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Abstract	
 

Sampling conformations of protein complexes during association and dissociation 

processes is a crucial step to estimate the binding free energy and other kinetic 

properties from association/dissociation pathways. This is a challenging problem for 

the classical Molecular Dynamics (MD) simulation because the time scale of these 

processes exceeds the limit of current computation. Therefore, enhanced sampling 

techniques play an important role to generate sufficient data for the free energy analysis. 

For example, Steered Molecular Dynamics (SMD) with Umbrella Sampling (US) 

[Ramirez et al., Methods Enzymol. (2016)], Replica Exchange Umbrella Sampling 

(REUS) [Sugita et al., J. Chem. Phys (2000)], Targeted MD (TMD) [Schlitter et al., J. 

Mol. Graph. (1994)], Parallel Cascade Selection Molecular Dynamics (PaCS-MD) 

[Harada and Kitao, J. Chem Phys. (2011)] and other methods not listed here are used 

for this purpose. Recently, Yamashita and Fujitani showed that protein structures were 

distorted when dissociation of lysozyme (enzyme) and HyHEL-10 (inhibitor) was 

simulated by SMD using a steering force applied to the center of mass (COM) of the 

protein, which led overestimation of the potential of mean force (PMF) with the 

following US. This can be considered as the artifact caused by SMD. In contrast to 

SMD, PaCS-MD performs conformational sampling by cycles of distinct multiple 

Molecular Dynamics (MD) simulations without applying any bias force to the system. 

It enhances the sampling by selecting the MD snapshots closest to the destination state 

and by restarting the MD simulations from the selected snapshots with the velocity re-

randomization. PaCS-MD was shown to be very successful in efficient sampling of 

protein domain motions. Here in this thesis, we describe unbiased association and 

dissociation simulations by PaCS-MD. 

We first show that PaCS-MD dissociated a small ligand, tri-N-acetyl-D-

glucosamine (triNAG), from hen egg white lysozyme (LYZ) very efficiently. We 

performed PaCS-MD trials with 3 different simulation settings: PaCS-MD10,0.1 (ten 0.1 

ns MDs per cycle), PaCS-MD100,0.1 (hundred 0.1 ns MDs) and PaCS-MD10,1 (ten 1.0 ns 

MDs). We found that PaCS-MD is 5 times faster than SMD. In combination with 

Markov State Model (MSM), we calculated the binding free energy directly from the 



	 iii	

PaCS-MD trajectories. In comparison, binding free energy was also calculated by the 

analysis of SMD trajectories using the Jarzynski equality [Jarzynski., Phys. Rev. Lett. 

(1997)]. Although SMD/Jarzynski overestimated the binding free energy, PaCS-

MD/MSM yielded the results in good agreement with experimental results. We also 

examined the effects of the number of replicas, the length of each MD, the velocity re-

randomization, and the selection of snapshots on PaCS-MD sampling. We found that 

the increase of the number of replicas reduced the number of cycles required for 

dissociation because the probability of observing rare events is proportional to the 

number of replicas. The velocity re-randomization enhances the sampling in the bound 

state as it acts as a perturbation to raise the occurrence of rare events (dissociation). 

We next applied PaCS-MD to the dissociation of MDM2 protein and trans-

activation domain of p53 (TAD-p53). Binding free energy of MDM2/TAD-p53 

calculated by PaCS-MD/MSM was 40.5 ± 1.7	kJ/mol , which almost agrees with 

experimental value 37.7 ± 1.7. kcal/mol. Our result is more accurate than the value 

calculated by the MMGBSA method, 68.2	𝑘𝐽/𝑚𝑜𝑙 [Dastidar et al., JACS (2008)]. We 

found the calculated binding free energy for each trial is strongly dependent on the 

dissociation pathway of TAD-p53, which is related to the dissociation of the key 

residues PHE19 and TRP23 of TAD-p53 involved in π-π stacking interactions between 

TAD-p53 and MDM2. 

We also employed PaCS-MD for simulating association and dissociation process 

of MDM2/TAD-p53, which can be considered as a flexible-body docking simulation. 

We used the switching condition between the dissociation and association simulations 

as follows: if the association simulation does not make any progress for continuous 20 

ps, it will switch to the dissociation simulation. When the inter COM distance between 

MDM2 and TAD-p53 reaches 2.0 nm longer than the last switching point, the 

association simulation will start. We performed 274 cycles of PaCS-MD and examined 

whether generated structures of TAD-p53 and MDM2 complex are similar to the crystal 

complex structure and found that the minimum RMSD was 0.429 nm. In addition, TAD-

p53 could bind to the correct binding interface without the guiding force. We further 

examined 4 representative structures selected from all the bound conformations. 

Although the two key π-π stacking interactions were not formed in these structures, 
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residual contacts are in agreement with those in the crystal structure with the binding 

interface RMSD of 0.243 nm. To predict the bound conformation without prior-

knowledge of the crystal structure, we examined if the conformation similar to the 

correct bound conformation can be identified as the lowest free energy structure. We 

built MSM based on the trajectories of distance RMSD (dRMSD) from the initial 

conformation of MDM2/TAD-p53 in the unbound state and calculated the Potential of 

Mean Force (PMF). We found that dRMSD of the lowest PMF position was 4.21 nm, 

which the corresponding structure was identical to the structure with the lowest 

interface RMSD from the crystal structure. Therefore, we can select the best structure 

based on the calculated RMSD. 

In conclusion, PaCS-MD algorithm was shown to be an efficient unbiased 

enhanced sampling tool which can be applied to bio-molecular complexes and is highly 

suitable for distributed computing. Overall, PaCS-MD is faster in computational time 

than the other biased sampling techniques. We are currently making an effort to apply 

PaCS-MD for reducing total simulation time of flexible-body docking simulation. 
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1. The	importance	of	understanding	association	and	dissociation	events	of	
biomolecular	complex	

 

Association and dissociation of bio-molecular complexes play an important role in 

biological phenomena. For example, G Protein Coupled Receptor (GPCR) family, a 

seven transmembrane helices receptor, exists to be the communication channel between 

intra-cellular and extra-cellular environment. Upon binding of a ligands in the case of 

Adenosine A2A receptor, GPCRs changes to be in active-intermediate state, and later 

in a fully active state upon the association of G Proteins1. After being in fully active 

state, following cascade events will take place that makes the organism to adapt with 

the external signaling2. Specifically, when drinking coffee, caffeine ligands bind to 

Adenosine A2A receptor, a subtype of GPCR, and deactivate Adenosine A2A leading 

to the reduction of stress response3,4. As shown in this example, understanding the 

association and dissociation of bio-molecular complex is the crucial works for 

thoroughly understanding the given biological phenomena. 

It is obvious that there is a need for determining quantities to describe the strength 

of the binding in energy unit, e.g., “binding free energy”. For instance, let’s consider 

two biomolecules A and B that can bind to each other via a reaction as following: 

𝐴 + 𝐵
𝑘;<
⇄
𝑘;>>

𝐴𝐵 (1) 

Here we denote the so-called quantity the association rate constant 𝑘;< to describe the 

rate of binding of AB, and the dissociation rate constant 𝑘;>> to represent the separation 

rate of the two molecules A and B from their complex AB with the concentrations [A], 

[B], [AB] respectively. The reaction in (1) is in equilibrium only if the concentrations 

[AB] does not change in the vicinity of time as follow: 
?[AB]
?D

= 𝐴 . 𝐵 . 𝑘;< − 𝐴𝐵 . 𝑘;>> = 0  (2) 

Here, one can define the equilibrium association constant 𝐾H  or equilibrium 

dissociation constant 𝐾? as the fraction of 𝑘;< and 𝑘;>>. 
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𝐾? =
I
JK
=
ｋLMM

NLO
= A . B

AB
  (3) 

From equation (3), one can directly convert the equilibrium constant to the free energy 

difference via the following equation. 

∆𝐺 = − I
R
𝑙𝑛 𝐶U𝐾V = − I

R
𝑙𝑛 𝐶U/𝐾?  (4) 

in which 𝛽  is the thermodynamic temperature and 𝐶U  is the standard concentration 

which is equal to 1 M. 

Equations (3) and (4) show the relation between the concentrations of subtances in 

the samples and the binding free energy of the given complex. In experiment, the 

common method to determine the binding free energy is from the estimation of 

equilibrium constant such as Isothermal Titration Calorimetry (ITC)5, Surface Plasmon 

Resonance (SPR)6, flourescene quenching method7, and binding assay8,9. ITC 

experiment is the only and the most common method directly measuring the binding 

kinetics of a given bio-molecular complex5. ITC experiment measures the energy 

consumption to maintain the temperature in the sample cell and adiabatically identical 

reference cell while increasing the ligand concentration in sample cell. Although ITC is 

considered as high pricision method, the amount of sample used is high that limits the 

applicability of the methods to the protein complexes which is difficult to express 

massively. Moreover, the experimental methods to determine the binding free energy 

in general that cannot be done extensively due to the difficulty in experiment setup 

procedure. Therefore, computational methods for binding free energy computation are 

generally essential for the initial stage of the research i.e. bio-molecular interaction 

design in general speaking or computational drug design specifically. In addition, 

computational methods can provide additional information on structural and dynamic 

properties of the given biomolecular system, which requires enormous efforts in 

crystallography. Up to now, the extensive development of either computing resource, 

accuracy of calculation methods or parameters allow in silico experiment to reduce total 

budget for research in screening and structural optimization. 
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2. Classification	of	binding	free	energy	calculation	and	limitation	of	current	
methods	

 

Binding free energy calculation which has a long history of methodological 

development can be classified into four catalogues: thermodynamic integration, 

sampling based method, non-equilibrium dynamics and adaptive biasing technique 10. 

Thermodynamic integration is a widely-used method which takes an advantage of the 

adiabatic evolution of statistical average along reaction coordinates to calculate the 

binding free energy11. It can be defined as the total change of free energy from the 

unbound state A to the bound state B as in the following equation: 

∆𝐺 𝐴 → 𝐵 = YZ [
Y[

I
U 𝑑𝜆,  (5) 

in which 𝜆 is the coupling parameter of the given system. The change in 𝜆 adiabatically 

leads the system from state A to state B. In contrast, Zwanzig proposed the alchemical 

free energy perturbation which decomposes the free energy change into multiple 

intermediate steps12. Later free energy perturbation method was extended to reaction 

coordinate based methods including Umbrella Sampling13. The non-equilibrium 

dynamics method is generally based on the Jarzynski equality14. It describes the relation 

between the applied work to the system and its free energy change. Adaptive biasing 

dynamics monitors the reaction coordinates and prevents trap around free energy 

minima already explored by using the dynamics forces as in metadynamics15 and Wang-

Landau methods16. Overall, success of the above methods to accurately calculate 

binding free energy calculation17 depends on a) whether the chosen model Hamiltonian 

is suitable, b) whether the sampling is correct and sufficient, and c) whether the 

estimator for the free energy difference is appropriate. Basically, the consideration a) in 

term of the force fields has been much improved in last decades including AMBER18, 

GROMOS19, CHARMM20, and OPLS21 force fields. They yield reliable results which 

agree with experiments. Free energy calculations can be conducted by combinations of 

Steered Molecular Dynamics simulation with Umbrella Sampling (SMD/US) 22, MD 

with restraining potentials23–26, replica exchange umbrella sampling (REUS)27, and 

targeted MD (TMD)28 with US (TMD/US)29 and more not listed here. From the point 

of view for sampling classification, these methods are mostly based on the MD 
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simulation using biased force to accelerate sampling of dissociation or association in 

comparison to the non-biased MD. However, sampling of association process is 

difficult for free energy computation due to trapping of local minima of free energy 

landscape and the complexity of the binding pathways. Therefore, simulation of 

dissociation process is more suitable to estimate the binding free energy. 

The most popular approach by biased-MD-based methods is to incorporate SMD 

with US. In SMD/US, bias forces are used to generate ligand dissociation pathways in 

SMD by pulling the ligand through an artificial harmonic spring connecting the ligand 

and a particle which moves with constant velocity. After that, US explores the 

overlapped local conformational spaces which are sampled with multiple windows 

along the generated pathway by the SMD. The binding free energy is then obtained as 

the potential of mean force between the bound and unbound states. However, by 

applying the biased force to the system, the protein structures are distorted and stay in 

metastable states that cannot be recovered in US calculation29. In the case of lysozyme 

and HyHEL-10 complex, large structural distortion was avoided by using multi-step 

TMD29. Consequently, the dissociation pathway generated by SMD contains artifacts, 

especially for large or very flexible biomolecules with high degrees of freedom, which 

leads to the system unescapable from the metastable state leading to higher estimation 

of binding free energy. As a result, there is a need of alternative methods for binding 

free energy calculation to mimic the above problem. 
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3. Free	energy	calculation	without	using	any	biased	force	
 

Here we proposed to examined following features to improve the binding free energy 

computation. First, to overcome the above problems of sampling, we expected to obtain 

more natural pathways by unbiased simulation, which facilitate the estimation of 

binding free energy closer to the correct value than those obtained by the other scheme. 

In fact, association and dissociation of bio-molecular complex occurs as a rare event 

that spans up to second timescale30. Consider using CPU with dual core at 2.6 GHz, a 

typical time to reach to second timescale for capturing these rare event would generally 

take upper 1.4 million years30. Therefore, an enhanced sampling technique is 

prerequisite to  observe these rare event in computer simulation. For summary, there is 

a need of an unbiased enhanced sampling technique to simulate the dissociation and 

association of biomolecular complex. 

Recently, the Parallel Cascade Selection Molecular Dynamics (PaCS-MD) 

simulation was introduced as the method that satisfis these needs for unbiased sampling. 

PaCS-MD was first introduced in 2013 and was applied successfully to folding of 

chignolin protein and conformational transition of T4 lysozyme which captured rare 

events31. Folding time of chignolin protein was found to be 0.4	𝜇𝑠 or slower in classical 

MD simulation whilst that occured within 2 ns of PaCS-MD. Later, alternative version 

of PaCS-MD without prior knowledge of the target conformation i.e nontargeted PaCS-

MD (nt-PaCS-MD) was introduced32. In nt-PaCS-MD, the Gram-Schmidt 

orthogonalization is applied to select the significant conformations within the cycle. nt-

PaCS-MD was successful in obtaining the native state of chignolin, sampling the open-

closed transition of T4 lysozyme within nanosecond timescale. In addition, the so-called 

PaCS-Fit method, a derivative version of PaCS-MD, has successfully fit small-angle X-

ray scattering and electron microscopy data33.  

