hamiltonian isotopy ¢: T*M X
T*R x I — T*M x T*R generated by H makes the following diagram commute:

Q+X14¢>Q+

pxidi lp (2.2.2)
T*M x [ ——T*M.
d)H

Moreover there exists C°°-function uw: T*M x I — R such that
Os(w,1:6,7) = (2 t +us(w:6/7); €, 7), (2:2.3)

where (z';¢'/7) = gbg (x;&/7). By construction, ¢ is a homogeneous Hamiltonian isotopy:
os(x,t;c€,er) = ¢ ps(x,t;€,7) for any ¢ € Rsg. See [GKS12, Subsection A.3] for more
details. We define a conic Lagrangian submanifold Ag} CT*M XT*RXT*M xT*RxT*I
by

(z3€) € T"M,
Az 1= (Bulwts67), (0,86, —7), (5 —Hy 0 Bl 56,7) ) | (57) € 'R, - (22.4)
sel
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By construction, we have
Hy o y(2,8:¢,7) = 7+ (H,y 0 6f (:¢/7)). (2.2.5)
Note that

Ago T = {@s(w,t;é,f), (2, t; =€, —T)) ‘ (z,t:€,7) € T"M x f*R}

) ' (2.2.6)
CT*M x T*R x T*M x T*R

for any s € I (see (2.1.19) for the definition of A o B).

Theorem 2.2.1 ([GKS12, Theorem 4.3]). In the preceding situation, there exists a unique
object K € DP(M x R x M x R x I) satisfying the following conditions:

(1) SS(K) C A,
(2) Klprxrxmxrx{or = Kay g, where Aprg is the diagonal of M x R x M x R.
Moreover K is simple along A<$ and both projections Supp(K) — M x R x I are proper.

Remark 2.2.2. In [GKS12, Theorem 4.3], it was proved that K|y xrxaxRx.J is a bounded
object for any relatively compact interval J of I. Since we assume that H has compact
support, we find that K € DP(M xR x M x R x I).

The object K is called the sheaf quantization of gg or associated with ¢f. Set K, :=
K|prxrxMxRx{s} € D"(M x R x M x R). Note that SS(K) C AgoTiI and K is a

quantized contact transformation associated with ngBS: O =0,

2.2.2 Tamarkin’s separation and non-displaceability theorems ([TamO08,
GS14])

Compact subsets A and B of T*M are said to be mutually non-displaceable if ANGH (B) #
() for any Hamiltonian isotopy ¢ = (¢X)s: T*M x [0,1] — T*M generated by a com-
pactly supported Hamiltonian function H. For simplicity, hereafter in this thesis, such an
isotopy is called a Hamiltonian isotopy with compact support. Tamarkin [Tam08] (see also
Guillermou-Schapira [GS14]) considered some categories consisting of sheaves on M x R
and deduced a new sheaf-theoretic criterion for non-displaceability using them.

We denote by (z;&) a local homogeneous coordinate system on T*M and by (t;7) the
homogeneous coordinate system on T*R as before. We define the maps

ql,QQ,SR:MXRXR—}MXR,

2.2.7
Q(z,t1,t2) = (z,11), Ga(,t1,82) = (2,12), sr(z,t1,t2) = (11 +12). (22.7)
If there is no risk of confusion, we simply write s for sg. We also set

it M xR — MxR, (z,t) — (z,—t). (2.2.8)

Definition 2.2.3 ([Tam08] and [GS14]). For F,G € DP(M x R), one sets
F %G :=Rs)(§;'F® g 'G), (2.2.9)
Hom*(F,G) := R{1« RHom(g; ' F, s'G) (2.2.10)
~ Rs, RHom(q; i 'F,§G). (2.2.11)
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Note that the functor * is a left adjoint to Hom*.
The functor

Karx[o,+o0) * (¥): DP(M x R) — D"(M x R) (2.2.12)

defines a projector on the left orthogonal LD?T <0}(M x R), where {7 < 0} denotes the
closed subset {(z,#;&,7) | 7 <0} of T*(M x R). Similarly, the functor

Hom*(Kprx[0 400y *): DP(M x R) — D*(M x R) (2.2.13)

defines a projector on the right orthogonal DP {r <0}(M x R)L. By using these projectors,

Tamarkin proved that the localized category D”(M x R; {r > 0}) is equivalent to both

the left orthogonal - (M x R) and the right orthogonal D? __ (M x R)*:

D} <o) {r<0}

Py :=Kpx[o,+00) * (%) DP(M x R; {7 > 0}) = D{T<0}(M x R),

K (2.2.14)
P i= Hom* (Kprx(o, 400, %) : DP(M x B; {7 > 0}) 5 D?__y (M x R)*.

Note also the inclusion LD}{DTSO}(M x R), D? <0}(M x R)* D, >0}(M x R). We set

Qy={r>0}CcT*(M xR) and p: Qp — T*M, (z,t;&,7) — (x;&/7) as before.
Definition 2.2.4 ([Tam08]). One defines
D(M) := DP(M x R; Q) ~ "D} (M x R) = DY (M x R)*. (2.2.15)
For a compact subset A of T*M, one also defines a full subcategory Da(M) of D(M) by
Da(M) := Dy 4y (M x R; Q). (2.2.16)

For F' € D(M), we take the canonical representative P,(F') € LDI{’ <0}(M x R) unless

otherwise specified. For a compact subset A of T*M and F € D4(M), the canonical
representative Pj(F') € LDl{j <0}(M x R) satisfies SS(P,(F)) C p~1(A). Note also that

if F e J-Dk{’T<O}(M x R) then Hom*(F,G) € D?T<O}(M x R)+. Thus Hom* induces an

internal Hom functor Hom*: D(M)°? x D(M) — D(M).

Remark 2.2.5. Let f: M — N be a morphism of manifolds and set f:: fxidr: M xR —
N x R. Then, for F € 1D {T<O}(M x R), we have RfiF' € *D? _ (N x R). Similarly, for

{r<0}
G ¢ D{Tgo}(M x R)L, we have Rf.G € D{T<0}(N x R)L. In other words, the morphism
f induces functors D(M) — D(N).

Proposition 2.2.6 ([GS14, Lemma 3.18)). Let F,G € D(M). Then
Homp1p)(F, G) ~ HORI [0 400) (M x R; Hom*(F, G)). (2.2.17)

The following separation theorem was proved by Tamarkin [Tam08]. Using the theo-
rem, we can prove the non-emptiness of the intersection of two compact subsets .

Theorem 2.2.7 ([Tam08, Theorem 3.2] and [GS14, Theorem 3.28|). Let A and B be
compact subsets of T*M and assume that ANB = (). Denote by qr: M xR — R the second
projection. Then, for any F € Da(M) and G € Dg(M), one has Rqgr, Hom™(F,G) ~ 0.
In particular, for any F' € Da(M) and G € Dp(M), one has Hompr)(F, G) ~ 0.
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Using sheaf quantization of Hamiltonian isotopies, we can define Hamiltonian defor-
mations in Tamarkin’s category D(M) as follows. Let ¢ = (¢pH),: T*M x I — T*M be
a Hamiltonian isotopy with compact support, Where I is an open interval containing the
closed interval [0,1]. Let ¢: T*(M x R) x I — T*(M x R) be the associated homogeneous
Hamiltonian isotopy and K € DP(M xR x M x R x I) the sheaf quantization of gi). Then,
for any s € I, the composition with K := K|y/xrxarxrx{s} € DP(M xR x M xR) defines
a functor

Ul = K o (x): D"(M x R) — D®(M x R), (2.2.18)

which induces a functor U: D(M) — D(M) (see [GS14, Proposition 3.29]). Moreover,
for a compact subset A of T*M and F € D4(M), Proposition 2.1.11 and the commutative
diagram (2.2.2) imply

SS(Ky 0 F) N0 € (Ao Ti) o p ' (4) = dylp ' (A) C p ' (67 (4)).  (22.19)

S

In other words, ¥ = K, o (x) induces a functor Da(M) — Dym4)(M) for any compact
subset A on T*M.

Tamarkin [Tam08] proved the non-displaceability theorem by using the category D(M)
and torsion objects, which we will explain below. Moreover, Guillermou-Schapira [GS14]
proved that torsion objects form a triangulated subcategory and introduced the quotient
category T (M), which is invariant under Hamiltonian deformations. For ¢ € R, we define
the translation map

Te: M xR — M xR, (z,t) — (x,t+ c). (2.2.20)

For F € DbT>0}(M x R) and ¢ < d, there exists a canonical morphism 7. q(F): Te, F' —
Ty F. In Section 4.1 below, we will recall the construction of the morphism and de-
tailed results on torsion objects due to Guillermou-Schapira [GS14]. Recall that D(M) is
regarded as a full subcategory of D{T>O}(M x R) via the projector P; or P,.

Definition 2.2.8 ([Tam08]). An object F' € D{T>0} (M x R) is said to be a torsion object

if 70..(F) = 0 for some ¢ € R>g. Denote by N, the subcategory of torsion objects in
D(M).

Let F' € Dl{)r>0}(M x R) and assume that Supp(F') C M x C' for some compact subset
C of R. Then F is a torsion object.

Proposition 2.2.9 ([GS14, Theorem 5.4]). The subcategory Nior is a full triangulated
subcategory of D(M).

Definition 2.2.10 ([GS14, Definition 5.6]). The triangulated category 7 (M) is defined
as the quotient category of D(M) by Nior: T (M) := D(M)/Nior-

Hom spaces in 7 (M) are described as inductive limits of those in D(M).

Proposition 2.2.11 ([GS14, Proposition 5.7]). Let F,G € D(M). Then

lim Hompup)(F, Te.G) = Homy(ap (F, G). (2.2.21)

c——+400

The following is the Hamiltonian invariance theorem due to Tamarkin [Tam08].
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Theorem 2.2.12 ([Tam08, Theorem 3.9] and [GS14, Theorem 6.1]). Let ¢ : T*M x I —
T* be a Hamiltonian isotopy with compact support and s € 1. Let moreover \IJSH: D(M) —
D(M) be the functor defined above. Then, for any F € D(M), one has

F~ W) i T(M). (2.2.22)

The following is Tamarkin’s non-displaceability theorem. The second assertion follows
from the first one, Proposition 2.2.6, and Proposition 2.2.11. Note that the second assertion
also follows from Theorem 2.2.7, Proposition 2.2.11, and Theorem 2.2.12.

Theorem 2.2.13 ([Tam08, Theorem 3.1] and [GS14, Theorem 6.2]). Let A and B be
compact subsets of T*M. Assume that there exist F € Dy(M) and G € Dp(M) such
that Rqr, Hom™(F, G) is not torsion, that is, 10 .(Rqr, Hom*(F,G)) # 0 for any ¢ € R>y.
Then A and B are mutually non-displaceable. In particular, if there exist F' € Dy(M) and
G € Dp(M) such that Homyy (F,G) # 0, then A and B are mutually non-displaceable.

In this thesis, we give quantitative generalizations of Theorem 2.2.13 in two different
directions. First, in Chapter 3, we prove that Homy () (F, G) gives a lower bound of the
cardinality of the intersection when A and B are compact exact Lagrangian submanifolds,
and F' and G are associated simple sheaf quantizations (see Subsection 2.2.3 below). Sec-
ond, in Chapter 4, we show that the infimum of {¢ € R>¢ | 70 (Rgr, Hom*(F,G)) = 0}
gives a lower bound of the displacement energy of the pair (A, B).

2.2.3 Guillermou’s sheaf quantization of compact exact Lagrangian sub-
manifolds ([Guil2, Guil6a])

In this subsection, we assume that M is compact. Recall that a Lagrangian submanifold
L of T*M is said to be ezact if the restriction of the Liouville 1-form ap=ps|z is exact.
Guillermou [Guil2, Guil6a] proved the existence of sheaf quantizations of compact exact
Lagrangian submanifolds of T M.

Let L be a compact connected exact Lagrangian submanifold of T*M and choose
a primitive of the Liouville 1-form f: L — R satisfying df = ap«p|p. We define the
conification Zf C Q4 of L with respect to f by

Ef ={(x,t;7,7) | 7> 0,(2;8) € Lt = —f(x;€)}. (2.2.23)

If there is no risk of confusion, we simply write L instead of L -

. b . . .
Let us consider the category DEUTJ&XR (MX]R)(M x R) consisting of sheaves whose mi-

crosupports are contained in LUT Ti«r(M x R). By the compactness of L, there is

A € Ry such that L € T*(M x (—A, A)). Hence for any F € D%UTI’C]X]R(MXR)(M x R),

the restrictions F|y;y (—0o,—4) a0d F|pry(4,400) are locally constant.

Definition 2.2.14 ([Guil2, Definition 20.1] and [Guil6a, Definition 13.1]). Let A € R>o
satisfying L C T*(M x (—A, A)). For an object F' € D2 M x R), one defines

LUT;C”R(MXR)(
F_,F, € D*(M) by
Fo=Flys—ty, Fy:=Fluxp (2.2.24)

for any ¢t > A (independent of t). One also defines D%UT;,XR(MxR),Jr (M x R) as the full

subcategory of D2 (M x R) consisting of F' such that F_ ~ 0.

LuT},, (M xR)
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Guillermou [Guil2, Guil6a] proved the following existence and uniqueness of sheaf
quantizations of compact exact Lagrangian submanifolds.

Theorem 2.2.15 ([Guil2, Theorem 26.1] and [Guil6a, Theorem 18.1]). Let L, f, and
L = Ly be as above.

(i) For any rank 1 locally constant sheaf £ € Mod(kys), there exists an object F' €

b . . ~
DZUT;/IXR(MxR),Jr(M x R) satisfying Fy ~ L.

(ii) Moreover F in (1) is unique up to a unique isomorphism and simple along L.

We call the object F' € D%UTFC“R(MXR)H‘(
of L with respect to the rank 1 locally constant sheaf £. Moreover, if £ is the constant
sheaf kjs, that is, F. ~ kjs, then F' is said to be the canonical sheaf quantization of L.
Note that the simple sheaf quantization of L with respect to L is of the form F' ® q&lﬁ,
where F' is the canonical sheaf quantization and qp;: M x R — M is the projection. We
sometimes write a sheaf quantization associated with L (and f) instead of L for simplicity.

M x R) in (i) the simple sheaf quantization
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Chapter 3

Compact exact Lagrangian
intersections in cotangent bundles
via sheaf quantization

In this chapter, we study intersections of compact exact Lagrangian submanifolds in cotan-
gent bundles, using Tamarkin’s category and Guillermou’s sheaf quantizations. In partic-
ular, we prove Theorem 1.2.1, a Morse-Bott-type inequality for clean Lagrangian intersec-
tions. Throughout this chapter, we assume that M is compact. Moreover, for i = 1,2, let
L; be a compact connected exact Lagrangian submanifold and f;: L; — R be a primitive
of the Liouville 1-form satisfying df; = az«pr|r,. We denote by A; = Iz the conification

of L; with respect to f;. Let furthermore F; € D]/O\z'UTjC“R(MxR)Hr(M x R) be a simple

sheaf quantization of A;. Until the end of Section 3.3, we do not assume that L; and Lo
intersect cleanly.

