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1

Preface

An importance of a spin system is an easy access to the verification of theories of non-
trivial phenomena. The effective experimental tool is neutron scattering which probes static
and dynamical states of matter. In this study, the two spin systems are focused; the singlet
ground state magnet CsFeCl3 and the Kagome lattice antiferromagnet NaBa2Mn3F11. CsFeCl3
exhibits a pressure-induced quantum phase transition, and an observation of Higgs amplitude
mode is expected in the spin spectrum. NaBa2Mn3F11 is a classical Kagome antiferromagnet
and a zero-energy mode is expected.

The quantum phase transition is a transition between different ground states induced by
the quantum fluctuation, which is controlled by a parameter such as magnetic field, pressure,
and chemical doping. In the vicinity of the quantum critical point, the quantum fluctuation is
enhanced so that non-trivial phenomena are expected. In the quantum field theory, collective
excitations near the quantum critical point in the ordered phase is described by the phase and
amplitude fluctuations of an order parameter. While the phase fluctuation is known as Nambu-
Goldstone mode, amplitude one is called Higgs mode which is analogue to Higgs boson in particle
physics.

CsFeCl3 is a singlet ground state magnet having a strong easy-plane single-ion anisotropy.
The magnetic Fe2+ ions form a triangular lattice, and its low-energy excitation is described by
a pseudo-spin s = 1 due to the cubic crystal field and spin-orbit coupling. The pseudo-spin
s = 1 is split into sz = 0 singlet and sz = ±1 doublet states due to the easy-plane type single-
ion anisotropy. In the system, the singlet ground state is realized. CsFeCl3 is thus a good
model compound to investigate the quantum critical phenomena on the geometrically frustrated
lattice. Magnetic susceptibility measurement under pressure revealed the pressure-induced mag-
netic long-range order at low temperatures in CsFeCl3. To investigate non-trivial phenomena in
the vicinity of the quantum critical point, I study the static and dynamic states of magnetism of
CsFeCl3 under pressure by using neutron diffraction and inelastic neutron scattering techniques.

The neutron diffraction experiments under pressures evidences that a 120◦ structure with
kmag = (1/3, 1/3, 0) is realized in the ordered phase. The estimate of the critical exponent from
the temperature dependence of the order parameter indicates that the system belongs to the
universality class of U(1)× Z2, in which the unusual chiral liquid state is predicted.

In the inelastic neutron scattering spectrum under pressures, the magnetic excitation are
softened toward the critical pressure Pc ∼ 0.9 GPa, and a well-defined excitation with an energy
minimum of 0.6 meV and a gapless continuum-like excitation are observed at 1.4 GPa in the
ordered phase. The theoretical calculation of the spin spectrum elucidates that the observed
well-defined excitation exhibits the mixed mode of transverse and longitudinal fluctuations (T+L-
mode), and the gapless continuum-like excitation is the Nambu-Goldstone mode. The non-trivial
T+L-mode is caused by the geometrical frustration because the non-collinearity of the 120◦

structure mixes the transverse and longitudinal fluctuations.

A geometrical frustration in the spin system is generated by the competition of the magnetic
interaction due to the lattice geometry, and it remains the macroscopic degeneracy of the mag-
netic states at low temperatures. Since the macroscopic degeneracy induces the novel magnetic
states such as the spin liquid state and unusual spin configuration, the geometrically frustrated
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magnets have attracted great interest for a few decades. In case of the classical Kagome Heisen-
berg antiferromagnet, the highly-frustrated geometry causes macroscopic degeneracy, and a 120◦

structure is realized by order-by-disorder mechanism. In addition, the large degeneracy of the
120◦ structure at the ground state generates continuous arrangements of spins, and it forms ex-
citation modes of zero energy, which is called zero-energy mode. In real compounds, additional
terms including magnetic anisotropy and/or Dzyaloshinskii-Moriya interaction selects the unique
ground state, and the zero-energy mode is lifted to the excited state.
NaBa2Mn3F11 is a new model compound for a classical Kagome antiferromagnet. Mn2+ ion

having spin S = 5/2 form the Kagome lattice. The heat capacity and magnetic susceptibility
exhibited an antiferromagnetic transition. The small Curie-Weiss temperature implies the im-
portance of the magnetic dipole-dipole (MDD) interaction in NaBa2Mn3F11. Recent theoretical
study in the classical Kagome antiferromagnet having the MDD interaction demonstrated the
unusual 120◦ structure with a tail-chase geometry and the existence of the zero-energy mode. In
order to discuss the role of the MDD interaction in NaBa2Mn3F11, the magnetic structure and
magnetic excitation are studied by powder neutron diffraction and inelastic neutron scattering
techniques.
In powder neutron diffraction experiment, the magnetic Bragg peaks indexed by the com-

mensurate vector k0 = (0, 0, 0), and incommensurate (IC) vectors k1 = (0.3209, 0.3209, 0) and
k2 = (0.3338, 0.3338, 0) are observed. The magnetic structure analysis using the representation
analysis identified the 120◦ structure of the tail-chase geometry, which is modulated by the IC
vectors, is realized. The calculation of the ground state exhibits that the obtained 120◦ structure
in NaBa2Mn3F11 is selected by the MDD interaction.
In powder inelastic neutron scattering experiment, a spin wave excitation with a dispersionless

spectrum around 0.2 meV are observed. The calculated magnetic excitation based on the linear
spin wave theory reveals that the observed dispersionless spectrum is quantitatively explained
by the zero-energy mode lifted by the MDD interaction. Consequently, the realization of the
tail-chase 120◦ structure and zero-energy mode leads that NaBa2Mn3F11 is a rare compound
realizing the classical Kagome antiferromagnet having the MDD interaction.

This thesis consists of following chapters;
In Chapter 1, backgrounds for this study are introduced, and relevant previous studies are

explained.
In Chapter 2, neutron scattering technique which is main experimental method in this study

is denoted.
In Chapter 3, the study on the pressure-induced quantum phase transition in the singlet ground

state magnet CsFeCl3 is shown.
In Chapter 4, the study on the magnetic structure and magnetic excitation in the Kagome

antiferromagnet NaBa2Mn3F11 is shown.
In Chapter 5, this study is concluded and the outlook for the future is described.
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Chapter 1

Backgrounds for study

1.1 Basic theory of spin system
Isolated magnetic ion

Magnetic properties in materials originate from orbital angular momentum ℏl and spin angular
momentum ℏs of an electron. Their magnetic moments µo and µs are expressed as

µo = −µBl　 (1.1)

µs = −gµBs, (1.2)

where µB = eℏ/2me is the Bohr magneton. g is a constant known as the g-factor, which is
usually given by g ≃ 2. Since the magnetic moments are vanished one another for closed shell
in an atom, a magnetic moment of an unpaired electron in an incomplete shell is responsible for
the magnetic properties.

Electronic state including orbital and spin moment in an isolated atom is determined by
Coulomb repulsion in a single atom, spin-obit interaction, and crystal electric field. The Coulomb
repulsion in the single atom leads to Hund’s rule which determines LS-multiplet at ground state.
The spin-orbit interaction comes from a relativistic interaction between a spin moment and an
internal magnetic field, and is given by

HLS = λ (L · S) , (1.3)

where L and S are total orbital and spin angular momentums, respectively. The spin-obit in-
teraction plays a key role to connect a spin space to a real space, and originates the magnetic
anisotropy determining the spin direction. In addition, the total orbital and spin angular momen-
tums L, S are not preserved because of the spin-orbit interaction. Consequently, the electronic
state is labeled by a total angular momentum J .

The crystal electric field derives from electric fields generated by ligands surrounding the
magnetic ion, which is expressed by

Vcrystal(r) =
∑
i

Ze2

|Ri − r|
, (1.4)

where r and Ri are position vectors of the magnetic ion and ligands, respectively. The Z is the
number of the ligands. As the crystal electric field couples with orbital angular momentum, it
affects the orbital state. The eigenstate of the orbital depends on the symmetry of the envi-
ronment. In many transition compounds, a transition metal of the magnetic ion locates at the
center of an octahedron with anions such as oxygen. In this case, the d orbitals in octahedral
environment are divided into two classes: threefold T2g orbitals and twofold Eg orbitals.
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Exchange interaction
In general, two magnetic moments µ1 and µ2 separated by a vector r12 have an energy due

to the magnetic dipole-dipole (MDD) interaction, which is represented by

HMDD =
µ0

4π

[
µ1 · µ2

r312
− 3

(µ1 · r12) (µ2 · r12)
r512

]
. (1.5)

The MDD interaction HMDD is estimated to be ∼ 3 × 10−2 K when the spin S = 1/2 and the
distance between the magnetic ions is 3 Å which is a usual distance in a crystal. As the MDD
interaction is small compared with other interactions, it is usually ignored in the spin system.
The main interaction in the spin system is an exchange interaction. The exchange interaction

is generated by antisymmetry of fermion and Coulomb repulsion, which means that it comes
from quantum effect. The exchange interaction between electrons in a crystal is derived from
the Hubbard model , which is expressed by

H =
∑
ij

∑
s

bija
†
jsais + U

∑
i

a†i↑ai↑a
†
i↓ai↓. (1.6)

bij is a hopping energy from i-th site to j-th site, and U is a Coulomb energy. The hopping and
Coulomb energies are defined by the Wannier function wi(r) as follow:

bij =

∫
drw∗

j (r)Hcrystalwi(r), (1.7)

U =

∫
dr1dr2|wj(r1)|2

e2

r12
|wi(r1)|2, (1.8)

where Hcrystal is the crystal potential between wi(r) and wj(r). In case of an insulator, the
hopping energy bij is much smaller than the Coulomb energy U . From calculations of the first
and second perturbation in U ≫ |bij |, the exchange interactions are given by

H(1)
ex(i,j) = −J

(1)
ij

(
1

2
+ 2sj · si

)
, (1.9)

H(2)
ex,(i,j) = −2J

(2)
ij

(
1

2
− 2si · sj

)
, (1.10)

where

J
(1)
ij =

∫
dr1dr2w

∗
j (r1)w

∗
i (r2)

e2

r12
wi(r1)wj(r2), (1.11)

J
(2)
ij =

|bij |2

U
. (1.12)

The first interaction is a direct exchange interaction, and second one is an indirect exchange
interaction which is called the superexchange interaction. The general expression of the exchange
interaction is represented by

Hex = −JijSi · Sj . (1.13)

Magnetic anisotropy
The magnetic anisotropy originates from the spin-orbit interaction which connects a spin

state to an orbital state. From the second-order perturbation of the spin-obit interaction, the
single-ion anisotropy is generally given by

Hsingle = D (Sz)
2
+ E

{
(Sx)

2 − (Sy)
2
}
. (1.14)
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The E term is vanished when the spin system has threefold, fourfold, and sixfold rotational
symmetry along the z-axis. When we consider the case of E = 0, the spin favors to align parallel
to the z-axis in case of the D < 0. This anisotropy is called an easy-axis anisotropy In contrast,
the spin favors to align perpendicular to the z-axis for D > 0 and E = 0, which is called an
easy-plane anisotropy.

In addition to the single-ion anisotropy, perturbation of the spin-orbit interaction gives an
anisotropic interaction, which is generally expressed by

HAE = −
∑
µ,ν

Sµ
i J

µν
ij Sν

i . (1.15)

In particular, when it has no space inversion symmetry, it gives

HDM = Dij · (Si × Sj), (1.16)

which is known as Dzyaloshinskii-Moriya interaction.
The Hamiltonian including the interactions and anisotropies, which are denoted above, is called

Spin Hamiltonian and plays a role to determine the spin state and originates a diverse magnetic
properties.

1.2 Magnetic ordering
The ground state is determined by minimizing the spin Hamiltonian. In most of the magnetic

materials, the ground state at a low temperature shows a magnetic long-range order, in which
the spins are arranged to minimize the energy of the system.

When we assume that the spin Sm is a classical vector, the magnetic structure at zero tem-
perature can be found using following method. Let us consider a Hamiltonian in which the spins
are on a Bravais lattice with one spin per unit cell. The Hamiltonian is

H =
∑
m,n

J(m− n)Sm · Sn, (1.17)

where m and n are the lattice vectors. The Fourier transformation of the spin Sm is defined by

Sm = S
∑
q

Sqe
iq·m, (1.18)

Sq =
1

NS

∑
m

Sme−iq·m, (1.19)

where N is the number of the unit cell.
From the Fourier transformation, the Hamiltonian is represented as follow:

H = NS2
∑
q

J (q)Sq · S−q , (1.20)

where
J (q) =

∑
m

J(m)eiq·m. (1.21)

The magnetic structure can be obtained by searching q to minimize J (q).
For example, a stacked square lattice model is considered as

H =
∑

xy−plane

J1Sm · Sn +
∑

z−axis

J2Sm · Sn, (1.22)
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Figure 1.1 Schematic of spin wave for (a) transverse mode and (b) longitudinal mode.

where J1 is antiferromagnetic interaction in the square lattice and J2 is ferromagnetic interaction
along the layer. The J (q) is represented by

J = 2J1(cos qx + cos qy) + 2J2 cos qz, (1.23)

where the lattice constant is defined by 1 for simplicity. Since signs of J1 and J2 are positive
and negative, it is found that a wave vector q = (π, π, 0) gives the minimum energy. The spins
are antiferromagnetically aligned along the x and y-axis and ferromagnetically aligned along the
z-axis.
The general expression of Eq. (1.20) in a non-Bravais lattice is written by

H = NS2
∑
q

∑
i,j

∑
α,β

Sα
i,qJ

αβ
ij (q)Sβ

j,−q , (1.24)

where i, j are labels of the magnetic ions in the unit cell, and α, β are Cartesian coordinations

x, y, z. In this case, the ground state is obtained by diagonalizing J αβ
ij (q) and searching q to

minimize the eigenvalues.

1.3 Spin wave excitation
An elementary excitation from the ordered state in the spin system is represented by the wave

of the spin fluctuation. This excitation is called spin wave and its quantized quasi-particle is a
magnon. The spin fluctuations are classified by phase and amplitude of the spin moment. The
phase fluctuation corresponds to the transverse mode, and amplitude fluctuation corresponds to
the longitudinal mode in the spin wave as illustrated in Figs. 1.1(a).
The most conventional way to calculate the spin wave excitation is the linear spin wave theory.

In the linear spin wave theory, the spin operator Si is expressed by using Holstein-Primakoff
transformation as 

Sz
i = S − a†iai

S−
i =

√
2Sa†i

(
1− a†iai

2S

) 1
2

S+
i =

√
2S

(
1− a†iai

2S

) 1
2

a

, (1.25)
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where a†, a are bosonic creation-annihilation operators satisfying the commutation relation as

[ai, a
†
j ] = δij . (1.26)

Spin wave in ferromagnet
Let us denote spin wave excitation of a ferromagnet in a Heisenberg model

H = −
∑
i,j

JijSi · Sj . (1.27)

From Holstein-Primakoff transformation, the Hamiltonian is represented as follow:

H = E0 +
∑
q

ℏωqa†qaq , (1.28)

E0 = −NJ (0)S2, (1.29)

where 
aq =

1√
N

∑
i

e−iq·Riai

a†q =
1√
N

∑
i

eiq·Ria†i

. (1.30)

The dispersion relation is given by

ℏωq = S [J (0)− J (q)] , (1.31)

J (q) =
∑
i,j

Jije
−iq·ρij (ρij = Ri −Rj). (1.32)

For small q meaning long wavelength excitation, we have

ℏω(q)/S = J (0)− J (q)

=
∑
ρij

Jij −
∑
ρij

Jije
−iq·ρij

≃
∑
ρij

Jij −
∑
ρij

Jij

{
1− 1

2

(
q · ρij

)2}
. (1.33)

The spin wave energy for small q is

H = E0 +
S

2

∑
ρij

Jij
(
q · ρij

)2
(q ≪ 1) . (1.34)

Thus, in the ferromagnet the spin wave dispersion for small q is proportional to q2.