Selection in PaCS-MD is a key for acceleration in sampling which enhances the 

probability of transitions between microstates. The transition probability between 

microstates is very useful in building a transition matrix, a part of Markov State Model 

(MSM). From MSM, we can construct a kinetic model of our given system. Moreover, 

one can directly extract the equilibrium free energy difference via stationary 
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eigenvector of the transition matrix from MSM. Therefore, we hypothesized that we 

can calculate the binding free energy in agreement with experimental data, directly from 

the PaCS-MD trajectories, without additional sampling such as US. The total simulation 

time for obtaining binding free energy accordingly decreases compared to SMD/US. 

To examine this, we first carried out the protein/ligand dissociation simulation 

using PaCS-MD. We chose Lysozyme/triNAG complex to be the target due to the 

availability of preceeding computational and experimental results and the suitable 

system size as the first test case. Then, we extended the method to more difficult case, 

protein/peptide dissociation, which is MDM2 protein in complex with transactivation 

domain of p53. Next, we applied the PaCS-MD scheme to flexible protein-ligand 

docking. 
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1. Parallel	cascade	selection	molecular	dynamics	simulation	method	
 

PaCS-MD consists of cycles in which multiple independent parallel simulations are 

conducted, starting from selected initial configurations of given system without 

applying any bias to the system31. The simulation first starts with a single long MD 

simulation to generate inputs for the parallel simulations later. Here, 𝑛`ab is defined as 

the number of replicas of parallel simulations and 𝑡ded is the length of each simulation 

in each cycle. The selected snapshots of each cycle with any pre-defined selection 

criterion are then to be employed as starting structures for the next cycle, which is 

started with randomized initial velocities to obey the Maxwell-Boltzmann distribution. 

The procedure is repeated until the generated snapshots approach to a target. To 

generate dissociation pathways, we only used inter-center of mass (inter-COM) distance 

for the selection. In addtion, we also included the initial snapshots in ranking. Reactive 

trajectories are defined as the trajectories which connect the initial bound state and the 

final unbound state along dissociation pathways concatenated fragments of the selected 

MD trajectories31. An example of PaCS-MD is shown in Fig 1. After rank-ordering 

inter-COM distance in descending order, top 𝑛`ab snapshots are selected as the input 

coordinates for the MD simulation of the next cycle (the first table in the left-hand side 

of Fig 1). All of the generated snapshots in the next cycle are then rank-ordered and 

selected as shown in the  center table of Fig 1. The yellow highlights in Fig 1 show the 

survived snapshots that plays the role of links between cycles. One can see that not all 

the selected snapshots survived after a few cycles. In this thesis, we sample snapshots 

every 0.5 ps from the generated trajectories. 

Although proven to be a highly efficient unbiased enhanced sampling technique, 

the mechanism of acceleration in PaCS-MD has not been thoroughly examined yet. 

Moreover, how the 𝑡ded and 𝑛`ab affect the sampling effiency is still an open question 

in PaCS-MD. Generated trajectories in PaCS-MD are continuous in conformational 

space, however, dynamics in the reactive trajectories each short MD simulations in each 

cycle have not been examined yet. We will discuss these questions in detail in chapter 

3 of this thesis. 
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Fig 1. Illustration of Parallel Cascade Selection Molecular Dynamics simulation. Each table 

represents replica number (the first column), snapshot number (the second column), and 
inter-COM distance (the third column), in each cycle in PaCS-MD. The table only shows the 

selected snapshot after the ranking in each cycle. Yellow highlight shows the survived 
snapshot in PaCS-MD. 
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2. Markov	State	Model	in	combination	with	PaCS-MD	as	a	state-of-art	free	
energy	estimation	tool	

 

The MSM is a discrete-state stochastic kinetic model of the observed process and is a 

powerful tool to obtain insights for linking experimental and simulation data34,35. MSM 

solves the Master equation, in which kinetics is described by the rates of transition 

among N discrete states 36. The states here can be thousands to millions but should not 

be limited to a few states. Generally, there are four steps to build the MSM from MD 

trajectories: preparing dataset, building microstates, building the transition matrix, and 

validating the generated MSM.  

Datasets for building MSM can be obtained from MD simulation. To make use 

the computing resource and availability of memory, one may need to map the higher 

dimensional data generated as MD trajectories to lower dimensional space by principle 

component analysis (PCA)37, time-lagged independent component analysis (TICA)38–40 

or either the coarse-grained model. Next step is to assign the microstates. The processed 

dataset is then clustered into the microstates which provide transition rates between 

them in a kinetically meaningful manner36. In this thesis, we applied the k-means 

clustering41 to the inter-COM distance for determininig the microstates. The k-means 

clustering is a very fast clustering method using Lloyd’s algorithm42. It consists of four 

steps: first the cluster centroids are assigned randomly; second the distance between 

each datapoint and cluster centers (centroids) are calculated; third each datapoint is 

assigned to a cluster with the nearest centroids; fourth the new centroids are calculated 

and the procedure from second step to fourth step is repeated until convergence of 

centroids is achieved.  

Consider a system having a set of microstates 𝑆g  and a transition from microstate 

𝑆g to microstate 𝑆h is observed. After obtaining the microstates by using clustering, the 

transition matrix between the microstates 

𝑇 = {𝑇gh} = 𝑃 𝑥 𝑡 + 𝜏 ∈ 𝑆h|𝑥 𝑡 ∈ 𝑆g  (6) 

was estimated. Each matrix element 𝑇gh is calculated between a pair of microstates (𝑖 

and 𝑗)  with a predetermined lag time 𝜏 , using the maximum likelihood estimation 
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procedure described in the reference 43 by maximizing the likelihood probability ℒ 𝑇  

as followed. 

ℒ 𝑇 = 𝑃 𝑆|𝑇 = 𝑇vw,vwyz
{|}
D~U = 𝑇gh

���N
g,h   (7) 

In equation (6), 𝑥 𝑡  and 𝑥 𝑡 + 𝜏  represent the coordinates at time 𝑡  and 𝑡 + 𝜏 , 

respectively. To build a good MSM, the lagtime 𝜏 should be chosen with carefulness. 

The stationary probabilities of the microstates can be calculated as the eigenvector 𝑝 =

𝑝g 	of		𝑇. The equilibrium free energy of microstate 𝑖 can be obtained as − ln 𝑝g /𝛽 44.  

To build each MSM, we employed all the full MD trajectories generated by each 

trial of PaCS-MD, regardless of whether or not the snapshots of the trajectories are 

selected for the next cycle. It should be noted that the selected and non-selected 

trajectories together provide significant information to estimate transition probabilities 

between microstates. The obtained probabilities as a function of the inter-COM distance 

are averaged and shown in the result. We used MSMBuilder 3 for MSM45. 
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3. Steered	molecular	dynamics	in	combination	with	Jarzynski	equality	
 

SMD is an fast and direct methods to pull a ligand out of its binding pocket to obtain 

the dissociation pathway46. In SMD, a spring is used to stick one head to the center of 

mass on the ligand while the other head is sticked to the dummy atom that moves with 

a given constant velocity as shown in Fig 2. 

 

 
Fig 2. Velocity constant steered molecular dynamics simulation for pulling a ligand out of its complex 

with protein 

 

The effect of the spring attached to the ligand is described by a harmonic potential 

as in equation (8). 
I
�
𝑘 𝜉 𝑡 − 𝜆 𝑡 � (8) 

where k is the force constant of the spring, 𝜉 𝑡  is the inter-COM distance between LYZ 

and triNAG at SMD time 𝑡, and 𝜆 𝑡 = 𝜆U + 𝑣𝑡 is the distance between the COM of 

LYZ and the dummy atom (𝜆U  is the initial distance) and 𝑣 is the pulling velocity, 

respectively. In SMD, the ligand is pulled out from the binding site as in Atomic Force 

Microscope (AFM) experiment. Two deterministic parameters that lead to the success 

of SMD are the velocity of dummy atom or so-called pulling speed and the force 

constant of the spring. One may consider that the pulling speed can be the same as in 

AFM; However, it is impossible to reproduce experimental pulling speed because 

simulation time is a few orders shorter than the time spent in AFM. 

From SMD simulation of dissociation, one can directly estimate the binding free 

energy by simple but effective relation, the Jarzynski equality, as in equation (9)14. 

𝑒|R�Z = 𝑒|R�   (9) 
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𝑊U→D = −𝑘𝑣 𝑑𝑡′ 𝜉 𝑡′ − 𝜆 𝑡′D
U  (10) 

in which …  indicates the statistical average of the quantities. The simple relation 

in equation (9) implies that we can directly calculate the equilibrium information 

(binding free energy 𝛥𝐺) from the ensemble of non-equilibrium quantity (work acts on 

the system) that can be calculated from equation (10). 
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4. Weighted	Histogram	Analysis	Method	with	Umbrella	Sampling	
 

WHAM and US can be considered as an extension of free energy perturbation method13. 

In US, the Hamiltonian of a given system 𝐻U and a function 𝐻� is added with a coupling 

parameter 𝜆 and a modified potential V� in equation (11). 

𝐻[ 𝑥 = 𝜆g𝑉g 𝑥�
g~U   (11) 

where x is atomic coordinates and 𝜆U = 1. The unbiased system with 𝜆g = 0 is identical 

to the 𝐻U, and Therefore, the probability density 𝑃 [ 𝜉  due to the reaction coordinate 

ξ can be computed based on the simulation with Halmitonian H�13 is: 

𝑃 [ 𝜉 = 𝑒|R� � � = 𝛿 𝜉 − 𝜉(𝑥) [  (12) 

Then, the unbiased probability of the system where 𝜆 = 0 can be calculated via 

𝑃 U 𝜉 = � �

� �
𝛿 𝜉 − 𝜉 𝑥 𝑒R[��� ��

g~I [  (13) 

where Z is the partition function and 𝑉g 𝑥  is the restrained potential of the atomic 

coordinates with respect to the reaction coordinates. Based on Weighted Histogram 

Analysis Method, Kumar et al. derived the evolution of free energy with reaction 

coordinate via R simulations having 𝑛g of simulation i at the temperature 𝑇g = 1/𝑘B𝛽g, 

where 𝑘B is the Boltzmann constant13. 

∆𝐺g = −𝑙𝑛
a�b |R� [�,���,w

��
� �

<¡¢
¡ £ a�b >¡|R¡ [�,¡�

� � ��,w
�

<�
D~I

¤
N~I  (14) 

The procedure for calculating binding free energy using WHAM US can be 

summarized here. US calculates free energy from a probability distribution in 

equilibrium. Restrained MD simulations with the umbrella potential 𝑉 are conducted 

around different points along a reaction coordinate, here is inter-COM distance. In this 

work, 𝑉 was applied to the inter-COM distance d between protein and ligand along the 

dissociation pathway. The free energy profile 𝛥𝐺 𝑑  can be calculated by WHAM13. 
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1. Introduction	
	
In this work, we employed PaCS-MD31,47 to generate ligand dissociation pathways 

without applying force biases. We demonstrate that PaCS-MD can be used to simulate 

protein-ligand dissociation within tens of nanoseconds by employing a longer inter-

molecular distance as the target quantity for the selection of the initial structures without 

applying force bias. The dissociation pathways generated by PaCS-MD are comparable 

to those of SMD. The free energy change along the dissociation pathways is calculated 

by all trajectories obtained by PaCS-MD in combination with the Markov state model 

(MSM). For comparison, alternative combinations for free energy calculation are also 

employed such as PaCS-MD with US (denoted as PaCS-MD/US), SMD and US 

(denoted as SMD/US), and SMD and the Jarzynski equality (denoted as 

SMD/Jarzynski). 

We studied dissociation of tri-N-acetyl-D-glucosamine (triNAG) from hen egg 

white lysozyme (LYZ) as our target. LYZ has long been studied as the ideal protein of 

many studies due to its antibacterial property48. triNAG binds to a cleft between two 

domains: a domain consisting of α helices (α domain) and a β-rich domain (β domain). 

Both experimental and computational studies indicated that the cleft can afford six N-

acetyl-D-glucosamine (NAG) binding pockets from A to F, among of that, A-B-C is the 

main binding motif 49–52. Recently, Zhong & Pastel used a polarizable force field, 

together with molecular mechanics with generalized Born and surface area (MM-

GBSA), to investigate the A-B-C and B-C-D binding modes of triNAG to LYZ. 

However, neither of their models reproduced the binding free energy of the wild-type 

LYZ-triNAG complex53. The different of binding free energy is assumed coming from 

the neglecting of the contribution of the solvation free energy.  

In this study, we show that the main interactions between LYZ and triNAG in the 

bound state agree with those found in the crystal structure. In addition, our estimation 

of binding free energy of the LYZ-triNAG complex is in agreement with experimental 

and the other computational results. Moreover, the combination of PaCS-MD and MSM 

allows the more cost-effective and accurate evaluation of binding free energy. 
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2. Calculation	
 

We used the wide-type LYZ and triNAG (PDB ID: 1HEW) structure to genereate the 

simulation box. The initial box was 7.9094×7.66642×16.26561 nm3 along the x, y, and 

z-axes, respectively, to accommodate for the large dissociation movement of triNAG 

along the z-axis (Fig 3a). Initially, the inter-COM distance between LYZ and triNAG 

was directed parallel to the z-axis. To avoid significant overall translation and 

reorientation of LYZ during triNAG dissociation, weak positional restraints were 

applied to the sulfur atoms of the cysteine residues involved in the four disulfide bonds 

of LYZ during the final stage of equilibration (step 5; see next paragraph) and in the 

production runs. As shown in Fig 3a, this system size was chosen so that the distances 

between the outermost atoms of the complex and the box edges were at least 1.5, 1.5, 

and 5.5 nm along the x, y, and z-axes, respectively. The box was solvated with TIP3P 

water and NaCl to ensure ionic concentration of	0.15	𝑀 and charge neutrality. We used 

the AMBER99SB force-field18 for LYZ and the GLYCAM06 force-field54 for triNAG. 

