
 

博士論文 

 

Mesoscopic deconstruction and reconstruction of 

multicellular organizations: 

 Towards a nonequilibrium phase transition theory of complex adaptive systems 

 

(多細胞組織のメゾスコピックレベルでの分解と再構成: 

複雑適応系の非平衡相転移理論に向けて) 

 

 

 

Lou Yuting 

楼   玉婷 
 

 

 

Department of Human and Engineered Environmental Sciences 

Graduate School of Frontier Sciences 

The University of Tokyo 

東京大学大学院      新領域創成科学研究科     人間環境学専攻 

February 2018  



   

 

 

 

 

 

 

 

 

 

 

 

©2018 Yuting Lou. All rights reserved 

 



 

1 

 

Acknowledgement 

 

First of all, I would like to thank my parents for always encouraging 

and supporting me during my life in Japan. 

I extend sincere gratitude to my supervisor Prof. Yu Chen, to Prof. 

Ping Ao, Prof. Wei Tang for their instructions on my research. Especially, 

I give thanks to Dr. Jufeng Xia for conducting the experiments, the results 

of which become the crucial part of Chapter 3 in this thesis.  

 I also express my gratitude to Prof. Zhifeng Shao, Prof. Andreas 

Deutsch, Prof. Fernando Peruani, Prof. Didier Sornette, Dr. Xiaomei Zhu 

for providing me valuable discussions and suggestions on the 

methodological and theoretical part in my thesis. I also thank Prof. Hiroshi 

Okuda, Prof. Yasuhiro Inoue, Prof. Hirotada Ohashi, and Prof. Eiji Hihara 

for proposing to me many critical but inspiring questions in the defense of 

my thesis. 

Finally, I sincerely thank RA program of the University of Tokyo 

grants for Ph.D. research, JASSO scholarship for foreign students, and 

Japan Society for the Promotion of Science for funding my three-year 

doctoral research. 

   



 

2 

 

Content 

 

Acknowledgement ........................................................................................................ 1 

Chapter 1  Introduction ............................................................................................. 4 

1.1 Incipit ....................................................................................................... 4 

1.2 Multicellular systems and systems biology ............................................. 6 

1.3 Mesoscopic approach ............................................................................... 7 

1.4 Mesoscopic multicellular models ............................................................ 8 

1.4.1 Eulerian models ............................................................................ 8 

1.4.2 Lagrangian models ........................................................................ 9 

1.5 Thesis objective...................................................................................... 10 

Chapter 2  Multicellular homeostasis in silico ....................................................... 12 

2.1 Model ..................................................................................................... 12 

2.1.1 Cell-based discrete receptor dynamics model (DRDM) ............ 14 

2.1.2 Basic output of diverse homeostasis .......................................... 22 

2.1.3 Validation: A comparison with IBcell ........................................ 24 

2.2 Non-mutational homeostasis in silico .................................................... 27 

2.2.1 Longtime evolution of DRDM .................................................. 27 

2.2.2 Quasi-stable homeostasis and phase diagrams .......................... 28 

2.2.3 Correspondence among three order parameters ........................ 32 

2.2.4 Robustness ................................................................................. 33 

2.2.5 Discussion: a glass transition point of view .............................. 35 

2.3 Homeostasis with mutations .................................................................. 37 

2.3.1 Mutation models: somatic mutations ......................................... 37 

2.3.2 Time-dependent results .............................................................. 41 

2.3.3 Bridging hereditary and stochastic models ................................ 46 

2.3.4 Evolutionary paths on the phase diagram .................................. 47 

2.3.5 Phase diagram as a fitness landscape for “system selection” .... 50 

2.4 Summary of Chapter 2 ........................................................................... 52 

Chapter 3  Multicellular aging ................................................................................ 54 

3.1 Wound healing in the DRDM ................................................................ 55 

3.2 Time delayed wound healing assays (TDWHA) ................................... 57 

3.2.1 Experimental settings ................................................................ 58 

3.2.2 Pre-wounding conditions ........................................................... 58 

3.2.3 Post-wounding healing .............................................................. 61 

3.3 Reaction-diffusion models for wound healing ....................................... 64 

3.3.1 Original RDE for wound healing ............................................... 65 

3.3.2 Asymmetric RDE for wound healing ........................................ 66 

3.3.3 Criticality analysis ..................................................................... 72 



 

3 

 

3.4 Incomplete healing in vitro and in silico ................................................ 77 

3.5 Analogy between bio-aging and physical aging .................................... 79 

3.6 Summary of Chapter 3 ........................................................................... 80 

Chapter 4  Nonequilibrium phase transitions in multicellular homeostasis ....... 82 

4.1 A simple Markovian spin model ............................................................ 82 

4.2 Simulation result .................................................................................... 85 

4.3 Mean-field analysis ................................................................................ 87 

4.4 Finite size effect and memory effect ...................................................... 89 

4.5 Summary of Chapter 4 ........................................................................... 91 

Chapter 5  A generalized methodology for CASs .................................................. 93 

5.1 Complexity problem in CASs ................................................................ 93 

5.2 Generalized framework .......................................................................... 95 

5.2.1 Models for non-adaptive relaxations .......................................... 95 

5.2.2 Adaptation coupled with relaxation ............................................ 97 

5.3 Application: multicellular aging as an example ..................................... 98 

5.4 Final remarks ....................................................................................... 100 

Appendix A.  Adhere function in DRDM .............................................................. 101 

1. Cell-cell adhesion ................................................................................... 101 

2. Cell-ECM Adhesion ............................................................................... 102 

Appendix B.  Parameter settings of DRDM simulations .................................... 103 

1. Basic simulations without mutation ....................................................... 103 

2. Simulations with mutation ..................................................................... 104 

3. Simulations for wound healing phenomena ........................................... 105 

Appendix C.  Evolutionary Cont-Bouchaud Model ............................................ 106 

Appendix D.  Materials and methods for TDWHAs ........................................... 108 

1. Cell line and cell culture ........................................................................ 108 

2. Cell counting with a hemocytometer ..................................................... 108 

3. Cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium    

bsromide (MTT) Assays ............................................................................ 108 

4. Experiment parameter settings ............................................................... 109 

Appendix E.  Pseudo codes for DRDM simulation .............................................. 110 

1. Header .................................................................................................... 110 

2. Main body .............................................................................................. 111 

Reference................................................................................................................... 114 

 

  



 

4 

 

 

Chapter 1  

Introduction 

1.1 Incipit   

From its birth, science is the practice of the philosophy of reductionism [1-4]. 

Every phenomenon observed in nature shall have its dissected parts originating in the 

properties of the elements in the sub-scales. A typical scientific approach subsumes the 

proposal of hypotheses (some abstractive articulation of the properties of sub-scale 

elements) that can be validated or falsified in real life through the control of critical 

variables [Fig.1.1(A)]. The relationship between the sub-scale elements and the 

phenomena of interest can usually be elaborated by stringent mathematical or logical 

representations, the universal ones of which are deemed as “laws”. Through this 

paradigm, a tree structure of the scientific disciplines on various scales can be idealized, 

with elementary particle physics at the root. Nevertheless, with the elevation of the scale, 

the complexity of the problems of interest explodes. Particularly, the reductionist 

formalism has severer limitations in exploring the complex adaptive systems (at the top 

of the disciplinary tree) when the integrity of the complexity cannot be reducible to 

finite well-defined parts on the sub-levels [5-7]. For instance, one cannot even approach 

the properties of some materials with the basic principle of particle physics, e.g., the 

Schrödinger equation of nuclei and electrons [6]. In many complex adaptive systems 

(CASs) such as biological organisms and socioeconomic systems, multiple factors on 

multiple microscopic scales behave interdependently in complicated ways to induce 

insurmountable complexities at the macroscopic level. It seems that human’s reasoning 

ability (both computational and mathematical), so far, is insufficient to practice large-

scale science with the pure superposition of small-scale laws. The old conundrum that 

“the whole is something besides the parts” pointed out by Aristotle [8] stands long over 

thousands of years.    
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The very core of conquering complexity is to achieve a proper understanding of the 

nature of complexity and of the scientific tools to deal with it. In the 20th century, 

complexity was thought to originate merely from the non-linearity and high-

dimensionality. Urged by the rising demand for processing the monstrous amount of 

biological data, mathematicians and computer scientists have been involved in 

engineering complexity and have recognized (at least in biological systems) that 

complexity can be classified into three types: reducible, self-averaging, and wild [9]. 

Reducible complexity refers to the complexity in which its degrees of freedom can be 

eventually reduced to very low. This means that although numerous microscopic parts 

constitute the macroscopic integrity, very few of them (or modules of them) are 

indispensable. Self-averaging complexity refers to the high-dimensional complexity 

that has a stable low-dimensional approximated description by averaging over many 

degrees of freedom. The Central limit theorem [10] is one of the most famous 

representations stating a universal type of self-averaging complexity in nature. This also 

conforms to the fundamental principle of statistical physics as explicated by Landau 

[11] that “when the number of particles is large, the regularity appears”. The third type, 

wild complexity, refers to those intractable, chaotic and inseparable to sub-scales.       

To tackle these distinct types of complexity, modern science has developed new 

paradigms as opposed to the old reductionist ones. One of the most successful is the 

statistical physics, which has not only solved problems in gases and condensed matters 

but also extends to biological, financial, economic, societal and ecological problems 

where self-averaging complexity may exist [12-16]. Its magic lies in the attention to the 

interdependence structure of the sub-scale elements instead of the detailed mechanics 

of these elements. In spite of the distinctive mechanics of sub-elements on different 

scales, the complex macroscopic phenomenon is not sensitive to these details due to the 

self-averaging nature of the complexity. Some interdependence structures beneath, by 

contrast, can prevail across scales to reproduce consistent macroscopic system 

behaviors, thereby enabling an alternative representation of the complex system with 

simpler mechanistic rules which are easy to analyze. Meanwhile, with the development 

of the computational technology as well as the explosion of data volume, data-driven 

details substitute the hypotheses or laws on the smaller scales that base the reductionist 

model construction, making the wild complexity accessible at least in the computational 

world. This data-driven modeling for real complex objects also serves as a 

complementary role for the identification and management of reducible complexity 

through a set of tools for model reduction [17].  

Although such non-reductionist approaches thrive in recent decades aiming at 

harness complexity in a variety of scientific fields [18-20], this stream of science is still 

in its infancy. Critical issues like the trade-off between the validity and the analyzability 

of the model still exist to undermine its scientific power to solve the complexity 

problems in practice. One may understand this methodological dilemma for the science 
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of complexity more deeply if looking into the efforts and struggles in the field of 

systems biology [21]. 

1.2 Multicellular systems and systems biology 

Biological complexity is the largest research focus within the realm of complexity 

science for its tremendous data quantity available. The calls for studies on multicellular 

systems are increasing with the high incidence of chronic and systematic diseases such 

as cancer, diabetes, HIV in modern societies. Multicellular systems are complex 

because they have many kinds of cells cooperative to maintain system functions under 

the signals from extra-, inter- and intra-cellular levels; they are also adaptive to 

turbulent physiological environments. Moreover, different from many complex 

materials in physics, they are open, dissipative and elusive.   

Traditional science to the phenomena on the multicellular level is to identify 

pathological reasons underlying at the subcellular level. Take complicated diseases for 

instance: the elementary subcellular parts like the abnormal genetic expression, or the 

malfunction of some critical signaling pathways are supposed to explain everything as 

the atomic laws supposed to construct all large-scale phenomena. However, many 

chronic diseases such as cancer, dystonia, diabetes, psoriasis, and among others, have 

diverse origins and are susceptible to various conditions, hence there is no definite cure 

Figure 1.1 Modeling scheme for simple system (A) and complex systems (B). 
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for them so far.  

Systems biology, as a new sub-category of biology using anti-reductionist 

approaches, then comes to the stage and is anticipated by many to unravel the elusive 

biological complexities [18]. Its anti-reductionist nature is revealed by the term 

“system”. Systems biology embraces two branches: pragmatic systems biology, which 

emphasizes on the large-scale interactions between molecules [22-23], and systems-

theoretic biology, which emphasizes on the system principles [24-25]. Pragmatic 

systems biology encompasses the details of the sub-cellular level as many as possible 

based on empirical data and serves as an ideal platform for managing reducible 

complexity. Systems-theoretic biology, by contrast, only consider the simple models 

that target at different types of self-averaging complexity. Therefore, pragmatic systems 

biology is bottom-up and data-driven with a solid biological basis on the microscopic 

level, while systems-theoretic biology is top-down and hypothesis-driven, with abstract 

interdependence structures that may outline the skeleton of the system. These two 

branches of systems biology can be regarded as partially inheriting the old-fashioned 

science (mentioned in the first paragraph in Ch.1.1) because the pragmatic one grasps 

a tint of reductionism while the theoretic one trying to obey the hypothesis-driven 

convention. The existing split of the reductionist and hypothetical formalisms in two 

branches renders critical question to systems biology about its scientific power. The 

problem with pragmatic systems biology is the difficulty to draw hypotheses or theories 

because the models are too complicated or the data is too massive; with systems-

theoretic biology, the proposed hypotheses have too vague biological meanings to be 

testable in experiments because the model demonstrations are too simple [see Fig1.1 

(B)]. Awareness is rising that only the integration of both pragmatic and theoretic 

methods can make systems biology a true science which produces verifiable or 

falsifiable hypotheses and help engineer real biological complexities [21].  

1.3 Mesoscopic approach 

In this thesis, I am devoted to unraveling the complexity of multicellular systems 

as a typical instance of CASs by proposing a mesoscopic anti-reductionist approach for 

merging the complicated microscopic details and simplified theoretical explanations. 

The mesoscopic approach, standing between bottom-up and top-down fashions, serves 

to shrink the gap between pragmatic and theoretic branches. The rationale behind this 

methodology is that for any system (either man-made or natural) with substantial 

complexities, the reducible and self-averaging ones can be well-understood through 

top-down simple models and there shall be the various simpler isomorphic 

representations across the scales of those complicated systems targeting at the 
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phenomena of interest. Hence the challenge lies in how to map the bottom-up 

complicated models, which have high phenomenological reliability, to the appropriate 

top-down simple ones, which have the strength of mechanistic illustration. Constructing 

a model at the mesoscopic level that properly captures the skeleton of the complicated 

models and is reducible to simpler models shall be one solution. For multicellular 

systems, the mesoscopic model could have the microscopic details modularized at the 

cellular level (which is hereafter referred to as “cell-based”) instead of the genomic 

level. The benefit of the cell-based representation of multicellular systems lies in its 

capability of being mapped to simple theoretic models that can easily find their analogs 

which are solvable under standard analytical schemes. 

1.4 Mesoscopic multicellular models 

For multicellular systems, an appropriate mesoscopic standpoint is a single cell. 

Any details on subcellular levels can be aggregated into the description of single-cell-

based behaviors; meanwhile, any macroscopic information that is central to our 

knowledge about a multicellular system (such as the number and the positions of the 

cells or the structure and the order of the cell population dynamics) could emerge from 

the interactions of these well-expressed single cells.  

The existing mesoscopic models can be classified into two categories: Lagrangian 

and Eulerian. In analogy to the Lagrangian and Eulerian specifications of the fluid 

dynamics, Lagrangian models specify the kinetics of every single cell, therefore usually 

embedded in an off-lattice space. By contrast, Eulerian models specify the dynamics of 

each position point in the space, therefore having an on-lattice spatial setting. Usually 

in fluid mechanics, these two specifications can be easily transformed to each other 

through neat equations; nevertheless, in the modeling of multicellular systems, such 

convenient transformation between two formalisms can hardly be found due to the 

model complexity. In the following subsections, I will introduce several typical models 

of Lagrangian and Eulerian representations and their powers for different modeling 

goals. 

1.4.1 Eulerian models 

Eulerian specifications of the systems describe the “number” in question by 

position. A typical representation of the dynamics is the partial differential equation 

(PDE) of position and time variables, i.e., describing the time-dependent “fields”. 

Mostly, the partial differential equations are in the “diffusion and reaction” type [27]: 

The numbers/amounts of cells or extracellular substance vital to cellular processes are 
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changing spatially and temporarily based on the principles of chemical reactions and 

diffusions, and cell chemotaxis or haptotaxis, whose coefficients of reactions or 

diffusions can be measured from experiments. The interactions between cells will be 

parameterized by the coefficients. These partial differential equations are very powerful 

for reproducing pattern formation since the proposal by Turing in 1952 [28]. 

Another typical representation of the Eulerian formalism is the cellular-automaton 

(CA)-like family. The system exists on the predefined lattice network and each node of 

the lattice can have different states whose kinetics are based on a set of simple and 

hypothetical rules for interactions between neighboring nodes. One node can represent 

a subset of, a single or several cells. Two remarkable models in this category are lattice-

gas cellular automaton (LGCA) [29] and cellular Potts model(CPM) or GGH model[30]. 

LGCA is a biological realization of the lattice gas method for fluid modeling, where the 

flowing parcels at one lattice node are multiple single cells. The most eminent 

advantage of LGCA is its extendibility to macro continuum equations (e.g. the master 

equations) which are more analyzable. By contrast, the lattice node in CPM is only a 

small part inside a single cell and each node is labeled by the index of this cell; therefore, 

a CPM cell could be outlined by the alignment of nodes of the same labels. The change 

of label follows the simple rule of minimizing the cell-specific surface tension 

(represented by a Hamiltonian). Therefore, CPM is very powerful for reproducing 

deformable cell shape and for simulating tissue morphogenesis and cell sorting [31].  

CA-like models can also combine with discretized PDEs to modulate the node 

states kinetics under the impact of extracellular fields (e.g., in tumor growth [32], 

angiogenesis [32,33] or vasculogenesis of blood vessels[34]) because both types of 

models fall into the Eulerian formalism. These models usually entail discrete-

continuum techniques [35] to discretize spatiotemporally the continuous PDEs for 

merging the CA rules.  

1.4.2 Lagrangian models 

The Eulerian specification of multicellular systems is intimately related to a 

macroscopic continuum description; by contrast, the Lagrangian specification is more 

compatible with microscopic details. In Lagrangian models, each individual element 

(e.g. a cell), instead of a predefined position (e.g. a node in a lattice) is followed through 

time. This enables one to embrace more individual processes (such as the activation of 

signaling pathways, the occurrence of mutations inside the cell) into the models. 

Particularly, when the biological problems at hand involve cell biomechanics, for 

instance, the cell shape change with viscoelasticity of cell membrane, which is 

considered critical to subcellular biochemical processes, the Lagrangian formalism will 

be the suitable one. 

For addressing biochemical problems, the multicellular system can be modeled as 
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an aggregation of viscoelastic particles. There are many variants of such kind of multi-

particle models, whose modeling goals are the forces of cell compression, deformation 

and adhesion during different cellular processes (growth, division, migration, necrosis, 

etc.). Since the system coordinates are individual-centered, Lagrangian models are 

mostly lattice-free. Sophisticated sub-cellular functions can also be embedded in each 

cell to model more realistic biochemical processes and the degree of sophistication of 

the individual subcellular formalism will decide how detailed the model could be. Some 

remarkable models are vertex model[36], colloidal particle model[37], deformable 

ellipsoidal cell model[38], subcellular element model[40], finite-element model[41], 

etc. 

