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Introduction

Isogeometric Analysis (IGA) [14] is one of the numerical methods for partial differential equation (PDE). It
is regarded as the Galerkin method using the NURBS (Non-uniform rational B-spline) for basis functions.
Consequently, IGA is understood as the one of the finite element method (FEM) in an expanded sense.
To compare the IGA with standard FEM, we consider the following PDE as an example,

{
L(u) = f in Ω,

u = gD on Γ,
(1)

where L is a partial differential operator, Ω ⊂ Rd is a given bounded domain with Lipschitz boundary
Γ := ∂Ω. Letting Vh be an approximate finite dimensional space. We find the approximate solution
uh ∈ Vh such that

uh :=

N∑

i=1

uiφi, (2)

where we let {φi}Ni=1 be a set of basis function of Vh. Following the method of mean weighted residuals,
we find uh ∈ Vh such that the weighted residue (L(uh)− f)wi satisfies

∫

Ω

(L(uh)− f)wi = 0 (3)

for all test function wi. Here we can choose wi = φi, and then this method is called the Galerkin method,
that is, we find uh ∈ Vh such that

(L(uh), vh)L2(Ω) = (f, vh)L2(Ω) for all vh ∈ Vh. (4)

Now we introduce the standard FEM and IGA. We construct partitions of the domain Ω and finite
dimensional subspace Vh ⊂ H1(Ω). The standard FEM employs triangulation and Lagrange finite el-
ement. For the basis functions {φi}Ni=1, there exist the nodes {xi}Ni=1 such that φi(xi) = δij , that is,
the Lagrange interpolation can be defined. The standard FEM can treat complex geometry efficiently.
However, it is necessary to approximate the exact domain to polygonal (or polyhedral) domains, or to
fill the gaps between the exact domain and approximate one, because each element is often defined by
the affine transform from the d-simplex or d-cube (see [13] or [10] for more detail).

On the other hand, the IGA describes the computational domain with NURBS [29]. This gives a
partition of domain Ω immediately. Further we can get NURBS basis functions on Ω, and then we
employ them for Galerkin method. The computer-aided design (CAD) system uses the NURBS for
designing the geometric models of object. Therefore, IGA can treat the geometric models of industrial
products directly. Further, NURBS can represent complex geometries or smooth approximate solutions
of PDE using only a few degrees of freedom. This advantage can reduce the computer-storage cost in
numerical simulations for large system. However, the set of NURBS basis functions does not satisfy the
interpolation property, therefore the strong imposition of Dirichlet boundary condition is difficult in IGA.

It is easy to apply IGA for computational simulation instead of FEM; however, their mathematical
treatment has some different points. Recent mathematical studies for IGA can be found in [9] and the
references given there. They are mainly devoted to steady-state problems. The aim of our study is to
consider the application of IGA to time-depending problems.

In this paper, two chapters provide some results of the application of NURBS in temporal repre-
sentation, and spatial semi-discretization, respectively. In Chapter 1, the temporal representation with
NURBS which gives smooth solution for PDE is discussed. The space-time computation technique with
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continuous representation in time (ST-C) [40] was introduced for reducing the computer-storage cost in
the numerical computation with space-time (ST) method. The core technique for ST computational anal-
ysis has been applied successfully to many classes of fluid mechanics problems. The numerical solutions
of ST methods are usually expressed by the discontinuous basis function in temporal variable. ST-C gives
the option to the core technique, and this makes the computational result smooth in temporal variable.

Two versions of the ST-C method have been offered. In this chapter, we establish the mathemat-
ical justification of ST-C with successive projection technique (ST-C-SPT). This method extracts the
continuous representation successively from a numerical solution that is previously computed and is dis-
continuous in time. It was originally proposed to represent the numerical solution with few degrees of
freedoms and saving the computer-storage costs. We show that ST-C-SPT is stable and therefore the
error estimate can be derived. Note that we consider the SPT for X-valued functions, where X is a
real-valued Banach space.

Chapter 1 is composed of five sections. In Section 1.1, we give more detail about ST computational
method and our motivation to study ST-C-SPT. Section 1.2 contains a brief summary of B-splines and
the algorithm of SPT. Moreover, we show the mathematical formulation of SPT. Let

Ξ = { t0, . . . , t0︸ ︷︷ ︸
p+1 times

, t1, t2, . . . , tN−1, tN , . . . , tN︸ ︷︷ ︸
p+1 times

} (5)

be p-open knot vector and B̂i,p, 1 ≤ i ≤ N + p be p-th degree B-spline basis functions. Without loss of
generality, we let t0 = 0 and tN = 1. We define

Sn :=

{
n+p∑

i=1

xi B̂i,p(t)
∣∣∣
[t0,tn]

: xi ∈ X for i = 1 · · · , n+ p

}
, (6)

and then the mathematical formulation of SPT is described as follows: for given Πn(f) =

n+p∑

i=1

xni B̂i,p

∣∣∣
[t0,tn]

∈

Sn, find Πn+1(f) =

n+p+1∑

i=1

xn+1
i B̂i,p

∣∣∣
[t0,tn+1]

∈ Sn+1 such that

∫

J1

(Π1(f)− f) B̂i,p dt = 0 for all i = 1, · · · , p+ 1 (7)

for n = 0, and





xn+1
i = xni for i = 1, · · · , n∫ tn

0

B̂i,p (Πn+1(f)−Πn(f)) dt+

∫ tn+1

tn

B̂i,p (Πn+1(f)− f) dt = 0 for i = n+ 1, · · · , n+ p
(8)

for n = 1, · · · , N − 1. Furthermore, this formulation has an alternative expression with matrix form. We
set

Mn+1 =

(∫

Jn+1

B̂i+n,p(t)B̂j+n,p(t) dt

)

1≤i,j≤p+1

∈ R(p+1)×(p+1), (9)

Fn+1 =

(∫

In+1

B̂i+n,p(t)f(t) dt

)

1≤i≤p+1

∈ Xp+1, (10)

xn+1 =
(
xn+1
i+n

)
1≤i≤p+1

∈ Xp+1, (11)

for n = 0, 1, . . . , N − 1. Moreover, we introduce shift matrices U and L defined by

U = (δi+1,j)1≤i,j≤p+1, L = UT. (12)

Then we can rewrite the algorithm: first we find x1 by

M1x1 = F1, (13)
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and for n = 1, . . . , N , we obtain

Mn+1xn+1 = UMnLUxn + Fn+1. (14)

In Section 1.3, we prove the stability of ΠN under some assumptions; there exists a constant C1 > 0 such
that

‖ΠN (f)‖L∞(0,1;X) ≤ C1‖f‖L∞(0,1;X) (15)

for any f ∈ L∞(0, 1;X). Further we show that the stability yields the error estimate,

‖f −ΠN (f)‖L∞(0,1;X) ≤ C2h
k̃|f |W k̃,∞(0,1;X) (16)

for any f ∈ W k,∞(J ;X) and k ≥ 1, where k̃ = min{k, p + 1}. The proof of theorems and numerical
examples are given in Section 1.4.

In Chapter 2, we study the Nitsche method for parabolic problems. Let us consider the imposition
of Dirichlet boundary condition, which is an important component of the well-posed problem. The
traditional FEM employs the Lagrange interpolation, and the value at the boundary nodal points give
the approximate boundary condition strongly. This strong imposition of Dirichlet boundary condition
may causes numerical instability. For instance, numerical oscillations may appear if the boundary data
is discontinuous. Furthermore, the Lagrange interpolation can not be constructed in IGA, because the
NURBS basis functions do not satisfy the interpolation property.

It is natural to try to propose the non-standard imposition of Dirichlet boundary condition. One such
study was given by Nitsche [27]. In his work, the penalty term is introduced, and the Dirichlet boundary
condition is imposed weakly. We emphasize that the classical penalty method is not consistent; however,
the Nitsche method satisfies consistency, that is, the Galerkin orthogonality follows. Therefore, combining
this and the inf-sup condition yields the quasi-optimal error estimate in spatial semi-discretization.

This chapter is organized as follows. Section 2.1 is intended to describe the details of introduction. In
Section 2.2, we review the Nitsche’s classical paper briefly, and the Nitsche method for elliptic problems is
explained. We mention the derivation of the coercivity for a finite dimensional approximation of the weak
formulation, by taking the penalty parameter large enough. Section 2.3 provides the basic results about
the weak formulation of the parabolic problems. We review the Banach-Nečas-Babuška theorem, which
plays an important role in this chapter. Further, we show that the Banach-Nečas-Babuška theorem gives
a unique weak solution of the advection-diffusion-reaction problem under some conditions. In Section 2.4,
we introduce the classical FEM and IGA, and we mention our basic assumptions. Moreover, we check
that these assumptions are satisfied for both of FEM and IGA. Section 2.5 contains our main results;
first we let

V :=
{
v ∈ H1(Ω) : v|K ∈ H2(K) for all K ∈ Th

}
, (17)

where Th is mesh for spatial semi-discretization. Moreover we let Vh ⊂ V is finite dimensional subspace,
and

XV :=
{
v ∈W 1,2,2

(
0, T ;H1(Ω), L2(Ω)

)
: v(t) ∈ V for a.e. t ∈ (0, T )

}
, (18)

Xh := H1 (0, T ;Vh) , Yh := L2(0, T ;Vh)× Vh. (19)

Then the Nitsche method for advection-diffusion-reaction problem is given as follows, find uε,h ∈ Xh such
that

bε,h(uε,h,vh) = F (vh) for all vh := (vh, ṽh) ∈ Yh, (20)

where

bε,h(w,vh) :=

∫ T

0

(
(w′, vh)L2(Ω) + aε(t;w, vh)

)
dt+ (w(0), ṽh)L2(Ω) (21)

for all w ∈ XV and vh ∈ Yh, aε(t; ·, ·) : V × Vh → R is defined by

aε(t;w, vh) := (A(t)w, vh)L2(Ω) −
∑

E∈Eeh

(n · µ∇vh, w)L2(E)

−(a · nvh, w)L2(Γin) + 〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

= 〈Â(t)w, vh〉(H1(Ω))∗,H1(Ω) −
∑

E∈Eeh

(
(n · µ∇w, vh)L2(E) + (n · µ∇vh, w)L2(E)

)

−(a · nvh, w)L2(Γin) + 〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

(22)

4



for all w ∈ V and vh ∈ Vh,

F (vh) =

∫ T

0

F(t; vh)dt+ (u0, ṽh)L2(Ω) (23)

for all vh := (vh, ṽh) ∈ Yh and

F(t; vh) := (f, vh)L2(Ω)−
∑

E∈Eeh

(n ·µ∇vh, gD)L2(E)−(a ·nvh, gD)L2(Γin) +〈ε(t)vh, gD〉H−1/2(Γ),H1/2(Γ) (24)

for all vh ∈ Vh. Here ε(t) : Vh → H−1/2(Γ) is given by

〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ) := ε0

∑

E∈Eeh

h−1
E (w, vh)L2(E) (25)

for all w ∈ V and vh ∈ Vh, where ε0 is a suitable constant. Then, we prove the inf-sup condition. That
is, there exists a positive constant β such that

inf
06=xh∈Xh

sup
0 6=yh∈Yh

bε,h(xh,yh)

‖xh‖Xh
‖yh‖Yh

≥ β. (26)

This yields that we can apply the the Banach-Nečas-Babuška theorem, that is, the equation (20) has a
unique solution uε,h. Furthermore, the inf-sup condition and the Galerkin orthogonality

bε,h(u− uε,h,vh) = 0 for all vh ∈ Yh. (27)

give the quasi-optimal error estimate

‖u− uε,h‖Xh
≤ C‖u− wh‖XV

(28)

for all wh ∈ Xh. Combining this and interpolation (or quasi-interpolation) error estimates yields the
following error estimate under the assumption u ∈ X`,m := W 1,2,2

(
0, T ;H`(Ω), Hm(Ω)

)
; there exists a

positive constant C such that

‖u− uε,h‖2Xh
≤ C

(∫ T

0

(
h2(`−1)‖u‖2H`(Ω) + h2m‖u′‖2Hm(Ω)

)
dt+ h2j‖u(0)‖2Hk(Ω)

)
, (29)

where j := min{`,m}. Furthermore, we study the error estimate for full discrete problem in Section 2.6.
We apply the implicit Euler scheme, and extend the approximate solution into the piecewise constant
function in temporal variable. Then there exists a positive constant C such that for the extended
approximate solution uε,h,τ ,

‖u− uε,h,τ‖2L2(0,T ;L2(Ω)) ≤ C
(∫ T

0

(
h2(`−1)‖u‖2H`(Ω) + h2m‖u′‖2Hm(Ω)

)
dt+ h2j‖u(0)‖2Hk(Ω)

)

+Cτ2‖u′ε,h‖2H1(0,T ;L2(Ω)) +
T

4α2
τ2‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

,

(30)

where j := min{`,m}. Especially, we let k = 1 and τ = h/10, then we have

‖u− uε,h,τ‖L2(0,T ;L2(Ω)) ≈ Ch. (31)

The numerical examples in Section 2.7 show that the rate of convergence is approximately equal to the
unity that is actually expected by (31).
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Chapter 1

Analysis of space-time computation techniques
with continuous representation in time: the
successive projection technique

1.1 Introduction

The deforming-spatial-domain/stabilized space–time (DSD/SST) method [49, 50, 51] was developed for
the computation of flows with moving boundaries and interfaces (MBIs), including fluid–structure in-
teractions (FSIs). In the DSD/SST method, which is also called ST-SUPS because it is based on the
streamline-upwind/Petrov–Galerkin (SUPG) [12] and pressure-stabilizing/Petrov–Galerkin (PSPG) [49]
stabilizations, the discontinuous Galerkin method (DGM) is applied in time. The weak form of the gov-
erning equation is considered on one space–time (ST) “slab” at a time, where the “slab” is the slice of
the ST domain between two time levels. The temporal variable is discretized by piecewise smooth basis
functions, which are discontinuous from one ST slab to another, and consequently approximate solutions
are discontinuous in time (see [7] for more details).

The ST-SUPS method and ST variational multiscale (ST-VMS) method [38, 39], which is the VMS
(particularly residual-based VMS [24, 3]) version of the DSD/SST method, have an advantage in accuracy;
therefore, they are desirable also when there is no MBI. In the computation of FSI and MBI problems, the
arbitrary Lagrangian–Eulerian (ALE) method [26] and ALE-VMS method [4, 34, 8] are more commonly
used moving-mesh methods (see [8] and references therein, and the references cited in [28]). The ST-SUPS
and ST-VMS methods have also been applied successfully to many classes of fluid mechanics problems,
including spacecraft parachute FSIs, wind-turbine aerodynamics, flapping-wing aerodynamics, cardio-
vascular fluid mechanics, spacecraft aerodynamics, thermo-fluid analysis of ground vehicles and their
tires, thermo-fluid analysis of disk brakes, flow-driven string dynamics in turbomachinery, flow analysis
of turbocharger turbines, flow around tires with road contact and deformation, ram-air parachutes, and
compressible-flow parachute aerodynamics (see [7] and references therein, and the references cited in [28]).

The ST-SUPS and ST-VMS are core methods in the ST computational analysis (STCA), but com-
putations of various classes of problems are performed with the core methods and their integration with
other, special ST methods. For example, the ST topology change (ST-TC) method [42, 41] accomplishes
computation of the problems with contact between moving interfaces in FSI, and the ST slip interface
(ST-SI) method [45, 43] can be applied to FSI problems with slip interfaces such as spinning structures.
Furthermore, we note that the ST isogeometric analysis (ST-IGA) [38, 36, 46] proposes using nonuniform
rational basis spline (NURBS) for the representation of a moving domain and ST discretization. These
methods have been successfully applied to the flow analysis of a turbocharger turbine [46, 28], a ram-air
parachute [47], and a heart valve [48].

The IGA [25], developed originally by using B-spline or NURBS basis functions in space, has been
widely applied in many fields of computational mechanics. It provides “smooth” approximate solutions
of the target partial differential equations (PDEs) using only a few degrees of freedom (DOF) in compar-
ison with the standard finite element method (FEM) and DGM. Moreover, it provides a more accurate
representation of computational domains with complex shapes, that is, the geometric representation of
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a computational domain generated by a CAD system is handled directly. See [14] for more details.
So far B-splines and NURBS have been used to discretize the spatial variables in IGA, and abundant
mathematical studies have been reported (see [9] for a survey).

The ST-IGA with IGA basis functions in time has the advantage that higher-order NURBS in time
provides a more accurate representation of the motion of a domain (see [38, 39, 36, 35, 37]). The
ST/NURBS mesh update method (STNMUM) [36, 35, 37, 44] shows that the ST-IGA also provides more
efficiency in representation of the motion and deformation of a mesh and remeshing. The application
of NURBS in a temporal representation also enables continuous basis functions to be used for temporal
discretization. In the ST computation techniques with continuous representation in time (ST-C) [40],
we obtain a globally continuous or smooth representation in time. In general, if approximate solutions
are expressed by globally continuous basis functions, the resulting system of algebraic equations becomes
quite large. The ST-C method has overcome this difficulty by providing some successive projection
algorithms. The ST-IGA computations with the STNMUM or ST-C have been demonstrated in many
3D problems, including flapping-wing aerodynamics, separation aerodynamics of spacecraft, wind-turbine
aerodynamics, thermo-fluid analysis of ground vehicles and their tires, thermo-fluid analysis of disk brakes,
flow-driven string dynamics, and flow analysis of turbocharger turbines (see the references cited in [28]).

Two versions of the ST-C method have been offered. The first is the ST-C with successive projection
technique (ST-C-SPT). In the ST-C-SPT, the continuous representation is extracted successively from
a numerical solution that is previously computed and discontinuous in time. One of motivations for
considering the SPT is to save computer-storage cost, since the B-splines have few DOFs. In the SPT,
each projection can be computed while the numerical solution for the next temporal interval is still being
computed. The projected solution takes the place of the previously computed solution; therefore, the
computed data can be compressed without storing a large amount of time-history data. The second
version proposed in [40] is the direct computation technique (ST-C-DCT), which is an algorithm for
temporal discretization of PDEs using NURBS basis functions directly. The motivation for considering
the DCT is the same as that of the SPT.

The purpose of this study is to establish a mathematical justification of the SPT. That is, we prove
its stability and error estimates. To this end, we consider the SPT for X-valued functions, where X is a
real-valued Banach space. Note that the SPT was originally described for real scalar-valued functions in
[40]. The DCT is also worthy of study; however, we postpone that to future work.

This chapter is organized as follows. In Section 1.2, we recall the notion of B-spline basis functions
and state the algorithmic features of the SPT. Our results on the stability and error estimates in the
L∞(0, T ;X) norm are presented in Section 1.3. Section 1.4 presents the proof of the results. Finally, we
draw some conclusions in Section 1.5.

Notation. Throughout this chapter, we use the following notation:

• X denotes a (real-valued) Banach space equipped with the norm ‖ · ‖X ;

• J = (0, T ) for T > 0;

• p ≥ 1 is an integer.

For 1 ≤ r ≤ ∞ and 0 ≤ T0 < T1, the space Lr(T0, T1;X) denotes a Bochner space equipped with the
norm

‖v‖Lr(T0,T1;X) =





(∫ T1

T0

‖v(t)‖rX dt

)1/r

(1 ≤ r <∞)

esssupt∈(T0,T1) ‖v(t)‖X (r =∞).

See [22, Appendix E.5] for example. We also use the so-called Bochner–Sobolev space W k,∞(T0, T1;X)
defined by

W k,∞(T0, T1;X) =

{
v ∈ L∞(T0, T1;X) | div

dti
∈ L∞(T0, T1;X), i = 0, 1, . . . , k

}
,

where d
dt denotes the weak derivative for t. The space W k,∞(T0, T1;X) is a Banach space with the

seminorm

|v|W i,∞(T0,T1;X) =

∥∥∥∥
div

dti

∥∥∥∥
L∞(T0,T1;X)

= esssupt∈(T0,T1)

∥∥∥∥
div

dti
(t)

∥∥∥∥
X
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Figure 1.1: B-spline basis functions.

and the norm
‖v‖Wk,∞(T0,T1;X) = max

0≤i≤k
|v|W i,∞(T0,T1;X).