Spin wave in antiferromagnet
Next let us denote the spin wave excitation in a Heisenberg antiferromagnet. Assuming that

the ground state is Néel state in which the spins are antiferromagnetically aligned, the Heisenberg
Hamiltonian for two sublattices A and B is expressed as

H = −
∑
i∈A

∑
j∈A

JijSi · Sj −
∑
i∈B

∑
j∈B

JijSi · Sj − 2
∑
i∈A

∑
j∈B

JijSi · Sj . (1.35)
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From Holstein-Primakoff transformation, the spin operators in each sublattice are represented
by

sublattice−A



Sz = S − a†a

S− =
√
2Sa†

(
1− a†a

2S

) 1
2

S+ =
√
2S

(
1− a†a

2S

) 1
2

a

, (1.36)

sublattice−B



Sz = −S + b†b

S+ =
√
2Sb†

(
1− b†b

2S

) 1
2

S− =
√
2S

(
1− b†b

2S

) 1
2

b

, (1.37)

where a†i , ai and b†i , bi are bosonic creation-annihilation operators. The Hamiltonian is expressed
by the bosonic operators as follow:

H =
1

2
NJ (Q)S2 +

∑
q

[
A(q)

(
a†qaq + b†qbq

)
+B(q)

(
aqbq + a†qb

†
q

)]
, (1.38)

A(q) =
S

2
[J (q) + J (q +Q)− 2J (Q)] , (1.39)

B(q) =
S

2
[J (q)− J (q +Q)] , (1.40)

where Q is the magnetic propagation vector. To diagonalize the Hamiltonian, the Bogoliubov
transformation is carried out. The Bogoliubov transformation is expressed by{

αq = aq cosh θq + b†q sinh θq ,

β†
q = aq sinh θq + bq cosh θq

(1.41){
aq = αq cosh θq − β†

q sinh θq

b†q = −αq sinh θq + β†
q cosh θq

, (1.42)

where θq satisfies

cosh2 θq − sinh2 θq = 1. (1.43)

Then the diagonalized Hamiltonian is expressed as

H =
N

2
J (Q)S(S + 1) +

∑
q

ℏωq
(
α†
qαq + β†

qβq + 1
)
. (1.44)

The spin wave dispersion ℏωq is given by

ℏωq = A(q) cosh 2θq −B(q) sinh 2θq

=
√
[A(q) +B(q)] [A(q)−B(q)] (1.45)

= S
√

[J (q)− J (Q)] [J (q +Q)− J (Q)]. (1.46)



1.4 Quantum phase transition 9

For small q, we have

J (q +Q)− J (Q) |q→0 ≃ J (Q) +
∑
α

∂J (q +Q)

∂qα

∣∣∣∣∣
q=0

qα +
1

2

∑
α,β

∂2J (q +Q)

∂qα∂qβ

∣∣∣∣∣∣
q=0

qαqβ　− J (Q)

=
1

2

∑
α,β

∂2J (q +Q)

∂qα∂qβ

∣∣∣∣∣∣
q=0

qαqβ ,

J (q)− J (Q) |q→0 ≃ J (0)− J (Q),

where the first order of q is ignored due to space inversion symmetry. Then the spin wave
dispersion for small q is represented by

ℏωq = S
√

[J (q)− J (Q)] [J (q +Q)− J (Q)]

∝ |q|. (1.47)

Thus, in the antiferromagnet the spin wave dispersion for small q is proportional to q.

1.4 Quantum phase transition
In general, phase transitions occur in materials by varying the temperature. For example,

water becomes ice, and paramagnet becomes ferromagnet by the decrease of the temperatures.
This transition is caused by a competition between the thermal fluctuation and ordering. The
thermal fluctuation at high temperature prevents from ordering the material. At low tempera-
ture, in contrast, the microscopic interaction overcomes the thermal fluctuation, and the ordering
occurs. According to above mechanism, the phase transition does not occurs at zero tempera-
ture because there is no thermal fluctuation. However, the phase transition occurs by quantum
fluctuation at zero temperature. This phase transition is called the quantum phase transition
(QPT) to distinguish from the phase transition due to the thermal fluctuation.

The QPT is a transition between different ground states induced by quantum fluctuation,
which is controlled by external parameters such as magnetic field, pressure, and chemical dop-
ing [1, 2]. The quantum fluctuation originally comes from duality of wave (itinerancy) and
particle (localization). The itinerancy corresponds to kinetic energy, which prevents from the
ordering. In contrast, the localization corresponds to potential energy, which promotes the or-
dering. The competition between the itinerancy and localization determines the extent of the
quantum fluctuation. When one varies a parameter g controlling the quantum fluctuation, the
singular point appears in which the long-range order is broken, and quantum disorder (QD) is
realized. This is called quantum critical point (QCP).

The schematic diagram of the QPT is shown in Fig. 1.2. Since the quantum fluctuation
is enhanced in the vicinity of the QCP, one has a chance to observe non-trivial phenomena
around the QCP. Up to now, the QPT provides the unsolved topics in many condensed matter
systems [3]; the 3D Ising ferromagnet in the transverse magnetic field in the rare-earth magnetic
insulator [4, 5], the non-Fermi liquid behavior and superconductivity in the high-temperature
superconductors [6, 7, 8, 9] and the heavy fermion metals [10, 11], the metal-insulator transition
in the two-dimensional electron systems [12], and superfluid-Mott insulator transition in the
ultracold atom systems [13, 14]. The QPT is therefore an intriguing topic in condensed matter
physics.

In this section, the QPT is briefly described using a quantum rotor model and collective
excitation based on the quantum field theory. In addition, a spin dimer system is shown as a
well-studied example. Then a spin-1 antiferromagnet system with strong easy-plane anisotropy
is explained.
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Figure 1.2 Schematic diagram of the phase diagram around Quantum critical point.

1.4.1 Quantum phase transition

Let us introduce the quantum rotor model to briefly describe the QPT [1]. The quantum
rotor model is one of common models in the quantum spin system because each quantum rotor
represents an effective quantum degree of freedom for the low energy states. Each rotor can
be visualized as a particle constrained to move on the surface of N -dimensional sphere. An
N -component unit vector n̂i represents the orientation of each rotor. The n̂i satisfies

n̂2
i = 1. (1.48)

Each rotor has a momentum p̂i satisfying the commutation relations

[n̂α, p̂β ] = iδαβ , (1.49)

where α, β = 1, . . . , N are the degree of freedom of the rotor orientation. The rotor angular
momentum is defined by

L̂γ =
1

2
ϵαβγ

(
n̂αp̂β − n̂β p̂α

)
, (1.50)

where ϵαβγ is a totally antisymmetric tensor with ϵ123 = 1.

When we use the rotor n̂i and the rotor angular momentum L̂i, the quantum rotor model is
expressed as follow:

HR =
Jg

2

∑
i

L̂
2

i − J
∑
⟨ij⟩

n̂i · n̂j , (1.51)

where a coupling J is positive. The first term represents the kinetic energy of the rotors, and the
second term is a coupling of the rotors corresponding to the potential energy. To minimize the
coupling energy, the all rotors must be oriented along the same direction, meaning the magnetic
ordering. In contrast, the kinetic energy of the rotor angular momentum is minimized when
the orientation of the rotor are maximally uncertain. Then the rotors are not oriented along
the specific direction. This means that the kinetic term prefers a quantum paramagnetic state.
Thus, the coupling (potential) energy competes with the kinetic energy, which originates from
just the quantum fluctuation. The g is a parameter of this competition.
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Figure 1.3 Schematic diagrams of mean-field ground state energy in (a) disordered state
and (b) ordered state.

The kinetic energy becomes dominant in the g ≫ 1 and the rotors are paramagnetic. In the
g ≪ 1, the coupling energy takes over the kinetic energy and the magnetic ordered state is
realized. There is a critical point gc in which the QPT occurs between the paramagnetic and
magnetic ordered phases. In a spin dimer system as an example, the kinetic and potential terms
correspond to intra- and inter-dimer interaction. In addition, in a spin-1 antiferromagnet with a
strong easy-plane anisotropy, the easy-plane type single-ion anisotropy is regarded as the kinetic
term and spin-spin coupling is the potential term.

1.4.2 Collective excitation around quantum critical point

Collective excitation near the QCP in the ordered phase is described by phase and amplitude
fluctuation of an order parameter. While the phase fluctuation is known as Nambu-Goldstone
(NG) mode, the amplitude fluctuation is called Higgs mode, which is analogue to Higgs boson
in particle physics.

Let us briefly describe the low energy collective excitations in the vicinity of the QCP based
on Landau theory and quantum field theory. For the quantum field theory, a coarse-grained field
ϕα(x, t) is conveniently used, which is defined by

ϕα(x, t) ∼
∑

i∈N (x)

niα(t), (1.52)

where the index α = 1, . . . , N is the degree of freedom of the rotor orientation, and the overall
ϕα is normalized. The x is a position in d-dimensional space, and N (x) is a coarse-graining
neighborhood of x. The rotors ni is roughly grained by introducing the field ϕα(x, t).

Based on Landau theory, the Hamiltonian in the continuum quantum model is represented as

H =

∫
ddx

N∑
α=1

[
1

2

{
π2
α + c2(∇xϕα)

2 + rϕ2
α(x)

}
+

u

4!

(
ϕ2
α(x)

)2]
, (1.53)

where πα(x, t) is the canonical momentum to the field ϕα. The first and second terms represent
time and spatial fluctuations of the field ϕα. The third and fourth terms are given by a polynomial
expansion for a local effective potential V (ϕ2

α). The magnetic phases are classified by the value
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of r; r > 0 is at the quantum paramagnetic phase, r = 0 is at the QCP, and r < 0 is at the
magnetic ordered phase.
In the paramagnetic phase, r > 0, the effective local potential in Eq. (1.53) is minimized

at ϕα = 0 as shown in Fig. 1.3(a). The low-energy excitations are small fluctuations around
ϕα = 0. Hence, the quadratic u term can be ignored, and the Hamiltonian Eq. (1.53) is simply
diagonalized as

H =

∫
ddk

(2π)d
εk

N∑
α=1

[
a†α(k)aα(k) +

1

2

]
. (1.54)

Then the energy of the normal modes is

εk =
√

c2k2 + r. (1.55)

Here, in order to denote the normal excitation mode in each phase, we used harmonic oscillator
operators expressed by

ϕα(x) =

∫
ddk

(2π)d
1√
2εk

(
aα(k)e

ik·x + a†α(k)e
−ik·x

)
,

πα(x) = −i

∫
ddk

(2π)d
εk√
2

(
aα(k)e

ik·x − a†α(k)e
−ik·x

)
, (1.56)

where εk is the energy of the normal mode. a†α(k) and aα(k) are creation and annihilation
operators satisfying the commutation relation:[

aα(k), a
†
β(k

′)
]
= δαβ(2π)

dδd(k − k′),[
aα(k), aβ(k

′)
]
= 0. (1.57)

The collective excitation in the paramagnetic phase has an energy gap of ∆ =
√
r. The energy

gap is softened by decrease of the r and becomes zero at r = 0. Thus, the energy of the normal
modes at the QCP becomes a gapless dispersion as

εk = ck. (1.58)

In the magnetic ordered phase, i.e., r < 0, the potential in Eq. (1.53) is a Mexican hat-like
potential as shown in Fig. 1.3(b), and has a minimum at ϕα = m0δα,1. The m0 is given by

m0 =

√
−6r

u
. (1.59)

The direction of the ordered magnetic moment has been arbitrarily selected along the α = 1
direction. The field ϕα is written as

ϕα(x) = m0δα,1 + ϕ̃α(x). (1.60)

Considering quadratic order in the ϕ̃α, the Hamiltonian Eq. (1.53) is computed as follow:

H =
1

2

∫
ddx

{
N∑

α=1

(
π2
α + c2(∇xϕ̃α)

2
)
+ 2|r|ϕ̃2

1(x)

}

=
1

2

∫
ddx

{(
π2
1 + c2(∇xϕ̃1)

2 + 2|r|ϕ̃2
1(x)

)
+

N∑
α=2

(
π2
α + c2(∇xϕ̃α)

2
)}

. (1.61)
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This is diagonalized by using Eq. (1.56), and two types of excitation are obtained:

εk = ck, N − 1 particles, (1.62)

εk =
√

c2k2 + 2|r|, 1 particle. (1.63)

There areN−1 gapless modes and one gapped mode. The gapless modes are transverse oscillation
of the ϕα field, which correspond to the NG mode. In contrast, the gapped mode is longitudinal
oscillation of the ϕ1 field, which is called the Higgs mode from the analogy of the Higgs boson in
the particle physics. From the above derivation, N − 1 NG modes and one Higgs mode appear
in the ordered phase.

1.4.3 Higgs mode in condensed matter

The Higgs mode has attracted great interest for condensed matter physics in a few decades [15].
In particle physics, the Higgs boson appears in the amplitude fluctuation of the condensed
Higgs field in the Standard Model, and has been discovered by F. Englert and P. W. Higgs in
1963 [16, 17], who won Nobel Prize in physics in 2013 for their remarkable work. Originally,
their theory was inspired by the theory on the spontaneous symmetry breaking proposed by Y.
Nambu [18, 19, 20] in 1960, who also won Nobel Prize in physics in 2008 for his pioneering work.
Since the Nambu’s theory derived from the analogy of the superconductivity theory, it was quite
natural to anticipate the observation of the Higgs mode in the superconductor in condensed
matter physics. In 1980, the Higgs mode was discovered in the superconductor NbSe2 by means
of Raman scattering for the first time [21].

After that, the investigation of the Higgs mode has been attracted in various materials such as
superconductors [22, 23], charge-density-wave system [24, 25], and ultracold atom superfluid [26].
The quantum spin system is also one of the well-studied field for the Higgs mode. For example,
a dimerized antiferromagnet TlCuCl3 demonstrated a control of the Higgs mode by the pres-
sure [27], and the quantum criticality was discussed [28]. In an Ising-like chain antiferromagnet
BaCo2V2O8, the longitudinal and transverse Zeeman ladder excitations were observed by inelas-
tic neutron scattering [29]. Studies on a spin-orbit singlet antiferromagnet Ca2RuO4 [30] and a
coupled latter antiferromagnet C9H18N2CuBr4 [31] were undertaken in order to discuss a decay
of the Higgs mode to NG mode in the two-dimensional system.

To be exact, the Higgs mode only in the superconductor is analogous to the Higgs boson in
particle physics from the point that gauge field (photon) obtains its mass (Meissner effect) by
means of symmetry breaking. However, the study on Higgs mode coming from the spontaneous
symmetry breaking in the condensed matter is important because understanding of the Higgs
mode relates to the development of the quantum field theory. The investigation of the Higgs
mode is therefore one of the central topics in the condensed matter physics.