All simulations were performed by GROMACS 5.0.555. 

Simulation procedure with timestep 1 fs is carried out as followed. 1) Systems is 

performed steepest descent energy minimization followed by conjugate gradient 

method with heavy atom positional restraints with force constant of 1000 kJ/mol nm2. 

2) NVT ensemble annealing simulation is used to heat the system up from 0 K to 300 

K within 500 ps, and thermostabilized at 300K for the next 500 ps. 3) Thermostabilizing 

simulation is switched to NPT ensemble for keeping pressure at 1.0 atm and temperature 

at 300K within 100 ps. Note that relaxation time of 0.1 ps for heat bath coupling and 

that of 2.0 ps for isotropic pressure coupling. 4) NPT ensemble equilibrium simulation 

continues for next 1 ns with the deduction of position restrained force constant 100 

kJ/mol nm2 every 100 ps until vanished. 5) For next 3.0 ns, simulation is carried out 

with positional restraints on the sulfur atoms of the cysteine residues (shown in yellow 

of Fig 3a). We used LINCS method to constrain the bond lengths56 and leap-frog 

integration method57 in steps 2-4, while velocity Verlet method58 without bond 

constraints was taken advantage in step 5. Thermostat was performed by velocity 

rescaling59 in steps 2-3 and a Nosé-Hoover method60,61 in steps 4-5, while the used 
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barostat was Berendsen barostat62 in step 3, a Parinello-Rahman barostat63 in step 4, and 

a MTTK barostat64 in step 5. 

 
Fig 3. Visualization of the simulation box in the initial state and the key amino acid residues of LYZ 
that interact with triNAG after equilibration. (a) Overall arrangement of the LYZ-triNAG complex 
and solvent in the simulation box and (b) a close-up view. The residues shown by yellow Licorice 

models are disulfide-bonded cysteine residues and the molecule represented as a multicolored 
Licorice model is triNAG. (c) A view along the z-axis to show the electrostatic potential on the LYZ 
surface (blue: positive charges, red: negative charges). triNAG is shown as a Licorice model. (d) 
LigPlot+ diagram to show the interactions between LYZ and triNAG. Hydrophobic contacts are 

represented as spline curves outlining residue labels and hydrogen bonds are shown as dotted lines 
together with hydrogen bond distances. (e) Positions of the LYZ residues involved in hydrogen bonds 
with triNAG in the binding pockets. Blue and red residue labels show the residues situated in the α 

and β domains, respectively. Panels (a-c,e) and (d) were created by VMD65 and LipPlot+66, 
respectively. 

 

3. Result	and	discussion	
	
3.1. Interactions between LYZ and triNAG in the Bound State and the Stability of 

the Complex 
	
Here we examine the interaction between LYZ and triNAG (Fig 3c and 3d)after 

performing relaxation simulation (step 5). The binding cleft of LYZ contains positively 

charged residues (ARG73 and ARG112), negatively charged residues (ASP52 and 
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ASP101), polar residues (GLN57, ASN59, and ASN103), and hydrophobic residues 

(LEU56, ILE58, TRP62, TRP63, LEU75, ILE98, ALA107, TRP108, and VAL109). It 

is interesting to note that negative charges (red in Fig 3c) are buried inside the binding 

cleft with the coverage of positive charges on the surface of LYZ (blue in Fig 3c) and 

hydrophobic residues. We found that within 1 µs conventional MD run, triNAG cannot 

dissociate from the complex of LYZ (as the RMSD and inter-COM distance (denoted 

as d) do not significantly change in Fig 4). In additions, Fig 4 shows inter-COM distance 

is stable while keeping long-lasting hydrogen bonds with ASN59, TRP62, TRP63, 

ASP101, ASN103, and ALA107 of LYZ, which is identical to the interaction in crystal 

structure PDB ID 1HEW50 and by the other computational studies51–53. Those residues 

play important role in catalysis, binding affinity, and stability67–70. 

  

 
Fig 4. RMSD and COM distance in 1µs conventional MD simulation of the LYZ and triNAG complex. 

 
Table 1. List of simulations and their conditions. 

Simulation 𝑛`ab / 𝑡ded  (ns) in 

PaCS-MD 

or 

𝑣 in SMD (nm/ns) 

# trials MD time to reach 

4 nm (ns)  

MSM  US  Jarzynski  

PaCS-MD10,0.1 10 / 0.1 10 3.5 ± 1.0  Y (5.42)  

PaCS-MD100,0.1 100 / 0.1 10 1.5 ± 0.2 Y (2.00)   

PaCS-MD10,1 10 / 1.0 10 24.6 ± 10.1 Y (2.67) Y (7.67)  

SMDfast 1.25 24 2.0 ± 0.1  Y (12.12) Y (0.12) 

SMDmed 0.25 12 9.8 ± 0.4  Y (6.28) Y (0.28) 

SMDslow 0.05 12 45.9 ± 9.3  Y(6.96) Y (0.96) 
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3.2. LYZ-triNAG Dissociation by PaCS-MD 
 

Although the LYZ-triNAG complex was stable during 1	𝜇𝑠, PaCS-MD can dissociate 

the complex very easily. We shows the time evolution of the largest inter-COM distance 

between LYZ and triNAG via the PaCS-MD simulation in Fig 5. For completing the 

dissociation of triNAG from LYZ (d > 4 nm), it costs on average over trials at 

34.8 ±10.3 (3.48 ns), 14.5±1.7 (1.45 ns), and 24.6±10.1 cycles (24.6 ns), and the 

simulations were stopped at 41.6±10.4, 20.2±2.5, and 27.6±10.5 cycles for PaCS-

MD10,0.1, PaCS-MD100,0.1, and PaCS-MD10,1, respectively, when d reached 7 nm (Fig 5 

and Table 1). Compared to PaCS-MD10,0.1, the number of cycles required for complete 

dissociation was reduced to 48.6 and 66.3% in PaCS-MD100,0.1 and PaCS-MD10,1, 

respectively. It is worthwhile to mention that although PaCS-MD100,0.1 and PaCS-

MD10,1 required the same computational resource per cycle, the sampling efficiency of 

PaCS-MD100,0.1 was higher than that of PaCS-MD10,1 because of the former’s fewer 

cycles to achieve complete dissociation. Moreover, the standard deviation of number of 

cycle of PaCS-MD100,0.1 is also smaller resulting in the smaller variation between 

simulation lengths required for trials, as noted in Fig 5. In addition, the mechanism of 

PaCS-MD allows the increment of the probability observing rare event via number of 

replicas 𝑛`ab due to restarting MD simulations. Therefore, we claim that the increment 

of  𝑛`ab is better for sampling than that of simulation length 𝑡ded. 

The dissociation process can be classified into three states: bound state, partially-

bound state and unbound state. The bound state is defined as one in which the inter-

COM distance increases slowly and almost linearly (the regions below the shaded 

regions in Fig 5). Next, the partially-bound state is defined as a state in which non-linear 

rapid increase of d occurs in which triNAG has few contacts left with LYZ (the shaded 

regions in Fig 5: 1.79 − 3.65, 1.73 − 3.39	, and 1.82 − 3.18	𝑛𝑚 for PaCS-MD10,0.1, 

PaCS-MD100,0.1, and PaCS-MD10,1, respectively). The unbound state is the regions 

above the shaded regions where d increases almost linearly and rapidly. We found that 

the average total number of cycles required for complete dissociation is mostly spent 

on the number of bound-state cycles, which were 24.1±11.2 (2.41 ns), 7.8±1.8 (0.78 

ns), and 17.7±9.5 (17.7 ns) for PaCS-MD10,0.1, PaCS-MD100,0.1, and PaCS-MD10,1, 
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respectively. We defined the cycle with no significant increase of d as ‘trapped’ cycles. 

It occurred 8.8 ± 8.4 and 6.6 ± 6.34 times on average in PaCS-MD10,0.1 and PaCS-

MD10,1, respectively, whereas there are no trapped cycles in PaCS-MD100,0.1. Traps 

mostly occurred in the bound and partially-bound states. The average number of 

continuous trapped cycles was 4.4 ± 2.3 and 3.8 ± 2.9 for PaCS-MD10,0.1 and PaCS-

MD10,1, respectively. This again indicates that PaCS-MD larger 𝑛`ab  increase the 

efficience of sampling.  

 
Fig 5. Evolution of the inter-COM distance between lysozyme and triNAG, d, in the top reactive 

trajectories during each PaCS-MD trial as a function of the number of cycles for (a) PaCS-MD10,0.1, 
(b) PaCS-MD100,0.1, and (c) PaCS-MD10,1. The meanings of the shaded regions are marked for the 

partially-bound state. 

 

For comparison with SMD pulling speed, we also estimate the movement speed 

of triNAG according to the dissociation process. In the unbound state, the average 

speeds of triNAG movement were 0.64 ± 0.08, 0.77 ± 0.16	 and 	1.56 ± 0.27 	𝑛𝑚/

𝑐𝑦𝑐𝑙𝑒 for PaCS-MD10,0.1, PaCS-MD100,0.1, and PaCS-MD10,1, which correspond to 6.4,

7.7	 and 	1.6 	𝑛𝑚/𝑛𝑠 , respectively. This speed in the PaCS-MD10,1 simulation was 

equivalent to the pulling velocity of SMDfast (1.25 	𝑛𝑚/𝑛𝑠), while those of PaCS-

MD10,0.1 and PaCS-MD100,0.1 were 5 times faster than the pulling velocity of SMDfast. 
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3.3. Effects of Velocity Re-randomization and Selection on triNAG Dissociation 
during PaCS-MD 

 

We examined diffusive properties during PaCS-MD by inspecting the self-diffusion 

constant 𝐷 by the Einstein relation: 

𝐷 = 𝑙𝑖𝑚D→ª
�`«(D)
¬D

  (15) 

Equation (15) implies that	𝐷 can be calculated by performing least squares fitting 

of the time evolution of mean square displacement (MSD) Δ𝑟�(𝑡)  to a straight line. 

We first calculated the effective diffusion in “reactive trajectories”, which were used 

for the initial structures for US. Due to different behavior of each states, they was 

analyzed separatedly. The obtained Δ𝑟�(𝑡) 		is shown in Fig 6. The self-diffusion 

constants in the unbound state, 𝐷¯<V;¯<?`aHdD. , were 6.6 ± 1.9 ×10|±𝑐𝑚�/𝑠 , 7.7 ±

1.2 ×10|±𝑐𝑚�/𝑠 , and 1.9 ± 0.8 ×10|±𝑐𝑚�/𝑠  for PaCS-MD10,0.1, PaCS-MD100,0.1, 

and PaCS-MD10,1, respectively, which indicates that shorter 𝑡ded (= 0.1 ns) accelerated 

effective diffusion more than threefold compared to 𝑡ded = 1 ns. The values of 𝐷¯<V;¯<?`aHdD.  

obtained from PaCS-MD simulations were significantly larger than triNAG’s free 

diffusion constant, 1.1 ± 0.5×10|±𝑐𝑚�/𝑠, confirming that PaCS-MD enhanced the 

effective diffusion constants of the unbound state. In addition, the reactive trajectories 

are continuous in conformational space but might be discontinuous in phase space. 

Hence, we can conclude that the velocity re-randomization causes perturbation of the 

reactive trajectories at each concatenating point in the trajectory. 

The length of the fragment of trajectories ∆𝑡>`H²  contributing to the reactive 

trajectories is also of interest. If ∆𝑡>`H²  is too short, the system might not relax 

sufficiently after velocity re-randomization. However, the ∆𝑡>`H²	values for PaCS-

MD10,0.1 and PaCS-MD10,1 were 79.2 ± 7.7 and 842.4 ± 122.8	𝑝𝑠, respectively, which 

are significantly longer than the safe limit exchange time interval 4	𝑝𝑠 in temperature 

REMD71. 
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Fig 6. Mean-square displacement (MSD) of triNAG calculated from the reactive trajectories for a) 

PaCS-MD10,0.1, b) PaCS-MD100,0.1 and c) PaCS-MD10,1. 

 
Fig 7. Distributions of the triNAG self-diffusion constants, Dbound (red), Dpartial (blue), and Dunbound 

(green) in (a) PaCS-MD10,0.1, (b) PaCS-MD100,0.1, (c, d) PaCS-MD10,1 shown as probability densities. 
The densities in (c) and (d) were calculated from entire 1 ns and the first 0.1 ns trajectories, 

respectively. Insets show each COM trajectory of triNAG around LYZ (white cartoon model) in 
different colors, depending on the values of the diffusion constant: blue (𝐷 ≤

0.5; 𝑎𝑙𝑙	𝑢𝑛𝑖𝑡𝑠	10|±	𝑐𝑚�/𝑠), green (0.5 < 𝐷 ≤ 1.0), yellow (1.0 < 𝐷 ≤ 1.5), orange (1.5 < 𝐷 ≤ 2.0) 
and red (2.0 < 𝐷). The values after ± show standard deviations. 
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To evaluate the influence of velocity rerandomization in trajectories, we analyzed 

self-diffusion constants of tri-NAG in bound, partially-bound and unbound states 

(𝐷V;¯<?, 𝐷bH`DgH¸, and	𝐷¯<V;¯<?), as depicted in Fig 7. We add the calculation for the 

first 0.1 ns of PaCS-MD10,1 in Fig 7d for comparison with PaCS-MD10,0.1. We found the 

same trend of the distribution of diffusion constants as of random walk trajectories 

generated by varying the concentration of random point obstacles72. In addition, 

𝐷¯<V;¯<?  (1.2 ± 0.2, 1.0 ± 0.6 and 1.2 ± 0.7×10|±𝑐𝑚�/𝑠 for PaCS-MD10,0.1, PaCS-

MD100,0.1, and PaCS-MD10,1) are in good agreement with the free diffusion constant 

( 1.1 ± 0.5×10|±𝑐𝑚�/𝑠 ) that we calculated. If velocity re-randomization has a 

significant effect on diffusion, the diffusion coefficient will depend on the simulation 

length (1.0 or 0.1 ns), this would lead to the effect on diffusion of velocity 

rerandomization. However, we found the effect of velocity re-randomization is weak in 

the unbound state, and no significant influence on the diffusion constants was observed 

. However, 𝐷V;¯<? is the same for the first 0.1 ns (Fig 7(a,b,d)) but is smaller for 1.0 ns 

(Fig 7(c)), indicating the effect of velocity re-randomization on diffusion depends on 

the length of the trajectory in the bound state. Moreover, 𝐷V;¯<? and 𝐷bH`DgH¸ (red and 

blue curves in Fig 7) are mainly populated below 0.5×10|±𝑐𝑚�/𝑠 and spatially form 

a low mobility region around the binding pockets (the trajectories shown by blue in the 

insets of Fig 7). As triNAG dissociates farther, the higher imhomogeneous mobility 

regions were observed but were not through the clear color variations in Fig 7. Broader 

range of 𝐷¯<V;¯<?  than that of the other states shows the imhomogeneous of mobility 

in the unbound state. Specifically,𝐷¯<V;¯<?  of PaCS-MD10,0.1, PaCS-MD100,0.1, and 

PaCS-MD10,1 is significantly larger than 𝐷V;¯<? , by 5.8, 5.3, and 20.5 times, 

respectively. 

