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Summary of the contents 

Observing comprehensive DNA methylomes via single molecule real-time 

sequencing: application to diploid and centromeric methylation 

(一分子 DNA シーケンサによる DNA メチル化情報の網羅的観測手法 ― 二倍体ゲノムとセントロメ

ア領域への応用) 

1. CpG methylation detection from kinetics information of SMRT sequencing data 

(Chapter 3) 

SMRT (single molecule real-time) sequencing, or PacBio sequencing, has been adopted in 

hundreds of sequencing studies despite its relatively high cost and raw read error rate, because 

it can produce longer reads than conventional NGS (next generation sequencers) and its 

random error profile eventually enabled extremely accurate genome assembly. It is also useful 

in epigenetics studies as it can produce kinetics information that reflects the methylation 

status of DNA sample. However, methylation analysis using SMRT sequencing was not applied 

to vertebrate genomes including human 

genome, as no method had enough power to 

detect cytosine methylation accurately.  I 

developed an algorithmic strategy, AgIn, to 

extract methylation information from SMRT 

reads of practical sequencing depth, and I 

reported the method can achieve good 

detection accuracy (~93% sensitivity and 

precision for detecting unmethylated CpGs) 

with reads of depth ~30x (Figure 1). The 

method was successfully applied to catalog 

methylation statuses of repetitive elements in 

human genome and extremely homologous 

(>99% similarity over 4.6kbpp) Tol2 transposon 

in medaka genome [1]. The method was 

continuingly adapted to newer version of SMRT sequencing protocol and it currently works 

well with the latest P6-C4 chemistry for the PacBio RSII instrument.  

2. Allele-specific methylation analysis using SMRT sequencing (Chapter 5) 

This study is essentially an extension of AgIn to resolve another difficulty in the epigenetics 

studies. In diploid genomes, the methylation status of CpG sites in the same region can be 

different for two homologous chromosomes, and such situation is known as allele-specific 

methylation (ASM) events. ASM can regulate gene expression; for example, genomic 

imprinting, in which the imprinted genes are expressed only from paternal or maternal 

chromosomes, are largely explained by the existence of ASM at the imprinting center. Also, 

disruption of ASM status is known to cause diseases. Several methods were developed to detect 

ASM events genome-widely, from use of methylation-sensitive restriction enzymes to model-

  

   

   

   

   

    

                  

   

   

   

   

            

 
  
 
  
  
 

           

Figure 1. Prediction performance of 

AgIn method 



based estimation using short read bisulfite sequencing data, but these methods were unable 

to observe methylation status of the genome comprehensively for various reason. To overcome 

the situation, I developed a new strategy to observe directly genome-wide ASM events using 

SMRT sequencing reads, noting that the primary difference between two homologous 

chromosomes was nothing but heterozygous SNVs (single nucleotide variants), thus any 

method to detect ASM should relate heterozygous SNVs and methylation status around them. 

The proposed method assumes the availability of heterozygous SNV sites and, especially, their 

phasing information. This may sound demanding at first, but recent advent of linked-read 

technology (from 10x Genomics) lowered this hurdle. After aligning SMRT reads onto reference 

genome, the reads were separated according to alleles of heterozygous SNVs they contained, 

giving two sets of reads each represents single allele. Then, for each set, AgIn was applied to 

call CpG methylation status of the regions. By applying this strategy to two samples, AK1 

(Asian Korean) and HG002 (Ashkenazim), I successfully identified thousands of CpG islands 

(CGIs) which shown ASM. The CGIs with strongest ASM signal were often located around the 

promoter regions of imprinted genes such as TP73, ZNF597, ZNF331, HYMAI, MEST, PEG3, 

PEG13. As a result, the list of CGIs with strong ASM signal was significantly (p=0.007, U test) 

populated with those were associated with imprinted genes. I also found that these ASM CGIs 

had unique distribution within genome in terms of chromatin state defined in ENCODE 

project; while most general CGIs were in TSS-like regions, ASM CGIs were rather found in 

actively transcribed regions or repressed regions. As an individual example, Figure 2 depicts 

the observed methylation statuses over the GNAS complex locus in AK1 genome. The locus is 

known to show a complex expression patterns regulated by ASM. I confirmed the ASM pattern 

of the locus was consistent with the known ASE (allele-specific expression) pattern. In 

collaboration with University of Iowa, I compared ASM calls with ASE data generated from 

long reads and short reads RNA-seq. As expected, I found that the expressing allele and the 

unmethylated allele were coincide for the ASM/ASE regions. Based on this observation, since 

      
      

         
                                                                                                              

 

   

    

 
   

    

 

    

   

      

       

   

       

               

               

           

           

         

           

           

Figure 2. Allele-specific methylation over the GNAS locus. Genes in each of four 

shaded regions are known to be expressed (from the left) maternally, paternally, 

paternally, and biallelically. 



ASE was much difficult to detect comprehensively due to scarcity of SNVs within exons, I 

claimed ASM can be a surrogate for ASE status of the gene. I also claimed these findings were 

possible only by using long reads because the majority of CpG sites in personal human genomes 

were located distant from any heterozygous SNV, which were sparsely distributed. This work 

is in preparation for publication [2]. 

3. CpG methylation analysis of centromeric repeat reagions in medaka genome 

(Chapter 4)  

Centromeres were possibly the most difficult regions in any genome sequencing study, and 

epigenetic characterization of centromeres was largely indirect and descriptive as conventional 

method such as bisulfite sequencing could not observe methylation over its highly repetitive 

(Mbp-scale arrays of alpha-satellite) structure. I applied AgIn algorithm to medaka 

centromeres, which were assembled in contigs in the latest version of medaka genome [3], and 

identified the regions with unmethylated CpGs from a total of 11 chromosomes of two medaka 

inbred strains, Hd-rR and HSOK, which diverged ~2.5Mya (SNP rate ~ 2.5%) (Figure 3). By 

analyzing the sequence composition (k-mer distribution) of unmethylated and methylated 

repeats, I claimed these variations in methylation occurred recently, at least after the 

divergence of two strains (Figure 4). Therefore, it implied that the change in methylation 

status in each chromosome or strain could be independent, and I hypothesized that it may 

precede ultimate alteration in functionality of centromeres. I validated my methylation calls 

in centromeric regions by comparing them with calls from bisulfite sequencing data wherever 

they are available, although I found bisulfite sequencing was not sufficient to observe the 

overall picture of centromeric methylation patterns. 

 

Conclusion 

In these works, I demonstrated the utility of SMRT sequencing for epigenetics study, especially 

for allele-specific methylation analysis and methylation analysis in complex region such as 

centromeres. The analyses of ASM in human genomes could retrieve imprinted genes and was 

consistent with the expression pattern of the ASE genes, which validated the accuracy of the 

method. By applying the method to centromeric repeat regions, I uncovered the cryptic 

methylation patterns of the regions, arriving at the hypothesis on an evolutionary drive of 

centromere sequences. This dissertation also contains two introductory chapters; Chapter 1 

for general SMRT informatics and Chapter 2 for basics of kinetics information handling. 

Figure 3. Methylation of centromeric repeats in medaka genome, HSOK chromosome 2.  
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Figure 4. Clustering based on sequence similarity of centromeric repeats with 

unmethylated or methylated CpGs. Assuming the sequence similarity reflects the 

evolutionary distances, divergence of two strains precedes diversification of methylation 

pattern.  



Chapter 1

Informatics for PacBio long reads

Advances in SMRT biology and challenges in long read

informatics

In 2011, advent of the PacBio RS sequencer and its SMRT (single molecule real-time)

sequencing technology revolutionized the concept of DNA sequencing. Longer reads are

promised to generate de novo assembly of much higher contiguity, and the claim was proved

by several assembly projects[111, 89, 103]. The lack of sequencing bias was proved to be able

to read regions which are extremely difficult for NGS (Next Generation Sequencers)[72].

None of these achievement, however, was just straightforward application of conventional

informatics strategy developed for short read sequencers; the virtue of the long reads was

not free at all. As many careful skeptics claimed in the early history of PacBio sequencing,

the long reads seemed too noisy. Base accuracy was around ∼85% for single raw read, that

is, ∼15% of bases were wrong calls, and indels consisted most of the errors. The higher error

rate made it inappropriate to apply informatics tools designed for much accurate short read

technologies.

Even the higher error rate is properly handled by sophisticated algorithms, the length

of the reads itself can pose another problem. Computational burden of many algorithms



depends on the read length L. When only the short reads are assumed, it may be considered

as constant, e.g., L = 76, 150, etc. The emergence of long read sequencer changed the

situation drastically by improving the read length by orders of magnitudes, to thousands of

bases, and to tens of thousands of bases by now. Besides the ongoing innovations for longer

reads, there is a large variation in length of sequencing reads even in the same sequencing

run. Therefore, the assumption that the read length is constant is not valid anymore, and

one must have a strategy to handle (variably) long reads in reduced time (CPU hours) and

space (memory footprint) requirement.

Availability of long read opened a door to the set of problems which were biologically

existing in real but implicitly ignored by studies using short read sequencing. For example,

we had to realize that a non-negligible fraction of reads could cover SVs (structural variants),

requiring a new robust mapping strategy other than simply masking the known repetitive

regions.

Consequently, many sophisticated algorithms had to be developed to resolve these issues;

how to mitigate higher error rate, and how it can be done efficiently for long reads. The rest

of this article covers some important innovations achieved and ongoing efforts in informatics

area to make the most of long reads data.

1.1 Aligning noisy long reads with reference genome

When one aligns long reads against reference sequence, one must be aware that the variations

between reads and reference stems from two conceptually separate causes. On one hand,

there are sequencing errors in its simple sense, which is discrepancy between a read observed

and actual sequence being sequenced. On the other hand, we expect a sample sequenced

would have slightly different sequence than a reference sequence (otherwise there is no point

in doing sequencing), and those difference are usually called variants. Though sequencing

errors and sequence variants are conceptually different, however, they both appears just as



errors to us unless they have some criteria to distinguish them. The next two examples are

for understanding why the distinction between two classes of error is relevant here.

Lets consider we have some noisy reads. Clearly, we cannot call sequence variants specific

to the sample unless the frequency of sequencing errors is controlled to be sufficiently low

compared to the frequency of variants. This is the reason why it is difficult for noisy reads

to detect small nucleotide variants such as point mutations and indels.

Next, assume we have long reads. Then, there are more chances that the reads span

the large variations such as structural variations (SVs) between a reference genome and the

sample sequenced. This situation is problematic for aligners who considered any possible

variation between reads and reference to be sequencing errors, for such aligners would fail

to detect correct alignment as they need to introduce too much errors for aligning these

sequences. Some aligners try to combat the situation by employing techniques such as

chaining and split alignment. Some aligners (NGMLR, Minimap2) explicitly introduce an

SV-aware scoring scheme such as a two-parts concave gap penalty, which reflects the two

classes of variations between read and reference.

Sequence alignment is so fundamental in sequence analysis that it finds its application

everywhere. For example, mapping sequencing reads to reference genome is the very first

step of resequencing studies. Accuracy of mapping can directly be translated into the overall

reliability of results. Also, mapping is often one of the most computationally intensive steps.

Therefore, accurate and faster mapping software would benefit the whole area of resequencing

studies. In the context of de novo assembly pipeline, it is used for detecting overlap among

long reads. Of noted, desired balance of sensitivity and specificity of overlap detection is

controlled differently than in mapping to reference, and could often be very subtle.

Though it is more or less subjective to make distinction between standalone aligners and

aligners designed as a module of assembly pipeline or SV detection pipeline, we decided to

cover some aligners in other sections. MHAP will be introdued in relation with Canu in the

section devoted to assembly tools. Similarly, NGMLR will be detailed together with Sniffle



in the section for SV detection.

1.1.1 BWA-SW and BWA-MEM

Adopting the seed-and-extend approach, BWA-SW[68] builds FM-indices for both query and

reference sequence. Then, DP (dynamic programming) is applied to these FM-indices to find

all local matches, i.e., seeds, allowing mismatches and gaps between query and reference.

Detected seeds are extended by Smith-Waterman algorithm. Some heuristics are explicitly

introduced to speed up alignment of large-scale sequencing data and to mitigate the effect of

repetitive sequences. BWA-MEM[65] inherits similar features implemented in BWA-SW such

as split alignment, but is found on a different seeding strategy using SMEM (supermaximal

exact matches) and reseeding technique to reduce mismapping caused by missing seed hits.

1.1.2 BLASR

BLASR[12] (Basic Local Alignment with Successive Refinement) is also one of the earliest

mapping tools specifically developed for SMRT reads. Like BWA-MEM, it is probably the

most widely used one to date. Bundled with official SMRT Analysis, it has been the default

choice for the mapping (overlapping) step in all protocols such as resequencing, de novo

assembly, transcriptome analysis, and methylation analysis. In the BLASRs paper, the

authors explicitly stated it was designed to combine algorithmic devices developed in two

separate lines of studies, namely, a coarse alignment method for whole genome alignment and

a sophisticated data structure for fast short read mapping. Proven to be effective for handling

noisy long read, the approach of successive refinement, or seed-chain-align paradigm, has

become a standard principle.

BLASR first finds short exact matches (anchors) using either suffix array or FM index[33].

Then, the regions with clustered anchors aligned colinearly are identified as candidate map-

ping locations, by global chaining algorithm[1]. The anchors are further chained by sparse

dynamic programming (SDP) within each candidate region[30]. Finally, it gives detailed



alignment using banded DP (dynamic programming) guided by the result of SDP. BLASR

achieved 10-fold faster mapping of reads to human genome than BWA-SW algorithm at

comparable mapping accuracy and memory footprint.

1.1.3 DALIGNER

DALIGNER[85] is specifically designed for finding overlaps between noisy long reads, though

its concept can also be adopted for a generic long read aligner, as implemented in DAMAP-

PER (https://github.com/thegenemyers/DAMAPPER). Like in BLASR, DALIGNER also

performs filter based on short exact matches. Instead of using BWT (FM index), it explicitly

processes k-mers within reads by thread-able and cache coherent implementation of radix

sort. Detected k-mers are then compared via block-wise merge sort, which reduces mem-

ory footprint to a constant depending only on the block size. To generate local alignment,

it applies O(ND) diff algorithm between two candidate reads[83]. DALIGNER achieved

22 ∼ 39-fold speedup over BLASR at higher sensitivity in detecting correct overlaps[85].

DALIGNER is supposed to be a component for read overlap (with DAMASKER for re-

peat masking, DASCRUBBER for cleaning up low quality regions, and a core module for

assembly) of DAZZLER de novo assembler for long noisy reads, which will be released in

future.

1.1.4 Minimap2

Minimap2[67] is one of the latest and state-of-the-art alignment program. Minimap2 is

general-purpose aligner in that it can align short reads, noisy long reads, and reads from

transcripts (cDNA) back to a reference genome. Minimap2 combines several algorithmic

ideas developed in the field, such as locality-sensitive hashing as in Minimap and MHAP.

For accounting possible SVs between reads and genome, it employs concave gap cost as in

NGMLR, and it is efficiently computed using formulation proposed by Suzuki, Kasahara[113].

In addition to these features, the authors further optimized the algorithm, by transforming



the DP matrix from row-column coordinate to diagonal-antidiagonal coordinate for better

concurrency in modern processors. According to the author of Minimap2, it is supposed to

replace BWA-MEM, which is in turn a widely used extension of BWA-SW.

1.2 De novo assembly

As Lander-Waterman theory[59] would assert, the longer input reads are quite essential in

achieving a high-quality genome assembly for repetitive genomes. Therefore, developing a

de novo assembler for long read is naturally the most active area in the field of long read

informatics.

To our knowledge, almost all assemblers published for long read take an overlap-layout-

consensus (OLC) approach, where the overall task of assembly can be divided into the three

steps. (1. Overlap) The overlaps between reads are identified as candidate pairs representing

the same genomic regions, and the overlap graph is constructed to express these relations.

(2. Layout) The graph is transformed to generate linear contigs. The step often starts by

constructing the string graph[84], a string-labeled graph which encodes all the information

in reads observed, and eliminates edges containing redundant information. (3. Consensus)

The final assembly is polished. To eliminate errors in contigs, consensus is taken among

reads making up the contigs.

Though we do not cover tools for the consensus step here, there are many of them

released to date including official Quiver and Arrow bundled in SMRT Analysis1, another

official tool pbdagcon (https://github.com/PacificBiosciences/pbdagcon), Racon[118], and

MECAT[123]. Of note, quality of a polished assembly can be much better than a short-read-

based assembly due to the randomness of sequencing errors in long reads [14, 85].

1https://github.com/PacificBiosciences/GenomicConsensus



1.2.1 FALCON

FALCON[15] is designed as a diploid-aware de novo assembler for long read. It starts by

carefully taking consensus among the reads to eliminate sequencing errors while retaining

heterozygous variants which can distinguish two homologous chromosomes (FALCON-sense).

For constructing a string graph, FALCON runs DALIGNER. The resulted graph contains

haplotype-fused contigs and bubbles reflecting variations between two homologous chromo-

somes. Finally, FALCON-unzip tries to resolve such regions by phasing the associated long

reads and local re-assembly. The contigs obtained are called haplotigs, which are supposed

to be faithful representation of individual alleles in the diploid genome.

1.2.2 Canu and MHAP

MHAP[10] (Min-Hash Alignment Process) utilized MinHash for efficient dimensionality re-

duction of the read space. In MinHash, H hash functions are randomly selected, each of

them maps k-mer into an integer. For a given read of length L, only the minimum values

over the read are recorded for each of H hash functions. The k-mers at which the minimum

is attained are called min-mers, and resulted representation is called a sketch. The sketch

serves as a locality sensitive hashing of each read, for the similar sequences are expected share

similar sketches. Because the sketch retains the data only on H min-mers, its size is fixed

to H, independent of read length L. Built on top of MHAP, Canu[53] extends best overlap

graph (BOG) algorithm[77] for generating contigs. A new bogart algorithm estimates an

optimal overlap error rate instead of using predetermined one as in original BOG algorithm.