1.4.4 Spin dimer system

Next let us denote a concrete example of QPT in the spin system, a spin dimer system [32].
The spin dimer system having S = 1/2 is the most common spin system in which the QPT
occurs. The QPT in the dimer system is caused by competition between intra-dimer interaction
and inter-dimer interaction. Here, the mean-field solution of the spin dimer system is explained.
The following Hamiltonian is considered:

H =
∑
i

JS1,i · S2,i +
∑
⟨i,j⟩

J1 (S1,i · S1,j + S2,i · S2,j)

+
∑
⟨i,j⟩

J2 (S1,i · S1,j + J2S2,i · S2,j) +
∑
⟨i,j⟩

J3S1,i · S2,j , (1.64)
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Figure 1.4 (a) Interaction paths of the dimer system. J is intra-dimer interaction, and J1,
J2, and J3 are inter-dimer interactions. (b) Schematic diagram of spin dimer system.

where S1,i and S1,i represent the spin operator having spin 1/2 at the i-th site, and they form
a dimer. J is the antiferromagnetic intra-dimer interaction. J1, J2, and J3 are inter-dimer
interactions. It is assumed that J1, J2 and J3 are antiferromagnetic. The interaction paths are
shown in Fig. 1.4(a).
When the intra-dimer interaction J is much stronger than the inter-dimer interaction, the

non-magnetic singlet state Stot = 0 (Stot = S1 + S2) is the ground state and the magnetic
triplet state Stot = 1 is the excited state as shown in Fig. 1.4(b). According to Ref. [32], the
singlet |s⟩ and triplet |tx⟩ , |tz⟩ , |ty⟩ states are represented as follow:

|s⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) , (1.65)

|tx⟩ =
−1√
2
(|↑↑⟩ − |↓↓⟩) , (1.66)

|ty⟩ =
i√
2
(|↑↑⟩+ |↓↓⟩) , (1.67)

|tz⟩ =
1√
2
(|↑↓⟩+ |↓↑⟩) , (1.68)

where |S1S2⟩ represents the spin state of the S1-S2 dimer. The x-, y-, and z-directions are shown
in Fig. 1.4(a).
The singlet and triplet states are hybridized with increase of the inter-dimer interaction. This

causes the magnetic long-range order. It is assumed that the ordered magnetic moments form a
collinear magnetic structure and directs along the x-axis. The z-axis is defined as the rotational
axis of the moment, and the magnetic structure is characterized by a magnetic propagation vector
Q = (0, π, π). Considering the hybridization of the singlet and triplet states, local eigenstates at
the i-th site are represented as follow:

|Gi⟩ = u |s⟩+ v (cosϕi |tx⟩+ sinϕi |ty⟩) ,
|Li⟩ = −v |s⟩+ u (cosϕi |tx⟩+ sinϕi |ty⟩) ,

|T1,i⟩ = − sinϕi |tx⟩+ cosϕi |ty⟩ ,
|T2,i⟩ = |tz⟩ ,

where u and v are real coefficients satisfying u2 + v2 = 1. |Gi⟩ is a eigenstate for the mean-field
ground state. |Li⟩, |T1,i⟩ and |T2,i⟩ are orthogonal to |Gi⟩ and are for excited states. The phase
factor ϕi at the i-th site position ri is written as

ϕi = Q · ri + ϕ0, (1.69)



1.4 Quantum phase transition 15

where ϕ0 is constant. From Eq. (1.68), we have

|Gi⟩ =
u√
2
(|↑↓⟩ − |↓↑⟩)− v√

2

(
e−iϕi |↑↑⟩ − eiϕi |↓↓⟩

)
, (1.70)

|Li⟩ =
−v√
2
(|↑↓⟩ − |↓↑⟩)− u√

2

(
e−iϕi |↑↑⟩ − eiϕi |↓↓⟩

)
, (1.71)

|T1,i⟩ =
i√
2

(
e−iϕi |↑↑⟩+ eiϕi |↓↓⟩

)
, (1.72)

|T2,i⟩ =
1√
2
(|↑↓⟩+ |↓↑⟩) . (1.73)

The expectation values of the spin operators at the ground state are expressed as

⟨Gi|Sx
1,i |Gi⟩ = ⟨Gi|Sx

2,i |Gi⟩ = uv cosϕi, (1.74)

⟨Gi|Sy
1,i |Gi⟩ = ⟨Gi|Sy

2,i |Gi⟩ = uv sinϕi, (1.75)

⟨Gi|Sz
1,i |Gi⟩ = ⟨Gi|Sz

2,i |Gi⟩ = 0, (1.76)

where uv = v
√
1− v2 ≡ M is the magnitude of the local magnetic moment. In the mean-field

approximation, the inter-dimer interaction is represented as follow:

Jij ⟨Gi|Si |Gi⟩ · ⟨Gj |Sj |Gj⟩ = Jij(uv)
2 cos(ϕi − ϕj). (1.77)

Furthermore, the expectation value of the intra-dimer interaction at the ground state is expressed
as

⟨Gi|JS1,i · S2,i |Gi⟩ = J

(
v2 − 3

4

)
. (1.78)

From Eqs. (1.77) and (1.78), the mean-field ground state energy per site EMF is given by

EMF = J

(
v2 − 3

4

)
− (2J1 + 2J2 − J3)(uv)

2

= (J − Jeff)v
2 + Jeffv

4 − 3

4
J. (1.79)

The mean-field ground state energy is only a function of v. The value of v is determined by
minimizing EMF and characterized by the ratio of Jeff/J , which corresponds to the dimensionless
coupling g in Section 1.4.1. Jeff/J = 1 corresponds to the critical point gc. In Jeff/J < 1, in
which EMF is a parabolic-like potential as shown in Fig. 1.3(a), v becomes zero, i.e., the ordered
moment M = 0. The spin system is in the paramagnetic state. In Jeff/J > 1, in which EMF

is a Mexican hat-like potential as shown in Fig. 1.3(b), v becomes finite value, i.e., the ordered
moment M ̸= 0. The magnetic ordered state is realized in this case.

In the ordered phase, three excitation modes are expected. Two of them are massless NG-
mode originating from transverse fluctuation of the moment and the other is a massive Higgs
mode from the longitudinal fluctuation as shown in Fig. 1.3(b).

TlCuCl3
TlCuCl3 is a well-studied material showing the QPT in the spin dimer system. Since the

nearest-neighbor antiferromagnetic interaction is very strong, the Cu2+ spins are dimerized.
The dimers weakly interact with each other as shown in Fig. 1.5(a). Under zero magnetic field
and at ambient pressure, the Cu2+ spin dimer realizes a spin singlet ground state [33] with the
excitation gap of 0.6 meV [34, 35].

The magnetic ordering in TlCuCl3 was observed under magnetic field [35, 36, 37] and pres-
sure [38, 39, 40, 28]. In addition to that the magnetic field-induced magnetic ordering has
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Figure 1.5 (a) Crystal structure of TlCuCl3. (b) Measurements of the excitation energies
and transition temperatures TN [27].

been studied as a good model compound of the magnon Bose-Einstein condensation [41], the
inelastic neutron scattering study demonstrated the Higgs mode in the pressure-induced ordered
phase [27, 28]. Figure 1.5(b) shows the measurements of the excitation energies under pressures.
The magnetic excitations in the quantum disordered phase are softened with the increase of the
pressure. The QPT occurs at 1.07 kbar [40]. In ordered phase, the magnetic excitations are
split to Nambu-Goldstone (transverse) mode and Higgs (longitudinal) mode, and there are two
transverse modes and one longitudinal mode. The experimental works on the magnetic field- and
pressure-induced QPTs have triggered many theoretical studies; magnon Bose-Einstein conden-
sation [41, 42, 43], longitudinal magnon [44, 45], and universality in three-dimensional quantum
antiferromagnet [46, 47, 48, 49, 50].

1.4.5 Spin-1 antiferromagnet with strong easy-plane anisotropy

In this thesis, we focus on the spin S = 1 antiferromagnet with a strong easy-plane anisotropy.
Its QPT is explained by the mean-field theory in the same procedure as the spin dimer system,
which is described in detail in Ref. [51]. The Hamiltonian is given by

H =
∑
⟨ij⟩

JijSi · Sj +
∑
i

D(Sz
i )

2, (1.80)

where Jij term represents an interaction between the spins and D (> 0) term represents the
easy-plane anisotropy. Si is the spin operator having spin-1.

Square lattice model

Firstly, let us denote a stacked square lattice model with the antiferromagnetic interactions
J1 and J2 as shown in Fig. 1.6(a). When the easy-plane anisotropy D is much stronger than the
interaction Jij , the singlet state S

z = 0 is the ground state and the doublet state Sz = ±1 is the
excited state as shown in Fig. 1.6(b). With the increase of the spin interaction energy, the singlet
and doublet sates are hybridized. This brings about the magnetic long-range order. It is assumed
that the a collinear magnetic structure is realized and the direction of the magnetic moment
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Figure 1.6 (a) Interaction paths of the square-lattice antiferromagnet. J1 and J2 are
in-plane and inter-plane interactions, respectively. (b) Schematic diagram of S = 1 antifer-
romagnet with strong easy-plane anisotropy. (c) Schematic diagram of the relationship of
the normal excitation mode and the QPT.

characterized by a magnetic propagation vector Q = (π, π, π). Considering the hybridization of
the singlet and doublet state, local eigenstates at the i-th site are represented as follow:

|Gi⟩ = u |0i⟩+
v√
2

(
e−iϕi |1i⟩+ eiϕi |−1i⟩

)
, (1.81)

|Li⟩ = −v |0i⟩+
u√
2

(
e−iϕi |1i⟩+ eiϕi |−1i⟩

)
, (1.82)

|Ti⟩ =
−1√
2

(
e−iϕi |1i⟩ − eiϕi |−1i⟩

)
, (1.83)

where |mi⟩ is the Sz = m (m = 1, 0, -1) state at the i-th site. u and v are real coefficients
satisfying u2 + v2 = 1. |Gi⟩ is a eigenstate for the mean-field ground state. |Li⟩ and |Ti⟩ are
orthogonal to |Gi⟩ and are for excited states. The phase factor ϕi at the i-th site position ri is
given by ϕi = Q · ri + ϕ0.

At the ground state, the expectation values of the spin operators are expressed as

⟨Gi|Sx
i |Gi⟩ = 2uv cosϕi, (1.84)

⟨Gi|Sy
i |Gi⟩ = 2uv sinϕi, (1.85)

⟨Gi|Sz
i |Gi⟩ = 0, (1.86)

where 2uv = 2v
√
1− v2 ≡ M is the magnitude of the local magnetic moment. In the mean-field

approximation, the inter-spin interaction Jij is represented as

Jij ⟨Gi|Si |Gi⟩ · ⟨Gj |Sj |Gj⟩ = Jij(2uv)
2 cos(ϕi − ϕj). (1.87)

In addition, the expectation value of the easy-plane anisotropy at the ground state is expressed
as

⟨Gi|D(Sz
i )

2 |Gi⟩ = Dv2. (1.88)
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Figure 1.7 A schematic diagram of the paramagnetic, chiral liquid, and XY long-range
order (LRO) phases as a function of the tuning parameter g ∼ J/D [52].

From Eqs. (1.87) and (1.88), the mean-field ground state energy per site EMF is given by

EMF = Dv2 + (−2J1 − J2)(2uv)
2

= (D − Jeff)v
2 + Jeffv

4, (1.89)

where Jeff = −8J1 − 4J2.
The mean-field ground state energy is a function of v, and value of v which is determined

by minimizing EMF is characterized by Jeff/D. As in the case of the spin dimer system, the
paramagnetic and ordered states are distinguished by Jeff/D < 1 and Jeff/D > 1, respectively.
The normal excitation modes in the QPT were exhibited in Ref. [51]. Figure 1.6(c) shows
the normal modes in each phase. In the singlet phase, there is a twofold degenerated gapped
excitation. The excitation is softened toward the critical point, its gap closes at Jeff/D = 1. In
the ordered phase, the degenerated excitation is split into gapless and gapped excitations. The
gapless and gapped modes correspond to Nambu-Goldstone and Higgs modes, respectively.

Triangular lattice model
Next we describe a stacked triangular lattice model with a ferromagnetic inter-layer interaction

J1 and an antiferromagnetic in-plane interaction J2. The magnetic structure is characterized by
a magnetic propagation vector Q = (2π/3, 2π/3, 0). The Jeff should be modified as follow:

Jeff = −2

(
2J1 + 6J2 cos

2π

3

)
= 2(−2J1 + 3J2). (1.90)

Thus, the mean-field ground state energy per site is obtained as

EMF = Dv2 − Jeff(uv)
2

= (D − Jeff)v
2 + Jeffv

4. (1.91)

In this system, the QPT occurs when D = 2(−2J1 + 3J2).
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Figure 1.8 Crystal structures of CsFeCl3. Double-headed solid and dashed arrows indicate
the intrachain and interchain interaction J and J ′, respectively.

An interesting point in this system is that the system has a geometrical frustration due to the
triangular lattice. Recent theoretical study found a remarkable QPT in spin-1 XXZ Heisenberg
antiferromagnet with a large easy-plane anisotropy on a triangular lattice [52]. In this study, an
existence of the transition to a chiral spin liquid was found in addition to the ordinary magnetic
dipole ordering as mentioned above. Figure 1.7 shows the phase diagram proposed in Ref. [52]. In
the magnetic ordered phase, a 120◦ structure is realized and the system breaks continuous U(1)
symmetry and discrete Z2 symmetry. While the U(1) symmetry means a long-range magnetic
order, the Z2 symmetry represents chiral symmetry. They found that a phase where only Z2

chiral symmetry is broken does exist between paramagnetic and magnetic ordered phases. This
non-trivial phase is called the chiral liquid phase. Even though they focused on the appearance
of the chiral liquid phase, they have not studied the spin spectrum yet. The interest is thus in the
investigation of the magnetic excitation in the ordered phase. A novel magic state is expected
in the vicinity of the QCP containing the geometrical frustration.

CsFeCl3
CsFeCl3 is one of halide ABX3 antiferromagnets (A+ = alkali metal ion, B2+ = transition

metal ion, and X− = halogen ion). The ABX3 antiferromagnets is a rich field of studies on
magnetism. For examples, a dimerized antiferromagnet KCuCl3 [53], a Haldane gap system
CsNiCl3 [54], a triangular lattice antiferromagnet CsCuCl3 [55], 1D Ising-like antiferromagnet
CsCoCl3 [56, 57], and a XY -like antiferromagnet RbFeCl3 [58].

The crystal structure of CsFeCl3 is a hexagonal with P63/mmc [59]. Magnetic Fe2+ ions are
surrounded octahedrally by six Cl− ions, and the FeCl6 octahedra form a 1D ferromagnetic chain
along the crystallographic c-axis [60] as shown in Fig. 1.8(a). The chains form a triangular lattice
in the ab-plane as shown in Fig. 1.8(b).

The magnetic state of the Fe2+ ion at the low temperature is shown in Fig. 1.9. The lowest
orbital state of the Fe2+ ion in the cubic environment is the triplet T2g [61]. This triplet orbital
couples with the spin S = 2 owing to the spin-orbit interaction. The lowest state becomes a
triplet expressed by a pseudo-spin s = 1. Moreover, the pseudo-spin s = 1 is split into sz = 0
singlet ground state and sz = ±1 doublet state because the trigonally elongated octahedra of
FeCl6 induces an easy-plane type single-ion anisotropy D(sz)2. The system is thus regarded as
s = 1 XY -like spin system. The low energy magnetic properties of CsFeCl3 can be described by
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Figure 1.9 Electronic structure of the Fe2+ ion.

Figure 1.10 (a) Magnetic excitation in CsFeCl3 under ambient pressure obtained by inelas-
tic neutron scattering experiment [58]. (b) Pressure evolution of magnetic susceptibility [62].

the Hamiltonian [61]
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chain∑
⟨ij⟩
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where J⊥, J∥ are the intra-chain interactions and J ′
⊥, J

′
∥ are the in-plane interaction as shown

in Fig. 1.8(a).
Inelastic neutron scattering experiment has revealed magnetic excitations of CsFeCl3 at am-

bient pressure and at zero magnetic field by H. Yoshizawa [58]. The gapped dispersion was
observed as shown in Fig. 1.10(a), and it evidenced that the ground state was the sz = 0 sin-
glet state. From the calculation of the magnetic dispersion, it was found that the spin system
was ferromagnetic chains that were weakly coupled by antiferromagnetic interchain interaction.
Since the Fe2+ ions form the triangular lattice in the ab-plane, the antiferromagnetic interchain
interaction causes the geometrical frustration.
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Figure 1.11 (a) A pair of Ising spins with antiferromagnetic coupling. (b) Ising spins with
antiferromagnetic couplings on a triangle. Schematic diagrams of (c) triangular lattice, (d)
Kagome lattice, and (f) pyrochlore lattice.