3.1 Non-displaceability of compact exact Lagrangian sub-
manifolds

In this section, we prove that the Hom space in 7 (M) between the canonical sheaf quan-
tizations associated with compact exact Lagrangian submanifolds is isomorphic to the
cohomology of the base manifold M. Combined with Theorem 2.2.13, this implies the
non-displaceability.

First, we give a preliminary result useful to calculate Hom spaces in D(M).

Lemma 3.1.1. Let L be a compact connected exact Lagrangian submanifold of T*M and
A = L be the conification of L with respect to some primitive. Then

D}ore )+ (M X R) C DY o (M x R). (3.1.1)

M xR
Proof. By compactness, there exists a constant B € R such that A C T*(M x (B, +00)).

Let F € DYipe  rxmy (M < R) and G € DY _ (M x R). Since A C {7 > 0}, by

Proposition 2.1.7, we have SS(RHom(F,G)) C {r < 0}. Applying the microlocal Morse
lemma (Proposition 2.1.3) to RHom(F,G) and the function t: M xR — R, (x,t) — t, we
get RHom(F,G) ~ 0 by the inclusion Supp(RHom(F,G)) C M x [B,+0). O

Proposition 3.1.2. Let £; := (F;)+ € Mod(kys) be the locally constant sheaf of rank 1
associated with the simple sheaf quantization F; for i = 1,2. Then there exists co € R>q
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such that Homprr)(Fa, Te, F1[k]) is isomorphic to HE(M; L ® E?il) for any ¢ > ¢y and
k € Z. In particular,

Homy(ap) (F2, Fi[k]) ~ HNM; Ly @ LS for any k € Z. (3.1.2)

Proof. The proof is very similar to those of [Guil2, Theorem 20.3] and [Guil6a, Theo-
rem 13.3]. By Lemma 3.1.1, for any k € Z, we have

Homp ) (F2, Te F1[K]) = Hompyo(arr) (F2, Tes F1[E]). (3.1.3)

By the compactness of L; and Lo, there exists A € R satisfying Ay, Ao C T*(M X
(—A, A)). Take a sufficiently large ¢y € R>q such that ¢ > 2A. Then, by the isomorphism
Folprx(A4o00) = L2 W Kk(4 4oy and the inclusion Supp(Te.F1) C M x (¢ — A, +00), we get

RHOHI(FQ, TC*Fl) >~ RHOHI(,CQ X kR, TC*Fl)

. e (3.1.4)
~ RI(M xR; F1 @ (L5 Kkg))

for any ¢ > co. Since SS(Fy ® (L5 Rkg)) C {7 > 0}, we can apply the microlocal Morse
lemma (Proposition 2.1.3) and obtain

RI(M xR; Fy @ (LY ' M kg)) =~ RI(M x (A, +00); F1 @ (L5 R kg))
~ RI(M x (A, +00); (L1 ® L) R kg) (3.1.5)
~ RI(M; L1 @ LS.

The second assertion follows from Proposition 2.2.11. O

Remark 3.1.3. In the special case where both L; and Lo are the zero-section Ty, M of
T*M, (3.1.2) was already obtained by Guillermou-Schapira [GS14]. The outline of the
proof is as follows. The simple sheaf quantization associated with the zero-section Ty, M
and a rank 1 locally constant sheaf £ € Mod(kyy) is isomorphic to LK kg ). In [GS14],
Guillermou and Schapira proved that the functor

D"(M) — T(M), F — F Xk o) (3.1.6)
is fully faithful (see [GS14, Corollary 5.8]). We thus obtain

HOHIT(M) (,Cg X k[0,+oo)a ,Cl X k[07+oo) [k]) =~ Home(M) (£2, £1[k])

3.1.7
~ HY(M; £y ® £571) ( )
for rank 1 locally constant sheaves L1, Lo € Mod(kyy).
Moreover, we can prove (3.1.2) for general compact exact Lagrangians L; and Lo
using (3.1.7) and Proposition 3.1.4 below. The following was pointed out to the author
by T. Kuwagaki.

Proposition 3.1.4. Let L be a compact connected exact Lagrangian submanifold of T*M.

Let £ € Mod(kys) be a locally constant sheaf of rank 1 and F € D%UTR}XR(MXR),—F(M x R)

be the simple sheaf quantization associated with L satisfying Fy. ~ L. Then

F~ LNk ) inT(M). (3.1.8)
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Proof. By the compactness of L, we can take a sufficiently large A € R such that Lc
T*(M x (—A, A)). Since F|prx(A,4o00) = LM k(4 4o, there exists a canonical morphism

The cone of this morphism is supported in M x [—A, A + 1] and hence a torsion object.
Therefore the morphism (3.1.9) is an isomorphism in 7(M). A similar argument shows
that the morphism £ X kg ) = L X k{411 ) is an isomorphism in T (M). O

By Theorem 2.2.13 and Proposition 3.1.2, we obtain the following:

Corollary 3.1.5. In the same notation as in Proposition 3.1.2, assume that F; is the
canonical sheaf quantization of L;, that is, L; ~ ks for i =1,2. Then

Hom ) (Fa, Fi[k]) =~ H*(M;X) for any k € Z. (3.1.10)

In particular, Ly and Lo are mutually non-displaceable.

3.2 Morse-Bott inequality for Hom”*

In this section, we shall apply the Morse-Bott inequality for sheaves to Hom™(Fs, F1). For
this purpose, we estimate SS(Hom™*(Fs, F1)). Recall the isomorphism

Hom*(Fy, F1) ~ Rs. RHom(q, “i ' Fy, ¢ F1), (3.2.1)

where G1,G2: M x R xR — M x R are the projections, s: M x R x R — M x R is the
addition map, and i: M x R — M x R is the involution (z,t) — (x,—t). Since g2 and ¢
are submersions, by Theorem 2.1.5 (ii), we have inclusions

SS(G5 i F) C GoadatSS(i T Fy)

= {($7t1,t2;7'2€270, —T2)

o > 0, (w;fg) € Lo, (3.2.2)
t1 € R ta = fo(x;62)

and

SS(G1F1) C GuagitSS(F)

= q (z,t1,t2; &1, 71,0
{( ) t1=—fi(z;&),t2 €R

>0, (x:6) € Ly, } (3.2.3)

Hence SOS((']’;Z'_IFQ) N SOS(E]’!lFl) = (), and by Proposition 2.1.7, we obtain

SS(RMom(gy i~ Fa, ¢ F1)) C SS(q; 'i~ ' Fo)® + SS(¢1 1)
71,72 > 0,
=< (z,t1,te; & — 1€, 11, T2) | (2;61) € L, (x;&2) € Lo, (3.2.4)
t1 = —fi(z;&1),t2 = fa(z;&2)
=: A\ xRxR-
Lemma 3.2.1. One has
vyl (vﬂ(AMxRxR UT5 g (M X R x R)))

= Ud_lvw(AMxRx]R U TZT4><R><R(M x R x R)) (3'2'5)
= Swsgl(AMXRXR U T]T4><R><R(M x R x R))
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In other words,

Sﬁ(AMXRXR U T]T4><R><R(M xR x R))

o . (3.2.6)
= Sﬂ—Sd (AMXRXR @] TMXRXR(M X R X R))

See Subsection 2.1.4 for the notation v, vy, and sy associated with the constant linear
map s: M X RxR — M x R.

Proof. Define A" C T*M x R x (R x R) by

A = {((:L‘;ﬁ& — ), () | >0 (@& € In, (m:60) € LQ?} . (327)

t = fa(@; &) — fr(z; &)

Then the set vx (AprxrxrR U T i ryr(M X R X R)) is equal to AU (T3, M xR x {(0,0)}) C
T*M xR x (RxR). It suffices to check that A"U(Ty, M xR x{(0,0)}) is equal to its closure.
By the compactness of L1 and Lz, there exists C' € Rxg such that || < C(|7i] + |72|) for

any ((z;€), (t;11, 7)) € A’. Therefore the same inequality holds on the closure A’ of A’.
Hence if ((x;€), (t;71,72)) € A and 71 = 7 = 0 then ¢ = 0, which proves the equality. [

By Proposition 2.1.9, Lemma 3.2.1, and (3.2.4), SS(Hom*(Fy, F)) is estimated as
SS(Hom*(Fa, F1)) C s3(Aprxrxk U Tirsrxr (M x R x R)) N T*(M x R)

= 557 (Aprxrxk U Tisrsr (M x R x R)) NT*(M x R)
T >0,

(3.2.8)
C § (@ 67(& = &2),7) | (#:61) € L, (7;62) € Lo,
t = fa(@; &) — fr(@; &)
=: Ayxr-
Let t: M — R be the function (z,t) — t. Then, by (3.2.8), we obtain
3(1’;f) ey ﬂLg,
T SS(Hom™(Fs, F , 10,1 . 3.2.9
o (1S5 (Hom (£ 1))C{(“ ) t=f2(x;£>—f1(x;£>} (329

By this inclusion, we find that RI'x (¢ 4-o0) (Hom™ (F2, F1))|arxqey = 0if ¢ € {fa(p)— f1(p) |
peLin LQ}.

Proposition 3.2.2. Let a,b € R witha < b ora € R,b = +00. Assume
(1) the point a € R is not an accumulation point of {fa(p) — f1(p) | p € L1 N Lo} C R,
(2) the set {fa2(p) — fi(p) | p € L1 N Lo} N a,b) is finite,

(3) the object RI'(M x {c}; Rl e ,4-00) (Hom™ (F2, F1))|arx{c}) has finite-dimensional
cohomology for any a < ¢ < b.

Then
S° dim HERE (M x {c}; Ryt oe) (Hom* (Foy FO) i o))
a<c<b (3210)
> dim H* Ry a0y (M X (—00,b); Hom* (Fy, F1))
for any k € Z.
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Proof. We set H := Hom*(F», F}). By the assumption (1), we can take a’ < a such that
f1(p) — f2(p) & [a’,a) for any p € Ly N Lo. (3.2.11)

By (3.2.8) and (3.2.11), we have SOS(”H)QSOS(kMX[a/,_,_OO)) = (). Hence, by Proposition 2.1.7,
we obtain

SS(RI v x(ar +o0)(H) = SS(RHOm(Kprx(ar 100y H))

3.2.12
CAyxeNm  {t>d}) +{(z,d;0,—7") | 7' > 0}. ( )

Set H' := RI Mo’ +o0)(H) | Mx(—o0p) € DP(M x (—o0,b)) and let t: M x (—o0,b) — R
be the function (z,t) — t. We shall apply the Morse-Bott inequality for sheaves (Theo-
rem 2.1.10) to H and t: M x (—o0,b) — R. Combining (3.2.8) with (3.2.12), we get

Py NSS(H') € {(2,;0,1) | Ip € LiN Ly, x = 7(p),a’ <t = fa(p) — f1(p) < b}. (3.2.13)

Hence, the conditions in Theorem 2.1.10 are satisfied by (3.2.11), and the assumptions (2)
and (3). Hence we have the inequality

> dim H*RT (M x {c}; RT v jeto0)(H) a1 {c})
a’'<c<b (3214)

> dim H* RT o ) (M x (—00,b); H)

for any k € Z. Moreover, by (3.2.8), (3.2.11), and (3.2.12), we get ['y; NSS(H') N7~ (M x
[a',a)) = (. Applying the microlocal Morse lemma (Proposition 2.1.3), we have

RIvjar,a) (M X (—00,a); H) ~ RI'(M x (—o0,a); H')

o (3.2.15)
~ RI'((—o0,a’); H') ~ 0.

Thus we get R y(qp) (M x (=00,b);H) =~ Ry p)(M X (—00,b);H). On the other
hand, by (3.2.11), RInx[e,400)(H)|arxiey = 0 for ¢ € [d,a) and the left hand side of
(3.2.14) is equal to that of (3.2.10). This completes the proof. O

Remark 3.2.3. C. Viterbo announced that he found some relation between the section of
Hom*(Fy, F1) on M x (—oo, A) and the Floer cohomology complex C'F_ (L, L) filtered
by {p € L1 N Ly | fo(p) — fi(p) < A}. Inspired by his work, in Proposition 3.2.2, we
consider not only the section on M x R but also that on M x (—o0,b) .

3.3 Microlocalization of Hom*

In this section, we describe RI'(M X {c}; R (e, +00) (Hom™ (Fa, F1))|arxfcy) in terms of
the functor phom. Applying T., to F5, we may assume ¢ = 0. The following lemma
follows from Proposition 2.1.16.

Lemma 3.3.1. Set Vi := {(2,0;0,7) | 7 >0} C Ty, 1y (M x R). Then

x{0}

RI'(M x {0}; Ry [0,4-00) (Hom™ (Fa, F1))|arxqoy)

. (3.3.1)
~ RI'(V; piarx{oy (Hom™ (Fa, F1))lv, ).
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Recall the isomorphism
Hom*(Fy, F1) ~ Rs.6' RHom(qy \i ' Fy, q1 ), (3.3.2)

where s: M x R x R — M x R is the addition map, d: M x RxR — M x M xR x R
is the diagonal embedding, and ¢;: M x R x M x R — M x R is the i-th projection.
The morphism s induces the following commutative diagram, where we omit 7% M (resp.
Ty, M) in the first (resp. second) row and use the same symbol s for the addition map
R xR —R:

T*(R x R) <% (R x R) xg T*R —=> T*R

LT e

Tr 1) (R x R) <=— s71(0) xq0y T4R —— T R.

We denote by ms: Ty M x Ty, (RxR) = T5M x TjR ~ Ty goy (M % R) the induced
morphism in the second row in the above diagram. On the other hand, the morphism §

induces the following commutative diagram, where we omit TS*_I(O) (R x R):

T*M <2 M xppsens TH(M x M) —=T*(M x M)

)

Ty M <— M xp,, TX, (M x M) —=Tx (M x M) (3.3.4)

M M M.

™M

Let moreover ¢: T*"R ~ TX (R x R) = T 1) (R x R) be the isomorphism of line bundles

defined by (t1,te,7,—7) — (t1, —t2,7,7). We also use the same symbol ¢ for the induced
isomorphism 7% (M x R) ~ T*M x Tx (R x R) = T*M % Ts**l(o) (R x R).