Interestingly, the smaller value of 𝐷V;¯<? in PaCS-MD10,1 obtained from full 1.0 

ns trajectories (Fig 7(c)) compared to that obtained from the first 0.1 ns indicates that a 

longer MD simulation time did not accelerate diffusion in the bound state. These results 

suggest that velocity re-randomization enhanced sampling in the bound state. To shed 

light on the effect of velocity re-randomization on selection, we analyzed the time 

evolution of the probability of selection of the selected snapshots (Fig 8). Bound state 

selected snapshots tends to be near the beginning of each MD, indicating that velocity 
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re-randomization enhances movements leading toward dissociation in the PaCS-MD 

scheme with quick decaying. Similar tendencies were observed in the partially-bound 

states during PaCS-MD10,0.1 and PaCS-MD10,1 but not during PaCS-MD100,0.1. The 

exceptional case for PaCS-MD100,0.1 is from no trapped cycle observed in the bound and 

partially-bound states of the structures than that of PaCS-MD10,0.1 and PaCS-MD10,1. If 

a significant increase in d was not observed, snapshots near the beginning of the MD 

run were selected, which raised the probability of snapshot selection from this time 

region. The selected unbound state snapshots located near the end of the MD run 

frequently because the movement of triNAG in the unbound state is largely determined 

by diffusion, and larger deviations should occur near the end of the MD simulation in a 

diffusion-dominant environment. 

For summary, results reported above imply that dynamics behavior in individual 

short simulations within PaCS-MD scheme is the same as expected in unbiased MD 

simulations. Thus, we judged that MSM can be appropriately applied to PaCS-MD 

trajectories. 

 
Fig 8. Probability of selection as a fraction of time of the selected snapshots versus the total length of 
each MD (1.0 or 0.1 ns) in each state for (a) PaCS-MD10,0.1, (b) PaCS-MD100,0.1, and (c) PaCS-MD10,1 

in the bound (red), partially-bound (blue), and unbound (green) states. 
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3.4. LYZ-triNAG Dissociation by SMD 
 

In SMD, ligand dissociation was induced by the steering force. Figure 5 shows the time 

evolution of the inter-COM distance, d, and the force between LYZ and triNAG as a 

function of SMD time. Unlike PaCS-MD, the time evolution of d exhibited a steep jump 

between two linear regions (Fig 9(a-c)). The initial linear regions range from 1.3 to 

1.7	𝑛𝑚 in all three cases. The jump started when the steering force became maximum. 

The average maximum forces during the dissociation process were 336.1 ± 44.5 , 

303.9 ± 43.6, and 267.2 ± 33.5	𝑘𝐽/𝑚𝑜𝑙 ∙ 𝑛𝑚 in the SMDfast, SMDmed, and SMDslow 

simulations, respectively, which are in the same range as the AFM disruption forces 

previously reported73. The lower the pulling rate, the weaker the maximum force 

required to dissociate triNAG. After the steep jump, 𝑑 linearly increased and the force 

converged toward zero at around 2.2–2.6 nm. We found two different patterns in the 

steering force as a function of 𝑑: single peak, and double peaks shown in Table 2. We 

show the values in parenthesis in Table 2 the number of cases in which the heights of 

the two peaks are the same (so-called same-height double peaks). We found that the 

heights of the first and second peaks decreased as the SMD velocity decreased. The 

force peak for the single-peak cases was generally larger than that of the double-peak 

cases while the heights of the same-height double peaks were lower than the single peak 

by 100 kJ/mol.nm. After reaching the first peak, triNAG quickly dissociated from LYZ; 

however, triNAG remained trapped in the double-peak cases, which correspond to small 

plateau regions (red lines in Fig 9). The standard deviation of the positions of the first 

peaks were always small (≤ 0.1 nm), showing that the first stage of the dissociation 

processes in SMD started from the same position. 
Table 2. Characteristic inter-COM distances and forces in SMD. 

Sim. Type # 1st peak 2nd peak Convergence 

   d 

(nm) 

Force 

(kJ/mol nm) 

d 

(nm) 

Force 

(kJ/mol nm) 

d 

(nm) 

SMDfast Single 13 1.5 ± 0.1 351.8 ± 38.7 - - 2.6 ± 0.2 

Double 11(1) 1.5 ± 0.0 321.9 ± 40.0 2.2 ± 0.3 182.1 ± 35.1 2.6 ± 0.2 

SMDmed Single 5 1.5 ± 0.1 309.4 ± 46.6 - - 2.5 ± 0.1 

Double 7(1) 1.5 ± 0.1 292.7 ± 41.8 2.4 ± 0.5 159.4 ± 24.9 2.4 ± 0.1 

SMDslow Single 8 1.5 ± 0.1 269.4 ± 37.2 - - 2.2 ± 0.2 

Double 4(0) 1.4 ± 0.0 247.9 ± 11.5 2.0 ± 0.3 149.7 ± 5.9 2.3 ± 0.3 
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Fig 9. (a-c) Time evolution of the inter-COM distance, d, and (d-f) force between LYZ and triNAG as 

a function of SMD time for (a,d) SMDfast, (b,e) SMDmed, and (c,f) SMDslow. The red lines show the 
cases in which small plateau regions are seen in (a-c). In these cases, double force peaks as a 

function of time were observed (also see Table 3) 

	
3.5. Dissociation Pathways in PaCS-MD and SMD 
 

We analyzed the spatial distribution of the dissociation pathways to obtain better insight 

into the relation between the dissociation pathway and free energy. Fig 10(a) shows the 

COM positions of triNAG along 10 representative reactive trajectories, each of which 

is the top ranked reactive trajectory in each PaCS-MD10,0.1 trial. The inset of Fig 10(a) 

depicts the triNAG COM positions in all PaCS-MD trajectories generated in one trial. 

Interestingly, a set of trajectories in PaCS-MD generated in one trial formed a barbed 

zigzag rod connecting the bound and completely unbound states, as shown in the inset 

of Fig 10(a). We introduced an effective diameter 𝜎aHd»(𝑑)  of a cross section of 

trajectories as a function of the inter-COM distance d quantity for better insight in 

sampling efficiency. 𝜎aHd»(𝑑) is defined as: 

𝜎aHd»(𝑑) = ¼v½K¾¿(?)
À

 (16) 

where	𝑆aHd»(𝑑) is a cross section of the sampled triNAG COM positions at d. The 

average of 𝜎aHd»(𝑑)	over trials, 𝜎aHd»(𝑑), is shown in Fig 10(b). 𝜎aHd»(𝑑) is larger in 
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the bound state (𝑑 < 2 nm) but is almost flat after complete dissociation (𝑑 > 2.5 nm). 

This reflects that more cycles were spent in the bound state than in the unbound state, 

resulting in larger 𝜎aHd»(𝑑) values in the bound state. The plateau value of 𝜎 in the 

unbound state is consistent with triNAG diffusing essentially freely in the unbound 

state. In the unbound state, the average values of 𝜎aHd»(𝑑) were 0.96 ± 0.33, 1.50 ±

0.74  and 2.07 ± 1.31	𝑛𝑚  for PaCS-MD10,0.1, PaCS-MD100,0.1, and PaCS-MD10,1, 

respectively. This shows that a longer simulation time for each replica provides a larger 

sampling diameter compared to increasing the number of replicas. In the partially-

bound state, the sampling diameter is comparable between PaCS-MD100,0.1 and PaCS-

MD10,1. 

 

  
Fig 10. (a) Dissociation pathways of triNAG represented by the COM positions of triNAG (small 

spheres) in the first reactive trajectories of 10 PaCS-MD10,0.1 trials from LYZ (white cartoon model). 
Inset shows all the trajectories generated in a representative representative trial of PaCS-MD10,0.1 

(red in main panel). (b) Effective diameter 𝜎 of the sampled area per trial of PaCS-MD as a function 
of the inter-COM distance d. (c) Effective diameter 𝜎 over all trials. The inset shows a close up. 
PaCS-MD10,0.1 (red), PaCS-MD100,0.1 (blue), PaCS-MD10,1 (green), SMDfast (magenta), SMDmed 

(orange), and SMDslow (black). Error bars show standard deviations. 

 

We also examined the variation of the dissociation pathways generated by distinct 

PaCS-MD and SMD trials (Fig 12). This figure clearly shows that significantly different 

dissociation pathways are generated in each type of simulation. To quantify this 

variation, we also calculated the 𝜎(𝑑) for the PaCS-MD reactive trajectories of all trials 

and all SMD trajectories (Fig 10(a)), denoted as 𝜎H¸¸(𝑑), and the results are shown in 

Fig 10(c). In the bound state, the average values of 𝜎H¸¸(𝑑) were 1.03 ± 0.08		 and 
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1.06 ± 0.15	 𝑛𝑚  in the PaCS-MD10,0.1 and PaCS-MD100,0.1 simulations, respectively, 

and are comparable to the values 0.91 ± 0.17		and	1.03 ± 0.41	(𝑛𝑚)  obtained by 

SMDfast and SMDmed, respectively. However, 𝜎H¸¸(𝑑) obtained by SMDslow and PaCS-

MD10,1 for the bound state were significantly	larger, 1.76 ± 0.29  and 2.61 ±

0.17	(𝑛𝑚) , respectively. In the unbound state, 𝜎H¸¸(𝑑)  obtained by SMDmed and 

SMDslow steeply increased as 𝑑 increased. We note that diffusion governs the movement 

along the x and y directions because a pulling force was applied only along the z 

direction. Therefore, the ratio of SMDslow simulation time spent at 𝑑 = 4	𝑛𝑚 versus 

SMDmed is 4.7, consistent with the ratio of 𝜎H¸¸ 𝑑 = 4 , 4.4 (Fig 10(c) and Table 1). 

 

3.6. Dissociation Free Energy 
 

The free energy profile (potential of mean force, PMF) of triNAG dissociation from 

LYS as a function of the inter-COM distance was calculated by combinations of PaCS-

MD and MSM (PaCS-MD/MSM), PaCS-MD and US (PaCS-MD/US), SMD and US 

(SMD/MS), and SMD and the Jarzynski equation (SMD/Jarzynski) (shown in Fig 11). 

Since the free energy profiles were obtained as the average over distinct dissociation 

pathways (shown in Fig 12), they should be clearly distinguished from the minimum 

free energy path. The free energy profiles were all flat in the inter-COM distance range 

4.0–4.5 nm, that help us to define the dissociation free energy ∆𝐺?	as the energy 

difference between the bound state. We assumed that the calculated dissociation free 

energies are equal to the negative value of the binding free energy ∆𝐺V as ∆𝐺V = −∆𝐺?. 

In PaCS-MD/MSM, a MSM was constructed using PaCS-MD trajectories 

generated by PaCS-MD100,0.1 and PaCS-MD10,1 simulations (Table 1). Note that the 

MSM was built using all trajectories of each trial and the average PMF was obtained 

over all trials, as shown in Fig 11(a). Each trial of PaCS-MD10,0.1 lacked adequate 

statistics to build the MSM properly. After careful evolution of the number of 

microstates and the implied time scale as a function of lag time 𝜏, we determined 50 

microstates for both cases and selected 45 and 305	𝑝𝑠 as the best 𝜏 values for PaCS-

MD100,0.1 and PaCS-MD10,1, respectively. These values were much shorter than values 

typically used in MSMs constructed from microsecond trajectories for 
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folding/unfolding studies. However, the fraction of the total simulation time in each 

trial versus 𝜏 is approximately 10¼, consistent with the value suggested for enhanced 

sampling methods to achieve convergence of MSMs36. Moreover, Suarez et al. 

conducted detailed analysis of MFPT with non-Markovian estimators and found a 

reduction in the bias intrinsic to Markov MFPT estimation, even at the shortest lag times 

or simple discretization of the configuration in one dimensional space74. In addition, 

Zhang et al. used 0.5 ps for 𝜏, which is much shorter than our value, to build transition 

matrices for MSMs from replica exchange simulation75. Therefore, we believe our 

choice of 𝜏  is reasonable. The obtained dissociation free energies were 27.8 ± 0.8	 

	and	30.5 ± 0.8	𝑘𝐽/𝑚𝑜𝑙 for PaCS-MD10,1 and PaCS-MD100,0.1, respectively (Table 3), 

which are comparable to the binding free energy values measured by isothermal titration 

calorimetry (ITC) and surface plasmon resonance (SPR)51,76. 

To build a MSM directly from PaCS-MD trajectories, we should carefully choose 

𝑛`ab and tËÌË. Indeed, to build a proper MSM also requires the correct choice of tËÌË 

i.e. tËÌË  affects the choice of lag time 𝜏  and the definition of microstates in MSM 

because the condition 𝜏 ≤ tËÌË/2  is expected from the statistical point of view44. 

