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1 Introduction

In this paper, we give the higher dimensional versions of the good reduction
criterion for hyperbolic curves given by Oda and Tamagawa. We start from the
definition of a hyperbolic curve.

Definition 1.1. 1. Let S be a scheme and let X be a scheme over S. We
shall say that X is a proper hyperbolic curve over S if the structure mor-
phism X — S is smooth, proper, geometrically connected, and of relative
dimension one over S, each of whose geometric fiber is of genus > 2.

2. Let S be a scheme and let X be a scheme over S. Let D be a divisor of X
finite etale over S. We shall say that the pair (X, D) is a hyperbolic curve
over S if the structure morphism X — S is smooth, proper, geometrically
connected, and of relative dimension one over S, each of whose geometric
fiber is of genus g and the morphism D — S is finite etale of degree n,
which satisfies the inequality 2g +n —2 > 0. If n = 0 (resp.n > 0), we
call the number 2¢g (resp.2g +n — 1) the first Betti number of the curve.

We can consider a proper hyperbolic curve X as a hyperbolic curve (X, ().

Next, we recall the definition of good reduction of varieties. Let S be the
spectrum of a discrete valuation ring Og. We denote the generic point of S by
n and the closed point of S by 0. Let K = k(n) be the fractional field of O,
k = k(o) the residue field of O, and p the characteristic of k.

Definition 1.2. 1. Let X — Spec K be a proper smooth morphism of schemes.
We say that X has good reduction if there exists a proper smooth S-scheme
X whose generic fiber X, is isomorphic to X over K. We refer to X as a
smooth model of X.

2. Let (X, D) — Spec K be a hyperbolic curve. We say that (X, D) has good
reduction if there exists a hyperbolic curve (X,®) — S whose generic fiber
(X,,D,) is isomorphic to (X, D) over K. We refer to (X,D) as a smooth
model of (X, D).



It is an important problem in arithmetic geometry to know criteria for X
to have good reduction. Various criteria for good reduction in terms of Galois
representations have been established for certain class of varieties. Néron, Ogg,
and Shafarevich established a criterion in the case of elliptic curves, and Serre
and Tate generalized it to the case of abelian varieties [ST]. Their criterion
claims that an abelian variety has good reduction if and only if the action of
the inertia subgroup of K on its first [-adic etale cohomology is trivial for some
prime [ # p.

As a non-abelian version of the above result, Oda showed that a proper
hyperbolic curve has good reduction if and only if the outer action of the inertia
subgroup of K on its pro-l fundamental group is trivial [Odal] [Oda2].

To state Oda’s result precisely, we fix some notations. For a profinite group
G and p as above (resp.a prime number [), we denote the pro-p’ (resp. pro-
1) completion of G, which is defined to be the limit of the projective system
of quotient groups of G with finite order prime to p (resp.with finite l-power
order) by e (resp. G'). Here, if p = 0, we regard that every finite group has
order prime to 0.

Let K®°P be the separable closure of K, Gk := Gal(K®*P/K) the absolute
Galois group of K, and Ik its inertia subgroup. (Note that Ik, as a subgroup
of Gk, depends on the choice of a prime ideal in the integral closure of Ok
in K*°P over the maximal ideal of Ok, but it is independent of this choice up
to conjugation.) Let (X, D) be a hyperbolic curve over K. Write X for the
complement X \ D. Then the pro-p’ (resp. pro-l) completion 71 (X @ K5P, f)p/
(resp. 71 (X @5 K3°P,#)!) of the geometric etale fundamental group (X ®x
K®°P t) (with base point ) admits a continuous homomorphism

Gx — Out(my (X @x K, DP) := Aut(my (X @k K>, D)) /Inn(m (X @k KPP
(1)
(resp. G — Out(m (X @ K>, 1)") := Aut(m (X @ K*P,8)")/Inn(m (X @ K>, 1)),
(2)

which we call the outer Galois representations. Oda and Tamagawa gave the
following criterion.

Proposition 1.3. ([Odal][Oda2][Tama] section 5) The following are equivalent.
1. (X, D) has good reduction.
2. The outer action Ix — Out(m (X ®x K, 1)?") defined by (1) is trivial.
3. There exists a prime number [ # p such that the outer action Iy —

Out(m1 (X @ K%°P,1)!) defined by (2) is trivial.