For a matrix A = (aij)1≤i,j≤N ∈ RN×N ,

‖A‖∞ = sup
x∈RN

‖Ax‖∞
‖x‖∞

= max
1≤i≤N

N∑

j=1

|aij |

denotes its matrix norm induced by the ∞ norm ‖x‖∞ = max1≤i≤N |xi| for x = (xi)1≤i≤N ∈ RN .
Moreover, for F = (Fi)1≤i≤N ∈ XN , we write

‖F‖∞ = max
1≤i≤N

‖Fi‖X .

1.2 SPT using B-splines

1.2.1 Review of B-spline basis functions

We introduce the knot vector
Ξ = {ξ1, ξ2, . . . , ξm},

where 0 = ξ1 ≤ ξ2 ≤ · · · ≤ ξm = T . Note that repetitions of knots are allowed. Suppose that m ≥ p+ 2.
Then, the univariate B-spline basis functions

B̂i,p : J → R, i = 1, . . . ,m− p− 1, (1.1)

of degree p associated with the knot vector Ξ are successively defined by the Cox–de Boor algorithm (see
[15, 17]).

Definition 1. Set

B̂i,0(t) =

{
1 if t ∈ [ξi, ξi+1)

0 otherwise
(i = 1, 2, . . . ,m− 1). (1.2)

Then, for q = 1, 2, . . . , p, set

B̂i,q(t) =
t− ξi

ξi+q − ξi
B̂i,q−1(t) +

ξi+q+1 − t
ξi+q+1 − ξi+1

B̂i+1,q−1(t) (i = 1, 2, . . . ,m− q − 1). (1.3)

Herein, 0/0 should be replaced by 0.
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B-spline basis functions are nonnegative

B̂i,p(t) ≥ 0 (1 ≤ i ≤ m− p− 1, t ∈ J), (1.4)

and B̂i,p = 0 for t 6∈ [ξi, ξi + p+ 1]. Furthermore, if the knot vector Ξ is p-open, that is, m ≥ 2p+ 2, the
knots satisfy ξ1 = · · · = ξp+1 and ξm−p = · · · = ξm, then the B-spline basis functions form a partition of
unity:

m−p−1∑

i=1

B̂i,p(t) = 1 (t ∈ J). (1.5)

B-spline basis functions are suitably smooth. To state them more concretely, we introduce an alter-
native representation of Ξ,

Ξ = {t0, . . . , t0︸ ︷︷ ︸
m0 times

, t1, . . . , t1︸ ︷︷ ︸
m1 times

, . . . , tN , . . . , tN︸ ︷︷ ︸
mN times

}, (1.6)

where 0 = t0 < t1 < · · · < tN = T . Therein, by mn, we denote the multiplicity of tn. Assume that
mn ≤ p+ 1 for all knots. Then, B̂i,p(t) is p−mn times continuously differentiable at a node tn. Further
details about these fundamental facts are explained in [29, Section 2].

1.2.2 Finite-dimensional subspace Sp,Ξ(X) spanned by B-spline functions

In this study, we only consider the following special p-open knot vector,

Ξ = { t0, . . . , t0︸ ︷︷ ︸
p+1 times

, t1, t2, . . . , tN−1, tN , . . . , tN︸ ︷︷ ︸
p+1 times

}. (1.7)

For the degree p ≥ 1 and the knot vector Ξ defined by (1.7), we introduce a finite-dimensional subspace
of X by setting

Sp,Ξ(X) =

{
N+p∑

i=1

xiB̂i,p(t) | xi ∈ X (1 ≤ i ≤ N + p)

}
. (1.8)

Then, f ∈ Sp,Ξ(X) is a polynomial of degree p in [tn−1, tn], 1 ≤ i ≤ N , and is p − 1 times continuously
differentiable at nodes tn, 1 ≤ n ≤ N − 1.

1.2.3 Algorithm of SPT

Set
In = [tn−1, tn], Jn = [t0, tn] (1 ≤ i ≤ N) (1.9)

and define

Sn = Sn,p,Ξ(X) =

{
n+p∑

i=1

xiB̂i,p(t)|Jn | xi ∈ X (1 ≤ i ≤ n+ p)

}
(1.10)

for n = 1, . . . , N . We note that SN = Sp,Ξ(X).
At this stage, we can state the SPT. Projections

Πn : L2(Jn;X)→ Sn (1 ≤ i ≤ N) (1.11)

are successively defined in the following way. Suppose that we are given

f ∈ L1(J ;X). (1.12)

First, take Π1(f) as the standard L2-projection of f |J1 onto S1, that is,

∫

J1

(Π1(f)− f) B̂i,p dt = 0 (1 ≤ i ≤ p+ 1). (1.13)
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Now, for n ≥ 1, suppose that we are given

Πn(f) =

n+p∑

i=1

xni B̂i,p|Jn ∈ Sn. (1.14)

Then,

Πn+1(f) =

n+p+1∑

i=1

xn+1
i B̂i,p|Jn+1

∈ Sn+1 (1.15)

is determined by
xn+1
i = xni (1 ≤ i ≤ n) (1.16)

and
∫

Jn

B̂i,p (Πn+1(f)−Πn(f)) dt+

∫

In+1

B̂i,p (Πn+1(f)− f) dt = 0

(n+ 1 ≤ i ≤ n+ p+ 1). (1.17)

Obviously, each Πn(f) is well defined and we finally obtain ΠN (f) ∈ SN = Sp,Ξ(X).

1.2.4 Alternative expression

It is convenient that we convert the above algorithm into the matrix form. We set

Mn+1 =

(∫

Jn+1

B̂i+n,p(t)B̂j+n,p(t) dt

)

1≤i,j≤p+1

∈ R(p+1)×(p+1),

Fn+1 =

(∫

In+1

B̂i+n,p(t)f(t) dt

)

1≤i≤p+1

∈ Xp+1,

xn+1 =
(
xn+1
i+n

)
1≤i≤p+1

∈ Xp+1,

for n = 0, 1, . . . , N − 1. Moreover, we introduce shift matrices U and L defined by

U = (δi+1,j)1≤i,j≤p+1, L = UT.

Then we can rewrite the algorithm: first we find x1 by

M1x1 = F1,

and for n = 1, . . . , N , we obtain

Mn+1xn+1 = UMnLUxn + Fn+1.

11
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Figure 1.3: Each step of the SPT algorithm and basis functions. The left-hand side represents the pro-
jection at each time step. The right-hand side represents basis functions used to compute the projection.

It is apparent that the matrices Mn+1 are symmetric and positive-definite; in particular, they are invert-
ible. Therefore, (1.13)–(1.17) are equivalently written as

x1 = M−1
1 F1, (1.18)

xn+1 = M−1
n+1UMnLUxn +M−1

n+1Fn+1. (1.19)

1.3 Stability and error estimates

In this section, we state the main results of this study. Let

hn = |In| = tn − tn−1, h = max
1≤i≤N

hn. (1.20)

We make the following local quasi-uniformity assumption (see [9, Assumption 2.1]).

Assumption 1. There exists a constant θ > 0 such that

1

θ
≤ hn
hn+1

≤ θ (1 ≤ i ≤ N − 1). (1.21)

Further, we need to introduce a condition that implies stability results. Set

Pn+1 = UM−1
n+1UMnL. (1.22)

We prefer this form to M−1
n+1UMnLU because the elements of Pn+1 play an essential role in the compu-

tation. We offer the following as a useful sufficient condition for the stability.

Condition 1. There exist constants C0 > 0 and 0 < r < 1 such that
∥∥∥∥∥
k∏

`=1

Pn+1−`

∥∥∥∥∥
∞
≤ C0r

k, (1.23)

for all k = 1, . . . , n− 1 and all n = 2, . . . , N − 1.

Theorem 2 (Stability). Suppose that Assumption 1 and Condition 1 are satisfied. Then, there exists a
constant C1 > 0 depending only on p and θ such that

‖ΠN (f)‖L∞(J;X) ≤ C1‖f‖L∞(J;X) (1.24)

for any f ∈ L∞(J ;X).
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Theorem 3. (Error estimate) Suppose that Assumption 1 is satisfied. Further, assume that the stability
inequality (1.24) of ΠN holds true. Then, there exists a constant C2 > 0 depending only on p and θ such
that

‖f −ΠN (f)‖L∞(J;X) ≤ C2h
k̃|f |W k̃,∞(J;X) (1.25)

for any f ∈W k,∞(J ;X) and k ≥ 1, where k̃ = min{k, p+ 1}.

When p = 1, we can check whether Condition 1 holds.

Theorem 4 (Stability and error estimate for p = 1). Suppose that Assumption 1 is satisfied. Then,
for p = 1, we have the stability (1.24) for f ∈ L∞(J ;X) and error estimate (1.25) for f ∈ W k,∞(J ;X),
k ≥ 1.

If the knot vector Ξ is open uniform, we can verify that Condition 1 is satisfied for small p.

Theorem 5 (Stability and error estimate for open uniform Ξ). Suppose that the knot vector Ξ is open
uniform, that is, suppose that

1

N
= h = hn (1 ≤ n ≤ N), tn = nh (0 ≤ n ≤ N). (1.26)

Then, for p = 2, 3, 4, we have the stability (1.24) for f ∈ L∞(J ;X) and error estimate (1.25) for
f ∈W k,∞(J ;X), k ≥ 1.

Remark 6. Let Ξ be open uniform. We have proved that Condition 1 holds only for p = 2, 3, 4.
However, we infer from numerical experiments that Condition 1 is true at least for p = 5, 6, 7. Note that
the definition of B-spline basis functions implies that

B̂i,p(t) = B̂i+1,p(t− h) (p+ 1 ≤ i ≤ N − 1) (1.27)

follows for a uniform knot vector. Therefore, there exists a matrix P such that

P = Pn (p+ 1 ≤ n ≤ N − p− 1). (1.28)

Figure 1.4 shows the behaviors of αk = ‖P k‖∞/‖P‖∞. Hence, we conjecture that

‖P k‖∞ ≤ C0r
k (1.29)

for large k with suitable C0 and 0 < r < 1 when p = 5, 6, 7. Then, we can obtain (1.23) in exactly the
same way as the proof of Lemma 4 below. However, the proof of (1.29) is left for future study.

Example 1. We take T = 1, X = R, f(t) = sin(4πt), and consider the uniform partition Ξ. Set
Eh = ‖f − ΠN (f)‖L∞(J;X). We plot (log h, log Eh) for several h in Fig. 1.5. We observe that O(hp+1)-
convergence actually takes place.

1.4 Proof of Theorems

This section is devoted to the proof of the theorems presented in the previous section. In the following
lemmas, we assume that Assumption 1 always holds. We begin by proving the following.

Lemma 1. Let 0 ≤ n ≤ N − 1. For 1 ≤ i, j ≤ p+ 1, there exists a constant Ci,j > 0 depending only on
θ and p such that ∫

In+1

B̂i+n,p(t)B̂j+n,p(t) dt = Ci,jhn+1. (1.30)

Proof. For simplicity, we state the proof only for n ≥ p. Introducing τ = (t− tn)/hn, we have

∫

In+1

B̂i+n,p(t)B̂j+n,p(t) dt = hn+1

∫ 1

0

B̂i+n,p(tn + τhn+1)B̂j+n,p(tn + τhn+1) dτ.

13



0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

k

‖
R

k
‖
∞

‖
R
‖
∞

0 10 20 30
10−5

10−4

10−3

10−2

10−1

100

101

k

‖
R

k
‖
∞

‖
R
‖
∞

p=3
p=4
p=5
p=6
p=7

p=3
p=4
p=5
p=6
p=7
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represents 0.9k.

Using (1.3), we deduce

B̂i+n,p(tn + τhn+1) =
tn + τhn+1 − tn−p

tn − tn−p
B̂i+n,p−1(tn + τhn+1)

+
tn+1 − (tn + τhn+1)

tn+1 − tn−p+1
B̂i+n+1,p−1(tn + τhn+1)

=

(
1 +

τ

c1

)
B̂i+n,p−1(tn + τhn+1) +

1− τ
c2

B̂i+n+1,p−1(tn + τhn+1),

where the constants c1, c2 depend only on θ. Hence, we find by induction that B̂i+n,p(tn + τhn+1) is

a continuous function of τ that depends only on θ and p, since B̂i,0(tn + τhn) is defined as (1.2). In

particular, B̂i+n,p(tn + τhn+1) is independent of hn and n. Therefore, setting

Ci,j =

∫ 1

0

B̂i+n,p(tn + τhn+1)B̂j+n,p(tn + τhn+1) dτ,

we obtain the expression (1.30).

The following lemma is a direct consequence of the previous result.

Lemma 2. Let 0 ≤ n ≤ N − 1. The matrix Mn+1 is expressed as Mn+1 = hn+1An+1, where An+1 ∈
R(p+1)×(p+1) is a matrix whose entries depend only on θ and p. In particular, Pn+1 = UM−1

n+1UMnL is
independent of hn+1.

Lemma 3. There exists a positive constant C depending only on θ and p such that

‖M−1
n+1Fn+1‖∞ ≤ C‖f‖L∞(In+1;X). (1.31)

Proof. Equality (1.30) implies ‖B̂i+n,p‖L2(In+1) ≤ Ch
1
2
n+1, and therefore

‖Fn+1‖∞ ≤ max
1≤i≤p+1

‖B̂i+n,p‖L2(In+1)‖f‖L2(In+1;X)

= Ch
1
2
n+1‖f‖L2(In+1;X)

≤ Chn+1‖f‖L∞(In+1;X).

Lemma 2 gives ‖M−1
n+1‖∞ ≤ Ch−1

n+1. Combining these results, we obtain (1.31).
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Now we can state the following proof of stability.

Proof of Theorem 2. We know ‖B̂i,p‖L∞(J) ≤ 1 by (1.4) and (1.5). Hence,

‖ΠN (f)‖L∞(I;X) ≤ (p+ 1) max
0≤n≤N−1

‖xn+1‖∞. (1.32)

From equation (1.19), we obtain

xn+1 = M−1
n+1Fn+1 +

n−1∑

k=0

(
k∏

`=0

M−1
n+1−`UMn−`LU

)
M−1
n−kFn−k

= M−1
n+1Fn+1 +

n−1∑

k=0

M−1
n+1UMnL

(
k∏

`=1

Pn+1−`

)
UM−1

n−kFn−k.

Using Condition 1, Lemma 2, and Lemma 3,

‖xn+1‖∞ ≤ C‖f‖L∞(In+1;X) +

n−1∑

k=0

Crk‖f‖L∞(In−k;X)

≤ C‖f‖L∞(Jn+1;X)
1− rn
1− r ,

which, together with (1.32), implies the desired stability result (1.24)

For the proof of the error estimate, we recall that there exists a quasi-interpolant operator

πp,Ξ : L∞(J ;X)→ Sp,Ξ(X)

satisfying the error estimate

‖f − πp,Ξ(f)‖L∞(J;X) ≤ Chs|f |W s,∞(J;X) (f ∈W s,∞(J ;X)) (1.33)

for any positive integer s ≤ p+ 1, where C > 0 denotes a constant depending only on p. In fact, we know
(see [9, Propositions 2.2 and 4.2])

‖f − πp,Ξ(f)‖L2(J;R) ≤ Chs|f |W s,2(J;X) (f ∈W s,2(J ;R)). (1.34)

The proof of (1.33) is essentially the same as that of (1.34).
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p = 2 λ2 +
4823

9166
λ+

191

9166

p = 3 −λ3 − 7658626644

10698355585
λ2 − 2900186094

53491777925
λ− 3774802

53491777925

p = 4 λ4 +
33907431272967929897

34334740163403550366
λ3 +

6646444267949836917

34334740163403550366
λ2

+
237693157497695699

34334740163403550366
λ+

474634492641025

34334740163403550366

Table 1.1: Characteristic polynomial of P for p = 2, 3, 4.

Proof of Theorem 3. It is apparent that ΠN (g) = g for g ∈ Sp,Ξ(X). This property is sometimes called
the spline-preserving property. According to (1.24), we deduce

‖f −ΠN (f)‖L∞(J;X) ≤ ‖f − πp,Ξ(f)‖L∞(J;X) + ‖ΠN (f − πp,Ξ(f))‖L∞(J;X)

≤ C‖f − πp,Ξ(f)‖L∞(J;X).

This, together with (1.33), provides the desired estimate.

Now we consider the case p = 1.

Proof of Theorem 4. By a direct calculation, we find

‖Pn+1‖∞ =
2hn

4hn + 3hn+1
< 1

for all n = 1, . . . , N − 1. Therefore, Condition 1 is satisfied.

We finally consider the case where Ξ is open uniform. To prove Theorem 5, it suffices to show the
following lemma.

Lemma 4. If Ξ is open uniform, Condition 1 is satisfied for p = 2, 3, 4.

Proof. Recall that there exists a matrix P such that

P = Pn (p+ 1 ≤ n ≤ N − p− 1) (1.35)

when the partition is uniform. Moreover, we note that Pn+1 depends only on p (see Lemma 2) and
‖Pn+1‖∞ ≤ C for n ≤ p. Hence, Condition 1 is reduced to

‖P k‖∞ ≤ C0r
k (k ≥ 1). (1.36)

At this stage, we admit
spr(P ) = the spectrum radius of P < 1. (1.37)

Then, there exists a norm ||| · ||| of Rp+1 such that the induced matrix norm satisfies |||P ||| ≤ spr(P ) + ε,
where ε = (1 − spr(P ))/2. Setting r = (1 + spr(P ))/2, we have |||P ||| ≤ r < 1. Since the ∞ norm and
||| · ||| are equivalent in Rp+1, we deduce ‖P k‖∞ ≤ C0|||P k||| ≤ C0|||P |||k ≤ C0r

k with a constant C0 > 0
depending only on p. Therefore, we obtain (1.36).

It remains to show (1.37). Since

(P )i,p+1 = 0, (P )p+1,j = 0 (1 ≤ i, j ≤ p+ 1),

all eigenvalues and eigenvectors of P are equal to those of

P̃ = ŨM−1UML̃ ∈ Rp×p,

where Ũ = (δi+1,j)1≤i≤p, 1≤j≤p+1 ∈ Rp×(p+1) and L̃ = ŨT. Herein, P̃ also depends only on p, and we

write P̃ (p) to express the dependency on p. For p = 2, 3, 4, we are able to compute the characteristic
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Figure 1.6: Graphs of characteristic polynomials for p = 2, 3, 4. This shows that all roots of characteristic
polynomial are in the interval (−1, 1).

polynomials of P̃ (p). Table 1.1 shows the result using symbolic computation. Figure 1.6 shows that all
roots are located in (−1, 1). For example, let p = 4. Approximate roots of characteristic polynomial φ(λ)
computed by MATLAB are given as

λ∗1 = −0.737897436525497,

λ∗2 = −0.204310935198338,

λ∗3 = −0.043224941317302,

λ∗4 = −0.002121306903502.

These values are only approximations and contain rounding errors. However, we can calculate

φ

(
− 737

1000

)
= − 4184230788864604364702796837

17167370081701775183000000000000
< 0,

φ

(
− 739

1000

)
=

5188878821185878211588188803

17167370081701775183000000000000
> 0.

Hence, there exists a root λ1 such that −0.739 < λ1 < −0.737. Similarly, we deduce that there exist
three other roots (all real) λ2, λ3, λ4 of φ(λ) = 0 such that −1 < λ1 < λ3 < λ2 < λ4 < 0. This implies
that spr(P (4)) < 1.

1.5 Conclusion

In this study, we described the mathematical formulation of the SPT with B-splines forX-valued functions
and provided the stability and error estimates in the L∞(0, T ;X) norm. The quasi-uniformity of partition
is always assumed. For p = 1, the stability holds true. We proved that, for p = 2, 3, 4, the uniformity of
partition is a sufficient stability condition. For the case 5 ≤ p ≤ 7, we inferred from numerical experiments
that the SPT is stable in L∞(0, T ;X); the rigorous proof is left for future study. We also proved the
error estimate using the spline-preserving property of the projector ΠN if the stability holds true.