Therefore, the merit of using longer 𝜏 is to provide flexibility in deciding proper 𝜏 and 

microstates. In this study, as mentioned above, tËÌË  = 0.1 ns in PaCS-MD100,0.1 

simulations was sufficient to build a MSM. It should be noted that we obtained similar 

∆𝐺? values from PaCS-MD100,0.1 and PaCS-MD10,0.1 simulations despite using different 

lag times. Using PaCS-MD to generate initial pathways with a limited number of 𝑛`ab, 

followed by MD simulations to obtain more statistics to build a MSM, provides more 

options. In this case, PaCS-MD can be mainly dedicated to accelerating expected 

movements with sufficiently short MDs. A MSM can be built by extending the MD 

simulation length and/or by adding more MD simulations later. Also, as in the case 

where we noticed insufficient statistics to build a MSM after PaCS-MD, more MD 

trajectories can be added to properly construct a MSM. 

We also calculated the free energy profile using PaCS-MD/US (Fig 11(b)). Sharp 

peaks observed at around 1.6	𝑛𝑚 were not observed in the PaCS-MD/MSM results. 

While the free energy profile in PaCS-MD/MSM was directly calculated from PaCS-
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MD trajectories, that in PaCS-MD/US was obtained by additional multiple umbrella 

samplings with restrained inter-COM distances. The peak at 1.6	𝑛𝑚  indicates the 

region where triNAG was trapped in the binding pockets and strongly corresponds to 

the first peak of steering forces in SMD. The minimum at 1.9	𝑛𝑚 after the first peak is 

related to the upper limit of the bound state, as shown in Fig 5. PaCS-MD10,1/US yielded 

a free energy difference larger than the experimental values, while PaCS-MD10,0.1/US 

gave a more reasonable value, 26.8 ± 1.3	𝑘𝐽/𝑚𝑜𝑙. 

The energy profiles of SMD/US indicated similar tendencies to those of PaCS-

MD/US, including the position of the minimum at 1.9	𝑛𝑚 (Fig 11(c)) This minimum 

was clearly seen in SMDfast and SMDmed simulations, but was not observed in SMDslow 

simulations. The binding free energies obtained by SMDfast/US (29.7 ± 0.9𝑘𝐽/𝑚𝑜𝑙) 

and SMDmed/US (27.2 ± 1.1𝑘𝐽/𝑚𝑜𝑙) are in the range of available experimental results 

(Table 3), whereas SMDslow/US under-estimated ∆𝐺V. 

SMD/Jarzynski (Fig 11(d)) significantly overestimated the dissociation free 

energy between LYZ and triNAG. Yamashita and Fujitani showed that SMD/US 

yielded higher free energy difference than using the combination of US with multi-step 

targeted MD29. However, we did not observe such overestimation in SMD/US in our 

case, probably because of the size of small ligand leading to the restoring during US. 

The dissociation free energy profiles obtained from SMD/Jarzynski showed a clear 

tendency that lower SMD pulling velocities resulted in lower binding free energy (Fig 

11(d)). The first plateaus around 1.5–2.1 nm correspond to the region between the first 

and second force peaks shown in Table 2. The heights of the plateaus were 93.3 

(SMDfast), 46.9	(SMDmed), and	20.5	𝑘𝐽/𝑚𝑜𝑙	(SMDslow). The dissociation free energies 

obtained by SMD/Jarzynski (Table 3) were larger by factors of 2–5 than that expected 

from experimental results51. The steering force in SMD induced a biased dissociation 

process, which might significantly change the dissociation free energy. 
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Fig 11. Dissociation free energy profiles calculated by combinations of (a) PaCS-MD and MSM, (b) 

PaCS-MD and US, (c) SMD and US and (d) SMD and the Jarzynski equality as functions of the inter-
COM distance d. Error bars show standard errors of the mean. The average values over the gray 

shaded regions (4.0 – 4.5 nm) were considered as the dissociation free energy ∆𝐺?. 

 
Fig 12. Snapshots of the COM of triNAG in all trajectories. Color differences is used for marking that 

the COMs of triNAG are in the same trial of (a) PaCS-MD10,0.1, (b) PaCS-MD100,0.1, (c) PaCS-
MD10,1, (d) SMDfast, (e) SMD med, (f) SMDslow. 

US	
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Table 3. Comparison of dissociation and association free energies obtained by simulations and 
experiments. 

Free energy 

difference 
Methods Free energya (kJ/mol) 

∆𝐺? PaCS-MD10,1/MSM 27.8 ± 0.8	(27.6 ± 0.8) 

 PaCS-MD100,0.1/MSM 30.5 ± 0.8	(31.3 ± 0.8) 

 PaCS-MD10,1/US 37.7 ± 1.9	(39.8 ± 3.2) 

 PaCS-MD10,0.1/US 26.8 ± 1.3	(26.6 ± 1.2) 

 SMDfast/US 29.7 ± 0.9	(30.1 ± 0.9) 

 SMDmed/US 27.2 ± 1.1	(27.4 ± 1.1) 

 SMDslow/US 22.6 ± 0.9	(23.0 ± 1.0) 

 SMDfast/Jarzynski 148.1 ± 2.3	(142.1 ± 2.1) 

 SMDmed/Jarzynski 97.5 ± 2.2	(98.0 ± 2.0) 

 SMDslow/Jarzynski 67.4 ± 1.5	(66.9 ± 1.5) 

∆𝐺V ITC at pH 4.651 −29.2 

 ITC at pH 7.351 −28.5 

 SPR at pH 7.451 −26.9 

 ITC at pH 7.076 −28.9 

 

3.7. Disruption of LYZ-triNAG Interactions during the Dissociation Process 
 

We examined the dissociation process of triNAG from LYZ by analyzing the breakage 

of the intermolecular hydrogen bonds shown in Fig 3(d,e) and determined the order in 

which LYS residues dissociated from triNAG in each trial (Table 4 and Table 5). There 

are 5.6 hydrogen bonds in average between LYZ and triNAG in the bound state during 

1 µs conventional MD and additional transient hydrogen bonds were formed in the 

partially-bound state. The number of hydrogen bonds between LYZ and triNAG during 

dissociation in PaCS-MD10,0.1, PaCS-MD100,0.1, and PaCS-MD10,1 simulations were on 

average 8.1, 8.7, and 10.6, and those in SMDfast, SMDmed, and SMDslow simulations were 

7.5, 9.4, and 12.3, respectively. These results indicate that the longer the MD run, or the 

slower the SMD velocity, the larger the number of hydrogen bonds formed during 

dissociation. We found that ASN59, TRP62, TRP63, and ALA107 are key residues that 

always formed hydrogen bonds with triNAG in the bound state. Interestingly, the 

TRP62 and TRP63 hydrogen bonds with NAG III located in pocket C broke before 
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those of ASN59 and ALA107 with NAG II situated in pocket C, regardless of the 

simulation type. ASN59, TRP62 and TRP63 belong to the β domain, while ALA107 is 

situated on the α domain and is essentially outside the cleft (Fig 3(d,e)). NAG II, which 

binds to ASN103 and ASP101 of pocket B, dissociated after NAG III. triNAG did not 

slide along the binding pockets during dissociation but rather dissociated 

perpendicularly from the binding cleft starting from NAG III. If such sliding indeed 

happens, it should simultaneously break all the inter-molecular hydrogen bonds, which 

should suddenly increase the free energy. The order of hydrogen bond breakage during 

SMD depended on the pulling velocity, however, no clear variations were seen during 

PaCS-MD. SMD can lead to dissociation orders different from those observed in PaCS-

MD. ASP48 is situated farther and deeper in the binding cleft compared to ASN59, and 

rarely forms hydrogen bonds with triNAG in the equilibrium bound state. However, 

during dissociation, ASP48 frequently formed hydrogen bonds with triNAG and then 

broke during SMDmed (9/12 trials) and SMDslow (11/12 trials). In PaCS-MD10,1 

simulations, ARG112 formed transient hydrogen bonds with triNAG, and ASN106 

played the same role in PaCS-MD100,0.1 simulation. ASN106 and ARG112 are located 

on the surface of the α domain. The hydrogen bond between ARG73 and NAG III 

tended to break first during PaCS-MD, whereas that between ARG61 and NAG I was 

the first hydrogen bond lost during SMD. These hydrogen bonds were both formed 

during dissociation. In PaCS-MD simulation, NAG I tended to dissociate first and was 

exposed to water before NAG III dissociation, whereas these events were reversed 

during SMD. In PaCS-MD simulation, triNAG dissociation started from NAG I, then 

NAG III, and finally NAG II. The difference in dissociation order in SMD simulation 

might be due to force bias, which may contribute to a higher dissociation free energy in 

SMDfast/Jarzynski. 

 
Table 4. Residual order of hydrogen bond breakage with triNAG in PaCS-MD. 

Trajectory 
Hydrogen bonds of triNAG broken order 
1 2 3 4 5 6 7 8 9 10 11 12 13 

PaCS-MD10,0.11 ARG61 TRP62 ARG73 TRP63 ASN59 ASP101 ALA107       

PaCS-MD10,0.12 TRP62 TRP63 ASN103 ASN59 ALA107 ASP101 ASN106       

PaCS-MD10,0.13 ARG73 TRP62 TRP63 ASP101 ASN59 ALA107 ASN103 ASN106      

PaCS-MD10,0.14 ASP101 ARG73 TRP63 TRP62 ASN59 ASN46 ALA107 ASN103 ASN106 ARG112 GLY102   

PaCS-MD10,0.15 ARG73 TRP62 TRP63 ASP48 ALA107 ASN59 ASP101 ASN103 GLY102     
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PaCS-MD10,0.16 ARG73 TRP62 ASP101 TRP63 ASN103 ALA107 ASN59 ASN106      

PaCS-MD10,0.17 TRP62 TRP63 ARG61 ASN59 ASP101 ALA107 ASN103 GLY102      

PaCS-MD10,0.18 ASP101 ARG73 GLY102 TRP62 TRP63 ASN103 ALA107 ASN59      

PaCS-MD10,0.19 TRP62 TRP63 ALA107 ARG73 ASN59 ASN103 ASP101       

PaCS-MD10,0.110 ARG73 ARG61 TRP62 ASP101 TRP63 ASN59 ALA107 ASN103      
PaCS-MD10,11 ARG73 TRP62 TRP63 ASP101 ASN59 ALA107 ASN103 GLY102 ASN106 ARG112    
PaCS-MD10,12 ARG73 TRP62 ASP101 TRP63 ARG61 ASN59 ALA107 ASN103 ARG112 GLY102    
PaCS-MD10,13 ARG73 TRP62 TRP63 ASN59 ALA107 ASN46 ASP101 ARG112 ASN103 ASN106 GLY102   
PaCS-MD10,14 ARG73 ARG61 TRP62 TRP63 ASP101 ASN59 ALA107 ASN103 ARG112 GLY102 ASN106   
PaCS-MD10,15 ARG73 ASP101 TRP63 TRP62 ASN59 ALA107 ASN103 GLY102 ASN106 ARG112    
PaCS-MD10,16 TRP62 ASP48 ARG73 TRP63 ASN59 ALA107 ARG112 ASN106 ASN103 ASP101 GLY102   
PaCS-MD10,17 ASP101 TRP62 ARG73 TRP63 ASN59 ALA107 ASN103 ASN46 GLY102 ASN106 ARG112   
PaCS-MD10,18 ASP48 TRP62 ARG112 ALA107 ASN59 ASN46 TRP63 ASN103 ASP101 ARG73 ARG61 GLY102  
PaCS-MD10,19 TRP62 ASP48 ARG61 ARG73 TRP63 ASN59 ALA107 ASP101 GLY102     
PaCS-MD10,110 ARG73 ASP101 TRP62 ARG61 TRP63 ALA107 ARG112 ASP48 ASN59 ASN103 ASN106   
PaCS-MD100,0.11 ARG73 TRP62 TRP63 ASN59 ALA107         
 TRP62 ARG73 TRP63 ASN59 ALA107         
PaCS-MD100,0.12 ARG61 TRP62 TRP63 ARG73 ASN59 ALA107 ASP101 ASN103 ASN106      
PaCS-MD100,0.13 ASP48 ARG61 TRP62 TRP63 ALA107 ARG112 ASN103 ASN59 ASP101 ARG73 ASN106   
 ARG73 TRP62 TRP63 ALA107 ARG61 ARG112 ASN103 ASN59 ASP101 ASN106    
PaCS-MD100,0.14 ARG73 TRP62 TRP63 ALA107 ASN103 ASN59 ARG112 ASP101 ASN106      
PaCS-MD100,0.15 ARG73 TRP62 TRP63 ASP101 ASN59 ALA107 ASN103 ASN106        
PaCS-MD100,0.16 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101 ASN103 ASN106        
PaCS-MD100,0.17 ARG61 TRP62 ASP48 ASN46 TRP63 ASN59 ALA107 ARG73 ASP101 ASN103 ASN106 GLY102  
PaCS-MD100,0.18 TRP62 ARG73 ASN103 TRP63 ASP101 ASN59 ALA107       
PaCS-MD100,0.19 TRP63 ARG73 TRP62 ASP101 ASN59 ALA107 ASN103 GLY102      
PaCS-MD100,0.110 ARG61 TRP62 TRP63 ASN59 ARG73 ALA107 ASP101 ASN103 ASN106     

 
Table 5. Residual order of hydrogen bond breakage with triNAG in SMD. 