CsFeCl3 exhibits an antiferromagnetic order under a magnetic field along the c-axis [63, 64, 65,
66, 67]. The neutron diffraction experiment under the field has identified that applying magnetic
field induced an incommensurate state at B ≈ 5 T, and a commensurate phase occurred above
10 T, in which the magnetic structure was a 120◦ structure with the magnetic propagation vector
of q = (1/3, 1/3, 0) [67]. It was deduced that the temperature and magnetic field dependence of
the order parameter corresponded to magnon BEC theory.

Very recently, a magnetic susceptibility measurement under pressures was performed by N. Ku-
rita and H. Tanaka [62]. Figure 1.10(b) shows the pressure evolution of the magnetic susceptibil-
ity. The magnetic susceptibilities above P = 0.94 GPa showed upturn anomaly at low temper-
ature. This indicates a magnetic long range order occurs above 0.94 GPa because this anomaly
is similar to the susceptibility at the ambient pressure in the magnetic-field induced magnetic
long range order. It is indicated that applying pressure effectively enhances the spin interaction,
and suppresses the anisotropy energy. CsFeCl3 is, thus, a singlet ground state magnet exhibiting
pressure-induced QPT.

CsFeCl3 is a good model compound to investigate the quantum critical phenomena on the
geometrically frustrated lattice. As well as the excitations in pressure-induced ordered state in
a spin-dimer compound TlCuCl3 [28, 40], unconventional excitation including NG and Higgs
modes are expected. In addition, CsFeCl3 is a candidate for the experimental realization of the
chiral liquid proposed in Ref. [52].

1.5 Geometrically frustrated spin systems
A geometrical frustration in spin system is generated by the competition of the magnetic

interaction due to the lattice geometry. A typical example of the the geometrical frustration is
a triangular lattice with antiferromagnetic Ising spins. When a pair of the Ising spins antiferro-
magnetically interacts each other, an antiparallel spin configuration is the ground state as shown
in Fig. 1.11(a). In case of that the Ising spins are antiferromagnetically coupled on a triangle, it
is impossible to simultaneously minimize the energies of all bonds in Fig. 1.11(b). This situation
is called geometrical frustration. It prevents the realization of a trivial spin configuration, and
the spin state is strongly fluctuated. The geometrical frustration appears not only in the trian-
gular lattice in Fig. 1.11(c) but also in various lattices constructed by the triangle motif such as
Kagome and pyrochlore lattices in Figs. 1.11(d) and 1.11(e).
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Since the first study on the triangular lattice antiferromagnet having Ising spin was reported
by G. H. Wannier in 1950 [68], many studies on the geometrically frustrated magnets have
been extensively produced in both of theoretical and experimental aspects [69, 70]. Owing to
remaining the macroscopic degeneracy at low temperature by the frustration, diverse and exotic
spin states are expected [71]. The most remarkable phenomenon is the spin liquid state. Broadly
speaking, the spin liquid is a disordered spin state in spite of that the spins are strongly coupled
in the microscopic view. The spin liquid has been attracted in condensed matter physics because
unforeseen properties such as fractional spin excitation [69] are expected.
In real geometrically frustrated magnets, most of cases exhibit magnetic ordering or freez-

ing of spin system for a ground state, which is caused by the requirement of the third law of
thermodynamics. When the main interaction cannot lift the degeneracy at low temperature,
small perturbations can play a key role to determine the spin state. These perturbations include
further neighbor interaction, single-ion anisotropy, Dzyaloshinskii-Moriya interaction, magnetic
dipolar interaction, magnetoelectric coupling, site dilution and exchange randomness. The ge-
ometrical frustration thus brings about downshifting of the energy scale, and makes an effect
of usually ignored perturbations stand out. It is very important to study a contribution of the
small perturbations in the geometrically frustrated spin systems.
Another key feature in frustrated spin system is a non-collinear spin structure. For example,

let us denote the ground state of three spins configuration in the case of XY spins on a triangle.
The energy of the three spins antiferromagnetically interacting each other is written as

E = J(S1 · S2 + S2 · S3 + S3 · S1). (1.93)

This energy E can be represented as

E = −3

2
JS2 +

J

2
(S1 + S2 + S3)

2
. (1.94)

From this equation, S1+S2+S3 = 0 gives the minimum energy. This means that the three spins
form a 120◦ structure when the magnitudes of the spin moments are conserved. Consequently,
the noncollinear spin structure is realized. The non-collinear spin structure was discovered in
1959 independently by A. Yoshimori [72], J. Villain [73], and T. A. Kaplan [74]. This non-
collinearity due to the geometrical frustration can make it easy to change the local crystal
structure because the bond energy between the spins is not minimized. This effect is closely
related to a magnetoelectric effect in the multiferroic materials, which have been greatly paid
attention for the application to the innovative device [75]. Therefore, the geometrically frustrated
spin systems have been remarked from the view of the fundamental and applied studies.
In this thesis, we focus on the Kagome antiferromagnet in the geometrically frustrated spin

systems. Hereafter, studies on the Kagome antiferromagnet is briefly introduced. Then the
ground state and dynamics on a classical Kagome antiferromagnet is described, and the Kagome-
Triangular antiferromagnet NaBa2Mn3F11 is introduced.

1.5.1 Kagome antiferromagnet

The Kagome lattice is a 2D lattice sharing corners of the triangles as shown in Fig. 1.11(d).
First study was an Ising model on the Kagome lattice by K. Kano [76], who exhibited that
the Kagome antiferromagnet was disordered at all temperature and possessed a finite entropy
even at zero temperature. After P. W. Anderson in 1973 proposed a resonating valence bond
ground state (RVB) in the triangular antiferromagnet as a spin liquid state [77], the Kagome
antiferromagnets have been the forefront field to develop the new concept and discover the new
materials which display exotic spin liquid states.
Figure 1.12 shows the energy spectrum calculated by the exact diagonalizations in a S = 1/2

Heisenberg Kagome antiferromagnet [78]. The energy spectra are plotted as a function of the
magnitude of the spin S. The low-lying spectrum structure in the Kagome antiferromagnet is
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Figure 1.12 Energy spectra of the N = 27 sample calculated by exact diagonalizations
technique in Heisenberg triangular antiferromagnet and Heisenberg Kagome antiferromag-
net, labeled TAH and KAH, from Ref. [78].

different from that in the triangular antiferromagnet exhibiting the magnetic ordering. This
indicates that the S = 1/2 Heisenberg antiferromagnet on the Kagome lattice realized a non-
magnetic singlet ground state, i.e., quantum spin liquid state. It has been an open question what
type of the spin liquid state is realized in the Kagome antiferromagnet up to now.

For the experimental studies, there has been many reports on the Kagome antiferromagnets so
far. Herbertsmithite ZnCu3(OH)6Cl2 has been studied as the most promising candidate for an
ideal quantum Kagome antiferromagnet. It exhibited no magnetic long-range order down to 35
mK [79] and fractionalized excitation was observed [80]. In Volborthite Cu3V2O7(OH)2 · 2H2O,
the one-third magnetization plateau [81] was observed and they discussed the existence of the
condensation of the magnon bound state [82]. Kapellasite Cu3Zn(OH)6Cl2 is one of the quantum
spin liquid compound which has non-trivial cuboc spin correlation [83]. Other studies on the
quantum Kagome antiferromagnet are reviewed in Ref. [84]. The Kagome antiferromagnet has
been therefore an intriguing field to explore the novel spin state.

1.5.2 Ground state of Kagome antiferromagnet

While the quantum Kagome antiferromagnet has been studied as a field of the quantum
spin liquid state, a classical Kagome antiferromagnet also have interesting characters. In the
classical Heisenberg Kagome antiferromagnet, the ground state is infinitely degenerated. At
zero temperature order-by-disorder mechanism induces a magnetic long-range order of the 120◦

structures with the enlarged
√
3×

√
3 unit cell [85] in Fig. 1.13(a). Various perturbations can also

lift the degeneracy of the ground states. In case of the Dzyaloshinskii-Moriya (DM) interaction
Dij · (Si × Sj) in which the DM vector Dij is on a mirror plane between the lattice points,
120◦ structures with k = 0 are selected [86]. The 120◦ structures exhibit positive vector chirality
in Fig. 1.13(b) and negative vector chirality in Fig. 1.13(c). In this thesis, the former and the
latter structures are named for DM(+) and DM(−)-type 120◦ structures, respectively. The
vector chirality is determined by the out-of-plane component of the DM vector Dz as indicated
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Figure 1.13 120◦ structures in Kagome lattice. The red arrows represented directions of
the spins. (a) 120◦ structure with the enlarged unit cell by

√
3 ×

√
3. (b) DM(+), (c)

DM(−), and (d) MDD-type 120◦ structure with the magnetic propagation vector of k = 0.

in Fig 1.13(b). In the DM(+)-type 120◦ structure, the easy-axis anisotropy is induced by its in-
plane component of the DM vector Dp as indicated in Fig 1.13(b). The MDD interaction selects
the 120◦ structure with the k = 0 exhibiting tail-chase geometry as shown in Fig. 1.13(d) [87].
It has positive vector chirality, and its direction of the easy-axis anisotropy is rotated by 90◦

from that of the DM(+)-type structure. It is named for MDD-type 120◦ structure. The second-
neighbor interaction selects the 120◦ structure with k = 0 for the antiferromagnetic case and
that with

√
3×

√
3 unit cell for the ferromagnetic case [88].

The magnetic structures of the Kagome antiferromagnet have been intensively investigated
by neutron diffraction experiment on many compounds. The DM(+)-type structure has
been reported in many cases; series of iron jarosite AFe3(SO4)2(OH)6 (A = K, Na, Ag, Rb,
NH4) [89, 90, 91, 92], chromium jarosite KCr3(SO4)2(OH)6 [93], and tripod-Kagome compound
Nd3Sb3Mg2O14 [94]. They may be caused by the coincidence between the direction of spins
and the magnetic easy-axis allowed by the crystallographic symmetry. The DM(−)-type 120◦

structure was observed in a couple semimetals Mn3Sn and Mn3Ge, which demonstrated a large
anomalous Hall effect [95]. The

√
3 ×

√
3 structure was found in the high pressure phase in

herbersmithite ZnCu3(OH)6Cl2 [96]. The 120◦ structure with the tail-chase geometry was
observed in quiternary oxalate compounds with Fe2+ ion so far [97, 98]. However, the magnetic
structure was attributed to a strong single-ion anisotropy not the MDD interaction. To our
knowledge thus the tail-chase structure originating from the MDD interaction has not been
observed by neutron diffraction yet.

1.5.3 Magnetic excitation of classical Kagome antiferromagnet

The classical Kagome antiferromagnet generates a macroscopic ground state degeneracy of
the 120◦. This macroscopic degeneracy of the 120◦ structure enables continuous arrangement
of spins, and it forms excitation modes of zero energy [99], which is called zero-energy mode.
Figure 1.14(a) shows schematic diagrams of the zero-energy mode. The two spins in a triangle
rotate about the direction of rest of the spin, and they keep the 120◦ configuration. This rotation
of the spins thus has no energy cost. In this mode, the spin wave mode is localized, i.e., the
flat spin wave band is generated. The zero-energy mode in the frustrated spin systems prevents
magnetic long-range order, even at T = 0.
The flat band has been recently attracted in other field not only in the geometrically frustrated

magnet. In fermionic systems, the flat band provides a variety of unconventional topological or-
ders [102, 103, 104]. Especially, the theoretical models for the fractional quantum Hall effect
has been intensively studied based on the flat topological band in Refs. [105, 106, 107], which is
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Figure 1.14 (a) Schematic of zero-energy mode in 120◦ structures. Red arrows indicate
spins. (b) Spin wave dispersion in KFe3(SO4)2(OH)6 [100]. (c) Spin wave dispersion in a
Kagome antiferromagnet with MDD interaction [101].

reviewed in Ref. [102]. Not limited to the fermionic flat bands, ones in bosonic systems exhibit
unusual phenomena. For example, the Kagome ferromagnet Cu[1,3-benzenedicarboxylate] exhib-
ited a flat band of spin wave excitation [108], which was the first material realizing an effectively
2D topological magnon insulator [109]. This material has been expected to exhibit a magnon
Hall effect [110, 111] and protected chiral edge modes [112]. Furthermore, it is expected that the
flat band can be responsible for unusual thermodynamics and transport properties even when
it is not a host for the exotic topological order. Therefore, investigation of the flat zero-energy
mode is an intriguing topic in condensed matter physics.

In real compounds for the Kagome antiferromagnet model, the zero-energy mode emerges in
an excited state lifted by additional terms including magnetic anisotropy and/or DM interaction.
The zero-energy mode in the Kagome antiferromagnet was observed in a potassium iron jarosite
KFe3(SO4)2(OH)6 by inelastic neutron scattering [100]. Figure 1.14(b) shows the spin wave
dispersion in KFe3(SO4)2(OH)6. They revealed through linear spin wave calculation that the
flat dispersion at 7 meV corresponds to the zero-energy mode which was lifted to the excited
state by DM interaction. Because of the small next neighbor exchange interaction, the flat mode
becomes a little dispersive.

Recent theoretical study reported that the Kagome antiferromagnet having the MDD inter-
action exhibited the zero-energy mode lifted to the excited state by the MDD interaction [101].
Figure 1.14(c) show a spin wave dispersion calculated by the linear spin wave theory in a model
having the nearest-neighbor exchange interaction and nearest-neighbor MDD interaction. The
flat zero-energy mode appears at the first excited state, which is different from the case of the
DM(+)-type 120◦ structure in KFe3(SO4)2(OH)6. In addition, it was showed that the zero-energy
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Figure 1.15 (a) Crystal structure of NaBa2Mn3F11 with the space group R3c. (b) Mn2+

and F− ions in a Kagome layer. (c) Interaction paths in the Kagome layer. Solid lines are
the nearest neighbor interaction J1. Thick and thin dashed lines are the second J2 and third
J3 neighbor interaction, respectively. (d) Linear perspective view of the Kagome layers.

mode is persistent in long-range MDD interactions [101]. To our knowledge, the zero-energy mode
in Kagome antiferromagnet was reported only in KFe3(SO4)2(OH)6 [100]. In particular, there
is no report of the zero-energy mode in the Kagome antiferromagnet with MDD interaction.
Further study on the zero-energy mode in different material is important.