Finally, we state an application of our results to the ST FEM. Let u and uh denote the exact and
approximate solutions for a time-dependent PDE. The function uh is a piecewise smooth function in time
variable, and we assume that u has sufficient regularity. Then, we can estimate

‖u−ΠN (uh)‖L∞(0,T ;X) ≤ ‖u−ΠN (u)‖L∞(0,T ;X) + C‖u− uh‖L∞(0,T ;X).
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This estimate implies that if the SPT error is small enough, then the left-hand side can be controlled by
‖u− uh‖L∞(0,T ;X).
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Chapter 2

Analysis of the Nitsche method for evolution
problem

2.1 Introduction

The boundary condition is an indispensable component of the well-posed problem of partial differen-
tial equation (PDE). It is not merely a side condition. In computational mechanics, the imposition of
boundary conditions should be paid great attention, although it is sometimes understood as a simple
and unambiguous task. The Neumann boundary condition or natural boundary condition is naturally
taken into account in the variational equation so that it is handled directly in the Finite Element Method
(FEM). On the other hand, there are several approaches to impose the Dirichlet boundary condition
(DBC) numerically. The traditional finite element method (FEM) employs the Lagrange interpolation,
that is, the nodal value at boundary nodal value give the discretized boundary condition. Then the
problem can be reduced to homogeneous Dirichlet boundary value problem. It can treat complex ge-
ometry efficiently, however, there are difficulties in providing exact geometries in some cases. Moreover,
the Lagrange interpolation requires that the basis functions have interpolation properties, which is not
satisfied for the Isogeometric Analysis (IGA) [14].

IGA is the Galerkin method using the non-uniform rational B-spline (NURBS) for basis functions.
Consequently, IGA is understood as one of the FEM. It can produce more exact geometric representations
in the computational domain. Moreover, if the geometric models of object are designed by computer-
aided design (CAD) systems, then we can use those models as the computational domains directly.
Unfortunately, the NURBS basis functions don’t satisfy the interpolation property, therefore the Lagrange
interpolation is not applicable for IGA.

To surmount those shortcomings, Bazilevs et al. [5, 6] proposed a method of “weak imposition”
of DBC by applying the methodology of the discontinuous Galerkin (DG) method and discussed its
efficiency by numerical experiments in the non-stationary Navier–Stokes equations. Their method itself
was originally proposed by Nitsche [27] and is commonly called the Nitsche method. The Nitsche method
has been applied to mortaring on the interface (see [23] and the references given there), and stability
and convergence of the Nitsche method for elliptic problems are well studied so far. Recently, it is also
applied to IGA for Poisson equation, fourth-order problem [18] and steady Navier-Stokes problem [21]
successfully.

In this chapter, we study the convergence analysis of the Nitsche method with FEM discretization
including IGA for parabolic problems. Earlier studies of the Nitsche method are accomplished by formu-
lating the method as a one-step method; see [52] for example. In contrast, we present a different approach:
we study the Nitsche method using a variational approach. Consequently, the analysis becomes greatly
simplified and optimal order error estimates in some appropriate norms are established. Such variational
approach is recently successfully applied to the analysis of the DG time-stepping method for a wide class
of parabolic equations in [32]. We will have that the Galerkin approximation for parabolic problems
satisfy the inf-sup condition and Galerkin orthogonality under some conditions. Moreover, they yield the
quasi-optimal error estimate in spatial semi-discretization.

This chapter is organized as follows. In Section 2.2, we review the Nitsche’s classical paper [27] briefly,
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and the Nitsche method for elliptic problems are introduced. Section 2.3 presents some preliminaries and
basic results for parabolic problems. We further define the advection-diffusion-reaction equation, and
show that the equation has a weak solution under some conditions. In Section 2.4, we introduce the
finite dimensional subspace for spatial semi-discretization with FEM and IGA. Our basic assumptions
are mentioned first, and we check the traditional FEM and IGA both satisfy those assumptions. In
Section 2.5, our main results are stated and proved. We show the formulation of the Nitsche method
for parabolic problems, and we analyze that. The Banach-Nečas-Babuška theorem gives the necessary
and sufficient condition for the unique existence of the approximate solution. Further, we have the error
estimate by combining the inf-sup condition and Galerkin orthogonality. Section 2.6 establishes the error
analysis of the full discrete problem. We apply the implicit Euler scheme to semi-discretized problem,
and the solution is extended to piecewise constant function in temporal variable. The application of DG
time-stepping is also interested, however it is our future work. Finnaly, in Section 2.7 we report numerical
results to check the error.

In the following, L2(Ω) and Hs(Ω) denote the usual Lebesgue and Sobolev spaces for domain Ω ⊂ Rd,
respectively. Let V,H be two Banach spaces, then we write V ↪→ H if V is continuous embedded in H.
V ∗ denotes the (continuous) dual of V .

2.2 Nitsche method for the elliptic problems

In this section, we briefly review the Nitsche method for the Ritz method applied to the Poisson equation
with the Dirichlet boundary condition.

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ. We consider the Poisson equation
with non-homogeneous Dirichlet boundary condition. Letting f ∈ L2(Ω) and g ∈ H1/2(Γ), then we find
u ∈ H1(Ω) such that {

−∆u = f in Ω,
u = g on ∂Ω.

(2.1)

The variational principle gives that it is equivalent to the following minimization problem of Euler-
Lagrange equation, find u ∈ H1

D(Ω) =: {v ∈ H1(Ω) : v = g on Γ} which minimizes the following
functional,

J(u) :=
1

2
|u|2H1(Ω) − (f, u)L2(Ω). (2.2)

Here we impose the non-homogeneous Dirichlet boundary condition weakly, that is, we find ũ ∈ H1(Ω)
which minimizes the following functional,

J̃(ũ) :=
1

2
|ũ|2H1(Ω) − (f, ũ)L2(Ω) + (ũ− g, L(ũ) + c)L2(Γ) , (2.3)

where L is a linear map to L2(Γ) and c ∈ H
1
2 (Γ), therefore L(v) + c is an affine map. Further it is

required that the following property is satisfied.

Assumption 2. We assume that L is continuous and

{
(v − g, L(v) + c)L2(Γ) ≥ 0 for all v,
1

2
|v|2H1(Ω) + (v, L(v))L2(Γ) ≥ 0 for all v,

(2.4)

where u ∈ H1(Ω) minimizes the functional J .

Under this assumption, we have the following results.

Lemma 5. w ∈ H1(Ω) minimizes the functional J̃ if and only if w satisfies

ã(w, v) := (∇w,∇v)L2(Ω) + (w,L(v))L2(Γ) + (v, L(w))L2(Γ)

= (f, v)L2(Ω) + (g, L(v))L2(Γ) − (v, c)L2(Γ)

=: F̃ (v)

(2.5)

for all v ∈ H1(Ω).
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Proof. Let v ∈ H1(Ω), then for all ε > 0, we have

J̃(w + εv) =
1

2
|w|2H1(Ω) + ε(∇w,∇v)L2(Ω) +

ε2

2
|v|2H1(Ω) − (f, w)L2(Ω) − ε(f, v)L2(Ω)

+ (w − g, L(w) + c)L2(Γ) + ε (w − g, L(v))L2(Γ)

+ε (v, L(w) + c)L2(Γ) + ε2 (v, L(v))L2(Γ)

= J̃(u) + ε2

(
1

2
|v|2H1(Ω) + (v, L(v))L2(Γ)

)

+ε
(

(∇w,∇v)L2(Ω) − (f, v)L2(Ω) + (w − g, L(v))L2(Γ) + (v, L(w) + c)L2(Γ)

)
.

(2.6)

Applying the equation (2.5), we get J̃(w + εv) = J̃(w) + ε2

(
1

2
|v|2H1(Ω) + (v, L(v))L2(Γ)

)
. Here the

second equation in the Assumption 2 yields J̃(w + εv) ≥ J̃(w) for all v ∈ H1(Ω). On the other hand, if

w ∈ H1(Ω) minimizes the functional J̃ , then
∂J̃

∂ε
(w) = 0, therefore the equation (2.5) holds.

Lemma 6. There exists a unique element ũ ∈ H1(Ω) which minimizes the functional J̃ .

Proof. The Assumption 2 shows that ã is continuous and coercive bilinear form, and the functional F̃
is continuous, then the Lax-Milgram theorem results the conclusion.

Our purpose is to define the linear map L and function c which satisfies the Assumption 2. One
example of such a pair is give by

L(v) :=
ε

2
v, c := −ε

2
g, (2.7)

where ε > 0 is a penalty parameter. We can check that for all v ∈ H1(Ω),

(v − g, L(v) + c)L2(Γ) =
ε

2
‖v − g‖2L2(Γ) ≥ 0. (2.8)

Moreover,

(v, L(v))L2(Γ) =
ε

2
‖v‖L2(Γ) ≥ 0 (2.9)

for all v ∈ H1(Ω). Therefore this satisfies the Assumption 2. Actually, it agrees with the penalty method,

J̃(ũ) =
1

2
|ũ|2H1(Ω) − (f, ũ)L2(Ω) +

ε

2
‖ũ− g‖2L2(Γ). (2.10)

Here we have u = ũ as ε → ∞, where u and ũ are minimizers of J and Ĵ over H1
D(Ω) and H1(Ω),

respectively.
On the other hand, the Nitsche method proposes to letting

L(v) := − ∂v
∂n

+
ε

2
v, c := −ε

2
g. (2.11)

However, the map L is not well-defined as a map H1(Ω) → L2(Γ). Therefore, we introduce the finite
dimensional approximation. Let Th be a partition of Ω and Vh ⊂ H1(Ω) be a finite dimensional subspace
such that

∂vh
∂n
∈
(
L2(Γ)

)∗ ' L2(Γ) for all vh ∈ Vh. (2.12)

Then we have L : Vh → L2(Γ), and for all vh ∈ Vh,

(vh − g, L(vh) + c)L2(Γ) =
ε

2
‖vh − g‖2L2(Γ) −

(
vh − g,

∂vh
∂n

)

L2(Γ)

. (2.13)

Moreover,

1

2
|vh|2H1(Ω) + (vh, L(vh))L2(Γ) =

1

2
|vh|2H1(Ω) +

ε

2
‖vh‖2L2(Γ) −

(
vh,

∂vh
∂n

)

L2(Γ)

≥ 1

2
|vh|2H1(Ω) +

(ε
2
− C0(x)

)
‖vh‖2L2(Γ) −

1

2C0(x)

∥∥∥∥
∂vh
∂n

∥∥∥∥
2

L2(Γ)

(2.14)
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for all v ∈ H2(Ω) and for some positive function C0 : Γ→ R.
Under some assumptions, we can prove that there exists a positive constant CI such that

∥∥∥∥
∂vh
∂n

∥∥∥∥
2

L2(E)

≤ CI |vh|2H1(Ω)

∑

E∈Eeh

h−1
E (2.15)

for all vh ∈ Vh, where Eeh := {E ⊂ Γ : There exists K ∈ Th such that E is a edge or face of K}. There-
fore, we let C0(x) be such that

C0(x) ≥ h−1
E CI for x ∈ E (2.16)

and ε ≥ 2C0(x) ≥ 2h−1
E CI , then we have 1/2|vh|2H1(Ω) + (vh, L(vh))L2(Γ) for all vh ∈ Vh. This gives the

Nitsche method

J̃(ũ) =
1

2
|ũ|2H1(Ω) − (f, ũ)L2(Ω) +

ε

2
‖ũ− g‖2L2(Γ) −

(
ũ− g, ∂ũ

∂n

)

L2(Γ)

. (2.17)

Moreover, the equation (2.5) leads to Nitsche’s formulation for Galerkin method, find uh ∈ Vh such
that

ã(uh, vh) := (∇uh,∇vh)L2(Ω) −
(
∂uh
∂n

, vh

)

L2(Γ)

−
(
uh,

∂vh
∂n

)

L2(Γ)

+ ε(uh, vh)L2(Γ)

= (f, vh)L2(Ω) +

(
g,−∂vh

∂n
+ εvh

)

L2(Γ)

= F̃ (vh)
(2.18)

for all vh ∈ Vh. The solution uh ∈ Vh is an approximation of ũ. Further, if u ∈ H2(Ω), we have the
Galerkin orthogonality

ã(u− uh, vh) = 0, for all vh ∈ Vh. (2.19)

Note that the formulation of Nitsche method is similar to one of the discontinuous Galerkin method (DG
method for short). The formulation of DG methods for the elliptic equation is referred in [1].

2.3 Weak formulation of abstract parabolic problems

In this section, we review the weak formulation of the parabolic problems. We apply the Banach-Nečas-
Babuška theorem, which can be found in [19], and we will show that the parabolic problem has a unique
solution.

2.3.1 Preliminary

We review some standard facts. First, the following lemma provides a necessary and sufficient condition
for the unique existence of the weak solution of abstract parabolic problems.

Lemma 7 (Banach-Nečas-Babuška theorem, Theorem 2.6 of [19]). Let X be a Banach space and Y be
a reflexive Banach space. For any continuous bilinear form b : X × Y → R, the following (i) and (ii) are
equivalent;

(i) For all F ∈ Y ∗, there exists a unique solution x ∈ X of

b(x, y) = 〈F, y〉Y ∗,Y , for all y ∈ Y. (2.20)

(ii) The bilinear form b satisfies the following.

(ii-a) There exists a positive constant β such that

inf
y∈Y

sup
x∈X

b(x, y)

‖x‖X‖y‖Y
≥ β. (2.21)

(ii-b) b(x, y) = 0, for all x ∈ X ⇒ y = 0.
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Next, we define the following space, which may be called the Sobolev-Bochner space.

Definition 2. Let 1 ≤ p, q ≤ ∞. For two Banach spaces V , H with norms ‖ · ‖V , ‖ · ‖H , respectively, we
define

W 1,p,q (0, T ;V,H) := {v ∈ Lp (0, T ;V ) : ∂tv ∈ Lq (0, T ;H)} . (2.22)

This is a Banach space with norm

‖v‖2W 1,p,q(0,T ;V,H) :=

∫ T

0

(
‖v‖2Lp(0,T ;V ) + ‖∂tv‖2Lq(0,T ;H)

)
dt (2.23)

for all v ∈ W 1,2,2 (0, T ;V,H). Further, the space W 1,2,2 (0, T ;V,H) is a Hilbert space if V and H are
Hilbert spaces.

Lemma 8 (Lemma 7.1. of [31]). Let 1 ≤ p, q ≤ ∞ and V , H be two Banach spaces which satisfy
V ↪→ H, then

W 1,p,q (0, T ;V,H) ↪→ C0 ([0, T ];H) . (2.24)

Definition 3. Let V,H be two Hilbert spaces satisfying that V ↪→ H is dense. We identify H with its
own dual H ' H∗. Then we have

V ↪→ H ↪→ V ∗, (2.25)

and this is called the Gelfand’s evolution triple.

Lemma 9 (Theorem 1. of [16], Chapter XVIII). Let V ↪→ H ↪→ V ∗ be an evolution triple, then

W 1,2,2 (0, T ;V, V ∗) ↪→ C0 ([0, T ];H) . (2.26)

Corollary 1. We have

W 1,2,2
(
0, T ;H1

0 (Ω), H−1(Ω)
)
↪→ C0

(
[0, T ];L2(Ω)

)
, (2.27)

where H−1(Ω) :=
(
H1

0 (Ω)
)∗

.

Definition 4. For a Banach space V with norm ‖ · ‖V , we define

H1 (0, T ;V ) := W 1,2,2 (0, T ;V, V ) . (2.28)

This is a Banach space with norm

‖v‖H1(0,T ;V ) := ‖v‖W 1,2,2(0,T ;V,V ) (2.29)

for v ∈ H1 (0, T ;V ). Further, this is a Hilbert space if V is a Hilbert space.

Corollary 2 (Theorem 2. of [22], Chapter 5.9). Let V be a Banach space, then

H1 (0, T ;V ) ↪→ C0 ([0, T ];V ) . (2.30)

2.3.2 Remarks on the evolution triple

We consider the application of the Nitsche method to the following abstract parabolic problems. First,
we recall the abstract parabolic problem with strongly-imposed Dirichlet boundary condition. Let V,L
be two Hilbert spaces such that

V ↪→ L ' L∗ ↪→ V ∗. (2.31)

Further, we let A(t) : V → V ∗ be a linear map for a.e. t ∈ (0, T ), and assume that there exists two
positive constants M and α such that

{
〈A(t)u, v〉V ∗,V ≤M‖u‖V ‖v‖V for all u, v ∈ V and for a.e. t ∈ (0, T ),
〈A(t)v, v〉V ∗,V ≥ α‖v‖2V for all v ∈ V and for a.e t ∈ (0, T ).

(2.32)

For f ∈ L2(0, T ;V ∗), and u0 ∈ L, we find u ∈W 1,2,2(0, T ;V, V ∗) such that
{
u′ +A(t)u = f in L2(0, T ;V ∗),

u(0) = u0 in L.
(2.33)
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We note that W 1,2,2(0, T ;V, V ∗) is a Banach space with the norm

‖u‖2W 1,2,2(0,T ;V,V ∗) :=

∫ T

0

(
‖u‖2V + ‖u′‖2V ∗

)
dt. (2.34)

We also note that W 1,2,2(0, T ;V, V ∗) ↪→ C0([0, T ];L), therefore the initial condition is meaningful. The
problem is called a parabolic problem.

We often let V = H1
0 (Ω) (therefore V ∗ =

(
H1

0 (Ω)
)∗

=: H−1(Ω)) and L = L2(Ω) for a bounded domain

Ω ⊂ Rd. Further we note that Riesz representation theorem implies
(
L2(Ω)

)∗ ' L2(Ω), and therefore if
u ∈ L2(Ω) ⊂ H−1(Ω) then we have

〈u, v〉H−1(Ω),H1
0 (Ω) = u(v) = 〈u, v〉(L2(Ω))∗,L2(Ω) = (u, v)L2(Ω) for all v ∈ H1

0 (Ω). (2.35)

The evolution triple H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) plays an important role even if we consider the non-

homogeneous Dirichlet boundary condition, because it can be reduced to homogeneous Dirichlet boundary
value problems. Here we note that H1

0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) holds thanks to that H1
0 ↪→ L2(Ω) is

dense. In page 136 of [11], it is remarked that the restriction T :
(
L2(Ω)

)∗ → H−1(Ω), which is defined
by

〈Tφ, v〉H−1(Ω),H1
0 (Ω) := 〈φ, v〉(L2(Ω))∗,L2(Ω) (2.36)

for all φ ∈
(
L2(Ω)

)∗
and v ∈ H1

0 (Ω), satisfies




‖Tφ‖H−1(Ω) ≤ C‖φ‖(L2(Ω))∗ , for all φ ∈

(
L2(Ω)

)∗
,

T is injective,
R(T ) (The range of T ) is dense in H−1(Ω), because H1

0 (Ω) is reflexive.
(2.37)

Therefore we can consider T as a canonical embedding. This implies

H1
0 (Ω) ↪→ L2(Ω) '

(
L2(Ω)

)∗ ' R(T ) ↪→ H−1(Ω). (2.38)

Remark 7. On the other hand, let V,H be two Banach spaces where V ↪→ H, but it is not dense. Then
the restriction operator T : H∗ → V ∗, which is defined by T (φ) = φ|V : V → R, is not injective. This
implies

H∗ 6' R(T ) ⊂ V ∗ (2.39)

in this case. However, we can define

φ(v) = φ|V (v) = 〈φ|V , v〉V ∗,V =: 〈T (φ), v〉V ∗,V for all φ ∈ H∗, v ∈ V, (2.40)

even in this situation, that is, φ|V : V → R is a linear and continuous functional for any linear and
continuous functional φ : H → R, because V ↪→ H implies

‖φ|V ‖V ∗ := sup
v∈V

φ(v)

‖v‖V
≤ sup
v∈H

φ(v)

‖v‖H
≤ ‖φ‖H∗ . (2.41)

2.3.3 The weak formulation and the weak solution

We recall the unique existence of weak solution of parabolic problems. Let Ω ⊂ Rd be a bounded domain
with Lipschitz boundary Γ. Remind that there exists a trace operator Tr : H1(Ω) → H1/2(Γ). This is
surjective, and satisfies that there exists a constant CTr such that

‖Tr v‖L2(Γ) ≤ CTr‖v‖H1(Ω) for all v ∈ H1(Ω). (2.42)

We let A(t) : H1(Ω)→ H−1(Ω) be a linear map for a.e. t ∈ (0, T ).
We consider the following problem, find u ∈ X := W 1,2,2

(
0, T ;H1(Ω), H−1(Ω)

)
such that





u′ +A(t)u = f(x, t) in Ω× (0, T ),
u = gD(x, t) in Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω,
(2.43)
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where f ∈ L2
(
0, T ;H−1(Ω)

)
,

gD ∈ G0 :=

{
g ∈ L2

(
0, T ;H1/2(Γ)

)
:

there exists uD ∈ X such that
uD(0) ∈ L2(Ω) and TruD = g in L2

(
0, T ;H1/2(Γ)

)
}
, (2.44)

and u0 ∈ L2(Ω) are given.
We consider the weak formulation for the problem (2.43). The definition of G0 implies there exists

uD ∈W 1,2,2
(
0, T ;H1(Ω), H−1(Ω)

)
such that TruD = gD in L2

(
0, T ;H1/2(Ω)

)
for the gD. Here, we find

ũ ∈ X0 := W 1,2,2
(
0, T ;H1

0 (Ω), H−1(Ω)
)

such that

b0(ũ,v) :=

∫ T

0

〈ũ′ +A(t)ũ, v〉H−1(Ω),H1
0 (Ω) dt+ (ũ(0), v0)L2(Ω)

=

∫ T

0

〈f − u′D −A(t)uD, v〉H−1(Ω),H1
0 (Ω) dt+ (u0 − uD(0), v0)L2(Ω),

=: 〈F0,v〉Y ∗0 ,Y0

(2.45)

for all v = (v, v0) ∈ Y0 := L2
(
0, T ;H1

0 (Ω)
)
×L2(Ω), and then we obtain u := ũ+ uD ∈ X. Note that the

Lemma 9 implies
X0 := W 1,2,2

(
0, T ;H1

0 (Ω), H−1(Ω)
)
⊂ C0

(
[0, T ];L2(Ω)

)
. (2.46)

This and the definition of G0 show that ũ(0), uD(0) ∈ L2(Ω).
It follows easily that b0 : X0 × Y0 → R is a bilinear form, F0 is a linear functional, and X0, Y0 are

Banach spaces with norms

‖x‖2X0
:=

∫ T

0

(
‖x′‖2H−1(Ω) + ‖x‖2H1(Ω)

)
dt+ ‖x(0)‖2L2(Ω),

‖y‖2Y0
= ‖(y, y0)‖2Y0

:=

∫ T

0

‖y‖2H1(Ω) dt+ ‖y0‖2L2(Ω).