This requires multiple rounds of read and overlap error correction, but eventually enables

to separate repeats diverged only by 3%. Though BOG algorithm is greedy, the effect is

mitigated in Canu by inspecting non-best overlaps as well to avoid potential misassemblies.



1.2.3 HINGE

While there is no doubt that obtaining more contiguous (i.e., higher contig N50) assembly

is a major goal in genome assembly, the quest just for longer N50 may cause misassemblies

if the strategy gets too greedy. Being aware that danger, HINGE[46] aims to perform the

optimal resolution of repeats in assembly, in the sense that the repeats should be resolved

if and only if it is supported by long read data available. To implement such a strategy is

rather straightforward for de Bruijn graphs.In de Bruijn graph, its k-mers representing nodes

are connected by edges when they co-occur next to each other in reads. In ideal situation,

the genome assembly is realized as an Eulerian path, i.e., trail which visits every edge exactly

once, in the de Bruijn graph. However, de Bruijn graphs are not robust for noisy long read,

so overlap graphs are usually preferred for long read. One of the key motivations of HINGE

is to give such a desirable property of de Bruijn graphs, to overlap graphs which is more

error-resilient. To do so, HINGE enriches string graph with additional information called

hinges based on the result of the read overlap step. Then, assembly graph with optimal

repeat resolution can be constructed via a hinge-aided greedy algorithm.

1.2.4 Miniasm and Minimap

Minimap[66] adopts a similar idea as MHAP, for it uses minimizers to represents the reads

compactly. For example, Minimap uses a concept of (w, k)-minimizer, which is the small-

est (in the hashed value) k-mer in w consecutive k-mers. To perform mapping, Minimap

searches for colinear sets of minimizers shared between sequences. Miniasm[66], an associ-

ated assembly module, generates assembly graph without error-correction. It firstly filters

low-quality reads (chimeric or with untrimmed adapters), constructs graph greedily, and

then cleans up the graph by several heuristics, such as popping small bubbles and removing

shorter overlaps.



1.3 Detection of structural variants (SVs)

Sequence variants are called structural when they are explained by the mechanisms involv-

ing double-strand breaks, and are often defined to be variants larger than certain size (e.g.,

50 bp) for the sake of convenience. They are categorized into several classes such as inser-

tions/deletions (including presence/absence of transposons), inversion, (segmental) duplica-

tion, tandem repeat expansion/contraction, etc. While some classes of SVs are notoriously

difficult to detect via short reads (especially long inversions and insertions), long reads have

promise to detect more of them by capturing entire structural events within sequencing reads.

1.3.1 PBHoney

PBHoney[29] implements combination of two methods for detecting SVs via read alignment

to reference sequence. Firstly, PBHoney exploits the fact that the alignment of reads by

BLASR should be interrupted (giving soft-clipped tails) at the breakpoints of SV events.

PBHoney detects such interrupted alignments (piece-alignments) and clusters them to iden-

tify individual SV events. Secondly, PBHoney locates SVs by examining the genomic regions

with anomalously high error rate. Such a large discordance can signal the presence of SVs

because sequencing errors within PacBio reads are supposed to distribute rather randomly.

1.3.2 Sniffles and NGMLR

NGMLR[102] is a long-read aligner designed for SV detection, which uses two distinct gap

extension penalties for different size range of gaps (i.e., concave gap penalty) to align entire

reads over the regions with SVs. Intuitively, the concave gap penalty is designed so that it

can allow longer gaps in alignment while shorter gaps are penalized just as sequencing errors.

Adopting such a complicated scoring scheme makes the alignment process computationally

intensive[78], but NGMLR introduces heuristics to perform faster alignment. Then, an

associated tool to detect SVs, Sniffles scans the read alignment to report putative SVs



which are then clustered to identify individual events and evaluated by various criteria.

Optionally, Sniffle can infer genotypes (homozygous or heterozygous) of detected variants,

and can associate nested SVs which are supported by the same group of long reads.

1.3.3 SMRT-SV

SMRT-SV[42] is a SV detection tool based on local assembly. It firstly maps long reads

to reference genome, against which SVs are called. Then it searches signatures of SVs

within alignment results, and 60 kbp regions around the detected signatures are extracted.

The regions are to be assembled locally from those reads using Canu, then SVs are called

by examining the alignment between assembled contigs and reference. Local assembly is

performed for other regions (without SV signatures) as well to detect smaller variants.

1.4 Beyond DNA - Transcriptome analysis and methy-

lation analysis.

SMRT sequencing has been found its applications outside DNA analysis as well. When it is

applied to cDNA sequencing, long read would be expected to capture the entire structures

of transcripts to elucidate expressing isoforms comprehensively. IDP (Isoform Detection and

Prediction) [4] and IDP-ASE[24] are tools dedicated to analyze long read transcriptome data.

To detect expressing isoforms from long read transcriptome data, IDP formulates it in the

framework of integer programming. To estimate allele-specific expression both in gene-level

and isoform-level, IDP-ASE then solves probabilistic model of observing each allele in short

read RNA-seq. Both IDP and IDP-ASE effectively combines long read data for detection of

overall structure of transcripts, and short read data for accurate base-pair level information.

In methylation analysis, official kineticsTools in SMRT Analysis has been widely used

to detect base modification sites and to estimate sequence motives for DNA modification

(see [34] for the principle of detection). Detecting 5-methyl-cytosines (5mC), which is by far



the dominant type of DNA modification in plants and animals, is challenging due to their

subtle signal. Designed for detecting 5mC modifications in large genomes within practical

sequencing depth, AgIn[114] exploits the observation that CpG methylation events in ver-

tebrate genomes are correlated over neighboring CpG sites, and tries to assign the binary

methylation states to CpG sites based on the kinetic signals under the constraint that a

certain number of neighboring CpG sites should be in the same state. Making the most of

high mappability of long read, AgIn has been applied to observe diversified CpG methyla-

tion statuses of centromeric repeat regions in fish genome[43], and to observe allele-specific

methylation events in human genomes.

Concluding remarks

We have briefly described some innovative ideas in bioinformatics for an effective use of long

read data. As concluding remarks, let me mention a few prospects for the future development

in the field. By now, it is evident the quest for complete genome assembly is almost done,

but the remaining is the most difficult part such as extremely huge repeats, centromeres,

telomeres. While many state-of-the-art assemblers take the presence of such difficult regions

into account and can carefully generate high quality assembly for the rest of genomes, it is

remained open how to tackle these difficult part of the genome, how to resolve its sequence,

not escaping from them.

Base modification analysis using PacBio sequencers may also have huge potential to

distinguish several types of base modifications and to detect them simultaneously in the

same sample[18], but only the limited number of modification types (6mA, 4mC, and 5mC)

are considered for now. This is mainly due to the technical challenge to alleviate noise in

kinetics data to distinguish each type of modifications and unmodified bases from each other.

That said, it will be no doubt that the field would be more attractive than ever, as the

use of long read sequencer becomes a daily routine in every area of biological research, or



maybe even in clinical practice.



Chapter 2

Development of the model: from

kinetics to methylation

In this chapter, we will detail the origin and the nature of kinetics information observed

by PacBio sequencers. We will demonstrate how they look like in real sequencing data of

a human genome which has CpG methylation as its canonical base modification. Then,

some basic concepts of the model to predict (CpG) methylation status will be discussed.

This chapter is intended to supplement the next chapter, where the model will be fully

described and applied to answer some biological questions. Readers who are interested in

the applications may read the next chapter first, and then come back to this chapter.

2.1 Kinetics information obtained with PacBio sequenc-

ing

Detection of base modifications in sample DNA using PacBio sequencing relies on the fact

that kinetics of DNA polymerases is affected by the presence of base modifications in template

DNA molecules they work on[34]. Of note, PacBio sequencing, i.e., single molecule real-time

sequencing would be an appropriate sequencing method to observe such kinetics information.



By contrast, most Next Generation Sequencers adopt an opposite strategy to sequence DNA;

In NGS, what is measured is essentially the synchronized behavior of the amplified DNA

molecules, and is never a reflection of native molecular dynamics.

In processing of PacBio data, the raw measurements of fluorescent intensity are called

the traces (Figure 2.1a). Then, these traces are interpreted via probabilistic model and

transformed into a summarized data called the pulses (Figure 2.1b), which is the direct

predecessor of the “basecalls”. While these processing, which is called primary analysis,

are done by internal code implemented in PacBio RS (I, II, and Sequel) system and is not

fully configurable, most kinetics information are retained in basecalls data and in alignment

results as well. The pulses are available on configuration, and traces can be outputted only

for debugging purpose.

To infer the base modification status of DNA, inter-pulse duration (IPD) and pulse width

(PW) are important measurement (Figure 2.1b). As their names stand, IPD and PW are

metrics calculated for each pulse and the metrics are attached to each base associated with

the pulse. Flusberg et al. demonstrated these IPD and PW are sufficient information to

distinguish base modification statuses[34]. They shown that each of C (cytosines), mC (5-

methylated cytosines), and hmC (5-hydroxymethylated cytosines) have apparently distinct

distribution when they are projected onto the principal components. While both IPD and

PW had strongly contributed to top two principal components, they focused only on IPD

later in the study, and IPD are now widely considered as critical information for detecting

methylation. Throughout this study, we consider only IPD though we here admit importance

of PW in modification analysis remains open for future studies.

2.2 Determinants of IPD and IPD ratio

IPD has a dimension of time, and is in scale of seconds. They fluctuate so much in real

data, which makes it extremely difficult to infer the base modification status from a single



Figure 2.1: Kinetics information obtained from PacBio sequencing. A. Traces are raw mea-
surements of fluorescent intensities. B. Traces are processed to give their compact represen-
tation, pulses. Both PW (pulse width) and IPD (inter-pulse duration) are both measured
in the unit of time, and are supposed to contain information about the base modification in
DNA template under replication.



measurement of IPD. Thus, a practical approach would be taking average over the IPD

observations on the same genomic location to alleviate the effect of nonessential noise. To

take an average over the different reads is essentially to observe the population of cells

collectively for their modification status, thus the approach would be valid if we can assume

the modification status is uniform within them in a sense.

Even after taking the average over the observations, IPD value for each genomic location

would be expected to be greatly different each other. This is because IPDs essentially reflect

the steric effect posed by a local configuration of bases, i.e., a local sequence context and,

of note, this is the very fact that enables the detection of base modification via examination

of IPD, as we expect distinct IPDs are obtained for the context with base modifications and

without them.

Based on this principle, several strategies would be possible to detect base modification

from IPD data. One is to set up a complete model for the correspondence of each context

(possibly with every type of modifications) and expected IPD values. With such a model,

and with IPD measurements with enough precision, we can simply look up the model to

infer the unknown sequence context. However, setting up such a model is difficult since it

is unclear how to prepare the positive controls, that is, DNA molecules with modifications

precisely at desired positions, with the only exception being the cases of bacterial genomes

with known MTases. Therefore, another strategy, only viable option for non-bacterial study,

is to prepare an unmodified DNA sample (a negative control) and compare IPD values

between the control and the sample. Then, discrepancy between the control and the sample

are assumed to be due to some base modifications in the sample. Thankfully, the negative

controls need not to be prepared for every sample sequenced for modification analysis. Once

enough amount of negative controls is available, we can set up the model that map sequence

context to expected IPD value(e.g., see [32]). This model is known to be the in-silico IPD

model and is now widely used.

By dividing the IPD value by the expected unmodified IPD (calculated via in-silico



model), we obtain IPD ratio. From the very definition, IPD ratio is expected to be 1.0 on

bases without base modifications in their context, at least on average over many observations.

On the other hand, large IPD ratio (> 2.0) often signals the presence of base modification(s)

at, or around, the base associated to it[34, 31, 32]. In the next section, we will see how IPD

ratio can reflect the base modification status of underlying sequence context, with the real

example of CpG methylation in human genome.

2.3 Distinct IPD ratio profiles around methylated and

unmethylated CpGs

Figure 2.2a shows the distribution of IPD ratio on each relative position around the CpG

sites in a part of human genome. Only the focal CpG is fixed in this context; cytosine site is

at position 0, and guanine site is at position 1. We call such a plot of IPD ratio distribution

around some motifs as an IPD ratio profile. In the figure, we classified the CpG sites based

on their methylation status inferred from bisulfite sequencing of the same DNA sample.

While it was evident that methylated CpGs had distinct IPD ratio profile, the effect of the

modification was not restricted to the modified cytosine base at position 0. For example,

positions -1, -2, and -6 also exhibited a relatively large shift in IPD values. Interestingly, the

position -1 shown a shift towards opposite direction than others; The incorporation of the

corresponding bases tended to be faster when the context was modified.

Similarly, Figure 2.2b shows the IPD ratio profiles of CpG sites, but now we ignore the

methylation status of the focal CpG sites, and they are classified according to the methylation

status observed in the opposite strand. Strikingly, two profiles for methylated CpGs in Figure

2.2 are almost indistinguishable. This motivated us to use IPD ratio profiles for the opposite

strand as well for predicting the CpG methylation status. In other words, we can effectively

ignore the distinction between strands in predicting the CpG methylation status.



Figure 2.2: Boxplots for IPD ratio profiles around CpG sites. Mean values and .25/.75
quantiles are shown for each relative position to CpG sites. A. CpG sites were classified
according to its methylation status. B. CpG sites were classified according to methylation
status of the CpG sites in the opposite strand.



2.4 CpGs have a distinct IPD ratio profiles in CpG

methylated samples

Most CpG sites in intact human genome are methylated with the notable exception of those

in CpG islands. Consequently, CpGs have a distinct IPD ratio profiles compared to other

15 2-mers even before we classify them into methylated ones and unmethylated ones. Figure

2.3a-d show IPD ratio profiles for each 2-mer, and it is evident that CpGs have the most

characteristic bumps and peaks in IPD ratio profile. Though we are not going to elaborate the

possibility here, we may have a rough idea on the methylation status of the DNA sample, e.g.,

whether it underwent amplification or not, which would have erased methylation. Therefore,

to examine 2-mer IPD ratio profiles would be a harmless preliminary analysis before we apply

more sophisticated methods.

2.5 The form of the regional prediction model

Let us turn to the specification of the model to predict methylated CpGs. Since the model

is detailed in the chapter for the implementation and application of AgIn, we tried to pick

a rather different perspective to avoid unnecessary repetition. The central idea behind

AgIn is it focuses on predicting regional methylation status composed of a certain number

of CpG sites, instead of methylation status of individual CpG sites. The motivation of

this formulation is twofold. On one hand, methylation status of neighboring CpG sites are

strongly correlated, thus such a formulation would enhance the prediction as it effectively

models the biology of cytosine methylation[11, 26, 112]. On the other hand, it is costly to

obtain enough sequencing data for accurate prediction of individual methylation status, so

in a sense, we must reduce the resolution of prediction from individual CpG sites to region

of CpG sites. The resulted model is described in the chapter for AgIn. We may simply

summarize the form of the model as “linear separation of regional IPD ratio profiles via a



Figure 2.3: A-D. Mean values and .25/.75 quantiles are shown for each relative position to
each 2-mer. CpG had the most characteristic IPD ratio profile among other 2-mers.









normal vector, β, and a bias term, γ”. In the rest of this chapter, we will detail how each of

these parameters were determined.

2.5.1 Optimization for beta using linear discriminant analysis

Beta (β) was optimized so that it can discriminate the IPD ratio profiles from methylated

CpG sites and those from unmethylated ones. As we intend to use the vector for linear

separation of regional IPD ratio profiles, it would be natural to optimize it so that it can

work best for linear separation of individual IPD ratio. For that purpose, we applied linear

discriminant analysis (LDA) for the set of individual IPD ratio profiles of CpG sites, each

was labeled with its methylation status observed by bisulfite sequencing data. LDA will give

us an optimal hyperplane (residing in the dimension of the data, 21 in our case). The normal

vector which determine the optimal hyperplane was selected as our β.

2.5.2 Optimization for gamma (γ) and other parameters

Once the β was optimized, the rest of the parameters are optimized by examining the final

prediction results of the model against the methylation status called by bisulfite sequencing.

Other parameters to be optimized include, (1) γ (bias term) for controlling the sensitivity-

specificity tradeoff, and (2) L for minimum number of CpG sites for each predicted block.

Procedure will be detailed in the following chapter, which is on the specification of the fully

developed model and its applications. So, let me move onto the good part of this study.



Chapter 3

Algorithm for CpG methylation

detection - AgIn

3.1 Introduction

There has been a great deal of interest in identification of genome-wide epigenetic DNA

modifications in recent years, because DNAmodifications play an essential role in cellular and

developmental processes [120, 3, 76, 129, 99, 80, 109]. Some of human transposable elements

(TEs), such as long interspersed nuclear elements (LINE), transpose actively within somatic

cells along differentiation of neural tissues, and are partly regulated by DNA methylation

[81, 82]. Each family of human TEs exhibits a variety of methylation statuses in different

tissue types, which was found by looking at the mixture of methylation information on

the consensus sequence of TEs in the same family [124]. Many human diseases are also

associated with DNA methylation state of TEs. In particular, unmethylation of repetitive

elements (REs), such as LINE-1 (L1) elements, has been related to some cancers [121, 94].

This work has been published in:
Suzuki, Yuta, et al. ”AgIn: measuring the landscape of CpG methylation of individual repetitive elements.”
Bioinformatics 32.19 (2016): 2911-2919.



