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1 Histrical Review

The volatility of a financial asset price is an important risk measure. The re-
alized volatility is a well-known consistent estimator of the integrated volatil-
ity. Its convergence rate and asymptotic mixed normality has been estab-
lished and it is known that high frequency sampling of the price process
gives accurate estimation. The covariance and correlation of two finan-
cial assets are also significant risk measures especially in the portfolio risk
management. The realized covariance and realized correlation have similar
asymptotic properties in high frequency sampling.

Epps [16] pointed out that the sample correlation between the returns of
two different stocks decreases as the sampling frequency of data increases. It
is considered that non-synchronicity of trading and market microstructure
cause this phenomenon.

Since the trade timing of two financial assets is rarely synchronous in
financial market,some synchronization is necessary to use the realized co-
variance. However, such estimator has serious bias when the interval size
of synchronized sampling is small relative to the frequency of original trade
timing (Hayashi and Yoshida [23]). Avoiding such synchronization, non-
synchronous covariance estimation schemes have been developed: Fourier
analytic approach (Malliavin and Mancino [33], Malliavin et al. [34]) and
the cumulative covariance estimator (Hayashi and Yoshida [23, 21, 22], Myk-
land [41]).

The market microstructure is often modeled as the noise added to the
latent price process. This modeling was successful and denoising techniques
have also been developed: sub-sampling (Zhang et al. [49], Zhang [50]),
pre-averaging (Podolskij and Vetter [44], Jacod et al. [25]), and others
(Zhou [51]). There are many studies that treat both non-synchoronicity
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and market microstructure noise: Malliavin and Mancino [35], Mancino and
Sanfelici [36], Park and Linton [43], Voev and Lunde [48], Griffin and Oomen
[19], Christensen et al. [12, 13], Koike [28, 30, 29], Aı̈t-Sahalia et al. [4],
Barndorff-Nielsen et al. [6], Bibinger [8, 9].

The followings are considered as the cause of market microstructure:
bid-ask spread (Roll [45]), discretization error (Gottlieb and Kalay [18]),
and asymmetric information (Glosten and Milgrom [17]). On the other
hand, the relationship between the additive noise modeling and the market
microstructure is not so clearly explained.

As the measurement and storage technology develop, the sampling time
of trade becomes increasingly precise, and the ultra high frequency data of
orders in the financial market is available today. In ultra high frequency
sampling, the market microstructure is modeled as dynamics of the limit
order book (LOB) rather than the noise, recently. Many studies adopt
approaches modeling LOB with Poisson processes (Cont et al. [15], Abergel
and Jedidi [2], Muni Toke [47, 38], Smith et al. [46], Muni Toke and Yoshida
[40]), Hawkes processes (Hewlett [24], Large [32], Bowsher [10], Bacry et al.
[5], Abergel and Jedidi [3], Muni Toke and Pomponio [39], Muni Toke [37],
Clinet and Yoshida [14], Ogihara and Yoshida [42]), and doubly stochastic
Poisson processes (Abergel et al. [1], Guilbaud and Pham [20], Chertok et
al. [11], Korolev et al. [31]). These approaches can also treat the non-
synchronicity of trading by nature.

In this stream, this thesis treats the model mentioned later that includes
doubly stochastic Poisson processes. We present a simple estimator of the
correlation between two latent processes indirectly observed high frequently
and study its asymptotic behavior.

2 Model

Now, we consider a stochastic basis B = (Ω,F ,F, P ), F = (Ft)t∈[0,T ]. On B,
let X = (X1, X2) be an R2-valued Itô process given by

Xt = X0 +

∫ t

0
X0
s ds+

∫ t

0
X1
s dws (t ∈ [0, T ]), (2.1)

where w is an r-dimensional F-Wiener process, X0 is an F0-measurable ran-
dom variable, X0 is a two-dimensional F-adapted process, and X1 is an
R2 ⊗ Rr-valued F-adapted process. satisfies condition [A] mentioned later.
Let an be a positive number depending on n such that an → ∞ as n → ∞.
On B, consider a two-dimensional measurable process Yn = (Y n,1, Y n,2)
having a decomposition

Yn
t = Yn

0 +

∫ t

0
anXs ds+Mn

t (t ∈ [0, T ]),
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where Mn is a two-dimensional measurable process with Mn
0 = 0. satisfies

condition [B♭], [B], [B’], [B♯], or [B♯♯ ] mentioned later.