Proposition 3.3.2. Set V := {(z,0;0,7) | 7 >0} C T},
and keep the notation defined above:

X{()}(M x R) as in Lemma 3.3.1
mo: TigM % Tiy ) (R x R) = T3 M x TyR = Tjp, 0y (M x R),
v TH(M x R) = T*M x TA, (R x R) %5 T*M x T2 ) (R x R).
Then
tarx oy (Hom™ (Fy, 1)) |v,. = (Rms Rmagatsphom(Fy, F1))ly, - (3.3.5)

Proof. (a) Set H := Hom™(Fy, F1). First, we note that uysy g0y (H) =~ parsqoy (Hlarx=1,1))-
Set U := M x (—1,1) € M x R. There exists a sufficiently large A € R~ such that
Fy and F, are constant on M x (A — 2,+00). Then ¢ F; ~ ¢, 'Fi[l] is constant on
sTHU)YN (M x R x (—oo, —A + 1)), which implies isomorphisms
RHom(Gy i~ Kags(a o0y GFD) 51 (1r)
~ RHom(Knrxrx (—oo,— Al KMxRxR[1])]s-1(1) (3.3.6)
~ RI 10y n(M xR (—o0,—A]) (Ks=1 (7)) [1]-
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Therefore we obtain
(Rsy RHom(@ i~ "Karx(a,+00) @1 F1)) | = 0. (3.3.7)
By the distinguished triangle
Fy — Fy — Ky (4 100) mat (3.3.8)
with FJ supported in some compact subset, we find that
(Rs« RHom(qy i ' Fy, i F1))|u =~ (Rs« RHom(q, i ' Fy, i F1))|v (3.3.9)

and s is proper on Supp(R’Hom(qNQ_li_lFQ’,qN!lFl)).
(b) Since s is proper on the support, by Proposition 2.1.12 (i), we have

Liarx {0y (Rs RHom(Gy i ' Fy, G 1)) ~ Rty pingxs—1(0)(RHom(dy i Fy, ¢ Fr)).
(3.3.10)

Moreover since d is non-characteristic for SS(RHom(g, i ' F}, ¢, Fy)) and S| prxs—1(0): M x
s710) — Ay x s71(0) is a submersion, by Proposition 2.1.12 (ii), we obtain

parxes—1(0)(BHom(dy i Fy, i F1)) = piares—1(0) (8 RHom(qy i Fy, g1 FY))

~ RTM oAy ws—1(0) RHom(qy i Fy, ¢ FY).
(3.3.11)

Let i9: M x Rx R — M x R x R be the involution (z,t1,t2) — (z,t1,—t2). Note that
the associated automorphism of T*M x T*(R x R) induces ¢: T*M x Tx (R x R) =
"M X T g (R x R). Then, by Proposition 2.1.12 (i) again, we have

1ayxs—1(0) BHom(iy g3  F3, i FY) o pin,, xs-1(0yi2e RHom (g3 ' Fy, ¢ FY)
~ L iny,, . RHom(qy ' Fy, qi Fy) (3.3.12)
~ 1 phom(Fy, FY).

(¢) By Proposition 2.1.15, we have
Supp(rhom(Kpsx(a,400)s F1)) C Trsr(M x R). (3.3.13)
Thus, by the distinguished triangle (3.3.8), we get
phom(Fy, F1)|(rs0y = phom(Fz, F1)| (>0}, (3.3.14)
which completes the proof. ]

We define an open subset Q4 of T*(M x R) ~ T*M x T*R by Q4 = {r > 0} C
T*(M x R). Combining Proposition 3.2.2 with Lemma 3.3.1 and Proposition 3.3.2, we
obtain the following:

Proposition 3.3.3. Let a,b € R witha <b ora € R,b = +o00. Assume
(1) the point a € R is not an accumulation point of {fa(p) — f1(p) | p € L1 N Lo} C R,

(2) the set {fa2(p) — fi(p) | p € L1 N L2} Na,b) C R is finite,
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(3) the object RI" (Qy; phom(T,.Fy, F1)|q. ) has finite-dimensional cohomology for any
a<c<hb.

Then

> dim H*RI (Qy; phom(T.. Fa, Fy)|o,)
a<c<b (3315)
> dim HY Ry o5 (M % (—00,b); Hom* (Fy, F1))

for any k € Z.

3.4 Clean intersections of compact exact Lagrangian sub-
manifolds

Throughout this section, we assume the following:

Assumption 3.4.1. The Lagrangian submanifolds L1 and Lo intersect cleanly, that is,
Ly N Ly is a submanifold of T*M and T,,(L1 N L) = T,L1 NT,Ly for any p € L1 N Lo.

Under the assumption, the intersection Li N Lo has finitely many connected compo-
nents, which are compact submanifolds of 7*M, and the value fao(p) — f1(p) is constant
on each component. In particular, the set {f2(p) — fi(p) | p € L1 N Lo} C R is finite. For
a component C' of L1 N Ly, we define fo1(C) := fa(p) — f1(p), taking some p € C.

Under Assumption 3.4.1, we shall compute phom(T..Fz, F1)lo,. Again, we may as-
sume ¢ = 0. Recall that we have set A; := EZ for simplicity of notation. The following
lemma is obtained in [Guil2, Lemma 6.14].

Lemma 3.4.2. Under Assumption 3.4.1, phom(Fs, Fi)|q, is supported in Ay N Ay and
has locally constant cohomology sheaves.

Proof. For completeness, we also give a proof here. By Proposition 2.1.15, we have

Supp(phom(Fy, F1)|a,) C A1 N As,

. . (3.4.1)
SS(Mh0m<F2,F1)’Q+> C —h (C(Al,Ag))ﬂT Q+.
Set A1o := Ay N As. Since Ay and As intersect cleanly, we have
C(Al, Ag) = TA1|A12 + TAQ‘AlZ. (3.4.2)

Since A; is Lagrangian, we get —h~Y(TA;) C Ty T*(M x R) for i = 1,2. In particular,
—h™Y(TAj|a,,) C Ty, T*(M x R). Hence we obtain

~h (C(A1,A9)) N T Q. C Ty, TH(M x R). (3.4.3)
Hence, by (3.4.1), SS(uhom(Fy, F1)|a, ) C Ty ,T*(M x R), which proves the result. [

Let Ci,...,Cy, be the connected components of Ly N Ly with fo1(Cy) = 0 (j =
1,...,np). For a component Cj, we define a closed subset C; of Q C T*(M x R) by

Gy = {(@,t:6,7) | 7> 0, (@:6/7) € Cj,t = —[i(w:€/7) (= —falas /7)) (3.44)

Note that 6’; /Rso ~ C;. We also denote by d;: A; — %Z the function which assigns
the shift of F;. Since the function d; is invariant under the R y-action, we use the same
symbol d; for the function L; = A;/Rso — %Z (see also Section 3.C Appendix II).
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Theorem 3.4.3. Under Assumption 3.4.1 and in the notation above, assume moreover
k =Fy =7Z/27Z. Then

no
phom(Fy, Fy)|o, ~ @D kg [-s(C)), (3.4.5)
j=1

where s(C;) € Z 1is given by

L .. . 1 *
s(Cy) :==da(p) — d1(p) + §(d1mM —dimCj) — iT(TpLQ,Tle,Tp(TW( yM))  (3.4.6)

p

with p € C;. In particular,

RI'(Qy; phom(Fy, F1)|a, ) ~ éRF(Cj; ko, )[—s(Cy)). (3.4.7)
j=1

Proof. (a) By Lemma 3.4.2, phom(Fy, F1)|a,na, has locally constant cohomology sheaves.
Fix p € C; and let us compute the stalk at p’ := (p,0;1) € 6\] There exists a Hamiltonian
isotopy with compact support ¢ = (¢X),: T*M x I — T* M, where I is an open interval
containing [0, 1], such that ¢{/ (L;) is the graph I'y,, of the derivative of some C*-function
@i M — R in a neighborhood of ¢ (p) for i = 1,2. Let o T*(M x R) — T*(M x R) be
the homogeneous Hamiltonian isotopy associated with ¢ and K € DP(M xR x M xR x I)
be the sheaf quantization of <$ For simplicity of notation, we set y = <$1. Set moreover
K1 = K|pxrxMxrx{1} € D"(M xR x M xR). By Proposition 2.1.20, in a neighborhood
of x(p’), we have the isomorphism

phom(Kj o Fy, Ky o F1) =~ x,puhom(Fs, Fy). (3.4.8)

Moreover, by Proposition 2.1.21, Kj o F; is simple with shift d;(p) + d’ — §; along x(A;) at
X(p'), where d' is the shift of K7 at (x(p/),p*) and

i = i M+ 1)+ 2 Q@) A 00 D)) . (3.49)

Here, we use the symbols Ay (p) and Aoo(p) defined in (2.1.34). Hence we obtain the
isomorphism K10 F; ~ ky, [di(p) +d' — 6; — ] in DP(M xR; x(p')), where N; := {(z,t) €
M xR | pi(z) +t =0} (see also Example 2.1.19). Thus we get

phom(Fy, F1)p =~ phom(Kn,, Ky )y(p)[di(p) — d2(p) — 01 + d2]

(3.4.10)
~ 1N, (KN )y oy [d1(p) — d2(p) — 61 + b2,

where we used Proposition 2.1.14 (iii) for the second isomorphism. We introduce a new
local coordinate system (z,t') on M X R by t' := t + ¢3(z). Then Ny = {¢' = 0} and
Ny = {t' = pa(x) — p1(x)}. Assumption 3.4.1 implies that ¢ := @2 — ¢ is a Morse-Bott
function. Therefore, after changing the local coordinate system x on M, we may assume
that 7(x(p')) = (0,0) in the coordinates (z,t') and p(z) = —af —---—a3 +a3_ |+ +a7,
where [ := dim M — dim C;. Note that in the coordinate system on 7™ (M x R) associated
with (x,t"), we have x(p') = (0,0;0,1). Hence, by (2.1.22), we obtain

MNz(kN1)x(p’) = HRdim M x {0} (k{t’ch(x)})(0,0;O,l)
~ RF{t’EO} (k{t/:¢($)})0 (3411)
~ k[—\].
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Thus phom(Fy, F1)| 5 is concentrated in some degree and locally constant of rank 1. Since
J

k = 9, a locally constant sheaf of rank 1 is constant, which implies the isomorphism
phom(Fy, Fl)]@ ~ k@[dl(p) —da(p) — 61 + 02 — Al.
(b) We shall prove

1, . . 1
A+ 61— 2 = i(dlmM —dimCj) — iT(ALQ (p), AL, (P), Ao (D). (3.4.12)

For the above coordinates x on M, we set &' = (z1,...,2;),2" = (xi41,...,2m) with

m = dim M and denote by (x;&) = (2/,2”; &', £") the associated coordinates on T*M. We
also denote by 02 ,¢(0) = (92, 2, #(0)); the Hessian of . Then, by a similar argument
to that of the proof of [KS90, Prop031tion 7.5.3], we get

7(Aoo(0), To(TgmR™), ToTap) = 7({x = 0}, {¢€ = 0}, {¢ = 97 ,(0) - z})
(= 0} {€ = O} {€' = B p(0) - 2'})  (3.4.13)
= _ sgn(ag/vx,go(O)) =2\ — L.

Moreover, we have

(A2 (7)), XA (1)), Ao (X(P))) = T(A3 (X(P))s Ar (X(P), Ao (1))
= 7(To(T3mR™), Tol' g, Ao (0)) (3.4.14)
= —7(Aoo(0), To(TmR™), ToT gy, ).

Here, we used the homogeneous symplectic coordinate system associated with (z,t") for
the first equality, Lemma 3.C.2 for the second one, and Proposition 3.C.1 (i) for the last
one. Combining the above two equalities, we finally obtain

—2X\ 41— 201 + 285 = T(x (A, (P)), X(Aa, (1'))s Moo (X (P))) — 261 + 205
= 7(Aa (), A, (), X Ase (X (2))))
+T()\A1( ) Ao (), X (oo (X () (3.4.15)
+ 7Aoo (), An (1), X (oo (X (1))
= 7(As (1), A, ('), Ao (P))
T(ALy(P); ALy (D), Ao (P))-

Here, the second equality follows from the invariance under symplectic isomorphisms, the
third one follows from the “cocycle condition” of the inertia index (Proposition 3.C.1 (ii)),
and the last one follows from Lemma 3.C.2 again. Since [ = dim M —dim C};, this completes
the proof. O

For a general filed k, if L; and Ls are the graphs of exact 1-forms and intersect cleanly,
the locally constant object phom(Fs, F1)|q, is described as follows:

Proposition 3.4.4. Let k be any field. Under Assumption 3.4.1, assume moreover that
there exists a C*-function p;: M — R such that Ly = T'q,, and f; = @; o w|g, for
i =1,2. Define a Morse-Bott function ¢ on M by ¢ := pa — @1 and let C1,...,Cy, be the
critical components of ¢ with ¢(Cj) =0 (j = 1,...,n9). For such a critical component
Cj, define TCTjM as the mazimal subbundle of Tc, M where the restriction of the Hessian

Hess(cp)|T5 A 18 negative definite, and define a closed subset 6‘; of Q4 by
j

—

Cj :=A{(z,—pi(z);dp1(x),7) | 7> 0,2 € C;}. (3.4.16)
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Let moreover L; := (F;)+ € Mod(kys) be the locally constant sheaf of rank 1 associated
with the simple sheaf quantization F; for i =1,2. Then

no
phom(Fy, Fi)lo, ~ GB 7r]71 <wcj/T5_M ®L® E§®1>
7=1 !
. (3.4.17)
= @ (om0 © 015 257 ) [-5(C)
j=1 ’

where T;: 6’; — Cj is the projection, s(C;) € Z is the fiber dimension of chj M, which is
equal to s(Cj) given by (3.4.6) in the statement of Theorem 3.4.3, and the right hand sides
denote their zero-extensions to ) by abuse of notation.

Proof. We may assume that ¢1 = 0,909 = ¢ and L; ~ kys for ¢ = 1,2. Then F; ~
Knrx[0,400) a0d Fo = K5 1) o(2)+¢>0) - Lake a critical component Cj of ¢ satisfying ¢(Cj) =
0. Then, by Proposition 2.1.16, we have
phom(Ky(e.0) p(x)+120} Knrx(0,+00)) & = T R (00) (@) +40} (Karx0,400) ) |c; < {0}
~ 7RI (2] 0(w) 4120} (Karxqoy) o, x {0}
~ W;lRF{Lpzo} (kM)|C] .