Trajectory 
Hydrogen bonds of triNAG broken order 
1 2 3 4 5 6 7 8 9 10 11 12 13 

SMDfast1 ARG61 ASP48 TRP62 TRP63 ASN59 ALA107 ARG73 ASP101      
SMDfast2 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101 ARG112       
SMDfast3 ARG61 TRP62 ASP48 TRP63 ALA107 ASN59 ASP101       
SMDfast4 ARG61 TRP62 ASP48 TRP63 ASN59 ALA107 ARG73 ASP101 ARG112     
SMDfast5 TRP63 TRP62 ASN59 ASP101 ALA107 ASN103 ARG73 ARG112      
SMDfast6 ARG73 TRP62 TRP63 ASN59 ALA107 ARG61 ASN46       
SMDfast7 ARG73 TRP62 TRP63 ASN59 ALA107         
SMDfast8 ARG61 TRP62 TRP63 ASN103 ARG73 ASP101 ALA107 ASN59      
SMDfast9 TRP62 TRP63 ALA107 ASN59 ASN103 ASN106 ASP101       
SMDfast10 ARG61 TRP62 TRP63 ASN59 ALA107 ASP101 ASN103 GLY102      
SMDfast11 ARG61 ASP48 TRP62 TRP63 ASN59 ASP101 ALA107       
SMDfast12 ARG73 ARG61 TRP62 TRP63 ASN59 ALA107 ASP101       

SMDfast13 ARG61 TRP62 TRP63 ASN59 ALA107 ASP101 ARG112       
SMDfast14 TRP62 TRP63 ASP101 ASN59 ALA107 ASN103        
SMDfast15 ARG61 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101       
SMDfast16 TRP62 TRP63 ASP101 ALA107 ASN59 ARG73 ASN103       
SMDfast17 ARG73 ASP101 TRP63 TRP62 ASN103 ASN59 ALA107       
SMDfast18 TRP62 ARG73 TRP63 ASN59 ALA107 ASN103 ARG112 ASP101      
SMDfast19 ARG61 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101       
SMDfast20 ARG61 TRP63 ASN59 ALA107 TRP62 ASP101 ARG73 ASN103      
SMDfast21 ARG61 ASP48 TRP62 TRP63 ARG73 ASN59 ASP101 ALA107 ASN103     
SMDfast22 ARG61 TRP63 ASP101 ALA107 ASN59 ARG73 TRP62 ASN103 GLY102 ASN106    
SMDfast23 ARG61 TRP62 ARG73 TRP63 ASP101 ALA107 ASN59       
SMDfast24 ARG61 ARG73 TRP62 TRP63 ALA107 ASN59 ASP101 ASN103 ARG112 ASN106 GLY102   
SMDmed1 ASP48 TRP62 ARG61 TRP63 ALA107 ASP101 ARG73 ASN59 ASN103 ARG112    
SMDmed2 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101 ARG112       
SMDmed3 ARG61 ASP48 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101      
SMDmed4 ASP48 ARG73 TRP62 ARG61 TRP63 ASN59 ALA107 ARG112 ASP101 ASN103 GLY102   
SMDmed5 ARG61 TRP62 ASP48 TRP63 ARG73 ASN59 ALA107 ASP101 ARG112     
SMDmed6 ARG61 ASP48 TRP62 TRP63 ARG73 ASN59 ASP101 ALA107 ASN103     
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SMDmed7 ARG73 TRP62 ARG61 TRP63 ALA107 ASN59 ASP101 ARG112 ASN103     
SMDmed8 ARG61 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101 ARG112 ASN103     
SMDmed9 ASP48 TRP63 ASN59 ALA107 TRP62 ARG73 ARG112 ASP101 ASN46 ASN103 GLY102 ARG61 ASN106 
SMDmed10 ASP48 ARG61 TRP63 TRP62 ASN59 ALA107 ARG73 ASP101 ASN103 ARG112    
SMDmed11 ARG61 ASP48 TRP62 TRP63 ALA107 ASN59 ARG73 ASN103 ASP101     
SMDmed12 ARG73 TRP62 TRP63 ASN59 ALA107 ASP101 ASN103 ASN106 GLY102     
SMDslow1 TRP62 TRP63 ASP101 ALA107 ASN59 ASN103 ARG73 GLY102 ASN46 ASN106    
SMDslow2 ARG61 ARG73 TRP62 ASP48 ASP101 TRP63 ASN59 ALA107 ASN103 ARG112 ASN106 ASN46  
SMDslow3 ARG61 TRP62 ASP48 ASN106 ARG112 ASN103 ASP101 TRP63 ASN59 ALA107 ARG73 ASN46  
SMDslow4 ARG61 ARG73 TRP62 ASP48 ASN106 ARG112 ASP101 ASN103 GLY102 TRP63 ALA107 ASN59 ASN46 
SMDslow5 ARG73 ARG61 ASP48 ASN46 TRP62 ARG112 ASN103 TRP63 ALA107 ASN59 ASP101 GLY102 ASN106 
SMDslow6 ARG61 ASP48 ARG73 ASN46 TRP62 TRP63 ASN59 ALA107 ASN103 ARG112 ASP101 GLY102 ASN106 
SMDslow7 ARG73 ARG61 ASP48 TRP62 ASN106 TRP63 ALA107 ASN59 ASP101 ARG112 ASN103 ASN46 GLY102 
SMDslow8 GLY102 ASN103 ARG73 TRP63 ARG61 TRP62 ASP48 ASN59 ALA107 ASN46 ASP101 ASN106 ARG112 
SMDslow9 ASP48 ARG61 ARG73 TRP63 TRP62 ALA107 ARG112 ASN46 ASN59 ASN103 ASP101 ASN106 GLY102 
SMDslow10 ASP48 ARG61 ARG73 ASN103 TRP62 TRP63 ASN59 ALA107 ASP101 ASN46 ARG112   
SMDslow11 ARG61 ASP48 ASN46 TRP62 ARG73 ARG112 TRP63 ALA107 ASN59 ASP101 ASN103 GLY102  
SMDslow12 ARG61 ASP48 TRP62 ARG73 ASN46 ARG112 ASN59 TRP63 ALA107 ASP101 ASN103 ASN106 GLY102 

 

4. Conclusion	
 

PaCS-MD is a straightforward simulation algorithm, as is its implementation, and is 

nodoubt being suitable for parallel and/or distributed computing. In this work, we first 

showed that PaCS-MD easily induced the dissociation of LYZ and triNAG within the 

order of 100 – 101 ns and total cost of 102 ns MD simulation time (Table 1 and Fig 3). 

In contrast, no dissociation was observed during 1	𝜇𝑠 of conventional MD (Fig 4). The 

cycles of multiple short MD simulations and the selection of rare events clearly 

accelerated dissociation. Although no bias was applied during MD, the dissociation 

speed of triNAG in PaCS-MD10,1 was equivalent to the pulling velocity of SMDfast, 

whereas those in PaCS-MD10,0.1 and PaCS-MD100,0.1 were 5 times faster. 

We examined the effects of the number of replicas (nÍÎÏ), MD length (tËÌË), 

velocity re-randomization, and snapshot selection on PaCS-MD sampling. As clearly 

shown by comparison of the results obtained using PaCS-MD100,0.1 and PaCS-MD10,1 

(Table 1 and Fig 5), increasing 𝑛`ab is a more efficient way to reduce the number of 

cycles necessary for dissociation than increasing 𝑡ded with a given fixed total simulation 

time per cycle, because the probability of observing rare events is proportional to 𝑛`ab. 

We found that velocity re-randomization enhanced sampling toward dissociation in the 

bound state, in which triNAG was trapped in energy minima by interaction with LYZ. 

In this situation, velocity re-randomization acted as a perturbation to enhance the 

occurrence of fluctuations toward escape from the bound state and selection raised the 
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probability of a rare event occurrence. Diffusion plays a more important role in the 

unbound state. Diffusion-governed movements occurring near the end of each MD run 

tend to be selected in PaCS-MD, which accelerates the dissociation process. 

One trial of PaCS-MD generates a dissociation pathway as a combination of 

multiple short MD trajectories that mutually overlap in conformational space. We 

confirmed that the generated trajectories can be properly utilized to construct a MSM. 

The PaCS-MD-generated pathway is not a true dissociation pathway as a function of 

time, yet it can provide statistical information regarding the dissociation process along 

a zigzag-rod-like conformational space that connects the bound state to the completely 

unbound state. Interestingly, a drastic (10-fold) increase of 𝑛`ab  in PaCS-MD100,0.1 

compared to PaCS-MD10,0.1 only resulted in a slight increase in 𝜎aHd»(𝑑)(Fig 10), 

indicating that PaCS-MD100,0.1 sampled a conformational space similar to that in PaCS-

MD10,0.1 but more densely. This is related to the fact that we could build a MSM from 

each trial of PaCS-MD100,0.1, whereas the statistics were insufficient in PaCS-MD10,0.1. 

The longer (10-fold) simulation time, tËÌË , in PaCS-MD10,1 generated an obviously 

thicker rod per trial, as shown by the value of 𝜎aHd»(𝑑) more than doubling. Since 

PaCS-MD100,0.1 and PaCS-MD10,1 required the same computational time, PaCS-

MD100,0.1 densely sampled a narrower conformational space along the pathway, while 

PaCS-MD10,1 explored a wider space more sparsely. PaCS-MD10,0.1/MSM resulted in a 

dissociation free energy ∆𝐺? slightly closer to the experimental value but the effect was 

relatively small. As long as sufficient statistics are achieved by sampling along the 

pathway, the width of the pathway, which shows the range of sampling almost 

perpendicular to the pathway, should not significantly affect ∆𝐺?. Although ∆𝐺? is in 

principle independent of the pathway, the actual value obtained by each trial likely 

contains some errors. Therefore, ∆𝐺?  was calculated as the average over multiple 

pathways. Note that the average in the Jarzynski equality is taken over much thinner 

rods (i.e., SMD trajectories) which do not have spatial thickness in each trajectory. In 

this case, greater statistical accuracy can be achieved only by obtaining more 

trajectories. To obtain a more accurate ∆𝐺?, averaging over multiple trials may be more 

important than generating thicker rods. 
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As noted above, each trial may not provide adequate statistics for MSM. One 

approach to addressing this might be to gather trajectories from multiple trials and build 

one MSM. We constructed MSMs for all trajectories of the ten trials conducted using 

PaCS-MD10,0.1 and obtained ∆𝐺 = 27.4(𝑘𝐽/𝑚𝑜𝑙), consistent with experimental data. 

However, it should be noted that snapshots with similar 𝑑 values can be assigned to one 

microstate, but snapshots from different trials can be very far in 3D space, especially in 

the unbound state, and thus should not be categorized in the same microstate. We judged 

that using d values to define microstates is invalid from the physical point of view. 

As shown in Table 3, ∆𝐺?	calculation with PaCS-MD/MSM yielded better results 

than calculation with PaCS-MD/US, SMD/US, or SMD/Jarzynski, as mentioned above. 

In addition, two different PaCS-MD/MSMs gave similar	∆𝐺? results. PaCS-MD/MSM 

showed the additional advantage that it gave the lowest standard deviation, which 

indicates the least free energy variation among the trials. Notably, the total simulation 

time for PaCS-MD/MSM is less than PaCS-MD/US or SMD/US because US requires 

longer simulation time (Table 1). The ∆𝐺?values from SMD/US and SMD/Jarzynski 

clearly depended on the SMD pulling velocity. In particular, SMD/Jarzynski 

overestimated ∆𝐺? in all cases. Detailed analysis of the LYZ-triNAG interactions in 

SMD showed that the dissociation order of the three NAGs from LYZ was different 

from that in PaCS-MD, suggesting that an unnatural dissociation process was induced 

by the force bias in SMD. The results of SMD/US indicated that artifacts caused by this 

bias were mostly recovered during US but velocity dependence was still observed. 

Therefore, the choice of pulling velocity is important in SMD/US simulations. 
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 Chapter	4.	Dissociation	Peptide	from	Its	Complex	with	Protein	
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1. Introduction	
	
Free energy computation has long historical development throughout years. The 

question raised by Gumbart et al. on what the best strategy for binding free energies 

calculation stands still until now 24 since many new methods and improvements of the 

predecessors are still in the process of development. To overcome computational 

insufficiency in sampling, as a “cheap” end of free energy calculation methods, 

Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA)77, Molecular 

Mechanics Generalized Born Surface Area (MM/GBSA)78 have been developed and 

being widely used nowadays, despite their limitations including error in estimation the 

solute entropy, solvation free energies of charged, buried group, sampling and 

parameter tuning79. In the MM/PB-SA, the binding free energy is decomposed into 

several terms such as binding enthalpy, solvation free energy of binding and binding 

entropy80. Binding enthalpy can be determined from the simulations of the bound and 

unbound states of solutes, while solvation free energy of binding is derived from 

Poisson-based solvation model 81 and binding entropy usually is approximated by quasi-

harmonic analysis 78. Recently, Koehl et al. propsed a new version of MM/PB-SA, in 

which the Poisson-Boltzmann equations are modified to improve behavior in highly 

charged surface and the effects of the sizes of ion 82. Because of its fast speed to estimate 

the binding free energy, MM/PB-SA is recently used as a new scoring function for 

protein-peptide docking in the well-known HADDOCK docking package83. 

Besides MM/PB-SA, two rigorous and widely used methods to obtain binding free 

energy are free energy perturbation (FEP) and thermodynamic integration, being 

classified as alchemical transformation method 84,85. These methods sample the entire 

transformation path leading to more computational demanding, but more accurate than 

MM/PB-SA due to the inclusion of the route to compute the equilibrium binding 

constant 86. However, the initial version of FEP using MD simulation is only limited to 

the small and rigid ligands. Later, Wou and Roux proposed a method 86 to calculate the 

binding free energy for protein and more flexible ligands using FEP technique 87,88 and 

US 89 with WHAM90.Their idea is applying the various on-off-switchable restraining 

potentials to the flexible ligands in order to construct its PMF including the intermediate 

states. Therefore, the binding free energy can be expanded into multiple terms described 
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by the given the bias potentials. Their method successfully reproduced the binding 

energy of the human p56lck SH2 domain/AcpYEEI complex 86, and later T4 Lysozyme 

L99A Mutant in complex with Aromatic Molecules 25 and more cases not listed here. 

The methods later extended to protein-protein complex 26 whereas there are enormous 

degrees of freedom in the binding sites leading to the effort to design the restraining 

potentials. However, Gumbart et al. pointed out the limitation of this method that the 

enforcement of geometrical and conformational restraints would lead to the artificial 

reaction pathway which might give a rise to the free energy23,26. In addition, Yamashita 

and Fujitani pointed out that restraints of the protein structure by multi-step Target MD 

(mTMD) can eliminate the artificial deformation of the protein instead of SMD because 

the latter leads to the inaccurate estimation of PMF in US29. Those imply that if one can 

build the “more natural” dissociation pathways, the binding free energy calculation is 

more accurate. 