Although only a few L1 elements exhibit activity in the human genome [8], it has been

reported in various cancer genomes [61, 38], and importantly, transposition is correlated

with unmethylation in the promoter region of L1 elements [116]. Therefore, it is essential to

develop an experimental framework that can characterize the methylation state of REs in a

genome-wide manner.

The advent of second-generation sequencing technology has increased the efficiency of

the generation of precise genome-wide methylation maps at a single-base resolution using

bisulfite treatment [20, 70, 75, 71, 41]; however, these sequencing-based technologies have

difficulty in characterizing the methylation status of CpGs in regions that are highly similar

to other regions. Bisulfite-treated short reads from these regions often fail to map uniquely to

their original positions; instead, they are likely to be aligned ambiguously to multiple genomic

positions. Especially, the younger and more active transposons retain higher fidelity and are

therefore difficult to address using short reads.

The PacBio RS II sequencing system uses DNA polymerases to perform single-molecule

real-time (SMRT) sequencing [54, 27], and is able to sequence reads of an average length

of >10 kb. It is also able to sequence genomic regions with extremely high GC content. A

striking example is the sequencing of a >2-kb region with GC content of 100% [72], indicating

that SMRT sequencing is less vulnerable to sequence composition bias than first/second-

generation sequencing is.

SMRT sequencing of bisulfite-treated DNA fragments may allow identification of DNA

methylation; however, this approach is unlikely to process long, highly identical repeats

because bisulfite treatment breaks DNA into fragments of <1500 bp [79, 128]. Instead, we

explored another advantage of SMRT sequencing to detect DNA modifications directly.



3.2 Approach

In SMRT sequencing, we observe the base sequence in a single DNA molecule as the time

course of the fluorescence pulses which reflect the incorporation processes of nucleotides.

From this time course information, we define the inter-pulse duration (IPD), the time in-

terval separating the two pulses of consecutive bases. Importantly, the IPD of the same

genomic position varies and has a significant and predictable response to the presence of

DNA modifications and damages [34].

Since the IPD tends to be perturbed systematically when DNA modifications are present,

SMRT sequencing has been used to detect 5-hydroxymethylcytosine [34], N4-methylcytosine [19],

N6-methylademine [34, 31, 32, 40], and damaged DNA bases [18] in bacteria and mito-

chondria. Though the sequence motifs with modifications can be detected with very low

coverage [9], estimation of 5-methylcytosine (5-mC) residues using low-coverage reads is

challanging. It requires extensive coverage (∼500x) at each position to clarify the base-wise

5-mC state and therefore becomes costly [34, 31, 96]. Clark et al. attempted to improve the

detection of microbial 5-mC in the Escherichia coli and Bacillus halodurans genomes using

Tet1-mediated oxidation to convert 5-mC into 5caC in SMRT reads of ∼150x coverage per

DNA strand [17]. Therefore, kinetic information from low-coverage SMRT reads at a single

CpG site is not reliable for predicting the methylation status.

In this study, we exploited the facts that unmethylated CpG dinucleotides are rare

(∼10%) in vertebrates and generally do not exist in isolation but often range over long

hypomethylated regions [92, 37, 26, 11, 106, 86, 124]. Su et al. reported that the average

length of hypomethylated regions in five human cell types is ∼2 kb [112]. Thus, estimating

regions with unmethylated CpG sites is informative in most cases. Moreover, integrating

kinetic information over many CpG sites in a long region can increase the confidence in de-

tecting methylation when the status of those sites is correlated. Therefore, it shows promise

for predicting the methylation status in a block using low-coverage SMRT reads. In the rest

of this article, we examine the feasibility of the approach and present a novel computational



algorithm that integrates SMRT sequencing kinetic data and determines the methylation

status of CpG sites.

3.3 Methods

3.3.1 Outline of our method AgIn

Figure 3.1A shows a schematic representation of the basic concept of our method. To elim-

inate the context-dependent fluctuation of the IPD values, we calculated the IPD ratio

(IPDR) on each genomic position as previously described [34]. This normalization is es-

sential to compare the IPD values from different genomic positions with various sequence

contexts. Then, we defined the IPDR profile of a CpG site as an array of IPDR measurements

of 21 bp surrounding the CpG site because these neighboring positions have proven to be

effective in predicting 5-hydroxymethylcytosine, N4-methylcytosine, and N6-methylademine

in bacteria genomes in previous studies [34, 18, 19, 31]. With low coverage, the IPDR pro-

files at individual CpG sites are noisy and insufficient for determining whether each CpG

site is methylated or not. However, if we could somehow identify the boundaries of hy-

pomethylated/hypermethylated regions and take the average of the IPDR profiles for the

CpGs within each region, then it would allow better prediction of the methylation state of

each region from its average IPDR profile, which has less noise than the profile of a single

CpG site. Averaging the IPDR profiles is also expected to alleviate the possible confounding

effect from other types of modifications found in DNA. An example of our prediction for the

human genome is shown in Figure 3.1B. Our method was able to estimate hypomethylation

of long duplicated regions while the bisulfite sequencing provided little information. Supple-

mentary Figure 3.S1C illustrates another example in which both methods were consistent in

showing hypomethylation in the gene promoters.
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Figure 3.1: Outline of our integration method. A. The top three distributions show the
typical inter-pulse duration ratio (IPDR) profiles within 10 bp of the CpG sites in the raw
data. The IPDR profiles of individual CpG sites were treated as points in the 21-dimensional
feature space. Red-colored unmethylated CpGs and blue-colored methylated CpGs are often
difficult to separate using a hyperplane. Therefore, initially, we had little knowledge about
the methylation status of each CpG site from the raw data, as illustrated by the question
marks at the CpG sites. Our algorithm predicts the boundary of unmethylated and methy-
lated CpG sites. The average IPDR profiles of the two regions, which have clearly distinct
IPDR profiles, are shown below the two regions separated by the boundary (see the detailed
IPDR profiles in Supplementary Fig. 3.S1B). Red circles and blue boxes represent unmethy-
lated and methylated CpGs, respectively, predicted by our algorithm (annotated as ’pre-
dicted regions’) and were observed by bisulfite sequencing (labeled ’answer’). In the feature
space, red and blue disks represent the IPDR profiles of predicted regions. B. Comparison
of our prediction with the available human genome methylome data. From top to bottom,
black bars indicate hypomethylated regions predicted from SMRT sequencing data using our
method. Yellow and black bars show the methylation level and read coverage obtained from
public bisulfite sequencing data, respectively, and blue boxes show hypomethylated regions
predicted from the bisulfite data. Green bars below indicate the alignability of short (100-bp)
reads. The bottom row shows repeat masker tracks. Both methods are consistent in showing
hypomethylation on the three blue-colored regions. No read counts of the bisulfite data are
available in long duplicated regions where the alignability is quite low, but our method can
estimate hypomethylation in these regions.



3.3.2 Estimating the methylation status at each CpG site

Suppose that the focal genome has n CpG sites. We denote the genomic position of C of the

i-th CpG site by pi(i = 1, . . . , n). For example, if the C of the second CpG site is at the 10th

genomic position, “p2 = 10.” Our goal is to predict the methylation status, unmethylated

or methylated, at pi using information of the read coverage and the IPDRs at positions

surrounding pi. 21 neighboring positions are denoted by pi + j for j = −10, . . . ,+10 in the

plus strand. For example, the positions 5 bases upstream and downstream of pi are pi − 5

and pi + 5, respectively.

We used the SMRT Analysis pipeline to process raw kinetic data from SMRT sequencing

to obtain the mean IPDR and the read coverage at each genomic position. Let ri and

r′i denote the mean IPDR associated with position i of the forward and reverse strands,

respectively, and let ci and c′i denote the read coverage at position i of the forward and reverse

strands, respectively. To achieve a better prediction, we derive a modified IPDR vector from

the raw read coverage and the IPDRs within 10 bases around pi. For this purpose, we consider

that the property that any CpG site in one strand is reverse complementary to the CpG in

the other strand, and the methylation status of Cs at a pair of CpG sites in both strands

is consistent in most cases, making it meaningful to combine IPDR information for both

strands to predict the methylation status. To represent positions in the minus strand, we

note that since we set pi to the position of C of the focal CpG in the plus strand, the position

of C of the CpG in the minus strand is pi+1, and the surrounding positions are pi+1− j for

j = −10, . . . ,+10. We attach more importance to the IPDR values associated with a higher

read coverage and we quantify this as cpi+j × rpi+j in the plus strand (c′pi+1−j × r′pi+1−j in

the minus strand). We then take the sum of all the products and normalize it by dividing

it by the total coverage. Finally, we obtain the 21-dimensional modified IPDR vector for 21

genomic positions around CpG site pi:

X̂(pi)j =
cpi+jrpi+j + c′pi+1−jr

′
pi+1−j

cpi+j + c′pi+1−j

(j = −10, . . . ,+10).



We are now in a position to define a classifier that uses X̂(pi) as explanatory variables

and predicts the methylation status at pi. We attempted to use linear discriminant analysis

(LDA) with the discriminant function

F(pi) = β · X̂(pi) + γ,

where we optimized the values of coefficient vector β and variable γ using bisulfite sequencing

data as the training data set to improve the prediction. Supplementary Figure 3.S1A and

3.S1D shows the optimized vector β that we used in this study. We do not claim this vector

is the simplest one since excluding the low-contributing components from the parameter

degraded the accuracy only by a little (Fig. 3.S3G). If the sign of the discriminant function,

F(pi), is positive, the methylation status at pi is defined as ‘methylated’; otherwise, it is

defined as ‘unmethylated.’ Our goal is to achieve a higher accuracy using a lower read

coverage in order to reduce the cost.

3.3.3 Predicting the methylation status of CpG blocks

In vertebrates, unmethylated CpG dinucleotides are rare (∼10%) and do not always exist in

isolation, but they are likely to range over long hypomethylated regions. This motivates us

to integrate low-coverage reads around CpGs in a region to yield high-coverage for estimating

the methylation status in the entire region, rather than at a single-base resolution. Let A

denote a region. The following formula expresses the average IPDR vector for 21 genomic

positions around all the CpG sites in region A and its associated discriminant function:

X̂(A)j =

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)∑

pi∈A(cpi+j + c′pi+1−j)

(j = −10, . . . ,+10).

F(A) = β · X̂(A) + γ



Processing a longer region with sufficient CpG sites can improve the accuracy of the predic-

tion, although it may overlook smaller regions. In our analysis, we imposed the constraint

that each region contained at least b CpG sites. For example, we can set b to 50 because

the average length of hypomethylated regions in five human cell types is approximately 2

kb [112] and the average distance between neighboring CpG sites in the medaka genome is

53.5 bases, although this constraint should be adjusted according to each individual situa-

tion. The possibility of the hypermethylation (hypomethylation, respectively) of A increases

with a larger positive (negative) value of F(A), as well as for a larger total coverage,

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j).

A with a larger magnitude of w(A)F(A) is better for prediction.

3.3.4 Decomposing the genome into hypomethylated/hypermethylated

CpG blocks

Now, we must consider how to decompose n CpG sites in the whole genome into hyper-

methylated regions {Mλ∈Λ} and hypomethylated regions {Uµ∈M} such that all regions are

disjoint from each other, their union covers all CpG sites, and the two types of regions occur

alternatingly along the genome. We calculate the optimal decomposition of regions that

maximizes the following objective function:

∑
λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ).

To simplify this problem, we here mention one important characteristic of SMRT sequencing,

that is, read coverage is not affected by the sequence composition [6, 130, 28, 52, 72].

Thus, the average coverage in A is constant at any position within 10bp relative to CpGs.

Technically, we can assume that the average of coverages at the j-th position around all the



CpG sites in region A is a constant c̄ that is dependent of A but is independent of j:

∑
pi∈A(cpi+j + c′pi+1−j)

|A|
= c̄ for j = −10, . . . , 10,

where |A| denotes the number of CpG sites in A. This allows us to transform w(A) into a

simpler form:

w(A) =
∑

pi∈A,j=−10,...,+10

(cpi+j + c′pi+1−j) = 21c̄|A|

Subsequently, we simplify the objective function:

w(A)F(A)

= w(A)(β · X̂(A) + γ)

= 21c̄|A|

(
γ +

∑
j

βj

∑
pi∈A(cpi+jrpi+j + c′pi+1−jr

′
pi+1−j)

c̄|A|

)
(−10 ≤ j ≤ +10)

= 21

(
γc̄|A|+

∑
j

βj

∑
pi∈A

(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

)

=
∑
pi∈A

21

(
γc̄+

∑
j

βj(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)

)
=

∑
pi∈A

si,

where si denotes 21(γc̄+
∑

j βj(cpi+jrpi+j + c′pi+1−jr
′
pi+1−j)).

Finally, the objective function is a linear combination of si:

∑
λ∈Λ

w(Mλ)F(Mλ) +
∑
µ∈M

−w(Uµ)F(Uµ)

=
∑
λ∈Λ

∑
pi∈Mλ

si +
∑
µ∈M

∑
pi∈Uµ

(−si)

Although we set si to a score calculated from weighted IPDR information, we can set si to



a log-likelihood function of the form −logQi for some likelihood function Qi. This simple

form motivates us to design an O(n)-time dynamic programming algorithm for calculating

the optimal value efficiently. We consider the subproblem involving the first i CpG sites

among all n sites, and let SM
i and SU

i be the maximum values of the objective function when

the last i-th CpG site is methylated and unmethylated, respectively. SM
i and SU

i meet the

following recurrences:

SM
i+1 = max{SM

i + si+1, SU
i−b+1 +

i+1∑
k=i−b+2

sk}

SU
i+1 = max{SU

i − si+1, SM
i−b+1 +

i+1∑
k=i−b+2

(−sk)}

The first max term implies extension of the running region by one CpG site, while the second

term means a switch from the previous methylation status and the initiation of a new region

with ≥ b CpG sites. For example, we can set b to 50, but one can change the requirement for

the minimum number of CpG sites in a region by making an appropriate adjustment to the

second term. Of SM
n and SU

n , the larger value gives the maximum value, and tracing back

the optimal path from the maximum value provides all the boundaries between neighboring

methylated and unmethylated regions. To calculate regions satisfying the constraint on the

minimum number of CpG sites, we generalized the dynamic programming idea proposed

by Csűrös [23]. One might wonder if the hidden Markov Model (HMM) can be used for

computing hypomethylated and hypermethylated regions; however, it is not obvious that

using HMM guarantees the requirement that each range has ≥ b CpG sites.



3.4 Results

3.4.1 SMRT sequencing and bisulfite data benchmark

We collected 31.06-fold coverage SMRT subreads from the testes of medaka Hd-rR (assuming

an estimated genome size of 800 Mb) using P6-C4 reagents (Supplementary Methods). We

also collected 22.45-fold and 13.06-fold coverage SMRT reads from human peripheral blood

of two Japanese individuals. Thus, we have 3 datasets in total, 1 for medaka and 2 for

human. For sequencing two human samples, we employed the P6-C4 reagents and the P4-

C2 or C2-C2 reagents, respectively (Supplementary Methods). In total 2848641, 7279594,

and 19115712 subreads mapped to the medaka genome and the human genome, respectively.

The mean mapped subread lengths were 8722 bases for medaka and 9254 and 2049 bases for

2 human samples (Supplementary Table S1).

As CpG methylation status reference data, we used the testes methylome of the medaka

Hd-rR inbred strain by way of Illumina bisulfite sequencing [92]. In this dataset, most of the

CpG sites in the medaka genome are either unmethylated or methylated, and methylation at

non-CpG sites is very rare (∼0.02%), allowing us to focus on CpG sites only. We evaluated

the prediction accuracy of our integration method using the methylation scores calculated

from bisulfite-treated Illumina reads as the answer set. Let S be the set of bisulfite-treated

Illumina reads covering the i-th CpG site, x be the number of methylated CpGs in S at i,

and y be the coverage of S at i (the size of S). We then defined the methylation status as

‘unmethylated’ if the score x/y was less than 0.5; otherwise, it was defined as ‘methylated’.

We need to carefully constrain the value of the coverage y. Allowing a lower value of y is

likely to produce more erroneous methylation scores, while using y greater than a higher

threshold would reduce the number of CpGs associated with their methylation scores. The

average coverage was 9.40-fold in our bisulfite-treated reads collected from testes of the

Hd-rR medaka inbred strain; however, the coverage at individual CpG sites varied to some

extent. We defined the methylation score only when the CpG site was covered by 10 or more



reads (i.e., y ≥ 10) in order to make sure the scores were robust enough.

3.4.2 Computational performance

Our linear-time algorithm allows us to handle vertebrate-scale genomes with millions of CpG

sites in a reasonable amount of time. It took 2.265 sec. on average to process 1 Mbp (1191

s to handle 525.7 Mb of medaka genome v.1) using a laptop PC (Intel i7-3612QM processor

with a clock rate of 2.10 GHz and 7.8 GB of main memory).

3.4.3 Predicting the methylation state from kinetic data

We implemented our method using linear discrimination of the vectors of (average) IPDR

profiles around the CpG sites. We represented the vectors as points residing in the Euclidean

space of the appropriate dimension and attempted to separate the points by a decision hyper-

plane (Fig. 3.1A). For better accuracy, we optimized two parameters of the decision hyper-

plane, the orientation and the intercept. Supplementary Figure 3.S1A (for P6-C4 reagents)

and S1D (for P4-C2 reagents) show the optimized orientation. Our method divides the

genome into regions containing ≥ b CpG sites, such that each region is either hypomethy-

lated or hypermethylated. While setting lower bound b to 50 is supported by the plausible

heuristics with biological grounds, a looser bound (b < 50) allows us to detect shorter re-

gions. We therefore examined when we could use a smaller value of b (= 30, 35, 40, 45)

without degrading the accuracy of prediction.