(3.4.18)

Moreover, we obtain (cf. [ST92, Corollary 1.3])
RIy>0y(km)le; ~ Rl (kngM)\C]- o~ ij/ngM7 (3.4.19)
which completes the proof. O

In the case Ly and Lo intersect transversally, we also obtain the following;:

Proposition 3.4.5. Let k be any field and assume that Ly and Lo intersect transversally.
For p € L1 N Ly with fo(p) — f1(p) = 0, define p == {(rp, —fi(p);7) € "M x T"R | 7 >
0} C Q4 as a special case of (3.4.4). Then

phom(Fy, F)lo, ~ €D kel—s)], (3.4.20)
pEL1NLo,
F2(P)=F1(p)=0

where s(p) € Z is given by (3.4.6) in the statement of Theorem 3.4.3.

Proof. In this case, the support of phom(Fy, F1)|o, is contained in |_|p]3 and each P is
contractible. Hence phom(Fs, F1)|q, has constant cohomology sheaves on [ |, p. The rest
is exactly the same as the proof of Theorem 3.4.3. O

The relation between the degree s(C) and the Maslov index will be explored in Sec-
tion 3.C Appendix II.

For a general field k and the clean intersection of two compact exact Lagrangian
submanifolds, we conjecture the following:

Conjecture 3.4.6. Let k be any field. Under Assumption 3.4.1, keep the notation in
Theorem 3.4.3. Let U be a tubular neighborhood of L1 in T*M and q: U — L1 be the
natural projection. Define a function fa; on 'V := U N Ly by fo1(p) := fa(p) — f10q(p).
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(i) The function fa1 is a Morse-Bott function on V whose critical set is L1 N Lo. In
particular, C; is a critical component of fa1 satisfying f21(C;) =0 forj=1,...,n9

(ii) Forj=1,...,ng, define T_JV as the mazimal subbundle of Tc,V where the restric-
tion of the Hessian Hess(fgl)]T v is negative definite. Let moreover L; := (F})4 €

Mod(kys) be the locally constant sheaf of rank 1 associated with the simple sheaf
quantization F; for i =1,2. Then

no
phom(Fy, Fi)|o, ~ @ﬂ'j_l (Wcj/TC_V Ryt (L1® E§_1)>
=1 !
» (3.4.21)
~ @71’;1 <0rcj/TC—_V ® W&l(ﬁl ® £§®1)> [—s(C))]
i=1 ’

where m;: 6’; — Cj is the projection and the right hand sides denote their zero-
extensions to )y by abuse of notation.

Note that Proposition 3.4.4 is a special case of the conjecture. The conjecture seems
to be related to the local system given in Fukaya-Oh-Ohta-Ono [FOOO09a, FOOO09b].

Theorem 3.4.7. Under Assumption 3.4.1, let LiNLy = |_|;L:1 C; be the decomposition into
connected components. Recall that for a component C of L1 N La, one defines fo1(C) :=
fa(p) — fi(p), taking some p € C. Let moreover a,b € R with a < b or a € R,b = +0c0.
Then

> dimp, H"9)(C)3Fa) > dimp, HF RIy (0,0 ((—00,b); Hom™ (Fy, FY))
agfgl(c]')<b
(3.4.22)

for any k € 7Z, where s(C;) is given by (3.4.6) in the statement of Theorem 3.4.3. In
particular,

> dimp, H**(€)(C};Fy) > dimg, Homy() (F2, Fi[k]) (3.4.23)
j=1
for any k € Z. If Ly and Lo intersect transversally, the inequalities hold for any field k,
not only for Fs.

Proof. Since the set {fa(p) — fi(p) | p € L1 N Lo} C R is finite, the conditions (1) and (2)
in Proposition 3.3.3 are satisfied. Moreover, by Theorem 3.4.3, the condition (3) is also
satisfied. Hence, the first assertion follows from Proposition 3.3.3 and Theorem 3.4.3. For
the second assertion, by Proposition 2.2.11, it is enough to show that

n
> " dimg, H**()(C};Fy) > dimg, Homp) (Fo, Te. F) [K]) (3.4.24)

j=1
for any ¢ € R and any k € Z. This follows from Proposition 2.2.6 and the first assertion
for the case a = 0,b = +00. The last assertion follows from Proposition 3.4.5. O

Corollary 3.4.8 ([Nad09, Theorem 1.3.1] and [FSS08, Theorem 1]). Under Assump-
tion 3.4.1 and in the same notation as in Theorem 3.4.7, one has

Z Z dimp, H*(C};Fy) > Z dimp, H*(M;Fy). (3.4.25)

j=1keZ kEZ
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If L1 and Lo intersect transversally, then

#(L1N Ly) > Y dim H*(M; L) (3.4.26)
keZ

for any rank 1 locally constant sheaf L € Mod(kps) over any field k.
Proof. 1t follows from Proposition 3.1.2 and Theorem 3.4.7. O
Remark 3.4.9. Assume L1 = Ly = L and f1 = fo, and set £; := (F;)4 for : = 1,2. Then

{uhom(T¢ Fy, F1)|q, }c is concentrated at ¢ = 0 and phom(Fy, F1)|o, ~ 7'['51([:2 @ LY,
where m;: L — M is the projection, over any field k. Let a,b € R with a < b or
a € R,b = 4o00. In this case, we obtain a more precise description of the complex
RI v ap) (M x (—00,b); Hom™(Fy, F1)), not only the Morse-Bott-type inequality. Namely,
if @ < 0 < b, using the concentration, Lemma 3.3.1, and Proposition 3.3.2, we have
Ry jap) (M X (—00,b); Hom™(Fz, F1))
~ RI'(M x {0}; Ry x[o,+00) (Hom™ (F2, F1)) v o})
~ RI'(Qy; phom(Fy, Fi)la, )

~ RI' (E;ﬂ'il(ﬁz ® ﬁ?71)> .

(3.4.27)

This is essentially one of the results of Guillermou [Guil2, Theorem 20.4].
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Appendices to Chapter 3

3.A Appendix I: Degenerate Lagrangian intersections

In this section, using very simple examples, we briefly remark that our method can also
deal with degenerate Lagrangian intersections. Until the end of this section, we set k = Q.
We shall consider T*S! and the intersection of the zero-section S! and the graph of an
exact 1-form L = I'gr. Let F':= kg1, 9 +00) be the canonical sheaf quantization associated
with the zero-section S' and G := K{(2,1)es1 xR|f(z)+¢>0} De that associated with L. Assume
that the intersection of S' and L has only one possibly degenerate component C' and it
is transversal outside C. Then, by Proposition 3.3.3 and similar argument to the proof of
Theorem 3.4.7, we obtain

#{p e S'NL|pis a transverse intersection point}

+Y dim H*RT (1 N (C); phom(F, G)lq. nn-1(c))
kez (3.A.1)
> " dim Homg ) (F, G[k]) = ) _ dim H*(5";kg1) = 2.
k k

We calculate the “contribution” RI" (Qy N7~ '(C); phom(F, G|, nr-1(c)) from C in the
following two typical examples.

First, we consider the case the intersection is as in Figure 3.A.1 in a neighborhood
of C. In this case, GG is isomorphic to the constant sheaf supported in the shaded closed
subset in Figure 3.A.2 in a neighborhood of C.

L : !

Figure 3.A.1: L in the first example Figure 3.A.2: G in the first example

Hence, we find that phom(F, G)|q, nr—1(c) = Kja,bx(0,400) and
RI(Qy N7~ Y(C); phom(F, Gla,ne1(0)) = RI([a,b]; kg ) ~ k. (3.A.2)

Thus, in this case, the contribution from C' is 1 in (3.A.1), and the cardinality of the
transverse intersection points is at least 1 as expected.

Next, we consider the case the intersection is as in Figure 3.A.3 in a neighborhood of
C. The canonical sheaf quantization G associated with L is isomorphic to the constant
sheaf supported in the shaded closed subset in Figure 3.A.4 in a neighborhood of C.
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Figure 3.A.3: L in the second example Figure 3.A.4: GG in the second example

Therefore, in this case, we get phom(F, G)lo, nr—1(c) = Ka,b)x (0,400) and
RI(Q, NnwY(C); phom(F, Glo,nr1(0)) = RIc([a,b); Kk p)) = 0. (3.A.3)

Hence, the contribution from C'is 0 in (3.A.1) and the cardinality of the transverse inter-
section points is at least 2 in the second case.

Remark 3.A.1. Fori =1, 2, let L; be a compact connected exact Lagrangian submanifold
and f;: L; — R be a function satisfying df; = ar«ar|r,. Let moreover F; be a simple sheaf
quantization associated with L; and f;. Proposition 3.3.3 says that the contribution from
components on which fo(p) — fi(p) = c is encoded in the sheaf phom(T..Fz, F1)|o. (even
for possibly degenerate Lagrangian intersections). If the intersection is clean along a
component C, then phom(T¢, Fy, F1)|qa, is locally constant of rank 1 on the cone of C' as
in Lemma 3.4.2. However, as seen in the above examples, if the intersection is degenerate,
then phom (T, Fs, F1)|q, is not necessarily locally constant.

3.B Appendix II: Functoriality of sheaf quantizations

In this section, we prove the ”functoriality” of Guillermou’s simple sheaf quantizations with
respect to Hamiltonian isotopies. We remark that results in this section are independent
of the results in Chapter 3 and not used for the proofs of them.

Let L be a compact connected exact Lagrangian submanifold of T*M and f be a
primitive of the Liouville form ap+ps. We define the conification Zf of L with respect
to f as in (2.2.23). Let ¢! = (¢f)s: T*M x I — T*M be the Hamiltonian isotopy
generated by a compactly supported Hamiltonian function H = (Hs)s: T*M x I — R,
where [ is an open interval containing [0, 1]. We denote by X the associated Hamiltonian
vector field on T*M. The homogeneous lift ¢ of ¢ is described as follows (see [GKS12,
Proposition A.6]):

~

o1(x,t;6,7) = (¢, t +wr(2;§/7); €, 7), (3.B.1)
where (2';¢' /1) = ¢ (2;¢/7) = ¢ (2;€/7) and u1: T*M — R is defined by

1
w(p) = /0 (H, — opent (X)) (6 () ds. (3B.2)
Hence we get

~ - , , 7>0,3(x;8) st (x;€/7) € L,
L) =< (), ui(x; €/1);€, 1
o) {( e (m';g'm=¢{1<x;g/f>,t=—f<x;g/7>}

T>0,(2;¢/7) € ¢ (L), }
t'=—fo(p) M€ /r) +uo(ef) s ¢/r) )
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On the other hand, we have equalities

(¢1 Vo — e = / ( ng aT*M> ds

- / (@) (Lx,ar-p) ds
0 (3.B.3)

1
:/ (pH)* (dux, s pr + tx.dopenr) ds

/ (67 (oot (Xa) — H.) ds = —dur.

Here, for a vector field X, Lx denotes the Lie derivative with respect to X, and the
third equality follows from Cartan’s formula. Moreover, the fourth equality follows from
the definition of the Hamiltonian vector field: dar«pr(Xs, %) = —dHs. Hence, setting

F=(f—w)o @) ¢ (L) = R, we get

arens gy = (o) ™M (ar=mlr — duar)

_ (3.B.4)
= (1) ™))" (df — du1|1) = df.
Thus we find that f is a primitive of a«y; on ¢ (L) and obtain the following:
Lemma 3.B.1. One has
hi(Lg) = 9F(L); C T"(M x R). (3.B.5)

Proposition 3.B.2. Let £ € Mod(kys) be a locally constant sheaf of rank 1 and Fy, be
the simple sheaf quantization of Ef satisfying Fr, ~ L. Let ¢1: T*M x I — T*M be
the Hamiltonian isotopy generated by a compactly supported Hamiltonian function H. Let
moreover U : DP(M x R) — DP(M x R) be the functor associated with the time-one map

P (see (2.2.18)). Define f = (f —u1) o (¢¥)71: ¢f{(L) — R as above and denote by
qﬁ{I(L)f the conification of ¢ (L) with respect to f Let furthermore F¢{1(L) be the simple

—

sheaf quantization of QS{I(L)f satisfying <F¢{;(L)) ~ L. Then
+

Vi (FL) = Fyn - (3.B.6)
Proof. By Lemma 3.B.1, we have

H
v (F;) e DY S, ey M X ). (3.B.7)

By the uniqueness of simple sheaf quantizations (Theorem 2.2.15), it remains to show that
v (F)_~0, Wi(F), ~L. (3.B.8)

Let ¢: T*(M x R) x I — T*(M x R) be the associated homogeneous Hamiltonian isotopy
and K € DP(M x R x M x R x I) be its sheaf quantization. Consider the composite
Koly € Db(M x R x I). By the compactness of L and the support of H, there exists
A € Ry g satisfying

| @s(Ly) € T*(M x (—A, A)). (3.B.9)
sel
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Set G := (K 0 FL)|Mx(A+00)xT € DP(M x (A, +00) x I). We shall show that
SS(G) C Ty (a ooyt (M x (A, +00) x I). (3.B.10)
First, by Proposition 2.1.11, we have
SS(K 0 Fr) C (Ao Ly) U Threpur(M x R x I). (3.B.11)
By the definition of A (see (2.2.4)), we obtain
(Ao L) N (Thrxr(M x R) x T*I) C T (M x R x I). (3.B.12)

Denote by is: M x R x {s} < M x R x I the closed embedding for any s € I. Then, by
the definition of Ag, we also have

~ o~

(is)alis)y (Mg o Ly) = ds(Ly). (3.B.13)
Moreover, by (3.B.9), we get
ds(Lg) NT*(M x (A, +00)) =0 (3.B.14)

for any s € I. Hence the inclusion (3.B.10) follows from the above estimates (3.B.12),
(3.B.13), and (3.B.14). Since I is contractible, we have G' ~ ¢~ (G|prx (4 +00)x {0} ) Where
q: M x (A,+00) x I — M x (A, +00) is the projection. In particular, we get
U (FL) a4 400) = Glarx(Atoo)x{1}
~ G|Mrx(A,+00)x {0} (3.B.15)
>~ (FL) | amrx(A,400) = LR K4 400

and U (Fp), ~ L. A similar argument shows that Wi (Fp)_ ~ 0. O

3.C Appendix II: Relation to grading in Lagrangian Floer
cohomology theory, by Tomohiro Asano

In this section, we relate the absolute grading of Hom™ to that of Lagrangian Floer coho-
mology.
3.C.1 Inertia index and Maslov index

In this subsection, we recall some properties of the inertia index and the Maslov index.
First we list some properties of the inertia index.

Proposition 3.C.1 ([KS90, Theorem A.3.2]). Let E be a symplectic vector space and
denote by L(E) the Lagrangian Grassmannian of E. The inertia inder 7: L(E) — Z
satisfies the following properties.

(i) For any )\1, )\2,)\3 S ,C(E), 7'()\1,)\2, /\3) = —T()\Q, /\1,)\3) = —T(/\l,)\g, /\2).