(2.47)

Theorem 8 (Unique existence of the weak solution). If there exist two positive constants M and α such
that

{ 〈A(t)w, v〉H−1(Ω),H1
0 (Ω) ≤M‖w‖H1(Ω)‖v‖H1(Ω) for all w ∈ H1(Ω), v ∈ H1

0 (Ω),

〈A(t)v, v〉H−1(Ω),H1
0 (Ω) ≥ α‖v‖H1(Ω) for all v ∈ H1

0 (Ω)
(2.48)

for a.e. t ∈ (0, T ), then the problem (2.45) has a unique solution ũ ∈ X0 for all uD ∈ X.
Furthermore, we have that the weak solution of problem (2.43) exists uniquely.

Proof. First, the assumption about A(t) : H1(Ω)→ H−1(Ω) leads the bilinear form b0 and the functional
F0 are both continuous. Therefore the Banach-Nečas-Babuška theorem implies there is a unique ũ ∈ X0

if and only if

(BNB1,inf-sup condition) There exists a positive constant β such that

inf
06=x∈X0

sup
06=y∈Y0

b0(x,y)

‖x‖X0
‖y‖Y0

> β, (2.49)

(BNB2) For all x ∈ X0, b0(x,y) = 0 holds if and only if y = 0.

Here we will show the (BNB1). By the continuity and coercivity of A(t) ∈ L
(
H1

0 (Ω), H−1(Ω)
)
,

applying the Lax-Milgram theorem yield we have that there exists A(t)−1 ∈ L
(
H−1(Ω), H1

0 (Ω)
)
, for a.e.

t ∈ (0, T ). The operator A(t)−1 satisfies

α‖A(t)−1φ‖2H1(Ω) ≤
〈
A(t)

(
A(t)−1φ

)
, A(t)−1φ

〉
H−1(Ω),H1

0 (Ω)
≤ ‖φ‖H−1(Ω)‖A(t)−1φ‖H1(Ω) (2.50)

for all φ ∈ H−1(Ω). Therefore A(t)−1 is continuous with

‖A(t)−1‖L(H−1(Ω),H1
0 (Ω)) = sup

06=φ∈H−1(Ω)

‖A(t)−1φ‖H1(Ω)

‖φ‖H−1(Ω)
≤ α−1. (2.51)
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Further,
‖φ‖H−1(Ω) = ‖A(t)

(
A(t)−1φ

)
‖H−1(Ω) ≤M‖A(t)−1φ‖H1(Ω) (2.52)

for all φ ∈ H−1(Ω). This implies the coercivity of A(t)−1,

〈φ,A(t)−1φ〉H−1(Ω),H1
0 (Ω) = 〈A(t)

(
A(t)−1φ

)
, A(t)−1φ〉H−1(Ω),H1

0 (Ω)

≥ α‖A(t)−1φ‖2H1(Ω)

≥ αM−2‖φ‖2H−1(Ω).
(2.53)

Here we let x ∈ X0 and y :=
(
A(t)−1x′ + µx, µx(0)

)
∈ Y0, where µ := α−4M4. Then we have

‖y‖2Y0
=

∫ T

0

‖A(t)−1x′ + µx‖2H1(Ω) dt+ ‖µx(0)‖2L2(Ω)

≤ C
∫ T

0

(
‖x′‖2H−1(Ω) + ‖x‖2H1(Ω)

)
dt+ µ‖x(0)‖2L2(Ω) ≤ C‖x‖2X0

,

(2.54)

and

b0(x,y) =

∫ T

0

(
〈x′, A(t)−1x′ + µx〉H−1(Ω),H1

0 (Ω) + 〈A(t)x,A(t)−1x′ + µx〉H−1(Ω),H1
0 (Ω)

)
dt

+(x(0), µx(0))L2(Ω)

≥
∫ T

0

(
αM−2‖x′‖2H−1(Ω) − α−1M‖x‖H1(Ω)‖x′‖H−1(Ω) + µα‖x‖2H1(Ω)

)
dt

+µ/2
(
‖x(T )‖2L2(Ω) − ‖x(0)‖2L2(Ω)

)
+ µ‖x(0)‖2L2(Ω)

≥
∫ T

0

(
αM−2‖x′‖2H−1(Ω) − α−1M‖x‖H1(Ω)‖x′‖H−1(Ω) + µα‖x‖2H1(Ω)

)
dt

+µ/2‖x(0)‖2L2(Ω)

≥
∫ T

0

(
αM−2/2‖x′‖2H−1(Ω) +

(
µα− α−3M4/2

)
‖x‖2H1(Ω)

)
dt+ µ/2‖x(0)‖2L2(Ω)

≥ C
(∫ T

0

(
‖x′‖2H−1(Ω) + ‖x‖2H1(Ω)

)
dt+ ‖x(0)‖2L2(Ω)

)
= C‖x‖2X0

,

(2.55)

because µ := α−4M4. Combining the above two inequalities, we conclude

b0(x,y) ≥ C‖x‖2X0
≥ β‖x‖X0

‖y‖Y0
(2.56)

for any x ∈ X0 and y :=
(
A(t)−1x′ + α−4M4x, α−4M4x(0)

)
, which gives

inf
06=x∈X0

sup
06=y∈Y0

b0(x,y)

‖x‖X0
‖y‖Y0

≥ β. (2.57)

Therefore the inf-sup condition (BNB1) follows.
Next we show the condition (BNB2) is satisfied. Let y1 = (y1, y10) ∈ Y0 be such that b0(x,y1) = 0,

for all x ∈ X0. We let x ∈ X0 be such that

x(0) = ỹ10, and x(t) = 0 for t ≥ δ (2.58)

for all δ > 0. Then b(x,y1) = 0 yields

∫ δ

0

〈x′ +A(t)x, y1〉H−1(Ω),H1
0 (Ω) dt+ ‖y10‖L2(Ω) = 0 (2.59)

for all δ > 0. Therefore we have y10 = 0.
Let x ∈ C∞0

(
(0, T );H1

0 (Ω)
)
⊂ X0, then b0(x,y1) = 0 gives

∣∣∣∣∣

∫ T

0

〈x′, y1〉H−1(Ω),H1
0 (Ω) dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

〈A(t)x, y1〉H−1(Ω),H1
0 (Ω) dt

∣∣∣∣∣
≤ C‖x‖L2(0,T ;H1(Ω))‖y1‖L2(0,T ;H1(Ω)) <∞,

(2.60)
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because of continuity of A(t). Therefore the integration

−
∫ T

0

〈y′1, x〉H−1(Ω),H1
0 (Ω) dt =

∫ T

0

〈x′, y1〉H−1(Ω),H1
0 (Ω) dt (2.61)

has value, and therefore we have y′1 ∈ L2
(
0, T ;H−1(Ω)

)
, that is, y1 ∈ X0. This implies

∫ T

0

−〈y′1, x〉H−1(Ω),H1
0 (Ω) + 〈A(t)∗y1, x〉H−1(Ω),H1

0 (Ω) dt = 0 (2.62)

for all x ∈ C∞0
(
(0, T );H1

0 (Ω)
)
, whereA(t)∗ is adjoint operator ofA(t). By the density of C∞0

(
(0, T );H1

0 (Ω)
)
⊂

L2
(
0, T ;H1

0 (Ω)
)
, the equation (2.62) holds for all x ∈ L2

(
0, T ;H1

0 (Ω)
)
.

Further, for any φ ∈ H1
0 (Ω), we let x := tφ ∈ X0 ⊂ L2

(
0, T ;H1

0 (Ω)
)
. Then b(x,y1) = 0 and

integration by part in equation (2.62) show that

0 =

∫ T

0

−〈y′1, tφ〉H−1(Ω),H1
0 (Ω) + 〈A(t)∗y1, tφ〉H−1(Ω),H1

0 (Ω) dt

= −(y1(T ), Tφ)L2(Ω) +

∫ T

0

〈(tφ)′ +A(t)(tφ), y1〉H−1(Ω),H1
0 (Ω) dt

= −(y1(T ), Tφ)L2(Ω) + b0(tφ,y1)
= −(y1(T ), Tφ)L2(Ω)

(2.63)

for all φ ∈ H1
0 (Ω), therefore we have y1(T ) = 0. If we let x = (T − t)φ for any φ ∈ H1

0 (Ω), then we have
y1(0) = 0 by the same argument.

Finally, we let x := y1 ∈ L2
(
0, T ;H1

0 (Ω)
)
, then the partial integration and the coercivity of A(t) give

y1 = 0. The above argument shows that (BNB2) holds.
Applying the Banach-Nečas-Babuška theorem, we can assert that there exists a unique ũ ∈ X0 for

each uD ∈ X such that TuD = gD. Here we let

uD1, uD2 ∈ X (2.64)

be such that TuD1 = TuD2 = gD and uD1 6= uD2. Then there exist ũ1, ũ2 ∈ X0 satisfying the equation
(2.45) for uD1, uD2, respectively. Now we have

u1 := ũ1 + uD1, and u2 := ũ2 + uD2, (2.65)

which are weak solution of problem (2.43). We will show that the two weak solution satisfy u1 = u2 by
contradiction. If we assume u1 6= u2, then U := u1 − u2 satisfies





U ′ +A(t)U = 0, in Ω× (0, T ),
U = 0 in Γ× (0, T ),

U(x, 0) = 0, for x ∈ Ω.
(2.66)

This has a unique solution U = 0, which contradicts U = u1 − u2 6= 0.

In this paper, we will consider the following advection-diffusion-reaction equation. Let f ∈ L2
(
0, T ;H−1(Ω)

)
,

gD ∈ G0 and u0 ∈ L2(Ω). Then we find u ∈W 1,2,2
(
0, T ;H1(Ω), H−1(Ω)

)
such that





u′ +A(t)u = f, in Ω× (0, T ),
u = gD, in Γ× (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,
(2.67)

where the linear operator A(t) : H1(Ω)→ H−1(Ω) is defined by

A(t)v := −∇(µ(x, t)∇v) + a(x, t) · ∇v + c(x, t)v for all v ∈ H1(Ω), (2.68)

µ = (µij)1≤i,j≤d is diffusivity tensor, a = (ai)1≤i≤d is advection vector, c is reaction. Henceforth we make
the following assumption.

27



Assumption 3. For the diffusivity tensor µ, advection vector a and reaction c, we assume the following
additional condition.

• µ ∈
(
L∞

(
0, T ;W 1,∞(Ω)

))d×d
satisfies the ellipticity, that is, there exists a positive constant µ0

such that
ξTµ(x, t)ξ ≥ µ0|ξ|2, for all ξ ∈ Rd, (x, t) ∈ Ω× (0, T ). (2.69)

• a ∈
(
L∞

(
0, T ;W 1,∞(Ω)

))d
satisfies ∇ · a ∈ L∞(Ω) for a.e. t ∈ (0, T ).

• c ∈ L∞ (0, T ;L∞(Ω)).

• p := ess infx∈Ω

{
c− 1

2
∇ · a

}
> 0 for a.e. t ∈ (0, T ).

We can now show the following lemma under the above assumptions.

Lemma 10. The operator A(t) : H1(Ω)→ H−1(Ω) satisfies the equation (2.48) for a.e. t ∈ (0, T ), that
is, the problem (2.67) has a unique weak solution.

Proof. First we have

〈−∇ (µ∇w) , v〉H−1(Ω),H1
0 (Ω) :=

∫

Ω

(µ∇w) · ∇v dx. (2.70)

This implies

〈A(t)w, v〉H−1(Ω),H1
0 (Ω) =

∫

Ω

((µ∇w) · ∇v + (a · ∇w)v + cwv) dx (2.71)

for w ∈ H1(Ω) and v ∈ H1
0 (Ω). Therefore,

〈A(t)w, v〉H−1(Ω),H1
0 (Ω) ≤ max

0≤i,j≤d
‖µij‖L∞(Ω)|w|H1(Ω)|v|H1(Ω)

+ max
0≤i≤d

‖ai‖L∞(Ω)|w|H1(Ω)‖v‖L2(Ω)

+‖c‖L∞(Ω)‖w‖L2(Ω)‖v‖L2(Ω)

≤ C‖w‖H1(Ω)‖v‖H1(Ω)

(2.72)

for all w ∈ H1(Ω), v ∈ H1
0 (Ω) and for a.e. t ∈ (0, T ).

Next, we have

∫

Ω

(a · ∇v) vdx =

∫

Ω

(
∇ · (av)v −∇ · av2

)
dx

=

∫

Γ

a · nv2dx−
∫

Ω

(a · ∇v) vdx−
∫

Ω

∇ · av2dx
(2.73)

for all v ∈ H1
0 (Ω). Here v = 0 on Γ leads to

∫

Ω

(a · ∇v) vdx = −1

2

∫

Ω

∇ · av2dx, for all v ∈ H1
0 (Ω). (2.74)

From this equation, it follows that

〈A(t)v, v〉H−1(Ω),H1
0 (Ω) ≥ µ0|v|2H1(Ω) +

∫

Ω

(
c− 1

2
∇ · a

)
v2dx

≥ µ0|v|2H1(Ω) + p‖v‖2L2(Ω)

(2.75)

for all v ∈ H1
0 (Ω). As p > 0 we have

〈A(t)v, v〉H−1(Ω),H1
0 (Ω) ≥ min{µ0, p}‖v‖2H1(Ω) for all v ∈ H1

0 (Ω). (2.76)

Remark 9. We review that the assumption p > 0 is valid. First, we have the G̊arding’s inequality

〈A(t)v, v〉H−1(Ω),H1
0 (Ω) ≥ C‖v‖2H1(Ω) − κ‖v‖2L2(Ω) for all v ∈ H1

0 (Ω), (2.77)
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where

κ > sup
Ω×(0,T )

1

2
∇ · a− c. (2.78)

In fact, we have

〈A(t)v, v〉H−1(Ω),H1
0 (Ω) + κ‖v‖2L2(Ω) ≥ µ0|v|H1(Ω) +

∫

Ω

(
c− 1

2
∇ · a + κ

)
v2dx

≥ C‖v‖H1(Ω) for all v ∈ H1
0 (Ω).

(2.79)

Here we let
Aκ(t)w := A(t)w + κw for all w ∈ H1

0 (Ω), (2.80)

then we have Aκ : H1(Ω)→ H−1(Ω) and the problem





û′ +Aκ(t)û = e−κtf, in Ω× (0, T ),
û = e−κtgD, in Γ× (0, T ),

û(x, 0) = u0(x), for x ∈ Ω
(2.81)

has a unique solution û ∈ X. Therefore, we have u := eκtû is a unique weak solution of problem (2.43).
This means that the problem results into the case p > 0.

Lemma 11 ([22], Theorem 5. of Chapter 7). Further we assume that f ∈ L2
(
0, T ;L2(Ω)

)
,

gD ∈ G :=

{
g ∈ L2

(
0, T ;H1/2(Γ)

)
:

there exists uD ∈W 1,2,2
(
0, T ;H2(Ω), L2(Ω)

)

such that TruD = g in L2
(
0, T ;H1/2(Γ)

)
}
, (2.82)

µ ∈ (L∞ ((0, T × Ω))
d×d

, a ∈ (L∞ ((0, T )× Ω))
d
, c ∈ L∞ ((0, T )× Ω), f ∈ L2

(
0, T ;L2(Ω)

)
and u0 −

uD(0) ∈ H1
0 (Ω), then ũ ∈ X0 satisfies

ũ ∈W 1,2,2
(
0, T ;H2(Ω), L2(Ω)

)
∩ L∞

(
0, T ;H1

0 (Ω)
)
. (2.83)

Remark 10. We review Example 1.42 of [31]. Let Ω := [0, T ] and

u(x, t) :=

{
1 for x ≤ t,
0 for x < t.

(2.84)

Then this satisfies u ∈ L∞ ((0, T )× Ω). However, u is not Bochner measurable, because W k,∞(Ω) is not
separable. Therefore u 6∈ L∞ (0, T ;L∞(Ω)).

2.4 Finite dimensional subspace

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ, then we have the trace operator Tr :
H1(Ω) → H1/2(Γ). Hereinafter, Tu ∈ H1/2(Γ) is written as u for u ∈ H1(Ω). Further, we let Th be
a partition of Ω, Eh be a set of all edges or faces of Th, and Eeh := {E ∈ Eh : E ⊂ Γ}. We define
hE := diamE for E ∈ Eh, and hK be the mesh size of K ∈ Th. Further, we let h := max{hK : K ∈ Th}.

In the next chapter, we will state the Nitsche method for parabolic problems using the finite dimen-
sional subspace Vh ⊂ H1(Ω). The following assumptions will be needed throughout the chapter.

Assumption 4. There exists a positive constant C such that

hKE
≤ ChE , for all E ∈ Eeh, (2.85)

where KE is an element such that E ⊂ ∂KE . We note that KE ∈ Th is unique for each E ∈ Eeh.

Assumption 5. Let Vh be the finite dimensional subspace of H1(Ω) which relates to Th. Then we
assume that (A1)–(A3) hold,
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(A1) : Trace inequality.

‖v‖2L2(E) ≤ C
(
h−1
E ‖v‖2L2(KE) + hKE

|v|2H1(KE)

)
, for all v ∈ H1(KE), (2.86)

where KE ∈ Th is an element such that E ⊂ ∂KE , for E ∈ Eeh.

(A2) : Inverse inequality.

|vh|H1(K) ≤ Ch−1
K ‖vh‖L2(K) for all vh ∈ Vh,K ∈ Th. (2.87)

(A3) : Interpolation error estimate. Let k be the degree of elements of Vh, and ` be an integer satisfying
2 ≤ ` ≤ k + 1. Then there exists a projection Πh : H`(Ω)→ Vh such that

‖w −Πhw‖Hj(Ω) ≤ Ch`−j‖w‖H`(Ω) (2.88)

for j = 0, 1, 2 and for all w ∈ H`(Ω).

Below we state that the finite element (FE) space and NURBS space satisfies the assumption 5 under
some condition.