Another important factor in binding free energy computation is method of 

sampling. Nowadays, there are more and more enhanced sampling techniques that can 

be named such as Replica Exchange MD91, mTMD29, Metadynamics15, Parallel 

Cascade Selection MD (PaCS-MD) 31,47, Sparsity-weighted Outlier FLOODing 92. 

Among of these, PaCS-MD is the enhanced sampling technique that does not apply bias 

forces to the system. In PaCS-MD, the state space is divided into multiple microstates, 

and the input configurations of parallel simulations are carried out by the recursive 

selection loop of the most toward the target final microstate. Therefore, the system is 

slowly moving from the initial microstate to the  target microstate by restarting the 

multiple MD simulations from the selected configurations in the ranking process. 

Moreover, together with Markov State Model, PaCS-MD has been proved to be a 

powerful tool to estimate the protein/ligand binding free energy which allows all the 

flexibility of the ligands. Here in this work, we extend the proposed procedure to a 

protein/peptide case which essentially require tshe tolerance of flexibility in sampling 

method. We choose MDM2 protein bound to the transactivation domain of p53 peptide 
93 as a test case. The transactivation domain of p53 peptide has been proved to be very 

flexible since it can adopt multiple conformations 94. 
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2. 	Calculation	
	
We built two simulation boxes by using the crystal structure of the MDM2/TAD-p53 

complex (PDB 1YCQ) after modeling the missing hydrogen atoms, capping with the 

acetylated C-terminal, neutral N-terminal and missing residues as shown in Fig 13. 

After that, the complex was solvated into a box of 18.8×9.9×8.9	𝑛𝑚Ð  with TIP3P 

water molecules. Sodium and chloride ions were added to the simulation box to realize 

ion concentration of 0.15M and charge neutrality. We used AMBER99SB-ILDN for 

the protein complex. All simulations are performed using GROMACS 5.1.255. 

 

 
Fig 13. Structure of solvated MDM2/TAD-p53 complex after remodeled missing residues and 

equilibrium molecular dynamics simulation. TAD-p53 is colored in red. Point 1 and 2 depict for the 
centers of mass of the MDM2 upper part and lower part residues respectively, while point 3 and 4 

depict for the centers of mass of TAD-p53 upper part and lower part residues respectively. The upper 
and lower parts is defined by the initial position of TAD-p53 residue TRP23.  

 

The solvated models were then energy-minimized by the steepest descent method 

followed by the conjugate gradient method with 1000	𝑘𝐽/𝑚𝑜𝑙. 𝑛𝑚�  heavy atom 

positional restraints to keep the crystal contacts between binding interface of 

MDM2/TAD-p53. The equilibration MD simulations were carried out the same as the 

procedure written in chapter 3, section 2 of this dissertation except in NVT ensemble 

simulation, the system was heated up from 0 K to 400 K within 1 ns and equilibrated at 

400 K for 500 ps, then cooled down to 300 K in next 500 ps and equilibrated at 300 K 

for 1 ns. In addition, we only applied the position restrained to the non-modeled region 
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of the complex (residues that is in PDB structure). This exception NVT ensemble 

simulation ensures the configuration of modeled missing residues to be in lower energy 

configuration. After that, we carried out PaCS-MD simulation of dissociation. We used 

30 replicas and 0.1-ps short MD simulations for both systems. We performed 10 ns MD 

simulation for each system and pick up 10 different configurations from the former 

simulation as the initial snapshots for the next cycle. 

 

3. 	Result	and	discussion	
	
3.1. Equilibration of the remodeled system MDM2/TAD-p53 
	

a) 

 

b) 

 
 

Fig 14. Maintaining of the key interaction between MDM2 and TAD-p53. a) Key interaction in the 
binding interface. Pink label denotes for TAD-p53 while green label denotes for MDM2. Green dash 
lines mark for hydrogen bonds and their number show distances of hydrogen bonds in Å unit. b) Root 

mean square deviation of MDM2/TAD-p53 complex after least-squared fitting with MDM2 crystal 
structure. 

 

The MDM2 and TAD-p53 complex in the bound form have 5 hydrogen bonds, 17 

hydrophobic interactions in the binding interface as shown in Fig 14a). The binding 

interface between TAD-p53 and MDM2 consists of one helix and two turns of MDM2, 

and one helix of TAD-p53 as in Fig 13. The equilibration simulation maintained the 

key interactions of the complex the same as in the crystal structure, i.e., hydrogen bonds 

between ILE50-TRP23, GLN68-PHE19, VAL89-LEU22, TYR96-PRO27 (note that 

the former residues belong to MDM2 and the latters belong to TAD-p53). Two key 
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amino acids, TRP23 and PHE19, stayed inside the hydrophobic cleft of MDM2. The 

dominant of hydrophobic interactions indicate that the weak but specific binding of the 

complex was maintained as indicated by S-W. Chi et al 95. The helical content in TAD-

p53 peptide span from PHE19 to LEU25 by hydrogen bond network was the same as 

found in the work by Joseph et al.96. In addition, by performing computational 

mutagenesis, Moreira et al. found that MET20 and TYR22 are also suggested to be new 

hotspots, besides the hotspot residue PHE19, TRP23 and LEU2697. Moreover, they 

indicated that p53-backbone hydrogen bonds with MDM2 are important. 

To examine whether the protein complex is stable, we calculated the RMSD of 

the MDM2/TAD-p53 complex after performing least-squared fitting with MDM2 

crystal structure as shown in Fig 14b). The region included in the crystal structure was 

stable while the overall protein structure was slightly shifted in RMSD from 6 to 8 ns 

of the equilibration simulation. However, the overall change in RMSD is less than 0.3 

nm indicating the stability of the system.  

 

3.2. Free energy difference of dissociation between MDM2/TAD-p53 
	
Without any bias force, PaCS-MD easily simulated dissociation pathways. The 

dissociation of MDM2/TAD-p53 can be splitted into 3 steps as shown in 

 
Fig 15a): first, TAD-p53 slightly increased the inter-COM distance in the bound state (d 

is lower than 1.9 nm), which induced the increment in the number of water molecules 

inside the binding interface, then a part of TAD-p53 achieve the dissociation from 
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MDM2 in the partially bound state, which is the grey highlight in 

 
Fig 15a), and final complete dissociation with d larger than 3.4 nm in the unbound 

state.The linear increase of inter-COM distance was found in the bound state and 

unbound state in contrast to the partially bound state. 

By performing PaCS-MD, we generated the dataset of inter-COM distance of all 

short simulations of all cycles. The Markov State Model is constructed from these 

datasets using the Maximum Likelihood Estimation procedure. After carefully 

considering the evolution of implied timescale with lagtime44, we chose a lag time of 

20 ps to build MSM in this work. From MSM, the population of microstate is calculated 
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and taken average to obtain the PMF. 

 
Fig 15b) shows the free energy of dissociation of our simulation. The free energy 

difference between the bound state and the plateau region, 4.0 ≤ d ≤ 4.5 nm was 

considered as the dissociation free energy, which was Δ𝐺?H¸¸ = 40.6 ± 1.7	𝑘𝐽/𝑚𝑜𝑙 , 

comparable to the experimental value of 37.7	𝑘𝐽/𝑚𝑜𝑙98. There are two plateau regions 

in  

Fig 15b) i.e. from 3.0 to 3.4nm and 4.0 to 4.5nm. The former is mostly related to 

the partially bound state of p53 with the binding cleft of MDM2 where a few contacts 
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of TAD-p53 with MDM2 were left. The second plateau indicates the complete 

dissociation of the complex. 

 

 

Fig 15. Evolution of a) inter-COM distance with cycle, b) free energy of dissociation with inter-COM 
distance by MSM using single-trial inter-COM distance dataset, c) free energy of dissociation with 

inter-COM distance by MSM using 3D dataset. Error bar in b) shows the calculation standard error. 
Grey highlight in a) show the partially bound state of MDM2/TAD-p53 complex. Inset of c) shows the 

representative positions of microstates in 3D. 

To have more statistics in the dataset, we used the 3D coordinates of COM of TAD-p53 

in all trajectories of all trials as a single large dataset. We performed clustering on the 

dataset by using Cartesian clustering which yields total number of 2751 microstates in 

our dataset (as shown in the inset of Fig 15c). After that, we build MSM based on this 

result using lagtime 25 ps to obtained the evolution of free energy on the TAD-p53 

COM coordinates. After that, we convert from 3D space to inter-COM distance as 

shown in Fig 15c). The obtained binding free energy ∆𝐺ÑvÑ|ÐÒ = 37.2 ± 6.3	𝑘𝐽/𝑚𝑜𝑙, 

which is in good agreement of the experimental results. Furthermore, we extract Mean 

First Passage Time matrix and calculate the association rate constant via 𝑘;< =

1/ 𝑀𝐹𝑃𝑇;<𝐶d;Ôb , whereas 𝐶d;Ôb  is the concentration regarding to the simulation 

box. The obtained association rate constant 𝑘;< = 8.9×10¬	𝑀|I𝑠|I , being in 

agreement with Schon et al.’ work (9.2×10¬	𝑀|I𝑠|I)99. We conclude that we can both 

estimate binding free energy and rate constant via PaCS-MD/MSM accurately. 

 
	
3.3. Structural changes during dissociation 
	
To understand more about the dissociation pathways of TAD-p53 from MDM2, we 

calculated the binding interface angle fluctuation and RMSD of TAD-p53 during the 
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dissociation using the concatenated trajectories compared to the initial structure (Fig 

13). The binding interface angle fluctuation ∆𝜃 𝑡 is defined as followed. 

∆𝜃 𝑡 = 𝜃 𝑡 − 𝜃 0  (17) 

𝜃 𝑡 = 180; − 𝑐𝑜𝑠|I ?£,«« Ö?«,×« |?£,×«

�?£,«?«,×
+ 𝑐𝑜𝑠|I ?«,×« Ö?×,Ø« |?«,Ø«

�?«,×?×,Ø
 (18) 

where 𝑑�,e is the distance between the center of mass of the group of atoms x and group 

of atoms y. Here we define the group of atoms as follows. Group 1 and group 2 are the 

atoms of the binding interface of MDM2 (all atoms in the same residues that the closest 

distances between pairs of atoms belonged to different group are less than hydrogen 

bonds distance), in which group 1 is the part have position y > 4.7 nm and group 2 is y 

≤ 4.7 nm (). Group 3 and group 4 are the atoms of TAD-p53 that divided in the way the 

same as group 1 and group 2. 

The lower ∆𝜃  indicates the direction of dissociation of TAD-p53 whether it is 

perpendicular with the initial structure or not. Fig 16a) shows there were 4 trials having 

𝑚𝑎𝑥 ∆𝜃  fluctuated around 0;, which indicates the dissociation direction was mostly 

perpendicular to the binding interface. The 𝜋 − 𝜋 stacking interactions were formed 

between PHE19-TRP23 of TAD-p53 and PHE19-TYR44 of TAD-p53 and MDM2 

respectively. These two interactions mostly maintained the dissociation direction 

perpendicular to the binding interfaces. In this case, the main contribution to the RMSD 

change mainly occured from the modeled loops of TAD-p53. On the other hand, ∆𝜃 

were significantly positive (Fig 16a). The dissociation only happened perpendicularly 

to the binding interface (pathway type 1) or the PHE19 dissociates before LEU25 

(pathway type 2). We observe no case in which LEU25 dissociated before PHE19 did. 

This indicates the importance of PHE19, TRP23 and LEU25 of TAD-p53 which agrees 

with the other experimental and computational works93,97. 
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Fig 16. Structural changes of TAD-p53 during dissociation from the complex of MDM2. The 

concatenated trajectories' evolution of a) The binding interface angle fluctuation between MDM2 and 
TAD-p53, b) Root mean squared deviation of TAD-p53, and c) inter-COM distance of MDM2/TAD-

p53 in reactive trajectories. 

 
An interesting question can be raised: what is the most favorable dissociation 

pathway? To answer this question, we individually calculated the free energy difference 

of dissociation for each pathway (via the population of each single pathway represented 

in term of free energy) and analyze the results in considering the RMSD and inter-COM 

distance of TAD-p53 in reactive trajectories (Fig 16 b and c). We found that either 

dissociation pathway type 1 or type 2, if TAD-p53 performs the structural changing 

before entering to the partially bound-state (in which RMSD is larger than 0.3 nm), the 

Δ𝐺? is larger than the other cases. In spite of the same tendency of structural change, 

pathway type 2 (trial 3 has Δ𝐺? = 59.7	𝑘𝐽/𝑚𝑜𝑙) has a larger Δ𝐺? than that in pathway 

type 1 (trial 8 has Δ𝐺? = 43.53	𝑘𝐽/𝑚𝑜𝑙). Therefore, we conclude that the internal 

structural change more contributed to Δ𝐺?  than the direction of the dissociation. 

Moreover, pathway type 1 has shorter dissociation time than pathway type 2. Note that 

the dissociation pathway that has the Δ𝐺? value closest to the experimental value was 

perpendicular to the binding interface and less structural change during the dissociation 

(lower RMSD value) than the rest. 

 

 

4. 	Conclusion	
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In this thesis, we carried out the calculation of dissociation free energy of 

protein/peptide complex (MDM2/TAD-p53), which is strongly related to cancer. We 

successfully reproduce experimental value of dissociation free energy98 and better than 

the estimation using MM/PBSA100. This confirmed the effectiveness of PaCS-MD with 

MSM in binding free energy calculation for the flexible peptide in complex with 

protein. In addition, we prove that via PaCS-MD/MSM, the rate constant can be 

estimated accurately. 

Moreover, we analyzed the most favorable TAD-p53 pathway of dissociation 

from the complex with MDM2 in details. We found that the dissociation should contain 

structural change which are not suitable for biased simulation as discussed elsewhere 

above. Moreover, dissociation perpendicular to the binding interface occured with the 

least cost of structural change and free energy. 
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 Chapter	5.	Flexible	Docking	of	Protein/Peptide	Complex	
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1. 	Introduction	
	
Molecular docking is considered as an essential tool in structural biology and the other 

related fields101. Up to the time of writing this dissertation, molecular docking methods 

are very diverse with more than 60 different docking tools, and can be divided into 

rigid-body docking and flexible docking102. Rigid body docking is based on the famous 

assumption “lock and key” of Fischer, i.e., the target and docked molecules can be 

treated as rigid bodies and docking finds the most suitable fit position of the complex103. 