(ii) The inertia index satisfies the “cocycle condition”: for any quadruple A1, A2, A3, \q €
L(E),

T(/\l, Aa, )\3) = T(/\l, Aa, )\4) + 7'(/\2, A3, /\4) + T(/\g, A, /\4). (301)
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(iii) If A1, A2, A3 mowve continuously in the Lagrangian Grassmannian L(E) so that
dim(A; N A2), dim(A2 N Ag), dim(A3 N A1) remain constant, then 7(A1, A2, \3) remains
constant.

(iv) Let E' be another symplectic vector space, and let A, Ao, A3 (resp. N, A5, \s) be a
triple of Lagrangian subspaces of E (resp. E'). Then

TE@E’(/\I D )\,1, Ao P AIQ, A3 D )\g) = TE()\la A9, /\3) + TEI(/\Il, /2, )\g) (3.0.2)

Let M be a compact connected manifold without boundary and 7™M be its cotangent
bundle. Let moreover L7=)s be the fiber bundle over T*M whose fiber is the Lagrangian
Grassmannian, that is, Lr«p, = L(T,T*M). Denote by Ao: T*M — Lopspr,p —
TpT:(p)M be the section which assigns the fiber to p. A Lagrangian submanifold L of
T*M defines a section A\p: L — Lp«pr,p — T, L over L.

Lemma 3.C.2. Fori=1,2, let L; be a compact connected exact Lagrangian submanifold
and fi: Li = R be a function such that df; = aq«pr|1, and set A; := Liy,, the conification of
L; with respect to f;. Let p € L1 N Ly and assume f1(p) = fa(p). Set p' := (p, —f1(p); 1) €
A NAy C T*(M X R) Then

71,7 (x®) Az (0): A (P), Ao (P) = 71,120 (AL, (P), ALy () Ao (P))- (3.C.3)

Proof. Take a local homogeneous symplectic coordinate system (z,t;&,7) on T*(M x R).
Using the coordinate system, we identify Ty T*(M x R) with R™ x R x R™ x R. In this
coordinate system, we get Aoo(p/) = 0 x 0 x R™ x R. Write p = (x;&) by the coordinate.
Then Ay, (p') is spanned by

(07 0; &, 1)7 (Uv _Tfi(vi); Gis 0) ((vi7 C’L) € TpLi) : (3‘0'4)
For r € [0, 1], let Aa,(p';7) be the Lagrangian linear subspace spanned by
(0,0;7&,1), (vi, = - T'fi(v3); G, 0) ((vi, Gi) € TpLi) (3.C.5)

Then, by Proposition 3.C.1 (iii), we have

71, 7 xR) (Mo (P), Ay (P), Ao (P')) = T e () (Mo (B3 7), Any (95 7), Ao (2)
(3.C.6)

for any r € [0, 1]. Since Ay, (p";0) = Az, (p) ®R((0; 1)), by Proposition 3.C.1 (iv), we obtain

7T, T*(MxR) (Aaa (1), Aas (P), Ao (1))
= 7T, T*(MxR) ()\A2 (p/; O)a AAy (p/; 0)7 Aoo (p/))
= 5,0 M(ALy (D), ALy (D), Ao (P))- =

Next, we recall some properties of the Maslov index (see, for example, Leray [Ler81],
Robbin-Salamon [RS93|, and de Gosson [dG09]).

Proposition 3.C.3. Let E be a symplectic vector space and denote by E(E) the universal
covering of the Lagrangian Grassmannian L(E) of E. For \; € L(E)(i € N), denote
its projection to L(E) by X\;. The Maslov index u: L(E)? — %Z satisfies the following
properties.

(i) For any M, o € /:'(E), M(XI, X;) = —M(X;XI)
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(i) The coboundary of i is given by 7 : ju(h, Aa) + (3 Na) + 13y M) = S7 (A1, A2, Ag)

(iii) Ifg and X2 move continuously in L(E) so that dim(\; N \2) remains constant, then
(A1, A2) remains constant.
(iv) For any At, Ao € L(E), (A1, ho) = $(dim(\ N Ao) + § dim E) mod Z.

Remark 3.C.4. Notation for the Maslov index differs by authors. Our p is equal to half
of p in [dGOQ] Note that (ii) and (iii) of the above proposition determine the function
TR C( )2 — 1Z uniquely.

3.C.2 Graded Lagrangian submanifolds and Maslov index

Next, we recall the notion of graded Lagrangian submanifolds due to Seidel [Sei00]. De-
note by Lr«ps the fiberwise universal cover of Lr«js whose fiber over p is identified
with the space of the homotopy classes of paths in Lp«pr, from M. We also denote

by w: ET* M XT*M ET* M — 1Z the Maslov index on T* M. For a Lagrangian submanifold

L of T*M, a grading of L is a lift X L — Loy of AL, A graded Lagrangian submanifold
is a pair (L, \) consisting of a Lagrangian submanifold L and a grading A of L.

L=

4
/
/

f/ Lo (3.C.7)
// “T)\oo
/ AL /
L .T*M

Now, let (Ll,:\:) and (LQ,/)-\\;) be graded Lagrangian submanifolds of T%M intersect-
ing cleanly. For a connected component C' of L; N Le, we define the absolute grading
gr(Lsy, L1; C) of C by taking p € C' and

gr(Lo, L1; C) = 5 (dim M — dim ) ~ p(a(p), 21 (1), (3.C.8)

which induces the absolute grading of Lagrangian Floer cohomology. Note that by Propo-
sition 3.C.3 (i) and (ii), the grading gr(Le, L1; C) is written as

gr(Ly, L1;C)
= 5 (dim M — dim ) + p(R(0), Ao (p) + #olp) X2(9) = 57(Na(8), A (p), Ao ()

L. ) -~ —~ 1
= 5 (dim M — dim C) + u(Aec(p): A2(p)) — 1(Aoc(p), A (P)) — 57 (TpL2, TyL1, Ass(p)),
(3.C.9)
where the point A (p) is regarded as (the homotopy class of) the constant path.

3.C.3 Shifts of simple sheaf quantizations

Let L be a compact exact Lagrangian submanifold of 7*M and f: L — R be a primitive
of the Liouville 1-form. Denote by L C T*(M x R) the conification of L with respect to
f and let ' € D°(M x R) be a simple sheaf quantization of L. By Theorem 2.2.15, the
object F' is simple along L and the shift of F at a point of L defines a function d: L — %Z.
Since d(c - p') = d(p') for any p’ € L and ¢ € Rs, and L/Rsg = L, we also regard d as a
function L — %Z.

40



Proposition 3.C.5. There is a grading X L— Lopeps such that

0o (), M(p)) + 5 (dim M + 1) = d(p), (3.C.10)

where Ay denotes the constant path.

Proof. Let U, C Lp+pr|r be the open subset of Lagrangian Grassmannian restricted over
L consisting of Lagrangian subspaces transversal to Ao, and Ar. Let moreover U C Uy,
be a connected open subset of Uy, which has a local section v: m(U) — U. Note that the
set of such w(U) covers L. For p € L, we set p' := (p,—f(p); 1) € L. Take a local section
V' p T w(U)) = Lo-uxm g so that 7/(0) = y(p) @ R((1;0)) C T,T*M & T(_ )1y T*R
holds for every p € w(U). By Proposition 3.C.3 and the same homotopy )\E(p';r) as in
the proof of Lemma 3.C.2, we get

570l A ()7 () = Hee (0), X)) + 1(R(0), T(0) + 1T ), A p), - (3C.11)

where 7 and \ are locally defined lifts of v and Ar. Since the image of 7 is contained in a

connected component of Uy, both u(A(p),¥(p)) and p(¥(p), Aso(p)) are constant on w(U).
The difference of the shifts can be calculated as

4 ) (3.C.12)
= (Asc(p), A(p)) — 1(Aso(q), Aq))

(see [Guil2, Section 8]). Hence the function d(p) — (Ao (p), X(p)) is constant on 7(U) with
value in %Z. Hence X can be extended to the whole of L and L has a grading. Moreover,

since 1(A(p),7(p)) = p(v(p), As(p)) = 3 dim M mod Z, we have

dim(M x R) = =(dim M + 1) mod Z, (3.C.13)

1
2

N

which completes the proof. O

Next, we consider the degree of Hom*(Fy, F1). Let L; and Lo be compact exact
Lagrangian submanifolds of T*M intersecting cleanly. For i = 1,2, take a primitive
fi: L; — R of the Liouville 1-form and denote by I//\l the coniﬁcatAion of L; with respect
to f;. Let F; € Db(M x R) be a simple sheaf quantization of L;. We also denote by
di: Ly — %Z the function which assigns the shift of F;. Then, by Theorem 3.4.3, the
degree associated with a component C of L; N Lg in Hom™(Fy, F) is given by

1
(TpLa, TyL1, Ao (p)) (3.C.14)

1
dy(p) — da(p) + 5 (dim M — dim C) — o7

for any p € C. Thus, combining Proposition 3.C.5 with (3.C.9) and (3.C.14), we obtain

the following theorem.

Theorem 3.C.6. Fori=1,2, let )Tz L; — ET*M be the grading of L; given in Proposi-
tion 3.C.5. Then the degree associated with a component C' of Ly N Lo in Hom™(Fy, F1)
is equal to gr(Lg, Ly; C).
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Chapter 4

Persistence-like distance on
Tamarkin’s category and
symplectic displacement energy

In this chapter, we introduce a pseudo-distance on Tamarkin’s category D(M). We prove
that the distance between an object and its Hamiltonian deformation via sheaf quantiza-
tion is less than or equal to the Hofer norm of the Hamiltonian function. Using the result,
we also show a quantitative version of Tamarkin’s non-displaceability theorem, which gives
a lower bound of the displacement energy. In this chapter, we do not assume that M is
compact.

4.1 Complements on torsion objects

Torsion objects were introduced by Tamarkin [Tam08] and the category of torsion objects
was systematically studied by Guillermou-Schapira [GS14]. In this section, we introduce
the notion of c-torsion for ¢ € R>q, which we will use to estimate the displacement energy.
Note that the results in this section are essentially due to Guillermou-Schapira [GS14].
First, we recall the microlocal cut-off lemma in a general setting. Let V' be a finite-
dimensional real vector space and v be a closed convex cone with 0 € v in V. Define the

maps
q1,G2,5v: M XV XV — M XV, (411)
q1(z,v1,v2) = (z,v1), G2(7,v1,v2) = (w,0v2), sy(z,v1,v2) = (z,v1 + v2). o

For F' € Db(M x V'), the canonical morphism kpsx, — k Mx{o} induces the morphism
Rsv. (G "knrxy ® @ 'F) — Rsv. (G 'Kyrxqoy ® @ ' F) ~ F. (4.1.2)

The following is called the microlocal cut-off lemma due to Kashiwara-Schapira [KS90,
Proposition 5.2.3], which is reformulated by Guillermou-Schapira [GS14, Proposition 3.9].
For a cone v with 0 € v in V, we define its polar cone v° C V* by

v i={w e V" | (w,v) >0 for any v € v}. (4.1.3)
We also identify T*V with V' x V*.

Proposition 4.1.1. Let V be a finite-dimensional real vector space and ~ be a closed
convex cone with 0 € v in V. Then, for F € DP(M x V), SS(F) Cc T*M x V x 4° if and
only if the morphism Rsv*((jl_lkMM ® cjz_lF) — F is an isomorphism.
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If Int(y) # 0, then §; 'karxry = RHom (ks xint(v)xv, KMxvxv). Hence, by Proposi-
tion 2.1.7 (ii), we have

Rsy. (G 'knry © @5 ' F) ~ Rsy Ry i) xv (@ F). (4.1.4)

Now we return to the case V = R and v = [0, +00). Let F' € D?(M x R). Then, by
Proposition 4.1.1, F' € D{ >0}(M x R) if and only if

Rs.(@y 'Karx(0,400) @ Gy F) = F. (4.1.5)

Recall that T.: M xR — M x R denotes the translation map (z,t) — (x,t+c) for ¢ € R.

For F € D{T>0}(M x R), by (4.1.5), we have

Rsu(q; " Karxforor) ® @y ' F) = TeuF (4.1.6)

for any ¢ € R. Hence, for ¢ < d, the canonical morphism Ky (e, 100) = Karx[d,+o00) Induces
a morphism of functors from D?TZO}(M x R) to DE’ S0y (M % R):

Ted: Tew —> Tax. (4.1.7)

Definition 4.1.2 (cf. [Tam08]). Let ¢ € R>p. An object F' € D{T>0}(M x R) is said to
be c-torsion if the morphism 79 .(F): F — T, F is zero.

Note that a c-torsion object is ¢’-torsion for any ¢’ > c. Recall also that the category
D(M) = DP(M x R; {7 > 0}) is regarded as a full subcategory of D{’T>O}(M x R) via the
projector Pz DP(M x R;{r > 0}) = *D{ (M x R) or P,: D’(M x R; {7 > 0}) —

{T<O}(M x R)*L. Hence we can define c-torsion objects in D(M).

Let I be an open interval of R containing the closed interval [0, 1]. We recall a result
on sheaves over M x R x I due to Guillermou-Schapira [GS14]. We denote by (¢;7)
the homogeneous symplectic coordinate system on T*R and by (s;0) that on T*I. For
a,b € Rsg, we set

Yap = {(1,0) €ER? | —ar < 0 < b7} C R% (4.1.8)
Let ¢: M x R x I — M x R be the projection. We identify 7%(R x I) with (R x I) x R2.

Proposition 4.1.3 (cf. [GS14, Proposition 5.9]). Let H € D{ >0}(M xR x1TI) and s1 < s9
be in I. Assume that there exist a,b,r € Rsq satisfying

SS(H) N7 ' (M xR x (51— 7,89 +7)) CT*M x (R x I) X Y4p- (4.1.9)

Then Rq«(Harxrx[si,s0)) 15 (a(s2—s51)+¢)-torsion and Rg.(Hasxrx (s,,s0]) 15 (b(s2—51)+€)-
torsion for any € € Ryg.

Proof. The proof is essentially the same as that of [GS14, Proposition 5.9]. For the conve-
nience of the reader, we give a detailed proof again. We only consider Rq.(Hysxrx[s;,s2))-
and omit the proof for the other case.

(a) Choose a diffeomorphism ¢: (s; — 7,82 + 1) — R satisfying Plis1,s0] = 1d[s,,s,] and
dp(s) > 1 for any s € (s — 1,80 +71). Set ® :=idy; x idg x¢: M X R X (51 — 7,80 +7) =
M xR xR and H' := ®.H|prxRx(s1—r,s+r) € DP(M x R x R). Then, by the assumption
on @, we have

SS(H') C T*M x (R x R) X Y4 (4.1.10)
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and Rax(Harxrx[s1,52)) =~ Rq*(Hthx[sl,@))' Here ¢ in the right hand side denotes the
projection M xRxR — M xR, (z,t,s) — (z,t) by abuse of notation. Therefore, replacing
H with H', we may assume I = R and (4.1.10).