2.4.1 FE space

If we apply the finite element method for spatial semi-discretization, we first have to construct the mesh
by the triangulation.

Definition 5 (see Section 3.1 of [30]). Let Ω ⊂ Rd be a polyhedral domain. Then the space Th is called
a triangulation of Ω if

• Ω =
⋃
K∈Th K,

• each K ∈ Th is a polyhedron with K̊ 6= ∅,
• for all K1,K2 ∈ Th, then K1 6= K2 ⇔ K1 ∩K2 = ∅,
• diamK =: hK ≤ h for all K ∈ Th.

Moreover, if the triangulation Th satisfies that

K1 ∩K2 6= ∅ ⇒ K1 ∩K2 is a common face, side or vertex of K1 and K2 (2.89)

for all K1,K2 ∈ Th, then Th is called an admissible triangulation.
Hereafter, we always assume that the triangulation Th is admissible, and there exists a invertible affine

map
FK(x̂) := BK x̂+ bK (2.90)

such that K = FK(K̂) for all K ∈ Th, where K̂ ⊂ Rd is a reference element, which is the unit d-simplex
or d-cube.

Let Pk be the space of polynomials of degree less than or equal to k in variables, and Qk be the space
of polynomials of degree less than or equal to k with respect to each variable. When the reference element
is the unit d-simplex, then we define the space of triangular finite elements Vh by

Vh := {vh ∈ C0(Ω) : vh|K ∈ Pk for all K ∈ Th}. (2.91)

If the reference element is the unit d-cube, then we define the space of parallelepipedal finite elements
Xh such that

Vh := {vh ∈ C0(Ω) : vh|K ∈ Qk for all K ∈ Th}. (2.92)

In both cases, we note that Vh ⊂ H1(Ω) for all k ≥ 1.
Let ρK be a radius of an inscribed circle,

ρK := sup{diam(S) : S is a ball contained in K}. (2.93)
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Definition 6. The family of the triangulations {Th}h is said to be regular when there exists a positive
constant σ such that

hK
ρK
≤ σ for all K ∈

⋃

h

Th. (2.94)

Definition 7. The family of the triangulations {Th}h is said to be quasi-uniform when there exists a
positive constant ν such that

h

hK
≤ ν for all K ∈

⋃

h

Th. (2.95)

Now we remind some inequalities which are bases of numerical analysis of partial differential equations.
In this paper, we refer to [30] and only consider the Sobolev spaces Hk(K). For the inequalities on
W k,p(K), see [13].

Lemma 12 (Proposition 3.4.1 of [30]). For all v ∈ Hm(K), the function v ◦FK belongs to Hm(K̂), and
there exists two positive constant C1(n,m) and C2(n,m) such that

{
|v ◦ FK |Hm(K̂) ≤ C1‖BK‖m|detBK |−1/2|v|Hm(K) for all v ∈ Hm(K),

|v̂ ◦ F−1
K |Wm,p(K) ≤ C2‖B−1

K ‖m|detBK |1/2|v̂|Hm(K̂) for all v̂ ∈ Hm(K̂),
(2.96)

where

‖BK‖ := sup
ξ∈Rd

|BKξ|
|ξ| . (2.97)

Lemma 13 (Proposition 3.4.2 of [30]).

‖BK‖ ≤
hK
ρK̂

and ‖B−1
K ‖ ≤

hK̂
ρK

. (2.98)

Lemma 14 (Trace inequality on element). Let Th be a triangulation, then

‖f‖2L2(∂K) ≤ Cρ−dK
(
hd−1
K ‖f‖2L2(K) + hd+1

K |f |2H1(K)

)
for all K ∈ Th, f ∈ H1(K). (2.99)

Moreover, if the family of the triangulations {Th}h is regular, then

‖f‖2L2(∂K) ≤ C
(
h−1
K ‖f‖2L2(K) + hK |f |2H1(K)

)
for all K ∈ Th, f ∈ H1(K). (2.100)

Proof. Fix K ∈ Th arbitrary, and let K̂ := F−1
K (K) be a reference element, then we have ρK̂ and

meas(K̂) are constant. Further,

|detBK |−1 =
meas(K̂)

meas(K)
≤ Cρ−dK . (2.101)

They yield

‖f‖2L2(∂K) ≤ Chd−1
K ‖f ◦ FK‖2L2(∂K̂)

≤ Chd−1
K ‖f ◦ FK‖2H1(K̂)

≤ Chd−1
K

(
|detBK |−1‖f‖2L2(K) + ‖BK‖2|detBK |−1|f |2H1(K)

)

≤ Cρ−dK
(
hd−1
K ‖f‖2L2(K) + hd+1

K |f |2H1(K)

)
(2.102)

for all f ∈ H1(K). If {Th}h is regular, then we have ρ−dK ≤ Ch−dK for all K ∈ Th ∈ {Th}h.

Lemma 15 (Local inverse inequality, Lemma 1.138 of [19]). There exists a positive constant C such that

|vh|H1(K) ≤ Cρ−1
K ‖vh‖L2(K) for all K ∈ Th, vh ∈ Vh. (2.103)

Moreover, if the family of the triangulations {Th}h is regular, then

|vh|H1(K) ≤ Ch−1
K ‖vh‖L2(K) for all K ∈ Th, vh ∈ Vh. (2.104)
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Proof. Fix K ∈ Th and vh ∈ Vh arbitrary, and let K̂ := F−1
K (K) be a reference element. Then vh ◦ FK

is polynomial on K̂, therefore we have

|vh ◦ FK |H1(K̂) ≤ C‖vh ◦ FK‖L2(K̂). (2.105)

We note that hK̂ is a constant, and this gives

|vh|H1(K) ≤ C‖B−1
K ‖|detBK |1/2|vh ◦ FK |H1(K̂)

≤ Cρ−1
K |detBK |1/2‖vh ◦ FK‖L2(K̂)

≤ Cρ−1
K ‖vh‖L2(K).

(2.106)

Further, if {Th}h is regular, then we have ρ−1
K ≤ Ch−1

K for all K ∈ Th ∈ {Th}h.

Corollary 3 (Global inverse inequality). Let the family of triangulation {Th}h be regular and quasi-
uniform, then

|vh|H1(Ω) ≤ Ch−1‖vh‖L2(Ω) for all vh ∈ Vh. (2.107)

Let xi, i = 1, · · · ,dimVh be nodes in Ω, then we can construct the functions φi ∈ Vh, i = 1, · · · ,dimVh
such that

φi(xj) = δij for i, j = 1, · · · ,dimVh and suppφi =
⋃

K∈Th,xi∈K
K, (2.108)

where δij is the Kronecker delta. These functions are called shape functions, and they form a basis of
Vh. Further we have the Lagrange interpolation as follow, let v ∈ C0(Ω), then we define

Πh(v) :=

dimVh∑

i=1

v(xi)φi. (2.109)

It is clear that Πh : C0(Ω) → Vh is a projection. Moreover, let xKi , i = 1, · · · ,MK be the nodes in K,
and

ΠK
h (v) :=

MK∑

i=1

v(xKi )φi|K for all v ∈ C0(Ω), (2.110)

then we have
Πh(v)|K = ΠK

h (v) for all K ∈ Th, v ∈ C0(Ω). (2.111)

Lemma 16 (Interpolation error estimate, Theorem 3.4.1 of [30]). Let s be a positive integer, ` :=
min{k + 1, s} and 0 ≤ m ≤ `. Then there exists a positive constant C such that

|v −ΠK
h (v)|Hm(K) ≤ C

h`K
ρmK
|v|H`(K) for all K ∈ Th, v ∈ Hs(K). (2.112)

Moreover, if the family of the triangulations {Th}h is regular, then

|v −ΠK
h (v)|Hm(K) ≤ Ch`−mK |v|H`(K) for all K ∈ Th, v ∈ Hs(K). (2.113)

2.4.2 NURBS space

The Isogeometric Analysis proposes to describe the computational domain by a NURBS geometry. Fur-
ther, its mesh can define the finite dimensional subspace for the discretization in the Galerkin method.
Here, we will review the definition and properties of NURBS.

Univariate B-spline basis functions on [0, 1]

We call a vector Ξ := {ξ1, ξ2, . . . , ξm} the knot vector if

ξ1 ≤ ξ2 ≤ · · · ≤ ξm. (2.114)

We note the repetition of the knots are allowed. Without loss of generality, we let ξ1 = 0 and ξm = 1.
Let k be a given positive integer. Then, the univariate B-spline functions of degree k associated with the
knot vector Ξ are defined by the Cox-de Boor algorithm.
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Definition 8. Let Ξ = {ξ1, . . . , ξm} be a knot vector. Then the k-th degree B-spline basis functions B̂i,k
is defined by

B̂i,0(x̂) :=

{
1 if ξi ≤ x̂ ≤ ξi+1

0 otherwise
for k = 0, (2.115)

B̂i,k(x̂) :=
x̂− ξi
ξi+k − ξi

B̂i,k−1(x̂) +
ξi+k+1 − x̂
ξi+k+1 − ξi+1

B̂i+1,k−1(x̂), for k ≥ 0, (2.116)

with i = 1, . . . ,m− k − 1. We note that 0/0 = 0 should be replaced by 0 in this definition.

We state some properties of the B-spline basis functions of degree k. They are non-negative k-th
degree piecewise polynomials such that B̂i,k(x̂) = 0 for x̂ 6∈ [ξi, ξi+k+1]. Now we introduce an alternative
representation of Ξ to state the other properties. Let

Ξ = {ζ0, . . . , ζ0︸ ︷︷ ︸
m0 times

, ζ1 . . . , ζ1︸ ︷︷ ︸
m1 times

, . . . , ζN , . . . , ζN︸ ︷︷ ︸
mN times

}, (2.117)

where ζ0 ≤ ζ1 ≤ · · · ≤ ζN . Therein we denote the multiplicity of ζn by mn. Assume that mn ≤ k + 1
for all knots, then B̂i,k has k −mn continuous derivatives at the internal node ζn. Furthermore, we say

that the knot vector Ξ is k-open if m0 = mN = k+ 1. Let Ξ be a p-open knot vector, then B̂i,k form the
partition of unity, and they also form the basis of spline space, that is, the space of piecewise polynomials
of degree k with k −mn continuous derivatives at ζn, for n = 1, . . . , n− 1.

Henceforth, we assume the knot vector Ξ is k-open. We define the univariate spline Sk(Ξ) by

Sk(Ξ) := span{B̂i,k : i = 1, . . . ,m− k − 1}. (2.118)

We also define a quasi-interpolant operator Πk,Ξ : L∞(I)→ Sk(Ξ) by

Πk,Ξ(f) :=

m−k−1∑

i=1

λi,k(f)B̂i,k, (2.119)

where the dual basis functions λi,k, which are given by

λi,k(f) :=

∫

suppB̂i,k

f(s)ψi(s) ds, (2.120)

the definition of ψi and the proof of following inequality are given in Chapter 4 of [33],

|λi,k(f)| ≤ ‖f‖Lq(suppB̂i,k)‖Dk+1ψi‖Lq′ (suppB̂i,k)

≤ C|suppB̂i,k|−1/q‖f‖Lq(suppB̂i,k) for all q ∈ [1,∞],
(2.121)

where 1
q + 1

q′ = 1, and the constant C depends only on k. We note λi,k is a dual basis such that

λi,kB̂j,k = δi,j , therefore the spline preserving property of Pik,Ξ holds, that is,

Πk,Ξ(f) = f for all f ∈ Sk,Ξ. (2.122)

Let
In := [ζn−1, ζn], hn := |In|, Ĩn :=

⋃{
suppB̂i,p : B̂i,p|In 6≡ 0

}
, h̃n := |Ĩn|. (2.123)

For the partition size hn, the following assumption will be always needed in this chapter.

Assumption 6 (Local quasi-uniform). The knot vector Ξ is locally quasi-uniform, that is, there exists
a constant θ ≥ 1 such that

1

θ
≤ θn :=

hn
hn+1

≤ θ for all n = 1, · · · , N − 1. (2.124)

Further, we may assume that the knot vector Ξ satisfies the following global quasi-uniformity.
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Definition 9. A knot vector Ξ is called (global) quasi-uniform if there exists a positive constant θ such
that

maxn hn
minn hn

≤ θ. (2.125)

Now we state the stability estimate of quasi-interpolant operator.

Lemma 17 (Stability of quasi-interpolant operator, see Theorem 4.41 of [33] and Proposition 2.2 of [9]).
For all q ∈ [1,∞], there exists a positive constant C such that

‖Πk,Ξ(f)‖Lq(In) ≤ C‖f‖Lq(Ĩn), (2.126)

for all f ∈ L∞(I). Moreover, if Assumption 6 is satisfied,

|Πp,Ξ(f)|W 1,q(In) ≤ C|f |W 1,q(Ĩn), (2.127)

where C depends θ also.

Proof. The B-spline basis function form partition of unity, therefore

‖Πk,Ξ(f)‖Lq(In) ≤

∥∥∥∥∥∥
∑

suppB̂i,k∩In 6=∅

λi,k(f)B̂i,k

∥∥∥∥∥∥
Lq(In)

≤ max
suppB̂i,k∩In 6=∅

|λi,k(f)|

∥∥∥∥∥∥
∑

suppB̂i,k∩In 6=∅

B̂i,p

∥∥∥∥∥∥
Lq(In)

≤ h1/q
n max

suppB̂i,k∩In 6=∅
|λi,k(f)|.

(2.128)

Here we combine the equation (2.121) and hn ≤ |suppB̂i,p| for all i such that suppB̂i,p ∩ In 6= ∅, then

‖Πk,Ξ(f)‖Lq(In) ≤ C max
suppB̂i,k∩In 6=∅

‖f‖Lq(suppB̂i,k)

≤ C‖f‖Lq(Ĩn).
(2.129)

This estimate implies equation (2.127) as follows, we take a constant function c as

‖f − c‖Lq(Ĩn) ≤ Ch̃n|f |W 1,q(Ĩn), (2.130)

then Πk,Ξ(f)− c = Πk,Ξ(f − c) is a k-the degree polynomial on In, therefore

|Πk,Ξ(f)|W 1,q(In) = |Πk,Ξ(f − c)|W 1,q(In)

≤ Ch−1
n ‖Πk,Ξ(f − c)‖Lq(In)

≤ Ch−1
n ‖f − c‖Lq(Ĩn) ≤ C|f |W 1,q(Ĩn),

(2.131)

because the assumption 6 leads h̃n ≤ Chn.

Combining the stability estimate and spline preserving property of Πk,Ξ, we obtain the following error
estimate.

Lemma 18 (Error estimate). Let s be a positive integer, ` := min{k+ 1, s} and 0 ≤ m ≤ `. Then there
exists a positive constant C such that

‖f −Πk,Ξ(f)‖Lq(In) ≤ Ch̃`n|f |W `,q(Ĩn) for all f ∈W s,q(I) and n = 1, · · · , N. (2.132)

Moreover, if Assumption 6 is satisfied, There exists a constant C such that

|f −Πk,Ξ(f)|Wm,q(In) ≤ Ch̃`−mn |f |W `,q(Ĩn) for all f ∈W s,q(I) and n = 1, · · · , N. (2.133)
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Proof. For q = 2, we can see the Proposition 4.2 of [9], but here we show them for general q. We note

f |Ĩn ∈W
s,q(Ĩn) for all f ∈W s,q(I). Let

T `n(f) =

`−1∑

i=0

f (τ)(tn−1)

(`− 1)!
(t− tn−1)`−1dτ ∈ P`−1(Ĩn) (2.134)

be the Taylor polynomial of degree `− 1, then we can get easily

|f − T `n(f)|Wm,q(Ĩn) ≤ Ch̃`−mn |f |W `,q(Ĩn). (2.135)

Since ` ≤ k + 1, we obtain T `n(f)|In ∈ P`−1(In) ⊂ Sk(Ξ). Here the spline preserving property yields

‖f −Πk,Ξ(f)‖Lq(In) ≤ ‖f − T `n(f)‖Lq(In) + ‖Πk,Ξ(f)− T `n(f)‖Lq(In)

≤ ‖f − T `n(f)‖Lq(In) + ‖Πk,Ξ(f − T `n(f))‖Lq(In)

≤ C‖f − T `n(f)‖Lq(Ĩn)

≤ Ch̃`n|f |W `,q(Ĩn).

(2.136)

Further, the inverse inequality in one dimension leads to

|f −Πk,Ξ(f)|Wm,q(In) ≤ |f − T `n(f)|Wm,q(In) + |Πk,Ξ(f − T `n(f))|Wm,q(In)

≤ |f − T `n(f)|Wm,q(Ĩn) + Ch−mn ‖Πk,Ξ(f − T `n(f))‖Lq(In)

≤ C(h̃`−mn + h̃`nh
−m
n )|f |W `,q(Ĩn),

(2.137)

here the Assumption 6 implies h−mn ≤ Ch̃−mn .

Multivariate B-spline basis functions and NURBS basis functions

Let d be the dimension of space. For given degree kj and kj-open knot vector

Ξj := {ξj,1, . . . , ξj,mj
} (2.138)

= {ζj,1, . . . , ζj,1︸ ︷︷ ︸
kj+1 times

, ζj,2, . . . , ζj,2︸ ︷︷ ︸
mj,2 times

, . . . , ζj,rj , . . . , ζj,rj︸ ︷︷ ︸
kj+1 times

}, (2.139)

we get the kj-th degree univariate B-spline basis functions

B̂ij ,kj (x̂j), ij = 1, 2, . . . ,mj − kj − 1, (2.140)

and we define
k := (k1, . . . , kd), (2.141)

Ξ := Ξ1 × · · · × Ξd. (2.142)

Furthermore, the knots without repetition provides the mesh on parametric domain Ω̂ := [0, 1]d, which

is denoted by M̂h:

M̂h := {Qs := I1,s1 × · · · × Id,sd : Ij,sj := (ζi,sj , ζi,sj+1), sj = 1, . . . , rj − 1}. (2.143)

Then we define the multivariate B-spline basis functions:

B̂i,k(x̂) := B̂i1,k1(x̂1) · · · B̂id,kd(x̂d) (2.144)

for i = (i1, . . . , id), where x̂ := (x̂1, . . . , x̂d) ∈ Ω̂ := (0, 1)d. We define the multivariate spline Sk(Ξ) by

Sk(Ξ) := Sk1(Ξ1)⊗ · · · ⊗ Skd(Ξd) = span{B̂i,k : i ∈ I}, (2.145)

where I := {i = (i1, . . . , id) : ij = 1, . . . ,mj − kj − 1}. The quasi-interpolation for multivariate B-spline
is defined also by the tensor product;

Πk,Ξ(f) := Πk1,Ξ1 ⊗ · · · ⊗Πkd,Ξd
: L∞(Ω̂)→ Sk(Ξ). (2.146)
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Figure 2.1: Parametric mesh and the mesh of physical domain Ω

Remark 11. In general, we can not find the stability of Πk,Ξ because L∞((0, 1)2) 6= L∞(0, 1)×L∞(0, 1)

Here, the definition of NURBS basis functions for given weight

W (x̂) :=
∑

j∈I

wjB̂j,k(x̂) (2.147)

are described as follows:

N̂i,k(x̂) :=
wiB̂i,k(x̂)

W (x̂)
, (2.148)

where the positive constant wj > 0, j ∈ I are called weights. Furthermore, a NURBS parametrization is

given by a linear combination of NURBS basis functions. Let Pi ∈ Rd̂ be control points, then a NURBS
parametrization F(x̂) is given by

F(x̂) :=
∑

i∈I

PiN̂i,k(x̂). (2.149)

We denote the physical domain by Ω := F(Ω̂), then the mesh on Ω is provided as the image of parametric
mesh:

Th := {Kj := F(K̂j), K̂j ∈ M̂h} (2.150)

The requirement on the map F is that it satisfies the following regularity.

Assumption 7. The map F is homeomorphism, and F−1|K and its inverse are smooth.

Under this assumption, we can define

Vh := span{Ni,k(x) := N̂i,k ◦ F−1(x), i ∈ I} (2.151)

where h is the mesh size h := max{hQ := diam(Q) : Q ∈ M̂h}. Further, we define

hK := ‖∇F‖L∞(Q)hQ for all K ∈ Th, Q := F−1(K). (2.152)

For the NURBS mesh, we define the regularity of the family of mesh {Th}h using {M̂h}.