Lagrangian models can also be coupled with Eulerian models to establish hybrid 

multi-scale models for some complex modeling goals that require specification of 

individual cellular processes [42]. For example, the immersed-boundary cell (IBcell) 

model (see Ch.2.1) needs Eulerian models for simulating the fluid motions of 

extracellular factors and Lagrangian models for simulating individual viscoelastic cells 

to reproduce the hydrodynamics around heart[43], blood clotting[45], epithelial tissue 

embryogenesis[44], among others. Since these models are advantageous at giving 

specified modeling details, they are more difficult to analyze and yet serve as good 

foundations upon which the mesoscopic approaches can base. 

1.5 Thesis objective  

The aim of this thesis is twofold: one is the achievement towards theory 

establishment for multicellular homeostasis through a mesoscopic methodology and the 

other is the methodological exploration of engineering complex adaptive systems. In 

the following chapters, I am devoted to demonstrating that how a complicated 

multicellular system can be deconstructed to the cellular level and reconstructed to 

theoretic models with minimal complexity for the phenomena of interest on the top 

(which is homeostasis, tumorigenesis, and aging).  

The outline of the thesis is as follows: In Ch.2, a mesoscopic model adapted from 

a complicated hybrid multi-scale model for multicellular homeostasis is introduced; 

both non-mutational and mutational situations are studied. Longtime simulations in a 

large parameter space are facilitated by this mesoscopic model. In Ch.3, I studied the 

multicellular aging through the comparison between in vitro experiments and 

mesoscopic models. Two mesoscopic models at different levels of scale contribute to 

the identification of the critical parameters for the multicellular aging and to the analogy 

between the critical behavior of the multicellular system and those of nonequilibrium 

physical systems. In Ch.4, the multicellular homeostasis is reproduced by a simple spin 
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model that can be representative of the complicated mesoscopic models. This minimal 

model can be analytically solved with standard procedures and a nonequilibrium phase 

transition theory is thence proposed. Ch.5 presents a discussion on the generalized 

mesoscopic methodology to other CASs and its application prospect. 
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Chapter 2 

Multicellular homeostasis in silico 

The maintenance of homeostasis in tissue is the essential theme for disease 

prevention [46]. Testable theories potentially helpful to the modulation of multicellular 

homeostasis are in high demand. Multicellular homeostasis in silico is the 

computational instance of the living multicellular systems keeping stable morphologies 

and functions. It mimics the real tissue homeostasis based on massive empirical pre-

knowledge at the subcellular, cellular and multicellular levels. The models intended for 

reproducing multicellular homeostasis are hybrid, multi-scale, and mostly in a coupled 

Eulerian with Lagrangian formalism. One of the most successful models for 

multicellular homeostasis is the Immersed Boundary cell model for epithelium 

formation proposed by Rejniak et al. In this chapter, I will show how this detail-ridden 

model can be simplified to a mesoscopic model that is more computationally and 

theoretically achievable without losing the information critical to the phenomena of 

homeostasis maintenance.  

2.1 Model 

(Note: All figures in Ch. 2.1 and Ch. 2.2 are adapted from Ref.[49].) 

 

The immersed boundary method was first proposed by Peskin [43] for reproducing 

flow patterns around heart valves and was then developed to a prototype model for 

deformable eukaryotic cells. As inferred by its name, the immersed boundary cell model 

(IBcell) is mainly featured by the dynamics of elastic cell membranes (i.e., cell 

boundary) immersed in a viscous Newtonian fluid which corresponds to cytoplasm 

inside the single cells, the extracellular matrix outside the tissue and empty room (or 
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lumen) existing in the multicellular architecture [47]. Not only does the complex cell 

morphology can be accurately reproduced, the cell phenotype decision can also be well 

represented through the molecular dynamics on the cell membranes which receive 

extra-, inter- and intracellular signals. Both the fluid dynamics and molecular dynamics 

are represented by a set of ordinary/partial differential equations and the intercellular 

adhesion is modeled by an elastic spring satisfying Hook’s law. All the kinetic constants 

and coefficients are the empirical value obtained from the experimental results in the 

literature, manifesting the data-driven nature of this method. Since the cell membrane 

mechanics are at the cellular level and the molecular dynamics are at the subcellular 

level, the coupling between them can be realized by setting thresholds on the sub-

cellular level to trigger the cellular behaviors. By embedding specific fluid and 

molecular dynamics into IBcell framework, one can reproduce both the precise 

multicellular architecture as well as cell phenotype dynamics for some specific tissue 

types.  

A direct comparison between experimental data and IBcell simulation results can 

be performed to shows its remarkable phenomenological power. Rejniak et al have 

applied IBcell framework to epithelial acini formation and to reproduce the four 

homeostatic states with distinct multicellular architectural structures observable in 

experiments (see Ch.2.1.3 for details) [48]. Their computational results shed new light 

on multicellular homeostasis that the abnormality of the systems such as degeneration 

and tumorigenesis can also be some other homeostatic states, which emerge merely 

from the multicellular interactions without environmental stresses or malignant genetic 

alterations. Nevertheless, the Navier-Stokes equations for the fluid dynamics and the 

heavy details regarding the forces exerted on cell membranes in IBcell require huge 

computational resource and hamper a thorough exploration of the mechanistic reasons 

behind the diversity of multicellular homeostasis. The small cell number and the short 

simulation time because of this computational inefficiency also limits the feasibility of 

drawing a complete theory of homeostasis formation and transition.  

 As is pointed out in Ch.1.1, the complexity can be categorized into three parts: 

reducible, self-averaging and wild. Clearly, in terms of the homeostasis formation, 

many sub-elements in the IBcell can be reduced and the interdependence structure 

producing self-averaging complexity can be well-kept with a simpler model 

representation. Despite that the largest phenomenological power of IBcell lies in the 

accurate modeling of the cell morphologies comparable with the experimental images, 

those complex details should be reduced or replaced by other simple ones as the 

research goal is to generate falsifiable hypotheses for the diversity of multicellular 

homeostasis. 
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2.1.1 Cell-based discrete receptor dynamics model (DRDM) 

By examining the diverse homeostatic states reproduced by IBcell [48] (see Fig. 

2.4 in 2.1.3), one can find that these homeostatic states can be distinguished from other 

aspects than the multicellular architecture. Indeed, another key macroscopic feature 

capable of distinguishing different homeostatic states is the distribution of cell 

phenotypes, i.e., the sub-population structures of the cell colony. Hence a new 

mesoscopic cell-based model [49] intended for cell phenotype dynamics has been 

proposed with higher computational efficiency but with lower morphological precision. 

 In the new mesoscopic model, the continuously formulated fluid and receptor 

dynamics in IBcell are spatiotemporally discretized to a set of cell behavioral rules. 

Different from IBcell, the simulation space in the new model is a torus lattice with the 

node spacing of a single cell size. Each lattice can be occupied at most by one cell. 

Hence, the cells in this mesoscopic model will longer have precise morphology. The 

receptors on the cell membrane are still functioning, yet the spatial information of these 

receptors on a subcellular scale will be lost. Thence, the receptor dynamics with the 

absence of the representation of cell membrane become totally Eulerian. The behaviors 

of a cell are executed when various types of the receptors hit or stay below the 

respective thresholds. Apparently, the receptor dynamics are the core of the model that 

govern the whole system dynamics, therefore the model is called discrete receptor 

dynamics model (DRDM) hereafter. Under this reformation, all the information from 

extra-, inter- and intracellular conditions is coarse-grained as the profile of a lattice node 

(a virtual “cell”; refer to Table 2.1) and could be traced for statistical analyses even with 

cell heterogeneity through a longtime evolution. 

As shown in Table 2.1, the cell in the DRDM is a structure of data without the 

representation of cell membranes and subcellular organs. Information at three level of 

scales is embraced: at the cellular level, five types of receptors (growth, adhesion, ECM, 

arrest, and death) and extracellular matrix (ECM) are synthesized and degraded at each 

Node profile 

Receptor amounts R(t) ECM Thresholds T Environment Information 

 Growth      Rg (t) 

 Adhesion    Rh (t) 

 ECM       RE (t) 

 Arrest       Ra (t) 

 Death       Rd (t) 

concentration 

E(t) 

 Growth      g 

 Polarization   p 

 ECM        e 

 Arrest       a 

 Death       d 

 Adhesion    h 

Growth factor  γ 

Growth-inhibiting factor ascr 

Death-inducing factor dscr 

  Neighbors: 

  left, right, top, bottom 

Table 2.1 Profile of each lattice node in DRDM. 

 

Note: The receptor amounts and ECM concentrations are dynamically updated, whereas the thresholds 

T and environment information are constant and homogeneous. The neighboring nodes of each node are 

four Von Neumann nodes throughout the simulations. 
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cell node; at the subcellular level, thresholds T embrace genetic information of the cell 

inheritable from its mother; at the extracellular level, the environmental information 

includes the addresses of neighboring nodes along with the nutrients, the growth 

inhibitors, and the death-inducing factors. Each cell can access the profiles of neighbors 

for localized intercellular interaction by visiting their addresses. If the node is not 

occupied, the amount of receptor and ECM will be zero. 

All cells in the DRDM (also in IBcell) are the progenitor cells in epithelial tissues 

with cell differentiation not modeled. Three paralleled modules of cell behaviors are 

considered: cellular process, migration, and death [see Fig.2.1(A)]. The module of 

cellular process encompasses cell growth, cell proliferation, cell adhesion, cell 

polarization and the subsequent cell cycle arrest. The programs of cell movement and 

cell suicide are checked each time step whether the necessary environmental or internal 

conditions are met. Note that the elementary component in DRDM is a cell, one-time 

iteration should be much coarser than that of the characteristic timescale of molecular 

dynamics. Fig.2.1(B) shows the realization the cell behavior in simulation as a 

flowchart for each round of iteration. 

Now let’s specify the detailed receptor dynamics for each time iteration. Table 2.2 

shows the evolution rules for each type of receptor with the corresponding cell 

behaviors, which is, in fact, the transformation of receptor configuration at each node 

[Fig. 2.1(C)]. Growth receptors are the only source of energy and other receptors can 

be transformed from the growth receptors through different transitional paths according 

to the cellular conditions (the first column in Table 2.2); eventually, all of the receptors 

should, in theory, flow towards death receptors because death receptors are non-

degradable whereas the remaining four kinds of receptors can degrade by transforming 

into other types. Nevertheless, metastable loops may exist to lock the cells in a certain 

phenotype (e.g. everlastingly proliferative). The dynamics of the whole system is 

thence determined by the competition among various metastable loops of cell 

proliferation (either normal or tumorigenic), the cell cycle arrest (either temporary or 

permanent arrest) and cell death.  

The following paragraphs will explain one by one the rules of receptor dynamics 

in Table 2.2 from its biological ground.  

1) Growth: 

Condition: Cell grows when it is not arrested and the sum of growth and adhesion 

receptors below a level of RM, which corresponds to the minimal physical mass required 

for cell division. This is to ensure that the cell has synthesized a sufficient quantity of 

materials for performing the mitotic program. The “materials” required for mitosis can 

be represented by the summed amount of growth and adhesion receptor. 

Behavior: Grow. This cellular stage is G1, during which the cell mass increases 

and growth receptors along with ECM are synthesized.  
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Receptor dynamics: Each newly born cell is assigned with a growth receptor amount 

B. When it grows, growth receptor amount Rg(t) increases at the rate γ, which is a 

uniformly homogeneous concentration of growth factors. Meanwhile, ECM is 

synthesized around the growth receptors and degraded around other receptors, hence 

E(t) linearly increases with Rg (t) at the rate s1 while it decreases with other types of 

receptors at the rate s2. Accordingly, a larger growth rate γ yields a larger Rg(t) and a 

larger E(t), in accord with the fact that ECM serves as a local storage of growth factors 

[50]. Moreover, the growth rate γ compared with RM -B controls the time resolution of 

DRDM. In the following simulations, it takes roughly 5 steps for a cell to divide using 

the parameters in Table B1 in Appendix B(1), implying that one step in silico 

corresponds to several hours in real time because, in real world, cells usually have a 

doubling time around 20-30 hours in vitro[51]. 

Figure 2.1 Model construction of DRDM. (A) Three modules of cell behaviors in paralleled execution 

during each time step. (B)The flowchart of the single cell behaviors at one step of time iteration: circles 

represent the cell behaviors and the diamonds the checkpoints. All cells begin from Grow function (either 

born by the mother or seeded into the space); at time steps other than the first round, the cell starts from 

either Grow or Adhere function according to the state where it finishes in the last iteration. The cell 

executes cell behaviors in the sequence shown by the flowchart until it reaches the black squares, which 

is the terminal of this round. If the cell chooses to die, the life of this cell along with all the processes 

will end. (C) The transformation among five kinds of receptors of two interacting cells. The synthesis 

rates of arrest and death receptors are subject to environmental conditions (refer to Table 2.1). 
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2) Adhere:   

Condition: None. 

Behavior: Adhere to neighboring cells and ECM. 

Receptor dynamics: First, adhering to neighbors needs a transformation of some 

growth receptors into adhesion receptors (or turning back into growth receptors when 

cell-cell adhesion is lost), depending on the sizes of two cells [see Appendix A(1)]. The 

essence of this intercellular adhesion lies in that larger cells which have larger adhesive 

surface need more adhesion receptors. The second part of Adhere function refers to the 

cell-ECM adhesion, by which some amount of growth receptor continuously transforms 

into ECM receptors which are adhesive to ECM. The amount of ECM receptor RE (t) is 

proportional to the amount ECM E(t) with a factor 1/escr [see Appendix A(2)]. The 

formation of ECM receptors may stimulate a negative feedback to the cell growth 

because large RE(t) increases the tendency of cells to polarize [see 3) Polarize]. However, 

if the ECM threshold e is too high, meaning that the cell is very insensitive to ECM and 

allows an enormous amount of RE transformed, then the polarization and the subsequent 

cell cycle arrest will not easily occur. These modeling details of cell-ECM interaction 

are related to some experimental observations: a detachment from ECM (escr) 

yields uncontrollable growth; a mild adhesion to ECM (a low e) induces the cell into 

cell cycle arrest and a strong adhesion to ECM (a high e) promotes cell proliferation 

[52].  

3) Polarize:  

Condition: For apical polarity, the epithelial cell needs sufficient apical junction 

complexes engaged with both lateral contact (adhesion between cells) and basal contact 

(adhesion between the cell and ECM) [53]. Therefore, the cell should have Rh(t) and 

RE(t) with respect to their thresholds p and e for cell polarization.  

Behavior: Polarize. Cell polarization blocks the growth-inducing signals and 

ceases apoptosis [53,54], hence the accumulation of death receptor is halted while the 

cell is prepared for cell-cycle arrest. 

Receptor dynamics: If the cell is polarized, it accumulates arrest receptors Ra (t) 

by transforming some adhesion receptors at a fraction ascr, which is a growth inhibiting 

factor; if the cell depolarizes, it transforms adhesion receptors into death receptor 

amount Rd(t) by a fraction dscr, which is a death-inducing factor. Both ascr and dscr 

embrace the information about the unfavorable environmental conditions to the cell 

vitality, such as the lack of nutrients or the existence of fatal toxicities.  

4) Restriction point: 

Condition: Comparing the amount of arrest receptor Ra(t) with arrest threshold a. 

For a growing cell turning into a quiescent stage G0, Ra(t) must exceed its threshold a; 

for a growth-arrested cell to reenter the growing stage G1, it not only needs Ra(t) below 
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a, but also the growth receptor amount Rg(t) above its threshold g. 

Behavior: Restriction point is a checkpoint for cell cycle arrest. Arrested cells can 

emerge as temporarily arrested or permanently arrested. Temporarily arrested cells are 

revocable if the local conditions favor cell growth once again. However, if unfortunately, 

the cell’s growth receptors have been degraded to a quantity below the threshold g, it 

will become muted and be not responding to any cycle-related signals. Meanwhile, if 

the cell-cell or cell-ECM adhesion decreased due to the loss of influx of growth 

receptors, the cell may depolarize and some arrest receptors and adhesion receptors will 

transform into death receptor by a fraction dscr [refer to 3) Polarize]; during this process, 

the cell may die of excessive death receptors. This mechanism means that cell cycle 

arrest has a limited time window, out of which the arrested state become permanent (not 

considering some external stimuli are brutally operated to activate the cell).  

To mention, arrest receptor is only a conceptual representation of the aggregated 

growth-inhibiting signals and it does not exist in real cells. In IBcell, transitions 

between growth and arrest are controlled by a single parameter (equivalent to the 

growth threshold g in DRDM). The reason of arrest receptor being here is that many 

growth-inhibitory signals through specific pathways, the deprivation of nutrients, 

contact inhibition, DNA damages, and among other [55] can exist independently of 

growth receptors. In the DRDM, the arrest receptor is the “effective receptor” that 

unifies these various growth-inhibiting signals. Such separated two-way functions of 

Restriction point enables the realization of the asymmetry between G1 to G0 and G0 to 

G1, processes, the former of which is controlled solely by arrest threshold a, and the 

latter of which by both arrest threshold a and growth threshold g, agreeing with the fact 

that the G0 to G1 processes can be much slower than the G1 to G2 ones [56]. 

Receptor dynamics: None. The cell state is changed from cell growth to cell cycle 

arrest. 

5) Proliferate: 

Condition: The cell is not arrested and the total cell mass (the summed amount of 

growth, adhesion and ECM receptor) exceeds RM. 

Behavior: Giving birth to a new daughter cell in the empty neighboring site. Multi-

stage processes (such as S phase, G2 checkpoint, M phase, etc[57]) are involved in real 

cell division but in DRDM (also as in IBcell), cell division is only a simple event of one 

cell splitting into two at a time step. 

Receptor dynamics: The mother cell assigns a basic amount of growth receptor B 

to its daughter, who inherits the genotype T from the mother (the inheritance of genetic 

information is trivial when T is homogeneously constant in Ch.2.2, whereas it is non-

trivial to the system in Ch 2.3 where mutation strategies are involved). The proliferative 

cell must find an empty neighbor to lay its daughter, and if not, the cell keeps 

proliferative and wait until cell cycle arrest ensues or it dies. This waiting state of 



 

19 

 

proliferative cells is different from the quiescent state abovementioned in that the 

waiting proliferative cells still have the Grow function switched on whereas quiescent 

cells do not. Hence, these waiting proliferative cells are called tumorigenic cells 

hereafter because of their eminent features of keep growing uncontrollably, which is 

one of the hallmarks of cancer cell [58]. 

6) Suicide: 

Condition: The death receptor exceeds death threshold d. 

Behavior: A cell can basically die in a necrotic or an apoptotic way, the former of 

which is induced by the exogenous fatal environment and the latter of which is an 

endogenous sacrifice for the tissue vitality. In DRDM, there is no distinction between 

necrotic and apoptotic cell death and the death receptors represent all the internal and 

external cues against cell survival. The death receptor can be transformed from 

adhesion receptors only if the cell is not polarized. This is compatible with the 

observation that the propensity of cell death is higher when it is far from being arrested 

[59].  