(b) Set V = R? and denote by sy : M x V x V — M x V the addition map. By Proposi-
tion 4.1.1, we have

RSV*RFMXInt(yg’b)XV(gng) ~H. (4111)

Note that Int(v;,) = {(t,s) € R? | =b7't < s < a”'t}. Since SS(Kprxrx[s1,50)) C
Ty M x TgR x T*R, Proposition 2.1.7 (ii) gives H @ Karurx[s;,s2) =2 BL M xRx(s1,50] (H)-
Combining with (4.1.11), we obtain

RQ*(HMxRx[sl,SQ)) = RQ*RSV*RFMxD(CjQ_IH)a (4.1.12)

where D = Int(y; ) x VN {(t,s,t',s") | s1 < s+ s < sa}. Consider the commutative
diagram
MxVxV-—"=MxV

lidM xq lq (4.1.13)
MXVTMXRXV?MXR,

q2

where q(t,s,t',s') = (t,t',5),q(x,t,t',s") = (x,t',¢), and 5(x,t,t',s') = (z,t + ). By
the adjunction of (idys x§); and (idys xq)', we get

Ra(Hrx|s,.50)) = R5:(idas x§)x RHom(knrxp, (idar x§) g5 1) [—1]

R ~ 1 (4.1.14)
~ R5, RHom(ky X RGkp, gy " H)[—1].

Here, we used ¢' ~ ¢~ '[1] for the first isomorphism.

(c) Thorough the isomorphism (4.1.11), 79 (%) is induced by the canonical morphism

ki(lnt(ﬂ/; Jxv) kInt(ﬂ/g’b)XV, where T.(t,s,t',s") = (t + ¢,s,t',8"). Moreover through

(4.1.14), we find that 70c(Rq«(Hrx(s,,s0))) 18 induced by the morphism k7 py = kp. In
order to prove that R‘j!kﬁ(D) — Ragkp is zero morphism for ¢ > a(sy — s1), we will show
that Rgkp and Rq]kfc (D) have disjoint supports.

(d) For a point (t,¢,s') e R x V, g (¢, ¢',s)ND =0 if t <0 and
Gt t,sYND = (s1 — &80 — 5| N (=b"'t,a't) (4.1.15)

if t > 0. This set is an empty set or a half closed interval if ¢t & (a(s1 — §'),a(s2 — §')].
Thus Supp(Rgkp) is contained in {(t,t',s") | ¢ € [a(s1 — §),a(s2 — §')]}. Similarly,
Supp(Rq!kTvc(D)) is contained in {(¢,t,s") | t € [a(s1 — ¢') + ¢,a(s2 — ') + ¢]}. Hence
Supp(Rqkp) and Supp(RqNgki(D)) are disjoint for ¢ > a(sy — s1). O

4.2 Pseudo-distance on Tamarkin’s category

In this section, we introduce a pseudo-distance on Tamarkin’s category D(M). This
enables us to discuss the relation between possibly non-torsion objects in D(M). Recall
again that D(M) is regarded as a full subcategory of Dl{)r>o}(M x R) via the projector P
or P,. B
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Definition 4.2.1. Let F,G € D{T>0} (M xR) and a,b € R>g. Then F is said to be (a,b)-
isomorphic to G if there exist morphisms «,d: F' — T,,G and 38,v: G — Ty, F satisfying
the following conditions:

(1) F &5 1,.G a—*ﬁ> Totb, F is equal to 19 q4+4(F): F — Tyip, F and G 5T, F M
Totb,G is equal to 79445(G): G = Tyis, G,

(2) Ta24(G) o =T742q(G) 00 and 1,9 (F) 0 B = 75 25(F') 0 7.

Remark 4.2.2. Let F,G € D{r>0}(M x R) and a,b € R>g.
(i) F' is (a,b)-isomorphic to G if and only if G is (b, a)-isomorphic to F.

(ii) If F is (a, b)-isomorphic to G, then F is (a,b’)-isomorphic to G for any a’ > a,b > b.

(iii) F is (0,0)-isomorphic to G if and only if F' ~ G.

(iv)
Remark 4.2.3. Let F,G € D(M). By Proposition 2.2.11, if F'is (a,b)-isomorphic to G
for some a,b € R>q, then F ~ G in T(M).

F is (a, b)-isomorphic to 0 if and only if F'is (a + b)-torsion.

For the relation to the notion of “a-isomorphic” recently introduced by Kashiwara-
Schapira [KS17] and the interleaving distance for persistence modules, see Remark 4.2.7

Lemma 4.2.4. If Fy is (ag, bo)-isomorphic to Fy and Fy is (a1, by)-isomorphic to Fy, then
Fy is (ag + a1, by + b1)-isomorphic to Fs.

Proof. By assumption, for i = 0, 1, there exist morphisms

a;, 000 Fy = T4, Fiv1,  Bi,vi: Fiyr — Ty, Fi (4.2.1)
satisfying
T, Bi 0 a = T 0,40, (F3), Ty, .0i © Yi = T0,a;+b; (Fit1), (42.2)
Ta;2a; (Fit1) © 0 = Ta; 20, (Fit1) 0 035 To, 20, (F3) © Bi = To, 20, (F3) © .
We set
a =T, ,a10ap: Fo = Tyyra, , Fo, B:=Tp Loo B1: Fo — Tyoyp, J1, (42.3)
v = Tbl*’YO oy Fg — Tb0+b1*F17 0= Tao*51 ] 502 F() — Ta0+a1*FQ.
Let us consider the following commutative diagram:
o
/
T0,a Fp)
y ao* K 0 0+b0( 0
Ta0+a1*F2 Tag,ag+ay+by (F1) a0+b0*F0
Ta0+a1+b1 *Fl Tag+bg,ag+a1 +bg+by (F0)
ao+m
ao+a1+b1+b2 *FO
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The two triangles in the diagram commute by (4.2.2). Since we obtain the square by apply-
INg Tag.a0+a1+b; t0 Po, it also commutes. Hence we have T, 14, ,80a = 70 qo+ay+bo+b1 (F0)-
Similarly, we get Tpy4p,,0 © Y = T0.a9+a,+bo+b; (F2). Moreover, by (4.2.2) again, we obtain

Tap+a1,2a0+2a1 (FZ) o«
= T2ap+a1,2a0+2a1 (FZ) O Tap+a1,2ap+ar (FQ) © Tao*al © g
= Thap4Tay,2a1 (F2) © Thag, 01 © Tag 240 (F1) © g (4.2.4)

= T2a0*7a1,2a1 (FQ) © T2a0*51 © Tag,2a0 (Fl) o dp
= Tag+a1,2a0+2a1 (F2) © 0.
Similarly, we get Ty, 1, 260+261 (F0) 08 = Tbo+b1,2b9+2b1 (F0)oy. This completes the proof. [

A similar argument to the proof of Lemma 4.2.4 shows the following lemma.

Lemma 4.2.5. Let Fy, F1,Go,G1 € Dl{97>0}(M x R) and assume that Fy is (ap,bp)-

isomorphic to Fy and Gy is (ag,bg)-isomorphic to Gi. Then Hom*(Fy,Gy) is (bp +
ag,ar + ba)-isomorphic to Hom*(Fy,G1).

Now we define a pseudo-distance on Tamarkin’s category D(M).

Definition 4.2.6. For object F,G € D(M), one defines
dpvy(F,G) :=inf{a+b € Rxg | a,b € R>, F' is (a, b)-isomorphic to G}, (4.2.5)
and calls dp(yp) the translation distance.

Remark 4.2.7. (i) Definition 4.2.1 and Definition 4.2.6 are inspired by the notion of
“a-isomorphic” and the convolution distance on the derived categories of sheaves on
vector spaces recently introduced by Kashiwara-Schapira [KS17]. In fact, if M = pt
and F' is (a,b)-isomorphic to G, then F' and G are 2max{a, b}-isomorphic in the
sense of Kashiwara-Schapira [KS17].

(ii) The translation distance dp,y) is similar to the interleaving distance for persistence
modules introduced by [CCSG109] (see also [CASGO16]). Their definition of “a-
interleaved” corresponds to Definition 4.2.1 with a = b and the condition (2) replaced
by @« = 0,8 = 7. However, as remarked by Usher-Zhang [UZ16, Remark 8.5],
removing the restriction a = b gives a better estimate of the displacement energy. In
fact, if we restrict ourselves to a = b and use the associated pseudo-distance, then
we can only prove d(Go,G1) < 2[01 ||Hs||oo ds in Theorem 4.2.13 below.

We summarize some properties of dp(yy)-
Proposition 4.2.8. Let F,G, H, Fy, F1,Go,G1 € D(M).
(i) dp)(F, G) = dpan) (G, F),
(i) dpr)(F,G) < dpry(F, H) + dpary (H, G),
(iii) dpary(Hom*(Fy, Go), Hom*(F1,G1)) < dpary(Fo, F1) + dpar) (Go, G1).

Let moreover f: M — N be a morphism of manifolds and set f:: fxidr: M xR — N xR.
Regarding F and G as objects in the right orthogonal Dl{)r<o} (M x R)*, one has

(iv) dD(N)(RﬁF, R}’;G) <dpu)(F,G)  (see also Remark 2.2.5).
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Proof. (i) and (iv) follow from the definition of dps. (ii) follows from Lemma 4.2.4 and
(iii) follows from Lemma 4.2.5. O

Example 4.2.9. Assume that M is compact and ¢: M — R be a C*°-function. Define

Z :={(z,t) e M xR | p(x) +t > 0},

(4.2.6)
F = Xpujoto0)s G i=kz € "DY (M x R) =~ D(M).

Set a := max{max ¢,0},b := — min{min ¢, 0}. Then there exist morphisms a: F' — T,,G
and 3: G — Ty, F such that T, 5 0 a = 79 q44(F) and Ty, 0 = 79 445(G). This implies
that F'is (a,b)-isomorphic to G and

dpn) (F, G) < a+ b= max{max ¢,0} — min{min ¢, 0}. (4.2.7)

Since Homp gy (F, Te.G) ~ HYRI o[ 4o0) (M x Ry Hom* (F, G)) ~ 0 for any ¢ < max ¢
and Homp ) (G, T, F') = 0 for any ¢ < —min ¢, the equation dp(yr)(F, G) = a+ b holds.

Example 4.2.10. Assume that M is compact. For i = 1,2, let L; be a compact connected
exact Lagrangian submanifold of T*M and f;: L; — R be a primitive of the Liouville 1-
form apsps. Then, by Corollary 3.1.5, L1 N Ly # (). For simplicity, we assume

1 — <0< — . 2.
perﬁlr?LQ(f2 f1) <0 per?f‘%(LQ(fQ f1) (4.2.8)

Let moreover F; € DP(M x R) be the canonical sheaf quantization associated with L;
and f; for i = 1,2 (see Theorem 2.2.15). Set a := maxper,nr,(f2 — fi). Then, by
Proposition 3.1.2, an estimate of SS(Hom*(F1, F»)) in Section 3.2, and the microlocal
Morse lemma (Proposition 2.1.3), one can show that

Homp(ar) (F1, T Fa[k]) =~ H* (M; k) (4.2.9)

for any £ € Z. Thus there exists a morphism «: Fy — T,,F5 corresponding to 1 €
k ~ HO(M;k). Set b := maxper,nL,(fi — f2). Then, similarly to the above, we obtain
Hompap) (F2, TpiF1) =~ HO(M:;k) and get a morphism 3: F» — T}, F; corresponding to
1 € k. By construction, we find that T;,8 0o @ = 19 q44(F1) and Thea 0 B = 7o q45(F2).
Thus, F} is (a, b)-isomorphic to Fy and

dpon (B, F2) < max (fo—fi)+ max (fi—f)

pEL1NL2 LiNLa

= max (fo— fi)— min (f2— f1).

peEL1NLay peEL1NLy

(4.2.10)

Next, we prove that a “homotopy sheaf” gives an (a, b)-isomorphic pair.

Lemma 4.2.11. Let F - G - H - F[1] be a distinguished triangle in D?T>O}(M X
R) and assume that F is c-torsion. Then G is (0, c)-isomorphic to H.

Proof. By assumption, we have T, w o 19 .(H) = 70(F[1]) cow = 0. Hence, we get a
morphism o: H — T¢.,G satisfying 7o..(H) = T,.v 0 a.

F—" sG—" >H—" > F[l]

a 7 g
l i 7 j lo (4.2.11)
.70
T..F T..G T..H T..F[1]

Texu Tev Tesw
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On the other hand, since 70.(G) o u = Te,u o 19(F) = 0, there exists a morphism
d: H — T.,G satisfying 79.(G) = d o v.

F—" sG—" >H—" > F[l]

lo l ° - / j l (4.2.12)

A
T,.F T..G T, H T,.F[1]

Tesu Tesv

Tesw
Moreover, we obtain

7072C(G> o= TC*TO,C(G) o

=T, 60T ,vou
¢ ¢ (4.2.13)
=Ted0700(H)
=Te470,6(G) 00 = Te.2:(G) 0 0.
This completes the proof. ]
Proposition 4.2.12. Let H € D?T>O}(M x R x I). Assume that there exist continuous
functions f,g: I — R>q satisfying

SS(H) Cc T*M x {(t,s;7,0) | —f(s) -7 <o<g(s) T} (4.2.14)

Then H|prxrxio} <f01 g(s)ds + ¢, fol f(s)ds —I—a) -isomorphic to H|yxrxqiy for any
€ € R>0.