Oda and Tamagawa’s criterion can be regarded as a result in anabelian
geometry. Indeed, a hyperbolic curve is a typical example of anabelian va-
riety, i.e., a variety which is determined by its outer Galois representation
Gg — Outm (X ® K*P 1) (under suitable assumption on K), by the solution



of Grothendieck conjecture due to Tamagawa [Tama] and Mochizuki [Moch].
Therefore it would be natural to expect that we can read off the information on
the reduction of X from its outer Galois representation.

For the purpose of giving the higher dimensional versions of this criterion,
we give the definition of a hyperbolic polycurve.

Definition 1.4. Let S be a scheme and X a scheme over S.

1. We shall say that X is a hyperbolic polycurve (of relative dimension n)
over S if there exists a positive integer n and a (not necessarily unique)
factorization of the structure morphism X — S

X=X,—- X, 1—...0 X1 Xy=8 (3)

such that, for each i € {1,...,n}, there exists a hyperbolic curve (X;, D;) —
X;_1 (cf. Definition 1.1) and that the scheme X; \ D; is isomorphic to X;

over X;_1. We refer to the above factorization of X — S as a sequence of
parametrizing morphisms.

2. For a hyperbolic polycurve X — S, the following are equivalent.

(a) The morphism X — S is proper.

(b) For any sequence of parametrizing morphisms of X — S
X=X,- X, 1—>...0 X1 > X0=5,

each morphism X; — X;_ is proper for 1 <i <n.

(¢) There exists a sequence of parametrizing morphisms of X — S
X=X,—- X, 1—..0X1>Xo=S5
such that each morphism X; — X;_; is proper for 1 <i < n.
We call such X — S a proper hyperbolic polycurve.

3. Let X be a hyperbolic polycurve (resp.proper hyperbolic polycurve) of
relative dimension n over S. For a sequence of parametrizing morphisms
of X —» S

SIX:Xn%anlﬁ...—)Xl—)XOZS, (4)

we call the maximum of the first Betti numbers (resp. genera) of fibers of
X; = X;_1 the maximal first Betti number bs (resp.genus gs) of S. We
call the minimum of the first Betti numbers (resp. genera) of sequences of
parametrizing morphisms of X the maximum first Betti number bx (genus
gx) of X.



The class of hyperbolic polycurves are considered to be anabelian. Indeed,
the Grothendieck conjecture holds for hyperbolic polycurves of dimension up to
4 on suitable assumption on K [Moch] [Ho]. Moreover, when X is a strongly
hyperbolic Artin neighbourhood ([SS] Definition 6.1) and K is finitely generated
over Q, the Grothendieck conjecture holds in any dimension [SS]. Thus it is
expected that there exists a good reduction criterion for hyperbolic polycurves
which is analogous to the one by Oda and Tamagawa.

In [Nag], we studied good reduction criterion of proper hyperbolic polycurves
under some assumptions. In this paper, we improve the main theorem of [Nag]
and discuss also non-proper cases. The main results of this paper are as follows:

Theorem 1.5. Let K be a discrete valuation field with valuation ring O with
residual characteristic p > 0. Let Ix be an inertia subgroup of the absolute
Galois group G of K. Let X be a proper hyperbolic polycurve over K and gx
the maximum genus of X [cf. Definition 1.4]. Consider the following conditions.

(A) X has good reduction.

(B) The outer Galois representation Ix — Out(mi (X Xgpec K SpecKsP z)P")
of I is trivial.

Then, we have the following.
1. (A) implies (B).
2. If we assume that p = 0, (B) implies (A).

3. If we assume that p > 2gx + 1 and that the dimension of X is 2, (B)
implies (A).

4. If we assume that X has a K-rational point z, that the Galois represen-
tation Ig () — Aut(m1(X Xspec x Spec K5P, )P ) induced by x is trivial,
and that p > 2gx + 1, then (A) holds.

Theorem 1.6. Let K, O, and Ii be as in Theorem 1.5. Let X be a hyperbolic
polycurve over K with a sequence of parametrizing morphisms

S: X=X,—-X,_1— ...~ X1 — Xy =SpecK. (5)

We write bs for the maximal first Betti number of S [cf. Definition 1.4]. Consider
the following conditions.

(A) There exists a hyperbolic polycurve X — Spec Ok with a sequence of
parametrizing morphisms

X=%,—%X,_1—~>... > X1 = X9 =SpecOx (6)
whose generic fiber is isomorphic to S.

(B) The outer Galois representation I — Out(m1 (X Xspec i SpecKsep,f)p/)
of I is trivial.