Receptor dynamics: All receptor amount R(t) and ECM amount E(t) become zero 

at the instantaneously. 

7) Move: 

Condition: The total amount of adhesion receptor and ECM receptor stays below 

a threshold h.  

Behavior: Cell chooses an empty neighboring node with minimal surrounding 

ECM amount to move. Normally, cells can migrate through chemotaxis or haptotaxis 

while conjunct with basal stroma and other cells [60]. Chemotaxis is not modeled in the 

current DRDM model because the micro-environment is homogeneous in space. 

Therefore, Move function in DRDM only involves haptotaxis, in which cells migrate 

downward along the adhesion gradient by the tensile forces to be mechanistically 

balanced [60,61]. This serves as a simplified rule corresponding to the complex fluid 

dynamics in IBcell model. The principle of the mechanical balance is as such: the 

compression from surroundings felt by each cell at node i can be represented by the 

total ECM amount of all the surrounding cells and then the compression Ci is 

formulated as: 

( ) ( )i jj N
C t E t


 , where N is the set of neighboring sites. 

Clearly, the cells struggle with local adhesive forces under the repulsing 

compression from surroundings. If the cells live a weak adhesion culture, they should 

diffuse from a site with high compression to a site with lower compression. 
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 Receptor dynamics: Suppose that a cell at site i is surrounded by several vacant 

neighboring sites, which are denoted as a set K. The cell can migrate to the vacant 

neighbor k only if Ck < Ci and Ck = min(CjK). The information of receptors, ECM, and 

thresholds of k is copied from that of n and this information is then deleted at n. 

Conditions Cell Behaviors Receptor Dynamics 

Rg(t)+Rh (t) < RM 

AND not arrested 
Grow 

Rg(t +1)=(1+γ)Rg(t) 

E(t +1)=E(t)+s1Rg(t)-s2[Rh(t)-Ra(t)+Rd(t)] 

None Adhere 

Rh(t +1)=AD1p[Rneighbor(t), Rg(t)+Rh(t)] [Appendix A(1)] 

RE(t +1)=E(t)/escr [Appendix A(2)] 

( 1) ( ) ( ) ( ) ( 1) ( 1)g g h E h ER t R t R t R t R t R t          

Rh(t)  p AND  

RE(t)  e 
Polarize 

Ra(t +1)=Ra(t)+ascrRh(t) 

Rh(t +1)=(1ascr)Rh(t) 

Rh (t)< p OR  

RE(t) < e 
Depolarize 

Rd(t +1)=Rd(t)+dscr[Rh(t)+Ra(t)] 

Rh(t +1)=(1-dscr)Rh(t) 

Ra(t +1)=(1-dscr)Ra(t) 

Not arrested: 

Ra(t)  a 
Restriction point 

Entry into Arrest 

Arrested: Ra(t) < a 

AND Rg(t) > g 
Exit from Arrest 

Rg(t)+Rh (t)RM 

AND not arrested 
Proliferate 

Empty 

neighbor j 

( 1) ( 1)j

a gR t R t B      

( 1) ( )jT t T t    

No space None 

Rd (t) > d Suicide R (t +1) = 0, T (t +1) = 0 

Rh(t)+RE(t) < h Move Move to the vacant neighboring site with least local ECM 

 

Table 2.2 Cell behaviors corresponding to the discrete receptor dynamics in DRDM. 
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Figure 2.2 Diverse growth patterns in DRDM under different parameter settings.  
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2.1.2 Basic output of diverse homeostasis 

The parameter settings are summarized in Table B1 in Appendix B(1). Lattice size 

is 7171 with a total volume of 5041 nodes. The initial condition is to seed one growing 

cell with Rg(0)=B to the lattice. Thresholds T, growth-inhibiting factor ascr, and death-

inducing factor dscr are global constants to mute the effect of endogenous and exogenous 

homogeneity, thus enabling one to focus on the role of cellular interactions in 

multicellular homeostasis. Pseudo codes are presented in Appendix E. 

Fig.2.2 shows the growth patterns of the system with different parameter settings. 

Since the fluid mechanics of ECM in IBcell has been simplified for computational 

efficiency, the cluster of the cells cannot appear with a spherical architecture of acinar 

lumens due to the lack of modeling “lowest surface tension” at the outer layer; thence 

multiple anomalously shaped hollows emerge. Nevertheless, morphology is only the 

consequence, not a cause, of the cell phenotype dynamics and in Ch.2.1.4, I will show 

that without the representation of morphology, the DRDM can still reproduce the 

various phenotype dynamics (corresponding to respective acinar morphology) and the 

phase diagram (i.e., the system states in a parameter space) of IBcell. 

Let’s inspect the snapshots in Fig.2.2 in detail. To mention, the living cells (the 

nodes with a non-zero number of receptors) appear as colored dots (proliferative cells 

as red, while arrested cells as grey), each of which has the diameter linearly related to 

the total receptor amounts of the cell represented. The rheology of the multicellular 

topology in terms of proliferative and arrested cells can define the growth pattern of the 

cell clusters. Degenerate morphology [Fig.2.2 (A)] is a small anomalously shaped 

cluster of arrested cells; a similar type is the small inadequate morphology [Fig.2.2 (B)], 

which can have longer expanding time, however, with anisotropic directions, and is 

eventually shaped as a large cluster of arrested cells with irregular outer layers and small 

hollows. Inadequate morphology can have another type with much regular shape 

[Fig.2.2 (C)] resembling the normal ones [Fig.2.2(D)] at beginning stage where the 

proliferative cells are evenly distributed at the outer layers; after that, the cells at the 

center of the inadequate system either die or become arrested and then the remaining 

cells form a large cluster of arrested cells with scattered large hollows, whereas those 

in the normal system, the newly born cells will reoccupy the hollows left by old cells 

and extend the life of the system. More typically, the normal homeostasis [Fig.2.2 (E-

F)] shows temporarily oscillatory growth patterns after the growing cluster has 

occupied the whole space in fully connected topology: the system locally undergoes the 

cycle of growing, getting arrested, dying and being; long after these metastable cycles 

of life, the topological structures become more and more homogeneous with the 

arrested cells fully connected and proliferative cells evenly distributed. However, the 

longtime evolution of normal homeostasis does not last for eternity and may have 

bifurcated destination such as inadequate [Fig.2.2 (E)] and tumorigenic [Fig.2.2 (F)]. 
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The system can reach tumor-like architecture without undergoing normal oscillatory 

growth as shown in Fig.2.2(G-H), leaving the proliferative cells dominant in the space. 

Oscillatory patterns can still occur as a consequence of the competition between the 

arrested and proliferative cells and the system may slowly form excessive morphology 

in which arrested cells win to have a fully connected topology[Fig.2.2(G)], or keeps 

tumorigenic if proliferative cells win to have a connected topology with very few of 

them getting arrested [Fig.2.2(H)].  

One can easily observe that the degenerate and tumorigenic morphologies in 

DRDM have straightforward correspondence to the unstable growing and the 

degenerate acinar architectures in IBcell, whereas the inadequate, normal, excessive 

patterns in DRDM cannot be identified as equivalent to the hollow structure of stable 

acini in IBcell (a discussion has been detailed in Ch.2.1.3). The reason lies in that the 

DRDM cells do not intimately align to form continuous surfaces because the 

minimization of multicellular surface tension is not modeled. If the submodels 

regarding the multicellular surface tension are introduced (e.g., adding a simple rule to 

Move function: all cells must adhere to some other cells while moving), smooth surfaces 

of hollows (which is acini-like) can be reproduced in the DRDM (Fig.2.3). However, 

this modification enables a finer simulation of morphology at the sacrifice of 

computational efficiency (nearly a doubled simulation duration) and imposes little 

qualitative changes on the phenotypic population structure and on the basic 

characteristics of diverse homeostasis described above. One can even improve the Move 

function by introducing more sophisticated mechanisms that are comparable to the 

hydrodynamics in IBcell for a better reproduction of shape of hollows, which helps 

distinguish semi-hollowed lumens from full-hollowed lumens as in IBcell, but with a 

slower computation. Finally, one may notice that DRDM can only reproduce multiple 

“acinar structure” instead of a single lumen (as in IBcell). This discrepancy can also be 

solved by adding flow mechanisms of ECM if one would like to reduce the computation 

speed. These trivial changes brought by Move function implies that these complex 

subcellular details indeed can be reduced to some extent without impairing the 

interdependence structure lying inside the receptor dynamics.  

Figure 2.3 Emergence of acini-like lumens in the DRDM with a simple surface tension model and 

doubled simulation time. Note that the semi-lumen and full-lumen structures in IBcell are still not 

distinguishable with this simple modification.  
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2.1.3 Validation: A comparison with IBcell  

As is mentioned in Ch.2.1.2 and Ch.2.1.3, the simplified fluid dynamics and the 

subsequent inaccurate cell morphology will not bring qualitative change to the 

phenomena of diverse homeostasis. This fact can be confirmed by a direct comparison 

between the DRDM result and IBcell result in terms of their sub-population structure. 

Meanwhile, only a comparison of results on short timescale is possible since the 

timescale in IBcell simulation is around 30 days in silico, which needs only several 

hundred of time steps in DRDM.  

The only concern with the absence of inaccurate morphological results in DRDM 

is that one needs other indicators than morphology to describe and distinguish different 

system states. As is demonstrated in Ch.2.1.2, morphology is more of only the 

consequence rather than the cause of the phenotype dynamics, one can conceive an 

indicator embracing the phenotypic information. A system vitality index is then 

proposed in [49] as an indicator for phenotypic population structure (hereafter called 

phenotype structure in short). The definition of this index, denoted as V, is as follows: 

 V =w1Na+w2Nt=N(w1Na/N+w2Nt/N)                             (Eq. 2.1) 

where N, Na, Nt are the numbers of total, arrested, and tumorigenic cells and w1, w2 are 

the coefficients weighing the contribution of the two terms. As the definition implies, 

three pieces of information are embraced: the total cell number, the arrested cell number, 

and the tumorigenic cell number, hence this index a measure of vitality of the system 

and the two weights can be arbitrarily selected to make this indicator a good parameter 

that distinguishes different states of the system. According to ref. [49], the two numbers 

are set as w1=0.1, and w1=1, based on which V ranges from zero to the size of space. 

Compared with the straightforward representation of morphology in IBcell, the 

advantage of this mathematical indicators lies in its precision, its capability of being 

recorded continuously through longtime simulation, and most critically, the 

convenience to be calculated and displayed for densely sampled parameter spaces. 

The simulation results of IBcell are presented from two aspects: 1) the 2D/3D 

morphochart [Fig.2.4(A)] and 2) the time evolution of the population (proliferating, 

dying and total cells) near the critical boundary of morphochart [Fig.2.4(C)]. With the 

properly defined order parameter V, one can compare the phase diagram of DRDM with 

the morphochart of IBcell and the time evolution of the three population near the critical 

boundary of phase diagram in DRDM phase diagram with the population dynamics at 

critical regions in IBCell morphocharts.  

The 2D/3D morphochart in IBcell {Fig.2.4 (A), cited from Fig. 3(D) in Ref [47]} 

is plotted in the space of three parameters: gIB(the growth receptor concentration), 

dIB(the death receptor concentration), eIB(ECM receptor concentration). Note that both 

growth-to-arrest and arrest-to-growth transitions in IBCell depends solely on the 
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concentration of growth receptor gIB, whereas in DRDM on g and a. Fig.2.4(A) shows 

that the different types of acinar architectures emerge in different sub-spaces of the 

morphochart: stabilized degenerate architecture with high gIB and low eIB , stabilized 

semi/no-lumens with high dIB and low eIB, tumor-like structures with high eIB or low gIB  

and the stabilized hollowed lumen sitting at the center of the morphochart.  

Before comparison, the correspondence between the various morphology in IBcell 

to different value ranges of phenotype structure V used in DRDM simulation should be 

clarified. By counting the arrested, proliferative and the total cell number in IBcell acini, 

one may find that: V < 250 corresponds to a stabilized degenerate architecture, 500 < V 

<1500 to semi/no- lumen acini, V >1500 to the un-stabilized tumor-like structures, 250 

< V < 500 to the perfect hollowed acini. The boundaries of different phases are indeed 

ambiguous, just as the many morphologies of acini in IBcell shown in Fig.2.4(C) is 

hard to be classified to any well-articulated form of structure. It should be mentioned 

that most morphologies in IBcell correspond to the small values of V because of a 

smaller total cell number. 

In DRDM, the mechanism of entry into and exit from cell cycle arrest are 

“asymmetric”, i.e., the former controlled solely by a and the latter by both a and g, 

Therefore, the two diagrams in the parameter space of g-d-e and a-d-e are presented 

[Fig.2.4(B)]. One can observe that the only difference between the IBcell morphocharts 

and DRDM phase diagrams is that the tumor-like acini can exist when gIB is near zero 

in IBcell while this is not the case in DRDM. This is because gIB 0  is equivalent to 

the situation that a approaches infinity in DRDM, which is not attainable. Yet, the trend 

is still observed that the domain of tumor-like morphology (V >1500) is expanding with 

a getting larger [green domain in Fig.2.4(B)], stating that the DRDM phase diagrams 

qualitatively agree with IBcell morphocharts.  

Next, let’s inspect the subpopulation dynamics for different phases around the 

critical boundary. The three population dynamics (proliferative, death and total) near 

the critical boundary of the hollowed lumen and the semi-lumen in 2D morphochart of 

gIB and dIB in IBcell are shown in Fig.2.4(C) {adapted from Fig.3 (B) in Ref.[47]}. 

Accordingly, the 2D phase diagram in DRDM is plotted in the space of g and d 

[Fig.2.4(D)], where the population dynamics near the critical boundary between the 

phase 250<V<500 and the phase 500<V<1500 are presented. Similarly to the 

population dynamics in IBcell, the total cell number (the black line) and proliferative 

cells (the light green line) increases at the first stage, after which they decrease due to 

the emergence of dying cells (the red line). If the cells at the center of clusters die out 

quickly (lower dIB or d), the multicellular structure appears as a hollowed lumen [refer 

to the inset 1 in Fig.2.4 (C) and (D)]; if the cells at the center of the cluster do not die 

quickly enough (due to a higher dIB or d), these cells will become arrested in the center, 

yielding in semi- or even no-lumen structure [refer to inset 2 in Fig.2.4(C) and (D)]; if 

newly born proliferative cells reoccupy the space left the dying cells due to a lower gIB 
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or g, an unstable and tumorigenic acinar structure tends to appear [refer to inset 3 in 

Fig.2.4(C) and (D)]. In short, the similar population dynamics in two models emerge in 

the same parameter zones around the critical boundary.  

A small discrepancy is that cells gradually die in the DRDM whereas, in IBcell, 

cells die at the same time point. This may be explained by the difference in the system 

size (or the total cell number). By increasing the death accumulating rate dscr, one can 

modulate the total cell number in DRDM to a level around 300, which is the 

characteristic acini volume in IBcell, and the DRDM cells can die in synchronization 

[inset 4 in Fig.2.4(C) and (D)].  
 

Figure 2.4 A validation of DRDM by comparison with IBcell. (A) The 3D morphochart of IBcell (Fig.3 

(D) in Ref[47]) with four distinctive acini architectures emergent from four different subspaces of 

morphochart. (B) The phase diagram in DRDM simulation with four different ranges of V emergent from 

four different subspaces of the diagram. (C) Population dynamics of proliferative, dying and total cells 

near the critical boundary in the 2D morphochart from IBcell (Fig.3 (D) in Ref[47]). (D) Population 

dynamics of proliferative, dying and total cells near the critical boundary in a 2D phase diagram from 

DRDM simulations. 
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2.2 Non-mutational homeostasis in silico 

The short timescale observation has validated that DRDM still keeps the power of 

reproducing the phenotype dynamics in IBcell even with no modeling of fluid 

mechanics. Now, a longer simulation and large-ensemble statistical analysis can be 

implemented with DRDM due to its computational efficiency.  

2.2.1 Longtime evolution of DRDM 

Cells cooperating through the fluctuation of receptor configurations yields the self-

organization of diverse homeostatic growth patterns (as seen in Fig.2.2), some of which 

have very long periods before reaching the stationary patterns. The system trajectories 

of these growth patterns described by the compositional proportion of arrested cells 

Na/N in relation to the total cell population N/Nmax (Nmax is the lattice size) have been 

presented in Fig.2.5(A).The arrows point to the time direction. Not only do these 

evolutionary trajectories have diverse paths, but also do they show non-trivial longtime 

behaviors, especially for inadequate (red), normal (dark yellow and blue) and excessive 

(green) growth patterns, whose trajectories can be trapped into some local quasi-stable 

orbits before reaching the final states.  

These longtime behaviors can also be illustrated by the time evolution of Na/N 

[Fig.2.5(B)] under various values of the critical parameter e (ECM threshold). For e 

approaching some critical value [Fig.2.5 (B1)], the arrested population percentage at 

Figure 2.5 Longtime evolution of homeostasis. (A) System trajectories on the time log of arrest 

population percentage Na/N versus total cell population N/Nmax. (B) Longtime evolution of arrested cell 

population as the control parameter e approaching its critical value, from 0.5 to 0.72(B1) and 0.72(B2). 

Time is denoted as t and one time step corresponds to about 5 hours in real time according to the current 

parameter settings of B, RM and γ. 
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early stage (t <103) will decrease with e (implying a shift in growth pattern from 

degenerative to inadequate or normal patterns) but the final stationary state at t <103 is 

still degenerate [refer back to the growth pattern in Fig.2.4 (E)]. Another difference 

among these states lies in the time length of the non-degenerative quasi-stable plateaus, 

during which these homeostatic structures evolve steadily and slowly without reaching 

degeneration. If e is sufficiently close to its critical value [Fig.2.5 (B2)], the quasi-stable 

plateau becomes extremely long. 

2.2.2 Quasi-stable homeostasis and phase diagrams 

To better probe the quasi-stable homeostatic evolutions in DRDM, I proposed 

another two order parameters besides the phenotype structure V: cell average 

proliferation time and the relaxation time. The control parameters of the three-

dimensional (3D) phase diagrams are death threshold d, ECM threshold e, and arrest 

threshold a, as they are mostly investigated in the literature [51-58] and these three are 

also the control parameters used in IBcell morphochart. The death threshold d is 

inversely related to the tendency of cell death, the ECM threshold inversely related to 

sensitivity to ECM, and the arrest threshold inversely related to the propensity to cell 

cycle arrest. See other parameters Table B1 in Appendix B(1).The model robustness 

regarding the variations of some other important parameters like the thresholds p, h, g 

will be discussed in Ch.2.2.4. 

1) Phase diagram of V 

The definition of V has been demonstrated in Ch. 2.1.4 (Eq.2.1). The meaning of 

the colors in the phase diagrams in Fig.2.6(A-C) is elaborated in Table 2.3, where a 

qualitative mapping between the general classes of growth patterns (termed as “state” 

hereafter) and the ranges of V is exhibited. Again, the boundaries among these states 

are ambiguous in terms of the value of V and this classification is proposed just for the 

conciseness of demonstration. One can also relate these states to the exemplary 

morphological outputs in Ch.2.1.2 to have an intuition on their growth patterns in the2D 

real space.  