Proof. Set A" :={(t,s;7,0) | —f(s)- 7 <o <g(s) 7} Let 51 < s bein [0,1] and &’ € R
be an arbitrary positive number. Then there is » € R such that

/ /

f(s) < max f(s)+ ° and g(s) < max g(s)+ < (4.2.15)
s€[s1,52] 2 s€[s1,52] 2
for any s € (s1 —r, s2 + r), which implies
NAr H M xRx (s —7804+7) CT*Mx (RxI) Xy o, o (4.2.16)
at3.0+5

with @ = max,e[,, ] f(5) and b = maxef, 5, 9(s). Let ¢: M xR x I — M x R be
the projection. By Proposition 4.1.3, Rq«(Harxrx(s;,s2)) 15 (a(s2 — s1) + &’)-torsion and
R (Harxrx (s1,50]) 18 (b(s2 — 81) +¢')-torsion. Hence, by Lemma 4.2.4, Lemma 4.2.11, and
the distinguished triangles

1
RQ*(HMXRX(SLSQ]) — Rq*(HMXRX[Sl,SQ]) — H|M><R><{sl} +—>7

(4.2.17)
1
Rq*(HMXRX[Sl,SQ)) ? RQ*(HMXRX[sl,SQ]) ? H|M><R><{52} i 75

we find that H|pyxrx(s,} is (b(s2 — s1) + €', a(s2 — s1) + €')-isomorphic to H|rsxrx {s,}-
Thus, by Lemma 4.2.4 again, H|yrxrx{o} 18 (bn +€/2, an + ¢/2)-isomorphic to H|prxrx {1}
for any n € Z~q, where a,, and b,, are the Riemann sums

n—1 n—1

1 1
R P e P

Since f and g are continuous on I, there is a sufficiently large n € Z~ such that
! € ! €
an < / f(s)ds+ = and b, < / g(s)ds + =, (4.2.19)
0 2 0 2
which completes the proof. ]
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Now, let us consider the distance between Hamiltonian isotopic objects in D(M). Using
sheaf quantization of Hamiltonian isotopies (Theorem 2.2.1), we can define Hamiltonian
deformations in D(M). From now on, assume moreover that the dimension of M is grater
than 0. For a compactly supported Hamiltonian function H = (Hg)s: T*M x I — R,
following Hofer [Hof90], we define

1 1
E.(H) ::/0 m;)}st(p)ds, E_(H) ::—/O ngnHS(p)ds,
(4.2.20)

I8 = 1)+ B (8) = [ (g Hutp) — i () ) s

Theorem 4.2.13. Let H = (Hg)s: T*M x I — R be a compactly supported Hamiltonian
function and denote by ¢™ the Hamiltonian isotopy generated by H. Let K € D°(M x
R x M x R x I) be the sheaf quantization associated with ¢™. Let moreover G € D(M),
and set G' := K oG € DP(M x R x I) and G := G'|mxrx{sy € D(M) for s € I. Then
Go =G is (E_(H) + ¢, EL(H) + ¢)-isomorphic to G1 for any € € Rsg. In particular,
dpr)(Go, G1) < [|H]|.

Proof. By Proposition 2.1.11 and (2.2.4), we get

SS(G') C T*M x {(t,s;T, o) | —max Hs(p) - 7 < 0 < —min Hy(p) - 7'} . (4.2.21)
P P
Thus the result follows from Proposition 4.2.12. O

4.3 Displacement energy

In this section, we prove a quantitative version of Tamarkin’s non-displaceability theorem,
which gives a lower bound of the displacement energy.
For compact subsets A and B of T*M, their displacement energy e(A, B) is defined by

e(A, B) := inf {HH\ (4.3.1)

H:T"*M x I — R with compact support,
Angll(B) =10 '

For a compact subset A of T*M, set e(A) = e(A, A).
We give a sheaf-theoretic lower bound of e(A4, B). For that purpose, we make the
following definition.

Definition 4.3.1. For F,G € D(M), one defines

eD(M) (F, G) = dp(pt) (RqR* Hom*(F, G), 0)

. , _ (4.3.2)
= inf{c € R>¢ | Rqr, Hom™(F,G) is c-torsion}.

Theorem 4.3.2. Let A and B be compact subsets of T*M. Then, for any F € Da(M)
and G € Dp(M), one has

e(A, B) > epn) (F, G). (4.3.3)
In particular, for any F € Ds(M) and G € Dp(M),

e(A, B) > inf{c € R>¢ | Homp()(F, G) — Homp(pp) (F, Te.G) is zero}. (4.3.4)
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Proof. Suppose that a compactly supported Hamiltonian function H: T*M x I — R
satisfies A N ¢ (B) = (. Let K € D®(M x R x M x R x I) be the sheaf quantization
associated with ¢ and define G’ := KoG € DP(M xR xI) and Gy := G| pxrx{sy € D(M)
for s € I as in Theorem 4.2.13. Since G € D¢f(3)(M)a Tamarkin’s separation theorem
(Theorem 2.2.7) implies Rqgr, Hom*(F,G1) ~ 0. On the other hand, by Theorem 4.2.13,
we have dp(yr)(Go, G1) < ||H||. Hence, by Proposition 4.2.8, we obtain

epm)(F, G) = dppy) (Rqr,. Hom™(F, Gy), 0)
< dpm) (Hom™*(F, Gg), Hom*(F,G1)) (4.3.5)
< dpr)(Go,G1) < || HI|,

which proves the theorem. O
We list some properties of ep(ys).-
Proposition 4.3.3. Let F,G € D(M).
(i) epan (G, F) < epan(F, F) and epo (F,G) < epn (FL F).

(ii) Assume that F' and G are cohomologically constructible as objects in LD'f{’,r<0} (M x
R) C Db(M X R) Then GD(M)(F, G) = BD(M)(i*DMXRG,i*DMXRF).

(iii) Assume that there exist compact subsets A and B of T*M such that F € Da(M)
and G € Dg(M). Let o™ : T*M x I — T*M be a Hamiltonian isotopy with compact
support and K € Db(M X R x M xR x I) be the sheaf quantization associated with
. Set F/ == Ko F,G' := Ko G and F, := F'lprxrxqsy, Gs = G| prxrxisy for
s € 1. Then ep)(F, G) = epar) (Fs, Gs) for any s € 1.

Proof. (i) Assume that the morphism

70,c(Rqr, Hom™(F, F)): Rqr, Hom™(F,F') — T, Rqr, Hom™(F, F)

4.3.6
~ Rqg, Hom™(F, T, F) ( )

is zero. Then the induced morphism Hompyp) (F, F') — Homp(ap) (F, T¢, F) is also zero
by Proposition 2.2.6, which implies 9 (F) = 0. Since the canonical morphism

70.c(Rqr, Hom*(G, F)): Rqr, Hom*(G, F) — T¢.Rqr, Hom™* (G, F)

4.3.7
~ Rqr, Hom™ (G, T..F) ( )

is induced by 79 .(F'), it is also zero. This proves the first inequality. The proof for the
second one is similar.
(ii) First, we show that i,Dyxgr: DP(M x R) — DP(M x R) induces a functor D(M) ~

Db (M x R) — DY_ (M x R)* ~ D(M). Let F € ‘Db (M x R) and § €

D? (M x R). Then we have

Hompp (a7 xr) (s D F) =~ Hompo <) (265, RHom/(F, warxr))
~ Home(MXR) (Z*S X }77 LL)MX]R) (438)

~ Home(MxR) (F, RHOTI’L(Z*S, WMXR))'

By Theorem 2.1.5 and Proposition 2.1.7, RHom(i.S,wyrxr) € D'{°T<O}(M x R). Hence
Hompp (a7« (S, ixDarxrF) =~ 0, which implies i.DyxrF € D?T<0}(M x R)*.
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Now, assume that F,G € LDF{’T <0} (M x R) are cohomologically constructible. Then
we have
Hom*(F,G) ~ Rs, RHom(g, 'i ' F, §;G)
~ Rs. RHom(Dyrxrd G, Darxrdy Vi 1 F)
~ Rs, RHom(G; 'DyrxrG, Goi "Dy« F)
~ Hom™ (1.Dp xR G, i:Dprxr F),

(4.3.9)

which proves the equality.
(iii) It is enough to show that Rqgr, Hom*(F,G) ~ Rqr, Hom*(Fs, Gy) for any s € I. For
a compact subset C' of T*M, define Coney(C) C T*(M x I) x R by

Coney (C)
= {(a', 5,8, =7 - Hy(a'; ' /7),7) | 7> 0, (2;&/71) € C, (/;¢' /1) = L (2;€/7)}.

Denote by 7: T*(M x I xR) ~ T*(M x I) x T*R — T*(M x I) x R the projection. Then,
by Proposition 2.1.11 and (2.2.4), we have

(4.3.10)

SS(F") ¢ #7Y(Coney(A)), SS(G') c #~(Coneg(B)). (4.3.11)

Let moreover qrxr: M X I x R — I X R be the projection. Note that ¢r«g is proper on
Supp(Hom*(F',G")), where Hom* denotes the internal Hom functor on D(M x I). Then,
by [GS14, Proposition 3.13 and Lemma 3.7] and Theorem 2.1.5, we obtain

SS(Rqrxr, Hom*(F',G")) C {(s,t;0,7) | 7 >0} C T*(I x R). (4.3.12)

Since I is contractible, there exists S € DP(R) such that Rqrxr, Hom*(F',G') ~ ¢'~18,
where ¢': I x R — R is the projection. Finally, by [GS14, Corollary 3.15], for any s € I,
we have

Rqrxr, Hom*(F',G") |{s}><]R ~ Rqr, Hom*(Fs, Gy), (4.3.13)
which completes the proof. O

Remark 4.3.4. Assume that F,G € D(M) ~ J-DI‘ET<0}(M x R) are constructible and have
compact support. Then Rqr, Hom™(F,G) is also constructible object with compact sup-
port and SS(Rgr, Hom™*(F,G)) C {r > 0}. By the decomposition result for constructible
sheaves on R due to Guillermou [Guil6b, Corollary 7.3] (see also [KS17, Subsection 1.4]),
there exist a finite family of half-closed intervals {[b;,d;)}icr and n; € Z (i € I) such that

Rgg, Hom*(F, G) ~ )k, a,) [nil- (4.3.14)
el

Using this decomposition, we find that ep(ap) (F, G) = max;er(d; — b;) is the length of the
longest barcodes of Rqgr, Hom*(F,G) in the sense of Kashiwara-Schapira [KS17].

Remark 4.3.5. Let F,G € D(M). As remarked by Tamarkin [Tam08, Section 1], we can
associate a module H(F,G) over a Novikov ring Agnov(k) as follows. We define

A07nov(k) = {i CiT)\i

=1

1— 00

c ek, )\ € Rzo,)q <Ao< vee .lirn A= —i—oo} . (4.3.15)
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We also define a submodule H(F,G) of [].cgp Hompap (F, Te, G) by

()2 CRep <ea <+, lim ¢; = +00
1—00
o ng 4o ‘ such that h. = 0 for any ¢ & U{cl}
i=1

For ¢ € R and A\ € R, there is the canonical morphism 7. .y x: Homp(p (F, Te.G) —
Homp ) (F, Teyr,G) induced by 7¢cia(G): TeuG — Teyn, G- Using this morphism, we
can equip H(F,G) with an action of T* by T - (h¢)e = (Teera(he))e. We thus find that
the Novikov ring Agnov(k) acts on H(F,G).

(i) Using the Agnov(k)-module H(F,G), we can express (4.3.4) in Theorem 4.3.2 as

e(A,B) > inf{c € R>o | H(F,G) is T*-torsion} (4.3.17)

for any F' € Dy(M) and G € D(M). This inequality seems to be related to the estimate
of the displacement energy by Fukaya-Oh-Ohta-Ono [FOOO09a, FOOO09b, Theorem J]
and [FOOO13, Theorem 6.1].

(ii) We denote by Apov(k) the fraction field of Agpnov(k). Then, for any F,G € D(M), we
have

H(F,G) @y 0000 Anov (k) = Homy(ap) (F. G) @1 Aoy (k) (4.3.18)

Note that 7 (M) is invariant under Hamiltonian deformations (see Theorem 2.2.12). The
invariance follows from Theorem 4.2.13 and Remark 4.2.3. Note also that our approach
gives a more precise description of Hamiltonian deformations in the category D(M).

4.4 Examples and applications

In this section, we give some examples to which Theorem 4.3.2 is applicable.
The first two examples, Example 4.4.1 and Example 4.4.3, treat exact Lagrangian
immersions.

Example 4.4.1. Consider T*R™ ~ R?™ and denote by (z; &) the homogeneous symplectic
coordinate system. Let L = S™ = {(z,y) € R™ x R | ||z||* + y? = 1} and consider the
exact Lagrangian immersion

t: L — T*R™,  (x,y) — (z;yx). (4.4.1)
Setting f: L — R, f(z,y) = —%y?’, we have df = (*ap-gm. We define a locally closed
subset Z of R™ x R by
1 1
7= {(x,t) eR™ xR ‘ Joll < 1,—5 (1~ |z]?)2 <t < 51— ||x||2)3} (4.4.2)

and F :=k; € D*(R™ x R).

§ t

Figure 4.4.1: «(L) in the case m = 1 Figure 4.4.2: Z in the case m =1
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The object F' is in lD?Tgo} (R™ x R) and can be regarded as an object in D,z)(R™). For
this object F, we find that

k (0
0 (c

)

and the induced morphism Hompgm)(F, F') — Hompgm)(F, ¢, F) is the identity for any
0 < ¢ < 2/3. Hence, we obtain e(¢(L)) > epmwm)(F, F') > 2/3 by Theorem 4.3.2. This is
the same estimate as that of Akaho [Akal5]. If m = 1, it is known that e(«(L)) = 4/3 by
the use of Hofer-Zehnder capacity.

win

Homp(gm) (F, Tex F) ~ Hompp (gm gy (F, TesF) =~ { ) (4.4.3)

IV IA
Wi O

Using the example above, we can recover the following result of Polterovich [Pol93],
for subsets of cotangent bundles.

Proposition 4.4.2 ([Pol93, Corollary 1.6, see also the first remark in p. 360]). Let A be
a compact subset of T*M whose interior is non-empty. Then its displacement energy is
positive: e(A) > 0.

Proof. Take a symplectic diffeomorphism ¢: T*M — T*M such that Ty, M NInt(¢(A)) #
(. Since e(¢(A)) = e(A), we may assume Ty, M NInt(A) # 0 from the beginning. Take a
point zg € T5;M NInt(A) and a local coordinate system x = (z1, ..., xy,) on M around z.
Denote by (z;€) the associated local homogeneous symplectic coordinate system on 7M.
Using the coordinates, for ¢ € Ry we define t.: S™ — T*M by (z,y) — (ex,eyx) as in
Example 4.4.1. Then, there is a sufficiently small e € R+ such that the image ¢.(S™) is
contained in Int(A4). As in Example 4.4.1, we define F':=kz_ € D,_(gm)(R™), where

Ze = {(z,t) eR™ xR

1 1
2] < e,—g(a-? — 2Pz <t< g(é-? — \zH?)i}. (4.4.4)

Moreover we define G € D,_(gm)(M) as the zero extension of I to M x R. By monotonicity
of the displacement energy and a similar argument to Example 4.4.1, we have

e(A) > e(te(S™)) = epn (G, G) > %82 > 0. (4.4.5)
0

For the next explicit example, our estimate is better than Akaho’s estimate [Akal5].