Example 1. Suppose that each Xα is R+ = [0,∞)-valued and Y n,α is a
counting process with intensity process anX

α. This model describes the high
frequency counting data of the orders or transactions in the active market,
for example.

Now, let Ik = [tk−1, tk) for a sampling design Π = (tk)k=0,...,bn with
0 = t0 < t1 < · · · < tbn = T and hk = tk − tk−1. We assume bn → ∞ as
n → ∞. X is not observed, but Yn is high frequently observed in Π.

The first aim of this thesis is to construct the estimator from the observed
data of Yn for the correlation of X observed indirectly. Then, we investigate
the asymptotic behavior of the correlation estimator.

3 Assumptions

For simplicity, we assume tk = k(T/bn), hk = T/bn =: δn. We write ∆kV =
Vtk − Vtk−1

for a process V . Consider the following conditions.

[A] Process X admits the representation (2.1) for an R2-valued F0-measurable
random variable X0 and coefficients Xκ (κ = 0, 1) such that X0 is a
cádlág F-adapted process and that X1 has a representation

X1
t = X1

0 +

∫ t

0
X10
s ds+

∫ t

0

r′∑
κ′=1

X1κ′
s dw̃κ′

s (t ∈ [0, T ]),

where X1
0 is an R2 ⊗ Rr-valued F0-measurable random variable, w̃ =

(w̃1, ..., w̃r′) is an r′-dimensional F-Wiener process (not necessary in-
dependent of w), and X1κ′

s (κ′ = 0, 1, ..., r′) are R2 ⊗Rr-valued cádlág
F-adapted processes.

[B♭] (i) limn→∞ b2n/an = 0.

(ii)
∑bn

k=1 |∆kMn|2 = Op(an) as n → ∞.

[B] Mn = (Mn,α)α=1,2 is a two-dimensional F-local martingale with Mn
0 =

0 and such that

(i) limn→∞ b
5/2
n /an = 0.

(ii)
∑bn

k=1 |∆kMn|2 = Op(an) as n → ∞, supt∈[0,1] |∆Mn| ≤ ca
1/2
n for

a constant c independent of n.

(iii) The absolutely continuous (w.r.t. the Lebesgue measure a.s.)
mapping [0, T ] ∋ t 7→ ⟨Mn, w⟩t ∈ R2 ⊗ Rr satisfies
supt∈[0,T ] |d⟨Mn, w⟩t/dt| = Op(bn) as n → ∞.
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Here, ⟨Mn, w⟩t is the 2 × r matrix of angle brackets ⟨Mn,α, wk⟩t for
Mn = (Mn,α)α=1,2 and w = (wk)k=1,...,r.

[B′] Mn is a two-dimensional F-local martingale with Mn
0 = 0, satisfies [B]

(i), (iii), and

(ii′) E[
∑bn

k=1 |∆kMn|2] = O(an) as n → ∞.

[B♯] (i) limn→∞ b3n/an = 0.

(ii)
∑bn

k=1 |∆kMn|2 = Op(an) as n → ∞.

[B♯♯] Mn is a two-dimensional F-local martingale with Mn
0 = 0, satisfies [B]

(ii), (iii), and

(i♯
♯
) limn→∞ b3n/an = 0.

[C] E[
∑bn

k=1 |∆kMn|4] = O(a2nb
−1
n ) as n → ∞

4 Results

Before the statement of the results, we introduce some notations to simplify
the description. Let A⊗(i,j) is an (i, j)-element of A⊗, A⊗ = A⊗A = AA⋆,
and ⋆ denotes transpose. Let x⊗̃y = ((xiyj+xjyi)/2) ∈ Rr⊗Rr for x = (xi),

y = (yi) ∈ Rr, and let x⊗̃(α,β) = xα· ⊗̃xβ· for x = (xαi ) ∈ R2 ⊗ Rr. We write
x · y =

∑r
i=1 xiyi for x = (xi), y = (yi) ∈ Rr, and x · y =

∑r
i,j=1 xi,jyi,j for

x = (xi,j), y = (yi,j) ∈ Rr ⊗ Rr. Write

Ṽk :=
∆kV

anhk
=

∆kV

anδn
.

for a stochastic process V .