State V Color map 

Tumorigenic >4000 

 

Excessive 3000-4000 

Normal 1500-3000 

Inadequate 250-1500 

Degenerate 

(including Extinction) 

<250 

0 

Table 2.3 Meaning of different colors in phase diagram of V in Fig.2.6 

5000

4000

3000

2000

1000

0



 

29 

 

Basically, one may find that the total parameter space can be dissected into several 

subspaces with similar color and these subspaces are recognized as different “phases” 

of homeostatic states in the diagram [Fig.2.6(A)]. An interface separates the phase (in 

dark colors) of the degenerate and the inadequate states from that (in light colors) of 

the excessive and the tumorigenic states. The normal states (in orange and red colors) 

are located near this interface [bottom panels in Fig.2.6(A)]. Meanwhile, the color of 

sub-spaces embracing inadequate, normal and excessive states mildly changes with 

time [comparing the left panels with the right panels in Fig.2.6 (A)]. An explicit 

illustration of this mild time-dependent change in the phase value can be seen from 

Fig.2.6 (B1-B3), where only the sub-spaces of normal states (orange-red) at 5×103 

time steps are shown. These normal states at an early time will gradually split into the 

two clusters of phases, tumorigenic (white), or the degenerate (dark red), over a large 

timescale of 106 steps, and the sub-space of the normal states shrinks over time. By 

contrast, the region of the excessive and the tumorigenic states are expanding, because 

the total value of V summed across the subspace of these states (V >3000) becomes 

larger through the time [Fig.2.6(B3)].  

The roles of three thresholds contributing to different homeostatic phases can also 

be understood. Both a low value of ECM threshold e and a low value of arrest threshold 

a correspond to a formation of degenerative phase; A high e (>0.6) along with a low 

death threshold d (<1.5) contributes to the tumorigenic phase; A higher arrest threshold 

a(>0.5) with a higher d (>2) falls into the inadequate phase and with  lower d (<2) 

yields an extinctive degenerate phase, whereas a lower a (<0.5) with lower d(<1) is 

non-extinctive degenerate states . Standing narrowly besides the critical interface is the 

normal phase, in which the subspace closer to a high e has the tendency to become 

tumorigenic and that closer to a low a undergoes degeneration. Also, e larger than 0.8, 

which implies a strong cell-ECM adhesion, saliently ensures the emergence of the 

tumorigenic states as shown in Fig.2.6(B3), in accord with the findings in the literature 

[52].  

2) Phase diagram of A 

Fig.2.6(C) shows the phase diagram of cell proliferation age A, which measures 

how many times a cell has divided averaged across all the cells living in this system at 

a specific time. If the A(t) decreases with time t, the system is undergoing 

“rejuvenation”, whereas the system is aging if A(t) increases through evolution. Like 

the phase diagram of V, the phase diagram of A also shows several subspaces with 

similar colors, which are blue (relatively small A, young), light green and cyan (medium 

A, mature), and yellow or red (relatively large A, old) [Fig.2.6(C)]. Note that the phase 

of extinctive degeneration (all cells have died) is not colored for a clarity of presentation. 

Also the phase diagrams are plotted for two distinctive time steps, 5103 and 5105, 

the comparison between which reveals that a part of young phase is rejuvenating (blue 
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turning into violet) and a part of old phase becomes even more aged through time 

(yellow turning into red or red turning into dark red). The phase of mature systems, 

sitting at the critical interfaces between different phases, may have two subspaces: the 

aging one (green turns into yellow) and the rejuvenating one (green turns into light 

blue). Moreover, comparing the structure of phase diagram of V and T, one may easily 

find that the phase of old systems in Fig.2.6(C) locates where the phase of inadequate 

states appears in Fig.2.6(A), and the phase of young systems resides in the phase of 

tumorigenic states. 

3) Phase diagram of T 

As one may notice, some subspaces in the phase diagram of V and A evolve with 

time slowly until they reach the stationary states while others do not. Hence the time T 

over which the quasi-stable states can last, or in other words, the “relaxation time” for 

the system reaching a final stationary homeostasis is also another order parameter for 

distinguishing different types of homeostatic states. Fig. 2.7 shows the phase diagram 

of the relaxation time T with the upper limit of the simulation time preset as 108 time 

steps for saving the computational resource, so relaxation time larger than 108 will be 

recorded as 108 in the phase diagram.  

The relaxation time T is measured as the minimal time t satisfying:  

( ) ( 2) ,for logA A t t t                                     (Eq.2.2) 

where ( )A  is a moving average of A in a time window from max( ,0)l   to τ with the 

ideal window length l, and ε is an infinitesimal value (ε0) as a criterion for “stationary 

state”. Eq.2.2 means that if a system’s age has a small enough change ε in the following 

sufficiently long time log t  , i.e. there is no aging or rejuvenating processes, the 

system is considered as stationary. In Fig.2.6(D), the time window length l is 104, which 

is the characteristic timescale of the systems need to reach a quasi-stable stage and ε is 

chosen as 10-3. If T is not found with Eq.2.2, then the system will be denoted as T =108 

for plotting the phase diagram. Therefore, the blue dots in Fig.2.6(D) with T(107,108] 

include the systems that have not yet reached the stationary states. Once again, the phase 

separation of T appears by their characteristic orders of scales and each phase seems to 

have corresponding parts in the phase diagrams of V and A. Ch. 2.2.3. will further 

elaborate this correspondence among three phase diagrams. 

4) A 2D phase diagram 

For better observing the structure of the phase diagrams, one may inspect the two-

dimensional (2D) phase diagram with a fixed. Fig.2.6(E) shows a 2D phase diagram 

integrating both the information of V and T in the space of ECM threshold e and death 

threshold d at three levels of arrest threshold a. The color of the cubes describes V based 

on the colormap in Table 2.3 and the size of the cubes describes T. Although the 2D 
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diagrams have sophisticated changes under different a, one may still figure out the 

skeleton of the phase diagram [the right-bottom figure in Fig.2.6(E)]. Basically, two 

boundaries (the thick black lines) separate three main phases, phase X with smaller V, 

phase Y with larger V, and phase S with large T (implying slow dynamics). In each main 

phase, there exist several sub-phases with ambiguous boundaries (the thin dashed lines). 

To detail, Phase X is composed of the extinct (X1), the degenerate (X2) and the 

inadequate (X3) states; Phase Y consists of the normal (Y1), the excessive (Y2) and the 

tumorigenic (Y3) states; phase S, consists of the inadequate (S1), normal(S2) and 

tumorigenic(S3).  

Figure 2.6 Phase diagrams of V, A, T. The colormap for (A),(B) and (E) are presented in Table 2.3. (A)3D 

Phase diagram of V at two different time points. (B) Bifurcation of normal systems over long time. (C) 

3D Phase diagram of A at two different time points. (D) 3D Phase diagram of T. (E) 2D phase diagram of 

V under different a and a summarized sketch. 
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2.2.3 Correspondence among three order parameters 

As is mentioned, the separated phases in the diagrams of V, A, and T have some 

correspondence. By a rough observation, one can relate the degenerate (or the 

tumorigenic) phase in Fig.2.6(A) to the aged (or the young) phase in Fig.2.6(C). 

Moreover, the phase of large T [the phase S in Fig.2.6(E)] seems to correspond to the 

normal and mature phases. One also can examine the correspondence of V, A, and T 

from a dynamical point of view. This correspondence can statistically stand out if the 

simulation results in the whole parameter space are re-organized into the space of V, A, 

and T.  

Fig. 2.7 presents the relationships among the trend of V (denoted as δV/V0, where 

V0 is the system size), the trend of A (denoted as δA/AT, where AT is the system age 

measured at T) and the relaxation T. The variation of V, i.e., δV, is calculated as 

δ ( )V V T V  , where V  is an average of V over the time window from max(Tl,0) 

to T; similarly, the variation of A, i.e., δA, is calculated as δA ( )A T A  , where A  is an 

average of A over the time window from max(T  l,0) to T. Here the window length l 

is again 104. 

In Fig.2.7(A), the data points in the positive zone of the vertical axis, i.e., δV/V0>0, 

represent the systems evolving towards the tumorigenic states, while those in the 

negative zone, i.e., δV/V0<0, represent the system evolving towards degenerate states. 

The color of the data points represents the change in system age, with the blue or violet 

standing for rejuvenation and the yellow or orange for aging. The system’s stationary 

age AT is invalid when all the cells have died so the δA/AT for extinctive sates will be 

given a specified value “1”, which is far smaller than that of a rejuvenating process 

and colored in grey. Basically, one can find that extinctive systems have the shortest 

relaxation time nearly around 103 time steps and feature a degenerative process before 

Figure 2.7 The correspondence among three order parameters: The relationship (A) between the trend of 

V (δV/V0) and relaxation time T and (B) between δV/V0 and the trend of A (δA/AT). 
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getting extinct. Tumorigenic processes (δV/V0>0) tend to accompany the rejuvenating 

process (blue) with a large spectrum of relaxation time T; by contrast, non-extinctive 

degenerate evolutions are all undergoing aging (yellow and orange). Both tumorigenic 

and degenerate evolutions have a large spectrum of relaxation time T implying that 

some of these evolutions may appear very slow [see Fig.2.6(E)]. Fig.2.7(B) exhibits the 

relationship between δV/V0 and δA/AT, and one can clearly see the negative correlation 

between them.  

These statistical discoveries reinforce the conclusions drawn in Ch.2.2.2 that the 

systems can have quasi-stable plateaus in phenotype structure V(t) and age A(t), and the 

normal systems sitting near the critical states can evolve into two divergent terminations, 

tumor (accompanying with rejuvenation) or degeneration (accompanying with aging). 

These results also naturally suggest that the origin of the tumorigenesis and aging at the 

multicellular level may lie in some critical interdependence structure of homeostasis 

formation with no regard to the environmental stresses or mutational malfunctions. 

2.2.4 Robustness  

The longtime results abovementioned is obtained in the phase space of e, a, and d. 

One should also be cautious about the influence brought by other important parameters 

to the current conclusions. As shown in Table B1, there are many parameters in the 

DRDM, and with the dimensionless analysis, other non-reducible parameters other than 

e, a, d are the adhesion threshold h, the polarization threshold p, and the growth 

threshold g. Fig.2.8 shows a comparison between the control parameter setting (used in 

Chs.2.2.1-2.2.3) and other three groups of parameter settings wherein the growth 

threshold g, adhesion threshold h, and polarization threshold p are varied respectively. 

All four groups fix the arrest threshold a as 0.5RM.  

Fig.2.8(A) shows the histogram of phenotype structure V binned to five ranges 

(corresponding to degenerate, inadequate, normal, excessive and tumorigenesis as 

described in Table 2.3) plotted at the time of 5103 steps when the quasi-stable 

homeostasis has just emerged. The data of V is collected from the whole parameter 

space of d (0< d <3) and e (0< e <1). The diversity of homeostasis exists for all four 

groups but the phase with low V (< 250) shrinks for g=0 or even disappear for p = 1, 

implying that a low g (no regrowth barrier) and a high p (low tendency for cell 

polarization) promote the growth of system at the early stage.  

Fig.2.8(B) shows that the frequency distribution changes from 5103 to 5106  

steps, with a substantial decrease in the frequency of inadequate systems (30% to 50%) 

and a slight decrease in that of normal systems (2% to 4%) for all groups. Meanwhile, 

the frequency of degenerate systems soars by 30% to 60% and that of tumorigenic 

systems by 2% to 4%. Yet some subtle differences between the control and the variation 

groups can also be recognized in the inset of Fig. 2.8(B): all three variation groups have 
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a higher frequency of the tumorigenic states than the control group, which indicates the 

roles of strong cell motility (high h), strong regrowth ability (low g) and weak 

polarization (high p) in increasing the tumor incidence. 

Fig.2.8(C) displays the static correlation between phenotype structure V and 

relaxation time T with the simulation time truncated at 106 steps; in all groups, the 

relaxation time spreads over a large spectrum from 104 to 106. The robustness of the 

main conclusions in Ch. 2.2.2 is proved to a certain degree. Nevertheless, the groups 

with low g and high p have much longer relaxation times for the data clusters with 

extremely low values of V, implying that strong growth signals and weak polarization 

can postpone the onset of degeneration or aging process. 

Figure 2.8 The robustness test under the variations of the other important thresholds h, g, and p. (A) 

Histogram of the phenotype structure at a short time. (B) Change of distribution frequency at a larger 

time. (C) The static correlation between V and T. 
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2.2.5 Discussion: a glass transition point of view 

Cell replicative senescence characterizes the aging in tissues [63]. One on hand, 

macroscopic statistics and microscopic molecular mechanisms elaborate that cancer 

generally coincides with aging [64]. However, other experimental evidence reveals that 

anti-aging signaling induces cancer, showing an antagonism between aging and cancer 

[65]. In the DRDM, replicative senescence is modeled by the cells permanently falling 

into cell cycle arrest and is quantified by the increase in the system age A during 

degenerative processes. The longtime simulation results suggest that both cancer and 

aging are two bifurcated trajectories developed slowly from a normal phase which has 

an appropriate phenotype structure at an earlier stage of system evolution. This common 

origin of cancer and aging provides an explanation for the coincidence and antagonism 

of cancer and aging at the multicellular level.  

Regarding the origin of aging, one of the claims is that aging is a natural 

consequence of cell developmental program rather than the accumulation of mutational 

faults [67]. DRDM results also agree with this claim in that no mutation has been 

introduced in the model. A critical interdependence structure must exist in the 

homogeneous rules of intercellular interactions to yield the emergence of quasi-stability 

of normal states and its bifurcation into two ends.  

This quasi-stability can be understood in another statistical picture: by scanning 

the parameter space of e-d-a to obtain 3 × 104 samples of simulation results (one sample 

for one set of parameters) over t =106 time steps, one can plot a histogram of the 

phenotype structure as shown in Fig.2.9. The horizontal axis is the normalized 

phenotype structure v , formulated as  

0.1 / /a max t maxv N N N N              (Eq.2.3) 

(also refer to Eq. 2.1) where Na, Nt, and Nmax are the number of arrested cells, 

tumorigenic cells, and the total lattice nodes. As demonstrated in Ch.2.1.3, v not only 

represents the structures of the phenotypic subpopulations but also implies the global 

fitness of the system, with v = 0 corresponding to the extinction (all cells dead) and v = 

1 to a complete tumorigenic state (all cells proliferative). Therefore, one may also 

regard v as vitality index of the system. 

In Fig.2.9(left), the histogram has the three high bulks roughly at degenerate (v < 

0.08), normal (v spanning from 0.3 to 0.7), and tumorigenic (v = 1) states, By 

transforming the frequency f(v) into a normalized probability P(v) as: 

1

0
( ) ( ) ( )d ,P v f v f v v    
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one can obtain a “pseudo energy landscape” with − log P (v) as an effective free energy 

and v as the conformation coordinate [right panel in Fig.2.9]. From a perspective of 

statistical physics, the conformations featuring the lower energy can exist with the 

larger incidence in nature because equilibrium dynamics tend to push the system into 

the state with minimal free energy. Two big energy minima can be detected at 

degenerate and tumorigenic ranges of v, implying that degeneration and tumorigenesis 

are two equilibrium states, i.e., two most stable forms, of homeostasis in the DRDM. 

Nevertheless, a shallow and rugged valley of normal states spans an extensive region 

of medium v with a higher level of effective energy, indicating that the normal state is 

a metastable state which has intrinsic potential to evolve towards degeneration or 

tumorigenesis as a relaxation process, and the ruggedness of the normal valley implies 

that the system dynamics could also be arrested in many sub-metastable states which 

slow down the relaxation. In this sense, the longtime evolution of quasi-stable normal 

states in the DRDM is analogous to the slow relaxation of the glasses [68]. In order to 

clarify this glass-forming mechanism in multicellular homeostasis, a further reduction 

on the degrees of freedom and an abstraction of the essential interdependence structure 

for resolving self-averaging complexity are needed to link to some analyzable theories 

in nonequilibrium statistical physics (see Ch. 4). 

  

Figure 2.9 Histogram (left) and corresponding probability distributions (right) of normalized phenotype 

structure v measured at t = 106 steps in 3 × 104 sessions of simulation. 
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2.3 Homeostasis with mutations 

(The contents including figures and tables in Ch.2.3 are adapted from Ref.[69]) 

 

The homeostatic dynamics in the abovementioned DRDM is self-organized 

through local interactions among individual entities without considering adaptation and 

the non-mutational receptor dynamics seem to embrace the core interdependence 

structure responsible for the emergence of diverse homeostatic states and for the slow 

bifurcation of normal homeostasis into tumorigenic and degenerative states. 

Nonetheless, abundant experimental and theoretical works on cancer genomics show 

that genetic instability and intratumor heterogeneity are indispensable in cancer 

progression and in its resistance to therapies [70-72]. In this part, some mutation models 

will be introduced to the DRDM to scrutinize the system dynamics under the coupling 

effect of self-averaging complexity (related to the essential non-mutational 

interdependence structure) and the complexity brought by mutation and adaptation.  

2.3.1 Mutation models: somatic mutations 

As the entities like DNAs, genes, chromosomes, proteins are not explicitly 

modeled, a mutation event in DRDM is defined as a small amount of variation in one 

cellular parameter (such as the thresholds in Table B1) related to the genetic information. 

Thereby in this model, the concept of mutation is not narrowly referred to the alterations 

of genes; instead, this mutation can be a combined effect of genetic and epigenetic 

changes along with disordered regulation of the endogenous network [73] manifested 

at the cellular level.  

The mutations in real systems are somatic, meaning that the subcellular 

abnormalities are accumulating slowly and steadily through time [74] and the 

Figure 2.10 Three ideal prototypes of mutation models in the space of the mutant p. The arrows point to 

the direction of time. 
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inheritance of genetic information contributes to the clonal expansion in cancer [75]. 

Additionally, most mutations at genetic or epigenetic levels are unnoticeable and 

harmless on the phenotypic level, whereas very few others yield a non-trivial 

phenotypic consequence because of the variation of genetic contents hitting critical 

levels. Combining these facts, three prototype mutation sub-models are conceived as 

illustrated in Fig.2.10: monotonic, stochastic, and hereditary, with p representing the 

mutable cellular parameter. The two basic principles underlying these models are that 

p is replicable through cell division and the variation of it are iterative through time. 

Due to the absence of genetic details in DRDM and to the lack of the knowledge about 

how cellular traits should vary with time, one can only articulate the rules of the 

mutation of p based on simple assumptions. Two extremal cases are first considered: 1) 

the mutations are algebraically accumulating in one direction (the monotonic model) or 

2) they are totally isotropic and unpredictable (the stochastic model). Then a third case 

sitting in between is conceived (the hereditary model). The mathematical 

representations of the mutation can be formulated as:  

( 1) ( ) ( )i ip t p t F   , (Eq.2.4) 

for any chosen mutable cellular parameter p of a cell at site i when it proliferates time  

t + 1. F(µ) is the mutation function depending on a mutation rate µ. Next, let me 

introduce the respective formulations of F(µ) for three mutation models. Note that µ is 

a critical parameter associated with the timescale difference between the non-

mutational relaxation and the mutational adaptation processes: a low µ makes the effect 

of mutation trivial, whereas a high µ accelerates the adaptation of the system. 