1.5.4 Kagome-Triangular antiferromagnet NaBa2Mn3F11

NaBa2Mn3F11 is a model compound for the classical Kagome antiferromagnet [113]. Fig-
ure 1.15(a) shows the crystal structure of NaBa2Mn3F11 with the hexagonal symmetry and the
space group R3c. Magnetic Mn2+ ions carry spin S = 5/2, and a Kagome lattice is formed
by MnF7 pentagonal bipyramids in the crystallographic ab-plane as shown in Figs. 1.15(b) and
1.15(c). The exchange path of the nearest neighbor interaction J1 indicated by the solid line in
Fig. 1.15(c) is Mn-F-Mn. The Kagome lattice is seemingly distorted because the interior angles
of the hexagon in the Kagome lattice are shifted from 120◦. However, the length of the sides
and the angles of the Mn-F-Mn path are the same, which means that the magnitudes of the
nearest neighbor interactions are the same. Hence, when we consider only the nearest neighbor
interaction, the spin system is regarded as a regular Kagome lattice. The six Kagome layers are
stacked in the unit cell as shown in Fig. 1.15(d). The A, B, and C layers are related to the A′,
B′, and C ′ layers by the c-glide symmetry operation.
The exchange pathways of the second J2 and third J3 neighbor interactions are unusual. While

the path of the J2 indicated by the thick dashed line in Fig. 1.15(c) is Mn-F-Mn, that of the J3
indicated by the thin dashed line is Mn-F-F-Mn. Thus, the J3 is negligible compared with the
J2. The J1 and J2 network exhibits a unique lattice as shown in Fig. 1.16. The lattice becomes a
regular Kagome lattice when the J2 is zero. On the other hand, the lattice becomes an equivalent
with a triangular lattice when the J2 equals the J1. This means that the J2/J1 is a parameter
connecting Kagome and triangular lattices. Since the Kagome lattice in NaBa2Mn3F11 is an
intermediate lattice between the Kagome and triangular lattices, the lattice is called Kagome-
Triangular lattice [114].
The heat capacity and magnetic susceptibility measurements have exhibited that an antifer-
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Figure 1.16 Schematic diagram of Kagome, Kagome-Triangular, and Triangular lattices.

romagnetic transition occurred at TN = 2 K [114], and the Curie-Weiss temperature θCW was
estimated to be −32 K. The frustration factor is f = |θCW|/TN = 16, which indicates an exis-
tence of the strong frustration. The Curie-Weiss temperature was smaller than those of most
Kagome lattice antiferromagnets [89, 90, 91, 92, 93, 94, 96]. Furthermore, bond angles of the
nearest neighbor exchange pathways are close to 90◦ rather than 180◦ as shown in Fig. 1.15(b).
This suggests that the J1 is weak antiferromagnetic or ferromagnetic based on the Goodenough-
Kanamori rules [115, 116]. The exchange interactions in NaBa2Mn3F11 are thus relatively small,
and the MDD interaction may be important compared with other perturbations such as the
second-neighbor exchange interaction and DM interaction. NaBa2Mn3F11 is a candidate com-
pound realizing a tail-chase geometry MDD-type 120◦ structure and showing the zero-energy
mode lifted by the MDD interaction.
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1.6 Work presented in this thesis
Spin systems with the quantum fluctuation and geometrical frustration have been good play-

grounds to explore novel phenomena. Investigating the static and dynamic spin states is of great
importance to elucidate the novel states. In this thesis, the static and dynamic properties in
the quantum spin system and geometrically frustrated spin system are examined. The static
and dynamic information are directly obtained by neutron scattering technique. The projects
presented in this thesis are outlined below.

1.6.1 CsFeCl3

The quantum phase transition has attracted great interest for the condensed matter physics
because the exotic phenomenon occurs in the vicinity of the quantum critical point. According
to quantum field theory, the collective excitation in the ordered phase is expressed by the fluc-
tuations of the phase and amplitude of the order parameter. The phase and amplitude modes
correspond to the Nambu-Goldstone and Higgs modes, respectively. Since the Higgs mode is
strongly enhanced in the vicinity of the quantum critical point, it is an intriguing topic to inves-
tigate the Higgs mode in materials showing quantum phase transition.
CsFeCl3 is a singlet ground state magnet caused by a strong easy-plane magnetic anisotropy.

The Fe2+ ions carry pseudo-spin s = 1 at low temperatures and form a triangular lattice.
Pressure-induced quantum phase transition was exhibited by magnetic susceptibility measure-
ment under pressures. Thus, CsFeCl3 is a model compound for investigation of the pressure-
induced quantum phase transition in the easy-plane S = 1 antiferromagnet with the geometrical
frustration. In the vicinity of the quantum critical point, the enhanced Higgs mode is expected.
In addition, it is significant to verify a non-trivial effect of the geometrical frustration on the col-
lective excitation. To our knowledge, there has been no report on the quantum phase transition
in the frustrated spin systems.
To identify the static and dynamic spin states in the vicinity of the quantum critical point,

the magnetic structure in the ordered state and magnetic excitation on the both sides of the
quantum phase transition have been studied. Non-trivial collective excitation has been discussed
by combination of the experiment and calculation. Neutron diffraction under pressure is per-
formed at ZEBRA diffractometer in PSI, Switzerland. Magnetic excitation is measured at HRC
in J-PARC/MLF, Japan and CTAX spectrometer in ORNL, USA.

1.6.2 NaBa2Mn3F11

The geometrically frustrated spin system has been a major topic in condensed matter physics
since the competition of the spin interaction from the lattice geometry gives a macroscopic
degeneracy and unconventional magnetic states at low temperatures. In real compounds, small
perturbations make the spin state drastically change at low energies, and a novel magnetic state is
induced. Thus, it is important to discuss perturbations in the geometrically frustrated magnets.
Recent theoretical study in the classical Kagome antiferromagnet proposed that the magnetic
dipole-dipole (MDD) interaction induced a 120◦ structure with a tail-chase geometry and a zero
energy mode in the excited state unlike an effect of DM interaction.
NaBa2Mn3F11 is the Kagome-Triangular antiferromagnet showing an antiferromagnetic order

at TN = 2 K. Because of its small Curie-Weiss temperature of −32 K, the exchange interaction
is weak compared with other Kagome antiferromagnets. This implies that the MDD interaction
is more important than other perturbations such as the second-neighbor exchange interaction
and DM interaction to determine the magnetic state. Thus, it is expected to observe the 120◦

structure with tail-chase geometry and the zero-energy mode.
In order to verify the tail-chase 120◦ structure and zero-energy mode for the classical Kagome
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antiferromagnet with the MDD interaction, the magnetic structure and spin dynamics in
NaBa2Mn3F11 have been investigated. The spin model including the MDD interaction has
been discussed. The magnetic structure is identified by powder neutron diffraction experiment
performed at ECHIDNA diffractometer in ANSTO, Australia, and WISH diffractometer in ISIS,
UK. The magnetic excitation is measured by inelastic neutron scattering technique at IN6 in
ILL, France.
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Chapter 2

Neutron Scattering

The neutron discovered by J. Chadwick in 1932, who was awarded the Nobel Prize in Physics
1935, is one of elementary particles as well as proton and electron. The neutron scattering
technique was established by C. G. Shull and B. N. Brockhouse. They were awarded the Nobel
Prize in Physics 1994 for their pioneering work on the neutron scattering techniques. The neutron
scattering technique has following features:

1. Since the de Broglie wavelength of the neuron is same extent as a distance between atoms
in a material, we can study the structure of the material using interference effect between
the neutron and the material.

2. Neutron deeply penetrates inside the material because it has no charge and is not influenced
by the Coulomb potential in the material. This easily enables us to investigate bulk
properties in the materials.

3. Unlike the X-ray, the neutron scatters with an element having the small number of electrons
such as hydrogen due to nuclear scattering. Thus, we can measure scatterings from the
light atom.

4. Since the neutron has spin half, a magnetic scattering with magnetic materials occurs.
From the magnetic scattering, we can study an arrangement of the spin and magnetic
dynamics in the magnetic materials.

5. Energy scale of the thermal neutron is same extent as various excited energies in solid
materials such as lattice vibration and magnetic excitation. Thus, neutron can easily
cause inelastic scattering.

Nowadays, the neutron scattering experiment is performed in various field such as soft-matter
and life science not only in the solid material.
In this thesis, the magnetic materials are investigated. The neutron scattering technique is hence
very effective method to obtain the magnetic information.

2.1 Neutron scattering theory

A theoretical treatment of the neutron scattering is given in many textbooks such as Refs. [117,
118]. Here we denote a general expression of cross-section of the scattering process. It is consid-
ered that a neutron with a mass of mn is scattered by a scattering system. When wavevectors
and energies of the neutron at initial and final states are k, k′ and E, E′ in Fig. 2.1, the partial
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Figure 2.1 Geometry for scattering experiment.

differential cross-section is(
d2σ

dΩdE′

)
λ→λ′

=
k′

k

( mn

2πℏ2
)2 ∣∣⟨k′λ′|V |kλ⟩

∣∣2 δ (Eλ − Eλ′ + E − E′) , (2.1)

where Eλ and Eλ′ are energies at initial λ and final states λ′ of the scattering system, and V is
a potential of an interaction between the neutron and the scattering system. From conservation
of the momentum and energy during the scattering process,

Q = k − k′, (2.2)

ℏω ≡ E − E′ = Eλ′ − Eλ, (2.3)

where ℏQ and ℏω are the momentum and energy transfers, respectively. In an actual experiment,
we measure all processes in which the scattering system goes from a state λ to another state
λ′. To obtain this quantity, we sum Eq. (2.1) over all final states λ′, and average over all initial
state λ. If the temperature of the scattering system is T , the probability pλ that is the scattering
system is in the state λ is given by the Boltzmann distribution as follow:

pλ =
1

Z
exp(−Eλβ), (2.4)

where
Z =

∑
λ

exp(−Eλβ), (2.5)

and

β =
1

kBT
. (2.6)

Z is the partition function. From Eqs. (2.1) and (2.4), we have

d2σ

dΩdE′ =
k′

k

( mn

2πℏ2
)2∑

λ,λ′

pλ
∣∣⟨k′λ′|V |kλ⟩

∣∣2 δ (Eλ − Eλ′ + E − E′) , (2.7)

The differential cross-section for unpolarized neutrons can be separated into the coherent and
incoherent parts,

d2σ

dΩdE′ =

(
d2σ

dΩdE′

)
coh

+

(
d2σ

dΩdE′

)
inc

. (2.8)
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In general, we can obtain information on elastic Bragg scattering and inelastic scattering by
phonon or magnon from the coherent scattering. On the other hand, the incoherent scattering
provides the time correlations of the individual atoms. In the present section, the expressions
of the cross-sections from the coherent scattering due to nuclear and magnetic scatterings are
derived.

2.1.1 Nuclear scattering

When the position vector of the jth nucleus and that of the neutron represent Rj (j =
1, . . . , N) and r, the potential energy V for the whole scattering system is expressed by

V =
∑
j

Vj(r −Rj), (2.9)

where Vj is the potential energy of the interaction between the jth nucleus and neutron. From
this we have

⟨k′λ′|V |kλ⟩ =
∑
j

Vj(Q) ⟨λ′| exp(iQ ·Rj), |λ⟩ (2.10)

Vj(Q) =

∫
dxjV (xj) exp(iQ · xj). (2.11)

Since the strong force acts over very short distances, the nuclear potential for each atom is
approximated by a Fermi pseudo-potential as,

Vj(xj) =
2πℏ2

mn
bjδ(xj), (2.12)

where bj is the scattering length for the jth nucleus. In addition, we have

Vj(Q) =
2πℏ2

mn
bj . (2.13)

From Eqs. (2.7), (2.10), and (2.13), the cross-section is represented by

d2σ

dΩdE′ =
k′

k

∑
λ,λ′

pλ

∣∣∣∣∣∣
∑
j

bj ⟨λ′| exp(iQ ·Rj) |λ⟩

∣∣∣∣∣∣
2

δ (Eλ − Eλ′ + E − E′) . (2.14)

Here we use the following expressions:

δ (Eλ − Eλ′ + ℏω) =
1

2πℏ

∫ ∞

−∞
dt exp

{
i
(Eλ′ − Eλ)

ℏ
t

}
exp(−iωt), (2.15)

exp (−iHt/ℏ) |λ⟩ = exp (−iEλt/ℏ) |λ⟩ , (2.16)

where ℏω = E − E′, and H is the Hamiltonian of the scattering system.
Eq. (2.14) is represented as

d2σ

dΩdE′ =
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
exp(−iωt)

∑
λ

pλ

×⟨λ| exp (−iQ ·Rj′) exp(iHt/ℏ) exp (−iQ ·Rj) exp(−iHt/ℏ) |λ⟩

=
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
exp(−iωt)

∑
λ

pλ ⟨λ| exp {−iQ ·Rj′(0)} exp {−iQ ·Rj(t)} |λ⟩ .

(2.17)
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We define the thermal average of the operator A as follow:

⟨A⟩ =
∑
λ

pλ ⟨λ|A |λ⟩ . (2.18)

Hence, the cross-section is represented by

d2σ

dΩdE′ =
k′

k

1

2πℏ
∑
j,j′

bjbj′

∫ ∞

−∞
dt ⟨exp {−iQ ·Rj′(0)} exp {iQ ·Rj(t)}⟩ exp(−iωt). (2.19)

Let us denote the cross-section of the nuclear scattering for crystalline solids. We consider
only the coherent scattering for the simplicity, and the coherent scattering length is expressed
by bj . For the crystalline solids, a lattice vector l and a reciprocal lattice vector τ are defined
as follow:

l = l1a1 + l2a2 + l3a3, (li : integer) (2.20)

τ = τ1b1 + τ2b2 + τ3b3, (τi : integer) (2.21)

b1 =
2π

v0
(a2 × a3), b2 =

2π

v0
(a3 × a1), b3 =

2π

v0
(a1 × a2), (2.22)

v0 = a1 · (a2 × a3), (2.23)

ai · bj = 2πδij . (2.24)

At a time t, the d-th nucleus position Rld(t) in a unit cell l is expressed by

Rld(t) = l+ d+ uld(t), (2.25)

where uld(t) is a displacement vector by thermal motion. From this, the cross-section of the
coherent scattering in Eq. (2.19) is expressed as

d2σ

dΩdE′ =
k′

k

1

2πℏ
∑
ld

∑
l′d′

bd bd′ exp
{
iQ · (ld − l′d′)

}
×
∫ ∞

−∞
dt ⟨exp {−iQ · ul′d′(0)} exp {iQ · uld(t)}⟩ exp(−iωt). (2.26)

Here we use the following relation:

⟨expU expV ⟩ = exp

{
1

2

⟨
U2 + V 2

⟩}
exp ⟨UV ⟩ . (2.27)

Then we have

⟨exp {−iQ · ul′d′(0)} exp {iQ · uld(t)}⟩ = exp
⟨
−{Q · ul′d′(0)}2

⟩
exp ⟨−iQ · {ul′d′(0)− uld(t)}⟩ ,

(2.28)
where it is assumed that the thermal average of the square of the displacement does not depend
on the time:

exp
⟨
−{Q · ul′d′(0)}2

⟩
= exp

⟨
−{Q · uld(t)}2

⟩
. (2.29)

Then the cross-section is represented as follow:

d2σ

dΩdE′ =
k′

k

1

2πℏ
∑
ld

∑
l′d′

bd bd′ exp
{
iQ · (ld − l′d′)

}
exp

⟨
−{Q · ul′d′(0)}2

⟩
×
∫ ∞

−∞
dt exp ⟨−iQ · {ul′d′(0)− uld(t)}⟩ exp(−iωt). (2.30)
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Next we consider the elastic scattering (E = E′). For the elastic scattering, the displacement
factor is expressed by

exp ⟨−iQ · {ul′d′(0)− uld(t)}⟩ = 1. (2.31)

The cross-section for the elastic scattering is(
d2σ

dΩ

)
el

=
k′

k

1

2πℏ
∑
ld

∑
l′d′

bd bd′ exp
{
iQ · (ld − l′d′)

}
exp

⟨
−{Q · ul′d′}2

⟩
=
∑
ld

∑
l′d′

bd bd′ exp
{
iQ · (l− l′)

}
exp

{
iQ · (d− d′)

}
exp

⟨
−{κ · ul′d′}2

⟩
= N

∑
l

exp {iQ · l}
∑
d,d′

bd bd′ exp
{
iQ · (d− d′)

}
exp

⟨
−{Q · ul′d′}2

⟩

= N
∑
l

exp {iQ · l}

∣∣∣∣∣∑
d

bd exp(iQ · d) exp(−Wd)

∣∣∣∣∣
2

, (2.32)

where

exp(−Wd) =
1

2

⟨
{Q · uld}2

⟩
(2.33)

is the Debye-Waller factor due to the thermal motion. In addition, we use the Fourier transfor-
mation of the lattice vector l∑

l

exp(iQ · l) = (2π)3

v0

∑
τ

δ(Q− τ ), (2.34)

where τ is the reciprocal lattice vector.
Therefore the coherent cross-section is(

d2σ

dΩ

)
el

= N
(2π)3

v0

∑
τ

δ(Q− τ ) |FN(Q)|2 , (2.35)

FN(Q) =
∑
d

bd exp(iQ · d) exp(−Wd). (2.36)

FN(Q) is known as the nuclear unit-cell structure factor. Eq. (2.35) provides that the scattering
occurs only when Q = τ . This condition is the same as Bragg’s law for X-ray scattering.