We predicted the methylation status of each CpG site by checking whether the CpG site

was located in an hypomethylated or hypermethylated region output by our method. We

measured the accuracy of the prediction by checking the consistency between the prediction

and the methylation score associated with each CpG site. CpG sites without methylation

score (due to the lack of bisulfite-treated reads) were ignored. We treat an unmethylated

status as positive and a methylated status as negative because we are more interested in

identifying rare hypomethylated regions accounting for a small portion (e.g., ∼10%) of CpG



sites.

To evaluate the accuracy of our method, we used the chromosome 1 of length 34,959,811

bp in the medaka genome (version 2) that we assembled from SMRT subreads. For predicting

CpG methylation accurately, we guaranteed that each CpG site was covered by at least three

subreads, and set the coverage to 0 otherwise, which slightly reduced the original average

read coverage, 31.06-fold, to 29.9-fold on the chromosome 1. We calculated various accuracy

measures, such as sensitivity (recall), specificity (1−false-positive rate), and precision by

comparing our prediction on each CpG site with the methylation level determined in a

bisulfite sequencing study [92]. As most CpG sites in the medaka genome are methylated

consistently, there are only a small number of positive examples of unmethylated CpGs, and

therefore, precision is more informative than specificity in evaluation. We made the trade-

off between sensitivity and precision through the selection of the intercept of the decision

hyperplane (−8.0 ≤ γ ≤ 5.0) (Fig. 3.2A and Supplementary Fig. 3.S2-3). When we used

100% of 29.9-fold subreads, setting b to 35 outperformed the other values (Fig. 3.2A). Our

prediction achieved 93.7% sensitivity and 93.9% precision, or 93.0% sensitivity and 94.9%

precision, depending on the selection of the intercept. To examine the coverage effect, we

used five subread sets of coverage 20%, 40%, 60%, 80%, and 100% of 29.9-fold. For coverages

of 20% and 40% of 29.9-fold, setting b to 50 performed best (Supplementary Fig. 3.S3). Both

sensitivity and precision were ∼ 90% for b = 45 even if the coverage is relatively small, 60%

of 29.9-fold (Supplementary Fig. 3.S3C). In selecting b, it was suggested to use a larger

value (b = 50) when the read coverage is small (15∼20-fold) so that the cumulative coverage

(750∼1000-fold) is large enough. One can use a smaller value (b = 35) with sufficient read

coverage (∼30-fold), and b can be decreased gradually with deeper coverage. Setting b to 1

corresponds to the case where the methylation state of each CpG is predicted independently,

but it could not achieve a good accuracy, which confirmed the merit of our aggregating

approach (Supplementary Fig. 3.S3F). The ROC curve, the tradeoff between false-positive

rate and sensitivity, is also shown in Figure 3.2B. Overall, sensitivity and precision of our
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method are substantially high using a reasonable coverage of SMRT subreads.

3.4.4 Handling intermediate methylation states

We have introduced the two-class model of our prediction that assigns all of the CpG sites

into either hypomethylated or hypermethylated regions; however, such a dichotomous model

is rather unrealistic, and more refined predictions involving multi-level methylation states

or even continuous methylation levels are desirable. For example, an intermediate level of

CpG methylation could result from the distinct methylation states of two DNA molecules of

diploid cells, although each cytosine must be either methylated or unmethylated in a single

DNA molecule. More generally, a cell population can be epigenetically heterogeneous, which

would possibly show a spectrum of methylation levels according to its composition. Finally,

prediction allowing intermediate states can represent the ambiguity of the prediction, and

exclusion of such ambiguous predictions should improve the overall prediction accuracy.

Thus we extended our method in order to achieve more informative multi-class predic-

tion and quantify the methylation level of each CpG, which we call discrete methylation level

(DML, Supplementary Methods). Specifically, DML is calculated as the average prediction

over the set of 10 parameters with different sensitivity-specificity combinations, thus it mea-

sures the robustness of the prediction. We checked the accordance between our DML and

intermediate or ambiguous methylation level captured by two other quantitative methods,

bisulfite sequencing and Illumina BeadChip. On the medaka sample, we observed a strong

correlation (R = 0.884) between our DML and methylation level calculated from bisulfite

sequencing (Supplementary Fig. 3.S4C,E), and we confirmed that measurements on 92.0%

of CpG sites were in concordance within 0.25. We also compared our DML on the human

sample to the beta value (an indicator of methylation level expressed as a value ranging over

[0,1]) obtained from Illumina BeadChip after normalizing the beta values (Supplementary

Methods). We observed a weaker correlation (R = 0.816, Supplementary Fig. 3.S4D) and

a smaller fraction (75.4%) of CpG sites in concordance within 0.25 presumably because the



beta value is less quantitative than the methylation level calculated from bisulfite sequencing

[119]. With the sequencing depth in our case, CpG sites with intermediate methylation were

more difficult to predict than completely methylated/unmethylated cases (Supplementary

Fig. 3.S4E). Therefore, excluding the prediction with intermediate levels improved the ac-

curacy of the binary prediction (Supplementary Table S2). We concluded that DML serves

to reflect the quantitative nature of methylation status in the samples to some extent, and

is informative in achieving more accurate prediction as well.

3.4.5 Genome-wide methylation pattern of repetitive elements in

the human genome

We investigated how individual occurrences of repetitive elements (REs) were methylated in

the human genome (Fig. 3.3A). Since some occurrences of REs contain no or very few CpG

sites, we only consider those occurrences with at least 10 CpGs to exclude less informative

cases. First, we checked whether SMRT reads could address the repetitive regions in a

useful manner for methylation analysis. Specifically, we considered a repeat occurrence to

be covered by uniquely mapped SMRT reads if the IPD ratio was available on ≥50% of CpGs.

We found that >96% were covered for every repeat type. To draw robust conclusions, we

further applied a stringent quality control to each repeat occurrence so that the average read

coverage be >5. Although this step reduced the number of repeat occurrences to be analysed

by 3−18%, this could be mitigated simply by producing more data. Finally, we treated an

occurrence as hypomethylated if ≥50% of CpGs were predicted as unmethylated. Similarly,

we considered an occurence as methylated intermediately if ≥50% of CpGs were predicted

as 0.3∼0.7 in DML measurement. Fractions of hypomethylated repeat occurrences vary

considerably among different classes of REs, from ∼1% for L1 and Alu to ∼50% for MIR

and >70% for simple repeats and low-complexity regions. The fraction of intermediately

methylated repeats was 1.4% among all the repeat classes.

To validate our prediction regarding the repeat occurrences, we selected 21 regions for
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Figure 3.3: Epigenetic landscape of repetitive elements in the human genome. A. The
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using the Repeat Library 20140131 (Smit, A., Hubley, R. and Green, P. Repeatmasker
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bisulfite Sanger sequencing, designed primers for nested PCR (Supplementary Table S3), and

could amplify six regions (Supplementary Methods), indicating the difficulty in observing

DNA methylation of REs using traditional bisulfite Sanger sequencing. In five (1 L1, 3

LTRs, 1 MIR) among the six amplified regions, we confirmed the consistency between our

prediction and the methylation state observed by bisulfite Sanger sequencing (Supplementary

Fig. 3.S5). The other one L1 element was predicted hypomethylated. In this region, however,

5 unmethylated CpG sites were followed by 5 methylated CpG sites, which showed our

method was not reliable in determining the precise boundary and the individual calls should

be interpreted carefully.

We then examined the features for characterizing the differences between hypermethy-

lated and hypomethylated REs. First, CpG density was significantly higher in the hy-

pomethylated occurrences in almost all classes of REs (p < 1%, Fig. 3.3B). This observation

was consistent with the known association between CpG-rich regions and unmethylation

because methylation leads to depletion of CpG sites through deamination [22]. Second, se-

quence divergence from the representative in each repeat class showed a correlation with

methylation status (Fig. 3.3C). For most classes, with the apparent exception of simple

repeats, low-complexity regions, and MIR elements, hypomethylated occurrences were sig-

nificantly more divergent than were hypermethylated occurrences (p < 1%, Fig. 3.3C),

presumably because younger copies of a repeat element are less divergent and are likely to

be targets of DNA methylation. Kernel principal component analysis (PCA) using spectrum

kernel suggested, for some repeat types, that the methylation statuses were correlated partly

with sequence features (Supplementary Fig. 3.S6).

Next, we examined whether the hypomethylated repeat occurrences were distributed

uniformly or non-uniformly throughout the entire genome. We selected three major classes

(LINE, Alu, and LTR) of REs for this analysis. We calculated the ratios of hypomethylated

copies to all REs in individual non-overlapping bins 5 Mb in size (Fig. 3.3D). The non-

random distribution patterns were more evident for LINE and LTR than for Alu. For



example, we found hypomethylated LINEs to be enriched in the p-arm of chromosome 1

and in chromosomes 17 and 19. There were hypomethylation ‘hot spots’ of LTR elements,

e.g., in chromosomes 6 and 9 (Supplementary Fig. 3.S7). It is intriguing that some of these

hypomethylation hot spots, such as those in the p-arms of chromosomes 6 and Y, seem to

be shared among different classes of REs.

We further investigated the methylation states of LINE/L1 elements, the only known

active autonomous retrotransposons in mammals [35]. Although most of LINE/L1 insertions

contain many mutations, Penzkofer et al. categorize full-length L1 elements into three classes

according to the conservation of two open reading frames (ORFs) [91]; namely, 1) L1s with

intact in the two ORFs that are likely to exhibit retro-transposition activity, 2) L1s with an

intact ORF2 but a disrupted ORF1, and 3) non-intact L1s with two ORFs disrupted. We

obtained the positions of these human LINE/L1 elements from L1Base [91] and analyzed

their methylation stateses (Supplementary Table S4). Although 0.61% of non-intact L1s

were hypomethylated, all of L1s with intact in two ORFs and L1s with an intact ORF2 were

hypermethylated. We also checked the presence of LINE insertions that were novel to the

hg19 reference genome. We assembled the SMRT reads using the FALCON assembler and

searched the assembly for novel LINE insertions that matched a hot L1 element (GenBank:

M80343.1) of size 6050 bp with identity > 98.5%. The hot L1 element was used as the

representative according to the procedure of L1Base [91]. We identified two novel instances

covered by sufficient depth of SMRT reads that allowed us to call their methylation statuses

confidently. Both of the two LINE insertions (their locations are in Supplementary Fig.

3.S8) were estimated to be methylated. These results confirmed putatively active LINE/L1

elements with intact ORFs were preferentially methylated.

3.4.6 Tol2 transposable element in medaka

Medaka has an innate autonomous transposon known as Tol2, which is one of the first

examples of autonomous transposons in vertebrate genomes and a useful tool for genetic



engineering of vertebrates, such as zebrafish and mice [48]. The excision activities of Tol2

are promoted when DNA methylation is reduced by 5-azacytidine treatment, which sug-

gests that DNA methylation is one of the mechanisms regulating the Tol2 transposition [44].

Nevertheless, observing the methylation status of each Tol2 copy using short reads is dif-

ficult, because Tol2 is 4682 b in length, and ∼20 highly similar copies of Tol2 exist in the

genome [50].

To elucidate the methylation status of each Tol2 copy, we applied our method to a new

assembly of the Hd-rR genome obtained exclusively from SMRT reads. BLAST search iden-

tified 17 copies of Tol2 contained entirely within this assembly, all of which were essentially

identical (>99.8% sequence identity). We then called the methylation status of these Tol2.

For comparison, we mapped the publicly available bisulfite-treated reads from the testes of

the Hd-rR strain to these contigs and determined the methylation level on every 100-bp

window using Bismark software.

The methylation status of these Tol2, observed by SMRT reads and bisulfite-sequencing,

are shown in Figure 3.4. While virtually no Tol2 copies were mapped by bisulfite reads, as

expected from their extremely high fidelity, 16 of 17 copies were anchored by SMRT reads,

and all were predicted to be hypermethylated by our method. For the regions examined by

both SMRT reads and bisulfite-treated short reads, our prediction was consistent with the

methylation level calculated from the bisulfite-treated reads. For example, one Tol2 copy was

surrounded by hypomethylated regions (number 14). From the bisulfite data, it appeared

that the body of Tol2, from which data were missing, was hypomethylated. Nevertheless,

our prediction estimated this region to be hypermethylated. These results demonstrate the

ability of our method using SMRT reads to clarify DNA methylation states of highly identical

REs such as active transposons.
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3.5 Discussion

In this study, we addressed the problem of uncovering the landscape of DNA methylation of

repetitive elements (REs). To this end, we developed a unique application of SMRT sequenc-

ing to epigenetics. This direction had been already explored in the research community for

bacterial and viral species. However, this application in large vertebrate genomes has been

largely unexplored because of the subtle cytosine methylation signals in the kinetic infor-

mation. Therefore, we proposed a new method to utilize relatively small amounts of kinetic

information by incorporating a model reflecting our prior knowledge on the regional patterns

of CpG methylation of vertebrate genomes. We confirmed the validity of our strategy by

comparing the prediction to bisulfite sequencing data on medaka and to BeadChip analysis

on human samples. These two datasets had very different characteristics, which seemed to

be partly because of the methods used (i.e., BeadChip was designed to observe mainly CpG

islands that are often hypomethylated, while bisulfite sequencing is used for genome-wide

methylation analysis) and partly because of the nature of the samples used (i.e., the medaka

samples were derived from an inbred strain, while the human samples were from diploid

cells). Despite such differences in characteristics, our method using the same parameters

performed almost equally well for both datasets. These observations suggested that the

choice of parameters is robust for a wide variety of samples, which is a desirable feature for

any method. We also presented an extension of our method to accommodate intermediate

methylation states, the discrete methylation level (DML), and confirmed a high correlation

(R = 0.884) between DML and bisulfite methylation level.

We explored the epigenetic landscape of REs within the human genome. Using the hg19

reference genome is an apparent limitation. By assembling individual personal genomes

instead of the reference genome, new insertions of these REs are expected to be found, and

such active occurrences should be of interest. Indeed, we detected two novel LINE insertions

that were estimated to be methylated. Importantly, the more recent the insertion event, the

less divergent it would be from the original copy, and therefore, there would be less likelihood



of it being anchored by short reads. In such cases, long SMRT reads shed new light on the

ecosystem of active REs in personal human genomes.

We demonstrated the use of long SMRT reads can increase the potential comprehensive-

ness of the epigenetics study. In addition, our method can substantially reduce laboratory

work. For example, in the projects of resequencing or de novo assembly using SMRT sequenc-

ing, you can call the methylation statuses of the sample as well, completely in silico, without

any additional experiment. This is another important strength compared to conventional

bisulfite sequencing or affinity-based assays.

3.6 Data access

The sequence data (SMRT reads) from the medaka sample are deposited at the NCBI Archive

(Accession No. SRP020483). Sequence data from a Japanese individual are available un-

der controlled access through the National Bioscience Database Center (NBDC, accession

number JGAS00000000003).

3.7 Supplementary Methods

Preparation of genomic DNA and SMRT sequencing

DNA was extracted from the testes of Hd-rR medaka with the DNeasy Blood & Tissue

Kit (Qiagen, Hilden, Germany), following the tissue protocol. Genomic DNA was isolated

from peripheral blood leukocytes of two Japanese patients using standard procedures after

informed consent. The DNA featured A280/260 values of ∼1.8 and formed a clear, sharp

band on agarose gel electrophoresis.

For the medaka sample and one human sample, genomic DNA was sheared using g-Tube

devices (Covaris Inc., Woburn, MA, USA), targeting 20 kb fragments at 4300 rpm, 150

ng/µl and purified using 0.45× volume ratio of AMPure beads (Pacific Biosciences, Menlo



Park, CA, USA). SMRTbellTM libraries were prepared with the DNA Template Preparation

Kit 1.0 (Pacific Biosciences, Menlo Park, CA, USA) using the “20-kb Template Preparation

using BluePippin Size Selection System (15 kb Size Cutoff)” protocol. Sequencing primer

was annealed to the template at 0.833 nM concentration. SMRT bellTM templates were

sequenced using magnetic bead loading, C4 chemistry, and polymerase version P6. Sequence

data were collected on the magnetic bead collection protocol, 20 kb insert size, stage start,

and 240 min movies in PacBio RS Remote.

For the other human sample, sequencing was performed as follows. Genomic DNA was

sheared with using g-TUBE devices, targeting 10 kb fragments. SMRTbellTM libraries were

prepared with the DNA Template Preparation Kit 2.0 (3∼10 kbp) (Pacific Biosciences,

Menlo Park, CA, USA). Briefly, sheared DNA was end-repaired, and hairpin adapters were

ligated using T4 DNA ligase. Incompletely formed SMRTbellTM templates were degraded

using a combination of exonucleases III and VII. The resulting DNA templates were purified

using (0.45×) SPRI magnetic beads (AMPure; Agencourt Bioscience, Beverly, MA, USA).

Sequencing primers were annealed to the templates at a final concentration of 5 nM tem-

plate DNA. SMRTbellTM library was sequenced using Magbead loading, C2 chemistry, and

Polymerase version C2 or P4. Sequence data were collected on the PacBio RS for 120 min.

Regarding two human samples, the latter sample matches the one used for Illumina

BeadChip analysis. We used the sequencing data and methylation state prediction from this

sample solely for the analysis of intermediate methylation state prediction.