Definition 10. The family of the mesh {Th}h is said to be regular when there exists a positive constant
σ such that

hQ
hQ,min

≤ σ for all Q ∈
⋃

h

M̂h, (2.153)

where hQ,min denotes the length of the smallest edge of hypercube Q.
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When we consider the Isogeometric Analysis, we assume the regularity of mesh. Further we always
assume that the family of mesh {Th}h is locally quasi-uniform, that is, there exists a positive constant

θ such that for all M̂h ∈ {M̂h}h, the knots vectors Ξ1, · · · ,Ξd satisfies the local quasi-uniformity for θ.
We may further assume that {Th}h satisfies global quasi-uniformity.

Now we review some results in previous researches.

Lemma 19 (Trace inequality, Theorem 3.2 of [20]). Let K ∈ Th and Q = F−1(K), then

‖f‖2L2(∂K) ≤ CλQλK
(
h−1
K ‖f‖2L2(K) + hK |f |2H1(K)

)
for all f ∈ H1(K), (2.154)

where λQ and λK are local shape regularity constant of Q, K, respectively and they are independent of
hK .

Lemma 20 (Inverse inequality, Theorem 4.2. of [2]). Let ` be an integer with 0 ≤ k ≤ `, then we have

‖vh‖H`(K) ≤ Cshapeh
k−`
K

k∑

i=0

‖∇F‖i−k
L∞(F−1(K))

|vh|H`(K) for all K ∈ Th, vh ∈ Vh. (2.155)

Especially, we have

|vh|H1(K) ≤ ‖vh‖H1(K) ≤ Ch−1
K ‖vh‖L2(K) for all K ∈ Th, vh ∈ Vh. (2.156)

Lemma 21 (Quasi-interpolation error estimate, Corollary 4.21 of [9]). Let the projection ΠVh
: L2(Ω)→

Vh be

ΠVh
f(x) :=

Πk,Ξ

(
W ◦ F−1(x)f(x)

)

W ◦ F−1(x)
for f ∈ L2(Ω). (2.157)

Further we let s be an integer, ` := min{k1 +1, · · · , kd+1, s} and 0 ≤ m ≤ `. Then there exists a positive
constant C such that

‖v −ΠVh
v‖Hm(K) ≤ Ch`−mK̃

‖v‖H`(K̃) for all K ∈ Th, v ∈ Hs(Ω), (2.158)

where K̃ := F(Q̃) for Q := F−1(K), and

Q̃ :=
⋃{

supp N̂i,k : N̂i,k|Q 6≡ 0
}
. (2.159)

2.5 Application of the Nitsche method to parabolic problems

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ, then we have the trace operator Tr :
H1(Ω)→ H1/2(Γ). Hereinafter, Tu ∈ H1/2(Γ) is written as u for u ∈ H1(Ω).

In this section, we establish the inf-sup condition after introducing the Nitsche method for parabolic
problems. We also introduce a subspace V ⊂ H1(Ω) such that A(t)w ∈

(
L2(Ω)

)∗
for all w ∈ V , where

A(t) : H1(Ω) → H−1(Ω) is elliptic operator. The important point we note here is that the Nitsche
method for parabolic problems satisfies the Galerkin orthogonality if the weak solution u is in XV , where

XV :=
{
v ∈W 1,2,2

(
0, T ;H1(Ω), L2(Ω)

)
: v(t) ∈ V for a.e. t ∈ (0, T )

}
. (2.160)

This provides the quasi-optimal error estimate.

2.5.1 The piecewise Sobolev space and normal derivative

We consider spacial semi-discretization with FEM or IGA. Let Th be a partition of Ω, Eh be a set of all
edges or faces of Th, and Eeh := {E ∈ Eh : E ⊂ Γ}. We define hE := diamE for E ∈ Eh, and hK be the
mesh size of K ∈ Th. Further we let h := max{hK : K ∈ Th}.

Now we define the following piecewise Sobolev space.
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Definition 11 (piecewise Sobolev space).

V :=
{
v ∈ H1(Ω) : v|K ∈ H2(K) for all K ∈ Th

}
, (2.161)

‖v‖2V := ‖v‖2H1(Ω) +
∑

K∈Th
h2
K |v|2H2(K) +

∑

E∈Eeh

h−1
E ‖v‖2L2(E). (2.162)

Now the elements of V satisfy the following lemma.

Lemma 22.

n · µ∇w :=

d∑

i=1

ni Tr




d∑

j=1

µij
∂w

∂xj


 ∈ L2(E) (2.163)

for all µ ∈
(
W 1,∞(Ω)

)d×d
, w ∈ V and E ∈ Eeh. Note that Tr : H1(Ω)→ H1/2(Γ) is a trace operator.

Proof. Note that W 1,∞(K) ⊂ H1(K) for all K ∈ Th, because K ∈ Rd is bounded. Therefore we have

µij |K ∈ H1(K) and
∂w

∂xj

∣∣∣∣
K

∈ H1(K) (2.164)

for all i, j = 1, . . . , d and w ∈ V . This implies

d∑

i=1

ni Tr




d∑

j=1

µij
∂w

∂xj



∣∣∣∣∣∣
E

∈ H1/2(E) ⊂ L2(E). (2.165)

Lemma 23. There exists a positive constant C such that

∑

E∈Eeh

hE‖n · µ∇w‖2L2(E) ≤ C
∑

E∈Eeh

(
|w|2H1(KE) + h2

KE
|w|2H2(KE)

)
(2.166)

for all µ ∈
(
W 1,∞(Ω)

)d×d
and w ∈ V , where KE ∈ Th satisfies E ⊂ ∂KE .

Proof. We note that µij
∂w

∂xj
∈ L2(E), therefore we can apply the trace inequality (A2) and have

‖n · µ∇w‖2L2(E) =

∫

E




d∑

i=1

ni

d∑

j=1

Tr

(
µij

∂w

∂xj

)


2

dx

≤
∫

E

(
d∑

i=1

n2
i

)


d∑

i=1




d∑

j=1

Tr

(
µij

∂w

∂xj

)


2

 dx

≤ d
d∑

i,j=1

∥∥∥∥Tr

(
µij

∂w

∂xj

)∥∥∥∥
2

L2(E)

≤ C
d∑

i,j=1

(
h−1
KE

∥∥∥∥µij
∂w

∂xj

∥∥∥∥
2

L2(KE)

+ hKE

∣∣∣∣µij
∂w

∂xj

∣∣∣∣
2

H1(KE)

)

≤ C
(
h−1
KE
|w|2H1(KE) + hKE

|w|2H2(KE)

)

(2.167)

for all E ∈ Eeh. This and hE ≤ hKE
imply the conclusion.

Corollary 4. There exists a positive constant C such that

∑

E∈Eeh

hE‖n · µ∇w‖2L2(E) ≤ C
(
|w|2H1(Ω) +

∑

K∈Th
h2
K |w|2H2(K)

)
(2.168)

for all µ ∈
(
W 1,∞(Ω)

)d×d
and w ∈ V .
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2.5.2 Spatial semi-discretization

Here we let Vh ⊂ V ⊂ H1(Ω) be a finite dimensional subspace. Further, we define (·, ·)Vh
and ‖ · ‖Vh

by




(wh, vh)Vh
:= (wh, vh)L2(Ω) + (∇wh,∇vh)L2(Ω) +

∑

E∈Eeh

h−1
E (wh, vh)L2(E),

‖vh‖2Vh
:= ‖vh‖2H1(Ω) +

∑

E∈Eeh

h−1
E ‖vh‖2L2(E)

(2.169)

for all wh, vh ∈ Vh. It is obvious that (vh, vh)Vh
= ‖vh‖2Vh

, and therefore Vh is a Hilbert space.
The definition of ‖ · ‖Vh

implies Vh ↪→ H1(Ω). Further we can define the dual space V ∗h , and check
the following.

• V ∗h is a Banach space with norm

‖φ‖V ∗h := sup
06=vh∈Vh

〈φ, vh〉V ∗h ,Vh

‖vh‖Vh

for φ ∈ V ∗h . (2.170)

• We can define a map T1 : L2(Ω)→ V ∗h by

〈T1f, vh〉V ∗h ,Vh
:= (f, vh)L2(Ω) for all f ∈ L2(Ω), vh ∈ Vh. (2.171)

Especially, we have

(f, vh)L2(Ω) ≤ ‖T1f‖V ∗h ‖vh‖Vh
for all f ∈ L2(Ω), vh ∈ Vh, (2.172)

and

‖T1f‖V ∗h ≤ sup
v∈H1(Ω)

(f, v)L2(Ω)

‖v‖L2(Ω)
≤ ‖f‖L2(Ω) for all f ∈ L2(Ω). (2.173)

Here, we show the following lemmas.

Lemma 24.
‖vh‖Vh

≤ ‖vh‖V ≤ C‖vh‖Vh
for all vh ∈ Vh ⊂ V, (2.174)

that is, The two norms ‖ · ‖Vh
and ‖ · ‖V are equivalent in Vh.

Proof. First, the definition of the norms implies

‖vh‖2V = ‖vh‖2Vh
+
∑

K∈Th
h2
K |vh|2H2(K). (2.175)

This leads ‖vh‖V ≥ ‖vh‖Vh
. Moreover, the assumption (A2) implies ‖vh‖V ≤ C‖vh‖Vh

, for all vh ∈
Vh.

Lemma 25. There exists a positive constant CI such that
∑

E∈Eeh

hE ‖n · µ∇wh‖2L2(E) ≤ CI |wh|2H1(Ω) (2.176)

for all wh ∈ Vh.

Proof. We apply the lemma 23 and the assumption (A2) for wh ∈ Vh ⊂ V , then we have

‖n · µ∇wh‖2L2(E) =

∫

E




d∑

i=1

ni

d∑

j=1

T

(
µij

∂wh
∂xj

)


2

dx

≤ C
(
h−1
KE
|wh|2H1(KE) + hKE

|wh|2H2(KE)

)

≤ Ch−1
KE
|wh|2H1(KE)

(2.177)

for all E ∈ Eeh. This and hE ≤ hKE
implies

∑

E∈Eeh

hE ‖n · µ∇wh‖2L2(E) ≤ C
∑

E∈Eeh

|wh|2H1(KE) ≤ CI |wh|2H1(Ω) (2.178)

for all wh ∈ Vh.
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2.5.3 Elliptic operator in Nitsche method

The elliptic operator satisfies the following.

Lemma 26. Let A(t) : H1(Ω) → H−1(Ω) be defined by the equation (2.68), where µ, a and c satisfy

the assumption 3. Then there exist an operator Â(t) : V →
(
H1(Ω)

)∗
, which is linear for a.e. t ∈ (0, T ),

and two positive constant M̂ and α̂ such that




A(t)w ∈
(
L2(Ω)

)∗ ⊂ H−1(Ω) for all w ∈ V and

〈A(t)w, v〉(L2(Ω))∗,L2(Ω) = 〈Â(t)w, v〉(H1(Ω))∗,H1(Ω) −
∑

E∈Eeh

(n · µ∇w, v)L2(E)

for all w ∈ V, v ∈ H1(Ω),

〈Â(t)w, v〉(H1(Ω))∗,H1(Ω) ≤ M̂‖w‖H1(Ω)‖v‖H1(Ω) for all w ∈ V, v ∈ H1(Ω),

〈Â(t)v, v〉(H1(Ω))∗,H1(Ω) ≥ α̂‖v‖2H1(Ω) +
1

2
(a · nv, v)L2(Γin) for all v ∈ V

(2.179)

for a.e. t ∈ (0, T ), where Γin ⊂ Γ is defined by

Γin = Γin(t) := {x ∈ Γ : a(x, t) · n(x) < 0}. (2.180)

Proof. We can define A(t) : V →
(
L2(Ω)

)∗
by

〈A(t)w, v〉(L2(Ω))∗,L2(Ω) =
∑

K∈Th
(−∇(µ∇w), v)L2(K) + (a · ∇w, v)L2(Ω) + (cw, v)L2(Ω) (2.181)

for all w ∈ V and v ∈ L2(Ω). Furthermore, we have

〈A(t)w, v〉(L2(Ω))∗,L2(Ω) = (µ∇w,∇v)L2(Ω) −
∑

E∈Eeh

(n · µ∇w, v)L2(E)

+(a · ∇w, v)L2(Ω) + (cw, v)L2(Ω)

(2.182)

for all w ∈ V and v ∈ H1(Ω). Therefore we let

〈Â(t)w, v〉(H1(Ω))∗,H1(Ω) := (µ∇w,∇v)L2(Ω) + (a · ∇w, v)L2(Ω) + (cw, v)L2(Ω). (2.183)

This definition implies

〈Â(t)w, v〉(H1(Ω))∗,H1(Ω) ≤ max
0≤i,j≤d

‖µij‖L∞(Ω)|w|H1(Ω)|v|H1(Ω)

+ max
0≤i≤d

‖ai‖L∞(Ω)|w|H1(Ω)‖v‖L2(Ω)

+‖c‖L∞(Ω)‖w‖L2(Ω)‖v‖L2(Ω)

≤ C‖w‖H1(Ω)‖v‖H1(Ω)

(2.184)

for all w ∈ V and v ∈ H1(Ω) and for a.e. t ∈ (0, T ). Further we have

〈Â(t)v, v〉(H1(Ω))∗,H1(Ω) ≥ µ0|v|2H1(Ω) +
1

2

∫

Γ

a · nv2dx+

∫

Ω

(
c− 1

2
∇ · a

)
v2dx

≥ µ0|vh|2H1(Ω) + p‖vh‖2L2(Ω) +
1

2

∫

Γin

a · nv2dx
(2.185)

for all v ∈ V . Here the assumption p > 0 leads to

〈Â(t)v, v〉(H1(Ω))∗,H1(Ω) ≥ min{µ0, p}‖v‖2H1(Ω) +
1

2
(a · nv, v)L2(Γin) for all v ∈ H1

0 (Ω). (2.186)

and the proof is complete.

Remark 12. If we consider the advection and reaction term are both 0, then we have
{
〈Â(t)w, v〉(H1(Ω))∗,H1(Ω) ≤ M̂ |w|H1(Ω)|v|H1(Ω) for all w ∈ V, v ∈ H1(Ω),

〈Â(t)v, v〉(H1(Ω))∗,H1(Ω) ≥ α̂|v|2H1(Ω) for all v ∈ V (2.187)
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for a.e. t ∈ (0, T ). Therefore, we have to replace the definition of ‖ · ‖V with

‖w‖2V = |w|2H1(Ω) +
∑

K∈Th
h2
K |w|2H2(K) +

∑

E∈Eeh

h−1
E ‖w‖2L2(E) for all w ∈ V, (2.188)

and (·, ·)Vh
, ‖ · ‖Vh

with





(w, v)Vh
:= (∇w,∇v)L2(Ω) +

∑

E∈Eeh

h−1
E (w, v)L2(E) for all w, v ∈ H1(Ω),

‖v‖2Vh
:= |v|2H1(Ω) +

∑

E∈Eeh

h−1
E ‖v‖2L2(E) for all v ∈ H1(Ω).

(2.189)

In this chapter, we only consider the case when the advection vector a(x, t) is not zero.

Remark 13. Hereafter, we identify L2(Ω) and
(
L2(Ω)

)∗
by the Riesz representation theorem, and write

A(t)w ∈ L2(Ω) and (A(t)w, v)L2(Ω) (2.190)

for w ∈ V and v ∈ L2(Ω).

2.5.4 The formulation of Nitsche method in parabolic problem

Let
XV :=

{
v ∈W 1,2,2

(
0, T ;H1(Ω), L2(Ω)

)
: v(t) ∈ V for a.e. t ∈ (0, T )

}
, (2.191)

and
Xh := H1 (0, T ;Vh) , Yh := L2(0, T ;Vh)× Vh. (2.192)

Further we define the norms

‖x‖2XV
:=

∫ T

0

(
‖x‖2V + ‖T1x

′‖2V ∗h
)
dt+ ‖x(0)‖2L2(Ω) for x ∈ XV , (2.193)

‖x‖2Xh
:=

∫ T

0

(
‖x‖2Vh

+ ‖T1x
′‖2V ∗h

)
dt+ ‖x(0)‖2L2(Ω) for x ∈W 1,2,2

(
(0, T );H1(Ω), L2(Ω)

)
, (2.194)

‖yh‖2Yh
= ‖(yh, ỹh)‖2Yh

:=

∫ T

0

‖yh‖2Vh
dt+ ‖ỹh‖2L2(Ω) for yh ∈ Yh. (2.195)

It is easy to check that Xh and Yh are Banach spaces with norms ‖·‖Xh
and ‖·‖Yh

, respectively. Moreover,
Yh is a Hilbert space with the inner product

(y1h,y2h)Yh
:=

∫ T

0

(y1h, y2h)Vh
dt+ (ỹ1h, ỹ2h)L2(Ω) (2.196)

for all y1h = (y1h, ỹ1h),y2h = (y2h, ỹ2h) ∈ Yh. Note that the Lemma 8 implies

XV ⊂W 1,2,2
(
(0, T );H1(Ω), L2(Ω)

)
⊂ C0

(
[0, T ];L2(Ω)

)
, (2.197)

and the Corollary 2 gives
Xh ⊂ C0 ([0, T ];Vh) ⊂ C0

(
[0, T ];L2(Ω)

)
. (2.198)

Let u0 ∈ L2(Ω), f ∈ L2
(
0, T ;L2(Ω)

)
⊂ L2

(
0, T ;H−1(Ω)

)
, and gD ∈ G0. Here the theorem 8 implies

there exists u ∈ X := W 1,2,2
(
0, T ;H1(Ω), H−1(Ω)

)
which is a unique weak solution of the problem

(2.43).
Now we consider the following problem, find uε,h ∈ Xh ⊂ XV such that

bε,h(uε,h,vh) = F (vh) for all vh := (vh, ṽh) ∈ Yh, (2.199)

where

bε,h(w,vh) :=

∫ T

0

(
(w′, vh)L2(Ω) + aε(t;w, vh)

)
dt+ (w(0), ṽh)L2(Ω) (2.200)
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for all w ∈ XV and vh ∈ Yh, aε(t; ·, ·) : V × Vh → R is defined by (see [5] or page 56 of [52])

aε(t;w, vh) := (A(t)w, vh)L2(Ω) −
∑

E∈Eeh

(n · µ∇vh, w)L2(E)

−(a · nvh, w)L2(Γin) + 〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

= 〈Â(t)w, vh〉(H1(Ω))∗,H1(Ω) −
∑

E∈Eeh

(
(n · µ∇w, vh)L2(E) + (n · µ∇vh, w)L2(E)

)

−(a · nvh, w)L2(Γin) + 〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

(2.201)

for all w ∈ V and vh ∈ Vh,

F (vh) =

∫ T

0

F(t; vh)dt+ (u0, ṽh)L2(Ω) (2.202)

for all vh := (vh, ṽh) ∈ Yh,

F(t; vh) := (f, vh)L2(Ω) −
∑

E∈Eeh

(n · µ∇vh, gD)L2(E) − (a · nvh, gD)L2(Γin) + 〈ε(t)vh, gD〉H−1/2(Γ),H1/2(Γ)

(2.203)
for all vh ∈ Vh, and ε(t) : Vh → H−1/2(Γ) is a given linear operator. Note that XV ⊂ C0

(
[0, T ];L2(Ω)

)

implies that the inner product (w(0), ṽh)L2(Ω) is meaningful.
Using the distribution theory, we have that the problem (2.199) is equivalent to finding uε,h ∈ Xh

such that
(u′ε,h, vh)L2(Ω) + aε(t;uε,h, vh) = F(t; vh) (2.204)

for all vh ∈ Vh and for a.e. t ∈ (0, T ).
We have aε(t; ·, ·) is a bilinear form for a.e. t ∈ (0, T ), and therefore bε,h : XV × Yh → R is also a

bilinear form.
Hereafter we always assume the following.

Assumption 8. Let the operator ε(t) : Vh → H−1/2(Γ) be such that

〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ) := ε0

∑

E∈Eeh

h−1
E (w, vh)L2(E) (2.205)

for all w ∈ V and vh ∈ Vh, where ε0 > 2α̂−1CI .

Then we have the following estimate.