2.1.2 Magnetic scattering

The neutron has a magnetic moment of the spin half, which means that neutrons interact
with a magnetic moment in a material. An elastic scattering from this interaction gives static
information such as an arrangement of the magnetic moment. An inelastic magnetic scattering
gives dynamical information such as spin wave excitation. Historically, C. G. Shull et al. reported
the analysis of the magnetic structure on MnO by the neutron diffraction experiment for the first
time in 1949 [119]. B. N. Brockhouse reported the observation of the spin wave excitation on
Fe3O4 by the inelastic neutron scattering experiment [120]. One of advantages of the magnetic
scattering by neutrons is that magnetic information in a material is directly observed without
influence of the charge of electron showing magnetic property. Thus, the neutron scattering
technique is an essential experimental method to study magnetism today.

The magnetic dipole moment of the neutron is

µn = −γµNσ, (γ = 1.913) (2.37)



36 Chapter 2 Neutron Scattering

where

µN =
eℏ
2mn

(2.38)

is the nuclear magneton. e is an elementary charge. σ is the Pauli spin operator for the neutron.
An electron with magnetic dipole moment µe = −2µBs and momentum p are considered. The

magnetic fields at a point R from the electron due to µe and p are respectively

BS = rot

(
µ0

4π

µe × R̂

R2

)
, (2.39)

BL = −µ0

4π

2µB

ℏ
p× R̂

R2
, (2.40)

where R̂ is a unit vector in the direction of R. The potential energy of the neutron with the
magnetic dipole moment µn in these fields is represented by

Vm = −µn · (BS +BL) = −µ0

4π
γµN2µBσ · (W S +WL)

= −γr0
ℏ2

2mn
σ · (W S +WL) (2.41)

where

r0 =
µ0

4π

e2

me
, (2.42)

W S = rot

(
s× R̂

R2

)
, (2.43)

WL =
1

ℏ
p× R̂

R2
. (2.44)

The r0 is known as the classical radius of the electron. W S and WL are contributions from the
spin and orbital of the electron, respectively.
The cross-section including the neutron spin state σ is represented as follow:

d2σ

dΩdE′ =
k′

k

( mn

2πℏ2
)2∑

σ,σ′

∑
λ,λ′

pσpλ
∣∣⟨k′σ′λ′|Vm |kσλ⟩

∣∣2 δ (Eλ − Eλ′ + ℏω) , (2.45)

where pσ is the probability that the neutron is initially in the state σ. From the potential energy
Eq. (2.41), the cross-section is calculated by the magnetic scattering. The Fourier transform of
the matrix element ⟨k′|Vm |k⟩ can be found to be

⟨k′|Vm |k⟩ = γr0
2πℏ2

mn

1

2µB
σ ·M⊥(Q), (2.46)

where

M⊥(Q) = Q̂× (M(Q)× Q̂) (2.47)

= −2µB

∑
j

exp(iQ · rj)
{
Q̂× (sj × Q̂) +

i

ℏQ
(pj × Q̂)

}
. (2.48)

From Eq. (2.46), the cross-section Eq. (2.45) is

d2σ

dΩdE′ =

(
γr0
2µB

)2
k′

k

∑
σ,σ′

∑
λ,λ′

pσpλ |⟨σ′λ′|σ ·M⊥(Q) |σλ⟩|2 δ (Eλ − Eλ′ + ℏω) . (2.49)
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Since M⊥(Q) does not depend on the spin state of the neutron σ, the sum on σ and σ′ can be
calculated as follow:∑

σ,σ′

pσ |⟨σ′λ′|σ ·M⊥(Q) |σλ⟩|2

=
∑
σ,σ′

pσ
∑

α,β=x,y,z

⟨σ|σα |σ′⟩ ⟨σ′|σβ |σ⟩ ⟨λ|M†
⊥α(Q) |λ′⟩ ⟨λ′|M⊥β(Q) |λ⟩

=
∑
σ

pσ
∑
α,β

⟨σ|σασβ |σ⟩ ⟨λ|M†
⊥α(Q) |λ′⟩ ⟨λ′|M⊥β(Q) |λ⟩ .

For unpolarized incident neutrons, the sum of the σ becomes∑
σ

pσ ⟨σ|σασβ |σ⟩ =
{

1 (α = β)
0 (α ̸= β)

. (2.50)

From this, the cross-section Eq. (2.49) is represented as follow:

d2σ

dΩdE′ =

(
γr0
2µB

)2
k′

k

∑
λ,λ′

pλ |⟨λ′|M⊥(Q) |λ⟩|2 δ (Eλ − Eλ′ + ℏω) . (2.51)

It is useful to septate the cross-section to the elastic and inelastic parts as follow:

d2σ

dΩdE′ =

(
γr0
2µB

)2
k′

k

[
|⟨M⊥(Q)⟩|2 δ (ℏω) + S̃(Q, ω)

]
. (2.52)

|⟨M⊥(Q)⟩|2 is the elastic part giving static information such as a magnetic structure. S̃(Q, ω)
is a dynamical structure factor without the static part which gives a dynamical information on a
magnetic excited state. Hereafter we shall evaluate the elastic and inelastic parts of the magnetic
scattering, respectively.

Elastic magnetic scattering
The cross-section of the elastic scattering is

dσ

dΩ
=

(
γr0
2µB

)2

|⟨M⊥(Q)⟩|2

=

(
γr0
2µB

)2 ∣∣∣Q̂×
(
⟨M(Q)⟩ × Q̂

)∣∣∣2 . (2.53)

Firstly the magnetic scattering with only the spin of the electron is considered. When the position
rj of a ν-th electron in a magnetic ion at the position Rld is

rj = Rld + rν , (2.54)

the operator M(Q) is represented as follow:

M(Q) = −2µB

∑
l,d

exp(iQ ·Rld)
∑
ν

exp(iQ · rν)sν . (2.55)

The unpaired electrons at the site Rld couple together, and the total spin operator Sd is the
quantum number. Since the neutron will not have enough energy to break down the coupled
unpaired electron at the site Rld, the state |λ⟩ in the scattering system depends on the total spin
Sld and the position of the nucleus. We can therefore write

⟨λ|M(Q) |λ⟩ = −2µB

∑
l,d

fd(Q) ⟨λ| exp(iQ ·Rld)Sld |λ⟩ , (2.56)
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Figure 2.2 Free-ion magnetic form factor for Fe2+ ion. The values of coefficients are taken
from Ref. [121].

where

fd(Q) =

∫
drŝd(r) exp(iQ · r). (2.57)

fd(Q) is the magnetic form factor which is defined as the Fourier transform of the normalized
spin density ŝd(r) associated with the magnetic ion at the site Rld. The magnetic form factor
Eq. (2.57) is conventionally approximated by a dipole moment as follow:

f(Q) = j0 = 4π

∫ ∞

0

r2drj0(Qr)ŝ(r), (2.58)

where jn(Qr) is a spherical Bessel function of order n.
Next the contribution from the orbital angular momentum WL is considered. The magnetic

form factor should be modified. Using the dipole approximation, the magnetic form factor having
the spin and orbital is represented as follow:

f(Q) =
gS
g
j0 +

gL
g

(
j0 + j2

)
, (2.59)

where

g = gS + gL, (2.60)

gS = 1 +
S(S + 1)− L(L+ 1)

J(J + 1)
,　 (2.61)

gL =
1

2
+

L(L+ 1)− S(S + 1)

2J(J + 1)
. (2.62)

For the d electrons of the transition metals and f electron of the rare-earth metal, the j0 and
j2 is conventionally approximated by analytical expressions [121]. In this approximation,

j0 = Aeas
2

+Bebs
2

+ Cecs
2

+D, (2.63)

j2 =
(
Aeas

2

+Bebs
2

+ Cecs
2

+D
)
s2, (2.64)
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where s = Q/4π = sin θ/λ, the neutron wavelength is denoted by λ and the scattering angle is
denoted by 2θ. Figure 2.2 shows a free-ion magnetic form factor for the Fe2+ ion as a function
of wavevector Q. The magnetic form factor f(Q) monotonically decreases with increase of the
Q, reflecting the real-space magnetic dipole moment decreasing away from the ion. In case of
the Fe2+ ion, the f(Q) is reduced to be 20 % of that at Q = 4 Å−1.

Using the magnetic form factor, Eq. (2.55) is represented as follow:

M(Q) = −2µB

∑
l,d

fd(Q) exp(iQ ·Rld)mld, (2.65)

where mld is a magnetic moment at the site Rld. In general, the magnetic structure is described
by a magnetic propagation vector km. The general expression of the magnetic moment at the
site Rld using the km is

mld =
∑
km

md,kmµd,km
exp(ikm · l), (2.66)

where md is the magnitude of the magnetic moment, and the µd,km
is the unit-vector of the

direction of the magnetic moment. In particular, when the magnetic structure is represented by
a single magnetic propagation vector, we can write

mld = md [µd exp(ikm · l) + µ∗
d exp(−ikm · l)] . (2.67)

The µd,−km
equals to µ∗

d,km
because mld is a real vector.

From Eqs. (2.65) and (2.67), we have the cross-section from the magnetic elastic scattering as
follow:

dσ

dΩ
=

(
γr0
2µB

)2 ∣∣∣Q̂×
(
⟨M(Q)⟩ × Q̂

)∣∣∣2
= (γr0)

2 (2π)
3

v0

∑
τ

∣∣∣Q̂×
(
FM(Q)× Q̂

)∣∣∣2 [δ (Q− τ + km) + δ (Q− τ − km)] , (2.68)

where
FM(Q) =

∑
d

fd(Q) ⟨md⟩µd exp(iQ · d)e−Wd . (2.69)

FM(Q) is known as the magnetic unit-cell structure factor, and Wd is the Debye-Waller factor.
⟨md⟩ is the thermal-averaged magnitude of the magnetic moment.

Eq. (2.68) shows that magnetic Bragg scattering occurs when

Q = τ ± km. (2.70)

Thus, the magnetic Bragg peak appears at satellite positions from the nuclear Bragg peak. The
neutron intensity of the magnetic Bragg peak depends on the ⟨md⟩. Since the ⟨md⟩ corresponds
to the order parameter, the ⟨md⟩ in a critical region is

⟨md⟩ ∼ |t|β , (2.71)

where t is (T − TC)/TC, and TC is a transition temperature. The β is a critical exponent.
Therefore, measurement of the temperature dependence of the magnetic Bragg peak is important
to discuss the criticality in the system.
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Inelastic magnetic scattering
Next we denote the cross-section including the inelastic scattering part. For the sake of the

simplicity, it is considered that the only spin contributes the magnetic scattering. Then Eq. (2.65)
is represented by

M(Q) = −2µB

∑
l,d

fd(Q) exp(iQ ·Rld)Sld, (2.72)

where Sld is a spin operator at the site Rld. From Eqs. (2.51) and (2.72), we can write

d2σ

dΩdE′ = (γr0)
2 k′

k

∑
λ,λ′

pλ

∣∣∣∣∣∣Q̂×

⟨λ′|
∑
l,d

fd(Q) exp(iQ ·Rld)Sld |λ⟩ × Q̂

∣∣∣∣∣∣
2

δ (Eλ − Eλ′ + ℏω)

= (γr0)
2 k′

k

∑
λ,λ′

pλ
∑
l,d

∑
l′,d′

fd(Q)f∗
d′(Q)

∑
α,β

(
δαβ − Q̂αQ̂β

)
×⟨λ| exp(−iQ ·Rld)S

α
ld |λ′⟩ ⟨λ′| exp(iQ ·Rld)S

β
ld |λ⟩ δ (Eλ − Eλ′ + ℏω) , (2.73)

where {α, β} = {x, y, z} are Cartesian coordinations of the spin operator. Unlike nuclear scat-

tering, the magnetic scattering contains a term (δαβ − Q̂αQ̂β). This term selects the component
of the magnetization which is perpendicular to the momentum transfer Q.
Considering the expression in Eq. (2.73), we use following relations:

δ (Eλ − Eλ′ + ℏω) =
1

2πℏ

∫ ∞

−∞
dt exp

{
i
(Eλ′ − Eλ)

ℏ
t

}
exp(−iωt), (2.74)

exp

(
iHt

ℏ

)
|λ⟩ = exp

(
iEλt

ℏ

)
|λ⟩ . (2.75)

The magnetic cross-section is represented as follow:

d2σ

dΩdE′ =
(γr0)

2

2πℏ
k′

k

∑
α,β

(
δαβ − Q̂αQ̂β

)∑
l,d

∑
l′,d′

fd(Q)f∗
d′(Q)

×
∫ ∞

−∞
dt
⟨
exp {−iQ ·Rl′d′(0)}Sα

l′d′(0) exp {iQ ·Rld(t)}Sβ
ld(t)

⟩
exp(−iωt). (2.76)

When the electron spins weakly affect the motion of the nuclei, the thermal average ⟨· · · ⟩ can
be separated to two parts. Considering only the spin fluctuation without the phonon, we have
for the magnetic cross-section

d2σ

dΩdE′ =
(γr0)

2

2πℏ
k′

k

∑
α,β

(
δαβ − Q̂αQ̂β

)∑
d,d′

fd(Q)f∗
d′(Q) exp(−Wd) exp(−Wd′)

×
∫ ∞

−∞
dt
⟨
Sα
d′(Q, 0)Sβ

d (−Q, t)
⟩
exp(−iωt). (2.77)

⟨
Sα
d′(Q, 0)Sβ

d (−Q, t)
⟩
is known as a spin-spin correlation function. Thus, the magnetic scattering

of the neutron scattering directly gives information on the magnetic correlation in the scattering
system.
The magnetic cross-section is denoted by the response function S(Q, ω) as follow:

S(Q, ω) =
∑
α,β

(
δαβ − Q̂αQ̂β

)
Sαβ(Q, ω), (2.78)
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Figure 2.3 Diagram of the principle of detailed balance.

where

Sαβ(Q, ω) =
1

2πℏ
∑
d,d′

fd(Q)f∗
d′(Q) exp(−Wd) exp(−Wd′)

×
∫ ∞

−∞
dt
⟨
Sα
d′(Q, 0)Sβ

d (−Q, t)
⟩
exp(−iωt). (2.79)

Consider a relation of the two scattering processes: the neutron loses and gain the energy by
the transition between two states λ and λ′, in which the energy Eλ′ is larger than the energy
Eλ as shown in Fig. 2.3. When the temperature T of the scattering system is stabilized by a
thermal bath in a realistic system, the process in which the neutron loses the energy more likely
occurs than that in which the neutron gains the energy. This is because that the two states λ
and λ′ are thermally populated. The proportion of the states λ and λ′ is determined by the
Boltzmann distribution e−ℏω/kBT . The response functions S(Q, ω) and S(−Q,−ω) are therefore
determined by the principle of detailed balance as follow:

S(Q, ω) = eℏω/kBTS(−Q,−ω). (2.80)

Furthermore, according to the fluctuation-dissipation theorem, the dynamical part of S(Q, ω)
relates to the imaginary part of the generalized susceptibility χ′′(Q, ω) by

S̃(Q, ω) =
1

π
[1 + n(ℏω)]χ′′(Q, ω), (2.81)

where n(ℏω) = [exp(ℏω/kBT )− 1]−1 is the Bose-Einstein distribution function. Thus, the tem-
perature dependence of the cross-section from inelastic scattering is proportional to the Bose-
Einstein distribution function.