4.1 Correlation estimator

For α, β = 1, 2,

Sαβ
n =

bn∑
k=2

(Y n,α
tk

− Y n,α
tk−1

anhk
−

Y n,α
tk−1

− Y n,α
tk−2

anhk−1

)(Y n,β
tk

− Y n,β
tk−1

anhk
−

Y n,β
tk−1

− Y n,β
tk−2

anhk−1

)
=

bn∑
k=2

(Ỹn
k − Ỹn

k−1)
⊗(α,β).

Here, Sn = (S12
n , S11

n , S22
n )⋆ is the (co)variance estimator. Sn depends on the

scaling parameter an which is not derived from the data of Y. Therefore,
treat the correlation estimator C12

n = S12
n /

√
S11
n S22

n which does not depend
on the scaling parameter an.
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Let

Uαβ =
2

3
⟨Xα,c, Xβ,c⟩T =

2

3

∫ T

0
Xα1

t ·Xβ1
t dt (α, β = 1, 2)

and U = (U12, U11, U22)⋆, where Xα,c is the continuous part of Xα and Xα1
t

is the α-th row of X1
t . Let

γ(α1,β1),(α2,β2) =

∫ T

0

r∑
i,j=1

Xα11
i,s Xβ11

j,s +Xα11
j,s Xβ11

i,s

2

Xα21
i,s Xβ21

j,s +Xα21
j,s Xβ21

i,s

2
ds

=

∫ T

0
(X1

s)
⊗̃(α1,β1) · (X1

s)
⊗̃(α2,β2) ds.

and Γ = (γpq)p,q=(1,2),(1,1),(2,2), where Xα1
i,s is the (α, i)-element of X1

s.

Theorem 4.1. (a) Sn →p U as n → ∞ under [A] and [B♭], where p denotes
the convergence in probability.

(b) Under [A] and any one of [B], [B′] and [B♯],( T

bn

)−1/2(
Sn − U

)
→ds Γ

1
2 ζ

as n → ∞, where ζ is an R3-valued standard normal variable indepen-
dent of F and ds denotes the F-stable convergence.

Let R = U12/
√
U11U22. For the correlation estimator, we have

Theorem 4.2. Suppose that U11U22 ̸= 0 a.s. Then

(a) C12
n →p R as n → ∞ under [A] and [B♭].

(b) Under [A] and any one of [B], [B′] and [B♯],( T

bn

)−1/2
(C12

n −R) →ds Ξ1/2ζ

as n → ∞, where ζ is an R3-valued standard normal variable indepen-
dent of F and

Ξ1/2 :=
( 1√

U11U22
,

−U12

2
√
(U11)3U22

,
−U12

2
√

U11(U22)3

)
Γ1/2.

Ξ = (Ξ1/2)(Ξ1/2)⋆ is the asymptotic variance of the correlation estimator.
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4.2 Asymptotic variance estimators

Thanks to the stable convergence of C12
n , once a consistent estimator of

the asymptotic variance of C12
n is obtained, it enables interval estimation

and detection the correlation based on the hypothesis testing. We propose
two types of asymptotic variance estimators based on Barndorff-Nielsen and
Shephard [7], and Hayashi and Yoshida [22] respectively. We prove their
consistency in the same setting for the stable convergence. Furthermore, we
prove the faster convergence rate of the former one in some situation.

We need the estimator of Γ to obtain the asymptotic variance estimator.
Here, we give two types of the Γ estimator.

4.2.1 Γ estimator

Now, we define

γ̂pqn,1 =
9

8

{ bn∑
k=2

(Ỹn
k − Ỹn

k−1)
⊗p(Ỹn

k − Ỹn
k−1)

⊗q

− 1

2

bn−2∑
k=2

(
(Ỹn

k − Ỹn
k−1)

⊗p(Ỹn
k+2 − Ỹn

k+1)
⊗q

+ (Ỹn
k+2 − Ỹn

k+1)
⊗p(Ỹn

k − Ỹn
k−1)

⊗q
)}( T

bn

)−1

based on the idea in Barndorff-Nielsen and Shephard [7], and let

γ̂pqn,2 =
9

8

bn−2∑
k=2

1

2

{
(Ỹn

k+2 − Ỹn
k+1)

⊗p − (Ỹn
k − Ỹn

k−1)
⊗p

}
×
{
(Ỹn

k+2 − Ỹn
k+1)

⊗q − (Ỹn
k − Ỹn

k−1)
⊗q

}( T

bn

)−1
.