1) Monotonic model 

The monotonic mutation model belongs to the first extreme, i.e., a simple algebraic 

accumulation of mutations at a predefined mutation rate with no heterogeneity. It 

idealizes a scenario where the mutation towards one direction at each step is triggered 

by those at previous steps, thus forming a positive feedback which amplifies itself 

through time. This amplification of mutation effect is usually seen in cancer where a 

small alteration in the tumor suppressor genes like p53[76] causes a series of 

malfunctions in the cell cycle inhibition, self-repairing, apoptosis and even the 

activations of other oncogenes in progression, as a result of which the level of growth 

factors may incessantly increase.  

Accordingly, the function F(µm) in Eq.2.4 for the monotonic model is formulated 

as 1+µm or 1−µm, rendering an algebraic increase or decrease in pi; the subscript m in 

µm stands for “monotonic”. Note that for each mutable p, there are two mutation 

directions which are also inherited from the ancestor. 
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2) Stochastic model 

The stochastic model belongs to the second extreme, i.e., the directions of 

mutation are isotropic, showing the maximal heterogeneity. This kind of mutational 

isotropy is conventionally believed to occur at the genetic level [77]. Unlike the 

monotonic mutation, the stochastic model does not assume any regular feedback 

dynamics that define the relationship between the subcellular variations and the changes 

in cellular traits and the mutation at the cellular level is also random because of the 

uncertainty and complexity brought by the infinite degrees of freedom.  

Hence, the mutation function F(µs) for the stochastic model is formulated as 

exp(µsX), where X ∼ N (0, 1) is a random variable with a standard Gaussian distribution 

and the subscript of s in µs stands for “stochastic”. As shown in Fig.2.10, pi randomly 

drifts in the mutant space with unpredictable trajectories，so stochastic mutations 

feature the maximal heterogeneity among the cells in theory.  

3) Hereditary model 

As one may notice, the real mutations at the cellular level can hardly be fully 

homogeneous or with perfect heterogeneity. Cells from the same clone mutate in a more 

similar way and various clones may coexist or compete. This is the “clonal expansion” 

in many multicellular systems [75]. The hereditary model is thence proposed for 

realizing a limited heterogeneity like that of clonal expansion. As is shown in Fig.2.10, 

hereditary mutation is a mixture of different monotonic mutations and cells with the 

same clonotype (copied from their mothers) share the exclusive monotonic mutation 

strategy symbolizing their clonal lineage. Positive feedback loops towards multiple 

directions characterized by the different cell clones can thereby coexist in the system 

and the competition among them yields clonal expansion; nevertheless, since the cells 

within each clone still share one monotonic mutation strategy along each dimension of 

the mutant space p, the heterogeneity of the mutations disappear in each clone.  

The formulation of F(µh) is the same as those in the monotonic model but the 

different clonotypes have distinct predefined mutation rates and the mutation directions. 

The subscript “h” refers to “hereditary”. 

In the last part of Ch.2.3.2, I will also introduce a more complex mutation model 

that integrates the hereditary with stochastic mutations to be more representative of the 

mutations in the real clonal evolution. 

4) Sub-models of mutation in DRDM 

In this study, I chose the ECM saturation rates escr and the death receptor 

transforming rate dscr as two mutable parameters, which also play critical roles in 

controlling homeostatic states in DRDM. Note that the ratio of these rates over their 

respective thresholds serve as the dimensionless control parameters. 

 



 

40 

 

Sub-model Rules Characteristics 

monotonic 

( 1) ( )(1 )i i
scr scr me t e t     or 

homogeneous 

deterministic 

( 1) ( )(1 )i i
scr scr me t e t     or 

( 1) ( )(1 )i i
scr scr md t d t     or 

( 1) ( )(1 )i i
scr scr md t d t     

stochastic 
( 1) ( )exp( )i i

scr scr se t e t X   and heterogeneous 

stochastic ( 1) ( )exp( )i i
scr scr sd t d t X  , X~ (0,1) 

hereditary 

c =1:  

,( 1) ( )(1 )i i
scr scr h dd t d t     and  

   if ( 1) (0)(1 )i i
scr scrd t d s   ,  ,( 1) ( )(1 )i i

scr scr h ee t e t     

limited 

heterogeneous 

 

clonal 

expansion 

 

sequential 

mutation 

 

deterministic 

c =2:  

,( 1) ( )(1 )i i
scr scr h dd t d t     and 

   if 1( 1) (0)(1 )i i
scr scrd t d s    , ,( 1) ( )(1 )i i

scr scr h ee t e t     

c =3:  

,( 1) ( )(1 )i i
scr scr h dd t d t     and 

  if ( 1) (0)(1 )i i
scr scrd t d s   , ,( 1) ( )(1 )i i

scr scr h ee t e t     

c =4:  

,( 1) ( )(1 )i i
scr scr h dd t d t     and 

   if 1( 1) (0)(1 )i i
scr scrd t d s    , ,( 1) ( )(1 )i i

scr scr h ee t e t     

c =5:  

,( 1) ( )(1 )i i
scr scr h ee t e t     and 

if ( 1) (0)(1 )i i
scr scre t e s   , ,( 1) ( )(1 )i i

scr scr h dd t d t     

c =6:  

,( 1) ( )(1 )i i
scr scr h ee t e t     and 

    if 1( 1) (0)(1 )i i
scr scre t e s    , ,( 1) ( )(1 )i i

scr scr h dd t d t     

c =7:  

,( 1) ( )(1 )i i
scr scr h ee t e t     and 

if ( 1) (0)(1 )i i
scr scre t e s   , ,( 1) ( )(1 )i i

scr scr h dd t d t     

c =8:  

,( 1) ( )(1 )i i
scr scr h ee t e t     and 

    if 1( 1) (0)(1 )i i
scr scre t e s    , ,( 1) ( )(1 )i i

scr scr h dd t d t     

Hence, changing dscr and escr with fixed the threshold d and e is equivalent to varying 

the thresholds with fixed values of the rates. This equivalence also implies that the 

Table 2.4. Sub-models of mutations in DRDM for any cell at site i when it proliferates at t +1. 

Note: c is the clonotype identity, s is the coefficient controlling the significance of the sequence in 

mutation and μh,d, μh,e are the mutation rates for dscr and escr respectively in the hereditary model. 
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current DRDM still embraces some reducible degrees of freedom.  

The ECM saturation fraction escr , which is the upper limit of the ECM amount 

secreted by per mass of its growth receptors, decides the sensitivity of a cell to its ECM. 

When escr is small, ECM concentration reaches saturation level very rapidly so that the 

growth receptors are quickly transformed into ECM receptors, yielding a higher 

tendency for polarization and the subsequent cell cycle arrest. The death receptor 

transforming rate dscr , as the term expresses, decides the susceptibility of a cell to death. 

In a simpler interpretation, the decrease in escr contributes to the cell cycle arrest and the 

increase in dscr to the cell death. The specific mutation rules for escr and dscr are 

summarized in Table 2.4. Since two mutable parameters are involved in the hereditary 

model, the sequences of two mutations have been considered as well. For clonotype c = 

1, for instance, the cell first mutates dscr and then triggers the mutation of escr if the 

value of dscr has changed by a fraction s (s ≥ 0) of the original value, where s is a 

sequence coefficient. If s = 0, the mutations of the two parameters are simultaneous; 

otherwise, two mutations occur in a sequence. If s is sufficiently large, the mutation of 

a second parameter will be postponed over so long a time that the 8-clone-hereditary 

model is reduced to a straightforward mixture of four monotonic mutations listed in 

Table 2.4 (row 2, column 2). It should be mentioned that the choices of the hereditary 

clones indeed can be any linear combinations of the monotonic mutations; nevertheless, 

the eight clones adopted here are the most representative ones spanning the whole 

mutant space of dscr-escr. 

2.3.2 Time-dependent results 

The simulation results are divided into two parts. The first examination is on the 

effect of different mutation models under specific normal-to-degeneration transitions 

which correspond to the life process of a healthy tissue (most cells stay in cell cycle 

arrest and the total cell number is large; refer to Ch.2.2.). Parameter settings are listed 

in Table B2 in Appendix B(2). The effect of mutations could be identified through 

comparing the time-dependent evolutions of the normalized phenotype structure v 

(Eq.2.3) under different mutation rates. Note that v = 1 corresponds to tumorigenic 

states and v = 0 corresponds to extinctive degeneration. 

1) Monotonic mutations: 

As shown in Fig.2.11, mutations of escr and dscr disturb the original relaxation 

process (all black curves with v roughly above 0.1 lasting about 105 steps before a 

catastrophic crashing) in various ways. If escr is mutated as ( 1) ( )(1 )i i

scr scr me t e t   

[denoted as escr in Fig.2.11(A)], the sensitivity to ECM decreases and thus postpones 

cell cycle arrest; by contrast, the mutation ( 1) ( )(1 )i i

scr scr me t e t    [denoted as escr in 

Fig. 2.11(B)] causes a higher propensity for cell cycle arrest. As one can observe, the 
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increase in escr veered the degenerative processes towards tumorigenesis with larger 

mutation rates μm [Fig.2.11(A)], whereas if escr mutates to a smaller value, the 

catastrophic crash occurs earlier to extinction, indicating a severer degeneration with 

this mutation [Fig.2.11(B)]. 

The results of dscr mutation are more difficult to interpret. The mutations yielding 

higher values of dscr (denoted as dscr), i.e., a higher synthesis rate of death receptors,  

veer the degenerate process first towards tumorigenesis then towards an extinctive 

catastrophe [Fig.2.11(C)]. Contrastingly, the mutations yielding lower values of dscr 

(denoted as dscr) extend the “lifespan” of the homeostatic quasi-stable degenerative 

states before the catastrophic crash; although the temporal fluctuations of v are 

intensified with increasing
m , the trend of degeneration has not been changed 

[Fig.2.11(D)]. Additionally, there exists a critical value of
m  exceeding which the 

degenerative process transitions to the tumorigenic process in escr and dscr mutations 

[the red curves in Fig.2.11 (A) and (C)]. 

To summarize, if μm is large enough to affect the homeostatic relaxation process, 

the decrease in tendency of cell cycle arrest promotes the emergence of tumorigenesis; 

counterintuitively, the increase in cell death rate induces tumorigenesis followed by an 

extinction, and the decrease in death rate merely extending the period of quasi-stable 

plateaus without inducing a phase transition.  

Figure 2.11 Time evolution of phenotype structure index v under four distinctive monotonic mutations 

with different mutation rates. Zero values of μm correspond to a typical non-mutational homeostatic 

process (black) Note that all figures are plotted in log-log scale. 
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2) Stochastic and hereditary mutations 

The effect of stochastic mutations is rather simple: there exists a critical value of 

μs, surpassing which leads to a phase transition from degeneration to tumorigenesis; an 

earlier advent of tumorigenesis corresponds to larger values of μs as illustrated in 

Fig.2.12 (left). It seems that neutrally heterogeneous mutations are tumor-inducing by 

nature. 

By contrast, the reality-mimetic hereditary mutations bring about a peculiar 

picture of the system evolutions [Fig.2.12 (right)]. One can observe three basic phases 

of the evolutionary patterns of v(t) by varying the mutation rate μh. For very small 

mutation rates μh(= μh,e= μh,d) (identified as phase I), mutations have very small effects 

on the original process. For a medium range of µh (phase II), v(t) veers towards 

tumorigenesis during the quasi-stable plateaus before crashing into extinction and this 

evolutionary pattern has also been seen under the monotonic mutation dscr [refer to 

Fig.2.11(C)]. For even larger mutation rates μh (phase III), the system totally deviates 

from the original degenerative trend to an acute tumorigenesis, which is later followed 

by a spontaneous regression [v(t) slowly decreasing to over 0.3]. 

 

3) Subpopulation dynamics with hereditary mutations 

To unravel the complexity involved in hereditary mutations, one must scrutinize 

the subpopulation dynamics, i.e., the dynamics of “clonal expansion” in relation to 

different mutation rates.  

Fig.2.13 (A) exhibits the snapshots of the clonal expansion with the eight colors 

labeling different clonal lineages, whose mutation rules can be found in Table 2.4. Eight 

ancestors with distinct clones are initially scattered into the 2D space and then develop 

into eight patches occupying territories in similar sizes with recognizable boundaries at 

early stages [the top two panels in Fig.2.13 (A)]. After thousands of steps, the 

Figure 2.12. The stochastic mutation model under varying µs (left) and the hereditary mutation model 

under different mutation rate µh (= µh,d = µh,e) with the sequence coefficient s =0.05 (right). 
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boundaries between patches become vague because of the invasion of advantageous 

clonal lineages into the territory of the disadvantageous ones. Through a longtime 

competition among these clones, only one clone can survive as the “fittest” and 

eventually take over the whole space. This clonotype is hereafter termed as winner for 

simplicity of demonstration.  

The incidence of each clonotype to become a winner in 200 sessions of simulation 

for several mutation rate µh are exhibited in Fig.2.13(B). Winner is algorithmically 

identified as the clonotype c satisfying that 

( ) 0.8 ( )c cc
N t N t   

for all time t > t0, where Nc is the number of cells in clonotype c and t0 is a finite time 

point characterizing the timescale of clonal competition. Under different mutation 

rates µh, the distribution of winner is different: 

(i) In the non-mutational case (µh = 0), all clonotypes can win with nearly 12.5% as 

is expected.  

(ii) For µh slightly over zero [< 0.01%, corresponding to the phase I in Fig.2.12 

(right)], c = 7 and 5 can win with higher probability than others while the 

evolution of v seems erratic because of the unpredictable winner [see the curves 

of 0.0008%, 0.001%, 0.002% and 0.005% in Fig.2.12 (right)]; however, 

degeneration still reigns, manifesting the strong impact of the original non-

mutational degenerative homeostasis.  

(iii) For µh in a medium range roughly from 0.01% to 0.3% [corresponding to phase 

II in Fig.2.12 (right)], c = 7 and 3 are most probable to become winner while the 

system undergoes the extinction-inducing tumorigenesis [see the curves of 0.01%, 

0.04%, 0.1%, and 0.2% in Fig.2.12 (right)].  

(iv) For µh even larger [> 0.3%, corresponding to phase III in Fig.2.12 (right)], c = 5 

and 2 replace c = 7 and 3 to become winner and the evolution of v undergoes an 

acute tumorigenesis succeeded by spontaneous regression [see the curves of 

0.4%, 1.6%, 3.2%, 6.4% and 12% in Fig.2.12 (right)].  

 

Fig.2.13(C) shows the normalized phenotype structure v measure at the time t0 (the 

time when winners appear) averaged over the 200 sessions for varying µh. One can 

observe a continuous transition from phase I to phase II and from phase II to phase III, 

within which phase II has the highest averaged v(t0), i.e., most tumorigenic.  

Fig.2.13 (D) shows the subpopulations dynamics of eight clonal lineages in three 

phases respectively. One may easily find that in phase III (μh=1%), c = 7 and 3 can 

thrive before the domination of c = 5 and 2, implying that the emergence and the 

regression of tumor in phase III could be explained by this alteration of the dominant 

clonotypes. 
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For the effect of the mutation sequence, one can compare the winning rates 

between c = 7 and c = 3 or between c = 5 and c = 2. Mutation rules of c = 7 (or c = 5) 

differs from c = 3 (or c = 2) merely by the mutation of escr prior to the mutation of dscr 

(refer to Table 2.4). As shown in Fig.2.13 (B), the fact that c = 7 (or c = 5) has higher 

winner incidence than c = 3 (or c = 2) does suggests that escr mutations are more 

effective than dscr mutations. 

Figure 2.13 Subpopulation dynamics in the hereditary model. (A) A sample result of the interspecies 

competition among eight clonal patches (µ = 0.5%). (B) The frequency of becoming winner for eight 

hereditary clones in 200 sessions of simulation for each mutation rate μh. (C) Averaged v measured at 

time t0 under varying µh. (D) Time evolutions of the subpopulations in three phases. 



 

46 

 

2.3.3 Bridging hereditary and stochastic models 

It should be noted that the foregoing hereditary model uses equal mutations rates 

for escr and dscr. This constraint of equality brings about undesirable rigidity to the 

mutations. Hence, loosening this constraint should give some plasticity to the hereditary 

mutation rules and may bridge the gap between the hereditary and the stochastic model. 

Two modified hereditary mutation rules are then proposed: 

(i) Stochastic hereditary model:  

 The hereditary rules in Table 2.4 can be multiplied by some stochasticity. For 

instance, for c = 1, the rules becomes ,( 1) ( )(1 )exp( )i i
scr scr h d shd t d t X     

and if ( 1) (0)(1 )i i
scr scrd t d s   , ,( 1) ( )(1 )exp( )i i

scr scr h e she t e t X    ,  

where X~ (0,1) is a random variable from Gaussian distribution and µsh scales 

the strength of stochasticity. Fig.2.14 (A1) shows the results of the stochastic 

hereditary model in phase II (c = 3 or 7 wins; left) and phase III (c = 2 or 5 wins; 

right) with varying µsh. As is conjectured, the newly added plasticity of mutation 

rules veers the degenerative homeostasis to sustainable tumorigenesis, i.e., the one 

followed by no extinction and no regression, like those in the stochastic models 

[Fig.2.12(left)]. 

(ii) Biased hereditary model:  

A bias between the two mutation rates µh,e and µh,d  such that µh,e/µh,d > 1 can 

be built in. Fig.2.14(A2) shows the results of biased hereditary mutations for phase 

II (left) and phase III (right). In phase II, a larger ratio of µh,e/µh,d can prevent the 

occurrence of extinctive crash (the blue and orange lines); likewise in phase III, a 

larger ratio of µh,e/µh,d. can cancel the spontaneous tumor regression. It confirms 

that µh,e larger than µh,d also promotes the sustainable tumorigenesis.  

To understand why the stochastic hereditary and the biased hereditary models 

have similar behaviors, one can inspect the mutational paths of dscr and escr under these 

models. Fig.2.14 (B) shows the time evolutions of the ensemble average of dscr and escr 

in their logarithmic scales (denoted as log scrd and log scre ) in the hereditary model 

(the straight lines) and in the stochastic hereditary model (the dotted lines). One can 

observe that the stochasticity given to the hereditary rules yields larger variations in escr 

than in dscr , implying that the effective mutation rates under the stochastic hereditary 

mutations are indeed satisfying , ,h e h d

eff eff  , which is the same as defined in the biased 

hereditary model.  

Fig.2.14(C) exhibits the comparison of subpopulation dynamics of eight clonal 

lineages between the stochastic hereditary model (C1) and the biased hereditary model 

(C2). Both models show an alteration of dominant clonotypes (from c = 3 and 7 to c =2 

and 5) underlying the emergence of sustainable tumorigenesis. Combining all the 

information, it seems that a larger µh,e than µh,d  protects the clonotypes c =2 and 5 

from extinction against the temporary domination of c = 3 and 7. 
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2.3.4 Evolutionary paths on the phase diagram 

Despite that the system behaviors under various mutation models seem to be very 

complicated regarding the mutation strategies and mutation rates, one may seek a 

unified explanation for them. As proposed in [69], the system’s evolutionary trajectories 

on the phase diagram reveal a strikingly simple principle underlying those complexities: 

the phase diagram serves as a fitness landscape that selects the mutational paths of 

individual cells. 