2.2 Instrumentation
In this thesis, the neutron scattering experiments were performed in various facilities; Ma-

terials and Life Science Experimental Facility (MLF) at Japan Proton Accelerator Research
Complex (J-PARC) in Japan, High Flux Isotope Reactor (HFIR) at Oak Ridge National Labo-
ratory (ORNL) in USA, SINQ at Paul Scherrer Institut (PSI) in Switzerland, Open Pool Aus-
tralian Light water (OPAL) reactor at Australian Nuclear Science and Technology Organisa-
tion (ANSTO) in Australia, ISIS at Rutherford Appleton Laboratory (RAL) in UK, and Insitut
Laue-Langevin (ILL) in France. There we used various neutron scattering instruments; a powder
neutron diffractometer (ECHIDNA in ANSTO), time-of-flight (TOF) diffractometer (WISH in
ISIS), single-crystal diffractometer (ZEBRA in PSI), triple-axis spectrometer (CTAX in ORNL),
and TOF spectrometer (HRC in J-PARC/MLF, IN4C and IN6 in ILL). In the present section, the
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neutron scattering technique and instrumentations are explained. Detailed neutron scattering
technique is given in many textbooks such as Ref. [122].

2.2.1 Neutron sources

Neutrons are produced in various nuclear reactions including fission, photofission, spallation,
and fusion. For neutron scattering experiments, the neutrons are mostly provided by the fission
and spallation. The fission takes place using a nuclear research reactor, and is the most common
way to provide the neutrons. HFIR in ORNL, OPAL in ANSTO, and ILL correspond to the
nuclear research reactors. In a nuclear reactor fueled with uranium 235U, fission of the 235U
proceed as follow:

235U+ n −→ two fission fragments + 2.7n, (2.82)

where 2.7 fast neutrons on average are produced, and the nucleus is disintegrated into two fission
fragments. The produced neutron reacts with other uranium one after another, which is called
chian-reaction. The energy of the produced neutrons is ∼ 106 eV (1 MeV). When the neutrons
are used for the scattering experiments, its energy is reduced to be about ∼ 10−3 eV (1 meV)
using moderator such as light water and heavy water.
The spallation takes place by using accelarator-based sources. In the spallation process, a

nuclear reaction occurs when a high-energy particle such as a proton collides with a heavy atom
which is called a target. First, the high-energy proton hits to the nucleus of the target. It
causes an internal nucleon cascade within the excited-target nucleus. Then high-energy neutrons
are emitted and absorbed by other nuclei. After this, de-excitation of various target occurs
with emission of many low-energy neutrons, whose energies are ∼ 50 MeV. This process is
called evaporation. 3 % of the total neutrons is produced in the process of the cascade, which
means that the most neurons are produced through the evaporation process. In regard to the
accelerators, synchrotrons in J-PARC and ISIS provide pulsed neutron beams, and a cyclotron
in PSI provides a continuous neutron beam.

2.2.2 Neutron detection

Neutrons are detected using an ionization of secondary particles produced by a nuclear reaction
between neutrons and absorbing materials. The most common nuclear reactions used in the
neutron detection are

3He + n −→ 3H+ p + 0.8 MeV, (2.83)
10B+ n −→ 7Li + 4He + 2.3 MeV, (2.84)
6Li + n −→ 4He + 3He + 4.8 MeV, (2.85)
235U+ n −→ two fission fragments + 190 MeV. (2.86)

The first and second reactions are employed in gas detectors, the third one in scintillation detec-
tors and the last one in fission chambers for monitoring the incident beam.
The gas detector is constructed by enclosing the absorbing material such as 3He and 10BF3

in a cylindrical metal tube. In the 3He detector, for example, the proton and triton from the
nuclear reaction in Eq. (2.83) are ionized and collected by an anode wire at high voltage. It
causes a pulsed current and it is recorded. When the anode wire made of a resistive material
which is a glass fiber coated with a thin metallic layer, the gas detector can measure a position
of neutron detection in the tube as shown in Fig. 2.4(a). A neutron captured at the position
x along the tube produces a charge. The amplitude of the charge is measured at both ends of
the detector. Considering the resistance of the wire, the charge is divided in the ratio of the
distance x and 1−x and the position of the neutron is determined by the ration q1/q2 of the two
charge measurements. This technique realizes a position-sensitive detector (PSD). In early TOF
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Figure 2.4 (a) The resistive-wire, position sensitive detector. The charges measured by
the two amplifiers are q1 and q2, and x is given by x = q1/(q1 + q2). (b) Array of individual
detectors.

spectrometers, the many PSDs with long tubes are arrayed as shown in Fig. 2.4(b). It enables
us to assemble the data in wide space, simultaneously.

A scintillation detector is constructed by mixing a neutron absorbing material such as Li salt
and scintillator material such as ZnS. Initially, the burst of the light is emitted by absorption of
a neutron and ionization of secondary particles. Then the light is amplified by photomultiplier
and is recorded.

2.2.3 Monochromatic neutron and spectroscopy

For scattering experiments, it is necessary to select a specific neutron energy for the
monochromatization and spectroscopy. Conventionally, there are two methods to determine
the neutron energy; a crystal monochromator and mechanical chopper. The two techniques are
described below.

Crystal monochromator
The simplest method selecting a monochromatic neutron beam is provided by diffraction from

the single crystal. When neutrons are diffracted at a scattering plane with a plane-spacing d and
at a scattering angle 2θB, the neutron wavelength λ is determined by Bragg’s law

λ = 2d sin θB. (2.87)

From the Bragg reflection, a monochromatic neutron is obtained as shown in Fig. 2.5(a).
A crystal monochromator will also reflect neutrons with the wavelength λ/2, λ/3, . . . , which are

higher harmonic waves. The higher harmonic wave causes experimental noise and background.
In order to remove unwanted wavelength, a polycrystalline beam filter is usually used. Since
all orientations are present in a polycrystalline material, the all wavelengths are scattered in
satisfaction of the Bragg’s law. However, there is a maximum wavelength λmax beyond which
there is no Bragg reflection. The maximum wavelength is given by λmax = 2dmax, where dmax

is the maximum plane spacing in the material. This is known as the Bragg-cut-off wavelength.
The neutron having the wavelength beyond the λmax nearly transmits to the filter. The cut-
off wavelength depends on filter materials; a beryllium for the cold neutron and a pyrolitic
graphite (PG) for the thermal neutron. Thus, it can remove high-energy neutrons with the
higher harmonic wavelength.

As the beam flux in neutron scattering is limited, focusing techniques is important to increase
neutron count rates. Arrays of monochromator crystals which focus the neutron beam enable
us to gain more intensity than a single crystal. There are two focusing geometries: vertical and
horizontal. In vertical focusing, the scattering triangle ABC is rotated about the line AC, and



44 Chapter 2 Neutron Scattering

Figure 2.5 (a) Diagram of the monochromatization of the incident neutron by Bragg re-
flection. Diagram (b) shows vertical focusing array and (c) shows horizontal focusing.

Figure 2.6 Schematic diagrams of (a) Disc chopper and (b) Fermi chopper. (c) Diagram
of the TOF spectroscopy.

the crystals are stacked above and below the horizontal scattering plane as shown in Fig. 2.5(b).
In horizontal focusing, the point B is kept on the horizontal plane and the crystals are put along
the circumference as shown in Fig. 2.5(c).

Chopper and time-of-flight spectroscopy
The neutron velocity v is related to the wavelength λ through the de Broglie relationship as

follow:

λ =
h

mnv
, (2.88)

where h is the Planck constant and mn is the neutron mass. The velocity can be measured
by a TOF of the neutron when a distance is known. This means that the neutron energy is
selected and monochromated by the TOF. In order to select the neutron energy by its velocity,
a mechanical chopper is used. The chopper is slotted and rotated. The only neutron beam
which is timed to the slot can pass through the chopper. Consequently, the neutrons can be
monochromated and pulsed.
There are two types of the choppers; disk chopper and Fermi chopper. For the disk chopper,

the disk is slotted, and is rotated about the parallel direction to the incident beam as shown in
Fig. 2.6(a). The energy resolution for the chopper spectrometer depends on the width of the
incident neutron beam. The width of the pulsed neutron is determined by the time taken by
the slot in the chopper to transverse the neutron beam. In general, the energy resolution for
the single-disk chopper is not high. In order to realize high energy-resolution, the multiple-disk
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choppers are used. We can obtain the sharp-edged incident neutron by means of the multiple-disk
choppers.

For the Fermi chopper, the slots are cut across the diameter of the cylinder as shown in
Fig 2.6(b). The chopper is rotated about the perpendicular direction to the incident beam.
The Fermi chopper is more compact than the disk chopper. Consequently, the Fermi chopper
can be rotated faster than the disk one, and provide a shorter pulse width. In HRC and IN6
spectrometers, the Fermi choppers are used, and they realize the high energy-resolution.

By combination of the chopper and measurement of the TOF, the neutron velocity and energy
are analyzed. Figure 2.6(c) shows a schematic diagram of the TOF spectroscopy. The monochro-
matic neutron by the chopper is scattered with the sample and detected by detectors. Then the
detectors measure not only the detection position but also arrival time of the neutron from the
neutron production. Since the distance of the neutron flight path is fixed, the neutron velocity
and energy are given by the measurement of the neutron TOF.

2.2.4 Neutron diffractometer

When a Bragg reflection occurs at a scattering plane (hkl) or a plane-spacing d, a neutron
intensity I is a function of a scattering angle 2θ and a neutron wavelength λ because of the
Bragg’s law d = λ/2 sin θ. In addition, according to the de Broglie relationship Eq. (2.88), the λ
is represented by a neutron TOF t as follow:

λ =
h

mnL
t, (2.89)

where L is the total distance of the neutron flight path. Thus, neutron intensity I is a function
of 2θ, λ, or 2θ, t as follow:

I = I(2θ, λ) = I(2θ, t). (2.90)

In the diffraction experiment, the neutron intensity is measured by fixing the wavelength λ or
the scattering angle 2θ. A diffractometer in which the λ is fixed and the intensity is measured
as a function of the 2θ is called an angle-dispersive diffractometer, and that in which the 2θ
is fixed and the intensity measured as a function of the t is called a TOF (energy) dispersive
diffractometer.

ECHIDNA
ECHIDNA diffractometer installed at OPAL reactor in ANSTO, Australia, is the angle-

dispersive powder diffractometer [123]. Figure 2.7(a) shows the diagram of the ECHIDNA
diffractometer. An incident neutron beam is monochromated by a germanium single crystal.
The wavelength range of the monochromatic neutron is from 1 Å to 3 Å. The common germa-
nium Bragg reflections are (hhl) = (331), (335), (337). The scattered neutrons from the sample
are collected by 128 linear 3He gas PSDs of 25 mm diameter and 300 mm hight. In front of
the PSD, a 5′ collimator is inserted. The detectors array can move around the circumference
consisting of the scattering angle 2θ. Consequently, it enables to finely measure the 2θ of the
diffraction pattern.

WISH
WISH diffractometer installed in ISIS, UK, is the TOF dispersive diffractometer [124]. Fig-

ure 2.7(b) shows the diagram of the WISH diffractometer. To select bandwidth of the incident
neutron, two double-disk choppers and a single-disk chopper are used. The detector array is
consist of 3He gas PSDs of 8 mm diameter and 1 m hight in a range from 2θ = 10◦ to 170◦.
Owing to using a long-wavelength neutron and long neutron flight path, the WISH diffractometer
achieves the very high resolution of the plane spacing d. In a powder diffraction experiment,
the detector array is divided to 10 banks as shown in Fig. 2.7(b), and the collected data are
integrated at each bank.
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Figure 2.7 Diagrams of (a) a high resolution powder diffractometer ECHIDNA in ANSTO,
(b) a long-wavelength TOF diffractometer WISH in ISIS, and (c) a single crystal diffrac-
tometer ZEBRA in PSI.
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Figure 2.8 Schematic diagram of a triple-axis spectrometer. The neutron beam is shown
by the red line. The monochromator, sample stage, and analyzer are able to rotate to
obtain the required momentum and energy transfer.

ZEBRA
ZEBRA diffractometer installed at SINQ in PSI, Switzerland, is the angle dispersive single

crystal diffractometer. Diagram of the instrument is shown in Fig. 2.7(c). The incident neutron
is monochromated by vertical focusing monochromator of a germanium single crystal Ge (311)
(λ = 1.177 Å) or PG (002) (λ = 2.317 Å). The scattered neutron is detected by 1D 3He detector
or 2D 3He area detector of 160 mm × 160 mm. The position of the detector can be vertically
lifted in a range of ±15◦ from the horizontal plane. This enables us to measure out-of-plane
reflections.

2.2.5 Neutron spectrometer

In the inelastic neutron scattering (INS) experiment, the neutron intensity which we measure
is a function of the energy transfer ℏω and the momentum transfer ℏQ. There are two types
of the spectrometer; a triple-axis spectrometer and a TOF spectrometer. In the triple-axis
spectrometer, we have to choose a measuring point and information about the excitations is
obtained one-by-one in (Q, ω) space. In contrast, the TOF spectrometer with numerous detector
array gives an overview information of the excitations in a broad range of (Q, ω) space. Hereafter
these instruments are described.

Triple-axis-spectrometer
The triple-axis spectrometer (TAS) has been widely used to study dynamic properties such

as thermal excitation and magnetic excitation. The name TAS refers to the axes of the three
components of the instruments; the monochromator, the sample, and the analyzer. Figure 2.8 is
a schematic diagram of the TAS. The monochromator selects the energy of the incident neutron
from the white neutron beam emerging from the neutron source, and defines the wave vector
ki. The neutron having the ki is scattered with the sample. An access point in the reciprocal
space is determined by the scattering angle 2θ and the angle of the rotation of the sample ω.
The analyzer selects a particular final wave vector kf from the scattered neutron. In this way,
the neutron intensity in (Q, ω) is measured at one-by-one using TAS.
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Figure 2.9 (a) Schematic diagram of TAS measurement at constant Q and at a fixed final
wave vector kf . (b) Schematic diagram of direct-geometry TOF measurement.

A typical method to measure the inelastic scattering spectrum is a constant-Q scan. The
energy transfer ℏω is obtained by fixing incident energy Ei or final energy Ef at a constant.
Figure 2.9(a) shows the procedure for the measurement fixing the final energy Ef at a constant.
The energy scan is achieved by keeping kf while changing the angle 2θ and ω to keep Q at a
constant. Thus, the ki and kf move around a circular arc centered on the origin at Q.

CTAX
The CTAX is a cold neutron TAS installed at the CG4 guide tube of the High Flux Isotope

Reactor (HFIR) in Oak Ridge National Laboratory (ORNL), USA. The incident neutron is
monochromated by a vertically focusing monochromator PG (002), for which the energy range
of the incident neutron is 2-20 meV. The energy of the scattered neutron is also selected by an
analyzer PG (002), for which the lowest energy is 3 meV. Optionally, the analyzer can be set to
vertically and/or horizontally focusing geometry. The higher harmonic wavelengths is removed
by Be filter installed between the sample stage and analyzer as shown in Fig. 2.8.