Handling intermediate or ambiguous methylation states

Suppelmentary Figure 3.S4 depicts the concept for multi-class prediction using hypothetical

data points. We made a classification using the linear discrimination process involving a

separation (decision) hyperplane and determined the position of the hyperplane using the

intercept parameter denoted by γ (Supplementary Fig. 3.S4A). Intuitively, the intermedi-

ately methylated CpGs are expected to be distributed more closely to the decision plane, and



are therefore more ambiguous than CpGs with bona fide methylation states are. Thus, to

output the multi-class prediction, we perturbed the intercept γ around its optimal value to

produce multiple predictions on each CpG site, which is illustrated by the parallel displaced

hyperplanes (Supplementary Fig. 3.S4B). Specifically, we performed prediction using the

set of 10 perturbed intercept values (γ ranging from -12% to +24% by 4%) so we obtain 10

predictions on each CpG site. We then defined the discrete methylation level (DML) ranging

over [0, 1] as the fraction of predictions that favored ’methylation’. The robust predictions

on the bona fide methylation states should have extreme DML values, unlike intermediate

or ambiguous predictions.

Normalization of beta values of Illumina BeadChip

The respective beta values of an unmethylated CpG and a methylated CpG are not always

equal to 0 and 1. Indeed, in our data, the distribution of raw beta values of Illumina

BeadChip had bimodal peaks at 0.04 and 0.89. To compare beta values with our DML

data, we treated 0.04 and 0.89 as unmethylated and methylated states respectively and

normalized raw beta values by setting x ≤ 0.04 to 0, 0.89 ≤ x to 1, and 0.04 < x < 0.89 to

(x− 0.04)/(0.89− 0.04), proportionally.

Validation of our prediction by bisulfite Sanger sequencing

Bisulfite conversion of genomic DNA was performed using a commercially available kit

(MethlEasy Xceed Rapid DNA Bisulphite Modification Kit; Human Genetic Signatures,

NSW, Australia). Briefly, 5 µg of DNA was denatured by 0.3 M NaOH for 15 minutes at

37◦C. Subsequently, the samples were incubated with bisulfite solution for 45 minutes at

80◦C. After purification, the eluted samples were incubated for 20 minutes at 95◦C. The

converted DNA was stored at -20◦C for PCR amplification.

To perform targeted PCR on the 21 regions selected for validation, we designed primers

for nested PCR to amplify 111∼622bp fragments of bisulfite-converted DNA (Supplemental



Table S2). Primer pairs were purchased from Life Technologies (Supplementary Information).

PCR was performed in a volume of 50 µL containing 1 × EpiTaq PCR Buffer, 2.5 mM

MgCl2, 0.3 mM dNTP mix, 20 pmol primers, 1.25 units TakaraEpiTaq HS polymerase

(Shiga, Japan), and 50 ng bisulfite-converted DNA. PCR conditions were 40 cycles of 98◦C

for 10 seconds, 55◦C for 30 seconds, and 72◦C for 1 minute. To check the quality of the

PCR products, 2% agarose gel electrophoresis was used in 1 × TAE buffer at 50 volts for

15 minutes. The amplified products were visualized using a LED transilluminator, and the

product bands were purified using the NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel GmbH & Co. KG, Dueren, Germany). Targeted PCR products were sequenced

directly using ABI3730 sequencers with BigDye v3.1 chemistry (Applied Biosystems, Foster

City, CA, USA).

Finally, we processed the obtained sequencing data using the QUMA online tool [57] for

analysis and visualization of the methylation patterns (Supplemental Fig. 3.S5).

Other data sources and data visualization

Figure 3.1B and Supplemental Figures 3.S7, 3.S8 were produced using the UCSC Genome

Browser (http://genome.ucsc.edu/) [47]. We used human bisulfite sequencing data and un-

methylated regions available in the GEO database [110].
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for prediction with P6-C4 reagent. We calculated β as follows. Firstly, we classified the
CpGs on the scaffold 1 in the medaka Hd-rR genome (version 1) into methylated CpGs and
unmethylated CpGs according to bisulfite sequencing data. Next, for each CpG site, we
calculate the IPD ratio profiles as the 21-dimensional vectors based on SMRT sequencing
kinetics data. Then, using LDA (Linear Discriminant Analysis), we tried to find the best
hyperplane that could separate these IPD ratio profiles into each class, namely, methylated or
unmethylated. The normal vector of this hyperplane is denoted by β. B. The average IPDR
profiles around unmethylated and methylated CpG sites. The x-axis shows the positions
within 10 bp of the focal CpG site at the position represented by 0. The y-axis indicates
IPDR values. The red- and blue-colored box plots at each position show the distributions
of IPDR values around unmethylated and methylated CpG sites, respectively. The bottom,
middle and top of each box plot indicate the first, second, and third quartiles, respectively,
of the distribution. C. An example in which both our method and bisulfite sequencing are
consistent in showing unmethylation in gene promoters. The tracks are similar to those in
Figure 3.1B. D. The normal vector β used for prediction with P4-C2/C2-C2 reagent.
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Figure 3.S3: Accuracy metrics on the chromosome 1 of the medaka Hd-rR genome
(version 2). A-C. Matthew’s correlation coefficient (A), sensitivity (B), and precision
(C) as a function of the intercept of the hyperplane γ, on the chromosome 1 in the medaka
genome (version 2) with a 29.9-fold mapped read coverage. Matthew’s correlation coefficient
represents an overall accuracy of our prediction. The differently colored curves correspond
to the different lower bound of number of CpG sites, denoted by b, that was used for the
prediction. Our prediction achieved 93.0% sensitivity and 94.9% precision at b = 35 and
γ = −0.526 . Or sensitivity (93.67%) and precision (93.88%) are close to each other when
b = 35 and γ = −0.540 .
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Figure 3.S3: Sensitivity and precision of predicting unmethylated regions with ≥ b
CpG sites for a variety of read coverages. We continue to use b to denote a lower bound
of the number of CpG sites in a region. For b = 30, 35, 40, 45, 50, we plot the sensitivity and
precision curves when the read coverage is 20% of 29.9x (A), 40% of 29.9x (B), 60% of 29.9x
(C), 80% of 29.9x (D), and 29.9x (E). The sensitivity and precision were evaluated on the
chromosome 1 of the medaka Hd-rR genome (version 2). For better prediction with a smaller
coverage, a wider window was favored. Precisely, setting b to 50 outperforms the other values
for coverages, 20% and 40%, but it becomes inferior for 80% and 100%. In contrast, both
sensitivity and precision increase for larger coverages, 80% and 100%, when b is set to smaller
values, 35 and 40. In particular, Figure E shows that for coverage 100% (29.9x), setting b to
35 is better than other values of b. Figure C also highlights that even with a small coverage
60% of 29.9x, both sensitivity and precision are ∼ 90% for b = 45. Figure F shows that the
prediction is not accurate if each CpG site is treated independently (not as blocks). Figure
G compares the performance with simplified beta (where the components for -7, +1, +3,
+5∼+10-th positions were truncated to 0) to that with the original full beta vector.
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Figure 3.S4: Handling intermediate methylation states. A. IPDR profiles of CpGs are
represented as points in the feature space. Predictions are made using a decision hyperplane
determined by its intercept γ, and individual CpGs are classified as methylated (blue) or
unmethylated (red). B. Multiple predictions using a set of different intercept parameter
values define the discrete methylation level (DML) on each CpG site. Specifically, after
decomposing DNA into unmethylated and methylated regions for different intercept values
of γ, we compute the ratio of methylated regions that cover each CpG site, and treat the ratio
as the methylation level of the CpG site. C. DML (x-axis) and methylation level monitored
by bisulfite sequencing (y-axis) in our medaka sample. The colors are based on the log of the
number of CpG sites having corresponding DML value and bisulfite methylation level. These
values were strongly correlated (R = 0.884) and the difference was within 0.25 for 92.0% of
CpG sites. Most of the CpG sites were methylated because we observed CpG methylation in
a genome-wide manner. D. DML (x-axis) correlated (R = 0.732) with the normalized beta
values of BeadChip (y-axis) for the CpG sites in our human sample, and 75.4% of CpG sites
are in concordance within 0.25. The majority of CpG sites are unmethylated, because most
CpG sites on the BeadChip are designed on CpG islands. E. Scatterplot for methylation
level monitored by bisulfite sequencing (x-axis) and DML (y-axis), on each CpG site, in the
medaka sample.

Figure 3.S5: Methylation analysis of selected regions for validation of our predic-
tion. Of the 21 regions selected for validation of our method, 6 were amplified, and their
Sanger sequencing reads were aligned to the target regions. In the alignments, the methy-
lated (unconverted) CpGs are represented by the pink asterisks (*), and the unmethylated
(converted) CpGs by the blue number sign (#). We can assess the efficiency of bisulfite
conversion and the quality of the alignment by looking at non-CpG C sites (CpHs) because
Cs in CpHs are usually unmethylated and should always be converted to Ts (represented by
the colons (:)). Thus unconverted CpHs, which are highlighted by the brown exclamation
marks (!), indicate low quality regions. The solid lines represent the other types of matches.



Genome 301 GGGAGTGACCCAATTTTCCAGGTGCCGTCCATCACCCCTTTCTTTGACTAGGAAAGGGAA
| ||||||

Bisulfite 1 ---------------------------------------------------GTAAGGGAC

Genome 361 CTCCCTGACCCCTTGCGCTTCCCGAGTGAGGCAATGCCTCGCCCTGCTTCGGCTCGCGCA
:|:::|| ::::| #|:||: #||||||||:||||:: |:::||:| #||: #|#|:|

Bisulfite 10 TTTTTTGMTTTTTYSTGTTTTYTGAGTGAGGTAATGTTCYGTTTTGTTCTGGTCTGTGTA

Genome 421 CGGTGCGTGCACCCACTGACCTGCGCCCACTGTCTGGCACTCCCTAGTGAGATGAACCTG
*||||*|||:|:::|:|||::||*|:::|:|||:|||:|:|:::||||||||||||::||

Bisulfite 70 CGGTGCGTGTATTTATTGATTTGCGTTTATTGTTTGGTATTTTTTAGTGAGATGAATTTG

Genome 481 GTA-CCTTAGATGGAAATGCAGAAATCACCGGTCTTCTGCGTCGCTCACGCTGGGAGCTA
||| ::|||||||||||||:||||||:|!*|| :|| |* ! ! # !|

Bisulfite 130 GTATTTTTAGATGGAAATGTAGAAATTACCGGYTTT-----TCCCSCCTCCT--------

Sequence ID #5
Prediction: Hypomethylated
Region: chrX:17,366,059-17,366,763

C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG                : Unmethylated CpG

: Unconverted CpH              : Converted CpH
(CpA, CpC, CpT)                   (CpA, CpC, CpT)

Genome 301 CCTCAGTCGGGAAGTGCAAGGGGTCAGGGAGTTCCCCTTCCGAGTCAAAGAAAGGGGTGA
|| |:||||||||::::||: ||||:||||||| ||| ||

Bisulfite 1 -------------------AGGKTTAGGGAGTTTTTTTTTYGAGTTAAAGAAA-GGGCGA

Genome 361 CGGACAGCACCTGGAAAATCGGGTCACTCCCACCCGAATACTGCGCTTTTCCGACAGGCT
*|||: :|::||||||||* |||:|:|:::|::*|||||:||*|:||||:*||:||| |

Bisulfite 41 CGGATM-TATTTGGAAAATCAGGTTATTTTTATTCGAATATTGCGTTTTTTCGATAGG-T

Genome 421 TAAAAAACGGCGCACCACAAGATTATATCCCACACCTGGCTCGGAGGGTCCTACGCCCAC
|||||||*||*|:|::|:||||||||||:::|:| :|||:|*|||||||::||*| ::|*

Bisulfite 99 TAAAAAACGGCGTATTATAAGATTATATTTTATA-TTGGTTCGGAGGGTTTTACG-TTAC

Genome 481 GGAATCTCGCTGATTGCTAGCACAGCAGTCTGAGATCAAACTGTAAGGCGGCAGC-AAGG
|||||:|*|:||||||:|||:|:||:|||:||||||:|||:|||||||*||:||: || |

Bisulfite 157 GGAATTTCGTTGATTGTTAGTATAGTAGTTTGAGATTAAATTGTAAGGCGGTAGTAAASG

Genome 540 CTGGGGGAGGGGCGCCCGCCATTGCCCAGGCTTTCTTAGGAAAACAAAGCAGCCGGGAAG
:||||| ||| * !

Bisulfite 217 TTGGGGAMGGGKCCC---------------------------------------------

Sequence ID #7
Prediction: Hypermethylated
Region: chr6:123,793,104-123,793,890

Genome 181 CTATCCTTCACTGGAATCGTAACTGAGGCT--CAATTCGCCTATCCTTTAGCCCCACCT-
|:| !| :!! |:!|

Bisulfite 1 ---------------------------GTTGGCA-----------------TCCMATCTA

Genome 238 --GCTGGAGGCTCTTTGCATCCTTTCGCTTTGTCCACTCTGGCCGCTTCCCTCGTGGGAA
:||||||:| ||||:||::|||#|:|||||::|:|:|||:#|:||:::|#|||||||

Bisulfite 17 TWRTTGGAGGTTYTTTGTATTTTTTTGTTTTGTTTATTTTGGTTGTTTTTTTTGTGGGAA

Genome 296 TATTTCAGGTTCCTCTTAGCCTTGATGGCGGGTCAGCATAAACCCCTGAT-GGGACCCCC
|||||:|||||::|:||||::||||||| ||||:||:|||||::::|||| ||||:!

Bisulfite 77 TATTTTAGGTTTTTTTTAGTTTTGATGGYGGGTTAGTATAAATTTTTGATKGGGATC---

Sequence ID #8
Prediction: Hypomethylated
Region: chr11:5,829,621-5,830,339

: LINE-1 (1 of 2)

: LINE-1 (2 of 2)

: LTR (1 of 2)



C
*
C

C
!
C

C
#
T

C
:
T

: Methylated CpG : Unmethylated CpG

: Unconverted CpH
 (CpA, CpC, CpT)

: Converted CpH
 (CpA, CpC, CpT)

GTTACAGGAAAGTAAACAGTACTAGGTGCAGGGGCTTTAATTCTATCA-CAAGGTGATAG
||!|| || |:|| :| ||||||||||

Bisulfite 129 -------------------TACTA------------TTWMWTTTAWTAWWAAGGTGATAG

Genome 352 AAGCGGGGCTTTGGGCTTTATCAACCAGACACAAACGCGGGGGGCTCTGGGTGCTGTTAA
||| ||||:||||||:|||||:||::|||:|:|||#| ||||||:|:||||||:|| |||

Bisulfite 158 AAGWGGGGTTTTGGGTTTTATTAATTAGATATAAATG-GGGGGGTTTTGGGTGTTGCTAA

Genome 412 CCGGGCGAAT-TCCTGGGAACTGCGGGTATGGCTTGCCACAGTACCTTATCAGTTAATTG
:#||| ||| |!! |

Bisulfite 217 TTGGGYGAAYCTCCCG--------------------------------------------

Sequence ID #9
Prediction: Hypomethylated
Region: chr1:89,663,480-89,664,077

Genome 661 ACCAGCGACCCCACACTCCAGCCGTCCCTGTCCACACCTCTAAACACCCCATCCCCAAAC
! !:|:|! !! !*| !! :::: |::::|||:

Bisulfite 1 --------CYCTATAC-CCCCCCGCYCC------------------TTTTTTTTTTAAAT

Genome 721 CTCTCAGGGAGGCGGATCTGGGGTGTCCTCCCCTCTCCCCCATTAAACTGTTTCTGCTGC
:|:|: | | || :||||| | ::|::::|:|:::::|| |||:|||||:||:||:

Bisulfite 34 TTTTTTKKGRRGKGGGGTTGGGGGGKTTTTTTTTTTTTTTTATCAAATTGTTTTTGTTGT

Genome 781 AGCCTTCGGCGTCTCGGTGCAGTGACTCGGGCCGTGAACCTGTGCCGGTTACAACTGCAC

Sequence ID #11
Prediction: Hypomethylated
Region: chr19:11,848,508-11,850,380

::||#||#||:|#||||:|||||:|#|||:#|||||::||||:#|||||:||:||:|:
Bisulfite 94 AGTTTTTGGTGTTTTGGTGTAGTGATTTGGGTTGTGAATTTGTGTTGGTTATAATTGTAT

Genome 841 AATCTGGGGAGACGCGGAGCTGCGGGCGCGGAGCTGCCCAGAGAGGGCGCCGGGGCCGGG
|||:||||||||#|#||||:||#|||#|#||||:||:::||||||||#|:#||||:#|||

Bisulfite 154 AATTTGGGGAGATGTGGAGTTGTGGGTGTGGAGTTGTTTAGAGAGGGTGTTGGGGTTGGG

Genome 901 GCCGCAGCGGCCGAGCAGGGACGGGACAGGACGCCCGGGGTCCCGGCTGCCGCCCCAGCC
|:#|:||#||:#|||:|||||#||||:||||#|::#|||||::#||:||:#|::::|| :

Bisulfite 214 GTTGTAGTGGTTGAGTAGGGATGGGATAGGATGTTTGGGGTTTTGGTTGTTGTTTTAG-T

Genome 961 CCATCTTGCGGCCCA-GGGGACCAAGGGCAGAGCTGCGCCAGGGGCACTGGGATTTGCAG
::||:| | |:::| | | !!|| ! *

Bisulfite 273 TTATTTYGYSGTTTACGCCGMCCAAMCSC----YYMC-----------------------

Genome 1 TCTCTCTCTGGGGGGTGGAGGGGACAGAGATCTGGAAAACTGAGAACCCCAAGGGACTCA
|||| | ||! | |||||||:||||||::::||||||:|:|

Bisulfite 1 -------------CCTGGACGAGACCG-----TGGAAAATTGAGAATTTTAAGGGATTTA

Genome 61 CACTGGTTTCTGAGCCTCAGTTTTCCTAGTTACAAAGGACAGCCTCTGCCTGTGATGGGC
:|:||||||:||||::|:||||||::||||||:||||||:||::|:||::|||||||||