Fig.2.15 (A) shows a non-mutational phase diagram exhibiting several phases 

distinguished by the value of v measured at 106 steps in the parameter space of 10-3 < 

escr < 103 and 10-7 < dscr < 102. A simulation time of 106 steps is considered as 

sufficiently long for the most quasi-stable relaxations to be near their equilibria. 

Similarly as is in Fig.2.6, several phases can be identified by their normalized 

Figure 2.14. Complex hereditary models. (A) A comparison of v(t) among the stochastic hereditary and 

the biased hereditary model. (B) A comparison of averaged log dscr (t) (red) and averaged log escr (t) 

(black) between the hereditary model (straight lines) and the stochastic hereditary model (dotted lines). 

(C) Subpopulation dynamics of eight clonal lineages in the stochastic hereditary model (C1) and the 

biased hereditary model (C2). 
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phenotype structure v: extinction abbreviated as E. (grey), degeneration abbreviated as 

D. (red), inadequate-growth abbreviated as I. (orange), and tumorigenesis abbreviated 

as T. (blue). Normal homeostasis (yellow and green) narrowly sits between the 

boundary of T. and D. (or I.). 

Fitness landscape, first proposed by Wright [78], is used to visualize the 

relationship between the genotype and its survival rate (i.e., fitness) in evolutionary 

biology. Here, the non-mutational phase diagram of DRDM can be viewed as a special 

fitness landscape for individual cells to “climb”: the two control parameters are then 

mapped to the two genotypes and the normalized phenotype structure v is indeed the 

survival rate under non-mutational homeostasis.  

Usually, if no intercellular interaction is considered, a larger escr or a smaller dscr 

promotes the individual fitness of one cell straightforwardly. A larger escr induces a 

higher propensity for proliferating and a smaller dscr a lower death rate. The fittest states 

in terms of individual fitness should appear at the largest escr and with the smallest dscr. 

Nevertheless, this fitness landscape resulted from non-interactive cell behaviors can be 

substantially distorted by the non-mutational homeostatic processes with the real fittest 

states moved to some phases that do not have maximal individual fitness (e.g., the phase 

of tumorigenesis T.).  

Fig.2.15 (A) also shows the mutational paths for four monotonic mutations (white 

arrows) and for eight hereditary mutations (black arrows). The initial point (marked as 

a star) is located at dscr = 0.001 and escr = 0.18 and this pair of initial values is shared 

by all cells at t = 0. Note that the initial point sits on the boundary of phase D. and I., 

meaning that the non-mutational homeostasis of the system is normal-to-degenerate. 

Under monotonic mutations, the star symbolizing the system state should move upward, 

downward, leftward, and rightward. As one may see, the rightward mutation 

corresponds to an increase in escr and results in a dynamic phase transition from D. to T. 

as seen in Fig.2.11 (A); the leftward mutation corresponds to the decrease in escr and 

drives the system into the phase of D. and terminates the system dynamics earlier as 

seen in Fig.2.11 (B). The upward mutation corresponds to an increase in dscr and propels 

the system first across the zone of near T. then reaching the zone of E., explicating the 

reason why there is a temporary rise of v towards tumorigenesis succeeded by a crash 

into extinction in Fig.2.11(C). The downward shift corresponds to the decrease in dscr 

and locks the systems deeply into I. without a chance of phase transition as the extended 

lifespans of the quasi-stable plateaus shown in Fig. 2.11 (D). 

In a similar way, one can understand the complicated system behaviors of the 

hereditary model by this phase diagram. The eight hereditary mutational paths shift 

along the two diagonal lines log dscr∼±µh,d/µh,e log escr.  If µh,d = µh,e, the mutations are 

along log dscr ∼ ± log escr (the white dashed lines on the diagram). Clearly, c = 3 or 7 

will bring the system first towards T. quickly before reaching E.. By contrast, c = 2 or 

5 pushes the system along the boundary of I. and T. hence the system is robustly normal. 
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Other four mutational paths c =1, 4, 6, 8 drive the system leftwards to D., therefore 

these four clones can hardly survive if the mutation rate is high.  

Fig. 2.15(B) shows four typical evolutionary trajectories of dscr and escr distribution 

under various mutation models. Each “+” on the schematic phase diagram represents a 

cell in the space of escr and dscr. In Fig.2.15 (B1), one can observe that the mutational 

paths under the hereditary model point to two diagonal directions log dscr ∼ ± log escr at 

an early stage; however, the upper paths are short-lived without foreseeing the phase 

E. behind T.. By contrast, the bottom paths mutate along the diagonal lines, which 

Figure 2.15 System trajectories in the space of dscr and escr superposed on the phase diagram. (A) The 

phase diagram in the space of dscr and escr. Meanwhile, the increase in escr (or dscr) is related to the increase 

in the reproductivity (or survival rate) for each individual cell. (B) Sample system trajectories on the 

phase diagram: (B1) in the hereditary model (phase III), (B2) in the stochastic model, (B3-B4) in the 

stochastic hereditary model with small stochasticity and huge stochasticity. 
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slightly deviates from phase T.. If µh is smaller, the upper mutational paths (held by c 

=3 or 7) could advance more slowly and c =3 or 7 would survive longer as winner, 

yielding the phase II dynamics in Fig.2.12(right) and Fig.2.13(C-D); if µh is large 

enough, c = 3 or 7 can only dominate temporarily before all of them are eradicated 

and the system will undergo a short-time tumorigenesis; then c = 2 or 5 would thrive 

as winner and the system spontaneously regresses from tumorigenesis to normal states, 

i.e., the phase III dynamics in Fig.2.12(right) and Fig.2.13(C-D).  

In Fig.2.15 (B2), one can observe that the stochastic mutations are isotropic and 

the system quickly finds the phase T.: the cell marks on the diagram first move right-

upwards then right-downwards exactly on the boundary between I. and T. as a perfect 

example of the self-organization of stable tumorigenesis under both homeostasis and 

the mutation. Similarly, for stochastic hereditary models [denoted as S-hereditary in 

Fig.2.15 (B3-B4)], the stochasticity can drag the original mutation path towards the 

proximity of T. if the intensity of stochasticityµsh is high enough. 

Also, one can understand why the biased hereditary model can also give rise to 

sustainable tumorigenesis. The initial values of escr and dscr and the phase structure 

determine that for the system to be stable in phase T. , the escr mutation must be faster 

than dscr mutation, i.e., µh,e/µh,d > 1 [Fig.2.14(A2)]. If dscr mutation is extremely slow, 

then the system needs a sufficiently large µh,e/µh,d to ensure a fast escr mutation for 

reaching T. [refer to phase II in Fig. 2.14(A2)].  

2.3.5 Phase diagram as a fitness landscape for “system selection” 

The methodology used in Ch.2.3.4 is not confined to the DRDM mutation. A more 

general application to other models is within the vision. Let’s consider any control 

parameter x uniformly encoded as an individual property that controls the non-adaptive 

phase separation. These phases can be distinguished by an order parameter v that 

incorporates the fitness information. Fig.2.16 (A) shows a one-dimensional (1D) 

schematic phase diagram for a generic system, whose states are marked as a ball sitting 

where the ensemble average of x is. The fitness landscape under non-adaptive relaxation 

processes, denoted as fsys(x), is just the phase function v(x). It works as a Wright 

potential of “system selection” for the individuals. Fig.2.16 gives an exemplary 

landscape of fsys (x), in which the system fitness decreases with a smaller x and has three 

phases with two boundaries. One essential point is that the order parameter v must be 

associated with fsys. Next, suppose that fin(x) is the individual fitness landscape under 

non-interactive processes (e.g., natural selection or sex selection), the total fitness 

landscape synthesizing the interactive and non-interactive selections can be the 

superposition of the fsys(x) and fin(x). Fig.2.16 (B1-B3) present three examples of the 

synthesized fitness landscape under three distinctive fin(x).  

In Fig.2.16 (B1), fin(x) has the same trend with fsys(x), hence the synthesized 
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fitness has the maximum at x = 0. By contrast, if fin(x) has the opposite trend to fsys(x) 

as depicted in Fig.2.16(B2), the evolutionary trajectories of the system may be arrested 

in some locally fittest state in a way related to mutational paths: under the stochastic 

mutations, the system can explore freely within the proximity of x(0) and always has 

a chance to overcome the fitness barrier to reach the globally fittest state which exactly 

sits near the critical boundary between two phases.  

As for some more rigid mutations, they may not have enough freedom to 

overcome the fitness barrier and therefore tend to evolve towards a state with extremely 

low fsys and only to reach the local maximum of fitness there. Fig.2.16(B3) shows a 

more complicated situation where fin(x) is nonlinear and having multiple peaks; as a 

result, the fitness barrier becomes so huge that no paths to the globally fittest state 

(P3) are inaccessible for all mutation strategies.  

One can deduce that for any multi-dimensional control parameter xx, the 

synthesized fitness from fsys(xx) and fin(xx) may exhibit outrageous complexity, because 

of which the evolutionary dynamics look erratic especially under rigid mutations. Also, 

the system’s initial condition (where the ball initially locates) can severely affect the 

whole evolutionary process, adding more complexity to the problem. One can even 

expect a fluctuating landscape where the function of fin(xx, t) is dynamically updated 

because of the turbulent environment or the heterogeneous coevolution among the 

individuals. The speed of evolution (gradients of the landscape) depends on both the 

mutation rate µ of single reproduction events and the transient system fitness (see more 

discussions in Ch.5.2). 

The mutational DRDM simulations is a vivid example of a system with a 2D 

control parameter x = {escr, dscr} and with the system fitness measured as the phenotype 

structure. Under the ergodicity assumption, the normalized phenotype structure v can 

be the probability of each cell to be proliferative. In other words, v is also meaningful 

to a single cell and it can be superposed to the individual fitness fin(x). 

In the range of escr > 10−1 and 10-4 < dscr < 10-2
, the phase function of each 

coordinate, i.e., v(escr ) or v(dscr ), is close to the schematic 1D phase diagram in Fig.2.16 

(B2). This clarifies the reason why under the stochastic or the stochastic hereditary 

mutations, the center of the cell cluster in the parameter space always sits exactly on 

the boundary between I. and T. because it has the highest fitness. This competition of 

the system fitness and individual fitness may serve as a mechanism for self-organized 

criticality [79], which prevails in many other kinds of CASs. A test of this hypothesis 

to the financial market modeling is present in Appendix C. The mesoscopic approach 

here enables a direct reproduction of what is conjectured by many biologists: self-

organized criticality can be a trade-off between system’s robustness and evaluability 

[80], i.e., critical states of the systems can have highest synthesized fitness under both 

system selection and natural selection. 
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2.4 Summary of Chapter 2 

The mesoscopic cell-based discrete receptor dynamics model (DRDM) is 

reformed from a multiscale hybrid model, immersed boundary cell (IBcell) model 

(Rejniak et al.) by coarse-graining the scale of time and space and by reducing the 

complicated fluid dynamics which cost huge computational resources. Upon the 

validation of DRDM, I show that DRDM has kept the interdependence structure 

indispensable for the emergence of diverse homeostasis through the receptor dynamics 

although the morphological precision is lost. Longtime simulation and large-ensemble 

analysis are thereby achievable with DRDM and the results gave such a complete 

Figure 2.16 Mutational paths visualized as the rolling ball on a 1D schematic fitness landscape. The ball 

represents the ensemble average of the individual genotype x and the height of the ball corresponds to 

the equilibrium state of the system. (A) Non-mutational fitness landscape (phase function) fsys(x) of 

interaction-based relaxation processes. Points x1 and x2 are two hypothetical critical points around which 

a first-order phase transition (at x1) and a second-order transition (at x2) happen. (B) The synthesized 

fitness landscape under three different formulations of individual fitness function of fin(x) with the fsys(x) 

presented in (A). 
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picture of multicellular homeostasis that normal or healthy homeostasis is near the 

critical range of the system, and therefore it is unstable and eventually slowly transition 

towards degenerative and tumorigenic states, the former of which is accompanied by 

aging of cells and the latter by rejuvenation. Cancer and aging seem to have the same 

origin from the natural evolution of normal homeostasis without extracellular stresses 

or subcellular mutations.  

Through a modeling with mutations, I have shown that the complicated dynamics 

resulted from the coupling of the self-organization of homeostasis and the individual 

adaptation has strikingly simple principles. The non-mutational self-organization of 

homeostasis forms a system fitness landscape where each individual cell can climb with 

mutations. Tumorigenesis is not the direct consequence of mutation but of the system 

reaching tumorigenic homeostatic states with the aid of mutations; in some cases, 

mutations coupled with homeostatic relaxations make the system more robustly sitting 

at the critical states. These results suggest that the self-organization of homeostasis has 

a decisive role in system evolution with the phase function serving as the Wright 

potential of “system selection” on the individual adaptation.  
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Chapter 3 

Multicellular aging  

(Note: All contents in Ch.3 including figures and tables are adapted from Ref.[81].) 

 

The most important findings in the DRDM, which is inaccessible from IBcell or 

other more detailed models are that the non-mutational normal homeostasis is 

intrinsically quasi-stable near system’s critical states and is absorbed into three possible 

states, extinction, degeneration and tumorigenesis, the evolution to the latter two of 

which can be rather slow. Normal homeostasis appears as a critical phenomenon of the 

multicellular system. In light of the statistical nonequilibrium theories for the critical 

phenomenon in physical systems, a bundle of scaling laws shall appear near the vicinity 

of the critical point [83]. For instance, the relaxation time should diverge in power-law 

relation to the control parameters, and this was previously observed in the non-

mutational DRDM simulations [see Fig.2.5(B)]. For nonequilibrium systems like 

glasses, there exists another important scaling law about time variable: if the system 

near the critical states is perturbed at different time after its preparation(termed as 

waiting time), the time of its relaxation of this perturbation is in power-law relation to 

the waiting time:  

( / )= ( )w wR t t t R t ,  (Eq.3.1) 

where R(t, tw) is some relaxation function (R = 0 is the end of the relaxation) and ( )R t

is a waiting-time-independent rescaled form, tw is the waiting time, and θ is the scaling 

exponent characterizing the aging speed. This scaling is about time, thus called 

dynamical scaling [84] and physical systems showing such dynamical scaling are 

defined to be aging [82-85]. To avoid ambiguity, the biological aging in the DRDM is 

referred to as the increase of proliferation age (see the definition in Ch.2.2.2), whereas 

the aging obeying dynamical scaling is termed as physical aging hereafter.  
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3.1 Wound healing in the DRDM 

In DRDM, physical aging can be testable computationally by creating a wound as 

the perturbation, which has been waited for a specific time after the system reaches 

quasi-stable states. The multicellular systems react to the wound in a process called 

wound healing, and wound healing is exactly the biological analog of relaxation against 

perturbation in the physical systems. Different from physical systems, wound healing 

is more complex than the mechanistic rearrangement of component positions as in the 

physical systems. It involves complex biochemical processes that regulate coordinated 

cell cycle dynamics and cell migration [86].  

The investigation of dynamical scaling of wound healing in both DRDM and real 

experiments will help test the hypothesis that normal homeostasis of multicellular 

systems is a critical phenomenon. The parameters used for wound healing simulation 

[listed in Table B3 in Appendix B(3)] will reproduce a normal-to-degeneration 

homeostasis, which is representative of a healthy tissue. Cells were seeded into space 

simultaneously at the confluence with half density. Then, a small scratch of wound 

modeled by removing all the cells (clearing the profiles on the lattice nodes) in the 

wound bed will be implemented after a specific waiting time tw.  

Fig.3.1(A) shows that the healing processes decelerate with waiting times tw as 

expected. Fig.3.1 (B) shows the time evolution of normalized unhealed area for waiting 

times from 24 time steps to 90 time steps; the healing curves with rescaled time axis 

are present in the inset of Fig.3.1(B), from which one can find that the healing curves 

fit dynamical scaling with scaling exponent of 0.75 for time larger than 36 steps and 

smaller than 90 steps. Scrutinizing the dynamics of the subpopulations during the 

growth before wounding, one can observe a growing population of arrested cells 

undergoing three regimes [Fig.3.1(C)], the second of which (with a steady linearity) is 

concomitant with the dynamical scaling regime. This suggests that the speed of the 

colonization of arrested cells is related to the aging rate θ of the system.  

Remember that the increase in the arrested cell population is a degenerative process 

accompanying the increase in averaged proliferation age, i.e., the biological aging (refer 

to Ch.2.2.3). Hence, the slowdown of wound healing in the DRDM is an instance of 

both biological aging and physical aging. 
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Figure 3.1 Slowdown of healing in DRDM. (A)Snapshots of simulated time-delayed wound healings in 

the DRDM) with low diffusivity. Grey dots represent arrested cells, while the red ones proliferative cells. 

ECM threshold e = 2.5RM, arrest threshold a = 0.2RM, growth threshold g = 0.1 RM, adhesion threshold 

h = 0 (zero motility). Other parameters are listed in Table B3. (B) Healing processes on a normal and a 

rescaled (inset) time axis. (C) Population dynamics for arrested cell during the waiting before wounding. 

Permanently arrested cells are defined as the arrested cells with the sum of growth and adhesion receptor 

amount below growth threshold g. 
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3.2 Time delayed wound healing assays (TDWHA) 

Wound healing assay (WHA) [87] is a simple and inexpensive in vitro experiment 

used for studying the coordinated cell proliferation and migration in tissue regeneration 

or tumor invasion. In WHAs, “wound healing” specifically refers to the event that a 

sheet of cells regenerates a confluent monolayer after some cells have been removed. 

Just as relaxation is the collective response of particles to an external perturbation in 

physics, healing is the collective response of cells to an external damage (the wound).  

Conventional WHAs require wounds to be performed immediately after cell 

starvation is finished to avoid any time-dependent changes in cellular conditions, which 

is, nevertheless, indeed my research focus. Therefore, a controlled waiting time before 

wound creation is added on purpose to the original WHA protocols, and this modified 

experimentation is called time-delayed WHA (TDWHA) hereafter. With all the other 

experimental settings identical, the relationship between the waiting time and the time-

dependent healing functions can characterize the endogenous evolution of the system. 

Particularly, a slowdown of healing with the increasing waiting time is suggestive of 

the loss of regenerative power in the system, which is considered as a hallmark of tissue 

aging [138].  