Then, we have the following.
1. If we assume that p =0 or p > bs + 1, (A) implies (B).
2. If we assume that p = 0, (B) implies (A).

3. If we assume that p > bs+1 and that the dimension of X is 2, (B) implies
(A).

Also, we can show a higher dimensional version of the good reduction crite-
rion described by the outer Galois representation in general if we assume a very
strong condition on bg and p.

Theorem 1.7. Let K, Ok, I, X, S, bs, and n be as in Theorem 1.6. Assume
that n > 3. Define a function f,;(m) for m > 3 in the following way;

e Form =3, f,4(3) = 205

e For m > 3,
Fos (m A+ 1) = (fos (m)) x (205X Is (1)) fos (m),

Consider the conditions (A) and (B) in Theorem 1.6. Then, if p > 2bs*/fos (™)
(B) implies (A).

Remark 1.8. The main result of [Nag] is described as follows: Let K, O, and
Ik as in Theorem 1.5. Let X be a proper hyperbolic polycurve over K which
has a sequence of parametrizing morphisms such that each step X; — X;_; has
a section. Write gx for the minimum of maximal genera of such sequences of
parametrizing morphisms of X [cf. Definition 1.4]. Consider the condition (A)
in Theorem 1.5 and

(B)’ For any closed point z of X, and for any choice of valuation ring O ()
of the residual field K'(x) of x over Ok (), the action of inertia subgroup Ik,
of Og () on T1 (X Xspec x Spec K ()P, z)P is trivial.
Then (A) implies (B). If p=0 or p > 2g + 1, (B)’ implies (A).

This result is weaker than Theorem 1.5 because we need to assume that
each X; — X;_1 has a section and that the condition (B)’ is stronger than the
condition (B) in Theorem 1.5 or the condition given in Theorem 1.5.4.

To prove the implication (B) or (B)’ = (A) by induction on dimension of
X, we need the homotopy exact sequence of geometric fundamental groups
for smooth fibrations X; — X;_1(2 < i < n). In the previous paper [Nag],
we constructed homotopy exact sequences of Tannakian fundamental groups of
certain categories of smooth Q;-sheaves, and to do so, we needed the existence
of sections of the above fibrations. Also we needed the assumption (B)’ stronger
than (B) because we used a criterion for smoothness of Q;-sheaves which is due
to Drinfeld [Dri].

In this paper, we use different arguments from those of [Nag] to obtain
stronger results. Since the implication (A) = (B) follows from the standard



argument of specialization, we explain key ingredients of the proof of the impli-
cation (B) = (A) (assuming the condition on p, gx, and bs in the assertions),
which enables us to improve the result of [Nag].

1. Comparison of inertia groups and centralizers

If p = 0, we will translate the outer Galois action of the inertia group into
the action of the centralizer subgroup Zi(A) of geometric etale funda-
mental group A in etale fundamental group II by using the decomposition
IT 2 A x Z(A). This decomposition can be obtained from homotopy
exact sequences of geometric etale fundamental groups (which exists since
p = 0), which shows that A is center-free, and the hypothesis on the outer
Galois action. Using this technique, we can prove the implication (B) =

(A).

2. Intermediate quotient group

Note that we do not have appropriate homotopy exact sequences associ-
ated to fibrations X; — X;_1(2 < ¢ < n) if p > 0. In fact, the functor
of taking pro-p’ completion (of profinite groups) is not an exact functor.
Moreover, if the characteristic of K is positive, we do not have neces-
sarily a fibration exact sequence of (full) etale fundamental groups. In
this paper, we consider an intermediate quotient group of geometric etale
fundamental groups (for which we will write A(l’p/)) between pro-p’ com-
pletion and pro-I completion, for which we can obtain the homotopy exact
sequence. If the dimension of X is 2, we can show the implication (B) =
(A) by using the center-freeness of A*) and the same argument as 1.
Also, if X admits a closed point z, we can compare the action of inertia
group I (,) at x and that of the inertia group which we consider in the
induction step, and so we can prove Theorem 1.5.4.

3. Further intermediate quotient group

If the dimension of X is equal to or greater than 3, we do not know if the
group A®P) in 2. is center-free. However, if p is big enough, we can take
a certain quotient A which is center-free and for which there exists the
homotopy exact sequence. Thus we can prove the implication (B) = (A)
in higher dimensional case if p is big enough.

In the appendices of this paper, we give three interesting examples of hyper-
bolic polycurves which shows that the anabelianity of hyperbolic polycurves is
weaker than that of hyperbolic curves in some sense.
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