Bisulfite 43 TATTGGTTTTTGAGTTTTAGTTTTTTTAGTTATAAAGGATAGTTTTTGTTTGTGATGGGG

Genome 121 GCTGACACACGTGGCACAGTTCCCCATGTGTCCCTCGAAATACCTCCACCATCAGCACAA
|:|||:|:|*||||:|:||||::::||||||:::|*||||||::|::|::||:||:|:||

Bisulfite 103 GTTGATATACGTGGTATAGTTTTTTATGTGTTTTTCGAAATATTTTTATTATTAGTATAA

Genome 181 TCATCCTACGAGACAGGCACGGCCGCTCTCCCCATTCTCCAGATGTGGAAACCGGGGCCC
|:||::||*||||:|||:|*||:*|:|:|::::|||:|::|||||||||||:*||||:::

Bisulfite 163 TTATTTTACGAGATAGGTACGGTCGTTTTTTTTATTTTTTAGATGTGGAAATCGGGGTTT

Genome 241 AGCCAGGTGAAGTCGTAA-CCCGAGGTGCCA-TAGCTGTTGCGTTCCAGAGGCGAGA-TT
||::|||||||||*|||| ::*||||||::| |||:|||||*|||::|||||*|||| ||

Bisulfite 223 AGTTAGGTGAAGTCGTAATTTCGAGGTGTTATTAGTTGTTGCGTTTTAGAGGCGAGATTT

Genome 298 CAAACCC--ACGTCCGTCCGGAAGCCTTGGAAGTGAGGGTGTGCCTGCCTAACCTGCTCA
:||| :: |:*

Bisulfite 283 TAAAWTTWAWYSTTC---------------------------------------------

Sequence ID #15
Prediction: Hypermethylated
Region: chr19:47,905,568-47,906,031

: LTR (2 of 2)

: LTR26C

: MIR2
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Figure 3.S6: Kernel PCA analysis of sequence feature and methylation state. The
results of Kernel PCA analysis are shown for 4 selected classes of repetitive elements, AluSc
(A), LTR12E (B), LTR26E (C), and L2a (D). We projected the repeat occurrences into
the plane based on the distance metrics that we defined using the spectrum kernels and their
top 2 principal components. The colors of the dots represent the methylation state of the
repeat occurrences; namely, red indicates unmethylation and blue methylation. The arrows
show the unmethylated occurrences that are clustered in terms of the sequence features.
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Figure 3.S7: Examples of unmethylated repeat occurrences in a unmethylation
‘hot spot’. Three adjacent LTR1 elements were unmethylated in this region (A), and a
LTR12E element was located at a unmethylated bi-directional promoter region (B). Both
regions are on the p-arm of the chromosome 6. The arrows indicate the locations of LTR1 and
LTR12E. From top to bottom, below the RefSeq gene track, black bars indicate unmethylated
regions predicted from SMRT sequencing data using our method. Yellow and black bars
show the methylation level and read coverage obtained from public bisulfite sequencing
data, respectively, and blue boxes show unmethylated regions predicted from the bisulfite
data. Green bars below indicate the alignability of short (100-bp) reads. The bottom rows
shows repeat masker tracks and GC rate for every 5 bp window.
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Figure 3.S8: Two LINE insertions novel to hg19. We identified two LINE insertions by
comparing a new assembly obtained from SMRT reads and the hg19 reference genome. The
vertical arrows indicate the locations of the identified novel insertions. Specifically, one is
aligned at 186,372,132 in Chromosome 3 with identity 99.02%, and the other at 137,014,775
bp in Chromosome 5 with identity 98.71%. From top to bottom, the tracks shown are RefSeq
genes, DNase clusters, repeat masker masked regions, and GC rate for every 5 bp window.



Chapter 4

Application of AgIn to centromeric

repeats

4.1 CpG methylation in centromeric repeats

Epigenetic mechanisms are known to play a crucial role in the establishment and mainte-

nance of centromeres[2]. The CpG methylation status in centromeres has been examined

using methyl-sensitive restriction enzymes[13], fluorescence antibody labelling[127, 51], and

bisulfite sequencing[126]. These studies showed that, on average, centromeric repeats were

hypomethylated in core centromeres and were hypermethylated in pericentromeres in rice

(Nipponbare)[127] and maize (Zea mays)[51]. Conversely, in mice (Mus musculus), the levels

varied depending on tissue type, being higher for somatic cells, but intermediate and lower

for sperm and oocytes, respectively[13, 126, 69]. However, these previous studies did not re-

late the methylation state of CpG sites with the structure of underlying centromeric repeats.

We overcame this problem with our AgIn software to depict the global CpG methylation

This work has been published as a part of:
Ichikawa, Kazuki, et al. ”Centromere evolution and CpG methylation during vertebrate speciation.” Nature
communications 8.1 (2017): 1833.



pattern over a broad range of medaka centromeric repeats at fine resolution, including the

boundaries of centromeres. Indeed, we reconfirmed this in centromeric repeats where bisul-

fite sequencing data were available, AgIn predicted bisulfite results at an accuracy of 88.7%

on unmethylated CpGs and 90.7% on methylated CpGs (Methods). In non-centromeric re-

gions, AgIn is capable of estimating methylation states of CpG sites with a high accuracy

(sensitivity and precision of ∼93.7%) from kinetic information of SMRT sequencing[114];

for example, Figure 4.1 shows typical examples of methylation states such that AgIn and

bisulfite sequencing are concordant.

Adult medaka testes under reproductive laboratory conditions consist mainly of mature

sperm and spermatogenic cells[58]. The centromeres obtained from these germ cells were

found to be mostly hypermethylated (Fig. 4.2), which unexpectedly reflects the characteris-

tics of somatic cells. We also reconfirmed this property by estimating the average methylation

ratios of centromeres in testes and liver. Specifically, we aligned bisulfite-treated short reads

from testes and liver[92] to the four representative centromeric monomers (given in Extended

Data Fig. S3b in [43]). The average methylation ratio in testes was 72.9%, which was close

to 65.3% in liver. However, we found that some centromeres contain hypomethylated do-

mains. For example, Figure 4.2a and 4.2b show two syntenic centromeric repeat regions

with unmethylated subregions in chromosome 2 of Hd-rR and HSOK (see [43]; the genetic

marker correspondence in Figure 1b; dot plot in Extended Data Fig. 5b). Figure 4.2c shows

that HSOK chromosome 4 contained two hypomethylated regions which exhibited sequence

similarity to each other. Similarly, we observed hypomethylated centromeric repeats in four

Hd-rR and three HSOK chromosomes (Fig. 4.2, 4.3). These examples showed diverged

methylation patterns among centromeric repeats.

To understand this diversity, we analyzed underlying DNA sequences within centromeric

repeats, and constructed a phylogeny tree of centromeric repeats with distinct methyla-

tion status in terms of the sequence similarity calculated with spectrum kernel (Fig. 4.2d;

Methods)[62, 60]. Figure 4.1d shows the general tendency that the segregation of different



chromosomes occurred first, followed by the separation of Hd-rR and HSOK 25MYA[43]. Af-

terwards, hypo/hyper-methylated regions in individual chromosomes evolved independently

and acquired unique sequence compositions that were not shared in common among different

strains and chromosomes. This was confirmed by examining sufficiently large hypomethy-

lated centromeric repeats in HSOK chromosomes, 2, 4, and 23 (Fig 4.2d, see also Extended

Data Fig. 6 in [43]). We remark two deviations from this general tendency. Centromeric

repeats in acrocentric chromosome 13 and 22 in Hd-rR are more similar in sequence than

those in non-acrocentric chromosomes are, suggesting exchanges of repeats between acrocen-

tric chromosomes. Hypomethylated repeats in HSOK chromosome 4 (orange repeats in Fig.

4.2c) are more similar to repeats in Hd-rR chromosome 1 than to repeats in chromosome

4, suggesting they might jump in HSOK chromosome 4 from another chromosome. Overall,

DNA methylation in centromeres were correlated with centromere sequence phylogeny.

As a conclusion, this analysis is the first to reveal the specific pattern of hypomethy-

lated and hypermethylated domains in centromeric repeats, which has been overlooked by

traditional approaches. Analysis of underlying DNA sequence showed that the variation of

non-acrocentric CpG methylation occurred after the divergence of two medaka strains (Hd-

rR and HSOK), demonstrating that centromeres accumulated epigenetic diversity as well

as the sequence diversity during speciation. Although centromere identity is known to be

primarily defined by the epigenetic specification, in particular, by the presence of the histone

H3 variant CenH3/CENP-A[73], a specific pattern of CpG methylation could play some roles

in centromere evolution through meiotic centromere pairing.



4.2 Methods

4.2.1 Methylation calls using SMRT sequencing and bisulfite se-

quencing

Methylation call from SMRT long reads was performed as described[114]. For methylation

analysis, we used SMRT reads sequenced with P6-C4 chemistry and avoided mixing reads

from different polymerase and chemistry, which is not guaranteed to produce reliable result.

Mapping and generation of modification summary (modifications.csv) were performed using

SMRT Pipe with its default settings for the general resequencing protocol. The result was

then processed by AgIn algorithm[114] to extract a set of hypomethylated regions. Specifi-

cally, we used the same parameters tuned for P6-C4 (β for P6-C4 and γ = −0.55), and set

the minimum number of CpGs in each predicted region to 40. Bisulfite-treated short reads

were downloaded from SRA (Accession No. SRX149585) and were processed by Bismark[55]

to perform genome conversion, mapping of reads to converted genome, and production of

methylation summary as bedGraph file. To align reads using bowtie2, we used the param-

eters: “-L 32 -N 0 ignore-quals”. Each CpG site was classified as methylated if the strict

majority of the mapped reads supported that it was methylated, otherwise as unmethylated.

During the calculation of consistency between the results of AgIn and bisulfite sequencing,

we considered CpG sites with bisulfite read coverage ranging from 2 ∼ 9, in order to exclude

positions with an abnormally high coverage, which were likely to have identical copies in the

genome. Among CpGs within the hypomethylated (hypermethylated, respectively) regions

in centromeric repeats that we estimated from PacBio reads, 88.7 % (90.7%) were called

as unmethylated (methylated) from bisulfite reads. Therefore, each technology supported

the methylation calls from the other when methylation information is available from both.

We also calculated the average methylation ratios in centromeres in testes and liver by using

bisulfite-treated reads collected from testes and liver[92], and by aligning the reads to the four

representative monomers (defined in Extended Data Figure 3b in [43]). The average methy-



lation ratio in testes was 72.9%, which was close to 65.3%, the average ratio in liver. Specifi-

cally, the respective numbers of methylated and unmethylated cytosines in liver were 20,245

and 10,827, which yielded the average 72.9% (= 20, 245/(20, 245 + 10, 827)), while those in

testes were 19,103 and 7,356, and the average was 65.3% (= 19, 103/(19, 103 + 7, 356)).

4.2.2 Construction of a phylogenetic tree of hyper-/hypo-methylated

centromeric regions

For the analysis of evolution of CpG methylation in centromeric repeats, we used all Hd-

rR or HSOK chromosomes that had either hyper- or hypo-methylated centromeric repeat

regions. Let A and B denote the normalized vector of k-mer frequencies in repeat regions,

A and B, respectively such that ||A||2 = ||B||2 = 1. To perform cluster analysis, we defined

the distance between regions, A and B, by D(A,B) =
√
(||A−B||2). The formula is then

transformed to
√

(||A||2 + ||B||2 − 2K(A,B)) =
√

2− 2K(A,B), where K(A,B) denote

the inner product of A and B that represents a sequence similarity between repeat regions,

A and B, which is equivalent to the k-spectrum kernel[62], a widely used measure in sequence

comparison. Based on these pairwise distance, we generated a hierarchical clustering of

the regions with the UPGMA method[95]. In our analysis, we set k to 8 in Figure 4.2d

because the setting could separate the segregation of chromosomes and the divergence of

the medaka strains in the clustering. We calculated spectrum kernel, clustering, and final

visualization were performed using R statistical environment (https://www.R-project.org/),

and especially, the “kebabs” package for kernel-based analysis[88].



Figure 4.1: Three examples of genomic regions where CpG methylation states by PacBio
sequencing and bisulfite sequencing are almost consistent. We display tracks for regional
methylation prediction from PacBio reads (+, methylated; -, unmethylated), CpG-wise
methylation from bisulfite reads, coverage of PacBio reads, and coverage of bisulfite reads in
the Hd-rR genome. Three regions presented in the figure, Chr1:4,812K-4,894K, Chr1:5,586K-
5,740K, and Chr2:8,679K-8,830K (from top to bottom) were selected from Hd-rR genome.



Figure 4.2: CpG methylation in centromeric repeats. a. The tracks shown here are, from the
top, contigs layout as yellow bands, centromeric repeats as red bands, regional methylation
prediction from PacBio reads (+, methylated; -, unmethylated), CpG-wise methylation from
bisulfite reads, coverage of PacBio reads, coverage of bisulfite reads, and PacBio subreads
alignments (red, forward; blue, reverse). The figure shows two centromeric repeat regions on
Hd-rR chromosome 2 that were predicted as hypo-methylated from PacBio reads. Methyla-
tion calls by PacBio and bisulfite sequencing are inconsistent around the two unmethylated
regions because most of bisulfite read coverages are very small (only 1) and are unreliable due
to the repetitiveness of the centromeres. By contrast, PacBio reads achieved stable coverage
over the repeat region. Some other chromosomes are presented in Figure 4.3. b. A part of
HSOK chromosome 2 with an unmethylated region that is syntenic to the region in Figure
4.1a according to genetic markers. No bisulfite-treat short reads are available for the HSOK
strain. The identity ratio between the representative monomers of the centromeric repeats
in the Hd-rR and HSOK chromosome 2 was 85.7%.



Figure 4.2: (Cont.d) c. A ∼305 Kbp centromeric repeat region in HSOK chromosome 4.
The lower portion shows a dot plot of the region. Forward and reverse matches are colored
red and green, respectively. Each dot represents 40-mer sequence match. Blue and orange
arrows displayed above the dot plot show two patterns of centromeric repeats that do not
match. A light blue arrow is inverse orientation of a blue arrow. The left two regions
represented by orange arrows are hypomethylated, though the other three orange arrows
are not. This shows one illustrating example of gene conversion and non-allelic homologous
recombination. Orange and blue repeats are respectively prevalent in acrocentric and non-
acrocentric chromosomes. A possible scenario for this centromere evolution is that the orange
repeat jumped into the blue repeat by gene conversion to create a basic pattern, and the
pattern was duplicated multiple times by unequal crossover.





Figure 4.2: (Cont.d) d. We considered all centromeric repeat regions in Hd-rR and HSOK
chromosomes. We clustered hyper- and hypo-methylated regions with at least 40 CpGs that
we could reliably estimate from SMRT sequencing information (Method). We calculated
the sequence similarities between all pairs of hyper/hypo-methylated regions using spec-
trum kernel, a robust method of characterizing sequence compositions of k-mers (strings of
length k) in individual regions. From the similarities, we obtained a hierarchical clustering
of hyper/hypo-methylated regions. The respective orange and green boxes represent the Hd-
rR and HSOK strains. The black and white circles illustrate hyper- and hypo-methylated
regions. Numbers indicate chromosome numbers. Black, blue, and red lines in the den-
drogram respectively illustrated the timing of chromosome segregation, divergence of two
strains (Hd-rR and HSOK), and divergence of hyper/hypo-methylated regions in an iden-
tical chromosome of the same strain. Seven pairs of hypomethylated and hypermethylated
regions (from top to bottom: Hd-rR Chr. 22, 20, 12 HSOK Chr. 2, Hd-rR Chr. 2, HSOK
Chr. 18, Hd-rR Chr. 1) are most similar to each other except for three exceptional cases
(Hd-rR Chr. 13, Hd-rR Chr. 6, HSOK Chr. 4). The rightmost column labels acrocentric
repeats, including Hd-rR Chr. 13 and 6, with a. Hd-rR Chr. 13 that might be exchanged
from other acrocentric chromosomes. The hypomethylated Hd-rR Chr. 6 and the hyperme-
thylated Hd-rR Chr. 4 were reciprocally most close, and they might be exchanged in Hd-rR.
Orange repeats in Figure c might jump into HSOK Chr. 4.



Figure 4.3: Validation of centromeric repeat regions and their CpG methylation states. Hd-
rR Chromosome 22.



Figure 4.3: (Cont.d) Validation of centromeric repeat regions and their CpG methylation
states. HNI Chromosome 23



Figure 4.3: We show two regions with centromeric repeats on chromosomes of the Hd-rR
and HSOK genomes. (Top) Dot plot of centromeric regions, where each dot represents 30-
or 40-mer sequence match (indicated at the top left in each figure). Red and green dots
indicate forward and reverse matches, respectively. Red blocks indicate contigs gaps. We
can observe multiple patterns of higher order repeats that are represented by lines parallel
to the diagonal, uncovering broad divergence in higher order repeats. (Bottom) Snapshots of
genome browser in centromeric regions. The yellow bars represent Hd-rR contigs, green bars
HSOK contigs, and red bars centromeric repeats. Below the track for centromeric repeats,
we display tracks for regional methylation prediction from PacBio reads (+, methylated;
-, unmethylated), CpG-wise methylation from bisulfite reads, coverage of PacBio reads,
coverage of bisulfite reads, and PacBio subreads alignments (red, forward; blue, reverse) by
BLASR. As bisulfite data are unavailable for the HSOK genome, we generated two tracks
for the methylation status calculated from PacBio subreads and for PacBio subread coverage
at each CpG site. For information on other chromosomes, reader may refer to the original,
Extended Data Figure. 5 in [43].