Figure 3.2 Time-delayed wound healing assays. (A) A schematic protocol. Group number N corresponds 

to a waiting time of 24N h. (B) Left: one well has three scratches (wound gaps) represented by the 

vertical pink lines; six sample areas, marked by six circles, are located in the center adjacent to the 

horizontal auxiliary blue line. Right: a sample of photograph taken by the microscope (magnification: 

400). (C) Post-processing of images using Photoshop CS6 to calculate the wound area by the number 

of pixels enclosed by the wound edges (cyan curves). 
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3.2.1 Experimental settings  

Newly thawed HepG2.2.15 cells were seeded near confluence into 6-well dishes 

at an initial density u0. The dishes were divided into N groups, in each of which 6-12 

samples waited for a specific period of time tw =24, 48, 72…(hours) before the creation 

of a 0.25mm scratch wound by a pipette [Fig.3.2(A)]. After that, each group was 

continuously observed for about 190h and photographed once every 24h. The medium 

was replaced once or twice a day to keep sufficient nutrients. Two series of experiments 

were conducted with different initial seeding densities, u0=5105 cells/mL in 

Experiment I and u0=2106 cells/mL in Experiment II. The cell line was chosen as the 

HepG2.2.15 for its slow cell packing and low propensity to mutations to avoid 

uncontrollable variations in cell conditions through time. All other experimental 

settings are controlled as identical [see APPENDIX D(1)].  

In each dish, three parallel straight wound gaps were created (the vertical pink 

lines), with six samples located at the center of the well adjacent to a horizontal 

auxiliary blue line as shown in the left panel of Fig.3.2(B). The right panel in Fig.3.2 

(B) presents an exemplary snapshot from the experiments. The photographs were post-

processed in Adobe Photoshop CS6 for counting the pixel number in the wound areas 

using the Magic Wand Tool [Fig.3.2(C)].  

3.2.2 Pre-wounding conditions 

1) Cell growth: 

Fig.3.3(A) shows the pre-wounding cell conditions in Experiments I and II. During 

waiting, the total cell number increased to a saturation level with the single-cell viability 

decreasing to a non-zero level [see APPENDIX D (2-3) for the methods]. Growth 

saturation in Experiment II occurred earlier than in Experiment I because of the higher 

Figure 3.3 Cell number and cell viability. (A) The pre-wounding time evolution of cell number (black), 

and single cell viability (red) during natural growth. (B) Comparison of the total cell viability 

immediately before the wounding and after the completion of healing (Groups 1-3 only). 
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seeding density. Fig.3.3 (B) shows the total cell viability immediately before the wound 

creation and after the healing completion in Experiment II. Compared with the pre-

wounding viability, the post-healing viability in Groups 1-3 decreased slightly about 

5%, which is an insignificant fraction considering the standard errors (2% to 7%). One 

can thence ensure that no metabolic deterioration occurred to cells on the experimental 

time scale. With sufficient nutrients, the saturation of cell number and/or viability was 

most probably caused by density-dependent contact inhibition [90-94].  

2) Wound edge roughness: 

Increasing contact inhibition is also related to increased intercellular cohesion, 

which might introduce uncontrollable geometries to the wound edges which were 

intended to be straight. The wound geometry can affect the healing efficiency [98], so 

one needs to examine whether the irregularity of the wound edge geometry has 

artificially introduced undesirable confounders.  

    The irregularity of the edge geometry can be quantified by its edge roughness, 

which is related to the fractal dimension of the line [99]. Suppose the edge line is 

described as the edge height x as a function of its position y in the x-y coordinate system 

as shown in Fig.3.4 (A). One of the several ways to calculate this roughness is to fit the 

scaling exponent  in the height-deviation function G(r) = r  of a wound edge line 

with respect to the window length r. The height-deviation function is defined as follows:  

1

1
( ) ( )

N r

i

i

G r r
N r








 ,  

where i (r) is the standard deviation of the edge height xj in a spatial window  

y(i) < y (j) < y(i+r), where y(j) is the evenly sampled edge positions y = i (i = 0,1,2,…,N) 

along the vertical axis [see Fig.3.4 (A)]. When the exponent  is 1, the edge is perfectly 

straight; if  is close to zero, the line is rather rough. 

For obtaining an intuition about the relationship between the edge roughness and 

the healing efficiency, a series of wound healing simulations with DRDM was 

conducted with wave-shaped edges [Fig.3.4 (B)]. The healing data in DRDM suggested 

that wounds with highly curved edges characterized by small α can heal more rapidly 

[Fig.3.4(C)], agreeing with the conclusions in the previous literature [98]. Moreover, 

healing time increases with roughness α nonlinearly: for α close to zero (i.e., extremely 

rough edges), healing time rises rapidly, whereas for 0.1  , healing time climbs slowly, 

implying that healing efficiency is not so sensitive to the edge geometry unless it is 

extremely rough. Fig.3.4(D) shows the exemplary height-deviation functions G(r) 

obtained from the edge data of Experiment I, whose rough exponent α is displayed in 

Fig. 3.4(E) for group average (dotted circles) and individual samples (open squares). 

Overall, no significant difference in wound edge roughness could be identified in group 
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average. Notwithstanding that the variances were large for groups tw =72 and tw =96, 

the absolute individual values of α were all within the range from 0.3 to 0.55. According 

to Fig.3.4 (C), the healing efficiency is not sensitive to the roughness when α > 1. In 

conclusion, the irregular curvatures of wound geometry caused by increasing 

intercellular adhesion did not bias the groups with different waiting times in 

experiments. 

Figure 3.4 Edge roughness in DRDM simulations and in vitro experiments. (A) A newly set x-y 

coordinate system for quantifying the wound edge (outlined in light green). Sample points y = i are 

evenly distributed along y axis. (B) Roughness exponent α calculated for four wave functions aligned 

with their wound bed geometries. (C) Wound healing in the DRDM using different edge geometries 

presented in (B). (D) Sample height-deviation functions G(r) obtained from the edge data from 

Experiment I. (E) Comparison of edge roughness among four groups (tw= 24, 48, 72, and 96 h) in 

Experiment I. 
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3.2.3 Post-wounding healing 

Fig. 3.5 shows the snapshots at three post-wounding time points for four groups 

with waiting time tw of 24, 48, 72, and 96h. Groups with longer waiting times exhibited 

slower healing, which is an indication of bio-aging. Through post-processing of these 

snapshots, one can describe the healing events from two aspects: the healed area and 

the density profile.  

1) Healed area 

The healed area A is calculated as ( ) ( ) ( )w wA t t A t A t    , where A is the wound 

area measured in the unit of 105 pixels from the snapshots. Fig. 3.6 (A1) and (B1) show 

the time evolution of A in different groups with the slope of the curves indicating the 

healing rate; particularly, a flatter curve illustrates a slower healing process. Obviously, 

the healing curves become flatter with longer waiting time. 

At the first glimpse of Fig.3.6 (A-B), one may think that slow healing for long 

waiting times is caused by the increase in cell density during the waiting period. 

Figure 3.5 Snapshots of 0h, 96h and 168h after the creation of the 0.25mm scratch wound in time-delayed 

wound healing assays for HepG2.2.15 cells. The dark yellow clots scattered away from the wounds are 

packed cells.  
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Nonetheless, comparing the healing curves between Experiment I and II, one should 

notice that Experiment II for the correspondent groups healed more rapidly than 

Experiment I, implying that the increase in cell density indeed promotes healing 

efficiency. Besides, one can also compare Group 3 in Experiment I with Group 1 in 

Experiment II, which have a similar pre-wounding density(3.2×107
 per well), and find 

that the Group 3 with a 72-h waiting time in Experiment I healed much slower than the 

Group 1 in Experiment II with a 24-h waiting time. These comparisons confirm that the 

density effect that accelerates healing is trivial compared with the aging effect brought 

by the waiting time.  

If rescaling the time axis as   /w wt t t  , where θ is a tunable scaling exponent, one 

can find that the data of all groups except for Group1 (tw= 24 h) collapsed to a single 

curve as shown in the bottom panels in Fig.3.6 (A-B). The scaling exponent θ 

characterizing the aging rate is 0.72 in both groups. The failure of rescaling in the data 

of Group 1 in both experiments suggests that there is a dynamical transition from a 

growth regime (where density effect dominates) to an aging regime which obeys 

dynamical scaling. These findings agree very well with the wound healing simulation 

in DRDM (refer back to 3.1). 

2) Density profile propagation 

Shortly after the wound creation, a small number of cells detached from the main 

body behind and migrated into the wound bed, resulting in the cell density decreasing 

with the distance away from the original wound edge. To quantify this spatial 

distribution of cell density, one can segment the image near wound edge into several 

bins of the same width [Fig. 3.6(C1)] and count the area covered by the cells normalized 

by the total area in every bin. The positions of those bins are calculated as the distance 

between the bin center and the wound gap center. Then the bin-based densities should 

be further averaged over all samples for the bins with the same position.  

Fig.3.7 (C2) shows the time evolution of the bin-averaged density as a function of 

the distance from the wound center for Group 1 (tw = 24h) and Group 3 (tw = 72h) in 

Experiment I. The original wound edge (the half-density position immediately after 

wounding) calibrated to the zero point of the horizontal axis. One can observe that the 

density profile propagates at a constant speed into the wound bed like a traveling wave, 

as is extensively documented in the previous literature [90-96]. The shape of the profile 

is approximate to a sigmoid curve, yet with a wider low-density head at the forefront, 

especially for t - tw >24h. The profile in Group 3 propagates more slowly than that in 

Group 1; nevertheless, the extension of the low-density head is much longer in Group 

3, indicating that the leading cells (at the first row of edge) can migrate into the denuded 
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area with a similar speed in both groups but the bulk of cells behind the leading edge in 

Group 3 failed to propagate as rapidly as in Group 1.  

The colored shades in the profile in Fig.3.6 (C2) represent the standard deviation of 

the data drawn with filled area. It is seen that the error ranges are generally large for all 

sample sets, with the leading low-density heads having the largest variability at 

Figure 3.6 Closure of wounds in terms of healed areas and density profiles. (A-B) Healed area as a 

function of post-wounding time in a normal and rescaled axis for different waiting times in Experiment 

I (A) and Experiment II (B). (C) The cell density profile in Experiment I:(C1) the bins for density 

calculation on a snapshot; (C2) the density profile propagation.  
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ttw=96h in both groups. This large variance of data is related to the heterogeneity of 

healing rates across the samples, which peaks at the leading edges. For instance, in 

some samples [Fig.3.5 (B-C) 96h], several cell clusters detached from the bulk of the 

cells behind or some finger-shaped heads formed, whereas in other samples [Fig.3.5(A) 

96h], the leading edge closed like a zipper. This variance of local healing patterns does 

not differ very much for short and long waiting times and should be considered as a 

natural result of some stochastic factors amplified during healing processes with no 

regard to the waiting time. 

3) Summary of experimental results: 

From the experimental data, several facts about the role of time in the regeneration 

of cell sheets under waiting should be concluded as:  

(i) During the waiting time, cell density is slowly approaching a saturation level due 

to the limit of space and cell viability is exponentially decaying to a non-zero value 

as a possible result of contact inhibition. 

(ii) The increase in intercellular adhesion and the accumulation of ECM with time 

induces no trivial impact on the irregularities of wound geometry. 

(iii) There is a dynamical transition from the growth regime to the aging regime where 

the healing curves fit dynamical scaling. 

(iv) The density effect is to accelerate healing but is trivial compared with the aging 

effect.  

(v) The slowdown of healing was mainly caused by the slow advancement of cells 

behind the leading edge. 

3.3 Reaction-diffusion models for wound healing 

  Although both experiments and the DRDM simulations reproduce that the 

slowdown of wound healing obeys a late onset of dynamical scaling, some gap still 

exists between in silico and in vitro. On one hand, the physical aging in the DRDM is 

the consequence of being a critical phenomenon of the normal homeostasis, to form 

which many parameters are fine-tuned; on the other hand, there could be many 

unknown mechanisms at the molecular level in the experiments. Therefore, further 

simplified models are necessary for proposing some testable hypotheses as a guide for 

pinpointing the key mechanisms in the experiments. 

In this chapter, a simple model that bridges the DRDM on the mesoscopic level to 

the macroscopic experimental phenomena is present. One will see the power of 

modeling phenomena on multiple scales in its ability to give consistent hypothesis.  
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3.3.1 Original RDE for wound healing 

 One of the simplest macroscopic equation-based models for wound healing without 

waiting is the reaction-diffusion equation (RDE) proposed first by Fisher and 

Kolmogorov [88] and later verified and extended by many others [90-94]. Wound 

healing models using RDEs attribute the kinetics of cell density in space to two factors: 

cell proliferation (reaction) and cell movement (diffusion).  

Given a normalized cell density   , 0 1u x t u  at position x in a one-dimensional 

space at any time t, the time evolution of u(x, t) is: 

    
u u

d D u mM u u
t x x

  
 

  
,    (Eq. 3.2) 

where D(u) and M(u) are the normalized diffusivity and mitotic rate, repectively; and 

constants d and m weigh the contributions of the two terms.  

Formulation of D(u) has many candidates. In the first proposal by Fisher-

Kolmogorov [88], D(u) was set constant. Afterwards, Cai. et al [94]have shown with 

experiments that D(u) should be a monotonic decreasing function with u. Without the 

loss of generality, one can choose D(u) as follows: 

  ( )D u p p u  , (Eq.3.3) 

where p > 0 is a coefficient inversely proportional to the strength of contact inhibition. 

Conventionally, the proliferation term M(u)u takes the form of logistic growth (1u)u 

as is first proposed by Fisher. The formulation that the mitotic rate and diffusivity is 

monotonically decreasing with cell density models the effect of contact inhibition [94]. 

Given the initial condition u(*,0) = u0, the solution to Eq. 3.2 is a sigmoid function 

of time for all x, hence the cell density at any tw immediately before wounding is 

  
 

0

0 01 w
w mt

u
u t

u u e



 

, with the longtime limit:  (Eq.3.4) 

   0 01 / 1 wmt
wu t u u e


    . (Eq.3.5) 

Therefore, the cell density approaches saturation with an exponentially decaying speed, 

agreeing with the experimental findings in Fig.3.3(A).  

When a wound is created, the cell density drops to zero in the wound bed, inducing 

a dramatic density difference at the wound edge. Then the cells start to diffuse from the 

high-density region to the low-density region at a speed proportional to D(u) while they 

proliferate at the rate proportional to M(u). The solution to Eq.3.2, i.e., the time-

dependent cell density profile u(x, t) is a traveling wave at the wound edge, with the 

cells at the low-density region having the highest diffusivity and mitotic rate. The 
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formulation of diffusivity D(u) and mitotic rate M(u) in RDE naturally presumed that 

the cells can sense the local cell density and response to the appearance of wound 

instantly. According to Eq.3.4, the impact of the waiting time tw to the variation in cell 

density is exponentially approaching zero for large tw without profound impacts on other 

parts of the dynamics, hence the original RDE cannot reproduce aging. 

Fig.3.7(A) shows the numerical results of original RDE for wound healing with p 

= 0, [0,100]x , and a wound condition initialized at different waiting times 

 ( , ) 0, [35,65]wound wound
wu x t x  . With waiting time increasing, the healing processes 

become faster. Because of a longer waiting time, the cell density at the wound edge 

becomes higher [Fig.3.7 (B1)], which later promotes the cell migration into the wound 

area and consequently a faster rate of healing [i.e., the red line advances more quickly 

than the black line in Fig.3.7 (B2)]. The acceleration of healing with cell density agrees 

to the density effect observed in experiments if the waiting time is controlled [Fig.3.6 

(A-B)], i.e., excluding the aging effect. 

In conclusion, the original RDE for wound healing that merely involves contact 

inhibition can only reproduce the density effect. 

 

3.3.2 Asymmetric RDE for wound healing  

To reproduce the aging effect, a strong dependence of the diffusivity and the 

mitotic rate on the waiting time is necessary. One can think of a situation where the 

cells at the wound edge cannot resume their diffusivity or mitotic rate immediately; 

particularly, the longer the cells wait, the slower the response to the wound should be. 

1) Delayed-proliferation model 

First, consider a model of delayed recovery in the mitotic rate   ,M u x t for all x 

Figure 3.7 Numerical healing results in original reaction-diffusion model. (A) Healing results for 

different waiting periods under various parameter settings. (B) The cell density profile immediately after 

wounding for two healing events at different cell densities (the red line for higher density and the black 

line for lower density). (B1): at tw (immediately after wounding); (B2): at wt t   (a time slightly later 

than wounding).  
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as follows: 

       

           

,                                   for 

1 ,  for 

con con

con con

M t M t M t M t t

M t M t M t t M t M t t 





  

      
 , (Eq.3.6)  

where δ [0,1] is a delay fraction and ( ) 1 ( )conM t u t   is the mitotic rate subject 

merely to the contact inhibition. Indeed, Eq. 3.6 categorizes the dynamics of M(t) into 

two conditional cases:  

If Mcon(t) is smaller than the mitotic rate at the previous time step ( )M t t , which 

means that the contact inhibition gets stronger, then M(t) will be reduced to Mcon(t) 

immediately as the inhibition of mitosis; otherwise if Mcon(t) is larger than ( )M t t , 

which implies a weaker contact inhibition at the current time, M(t) would recover to 

Mcon(t) at a delayed pace controlled by the fraction δ. Apparently, the increase and 

decrease in M depends asymmetrically on Mcon(t) and thus asymmetrically on u(t). In 

the extreme case of δ = 0, M(t) can only decrease, thereby modeling an irrevocable cell 

cycle inhibition. Contrastingly, in the case of δ = 1, the recovery of mitotic ability 

becomes instantaneous, and Eq. 3.6 returns to the original logistic growth form 

proposed by Fisher. For 0 < δ < 1, which is a more general case, the transition from 

growth state to arrest state will be faster than its reversal process. In a clearer biological 

interpretation, δ characterizes how rapidly cells can revive from the state of cell cycle 

arrest and with such broken symmetry in the growth-to-arrest and arrest-to-growth 

transitions, the term asymmetric RDE (ARDE) is used to name this model. 

The numerical solutions (the density profile) to this ARDE model under different 

delay fractions and waiting times are exhibited in Fig.3.8. The initial condition is u0=0.9 

and the wound condition is  

 ( ) 0,  35,65,wound wound
wu x t x  . 

Fig.3.8 (A1) shows that the density profile u(x, t) still keeps a form of traveling 

wave for a larger δ (A1), while the low-density head of the cell front extends much 

wider for a small δ (A2). Also, the propagation speed of density profile is also slowed 

down with a smaller δ. Fig.3.8 (B) shows the comparison of the density profile between 

two different waiting times with the same value of δ = 10-5. A larger waiting time causes 

a slowdown of profile propagation, with the stable profile shape having the extended 

low-density head at the forefront. These results suggest that a small δ or a long waiting 

in ARDE can slowdown the advancement of the bulk of cells behind the leading edge, 

in accord with the experimental results [Fig.3.7 (C2)].  

The healed area as a function of post-wounding time is displayed in the top panels 

of Fig. 3.9 (A1-A3) with three different values of . In the figures, the vertical axis of 

graph is the normalized healed area calculated as 
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, d
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x
A t u x t x
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


  
, where x[x’, x’’] defines the wound bed. 

One can observe a slower increase in  A t with a longer waiting time in the top 

panels in Fig.3.9 (A). The lower panels of Fig.3.9 (A) show the healing data with a 

rescaled time axis. The healing curves with waiting times tw > 36 could collapse to a 

single curve with scaling exponents dependent on δ, whereas the curves with shorter 

waiting times (tw =12, 24) fail to obey the dynamical scaling just as the healing events 

do in DRDM simulations and in the in vitro experiments. The decrease in δ from 10-5 

to 10-7 and 10-9 induces an increase in the scaling exponent (roughly from 0.48 to 2.33 

and 4.35), manifesting the role of δ in controlling the deterioration of healing efficiency.  