However, later this assumption is revised into “induced-fit” theory of Koshland et al. 

which considers flexilibity of both molecules. However, up to now, most of the 

successful softwares in the CAPRI contest104 still take advantage of the rigid-body 

docking to generate decoy structures as much as possible, refining the decoys and 

performing the ranking of decoys after that. The most famous approach to generate the 

decoys is to take advantage of the Fast Fourier Transformation by using interaction 

terms105 or 3D space106 as the inputs to explore the space of docked conformations. This 

approach is commonly used due to the cheaper cost of computation to generate decoys. 

These rigid-body docking methods do not work well for very flexible ligands such as 

small peptides. 

In contrast to rigid-body docking, flexible docking considers all the movement of 

sidechain of ligand molecule with rigid-body treatment of receptor molecule, which can 

be classify into four types: a) simulation-based docking of complete molecules, b) in-

site combinatorial search, c) ligand build up and d) site mapping and fragment 

assembly102. In simulation-based methods, computational costs are the most draw-back 

to explore whole free energy landscape of binding compared to the fast rigid-body 

docking methods. Therefore, enhanced sampling simulation technique is required for 

this scheme to be efficient. Examples of recently developed methods based on 

molecular dynamics simulation are CDOCKER107, and MedusaDock108,109. CDOCKER 

is a molecular dynamics simulation based flexible docking method using simulated 

annealing with CHARMM force field and soft-core potential to perform multiple 

replicated simulations to search for decoys107. MedusaDock takes advantage of implicit 

solvent Medusa force field to improve the flexibilities of ligands and receptors upon 

binding109. However, by using implicit solvent force field, MedusaDock neglects the 
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roles of solvent molecules in the binding interfaces which often affect the binding 

conformation of the complex. 

Here we consider that the keys of the successful MD simulation-based flexible 

docking methods are to take account of all the flexibility of both ligand and receptor, 

which treats the desolvation of the binding interface upon binding. PaCS-MD was 

proved to be a unbiased effective enhanced sampling technique that can accelerate the 

dissociation simulation. Moreover, during dissociation by PaCS-MD, the 

conformations of the ligand and receptor changed due to the interactions between them, 

which indicate that PaCS-MD is suitable for generating different conformations of 

ligand and receptor. Moreover, PaCS-MD can be incorporated with all-atom forcefield 

with high accuracy. Therefore, we are encouraged to carry out the flexible docking 

based on PaCS-MD. 

 

2. Calculation	
	
We generated the unbound simulation box of MDM2 and TAD-p53 in which the inter-

COM distance between MDM2 and TAD-p53 larger than 5 nm. The configuration of 

TAD-p53 was taken from our dissociation simulation using PaCS-MD. Therefore, the 

initial structure of TAD-p53 is not the same structure as the complex structure in crystal 

(PDB ID: 1YCQ). MD simulation parameters used in this chapter are the same as those 

used in the previous chapter. We employed PaCS-MD scheme for association and 

dissociation consecutively to repeat the cycles of TAD-p53 association and 

dissociaiton. We used inter-COM distance for the selection quantity of PaCS-MD again. 

Our simulation first starts with association. Here we introduced the switching criteria 

between association and dissociation simultion. If the top one snapshot occured within 

the first 20% of the MD time, which is 𝑡Úa¸adDa? < 0.2𝑡ded , PaCS-MD switches to 

dissociation, in which the top one inter-COM is denoted as 𝑑ÚÛgDd». If 𝑑 > 𝑑ÚÛgDd» is 

true, PaCS-MD switches from dissociation to association again. By repeating switch 

between association and dissociation, we generatee multiple complex structures of 

MDM2/TAD-p53. 
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3. 	Result	and	discussion	
	
3.1. Flexibility of TAD-p53 
	
We aim to apply this method to systems including flexible peptide because this has not 

been well established yet. Therefore, we first examined flexibility of TAD-p53 to check 

whether it is suitable as our target. We explore the free energy landscape of TAD-p53 

by well-tempered Metadynamics with two collective variables: radius of gyration and 

the distance between the N- and C-termini (N-C distance). The initial height and width 

of Gaussian bias potential are set to be 0.5 kJ/mol.nm and 0.01 nm respectively for both 

collective variables. Total simulation time for metadynamics is 100 ns. After that, we 

calculated the free energy landscape of TAD-p53 as shown in Fig 17. 

 

 
Fig 17. Free energy landscape of TAD-p53 constructed by the well-tempered metadynamics. The 

colormap unit is in free energy unit kJ/mol. 

 

The lowest free energy conformation of TAD-p53 (denoted as 0 kJ/mol in Fig 17) 

does not have specific secondary structure. The global minima conformation has radius 

of gyration at 6.9 nm, and C-N distance is at 5 nm. Another local minima which have 

the same N-C distance is at 3.26 kJ/mol higher than the global minima conformation, 

which is at 6.1 nm radius of gyration. Interestingly, we find that the local minima being 
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near the bound conformation of TAD-p53 to MDM2 is at +2.63 kJ/mol compared to the 

global minima. This is in agreement with the other works related to MDM2/p53 

complex that p53 is assumed to be low cell permeability and proteolytically unstable, 

binding-induced folding protein95,110. This can be explained by the fact that interactions 

between MDM2 and TAD-p53 are mostly hydrophobic interactions. However, the 

special motif of 3 key interactions that discussed in part 2 of this chapter is unique for 

MDM2/TAD-p53 complex. In addition, free energy difference between the local-local 

minima, local-global minima are not high, less than 4.184 kJ/mol that makes TAD-p53 

is flexible peptide. Therefore, we confirm the choice of TAD-p53 and MDM2 is suitable 

for our purpose. 

 

3.2. Generating the bound conformations 
	

1.  
Fig 18. Evolution of RMSD of TAD-p53 with the crystal structure PDB id 1YCQ. RMSD is calculated 

after fitting MDM2 backbone with its crystal structure. 

 

As explained in section 3.2, we performed cycles of association and dissociation PaCS-

MD up to 274 cycles by changing the ranking of inter-COM distance as shown in Fig 

18, which shows the RMSD of TAD-p53 of a reactive trajectory after performing least 

square fitting with the backbone of MDM2 in crystal structure (PDB id 1YCQ). In each 

cycle of association and dissociation, the RMSD values of local minima were different, 

and the bound conformations of the MDM2/TAD-p53 complex were also significantly 

different. To examine the diversity of the bound conformations, we plotted all the inter-

COM distance of all snapshots with the RMSD from the crystal structure of TAD-p53 

during cycle in Fig 19, which clearly indicates that the inter-COM distance and RMSD 
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from the crystal structure spanned large conformational space within the proximity of 

cycle. In the bound state where inter-COM distance lower than 1.9 nm, the highest 

RMSD was ~ 1.5 nm, which indicates the significant difference among bound 

structures. In addition, the lowest inter-COM distance does not correspond to the lowest 

RMSD conformation and vice versa. In fact, this is true because the distance from the 

COM of MDM2 to its surface is not uniformly distributed in all direction.Therefore, 

one may ask whether inter-COM distance is the good reaction coordinate (or monitoring 

variable) of docking PaCS-MD. The advantage of using inter-COM distance is that it is 

not specific for any points on the surface of target protein, which does not lead to loss 

of generality. In addition, inter-COM distance here played the role of determining the 

choice of association or dissociation. The movement of ligand (docked peptide) toward 

the target protein is governed by diffusion and interaction (as discussed in part 1 of this 

chapter), which is mostly affected by the long range interaction and ionic strength of 

the solution. Fig 19 also implies that structures of TAD-p53 sampled here are similar 

with those in well-tempered metadynamics as discussed in chapter 3. 

 

 

 

 
Fig 19. Inter-COM distance of MDM2/TAD-p53 complex and RMSD with crystal structure of TAD-

p53 after least square fitting of MDM2. White area indicates the non-data area. 
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Fig 20. Representative structure of the bound conformation clusters obtained from PaCS-MD. a-d 

denote for the cluster 1-4. Note that a 

 

 
Fig 21. Interaction analysis of the representative structure of the bound conformation clusters of 

MDM2/TAD-p53. Cluster number to the order of Fig. 20 
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We performed clustering of all the bound state structures and obtained 4 clusters. 

The representative structures of each cluster are shown in Fig 20, and detailed analysis 

of interactions is shown in Fig 21. Among the four structures shown in Fig 20, structure 

a) and d) which to cluster 1 and cluster 4 respectively, are similar with the native 

structure of MDM2/TAD-p53 complex due to the significant large helix content in 

TAD-p53. Interestingly, although the unbound conformation of TAD-p53 does not 

directly face to the binding cleft of MDM2, all the representative structures bound with 

the correct binding interface. Cluster 1 contained the structure with the lowest RMSD 

from the crystal structure (RMSD = 0.429 nm). The main differences between the best 

generated structure and crystal one occurred in the side chain of PHE19 and TRP23, 

which should be inside the binding cleft and form the 𝜋 − 𝜋  stacking interactions. 

However, if we only calculate the RMSD of the binding sites, the RMSD decreased to 

0.243 nm, which indicates that the best generated structure properly reproduced 

interactions at interface. Cluster 1 contained all the hydrophobic interactions except for 

3 hydrogen bonds in cluster 3 (Fig 21). Although the same backbone structure was 

formed as in cluster 1, cluster 4 sidechain is 180 degree rotated about the backbone axis 

from cluster 1 and the key residues PHE19 and TRP23 pointed out of the binding 

interface. The hydrophobic interactions between MDM2/TAD-p53, therefore, is 

replaced by the opposite side of TAD-p53, rather than the side of PHE19 in cluster 4. 

Our preliminary results of docking simulation is promising because TAD-p53 can 

find the correct binding pose and good orientation similar to the crystal structure. As a 

blind docking, we need to score the bound structures. To determine the most probable 

structure, we will use MSM as shown below. 

 

3.3. Predicting the best complex structure via MSM 
	
The disadvantage of most docking methods is that they use scoring function that does 

not reproduce actual binding free energy. In fact, simplified representaion cannot 

include the high resolution information of the inter-molecular interactions. One possible 

solution is to perform separate binding free energy calculation by fast methods to rank 

the generated decoys. The more accuracy you gain, the more computing resource you 

need. Here we propose to rank the decoys base on the MSM-derived free energy 
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difference. We used the free energy difference obtained from MSM of all the 

trajectories to rank the obtained conformation in the bound state. We build the dataset 

of dRMSD from the initial input conformation of TAD-p53 after fitting to monomer 

conformaiton of MDM2. The PMF is shown in Fig 22. The minima of the PMF is at 

4.21 nm. Interestingly, the lowest RMSD structure that we showed in part 3.3.2 is 

included in the microstate of the PMF global minimum. 

  

 
Fig 22. Evolution of PMF with the distance RMSD of TAD-p53 after least square fitting to MDM2. 

The inset shows the representative structure at the minimum of PMF 

Here, we discuss the efficiency of our proposed docking methods. First of all, we 

expect that most of flexible protein/peptide docking can be treated by this method. 

Second, the PMF obtained from the PaCS-MD trajectories and MSM takes into account 

of the solvation and desolvation of binding interface. The scoring function in our 

method is calculated as the binding free energy with all-atom model with explit solvent. 

Third, we use enhanced sampling technique that is faster to generate the bound 

conformation than other traditional classical simulation. Moreover, the PaCS-MD 

method is highly suitable for distributed computing system, which accelerates the 

sampling. However, our current method has not reproduce complete desolvation of the 

binding interface upon binding. This is probabliy due to  slow timescale of dehydration, 

which was not accerelated by PaCS-MD. We are now working to solve this problem. 
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4. Conclusion	
	
Here we introduced a method of flexible docking based on PaCS-MD. Note that our 

methods allows mutual adaptive conformational changes of both protein and peptide 

upon interaction. Through our first preliminary test case of MDM2/TAD-p53, the 

proposed method was successful in finding the correct binding interface of MDM2 

without any prior-knowledge of crystal structure. We consecutively performed cycles 

of association and dissociation simulations to generate the bound conformations, and 

ranking with binding free energy derived from MSM overcame the scoring problem in 

other docking methods. 
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 Chapter	6.	Concluding	remarks	
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In this dissertation, we thoroughly examined two features that we pointed out: 1) 

whether the calculated binding free energy reproduces experimental value if more 

natural pathways by unbiased MD; 2) Whether we can calculate the binding free energy 

directly from trajectories generated by PaCS-MD. By using PaCS-MD and MSM, we 

have proved that we can yield the better free energy differences than the other methods, 

SMD/US in the case of protein/ligand and MM/PB-SA in the case of protein peptide. 

Moreover, we investigated acceleration mechanism of PaCS-MD in chapter 3 which 

had not been quantified, and then proposed a flexible docking method for a flexible 

protein-peptide complex. Since recent increase of computional power has been being 

achieved by the increase of the number of parallel processors rathen than the speedup 

of each processors, PaCS-MD is a promising tool for computational biophysics, 

computational drug design due to its high compatibility with parallel and distributed 

computings. 

In addition, in this dissertation, we examined the dissociation pathways generated 

by SMD and PaCS-MD in detail. PaCS-MD tends to provide more natural pathways 

than SMD does. We also discussed the conditions to achieve more efficient samplig 

with PaCS-MD: the increase in the number of replicas is better than the increse in the 

trajectory length. It is worthwhile noting that PaCS-MD/MSM consumes less 

computing resources than SMD/US with the same scale of accuracy. 

Moreover, we also performed detailed analysis on the dissociation of TAD-p53 

from the complex with MDM2. TAD-p53 is strongly related to cancer. We found that 

the most favorable dissociation pathway occurs with less conformational change and 

dissociation perpendicular to the binding interface. 

Our next plan in the near future is to improve our docking method so that it has 

ability to predict a correct conformation which agrees with crystal structures. Another 

direction is to develop a method in which PaCS-MD simulation method is combined 

with machine learning methods to improve the selection procedure. 
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