Chapter 5

Personal diploid methylomes and

transcriptomes via phased

heterozygous variants and

single-molecule real-time sequencing



Abstract

Personal diploid methylomes, methylome pairs of individual homologous chromosomes, di-

rectly reflect allele-specific methylation (ASM) and control allele-specific expression (ASE) of

genes, but are challenging to analyze. Phased heterozygous variants (PHVs) offer a unique

opportunity to investigate personal diploid methylomes, if sequencing reads linking CpG

methylation directly to neighboring PHVs are available. Analyzing two personal genomes

(AK1 and HG002) with CpG-methylation sensitive single-molecule real-time (SMRT) reads,

we found longer reads were more essential because only 11.3% ∼ 12.3% of CpG sites lay

within 100 bp from their nearest PHVs whereas 72.2 % ∼ 81.3% within 8,000 bp. Bisulfite

treatment is widely-used to observe CpG methylation but is not ideal because it breaks DNA

into short fragments. We here propose a novel integration of PHVs and SMRT reads.

To study correlation of ASM with ASE on genes, we attempted to to build personal diploid

transcriptomes by assigning RNA-seq (long and short) reads with informative PHVs to their

alleles. Indeed, CpG islands showing ASM were often associated with known imprinted genes

and resided more in the transcribed or repressed regions, which reflects ASE. We revealed

complex ASM events controlling the differential ASE between alternative isoforms within

genes (e.g., ZNF331) in the AK1 genome. We also note the scarcity of exons with PHVs (10.9

% of all exons) often hinders associating RNA-seq reads with their alleles, but correlation of

ASM with ASE demonstrates the potential utility of ASM as complements for ASE. These

findings highlight the need for long, CpG-methylation-sensitive SMRT reads in epigenetics

study to construct comprehensive personal diploid methylomes and transcriptomes.



5.1 Introduction

DNA methylation plays important regulatory roles in a wide range of biological processes in-

cluding differentiation, transposon repression, and cancer progression [45, 108, 100]. Several

technological advances now enable us to study genome-wide DNA methylation [25], down to

the resolution of a single base-pair [71]. Furthermore, single-cell biology can now be applied

to epigenetics, allowing methylation to be measured at the single-cell level. This creates a

unique research frontier [107, 39, 16]. Despite such advances in methodology, detection of

allele-specific methylation (ASM) in which only one of the two homologous chromosomes is

methylated in a specific region, remains challenging.

Conceptually, there are at least four known situations in which methylation may be in-

termediate (Supplementary Figure 5.1). First, mono-allelic methylation may be coupled to

genomic imprinting, where genes in one of the homologous chromosomes escape methylation.

Differences in methylation status are determined in a parent-of-origin-dependent manner,

and are established during either gametogenesis or development. This situation might be

the most extensively investigated form of ASM [64, 117, 74]. Second, methylation can be

controlled by local cis variation. Thus, heterozygosity may trigger ASM. Unlike the case with

imprinting, the methylation allele can be inherited from both parents. This general type of

mono-allelic methylation has received much recent attention[125, 49, 98, 106, 97, 36, 63, 115].

Third, one of the two homologous loci may be methylated randomly, with no association ev-

ident with either the parent-of-origin or a cis variant. A well-known example of the above

is X chromosome inactivation [93]. To determine whether mono-allelic methylation events

are associated with genomic imprinting, cis effects, the presence of variants, or randomness,

it is important to have information on the methylomes inherited from the parents. Finally,

intermediate-type methylation may result from cell-to-cell variability within a sample pop-

ulation, even though the methylation status of all cells is in broad agreement [39]. This can

be explored only via single-cell methylation analysis.

A number of methods are available to detect mono-allelic methylation, i.e., ASM events.



Probabilistic models have been developed that allow ASM to be estimated from bisulfite

sequencing data [31, 90, 122]. These models take advantage of the fact that ASM yields

50:50 mixtures of reads suggestive of methylation, or not, over specific regions. However,

the converse does not hold in general. Such bi-modal observations can also be caused by

cellular heterogeneity. Thus, it is not straightforward to conclude that an intermediate level

of methylation reflects allelic differences.

In order to directly make distinction between two homologous chomosomes, several stud-

ies explicitly utilized heterozygous variants, as such variants define the differences between

two homologous chromosomes. One approach involved a two-step experiment [49, 97]. In the

first step, DNA fragments containing methylated alleles were enriched using a methylation-

sensitive restriction enzyme (MSRE) or via methylated DNA immunoprecipitation (MeDIP).

In the second step, sequence variants in the library were quantified using an SNP array or

DNA sequencing. Variants associated with methylation might thus be over-represented when

compared to an appropriate negative control. This approach is relatively cost-effective and

comprehensive, but resolution is limited by the distribution of the relevant restriction enzyme

cleavage sites, which are far sparser than CpG sites.

The other type of approach exploits heterozygous variants within bisulfite-treated se-

quencing reads [106, 36]. To assign a read to one of two alleles, the read must contain at

least one informative (i.e., heterozygous) variant, in addition to the CpG site. However,

we will show below that this condition is rarely satisfied when short bisulfite-treated reads

are used; bisulfite breaks DNA into fragments of lengths that are typically less than 500

bp [79]; the reads are maximally 1,500 bp [128]. For example, Kuleshov et al. constructed

a haplotyped genome using a read cloud containing long-range information and performed

short-read bisulfite sequencing to survey ASM in a genome-wide manner [56].

As we will see later, it is difficult to observe comprehensive ASM for a given individual

genome due to the lack of enough heterozygous variants available to short reads around the

CpG sites. Consequently, current genome-wide overview of allele-specific methylation is com-



posed of observations for many individuals, as there are much more available heterozygous

variants when a population is considered.

In the present work, we claim one needs long reads to directly observe genome-wide ASM

on most CpG sites in individual genome. We developed an alternative method allowing us

to analyze regions of intermediate methylation status; we used kinetic information obtained

by PacBio sequencing to call regional CpG methylations, as reported previously [114]. We

term the allele-specific methylome data obtained using phased long read as personal diploid

methylome, in the sense it is comprehensive genome-wide ASM data obtained from single

individual and it is based on the personal haplotype information.

Previous studies have revealed the prevalence of allele-specific expression (ASE) in human

and demonstrated the link between ASM and ASE [101, 24]. We incorporated transcrip-

tome data collected with long reads (as in “Iso-seq” studies using PacBio long reads[4]) and

short reads to confirm that some of the ASM statuses we detected are consistent with their

transcriptional activity, including their ASE statuses, i.e., personal diploid transcriptomes.

5.2 Results

5.2.1 Generating the diploid methylomes and transcriptomes for

AK1 and HG002 dataset

To demonstrate how our method to call ASM works, we used two independent datasets:

AK1 (Asian Korean) [104] and HG002 (Ashkenazim Trio son) [132]. For both dataset, we

followed the procedure outlined in Figure 5.1a to call methylation status independently for

the two homologous chromosomes (i.e., two haploids).

Intuitively, the goal of the procedure is to obtain two set of reads, each of which cor-

responds to one haploid. To achieve this, we focused on the phased heterozygous single

nucleotide variants (hetSNVs) as they are the ultimate clues to distinguish two haploids.

For the AK1 dataset, we identified the sites and their phasing of SNVs by aligning the scaf-
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Figure 5.1: a. Outline of the detection of allele-specific methylation (ASM). After mapping to
the reference sequence, PacBio reads were assigned to one of two homologous chromosomes,
depending on phased heterozygous variants (PHVs) evident on the reads. The methyla-
tion status of each diploid methylome was predicted using kinetics data from the PacBio
sequencing process. b. Outline of the detection of allele-specific expression (ASE). Only
exonic PHVs (the star with strong blue) can be utilized for distinguishing two homologous
chromosomes. c. Example of a region exhibiting allele-specific methylation in diploid methy-
lomes and transcriptomes. On the right two CpG islands (CGIs) shown in the middle, one
allele (labeled A) is methylated and the other (B) is unmethylated. Each of the CGIs over-
laps with promoter regions of distinct isoforms of known imprinted gene ZNF331. Bisulfite
sequencing data in the bottom track exhibited intermediate-level methylation for the two
CGIs showing ASM. From top to bottom, the panel shows following features: structures
of genes, alignments of long RNA-seq (Iso-seq) reads, RNA-seq read counts of two alleles,
which indicates ASE, sites of PHVs available in this personal genome (black marks), which
were used to determine the allelic origins of the sequencing reads, annotated CpG islands
(green rectangles), methylation levels of the CpG sites of two alleles that were predicted
using SMRT reads (respective black and gray bars towards positive and negative indicate
methylation and unmethylation), and publically available data on methylation levels via
bisulfite sequencing (orange bars).



folds representing each haplotype into hg38 reference. For the HG002 dataset, the phased

variants calculated using the linked-read technology were available [131]. We mapped the

reads to the hg38 reference genome. Then, if the read contained matches to hetSNVs, we

counted the number of hetSNVs supporting each allele. The assignment of allele for each

read was determined by majority voting. Reads were excluded from further analysis if they

contained none of the hetSNVs or the voting was tied. Then, we could study the SMRT

read sets of both alleles separately and called the regional methylation status of genome-

wide CpG sites using the kinetic information inherent in reads, as described previously [114].

The resulted set of methylation calls is a personal diploid methylome, as it comprises of two

methylomes each representing one haploid.

For the AK1 dataset, RNA-seq data collected with long reads and short reads were

available, thus we were able to use them to support that differential methylation between

two alleles we detected was associated with differential transcription activity. The RNA-seq

data was mapped to the genome and then the number of reads supporting transcription from

each allele was recorded (Figure 5.1b), building a pair of transcriptomes in two homologous

chromosomes, which we call personal diploid transcriptomes.

In total, 24,181,074 reads (210,782 Mb) from the AK1 dataset was aligned to hg38. The

average length of the mapped reads was 8,717 bp. Of the reads, 13,857,752 (139,467 Mb)

contained at least one match to a hetSNV, and a haplotype label was assigned. Notably,

although these reads constituted 57.3% of all mapped reads in terms of read number, they

contained 66.2% of the mapped bases. More bases were retained because longer reads were

more likely to contain matches to the hetSNVs. In other words, reads with no matches were

likely to be shorter, therefore affecting a relatively small number of bases. Consequently,

the average length of reads assigned to a haplotype was 10,064 bp, 115% that of the average

length of the original data set.

We obtained the similar statistics for the HG002 dataset as well. Starting from 23,031,407

reads (168,051 Mb) aligned to hg38, 13,676,974 reads (111,543 Mb) were assigned a haplotype



label. Thus we retained 59.4% of all mapped reads, and 66.4% of the mapped bases. Again,

the average read length of reads assigned to a haplotype was 8,156 bp, 112% that of the

average length of the original data set, 7,296 bp.

Figure 5.1c shows an example of an ASM detected using our method in the genomic

region encoding a imprinted gene, ZNF331. There are 3 CpG islands (CGIs) in this region,

and each CGI is corresponding to a promoter region of distinct isoforms of the ZNF331 gene.

While the CGI to the left in the panel was unmethylated for both alleles, the other two CGIs

(in the middle and to the right) showed ASM, and our methylation calls informed us that the

same allele (i.e., allele B) was unmethylated. Of note, a publicly available methylation level

annotation from a different sample by bisulfite sequencing suggested that these two CGIs

are in intermediate methylation status. The alignment of long reads transcripts and the

read counts at the exonic phased SNV supported that the corresponding two isoforms were

transcribed exclusively from allele B. Thus it suggested the detected ASM was correlated

with the transcriptional activity of the genes. We will cover other examples in the later

sections to generalize this observation.

5.2.2 Distribution of phased heterozygous SNVs in two personal

genomes

We next studied how the possibility of assigning the reads and CpGs into alleles would be

limited by the distribution of phased heterozygous variants in personal genomes. Specifically,

given a read of length l bp containing a CpG site, the allelic origin of the read can possibly be

determined only when the nearest hetSNV is located within l bp from that site and both the

CpG site and the hetSNV are covered by the same single read. Therefore, to assess the utility

of long reads for determining the allelic origins of CpGs or CpG islands (CGIs), it is useful

to calculate the proportions of CpGs or CGIs residing within specific distances from the

nearest hetSNV (Figure 5.2a,b). These figures served as theoretical upper bounds for the

proportions of CpGs or CGIs, for which the allelic methylation status could be determined
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Figure 5.2: a,b. The proportions of CpG islands located within a distance in the x-axis from
the nearest genomic features, common SNPs (green) and hetSNVs (purple), in each genome
of (a) AK1 and (b) HG002. Common SNPs and hetSNVs distributed differently in both
of the two personal genomes, and hetSNVs were essential in determining the proportions of
CpG islands. c. Distribution of phased heterozygous variants (PHVs) with respect to exons.
The left pie shows the proportion of exons containing PHVs, for which ASE status can be
assessed directly. The right pie shows the ratios of PHVs in exonic (blue), intronic (pale
blue), or intergenic (gray) regions, which classifies PHVs into three categories. d. Prediction
performance (sensitivity and precision) of the method for perturbed IPD ratio (purple line).
For comparison, typical performance statistics for original IPD are shown (green line). ”P =
1%” indicates that IPD was perturbed to similate 1% read assignment error as described
in the text. e. Example showing personal diploid methylomes and transcriptomes in AK1
genome. The CGI at the bi-directional promoter region (area shaded in blue) for ZNF597 and
NAA60 showed ASM. The RNA-seq reads (both long and short) supported that transcription
was only from allele A, which is the allele unmethylated in the region. f. Personal diploid
methylomes around GNAS complex locus in AK1 genome. The four regions are colored to
show their known transcriptional pattern; maternally expressed (blue), paternally expressed
(green), or expressed from both alleles (purple). Correspondingly, these regions shaded with
different colors exhibited distinct methylation patterns to each others. Of note, allele-specific
methylated regions were of intermediate methylation level according to bisulfite sequencing
in the bottom. RNA-seq reads suggested the expression of the Gsα from both alleles.



using sequencing reads of given length of l. Of note, these depend on the distribution of

phased hetSNVs available in a given sample, thus it can be quite different in individual

samples.

One may attempt to approximate an upper bound using a set of common SNPs, typically

the set of SNPs for which the minor allele frequencies (MAFs) are ≥5% in at least 1 of 26

major populations of dbSNPs[105]. As we observed that 97.3% of CpG sites lay within

500 bp from common SNPs (Supplemental Figure 5.S2), it would be possible for relatively

short reads to determine the allelic origin of themselves, if these common SNPs are present in

heterozygous in an individual genome. However, the conditions posed by the real distribution

of phased hetSNVs was much severe.

Indeed in the AK1 dataset, at most 11.3%, 33.7% and 46.1% of CpGs could be assessed

using reads of 100, 500 and 1,000 bp, respectively, whereas 72.2% of CpGs were apparent

when the read length was 8,000 bp (Figure 5.2a, purple line). Similarly in the HG002

dataset, 12.3%, 37.5% and 51.1% of CpGs were within 100, 500 and 1,000 bp from the

phased hetSNVs, respectively. Again, 81.3% of CpGs could be covered when the read length

was 8,000 bp (Figure 5.2b). For the both samples, the sparseness of hetSNVs in individual

genomes was emphasized. The common SNP sites have a much denser distribution, but of

course most of the common SNPs are not heterozygous within any single individual genome

(Supplemental Figure 5.S2). Therefore, longer reads are essential to detect ASMs in real-

world situations.

When we try to detect allele-specific expression (ASE) using these phased hetSNVs, the

only variants we can rely on are those appearing in the RNA-seq reads, i.e., exonic variants.

Thus the situation becomes even difficult for the analysis of ASE. For the AK1 dataset,

46.2% of the phased hetSNVs were found in the intergenic regions, and 50.0% were in the

intronic regions (Figure 5.2c). Thus, only the remaining 3.8% of the variants were available

in exons to call ASE in this individual. Similarly, 89.1% of ∼ 310k exons do not contain

such variants, limiting the possibility of determination of expressing allele. While scarcity



of phased hetSNVs within exons was largely explained by the fact that exons constituted

only a small fraction of the genome, the density of phased hetSNVs was also smaller over

the exons, possibly due to presence of selective pressure on the coding sequences; on average,

there were 0.68 SNVs within exons (0.79 SNVs within introns) per 1 kbp.

5.2.3 Simulation analysis of the method’s accuracy

Due to the limited availability of ground-truth dataset for personal diploid methylomes, it is

difficult to assess quantitatively the accuracy of ASM detection. Therefore, we approximated

the accuracy by considering major potential sources of errors. As we described it in the

previous sections, the method proceeds as firstly it assigns reads to one of the alleles, then it

calls CpG methylation state for each allele. Thus, the overall accuracy are largely affected by

errors in assignment of reads to alleles, and by errors in methylation detection itself. Once

we assign reads to alleles, the methylation calls are generated just as described previously,

and its accuracy was already assessed (both sensitivity and precision >93%)[114]. Therefore,

in the followings, we investigated read assignment errors and their consequences in detail.

First, we noted that incorrect read assignment affects the final ASM calls by changing

IPD (Inter-Pulse Duration, kinetics measurement reflecting the methylation status) statistics

for each allele. Thus, if an assignment error occurs where the methylation statuses coincide

for two alleles, it wont affect the IPD statistics, and such an error can be ignored as long

as ASM is considered.By contrast, an assignment error within ASM regions alters the IPD

statistics by mixing up IPDs from methylated CpGs on one allele and unmethylated CpGs

on the other allele, which may miss the underlying ASM. Overall, read assignment errors

deteriorate only sensitivity, not specificity, of ASM detection.