Example 4.4.3. Let ¢: [0,1] — (0,1] be a C*°-function satisfying the following two
conditions: (1) ¢ = 1 near 0, (2) ¢(r) = r on [1/2,1]. Set S™ = {(z,y) € R™ x R |
lz]|?> + y* = 1} and consider the exact Lagrangian immersion

m kD1 ! x
t: 8™ — T*R™,  (z,y) —> (az, (cp(HxH)y - ¢3(|:|x’|||)y3> x) . (4.4.6)
Setting f: S™ — R, f(z,y) = —%gp(H:rH)y:s, we have df = t*ap«rm. We define a locally
closed subset Z of R™ x R by
m 1 3 1 3
2= {(@t) e R" xR | ol < 1= golllelD(1 - )} < ¢ < 3e(lel1 - JolP)?

(4.4.7)

and F := ky € D?(R™ xR). Using the object F', one can show e(¢(S™)) > epmrm)(F, F) >
2/3 as in Example 4.4.1. On the other hand, the estimate by Akaho [Akal5] only gives
e(¢(S™)) = min, ;]{%(1 — 7"2)% -o(r)}, which is less than v/3/8.

]
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Our theorem is also applicable to non-exact Lagrangian submanifolds. We focus on
graphs of closed 1-forms here.

Example 4.4.4. Let M be a compact manifold and 7n;: M — T*M a closed 1-form for
i =1,2. Set L; :=I';, C T*M the graph of n; for i = 1,2, and assume that L; and Lo
intersect transversally. We consider the displacement energy e(Lj, L2). The symplectic
diffeomorphism ¢ on T* M defined by ¢ (x; ) := (2;£ —n1(x)) sends Ly to the zero-section
M and Ly to I'y, ;. Thus we assume L; = M and Lo = I';, where 7 is a closed Morse
1-form from the beginning. Let p: M — M be the abelian covering of M corresponding
to the kernel of the pairing with 7. Then there exists a function f: M — R such that
p*n = df. By assumption, f is a Morse function on M. Define a closed subset Z of M xR
by

Z:={(z,t) e M xR | f(z)+t > 0}. (4.4.8)

Then we have F' := R(p X id]R)*kZ € DL(M) and e(Ll,Lg) > e'D(M)(kMX[O,—i—oo)vF) by
Theorem 4.3.2.
Let us consider the estimate for ep(ar) (Karx[0,400), F)- First, we have

RHom(kpzy(0,400), Tes ") = RHom(kMX[icﬁoo), kz)

~ BRI oo (JTI « R; kz) .

(4.4.9)

Define U, := {z € M | f(z) > ¢} for ¢ € R. Then the cohomology of the last complex

RFMx[—c,+oo) (M x R; kz) is isomorphic to H*(M, U.) and for ¢ < d, 74 is the canonical

morphism induced by the map (M JUg) — (M ,U.) of the pairs. Hence this persistence
module is isomorphic to (H *(M ,Uc))cer and it is the dual of the persistence module
(H*(]TI, U.))cer- The persistence module (H*(M, U.))cer can be studied by Morse homol-
ogy theory of —f or Morse-Novikov theory of —n. Let v be a vector field on M which is
a (—n)-gradient and satisfies the transversality condition in the sense of Pajitnov [Paj06,
Chapter 3 and Chapter 4]. The existence and denseness of such vector fields hold (see
Pajitnov [Paj06, Chapter 4]). Moreover let v be the lift of v to M. The Morse-Novikov
complex C := C(—n,v) with respect to v has the filtration (C<.).cr defined by the values
of —f. Here we regard C as a finitely generated free module over the Novikov field

oo ciEk,)\i:/nforsomeveHl(M;Z),
i v (4.4.10)
i=1 Al <A <o, lim Ay =400
1—00
The persistence module (H,(C'/C<.))cer is isomorphic to (H., (M, U.))scr by usual Morse
theoretic arguments. Each critical point generates or kills rank 1 subspace of the persistent
homology. Hence one can prove that our estimate is greater than or equal to

p,q € Crit(—f), |ind(p) — ind(q)| = 1, (4.411)
there is a flow of ¥ connecting p and ¢ |’ o

p q

max min {f(P) — f(q)]

where Crit(—f) is the set of the critical points of —f and ind(p) is the Morse index of

p € Crit(—f).
The persistence module (H,(C/C<.))cer is not finitely generated in the usual sense of
persistent homology theory. However we can apply the theory of Usher-Zhang [UZ16] to

o4



C. Their result describes the “barcodes” of the persistence module (H,(C<.)). and one
can check that our estimate in this case coincides with the length of the longest concise
barcodes for C(—n,v) defined in [UZ16].

In the last example below, our estimate determines the displacement energy.

Example 4.4.5 (Special case of Example 4.4.4). Let L = T'), C T*S' be the graph of
a non-exact I1-form n: S' — T*S'. Assume that L and the zero-section S' intersect
transversally at only two points. We estimate the displacement energy e(S',L). Let
p: R — S! be the universal covering and take a function f on R such that df = p*n.
Define F' := R(p X idR)«K{(z)erxR|f(z)4t>0} € Dr(SY). Then a similar argument to
Example 4.4.4 shows that epg1)(Kgix[0,400), F') is equal to the smaller area enclosed by
St and L. One can check that e(S!, L) is equal to the area.

95



Bibliography

[Abo12]

[Akal5)

[CCSG+09)

[CdSGO16]

[dG09)]

[FOO009a]

[FOO009b)

[FOOO013]

[Fra04]

[FSS08]

[FSS09]

[GKS12]

M. Abouzaid, Nearby Lagrangians with vanishing Maslov class are homotopy
equivalent, Invent. Math., 189 (2012), no. 2, 251-313.

M. Akaho, Symplectic displacement energy for exact Lagrangian immersions,
arXiv preprint, arXiv:1505.06560, (2015).

F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas, and S. Y. Oudot.
Proximity of persistence modules and their diagrams. In Proceedings of the
Twenty-fifth Annual Symposium on Computational Geometry, SCG ’09 237—
246, New York, NY, USA, 2009. ACM.

F. Chazal, V. de Silva, M. Glisse, and S. Oudot, The structure and stability of
persistence modules, SpringerBriefs in Mathematics, Springer, [Cham]|, 2016.

M. de Gosson, On the usefulness of an index due to Leray for studying the
intersections of Lagrangian and symplectic paths, J. Math. Pures Appl. (9),
91 (2009), no. 6, 598-613.

K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer the-
ory: anomaly and obstruction. Part I, Vol. 46 of AMS/IP Studies in Advanced
Mathematics, American Mathematical Society, Providence, RI; International
Press, Somerville, MA, 2009.

K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer
theory: anomaly and obstruction. Part II, Vol. 46 of AMS/IP Studies in
Advanced Mathematics, American Mathematical Society, Providence, RI; In-
ternational Press, Somerville, MA, 2009.

K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Displacement of polydisks and
Lagrangian Floer theory, J. Symplectic Geom., 11 (2013), no. 2, 231-268.

U. Frauenfelder, The Arnold-Givental conjecture and moment Floer homol-
ogy, Int. Math. Res. Not., (2004), no. 42, 2179-2269.

K. Fukaya, P. Seidel, and 1. Smith, Exact Lagrangian submanifolds in simply-
connected cotangent bundles, Invent. Math., 172 (2008), no. 1, 1-27.

K. Fukaya, P. Seidel, and I. Smith, The symplectic geometry of cotangent bun-
dles from a categorical viewpoint, In Homological mirror symmetry, Vol. 757
of Lecture Notes in Phys. 1-26, Springer, Berlin, 2009.

S. Guillermou, M. Kashiwara, and P. Schapira, Sheaf quantization of Hamil-
tonian isotopies and applications to nondisplaceability problems, Duke Math.
J., 161 (2012), no. 2, 201-245.

o6


https://arxiv.org/abs/1505.06560

[GS14]

[Guil2]

[Guil6a]

[Guil6b]

[Hof90]

[KOO1]

[Kral3]

[KS90]

[KS17]

[Ler81]

[Nad09)

[NZ09)]

[Oh05]

[Pajo6]

[Pol93]

[Poz99)]

S. Guillermou and P. Schapira, Microlocal theory of sheaves and Tamarkin’s
non displaceability theorem, In Homological mirror symmetry and tropical
geometry, Vol. 15 of Lect. Notes Unione Mat. Ital. 43-85, Springer, Cham,
2014.

S. Guillermou, Quantization of conic Lagrangian submanifolds of cotangent
bundles, arXiv preprint, arXiv:1212.5818v2, (2012).

S. Guillermou, Quantization of exact Lagrangian submanifolds in a
cotangent bundle, lecture notes available at the author’s webpage,
https://www-fourier.ujf-grenoble.fr/ guillerm/, (2016).

S.  Guillermou, The three cusps conjecture, arXiv  preprint,
arXiv:1603.07876, (2016).

H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc.
Edinburgh Sect. A, 115 (1990), no. 1-2, 25-38.

R. Kasturirangan and Y.-G. Oh, Floer homology of open subsets and a relative
version of Arnold’s conjecture, Math. Z., 236 (2001), no. 1, 151-189.

T. Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture,
Geom. Topol., 17 (2013), no. 2, 639-731. With an appendix by Mohammed
Abouzaid.

M. Kashiwara and P. Schapira, Sheaves on manifolds, Vol. 292 of Grundlehren
der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1990.

M. Kashiwara and P. Schapira, Persistent homology and microlocal sheaf
theory, arXiv preprint, arXiv:1705.00955, (2017).

J. Leray, Lagrangian analysis and quantum mechanics, MIT Press, Cam-
bridge, Mass.-London, 1981, A mathematical structure related to asymptotic
expansions and the Maslov index, Translated from the French by Carolyn
Schroeder.

D. Nadler, Microlocal branes are constructible sheaves, Selecta Math. (N.S.),
15 (2009), no. 4, 563-619.

D. Nadler and E. Zaslow, Constructible sheaves and the Fukaya category, J.
Amer. Math. Soc., 22 (2009), no. 1, 233-286.

Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed
symplectic manifolds, In The breadth of symplectic and Poisson geometry,
Vol. 232 of Progr. Math. 525-570, Birkhauser Boston, Boston, MA, 2005.

A. V. Pajitnov, Clircle-valued Morse theory, Vol. 32 of De Gruyter Studies in
Mathematics, Walter de Gruyter & Co., Berlin, 2006.

L. Polterovich, Symplectic displacement energy for Lagrangian submanifolds,
Ergodic Theory Dynam. Systems, 13 (1993), no. 2, 357-367.

M. Pozniak, Floer homology, Novikov rings and clean intersections, In North-
ern California Symplectic Geometry Seminar, Vol. 196 of Amer. Math. Soc.
Transl. Ser. 2 119-181, Amer. Math. Soc., Providence, RI, 1999.

o7


https://arxiv.org/abs/1212.5818
https://arxiv.org/abs/1603.07876
https://arxiv.org/abs/1705.00955

[PS16]

[PSS17]

[RS93]

[Sch00]

[Sch16]

[Sei00]

[ST92]

[TamO8]

[UZ16]

L. Polterovich and E. Shelukhin, Autonomous Hamiltonian flows, Hofer’s ge-
ometry and persistence modules, Selecta Math. (N.S.), 22 (2016), no. 1, 227—
296.

L. Polterovich, E. Shelukhin, and V. Stojisavljevié¢, Persistence modules with
operators in Morse and Floer theory, arXiv preprint, arXiv:1703.01392,
(2017).

J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32 (1993),
no. 4, 827-844.

M. Schwarz, On the action spectrum for closed symplectically aspherical man-
ifolds, Pacific J. Math., 193 (2000), no. 2, 419-461.

F. Schmaschke, Floer homology of Lagrangians in clean intersection, arXiv
preprint, arXiv:1606.05327, (2016).

P. Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France, 128
(2000), no. 1, 103-149.

P. Schapira and N. Tose, Morse inequalities for R-constructible sheaves, Adv.
Math., 93 (1992), no. 1, 1-8.

D. Tamarkin, Microlocal condition for non-displaceability, arXiv preprint,
arXiv:0809.1584, (2008).

M. Usher and J. Zhang, Persistent homology and Floer-Novikov theory,
Geom. Topol., 20 (2016), no. 6, 3333-3430.

o8


https://arxiv.org/abs/1703.01392
https://arxiv.org/abs/1606.05327
https://arxiv.org/abs/0809.1584

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Microlocal sheaf theory and symplectic geometry in cotangent bundles
	1.2 Compact exact Lagrangian intersections in cotangent bundles via sheaf quantization
	1.2.1 Our results
	1.2.2 Relation to Lagrangian intersection Floer theory

	1.3 Persistence-like distance on Tamarkin's category and symplectic displacement energy
	1.3.1 Main results
	1.3.2 Related topics

	1.4 Organization

	2 Preliminaries on microlocal sheaf theory and its applications to symplectic geometry
	2.1 Preliminaries on microlocal sheaf theory
	2.1.1 Geometric notions ([§4.3, §A.2]KS90)
	2.1.2 Microsupports of sheaves ([§5.1, §5.4, §6.1]KS90)
	2.1.3 Functorial operations ([§5.4]KS90)
	2.1.4 Non-proper direct images (Tamarkin, GS14)
	2.1.5 Morse-Bott inequality for sheaves (ST92)
	2.1.6 Kernels ([§3.6]KS90)
	2.1.7 Microlocalization and hom functors ([§4.3, §4.4]KS90)
	2.1.8 Simple sheaves and quantized contact transformations ([§7.5]KS90)

	2.2 Sheaf quantization and Tamarkin's non-displaceability theorem
	2.2.1 Sheaf quantization of Hamiltonian isotopies (GKS)
	2.2.2 Tamarkin's separation and non-displaceability theorems (Tamarkin, GS14)
	2.2.3 Guillermou's sheaf quantization of compact exact Lagrangian submanifolds (Gu12, Gulec)


	3 Compact exact Lagrangian intersections in cotangent bundles via sheaf quantization
	3.1 Non-displaceability of compact exact Lagrangian submanifolds
	3.2 Morse-Bott inequality for Hom
	3.3 Microlocalization of Hom
	3.4 Clean intersections of compact exact Lagrangian submanifolds
	3.A Appendix I: Degenerate Lagrangian intersections
	3.B Appendix II: Functoriality of sheaf quantizations
	3.C Appendix III: Relation to grading in Lagrangian Floer cohomology theory, by Tomohiro Asano
	3.C.1 Inertia index and Maslov index
	3.C.2 Graded Lagrangian submanifolds and Maslov index
	3.C.3 Shifts of simple sheaf quantizations


	4 Persistence-like distance on Tamarkin's category and symplectic displacement energy
	4.1 Complements on torsion objects
	4.2 Pseudo-distance on Tamarkin's category
	4.3 Displacement energy
	4.4 Examples and applications

	Bibliography