Lemma 27 (Continuity of F ). F : Yh → R is linear functional and

F (vh) ≤
(
Mh + ‖u0‖L2(Ω)

)
‖vh‖Yh

, (2.206)

where

M2
h := 3

∫ T

0


‖T1f‖2V ∗h + C2

Tr‖a · n‖2L∞(Γin)‖gD‖2L2(Γin) + (CI + ε2
0)
∑

E∈Eeh

h−1
E ‖gD‖2L2(E)


 dt. (2.207)
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Proof. It is clear that F : Yh → R is linear.

F (vh) =

∫ T

0


(f, vh)L2(Ω) −

∑

E∈Eeh

(n · µ∇vh, gD)L2(E)

−(a · nvh, gD)L2(Γin) + 〈ε(t)vh, gD〉H−1/2(Γ),H1/2(Γ)

)
dt+ (u0, ṽh)L2(Ω)

≤
∫ T

0

(
‖T1f‖V ∗h ‖vh‖Vh

+ C
1/2
I


∑

E∈Eeh

h−1
E ‖gD‖2L2(E)




1/2

|vh|H1(Ω)

+CTr‖a · n‖L∞(Γin)‖gD‖L2(Γin)‖vh‖H1(Ω)

+ε0


∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




1/2
∑

E∈Eeh

h−1
E ‖gD‖2L2(E)




1/2)
dt

+‖u0‖L2(Ω)‖ṽh‖L2(Ω)

≤



∫ T

0


‖vh‖2Vh

+ |vh|2H1(Ω) + ‖vh‖2H1(Ω) +
∑

E∈Eeh

h−1
E ‖vh‖2L2(E)


 dt




1/2

Mh/
√

3

+‖u0‖L2(Ω)‖ṽh‖L2(Ω)

≤ (Mh + ‖u0‖L2(Ω))‖vh‖Yh

(2.208)

for all vh ∈ Yh.

2.5.5 The continuity and coercivity of the bilinear form aε(t; ·, ·)
Here we show the bilinear form aε(t; ·, ·) : V × Vh → R is continuous and coercive for a.e. t ∈ (0, T ).

Lemma 28 (Continuity of aε(t; ·, ·)). There exists a positive constant C such that

aε(t;w, vh) ≤ C‖w‖V ‖vh‖Vh
(2.209)

for all w ∈ V , vh ∈ Vh, for a.e. t ∈ (0, T ). Moreover, there exists a positive constant M such that

aε(t;wh, vh) ≤M‖wh‖Vh
‖vh‖Vh

(2.210)

for all wh, vh ∈ Vh, for a.e. t ∈ (0, T ).

Proof. The Cauchy-Schwarz inequality, Corollary 4, Lemma 25 and Lemma 26 show that

aε(t;w, vh) ≤ M̂‖w‖H1(Ω)‖vh‖H1(Ω) + C‖w‖L2(Γ)‖vh‖L2(Γ)

+
∑

E∈Eeh

(
‖n · µ∇w‖L2(E) ‖vh‖L2(E) + ‖w‖L2(E) ‖n · µ∇vh‖L2(E)

)

+〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

≤ M̂‖w‖H1(Ω)‖vh‖H1(Ω) + C‖w‖H1(Ω)‖vh‖H1(Ω)

+C

(
|w|2H1(Ω) +

∑

K∈Th
h2
K |w|2H2(K)

)1/2

∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




1/2

+C


∑

E∈Eeh

h−1
E ‖w‖2L2(E)




1/2

|vh|H1(Ω) + 〈ε(t)vh, w〉H−1/2(Γ),H1/2(Γ)

≤ C‖w‖V ‖vh‖Vh

(2.211)

for all w ∈ V and vh ∈ Vh, for a.e. t ∈ (0, T ). Further, the Lemma 24 leads to

aε(t;wh, vh) ≤ C‖wh‖Vh
‖vh‖Vh

≤M‖wh‖Vh
‖vh‖Vh

, (2.212)

for all wh, vh ∈ Vh, for a.e. t ∈ (0, T ).
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Lemma 29 (Coercivity of aε(t; ·, ·)). There exists a positive constant α such that

aε(t; vh, vh) ≥ α‖vh‖2Vh
(2.213)

for all vh ∈ Vh.

Proof. Since −(a · nvh, vh)L2(Γin) ≥ 0 for all vh ∈ Vh, the Lemma 25 and Lemma 26 give

aε(t; vh, vh) ≥ α̂‖vh‖2H1(Ω) −
1

2
(a · nvh, vh)L2(Γin)

−2
∑

E∈Eeh

(n · µ∇vh, vh)L2(E) + 〈ε(t)vh, vh〉H−1/2(Γ),H1/2(Γ)

≥ α̂‖vh‖2H1(Ω) − 2C
1/2
I |vh|H1(Ω)


∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




1/2

+〈ε(t)vh, vh〉H−1/2(Γ),H1/2(Γ)

≥ α̂‖vh‖2H1(Ω) −


α̂/2|vh|2H1(Ω) + 2α̂−1CI

∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




+〈ε(t)vh, vh〉H−1/2(Γ),H1/2(Γ)

(2.214)

The condition for ε(t) leads to

aε(t; vh, vh) ≥ α̂

2
‖vh‖2H1(Ω) + (ε0 − 2α̂−1CI)

∑

E∈Eeh

h−1
E ‖vh‖2L2(E) = α‖vh‖2Vh

(2.215)

for all vh ∈ Vh, for a.e. t ∈ (0, T ).

Thanks to the above estimates, we have that the restriction of the bilinear form aε(t; ·, ·) : Vh×Vh → R
is continuous and coercive, for a.e. t ∈ (0, T ). Then the Lax-Milgram theorem implies that for any
φ(t) ∈ V ∗h , there exists a unique solution wh ∈ Vh to the equation

aε(t;wh, vh) = 〈φ, vh〉V ∗h ,Vh
for all vh ∈ Vh and for a.e. t ∈ (0, T ). (2.216)

Here we apply the Riesz representation theorem for Vh ⊂ L2(Ω), then there exists a ψ(t) ∈ Vh such that

〈φ(t), vh〉V ∗h ,Vh
= (ψ(t), vh)L2(Ω) for all φ(t) ∈ V ∗h , vh ∈ Vh and for a.e. t ∈ (0, T ). (2.217)

Therefore, we define a linear operator Aε(t) : Vh → Vh by the following.

Definition 12.

(Aε(t)wh, vh)L2(Ω) = aε(t;wh, vh), for all wh, vh ∈ Vh, for a.e. t ∈ (0, T ). (2.218)

The Lemma 28 and Lemma 29 imply

{
(Aε(t)wh, vh)L2(Ω) ≤M‖wh‖Vh

‖vh‖Vh
for all wh, vh ∈ Vh,

(Aε(t)vh, vh)L2(Ω) ≥ α‖vh‖2Vh
for all vh ∈ Vh, (2.219)

for a.e. t ∈ (0, T ). Again, thanks to the Lax-Milgram theorem, we have the operator Aε(t) : Vh → Vh is
invertible. Further, we have the following result.

Lemma 30. The bijection Aε(t) : Vh → Vh satisfies

{ ∥∥Aε(t)−1wh
∥∥
Vh
≤ α−1 ‖T1wh‖V ∗h ,(

wh,Aε(t)−1wh
)
L2(Ω)

≥ αM−2 ‖T1wh‖2V ∗h
(2.220)

for all wh ∈ Vh and for a.e. t ∈ (0, T ).
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Proof. First, we have

α
∥∥Aε(t)−1φ

∥∥2

Vh
≤
(
Aε(t)

(
Aε(t)−1wh

)
,Aε(t)−1wh

)
L2(Ω)

=
(
wh,Aε(t)−1wh

)
L2(Ω)

≤ ‖T1wh‖V ∗h
∥∥Aε(t)−1wh

∥∥
Vh

(2.221)

for all wh ∈ Vh. Therefore we have

∥∥Aε(t)−1wh
∥∥
Vh
≤ α−1 ‖T1wh‖V ∗h , for all wh ∈ Vh (2.222)

for a.e. t ∈ (0, T ).
Next, we note that the constant M satisfies

‖T1Aε(t)‖L(Vh,V ∗h ) := sup
06=wh∈Vh

‖T1Aε(t)wh‖V ∗h
‖wh‖Vh

= sup
06=wh∈Vh

sup
0 6=vh∈Vh

(Aε(t)wh, vh)L2(Ω)

‖wh‖Vh
‖vh‖Vh

≤M. (2.223)

Therefore,
‖T1wh‖V ∗h =

∥∥T1Aε(t)
(
Aε(t)−1wh

)∥∥
V ∗h

≤ ‖T1Aε(t)‖L(Vh,V ∗h )

∥∥Aε(t)−1wh
∥∥
Vh
≤M

∥∥Aε(t)−1wh
∥∥
Vh

(2.224)

for all wh ∈ Vh. Moreover, this implies
(
wh,Aε(t)−1wh

)
L2(Ω)

=
(
Aε(t)

(
Aε(t)−1wh

)
,Aε(t)−1wh

)
L2(Ω)

≥ α
∥∥Aε(t)−1wh

∥∥2

Vh
≥ αM−2 ‖T1wh‖2V ∗h

(2.225)

for all wh ∈ Vh and for a.e. t ∈ (0, T ).

2.5.6 The continuity and the inf-sup condition of the bilinear form bε,h

The continuity and coercivity of aε(t; ·, ·) imply that the bilinear form bε,h is continuous and satisfies the
inf-sup condition.

Lemma 31 (Continuity of bε,h). There exists a positive constant C such that

bε,h(w,vh) ≤ C‖w‖XV
‖vh‖Yh

for all w ∈ XV ,vh ∈ Yh. (2.226)

Especially, we have

bε,h(wh,vh) ≤ C‖wh‖Xh
‖vh‖Yh

for all wh ∈ Xh,vh ∈ Yh. (2.227)

Proof. The Lemma 28 leads to

bε,h(w,vh) :=

∫ T

0

(
(w′, vh)L2(Ω) + aε(t;w, vh)

)
dt+ (w(0), ṽh)L2(Ω)

≤
∫ T

0

(
‖T1w

′‖V ∗h ‖vh‖Vh
+ C‖w‖V ‖vh‖Vh

)
dt+ ‖w(0)‖L2(Ω)‖ṽh‖L2(Ω)

≤ C‖w‖XV
‖vh‖Yh

(2.228)

for all w ∈ XV and vh = (vh, ṽh) ∈ Yh. Moreover, the Lemma 24 leads the equation (2.227).

Theorem 14 (Inf-sup condition of bε,h). There exists a positive constant β such that

inf
06=xh∈Xh

sup
06=yh∈Yh

bε,h(xh,yh)

‖xh‖Xh
‖yh‖Yh

≥ β. (2.229)

Proof. We let xh ∈ Xh and yh :=
(
Aε(t)−1x′h + δxh, δxh(0)

)
∈ Yh, where δ := α−4M4. Then we have

‖yh‖2Yh
=

∫ T

0

∥∥Aε(t)−1x′h + δxh
∥∥2

Vh
dt+ ‖δxh(0)‖2L2(Ω)

≤ C
∫ T

0

(
‖T1x

′
h‖

2
V ∗h

+ ‖xh‖2Vh

)
dt+ δ‖xh(0)‖2L2(Ω) ≤ C‖xh‖2Xh

,

(2.230)
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and

bε,h(xh,yh) =

∫ T

0

((
x′h,Aε(t)−1x′h + δxh

)
L2(Ω)

+ aε
(
t;xh,Aε(t)−1x′h + δxh

))
dt

+(xh(0), δxh(0))L2(Ω)

≥
∫ T

0

(
αM−2 ‖T1x

′
h‖

2
V ∗h
− α−1M‖xh‖Vh

‖T1x
′
h‖V ∗h + δα‖xh‖2Vh

)
dt

+δ/2
(
‖xh(T )‖2L2(Ω) − ‖xh(0)‖2L2(Ω)

)
+ δ‖xh(0)‖2L2(Ω)

≥
∫ T

0

(
αM−2 ‖T1x

′
h‖

2
V ∗h
− α−1M‖xh‖Vh

‖T1x
′
h‖V ∗h + δα‖xh‖2Vh

)
dt

+δ/2‖xh(0)‖2L2(Ω)

≥
∫ T

0

(
αM−2/2 ‖T1x

′
h‖

2
V ∗h

+
(
δα− α−3M4/2

)
‖xh‖2Vh

)
dt+ δ/2‖xh(0)‖2L2(Ω)

≥ C
(∫ T

0

(
‖T1x

′
h‖

2
V ∗h

+ ‖xh‖2Vh

)
dt+ ‖xh(0)‖2L2(Ω)

)
= C‖xh‖2Xh

,

(2.231)

because we took δ := α−4M4. The above two inequalities implies

bε,h(xh,yh) ≥ C‖xh‖2Xh
≥ β‖xh‖Xh

‖yh‖Yh
, (2.232)

for any xh ∈ Xh and yh :=
(
Aε(t)−1x′h + α−4M4xh, α

−4M4xh(0)
)
. Therefore, we have

inf
06=xh∈Xh

sup
06=yh∈Yh

bε,h(xh,yh)

‖xh‖Xh
‖yh‖Yh

≥ β, (2.233)

then the inf-sup condition follows.

Furthermore, the inf-sup condition leads the unique existence of approximate solution.

Theorem 15. The problem (2.199) has a unique solution uε,h ∈ Xh.

Proof. According to the Lemma 7, we have the conclusion if

bε,h(xh,yh) = 0 for all xh ∈ Xh ⇒ yh = 0 in Yh. (2.234)

Let y1h = (y1h, ỹ1h) ∈ Yh be such that b(xh,y1h) = 0, for all xh ∈ Xh. First we set xh ∈ Xh be such
that

xh(0) = ỹ1h, and xh(t) = 0 for t ≥ δ (2.235)

for all δ > 0. Then b(xh,y1h) = 0 implies
∫ δ

0

(
(x′h, y1h)L2(Ω) + aε(t;xh, y1h)

)
dt+ ‖ỹ1h‖L2(Ω) = 0 (2.236)

for all δ > 0. Therefore we have ỹ1h = 0.
Next we use the basis functions {φi}Ni=1 of finite dimensional subspace Vh ⊂ H1(Ω), where N :=

dimVh, and we let

y1h(t) :=

N∑

i=1

ai(t)φi. (2.237)

Here we set x = φi for i = 1, . . . , N , then b (xh, (y1h, 0)) = 0 implies

Aε(t)a(t) = 0, (2.238)

where (Aε(t))i,j := aε(t;φi, φj) and a(t) := (a1(t), . . . , aN (t))T . Thanks to the Lemma 29, we have

ξTAε(t)ξ =

d∑

i,j=1

ξiξjaε(t;φi, φj)

= aε

(
t;

d∑

i=1

ξiφi,

d∑

i=1

ξiφi

)
≥ α

∥∥∥∥∥
d∑

i=1

ξiφi

∥∥∥∥∥

2

Vh

> 0

(2.239)

for all ξ = (ξi)1≤i≤d ∈ Rd for a.e. t ∈ (0, T ). Therefore Aε(t) is a positive definite matrix for a.e.
t ∈ (0, T ). This implies a(t) = 0, for a.e. t ∈ (0, T ), that is, y1h = 0.
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2.5.7 Galerkin orthogonality and error estimate

Henceforth, we always assume the following.

Assumption 9. We assume that unique weak solution of the problem (2.43) satisfies u ∈ XV .

Then we have A(t)u ∈
(
L2(Ω)

)∗ ' L2(Ω), and therefore

u′ +A(t)u = f in L2(Ω) for a.e. t ∈ (0, T ). (2.240)

Further, u ∈ XV ⊂ C0
(
[0, T ];H1(Ω)

)
implies gD(t) = Tru ∈ H1/2(Γ) for all t ∈ [0, T ].

Now we have the Galerkin orthogonality as the following.

Lemma 32 (Galerkin orthogonality). Let uε,h ∈ Xh be a unique solution of the equation (2.199), then
we have

bε,h(u− uε,h,vh) = 0 for all vh ∈ Yh. (2.241)

Proof. First, we have

bε,h(u,vh) =

∫ T

0

(u′ +A(t)u, vh)L2(Ω) −
∑

E∈Eeh

(n · µ∇vh, u)L2(E)

−(a · nvh, u)L2(Γin) + 〈ε(t)vh, u〉H−1/2(Γ),H1/2(Γ)dt+ (u(0), ṽh)L2(Ω)

(2.242)

for all vh ∈ Yh. Therefore we have

bε,h(u− uε,h,vh) =

∫ T

0

(
(u′ +A(t)u− f, vh)L2(Ω) −

∑

E∈Eeh

(n · µ∇vh, u− gD)L2(E)

−(a · nvh, u− gD)L2(Γin) + 〈ε(t)vh, u− gD〉H−1/2(Γ),H1/2(Γ)

)
dt

+(u(0)− u0, ṽh)L2(Ω)

= 0

(2.243)

for all vh ∈ Yh.

The Galerkin orthogonality and the inf-sup condition conclude the following result.

Lemma 33 (quasi-optimal error estimate). There exists a positive constant C such that

‖u− uε,h‖Xh
≤ C‖u− wh‖XV

(2.244)

for all wh ∈ Xh.

Proof. We have

‖u− uε,h‖Xh
≤ ‖u− wh‖Xh

+ ‖wh − uε,h‖Xh
≤ ‖u− wh‖XV

+ ‖wh − uε,h‖Xh
(2.245)

for all wh ∈ Vh. Moreover,

‖wh − uε,h‖Xh
≤ 1

β
sup

06=vh∈Yh

b(wh − uε,h,vh)

‖vh‖Yh

≤ 1

β
sup

06=vh∈Yh

b(wh − u,vh)

‖vh‖Yh

≤ C‖wh − u‖XV

(2.246)

for all wh ∈ Xh ⊂ XV . Therefore we have the conclusion.

Thanks to the assumption (A3), the following error estimate holds.
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Theorem 16 (error estimate). Assume that the family of mesh {Th}h is (globally) quasi-uniform. Further
we assume that two integers `,m satisfy 2 ≤ `,m ≤ k + 1, and the exact solution u ∈ XV satisfies
u ∈ X`,m := W 1,2,2

(
0, T ;H`(Ω), Hm(Ω)

)
. Then we have

‖u− uε,h‖2Xh
≤ C

(∫ T

0

(
h2(`−1)‖u‖2H`(Ω) + h2m‖u′‖2Hm(Ω)

)
dt+ h2j‖u(0)‖2Hk(Ω)

)
, (2.247)

where j := min{`,m} and uh ∈ Xh is a unique weak solution of problem (2.199).

Proof. First we have X`,m ⊂ XV , for all `,m ≥ 2, therefore the Lemma 33 implies

‖u− uh‖Xh
≤ inf
wh∈Vh

C‖u− wh‖XV
≤ ‖u−Πhu‖XV

(2.248)

for all wh ∈ Xh, especially we consider wh := Πhu. Here we note that u(t) ∈ H2(Ω) and uh(t)|K ∈ H2(K)
for all K ∈ Th, and therefore u(t)|E , uh(t)|E ∈ H1(E), for all E ∈ Eeh and for a.e. t ∈ (0, T ). Now we
have

‖u−Πhu‖2Vh
= ‖u−Πhu‖2H1(Ω) +

∑

E∈Eeh

h−1
E ‖u−Πhu‖2L2(E)

≤ Ch2(`−1)‖u‖2H`(Ω) + C
∑

E∈Eeh

h−1
KE

(
h−1
KE
‖u−Πhu‖2L2(KE) + hKE

|u−Πhu|2H1(KE)

)

≤ Ch2(`−1)‖u‖2H`(Ω) + C
(
Ch−2‖u−Πhu‖2L2(Ω) + |u−Πhu|2H1(Ω)

)

≤ Ch2(`−1)‖u‖2H`(Ω),

(2.249)
and

‖u−Πhu‖2V = ‖u−Πhu‖2Vh
+
∑

E∈Eeh

hE ‖n · µ∇(u−Πhu)‖2L2(E)

≤ Ch2(`−1)‖u‖2H`(Ω) +
∑

E∈Eeh

hE |u−Πhu|2H1(E)

≤ Ch2(`−1)‖u‖2H`(Ω) +
∑

E∈Eeh

hKE

(
h−1
KE
|u−Πhu|2H1(KE) + hKE

|u−Πhu|2H2(KE)

)

≤ Ch2(`−1)‖u‖2H`(Ω) + |u−Πhu|2H1(Ω) + h2|u−Πhu|2H2(Ω)

≤ Ch2(`−1)‖u‖2H`(Ω).