The read assignment errors can be due to several factors, namely, wrongly called/phased

SNVs or sequencing errors in PacBio reads. Let us consider each case.

1. False-negative SNVs decrease the power to separate the reads, thereby decrease sen-

sitivity of ASM detection. Incorrectly phased SNVs can decrease sensitivity by con-



founding other SNVs as well.

2. With false-positive SNVs, most reads around those SNVs would be assigned to the

reference allele regardless of their true origin. The situation may be detected through

imbalance of read depth between alleles.

3. Sequencing errors in long reads may seem the most problematic source of inaccuracy at

first, but they are relevant only when they occur at SNV sites, and they affect IPD only

when they support the wrong allele. Despite the high error rate in aggregate (∼15%),

it should be noted that mismatch errors are relatively rarer (<2%) than indels (∼13%)

in PacBio reads[87].

To approximate the effect of sequencing errors on accuracy of final ASM calls, we sim-

ulated perturbation in IPD and tested how it affects the methylation calls. Firstly, let us

assume reads are assigned to an allele based on only 1 SNV site on them, sequencing errors

occur at the SNV site for 2% of the reads, and half of them (1%) support the wrong allele.

Then, expected frequency of read assignment error was calculated to be ∼1%. We added

random perturbation, which was proportional to the frequency of read assignment errors, to

IPD ratio of every position independently. With this setting, the predictive performance of

the method was almost unchanged (both sensitivity and precision were >90%; Figure 5.2d),

presumably because the random errors were averaged out in our prediction model. While

our analysis simplifies the real situation, it conveys an intuition why sequencing errors would

not severely affect the accuracy of the method contrary to the impression. Therefore, we

concluded that the major source of inaccuracy of the method would be methylation detection

itself, , which is guaranteed to be highly accurate (>93%)[114].



5.2.4 Allele-specific methylation on CGIs and allele-specific ex-

pression

Given the fact that exonic phased variants can be found only in small number of transcripts,

genome-wide observation of ASM would provide alternative information about transcrip-

tional activity of individual genomes. To prove this concept, we generated diploid methy-

lomes for AK1 dataset and compared it with ASE analysis from RNA-seq data for the same

dataset (Figure 5.2e,f).

At the middle of the first panel, a CGI was located at the promoter region of ZNF597

(Figure 5.2e). We detected ASM around that CGI, and the allele A was unmethylated

upstream of the transcription start site (TSS) of ZNF597, thus we could predict the gene

was expressed exclusively from allele A. Consistent with the prediction, we found 2 long

reads and 59 short reads support the transciption from the allele A while no reads supported

the other allele, B. This identification of ASE was based on an exonic SNV within the last

exon, and this was the only exonic SNV available in this region, highlighting the sparseness

of the phased hetSNVs in exons.

The second example region is GNAS complex locus, where several isoforms of the GNAS

gene are known to show allele-specific expression (Figure 5.2f) [7]. Specifically, while Gsα

at the right end is expressed from both alleles, A/B transcripts, and XLαs are paternally

(allele B in Figure 5.2f), and the NESP55 is maternally expressed (allele A). In our result,

that Gsα was expressed from both alleles was confirmed, as the exon specific to the isoform

contained a phased variant, and both alternative alleles were observed in the RNA-seq reads.

For the other isoforms, though we could not observe directly their allelic expression pattern

due to the lack of phased variants in exonic regions, the CGIs located at the promoter

regions of each isoforms showed an ASM pattern consistent with the expected expression

pattern; the two CGI regions at the promoters of A/B transcripts, XLαs, and GNAS-AS

were allele-specifically methylated on the same allele, B, and the CGI at the promoter of

NESP55 was methylated on the other allele, that is, allele A. Thus, we could predict the



expected expression pattern for this locus through their methylation pattern.

These examples demonstrated that the detected ASM status of CGIs can reflect the

expression status of corresponding genes/isoforms. Therefore, such ASM on CGIs would be

useful information especially when ASE is difficult to detect due to the absence of phased

variant sites within exons.

5.2.5 The use of diploid methylomes to detect allele-specific methy-

lation CGIs

Applying the same methodology to HG002 dataset, we determined the methylation status of

genome-wide CGIs by summarizing the allelic methylation status of CpG sites contained in

each CGI. Of the 26,866 CGIs in the entire genome, we studied 20,140 with at least 30 CpGs

to focus on the more functional CGIs. Of these, 5,063 were not covered by long reads after

allelic origin assignment, partly because they were relatively distant (4,016 were separated

by ≥5000 bp) from their nearest hetSNVs. We required that all CGIs should be covered by

a sufficient number (≥16.0X for each haploid) of long reads, to reduce the false discovery

level [114]. A total of 7,093 CGIs met these criteria. We calculated the methylation score for

each CGI as the average of the methylation scores of all CpGs comprising the CGI (Figure

5.3a). Then, we selected the 70 CGIs with the top 1% of absolute differences (≥0.68) in

methylation scores between the “haploids” of the diploid methylomes (Supplemental Table

1).

For comparison, we analyzed the AK1 dataset to observe 7,322 (of 20,140) CGIs were not

covered by any read, but 10,087 of remaining 12,818 had sufficient coverage (≥16.0X), and

139 CGIs (1.3%) had methylation difference ≥0.68, which is almost consistent with the ratio

in the HG002 dataset. Thus, in what follows, we continue our analysis using the HG002

data. We noted that the distances between these ASM CGIs and the hetSNVs were not

necessarily small. Of the 70 ASM CGIs, 28 were separated by ≥500 bp, and 9 by ≥1,000

bp, from their nearest phased hetSNVs, which meant that the methylation status of alleles
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Figure 5.3: a. Summary of the methylation scores (for each allele) of CGIs in personal diploid
methylomes in HG002. Each CGI is shown as a circle. On the two opposite corners (top
left and bottom right), CGIs with maximally 1% largest absolute differences in methylation
levels between the two alleles were provisionally classified as allele-specifically methylated
CGIs. Red circles: The corresponding CGIs were separated from the nearest hetSNVs by
1,000 bp or more. Blue circles: Separations < 1, 000 bp. b. Distribution of each type of
CGIs, ASM (black bar) or non-ASM (white bar), with respect to functional annotation of
genomic regions. c. Example showing personal diploid methylomes in MEST gene-coding
region of HG002 (Ashkenazim Trio Son) genome. Although the upstream CGI (with 66 CpG
sites) was unmethylated in both alleles, the downstream larger CGI (with 184 CpG sites)
exhibited ASM. The CGIs corresponded to the promoter regions of different isoforms of the
genes. d. Another example of ASM around imprinted gene PEG13, paternally expressed
gene 13.



of these CGIs could not be measured simultaneously when the reads were shorter than 500

or 1,000 bp.

In order to confirm that the detected ASM CGIs are functionally relevant, we compared

the ASM CGIs with a genomic annotation from the combined segmentation by Segway

and ChromHMM defined in the ENCODE project (Figure 5.3b) [21]. Of note, CGIs in

general were significantly overlapping with TSS as expected. In contrast to this background,

CGIs showing ASM were overlapping with segments annotated as “transcribed regions” or

“repressed regions” more than TSS. This result may seem somewhat contradictory at first

thought, since any single gene cannot be both transcribed and repressed at the same time,

but it is still plausible that this would be a correct categorization for the regions with ASM

genes because they can be, by definition, in two contrastive states in each of the alleles.

We also confirmed that our list of candidate ASM CGIs contained a number of CGIs

overlapping with known imprinted genes. For example, we reproduced the expected ASM

around known imprinted genes such as MEST(Figure 5.3c), PEG13(Figure 5.3d), HYMAI,

ZNF597, etc.(Supplemental Table 1)[5]. Indeed, CGIs with larger difference of methylation

between two alleles enriched with imprinted genes (p = 0.007, U test). That we successfully

recovered the imprinted genes as ASM region confirmed the validity of our method again.

5.3 Discussion

In this work, we studied personal diploid methylomes to directly characterize the ASM status

of genome-wide CGIs, based on a set of phased hetSNVs specific to each sample. Compared

to the previous studies employing short read sequencing [106, 36, 56], one of the novelty of

our approach is that we called methylation using kinetic information from long SMRT reads;

we did not employ any chemical treatment such as bisulfite conversion, which breaks DNA

into small fragments of length < 1, 500 bp [128]. By this design, we could fully exploited the

lengths of the PacBio reads (> 8, 000 bp in our data). We determined the allelic origins of



more than half of the sequencing data, thus we were able to cover more CpGs in the genome.

We previously reported that read coverage of ∼20x is required for detecting regional CpG

methylation [114]. In order that sufficient read coverage is available for each allele after

the separation, this number can include a margin since some reads will not contain any

informative hetSNV and be filtered out. Therefore, 40∼50x of reads would be sufficient for

the detection of ASM.

We considered several factors to be the main causes of read assignment errors, such

as inaccuracy in the SNV set or erroneous phasing of them, and sequencing errors within

raw PacBio reads. The simulation revealed, however, the accuracy would not be affected

severely by sequencing errors, as they are random in its nature[87]. On the other hand,

wrong SNV calls/phasing can be a source of biased errors, which should be alleviated by

using a phased SNV set of better quality. Therefore, the overall accuracy of detected methy-

lation statuses would essentially replicate the prediction performance of original methylation

detection method, e.g., >90% for the regions with sufficient sequencing depth, say, 20-fold

on each allele[114].

Other existing methods to detect genome-wide ASM had their own weaknesses. Use of

methylation-sensitive restriction enzymes clearly requires that restriction sites be present,

and the resolution and accessibility of the method is limited by the distribution of this

additional genomic feature which may not be biologically relevant to ASM. Use of antibody

for methylated cytosines followed by sequencing to detect heterozygous variants does not

need additional features to anchor. However, it cannot conclude which CpG sites were really

in ASM within the detected region, especially when ASM CGI was located close to other

CGI. For example, Figure 5.2e illustrates that the two neighboring promoters for Gsα and

A/B transcripts in the GNAS locus exhibit different methylation states. Another important

advantage of our method is that long reads enables finding ASM associated with distal

heterozygous variants, and we demonstrated that such cases were not necessarily rare as

illustrated in Figure 5.2a-b.



The mechanism of establishment of ASM remains to be understood. Shoemaker et al.

reported that disruption of CpG sites could lead to ASM around them [106]; however, dis-

tant mutations might be involved because, when we inspected diploid methylomes using long

reads, we found that some methylation statuses can be associated only with distant SNVs

from them. One future direction of the study would involve constructing the diploid methy-

lomes for sufficient number of individuals, then it may delineate true causal relationship

between each variant and ASM.

As we demonstrated, comprehensive information about genome-wide ASM status may

complement ASE observation if we assume methylation status of promoter CGIs are expected

to be correlated with its transcriptional activity. We touched a couple of examples to support

this intuition with the help of RNA-seq data in AK1 dataset, and indicated the analysis

of ASM could recapture some imprinted genes in HG002 dataset. While we cannot use

epigenetic observation as a complete surrogate for expression data, it would complement

ASE statuses of transcripts when they are more difficult to observe.

We also demonstrated that the long reads are essential for the study of ASM given a sparse

distribution of heterozygous variants within individuals. In addition to that, the advent of

linked-reads technology (such as 10x GemCode/Chromium) enabled us to extract long-range

(∼100 kbp) co-occurrences of DNA sequences. Such technology renders it easier to sequence

individual genomes in a manner that the majority of variants are haplotype-phased [131].

The more accessible the haplotype-phased genomes becomes, the more reasonable it becomes

to study epigenome being aware of the existence of two alleles. Therefore, to understand

the full spectrum of ASM biology, it is essential to study diploid methylomes employing long

reads.



5.4 Methods

5.4.1 Data source

DNA sequencing and RNA sequencing data for AK1 were obtained from a public repository

(Accession No. PRJNA298944). DNA sequencing data and phased variants information for

HG002 were obtained from a FTP repository of Genome in a Bottle consortium (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/release). The original cell lines are available as well (Coriell

GM24385). Both samples are lymphoblastoid cell lines (LCL).

5.4.2 Generating the diploid methylomes

For both dataset, we aligned raw PacBio reads to hg38 reference genome using standard

mapping protocol of SMRT Analysis. Resulted .cmp files were first converted to SAM

format to count the number of variants contained within each aligned read. We considered

only SNVs as allele-distinguishing variants, then we were able to ignore the indels, which

account majority of sequencing errors in PacBio reads. Consequently, read assignment to

allele can be enough accurate for ASM detection, since the rate of mismatch error is relatively

low (< 2%). The assignment of allele for each read was determined by majority voting. If

the read contains more than two PHVs within the reads, the evidence on each PHVs were

just combined. Reads were excluded from further analysis if they did not contain any PHVs,

or the voting was tied. Then .cmp files were partitioned accordingly by in-house scripts

written in bash and scala. For each file, methylation calls were generated as previously

described [114]. Read length statistics before/after the allelic assignment were calculated

using cmph5tools summary command from SMRT Analysis.

To discuss the cause of read assignment errors in ASM detection pipeline and how they

affect the accuracy of final ASM calls, we assumed IPD ratio statistics around the SNV are

perturbed by:

∆IPD = random(−1, 1) ∗ P ∗ (IPD − 1.0), (5.1)



where random(−1, 1) is sampled from the uniform distribution over [−1, 1] and P = 1%.

5.4.3 Calculate the distribution of PHVs with respect to CGIs or

exons

CpG islands annotation was retrieved from UCSC Genome Browser. For both PHVs and

common SNPs, the distance from CGI was calculated as genomic distance from the center

of CGI. To calculate the distribution of PHVs and common SNPs with respect to exons, a

gene model (GENCODE ver.24) was intersected with each feature.

5.4.4 Identifying the CGIs with ASM

As AgIn reported methylation status of each CpG site, we calculated methylation level of

CGI as the (unweighted) average of methylation status presented as 0 or 1 (unmethylation

or methylation, resp.) within the CGI. Then filters were applied as described in the Result

section. After identifying the ASM CGIs, each CGI was associated with gene(s) by manual

inspection on a browser and the most closest gene (transcript) was recorded.
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Figure 5.S1: Schematic illustration of the four types of diploid methylomes that may show
intermediate levels of methylation. Each figure depicts the methylation status of CpG sites
(circles) and sequence variants (horizontal bars) for maternal (M) and paternal (P) chro-
mosomes of an imaginary trio. The asterisks indicate features correlated with methylation
status. (1) Methylation associated with genomic imprinting. (2) Allele-specific methylation
in the narrower sense. Methylation status is determined by the local genomic sequence.
(3) Mono-allelic methylation where methylation is not correlated with the genome of the
parent-of-origin or a local allele. (4) Cell-to-cell variability, or epigenomic heterogeneity.
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Conclusion

Through the five chapters of the thesis, we demonstrated how one can extract useful epi-

genetic information from SMRT long reads, and how this method leads to comprehensive

observation of CpG methylation status of large genomes. As we briefly reviewed in Chapter

1, a number of methods were devised to exploit long reads for high-quality genome assembly.

While there are quite a variety of strategies, one of the most profound fact which benefits

all such projects is that longer reads provide us an opportunity to resolve “difficult parts”

of the genomes. This is mainly because identifying original location of reads is much easier

for longer reads once one can handle the frequent errors inherent in long read technology.

Essentially, the project we demonstrated here is an application of this principle for epige-

netic studies. Just as in studies of genome, short reads suffer from low mapability within low

complexity regions. We tried to resolve this situation by using SMRT long reads which come

with epigenetic information. Shortly after we set up our method, AgIn, we started with

the study of known repeat elements in human and medaka genomes, demonstrating that

observation of individual repeats is straightforward with long reads (Chapters 2,3). Then in

Chapter 4, we moved on to the study of another cryptic part of genome: centromeres. While

it was often the case that we had to give up saying something about centromeric regions with

short read, we could observe by long read that there can be a variaty of methylation status

within alpha-satellite arrays. Finally, in Chapter 5, we tackled the problem of investigating

allele-specific methylation in human (diploid) genomes. To make the connection between this

studyandthepreviouschapters’clear,onecouldsaythatitinvolvedthelargest“repeats”



structures in human genome, that is, pairs of homologous chromosomes. By examining the

distribution of heterozygous variants, we explicitly quantified why allele-specific methylation

was difficult to study with short reads. With long reads, one could extract CpG methylation

information independently for each allele. We termed this a personal diploid methylome, as

it provided genome-wide landscape of allele specific methylation solely based on personal

epigenetic data.

While we made our method grounded with a number of non-trivial applications, there

remains many related problems open. For example, it would be of great interest if one could

extend our idea to epigenetic studies of plants, which have a lot of non-canonical (non-CpG)

methylation. Our study of centromeric regions was limited by availablity of genome assembly,

and similar studies for human would require better assembly of human centromore, which

remains an extremely challenging task.

Though its concept has been proven, we cannot predict exactly how far one can go

with current (and with future single molecule sequencing) technologies. With ever-evolving

sequencing technologies, it’s on bioinformaticians’ shoulder to invent appropriate theories

and to implement them, to make the most of the state-of-the-art technologies of the time.
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J. A., Eyfjörd, J. E., Lakhani, S. R., Thomas, G., Myklebost, O., Span, P. N., Børresen-Dale, A.-L., Richardson, A. L., Van de

Vijver, M., Vincent-Salomon, A., Van den Eynden, G. G., Flanagan, A. M., Futreal, P. A., Janes, S. M., Bova, G. S., Stratton,

M. R., McDermott, U., and Campbell, P. J. (2014). Extensive transduction of nonrepetitive dna mediated by l1 retrotransposition

in cancer genomes. Science, 345(6196).

[117] Tycko, B. (2010). Allele-specific DNA methylation: beyond imprinting. Human Molecular Genetics, 19(R2), R210–R220.
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