Time-of-flight spectrometer
Time-of-flight (TOF) spectrometers are classified to two types; direct-geometry spectrometer

and indirect-geometry spectrometer. In the direct-geometry spectrometer, the incident energy
Ei is selected by a chopper, and the final energy Ef is measured by TOF. In the indirect-geometry
spectrometer, in contrast, the incident energy Ei is measured by TOF and the final energy Ef is
fixed by analyzer crystals. Since the direct-geometry TOF spectrometer was used in this thesis,
its technique is described.
Figure 2.10(a) shows a schematic diagram of the direct-geometry TOF spectrometer using a

pulsed neutron source. The white neutron beam provided by the spallation reaction is monochro-
mated by a disk chopper or Fermi chopper. Before monochromating the neutron beam, another
choppers are used to reduce the background, which is called T0 chopper. The monochromatic
neutron beam with ki is scattered with the sample. The detector array, which is usually PSDs
array, measures the detected position and TOF from the production of the pulsed neutron. The
range of the elastic and inelastic scattering measured in (Q, ω) space is shown in Fig. 2.9(b).
Rotating the sample enables to move the measured reciprocal space and gives data in a wide
range as a green region in Fig. 2.9(b).
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HRC
The High Resolution Chopper (HRC) spectrometer is a TOF spectrometer installed at a

spallation neutron source J-PARC/MLF in Japan [125, 126, 127]. Figure 2.10(b) illustrates HRC
spectrometer. The incident neutron is monochromated by a Fermi chopper after a background
chopper (T0 chopper) rotating with 50 Hz excludes a higher energy neutron. We can widely select
the incident neutron energy from 10 meV to 500 meV. The scattered neutrons are detected by
3He gas PSD array. The scattering angle is vertically 2θ = ±20◦ and horizontally 2θ < 60◦ (in
2017). The energy resolution is ∆E/Ei > 2.5 % at elastic position.

IN6
IN6 spectrometer is a cold neutron time-focusing TOF spectrometer installed at the High Flux

Reactor of the Institut Laue-Langevin (ILL) in France. IN6 spectrometer use a time focusing
technique unlike HRC spectrometer. In the time focusing technique, three intense neutrons
are extracted from white neutron beam by an assembly of three monochromators. Hence, each
monochromator selects a neutron beam of distinct energy and of distinct velocity caused by
different Bragg conditions. The three neutron beams are pulsed by a Fermi chopper. Then the
fastest neutron beam pass the chopper after the slowest one pass it. Consequently, pulses of
fast neutrons catch up with those of slower neutron after the chopper. This technique enables
to increase intensity by a factor of three which corresponds to the number of spectrometer.
Available wavelengths of the incident neutron are 4.1, 4.6, 5.1, 5.9 Å. A energy resolution at 5.1
Å is 70 µeV at elastic position. The scattered neutrons are detected by 3He gas PSD array. The
scattering angle is vertically 2θ = ±15◦ and horizontally 10◦ < 2θ < 115◦.

2.2.6 TAS vs TOF spectrometer

As mentioned above, it is advantage for TOF spectrometer to measure the neutron intensity
in the broad range of (Q, ω)-space owing to numerous detector arrays. Thus, we can obtain
an overview information of the excitation more efficiently than the TAS. In addition, inelastic
neutron scattering spectrum for a powder sample having a dispersive excitation can be easily
measured by the TOF spectrometer. The dispersive excitation of the powder sample usually
becomes a broad spectrum in (Q, ω)-space because the spectrum is powder-averaged.

In contrast, the TAS has an advantage to access a specific point in (Q, ω)-space. When we
measure a single point in (Q, ω)-space, the measurement efficiency of the TAS is better than that
of the TOF spectrometer. This enables TAS to easily measure a spectrum at a specific point
with varying external parameters such as temperature, magnetic field and pressure. The TAS is
suit to track a parameter evolution of the neutron spectra. In this study therefore we used both
types of spectrometers in response to purpose of the experiment.
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Figure 2.10 (a) Schematic diagram of a TOF chopper spectrometer. The neutron beam is
shown by the red line. (b) Schematic diagram of HRC spectrometer at J-PARC/MLF as
an example of a TOF instrument.
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Chapter 5

Concluding remarks and outlook

In this thesis, the spin systems have been investigated by means of the neutron scattering
technique. It has been demonstrated that the neutron scattering experiments provided direct
information on the magnetic state. We studied the two spin systems; the singlet ground state
magnet CsFeCl3 which occurs pressure-induced quantum phase transition, and the Kagome
antiferromagnet having the MDD interaction NaBa2Mn3F11. In the following, these studies are
summarized, and future works are proposed.

5.1 CsFeCl3
Work on the singlet ground state magnet CsFeCl3 has examined the pressure-induced magnetic

long-range order and unique collective spin excitations. In neutron diffraction experiment, the
pressure-induced magnetic long-range order of the 120◦ structure was evidenced by observation
of the magnetic Bragg peaks under pressure. The estimate of the critical exponent of the order
parameter indicated that the symmetry in the ordered phase belonged to U(1)×Z2 universality
class. This suggests that the chiral liquid state is realized in the vicinity of the quantum critical
point. In order to detect the chiral liquid phase, we propose to measure electric polarization and
dielectric permittivity under pressure for the future work. The information of the chiral order
emerges as the dielectric property for the magnetoelectric effect.

Inelastic neutron scattering experiment under pressures demonstrated the softening of the
magnetic excitation in the singlet phase. In the ordered phase, the unconventional collective ex-
citation was observed. The collective excitation in the ordered phase exhibited a continuum-like
gapless excitation and a well-defined excitation with the minimum energy of 0.6 meV. From the
spin wave calculation based on the bond operator theory, it was found that the gapless excita-
tion corresponded the conventional Nambu-Goldstone mode, and the well-defined excitation was
mainly described by the non-trivial mixed mode of the traverse and longitudinal fluctuations
(T+L-mode). It is found that the geometrical frustration causes the non-trivial T+L-mode since
the T+L-mode comes from the non-collinearity of the 120◦ structure. Although the spectrum of
the well-defined excitation may contain the Higgs mode, it was not clearly separated from the
T+L-mode. To clearly observe the Higgs mode, inelastic neutron scattering under pressure and
magnetic field is proposed. For the continuum-like gapless excitation, the calculation cannot ex-
plain the cause of the continuum spectrum. Since only the one-magnon excitation was calculated
in this study, consideration of further term such as two-magnon excitation is required for the
future work. Furthermore, we proposed to investigate the spin spectrum of RbFeCl3 in order to
verify the collective excitation in the ordered phase more in detail.

5.2 NaBa2Mn3F11
We have examined the magnetic structure and magnetic excitation in the Kagome antiferro-

magnet NaBa2Mn3F11 by the powder neutron diffraction and inelastic neutron scattering. Anal-
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ysis of the magnetic structure showed the multiple-k structure in which the 120◦ structure with
a tail-chase geometry is realized with modulated IC structure. The classical calculation of the
ground state in the Kagome-Triangular antiferromagnet including the magnetic dipole-dipole
(MDD) interaction up to fourth neighboring paths was performed. The calculation exhibited
that the MDD interaction solved the degeneracy of the ground state, and selected the tail-chase
geometry 120◦ structure.
In the inelastic neutron scattering experiment, the spin wave excitation including the dispersive

excitation and dispersionless excitation was observed. The calculated linear spin wave excitation
including the nearest neighbor exchange interaction and MDD interaction semi-quantitatively re-
produced the experimentally obtained spectrum. It was found that the energy position of the flat
zero-energy excitation was quantitatively described by the MDD interaction. From observation
of the zero-energy mode induced by the MDD interaction, it is concluded that NaBa2Mn3F11 is
a rare compound for the classical Kagome antiferromagnet having the MDD interaction. The
measurement of thermodynamics such as thermal conductivity would be interesting for the future
work since it is expected that the flat band excitation can be responsible for unusual thermody-
namics and transport properties in general.
In this study, the origin of the multiple-k state including IC structure has not been identi-

fied. In addition, the linear spin wave excitation for the minimal model does not reproduce the
experimental spectrum in detail. For the future work, detailed theoretical studies considering
further interaction including the interlayer interaction and/or the long-range MDD interaction
are required for understanding of the magnetic state in NaBa2Mn3F11.
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Appendix A

Linear spin wave theory on CsFeCl3

In the work on magnetic excitation of CsFeCl3, the magnetic excitation in the ordered phase
was compared with the linear spin wave dispersion. We hereafter denote a spin wave dispersion
based on the linear spin wave theory. The spin Hamiltonian of CsFeCl3 is represented by

H =
∑
i

∑
mi

D
(
Sz0
mi

)2
+
∑
i,j

∑
mi,nj

{
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(
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}
, (A.1)

where x0, y0 and z0 represent a global coordinate and mi is the i-th sublattice in the m-th unit
cell. J⊥ and J∥ are ferromagnetic intrachain interactions, and J⊥ and J∥ are antiferromagnetic
in-plane interactions. D is a single ion anisotropy and we set it positive to give an easy-plane
anisotropy.

Since the magnetic structure is 120◦ structure with a magneic propagation vector (1/3, 1/3, 0),
three sublattices are considered. Considering the 120◦ structure, the global coordinate
(Sx0

mi
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, Sz0
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) is transformed to a local coordinate as follow: Sx0
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, (A.2)

where θi are 0,±2π/3. From Holstein-Primakoff transformation, the spin operators are repre-
sented by 
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(
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) ,

where a†mi
and ami are bosonic creation-annihilation operators satisfying the commutation rela-

tion as [
ami , a

†
nj

]
= δ(mi − nj). (A.3)

Operator ai,q and a†i,q are introduced by the Fourier expansions:
ami =

1√
N

∑
q

eiq·miai,q

a†mi
=

1√
N

∑
q

e−iq·mia†i,q

. (A.4)
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Using Eqs. (A.2), (A.3) and (A.4), the Hamiltonian Eq. (A.1) is represented. In the calculation,
higher-order terms than the quadratic term of the bosonic operators are ignored for a linear
approximation. Firstly, the single-ion anisotropy term is represented as follow:∑
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(A.5)

Ntot is the total number of the magnetic ion.
Next, intra-chain interaction is calculated as follow:∑
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where θi = θj because the spins are ferromagnetic formed along the chain. Thus, the cos(θi−θj) =
1 and we have ∑
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This equation is expressed by the bosonic operators as follow:∑
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where ρii is a bond vector of the nearest neighbor interaction along the chain.
When a lattice unit vector a, b, c is used, the bond vector is given by ±c/2. Hence the sum of

ρii is given by

f(q) =
∑
ρii

e−iq·ρii = 2 cos(πl), (A.7)

where wave vector q is defined as a reciprocal lattice unit vector ha∗ + kb∗ + lc∗. Then the
intra-chain interaction is represented by
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i,qai,q + S(J⊥ + J∥)f(q)a

†
i,qai,q

+
S

2
(J⊥ − J∥) (ai,qai,−qf(q) + h.c.)

]
. (A.8)

Similary, the inter-chain interaction term is represented by∑
i,j

∑
mi,nj

{
J ′
⊥

(
Sx0
mi

Sx0
nj

+ Sy0
mi

Sy0
nj

)
+ J ′

∥S
z0
mi

Sz0
nj

}
=
∑
i,j

∑
mi,nj

[
J ′
⊥

{
(cos θiS

z
mi

+ sin θiS
x
mi

)(cos θjS
z
nj

+ sin θjS
x
nj
)

+(− sin θiS
z
mi

+ cos θiS
x
mi

)(− sin θjS
z
nj

+ cos θjS
x
nj
)
}
+ J ′

∥S
y
mi

Sy
nj

]
=
∑
i,j

∑
mi,nj

{
J ′
⊥ cos(θi − θj)

(
Sz
mi

Sz
nj

+ Sx
mi

Sx
nj

)
+ J ′

∥S
y
mi

Sy
nj

}
.
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Since the magnetic structure is the 120◦ structure, the spin configuration of the nearest neigh-
bor bond is θi − θj = ±2π/3. Thus, cos(θi − θj) = −1/2 and we have

∑
i,j

∑
mi,nj

{
−1

2
J ′
⊥

(
Sz
mi

Sz
nj

+ Sx
mi

Sx
nj

)
+ J ′

∥S
y
mi

Sy
nj

}
. (A.9)

This equation is expressed by the bosonic operators as follow:∑
i,j

∑
mi,nj

[
−J ′

⊥
S2

2
+ J ′

⊥
S

2
(a†mi

ami + a†nj
anj ) +

S

2

(
−1

2
J ′
⊥ + J ′

∥

)
(amia

†
nj

+ a†mi
anj )

+
S

2

(
−1

2
J ′
⊥ − J ′

∥

)
(amianj + a†mi

a†nj
)

]
= −J ′

⊥
S2

2
Ntot +

S

N

∑
i,j

∑
mi,nj

∑
q,q′

[
J ′
⊥a

†
i,qai,q′e

−i(q−q′)·mi

+

(
−1

2
J ′
⊥ + J ′

∥

)
a†i,qaj,q′e

−i(q−q′)·mie−iq′·(mi−nj)

+
1

2

(
−1

2
J ′
⊥ − J ′

∥

){
ai,qaj,q′e

i(q+q′)·mie−iq′·(mi−nj) + h.c.
}]

= −J ′
⊥
S2

2
Ntot +

∑
q

∑
i,j

∑
ρij

[
J ′
⊥Sa

†
i,qai,q + S

(
−1

2
J ′
⊥ + J ′

∥

)
a†i,qaj,qe

−iq·ρij

+
S

2

(
−1

2
J ′
⊥ − J ′

∥

)(
ai,qaj,−qe

−iq·ρij + h.c.
)]

, (A.10)

where ρij is a bond vector of the nearest neighbor inter-chain interaction.
The bond vectors are given by a, b,a+ b. Hence the sums of ρ12, ρ23 and ρ31 are represented

by

g(q) =
∑
ρ12

e−iq·ρ12 =
∑
ρ23

e−iq·ρ23 =
∑
ρ31

e−iq·ρ31

= exp(−2πih) + exp(−2πik) + exp(−2πi(h+ k)). (A.11)

Then the intra-chain interaction is represented by

−J ′
⊥
S2

2
Ntot +

∑
q

∑
i,j

[
3J ′

⊥Sa
†
i,qai,q + S

(
−1

2
J ′
⊥ + J ′

∥

)
g(q)a†i,qaj,qe

−iq·ρij

+
S

2

(
−1

2
J ′
⊥ − J ′

∥

)
(ai,qaj,−qg(q) + h.c.)

]
. (A.12)

The Hamiltonian Eq. (A.1) is represented as follow:

H =

(
S

2
D + S2J⊥ − S2

2
J ′
⊥

)
Ntot +

∑
q

S

∑
i,j

{(
D − 2J⊥ + (J⊥ + J∥)f(q)

)
δij

+

(
3J ′

⊥δij +

(
−1

2
J ′
⊥ + J ′

∥

)
g(q)(1− δij)

)}
a†i,qaj,q

+
1

2

∑
i,j

{(
−D + (J⊥ − J∥)f(q)

)
δij

+(1− δij)

(
−1

2
J ′
⊥ − J ′

∥

)
g(q)

}
ai,qaj,−q + h.c.

]
. (A.13)
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The only second term with q-depedence exhibits the spin wave excitation. When the constant
terms are ignored and 3×3 matricesA(q) andB(q) are introdued, the Hamiltonian is represented
by

H =
∑
q

∑
i,j

Ai,j(q)a
†
i (q)aj(q) +

1

2

∑
i,j

[
Bi,j(q)a

†
i (q)a

†
j(−q) + h.c.

] . (A.14)

In general, the eigenvalue equation of this Hamiltonian is given by

(A+B) (A−B)χτ (q) = ω(q)2χτ (q). (A.15)

Diagonalizing (A+B) (A−B), energy dispersions ω(q) are obtained, and τ indicates a label of
the nomal mode. In this calculation, since the three sublattices are considered, three spin wave
dispersions are obtained.
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