(2.250)
Next, we remark

(Πhu)′(t) = lim
a→0

Πhu(t+ a)−Πhu(t)

a
= Πh

(
lim
a→0

u(t+ a)− u(t)

a

)
= Πhu

′(t). (2.251)

This implies
‖T1(u−Πhu)′‖V ∗h ≤ ‖u

′ −Πhu
′‖L2(Ω) ≤ Chm‖u′‖Hm(Ω). (2.252)

Finally, we have
X`,m ⊂ H1

(
0, T ;Hk(Ω)

)
⊂ C0

(
[0, T ];Hj(Ω)

)
, (2.253)

and therefore
‖u(0)−Πhu(0)‖L2(Ω) ≤ Chk‖u(0)‖Hj(Ω). (2.254)

The above estimates lead

‖u−Πhu‖2XV
=

∫ T

0

(
‖u−Πhu‖2V + ‖T1(u−Πhu)′‖2V ∗h

)
dt+ ‖u(0)−Πhu(0)‖2L2(Ω)

≤ C
(∫ T

0

(
h2(`−1)‖u‖2H`(Ω) + h2m‖u′‖2Hm(Ω)

)
dt+ h2k‖u(0)‖2Hj(Ω)

)
,

(2.255)

which completes the proof.
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2.6 The full discrete problem

Let N ∈ N be the number of time steps, τ := T/N and tn := nτ . We now consider the temporal
discretization with implicit Euler (backward Euler) method. We find {unε,h,τ}Nn=0 ∈ (Vh)N+1 such that

{ 1

τ
(unε,h,τ − un−1

ε,h,τ , vh)L2(Ω) + aε(tn;unε,h,τ , vh) = Fn(vh) for all vh ∈ Vh,
(u0
ε,h,τ − u0, ṽh)L2(Ω) = 0 for all ṽh ∈ Vh

(2.256)

for all n = 1, · · · , N , where the functional Fn : Vh → R is defined by Fn(vh) := F(tn; vh) for all vh ∈ Vh.
It is clear that u0

ε,h,τ = uε,h(0), where uε,h ∈ Xh is a unique solution of the problem (2.199) or problem
(2.204).

Lemma 34. The functinal Fn : Vh → R satisfies

Fn(vh) ≤Mn
h ‖vh‖Vh

for all vh ∈ Vh, (2.257)

where

(Mn
h )

2
:= 3


‖T1f

n‖2V ∗h + C2
Tr‖an · n‖2L∞(Γin)‖gnD‖2L2(Γin) + (CI + ε2

0)
∑

E∈Eeh

h−1
E ‖gnD‖2L2(E)


 . (2.258)

Proof.

Fn(vh) ≤ ‖T1f
n‖V ∗h ‖vh‖Vh

+ C
1/2
I |vh|H1(Ω)


∑

E∈Eeh

h−1
E ‖gnD‖2L2(E)




1/2

+‖an · n‖L∞(Γin)CTr‖vh‖H1(Ω)‖gnD‖L2(Γin)

+ε0


∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




1/2
∑

E∈Eeh

h−1
E ‖gD‖2L2(E)




1/2

≤


‖vh‖2Vh

+ |vh|2H1(Ω) + ‖vh‖2H1(Ω) +
∑

E∈Eeh

h−1
E ‖vh‖2L2(E)




1/2

Mn
h /
√

3

≤Mn
h ‖vh‖Vh

(2.259)

Lemma 35. There exists a unique solution {unε,h,τ}Nn=0 ∈ (Vh)N+1 of the equation (2.256)

Proof. We let φi be a basis function of Vh, and unε,h,τ :=

dimVh∑

i=1

unε,h,τ,iφi. Here we set vh = φi for

i = 1, · · · ,dimVh. First, it is easy to show that there exists a unique u0
ε,h,τ ∈ Vh. Next, we have

(M + ∆tAn) unε,h,τ = Mun−1
ε,h,τ + ∆tFn (2.260)

for n = 1, · · · , N , where (M)ij := (φi, φj)L2(Ω), (An)ij := aε(tn;φi, φj), (Fn)i := Fn(φi) and unε,h,τ :=

(unε,h,τ,1, · · · , uε,h,τ,dimVh
)T . We note that the bilinear form aε(tn; ·, ·) is coercive, and this gives M+∆tAn

is a positive definite matrix. Therefore there exists a unique unε,h,τ for un−1
ε,h,τ .

Lemma 36 (stability). Let {unε,h,τ}Nn=0 be a unique solution of the equation (2.256), then





‖{unε,h,τ}Nn=1‖`∞([t1,tN ];L2(Ω)) ≤ ‖u0‖L2(Ω) +

√
T

2α
Mh,

‖{unε,h,τ}Nn=1‖`2([t1,tN ];Vh) ≤
1√
α
‖u0‖L2(Ω) +

√
T

α
Mh,

(2.261)
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where Mh := max
1≤n≤N

Mn
h , and





‖{φn}Nn=1‖2`∞([t1,tN ];L2(Ω)) := max
n=1,··· ,N

‖φn‖L2(Ω),

‖{φn}Nn=1‖2`2([t1,tN ];Vh) := τ

N∑

n=1

‖φn‖2Vh
.

(2.262)

Proof. We let vh = unε,h,τ in the equation (2.256), then we have

Mn
h ‖unε,h,τ‖Vh

≥ Fn(unε,h,τ )

=
1

τ
(unε,h,τ − un−1

ε,h,τ , u
n
ε,h,τ )L2(Ω) + aε(tn;unε,h,τ , u

n
ε,h,τ )

=
1

2τ

(
‖unε,h,τ − un−1

ε,h,τ‖2L2(Ω) + ‖unε,h,τ‖2L2(Ω) − ‖un−1
ε,h,τ‖2L2(Ω)

)

+aε(tn;unε,h,τ , u
n
ε,h,τ ).

(2.263)

The coercivity of aε implies

‖unε,h,τ‖2L2(Ω) − ‖un−1
ε,h,τ‖2L2(Ω) + 2τα‖unε,h,τ‖2Vh

≤ 2τMn
h ‖unε,h,τ‖Vh

≤ τ
(
q(Mn

h )2 +
1

q
‖unε,h,τ‖2Vh

)
(2.264)

for any q ∈ R. If q =
1

2α
, then we have

‖unε,h,τ‖2L2(Ω) − ‖un−1
ε,h,τ‖2L2(Ω) ≤

τ

2α
(Mn

h )2, (2.265)

therefore we have

‖unε,h,τ‖2L2(Ω) ≤ ‖u0
ε,h,τ‖2L2(Ω) +

nτ

2α
(Mh)

2 ≤
(
‖u0‖L2(Ω) +

√
T

2α
Mh

)2

(2.266)

for all n 1, · · · , N . Further, if q =
1

α
, then

‖unε,h,τ‖2L2(Ω) − ‖un−1
ε,h,τ‖2L2(Ω) + τα‖unε,h,τ‖2Vh

≤ τ

α
(Mn

h )2. (2.267)

Summing this from n = 1 to N gives

τ

N∑

n=1

‖unε,h,τ‖2Vh
≤ 1

α
‖u0

ε,h,τ‖2L2(Ω) +
τ

α2

N∑

n=1

(Mn
h )2 ≤ 1

α
‖u0‖2L2(Ω) +

T

α2
(Mh)2. (2.268)

Lemma 37. Assume that uε,h ∈ C2 ([0, T ];Vh), then there exists cn ∈ (tn−1, tn) such that

1

τ
(en − en−1, vh)L2(Ω) + aε(tn; en, vh) =

τ

2
(u′′ε,h(cn), vh)L2(Ω) for all vh ∈ Vh, (2.269)

where en := unε,h,τ − uε,h(tn).

Proof. We note that the equation (2.204) and (2.256) yield

{ 1

τ
(unε,h,τ − un−1

ε,h,τ , vh)L2(Ω) + aε(tn;unε,h,τ , vh) = Fn(vh),

(u′ε,h(tn), vh)L2(Ω) + aε(tn;uε,h, vh) = F(tn; vh) = Fn(vh)
(2.270)

for all vh ∈ Vh, and there exists c ∈ (t− τ, t) such that

uε,h(t− τ) = uε,h(t)− τu′ε,h(t) +
τ2

2
u′′ε,h(c). (2.271)
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Therefore we have that there exists cn ∈ (tn−1, tn) such that

1

τ
(en − en−1, vh)L2(Ω) + aε(tn; en, vh) =

(
u′ε,h(tn)− 1

τ
(uε,h(tn)− uε,h(tn−1)), vh

)

L2(Ω)

=
τ

2
(u′′ε,h(cn), vh)L2(Ω)

(2.272)

for all vh ∈ Vh, which is desired conclusion.

Theorem 17 (Error estimate). Assume that uε,h ∈ C2 ([0, T ];Vh), then





‖{unε,h,τ − uε,h(tn)}Nn=1‖`∞([t1,tN ];L2(Ω)) ≤
√

T

8α
τ‖T1u

′′
ε,h‖L∞((t1,tN );V ∗h ),

‖{unε,h,τ − uε,h(tn)}Nn=1‖`2([t1,tN ];Vh) ≤
√
T

2
τ‖T1u

′′
ε,h‖L∞((t1,tN );V ∗h ).

(2.273)

Proof. We let en := unε,h,τ − uε,h(tn). We have e0 = 0 and

1

τ
(en − en−1, en)L2(Ω) + aε(tn; en, en) ≥ 1

2τ

(
‖en‖2L2(Ω) − ‖en−1‖2L2(Ω)

)
+ α‖en‖2Vh

. (2.274)

On the other hand, the Lemma 37 implies

1

τ
(en − en−1, en)L2(Ω) + aε(tn; en, en) =

τ

2
(u′′ε,h(cn), en) ≤ τ

2
‖T1u

′′
ε,h(cn)‖V ∗h ‖e

n‖Vh
(2.275)

for some cn ∈ (tn−1, tn). Therefore we have

0 ≥ α‖en‖2Vh
− τ

2
‖T1u

′′
ε,h(cn)‖V ∗h ‖en‖Vh

+
1

2τ

(
‖en‖2L2(Ω) − ‖en−1‖2L2(Ω)

)

≥ α‖en‖2Vh
−
(
q‖en‖2Vh

+
τ2

16q
‖T1u

′′
ε,h(cn)‖2V ∗h

)
+

1

2τ

(
‖en‖2L2(Ω) − ‖en−1‖2L2(Ω)

)
.

(2.276)

If q = α, then we have

‖en‖2L2(Ω) + ‖en−1‖2L2(Ω) ≤
τ3

8α
‖T1u

′′
ε,h(cn)‖2V ∗h . (2.277)

Therefore

‖en‖2L2(Ω) ≤ ‖e0‖2L2(Ω) +
nτ3

8α
‖T1u

′′
ε,h‖L∞((t1,tn);V ∗h ) ≤

Tτ2

8α
‖T1u

′′
ε,h‖L∞((t1,tN );V ∗h ). (2.278)

for all n = 1, · · · , N . Further if q =
α

2
, this implies

τ‖en‖2Vh
+

1

α

(
‖en‖2L2(Ω) − ‖en−1‖2L2(Ω)

)
≤ τ3

4
‖T1u

′′
ε,h(cn)‖2V ∗h . (2.279)

Summing this from n = 1 to N , then

‖{en}Nn=1‖`2([t1,tN ];Vh) ≤
√
T

2
τ‖T1u

′′
ε,h‖L∞((t1,tN );V ∗h ). (2.280)

Let

Sτ :=

{
xh : [0, T ]→ Vh :

For all n = 1, · · · , N, there exists vh ∈ Vh
such that xh|(tn−1,tn] = vh, and xh(0) ∈ Vh

}
(2.281)

and vh,τ (t+n ) := limt→tn+0 vh,τ (t) for vh,τ ∈ Sτ . We note that Sτ ⊂ L2 (0, T ;Vh). Now we extend the
solution of finite difference method to an element of Sτ . For the solution of implicit Euler scheme, we let

uε,h,τ (t) :=

{
u0 if t = 0,
un+1
ε,h,τ if t ∈ (tn, tn+1] for all n = 0, · · · , N − 1.

(2.282)

Then uε,h,τ ∈ Sτ , and this satisfies the following estimate.
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Lemma 38. Let Πτuε,h ∈ Sτ be

Πτuε,h(t) :=

{
u0 if t = 0,
uε,h(tn+1) if t ∈ (tn, tn+1] for all n = 0, · · · , N − 1,

(2.283)

where uε,h ∈ Xh is a unique solution of the problem (2.199). Assume that uε,h ∈ C2 ([0, T ];Vh), then





max
n=0,··· ,N−1

‖ρ(t+n )‖L2(Ω) ≤
√

T

8α
τ‖T1u

′′
ε,h‖L∞(0,T ;V ∗h ),

‖ρ‖L2(0,T ;Vh) ≤
√
T

2α
τ‖T1u

′′
ε,h‖L∞(0,T ;V ∗h ),

(2.284)

where ρ := uε,h,τ −Πτuε,h ∈ Sτ
Proof. First we note that ρ(t0) = 0. Second, uε,h ∈ C2 ([0, T ];Vh) and the definitions yield

{
un+1
ε,h,τ = uε,h,τ (t+n ) = uε,h,τ (tn+1),

uε,h(tn+1) = Πτuε,h(t+n ) = Πτuε,h(tn+1).
(2.285)

Here, as the implicit Euler scheme we have

0 =
(
un+1
ε,h,τ − unε,h,τ , vh,τ (t+n )

)
L2(Ω)

+ τaε

(
tn+1;un+1

ε,h,τ , vh,τ (t+n )
)
− Fn+1 (vh,τ (t+n ))

= (uε,h,τ (t+n )− uε,h,τ (tn), vh,τ (t+n ))L2(Ω) + τaε(tn+1;uε,h,τ (t+n ), vh,τ (t+n ))

−τF(tn+1; vh,τ (t+n ))

(2.286)

for all vh,τ ∈ Sτ and n = 0, · · · , N − 1. Now we consider the equation which Πτuε,h ∈ Sτ satisfies.
Combining u ∈ C2 ([0, T ];Vh) and the equation (2.204) gives

(u′ε,h, vh)L2(Ω) + aε(t;uε,h, vh) = F(t; vh) for all t ∈ [0, T ], vh ∈ Vh. (2.287)

This gives

0 = τ(u′ε,h(tn+1), vh,τ (t+n ))L2(Ω) + τaε(tn+1;uε,h, vh,τ (t+n ))− τF(tn+1; vh,τ (t+n ))

=

(
Πτuε,h(t+n )−Πτuε,h(tn) +

τ2

2
u′′ε,h(cn), vh,τ (t+n )

)

L2(Ω)

+τaε(tn+1; Πτuε,h(t+n ), vh,τ (t+n ))− τF(tn+1; vh,τ (t+n ))

(2.288)

for all vh,τ ∈ Sτ , t ∈ (tn, tn+1] and for some cn ∈ (tn, tn+1]. Therefore, let vh,τ = ρ ∈ Sτ and then

0 = τaε(tn+1; ρ, ρ) + (ρ(t+n )− ρ(tn), ρ(t+n ))L2(Ω) −
τ2

2
(u′′ε,h(cn), ρ(t+n ))L2(Ω)

≥ α
∫ tn+1

tn

‖ρ‖2Vh
dt+

1

2

(
‖ρ(t+n )− ρ(tn)‖2L2(Ω) + ‖ρ(t+n )‖2L2(Ω) − ‖ρ(tn)‖2L2(Ω)

)

−τ
3/2

2
‖T1u

′′
ε,h‖L∞(0,T ;V ∗h )‖ρ‖L2(tn,tn+1;Vh)

≥ α‖ρ‖2L2(tn,tn+1;Vh) +
1

2

(
‖ρ(t+n )‖2L2(Ω) − ‖ρ(tn)‖2L2(Ω)

)

−
(
τ3

16q
‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

+ q‖ρ‖2L2(tn,tn+1;Vh)

)

(2.289)

for any q ∈ R. If q = α, then

‖ρ(t+n )‖2L2(Ω) ≤ ‖ρ(tn)‖2L2(Ω) +
τ3

8α
‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

≤ ‖ρ(t0)‖2L2(Ω) +
τ3(n+ 1)

8α
‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

≤ T

8α
τ2‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

(2.290)
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for all n = 0, · · · , N = 1. Further if q =
α

2
, then

α‖ρ‖2L2(tn,tn+1;Vh) + ‖ρ(t+n )‖2L2(Ω) − ‖ρ(tn)‖2L2(Ω) ≤
τ3

4α
‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h ). (2.291)

Summing this from n = 0 to n = N − 1, then

‖ρ‖2L2(0,T ;Vh) ≤ 1

α
‖ρ(t0)‖2L2(Ω) +

τ3N

4α2
‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

≤ T

4α2
τ2‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

.
(2.292)

Theorem 18 (Error estimate). Let `,m be two integers which satisfy 2 ≤ `,m ≤ k+1. Assume u ∈ X`,m

and uε,h ∈ C2 ([0, T ];Vh), then there exists a positive constant C such that

‖u− uε,h,τ‖2L2(0,T ;L2(Ω)) ≤ C
(∫ T

0

(
h2(`−1)‖u‖2H`(Ω) + h2m‖u′‖2Hm(Ω)

)
dt+ h2j‖u(0)‖2Hk(Ω)

)

+Cτ2‖u′ε,h‖2H1(0,T ;L2(Ω)) +
T

4α2
τ2‖T1u

′′
ε,h‖2L∞(0,T ;V ∗h )

,

(2.293)
where j := min{`,m}.
Proof. We have

‖u−uε,h,τ‖2L2(0,T ;L2(Ω)) ≤ ‖u−uε,h‖2Xh
+‖uε,h−Πτuε,h‖2L2(0,T ;L2(Ω))+‖Πτuε,h−uε,h,τ‖2L2(0,T ;Vh). (2.294)

Here the Theorem 16, the Lemma 38 and the approximation error estimate for piecewise constant yield
the result.

2.7 Numerical examples

Here we show a numerical example of Nitsche method for parabolic problem. Our example is given as
Ω := (0, 1)2, and





u′ −∆u+ (1, 1)T · ∇u+ u = f(x, t) in Ω× (0, T ),
u = 0 on Γ× (0, T ),

u(x, 0) = sin(πx) sin(πy) for x = (x, y) ∈ Ω.
(2.295)

That is, we let µ(x, t) = 1, a(x, t) = (1, 1)T and c(x, t) = 1. We check at once that they satisfy the
assumption 3, therefore this problem has a unique solution for any f ∈ L2

(
0, T ;H−1(Ω)

)
. We let T = 4

and

f(x, y, t) :=
(
(x+ y + 2t− 2t2 + 2π2) sin(πx) sin(πy)

+(π − 2πt) cos(πx) sin(πy) + (π − 2πt) sin(πx) cos(πy)) e(x+y−1)t,
(2.296)

then it follows easily that f ∈ L2
(
0, T ;L2(Ω)

)
and

u(x, y, t) := sin(πx) sin(πy)e(x+y−1)t (2.297)

is the unique solution.
In Figure 2.2, we show the exact solution at different time steps.
We use (1, 1)-th degree B-spline basis functions for spatial discretization and implicit Euler scheme in

temporal discretization. Therefore we have the approximate problem (2.256) and error estimate (2.293).
We let τ := h/10, where h is the mesh size for uniform mesh, then we have

‖u− uε,h,τ‖L2(0,T ;L2(Ω)) ≈ Ch. (2.298)

In Figure 2.3, we report the computational result of the Nitsche method, and we show the boundary
value of numerical solution in Figure 2.4. The weak imposition of the Dirichlet boundary condition is
actually observed because the boundary value does not vanish.

Further, we report the error for uniform mesh in Figure 2.5. This shows that the rate of convergence
is approximately equal to the unity, that is expected by the theory.
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1Figure 2.2: The exact solutions at different time steps
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1Figure 2.3: The numerical solutions of the Nitsche method at different time steps by considering the
uniform mesh with mesh size h = 1/30.
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