4.2.2 Kernel based Γ estimator

In reference to Hayashi and Yoshida [22], we define the kernel based estima-
tor.

∂h{Xα, Xβ}k :=
k∑

l=(k−n(h)+1)+

(∆lX
α∆lX

β)h−1,

where h = hn is a parameter satisfying hn → 0 and b
−1/2
n h−1

n → 0, and
n(h) := maxm{tm ≤ h}.

γ̂pqn,h =
9

8

bn∑
k=2

{
∂h{Ỹ n,α1 , Ỹ n,α2}k ∂h{Ỹ n,β1 , Ỹ n,β2}k

+ ∂h{Ỹ n,α1 , Ỹ n,β2}k ∂h{Ỹ n,β1 , Ỹ n,α2}k
}( T

bn

)
.
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4.2.3 Ξ estimator

Here, we define

Ξ̂
1/2
n,∗ =

( 1√
S11
n S22

n

,
−S12

n

2
√

(S11
n )3S22

n

,
−S12

n

2
√
S11
n (S22

n )3

)
Γ̂
1/2
n,∗

and Ξ̂n,∗ = (Ξ̂
1/2
n,∗ )

⊗, for ∗ = 1, 2, h.

Theorem 4.3. (a) γ̂pqn,i = γpq + op(1) under [A] and any one of [B], [B′]

and [B♯♯], (i = 1, 2).

(b) γ̂pqn,i = γpq +Op(b
−1/2
n ) under [A] and [B♯♯], (i = 1, 2).

Theorem 4.4. γ̂pqn,h →p γpq under [A] and any one of [B], [B′] and [B♯♯].

Corollary 4.5. (1a) Ξ̂n,i = Ξ + op(1) under [A] and any one of [B], [B′]

and [B♯♯], (i = 1, 2).

(1b) Ξ̂n,i = Ξ+Op(b
−1/2
n ) under [A] and [B♯♯], (i = 1, 2).

(2) Ξ̂n,h = Ξ+ op(1) under [A] and any one of [B], [B′] and [B♯♯].

5 Simulation

For simulation, we treat the doubly stochastic Poisson processes whose in-
tensity processes are correlated. We compare the proposed asymptotic vari-
ance estimators, using the mean squared error and the coverage probability
of confidence interval.

When we apply our estimation method to real data, bn is the only tuning
parameter. Too big bn does not satisfy the assumptions and too small bn
gives bad convergence of the estimators. Then, in order to find a suitable
bn for estimation empirically, we plot the coverage probability of confidence
interval against the sampling interval (T/bn). We also look for an appropri-
ate bn for statistical hypothesis testing by the plot of the power of the test
versus the sampling interval. We simulate it in various parameter settings
and examine the response to the good bns. As a result, it is suggested that
they are mainly affected by the smaller number of times of occurrence of
two event series and the correlation parameter.

6 Real data analysis

We treat the order data of the stocks compose TOPIX Core30. TOPIX
Core 30 is the stock market index consists of the 30 stocks that are listed
with first section of the Tokyo Stock Exchange and have the highest mar-
ket capitalization and liquidity. We see the plot of the correlation and its
acceptance region for the order data against the sampling interval, and we
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determine a good sampling interval with the observation of the simulated
graph in mind. Furthermore, we apply the graphical modeling to the data
and observe the relationships among the stocks.

7 Conclusion

In this thesis, we regard intensity processes of point processes as latent
processes and construct the correlation estimator. Then, we prove its con-
sistency and asymptotic mixed normality and specify the conditions for the
asymptotic property. We also construct the asymptotic variance estima-
tors and prove its consistency under the same conditions for the asymptotic
mixed normality of the correlation estimator.

With the simulation of doubly stochastic Poisson processes, we confirm
the asymptotic behaviors of the proposed estimators and discuss the suitable
sampling interval. Then, we analyze the real data (the order data of stocks)
based on the simulation result.
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