The reason why a near-zero δ can render a huge aging exponent can be inferred 

from the asymptotic analysis of mitosis rate M(u). Assuming that all cells in the wound 

area only experience delayed recoveries of mitotic rate and assuming that cell diffusion 

is negligible, one can derive the following time evolution equation of M(u(t)) from 

Eq.3.6: 

            , 1 1 d 1 1w

w

t t t t t

w wt
M t t u t t u t  

 
      . (Eq.3.7) 

Figure 3.8 Numerical results of the post-wounding density profile propagation in the ARDE model with a 

delay in the proliferation term solved with u0=0.9, and d = m = 0.1, p = 0.01 on x[0,100]: (A1-A2) for 

different values of delay fraction δ with tw = 10 and (B) for different waiting times tw with δ =10-5. The total 

wound area ranges from x = 35 to x = 65. Only the left side of the wound edge is shown because the density 

profiles on two sides are mirror-symmetric. 
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Eq. 3.7 consists of two terms: a convolution from tw to t and a contribution from 

the density u(tw) immediately before wounding. Apparently, a small δ will reduce the 

impact from the convolution term, and in the extreme situation  = 0,  , wM t t  is 

reduced to 1u(tw), which approaches exp(mtw) in the limit of wt  . The 

exponential decay in the mitotic rate M with tw implies an exponential divergence of 

healing time with tw, in which the scaling exponent is infinite [also demonstrated by 

Fig.3.11(B) and see the discussions in Ch. 3.3.3]. 

2) Delayed-migration model 

Cell migration can also be suppressed by the increased cell density or the 

accumulation of cell-cell or cell-ECM adhesion [89-94,95,96]. Previous literature 

reveals that the motility of the cells will change over time [113] in a confluent cell sheet 

and the mechanics related to the migratory ability of the cells at the wound edge 

influence the wound closure efficiency [100-103]. In a similar way to Eq.3.6, one can 

realize a delay in the cell migration as follows:  

       

           

                           for 
,

1    for 

con con

con con

D t D t D t D t t

D t D t D t D t D t t 

  


    
        (Eq.3.8) 

where π from 0 to 1 is the delay fraction for the diffusivity.  

Fig.3.9 (B1) shows that the wound heals more slowly for tw = 0 with a smaller π. 

Nonetheless, even if π is set to zero (meaning an irreversible decrease in the cell 

motility), the aging effect is still not observed [Fig. 3.9(B2)].  

This result seems to contradict with the previous literature in which the emergence 

of non-proliferative spreading cells at the leading edge (around which lamellipodia can 

be found and their motility was reported to be crucial for healing efficiency [89,100-

103]). In ARDEs, such spreading cells are not modeled. To test whether this absence of 

spreading cells can explain the loss of the aging effect, one can add the sub-model of 

spreading cells by multiplying a Heaviside step function H(λD(x)) to the original 

mitotic rate in Eq. 3.8. When the cells have a diffusivity D larger than  , they will have 

zero mitotic activity.  

The new parameter 0  controls the length of the region dwelt by the spreading 

cells. Since these cells only appear in the front rows of the wound edge,  should be 

small compared with the diffusivity coefficient d. Fig.3.9 (B3) shows the healing curves 

for λ=0.001 (black) and λ=0.01(red) in the case of δ = 1, π = 0 for various waiting times. 

By comparing Fig.3.9 (B2) and (B3), one can find that when is small, the role of 

spreading cells is negligible. The healing processes apparently appear slower with a 

larger λ, yet still no significant aging effect is observed.  

If further considering a reproduction of the extended heads in the density profiles 

as is shown in the experiments, one should apply the wake-up dynamics (Eq.3.8) 

specifically to the bulk of cells behind the leading edge, which will make the 
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unnoticeable aging effect even more trivial (results not shown). 

The failure of reproducing aging by a “wake-up” mechanism in the cell migration 

term is be attributed to the fact that the diffusivity D does not decrease radically with 

large waiting times [because the diffusivity D takes the form of p /(p+u)]; in fact, any 

monotonic decreasing function of u satisfying D(u =1) > 0 cannot reproduce aging]. To 

induce an aging effect by modifying the diffusion term in the RDE models, one needs 

extra assumptions such that the diffusivity coefficient d decreases or the range of 

spreading cells  increases radically with the waiting time in a specific fashion, which 

is lacking in evidence. Though the inhibition of cell locomotion due to the densification 

of the confluent cell sheets in short-time observation has been reported [109,111,113], 

Figure 3.9 Numerical results of the normalized healed area as a function of post-wounding time in 

asymmetric reaction-diffusion equation (ARDE) model with d = m = 0.1, u0 = 0.5 , p = 0.01.The vertical 

axes represent the normalized healed area A. (A1-A3) For three values of the delay fraction δ in the 

proliferation term. Note that the x-axes are on logarithmic scales. (B1) For different values of the delay 

fraction π in the diffusion term with tw = 0. (B2) For different values of waiting times. (B3) For different 

values of waiting times with the modeling of spreading cells. The black curves refer to λ = 0.001; the red 

curves refer to λ = 0.01, where λ is the length of the region occupied by the spreading cells.  
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the cell proliferation and the remodeling of ECM were not triggered in these 

experiments. For healing processes longer than the cell doubling time, which is 24h for 

HepG2.2.15 cells in our experiments, these issues regarding the role of cell migration 

still need more experimental investigations.  

In DRDM simulations, the cell motility is also not critical for the slowdown of 

healing. The effect of delayed recovery in cell movement can also be examined by 

varying adhesion threshold h, which represents the minimal level of cell-cell and cell-

ECM adhesion required to cease cell movement in its local surroundings. In Fig.3.10 

(A), the adhesion threshold h was set to infinity, indicating that cell movement is totally 

free. Meanwhile, the growth threshold g was set as 0.3RM which is a huge barrier for 

the cells to re-enter the growing state from an arrested state. The results revealed that 

even with the freest cell movement, a strong regrowth barrier still causes the slowdown 

of healing with short waiting times and the incomplete healing with longer waiting 

times. Conversely, if h is 0, which means zero cell motility due to a strong cell-cell and 

cell-ECM adhesion, a small value of g could still ensure a quick healing process, as 

shown in Fig.3.10 (B), nevertheless, with the cliff-shaped healing curves. This 

comparison illustrates that the role of mitotic deterioration is much more significant 

than the role of retarded cell movement in reproducing the slowdown of healing in 

DRDM. Besides, one can clearly see that the reduced cell motility causes a “frozen” 

phase before the initiation of healing in Fig.3.10 (B). This also implies that the role of 

delayed cell migration is to postpone the initiation of cell regrowth in the early stage of 

healing. Yet these “frozen” phase and cliff-shaped healing curves cannot be seen from 

the experiment, hence it is very unlikely for the cells to have low motility with a high 

proliferation rate in the experiments with current settings. 

3) Summary of ARDE modeling for wound healing  

The delayed recovery of cell proliferation in ARDE models can well reproduce the 

Figure 3.10 Wound closure in the discrete receptor dynamics model (DRDM). (A) Free cell movement 

(h) with a high regrowth barrier (g = 0.3RM). (B) No cell motility (h =0) with no regrowth barrier 

( 0g  ). 
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dynamical scaling of the waiting-time-dependent healing events (including the 

dynamical transition from growth to the aging regime) and the slow propagation of the 

cell fronts with an extended low-density edge. By contrast, the delayed migration model 

cannot induce aging phenomenon without introducing extra assumptions on the 

evolution of other parameters. Nevertheless, considering that the cell motility and cell 

cycle dynamics are coordinately regulated by a complex signaling network of 

intracellular molecules, one should be aware that the slowdown of healing is a 

combined consequence of the mechanical and biochemical factors.  

3.3.3 Criticality analysis 

According to the theory of physical aging, if the system’s relaxation time is 

sensitive to a parameter within its critical range, this parameter can control the speed of 

aging [82-84]. Therefore, criticality analysis can help one identify the control parameter 

of the systems. In this section, I will compare the criticality analysis of ARDE and 

DRDM to help infer the consistent controller of multicellular aging.  

1) Criticality in ARDE 

The criticality analysis is to examine the power-law relationship between the 

control parameter  and complete healing time τ, where τ is defined as the time when 

the wound area shrinks to   99%A t  . Fig.3.11 (A) illustrates the divergence of τ with 

 under different values of u(tw). A larger value of u(tw) corresponds to stronger contact 

inhibition due to a longer waiting time, as shown in Eq. 3.5. The algebraic divergence

 ~ 1/


  resembles the criticality in physical systems with the critical point at  = 0, 

even though the divergence crosses over to a ceiling for a small. A larger wounding 

density u(tw) postpones this crossover, suggesting that the critical role of  is 

manifested under strong growth inhibition (caused by higher cell density). The reason 

Figure 3.11 Critical behaviors in ARDE. (A) The divergence of healing time τ with delay fraction δ, 

under varying cell density at wounding time u(tw). (B) The divergence of healing time τ with the waiting 

time tw under varying delay fraction δ. 
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for the ceiling lies in that as  decreases, the second term in Eq. 3.7, which involves 

u(tw), becomes more dominant in M (t, tw), and thus τ diverges as τ ~exp(mtw) 

independently of  . Under stronger contact inhibition, i.e., u(tw) closer to 1, the 

convolution term in Eq. 3.7 can take effect with a smaller , and thus extends the range 

of critical regime.  

To evaluate the value of the critical exponent β, the local derivatives of log τ is 

calculated as a function of  from a series of data τ(i), where i =1,2,…,N satisfying

1 / 0.1i i   as:  10 1 10 1 10 1 10 1( ) log ( ) log ( ) (log log )i i i i i             . 

Fig.3.12(A) shows that the value of ( ) has three regimes with 1log  : ( )

rises from zero first, then encounters a plateau and finally returns to zero. For small u(tw) 

(low contact inhibition), the regime with a stable plateau, which indicates a power-law 

relation , is absent; for u(tw) extremely close to 1 (high contact inhibition), the 

stable regime exhibits two sub-regimes with the first plateau roughly at 

( ) 0.469 0.002     and the second one at 0.5. The existence of such staircase in 

the plateau regime is confirmed with various model parameters under u(tw)=110-15 

[Fig.3.12 (B-C)], where the first plateau is universally around ( ) 0.471 0.009     , 

yet the onset timings of the second plateau are diverse. Meanwhile, the data groups with 

 ~ 1/


 

Figure 3.12 Estimating critical exponent of ARDE.(A)The derivatives of log τ as a function of delay 

fraction δ calculated from a series of data τ (δi), i =1, 2,…,N under various u(tw) with the parameter 

setting 1, 0.01m d p   (used in all numerical simulations for Fig.3.8, Fig.3.9 and Fig.3.11). (B) 

Divergence of log with other parameter settings under high contact inhibition 15( ) 1 10wu t   . (C) The 

derivatives of log τ calculated from the curves in (B) compared with the control group 

( 1, 0.01m d p   ).  
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smaller p, smaller d, and larger m tend to exhibit longer first plateaus, implying that the 

first plateau with lower β is more associated with the mitotic term in ARDE; by contrast, 

if the diffusional dynamics is dominant (larger p, larger d, and smaller m), the second 

plateau, i.e., ~ 1/  will quickly ensue. 

Fig.3.11 (B) shows the relationship between log and   
1

log 1 wu t


 for a series 

of δ. One may note that   
1

log 1 wu t


 is asymptotically proportional to tw according 

to Eq. 3.5. The aging regime, in which τ increases with tw in power law, also crosses 

over to a ceiling. The speed of divergence of τ depends on the value of δ: a rapid 

divergence indicative of a dramatic aging corresponds to an extremely small δ and the 

aging exponent can be very large (e.g., the τ ~tw
9.7 highlighted in red). Additionally, 

there is a dynamical transition from the growth regime where τ diverges exponentially 

with tw to the aging regime obeying power-law under smaller δ.  

The vanishing of aging effect at extremely long waiting times originates from the 

existence of cell diffusion. When cell density approach the saturation level( 1u  ), the 

number of diffusing cells  ( )D u u  from the wound edge immediately after 

wounding converges to a nonzero value     1 0 4D u D u   , asymptotically. The 

small number of cells migrating from the wound edge to the wound bed as an instant 

response to wounding is independent of u(tw) in the longtime limit: 

       
 

d 1 2 1
~ 1 0 .

d 4 4 1

u p
D u u D u D u

t p


     


   

Therefore, the instantaneous recovery of M(u) for cells in the wound bed 

converged to a non-zero rate when the waiting time approaches infinity as follows: 

d ( )
d ( ( )) / d d ( , ) / d (2 1) / 4( 1)

d

woundw
w

M t
M u t t u x t t p p

t
      .   

This leads to a vanishing of aging effect ( d ( ) / dM u t  irrelevant to tw). Such a 

ceiling for criticality is almost inevitable in models where cell movement is driven by 

any existent density differences, even if in these two extremal circumstances: 

(i) The diffusivity recovers at a delayed pace such that: 

       ( ) 1conD t D u t D t t     , where Dcon(u) can be any ideal diffusivity 

purely under contact inhibition at cell density u satisfying (ii), and π, ranging from 0 to 

1, is the delay fraction imposed on the diffusion term; 

(ii) Dcon(u1)  0.  

The reason is as follows: the instantaneous number of cells that migrate into the 

wound immediately after wounding depends on two terms D(u1) and D(u0), 

representing the cell diffusivity on the wound edge and in the wound bed, respectively. 

Even if D(u1) (at the edge) approaches zero with large waiting time tw,

 0, wD u t t  can asymptotically converge to a minimum of a non-zero value in the 

longtime limit as: 
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     

         )

0

= 0

1

0 1 ( 1 1 1 ,

con w

con con con

D D t

D u D u D D

u 

   

  

     
 

which is not sensitive to tw. Clearly, the onset of the ceiling regime and the vanishing 

of aging effect at extremely large waiting times is inevitable for the ARDE models. In 

real experiments, incomplete healing may instead occur for such long waiting times 

(see Ch.3.4). 

2) Criticality in DRDM 

As is observed in the Fig.3.1(C), the shift of subpopulation structure is critical to 

the onset of physical aging. Yet, the dynamics of the subpopulation structure in DRDM 

are affected by multiple factors, including cell-ECM adhesion, cell-cell adhesion, cell 

polarization, regulation of cell-cycle arrest, apoptosis, and cell movement. Therefore, a 

criticality analysis is done to identify which are the critical ones to aging. Since 

apoptosis is negligible in the in vitro cell monolayer formation, only the effects of the 

ECM threshold e, polarization threshold p, arrest threshold a, and growth threshold g 

are examined. 

Healing time in the DRDM simulation is defined as the time when 90% of the 

wound sites are re-occupied by cells, and is measured for different sets of e, g, a, and p. 

As Fig.3.13 (A) reveals, e and g are the two most critical factors that slow the healing; 

by contrast, p and a play insignificant roles in aging [Fig.3.13 (B)]. However, the abrupt 

jump of from roughly 50 steps to infinity corresponds to the emergence of incomplete 

healing, which is a complex issue that can only be reproduced in the DRDM and not 

found in ARDE. I will leave the discussion of incomplete healing to Ch.3.4.   

The dependence of healing efficiency on the ECM threshold e [Fig.3.13 (C2)] 

shows that the ECM plays a role in the slowdown of healing. In the DRDM, a lower 

value of e induces a quicker polarization that may lead to cell cycle arrest, suggesting 

that the accumulation in ECM induces the slowdown of healing in DRDM through 

promoting cell cycle arrest. The growth of ECM in DRDM can meanwhile affect the 

cell motility. Nevertheless, as we have shown in Fig.3.10 (Ch.3.3.2.) that the loss of cell 

mobility cannot lead to a significant aging effect in DRDM. Hence, the aging effect 

associated with ECM here is caused by cell cycle arrest instead of the mechanical 

reasons. 

Healing times diverge continuously with g as a power-law ~ g  for small g [Fig. 

3.13(C1)]. Clearly, 1/g serves as a control parameter like the delay fraction δ in ARDE 

[see Fig.3.11(A)], and for both, the criticality vanishes for smaller1/g and δ. However, 

the value of critical exponent   in DRDM is varying with other parameters such as 

various ECM thresholds e [Fig.3.13 (C2)] and various arrest thresholds a [Fig.3.13 (D)], 

indicating that g is not as dominant as δ for the emergence of dynamical scaling. 
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3) Essential interdependence structure: restriction asymmetry 

Although DRDM and ARDE are models at distinct scales, the control parameters 

revealed by the criticality analysis in the two models have similarity in essence. In 

DRDM, growth threshold g determines the asymmetry of the regulation in the 

restriction point (a checkpoint for entry and exit of cell cycle arrest): entry into arrest 

depends only on the arrest receptors, whereas the exit from arrest requires additionally 

the growth receptor amount exceeding g [Fig.3.14 (A)]. When g is zero, entry into and 

exit from cell cycle arrest are governed solely by arrest receptors, i.e., the transitions 

between growth and arrest become symmetric. Otherwise, for any non-zero g, quiescent 

cells must have their growth receptor amount overcome an extra barrier of g. If g is too 

large, cells can rarely revive from cycle arrest. The arrest-to-growth (or the growth-to-

arrest transition) in DRDM cells is exactly a more detailed representation of the increase 

(or decrease) in the mitotic rate M in the ARDE (Eq.3.6), and the growth threshold g in 

DRDM, similar to that of  in the ARDE [Fig.3.14(B)], controls the aging rate [referring 

to the inset of Fig.3.13(A)]. In addition, just as the critical role of  is more prominent 

under stronger contact inhibition in ARDEs [Fig.3.11 (A)], and the criticality or aging 

in DRDM controlled by g is likewise more apparent under growth-inhibitive conditions, 

Figure 3.13 Critical behaviors in DRDM for different parameters. All wounds are set to be performed at 

10 steps after the start of the simulation. The thresholds e, g, p, a are in the unit of RM, which is the receptor 

amount required for mitosis. See APPENDIX B(3) for other parameters. (A) Healing time  in relation 

to e and g. The right panel: the log-log plot of  versus tw with four pairs of {e,g} marked as the black 

balls on the 3D diagram. (B Healing time  in relation to p and a, with e fixed at 0.8RM and g at 0.05 RM. 

The infinitely diverged values of  are truncated to 104. (C) The 2D log-log plot of versus g under 

various e (C1) and the log-linear plot of versus e under various g(C2). (D) The divergence of  as a 

function of g for different arrest thresholds a, with e = 0.8 RM. 
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such as a low ECM threshold [Fig.3.13(C1)], a low polarization threshold (a sensitive 

polarizing response to cell-cell adhesion; results not shown here), or a low arrest 

threshold, i.e., a strong cell-arrest regulation [Fig.3.13(D)]. Since the delay fraction δ 

has been substantiated by the growth threshold g in many aspects, we can interpret the 

critical parameter for bio-aging in the wound healing context as restriction asymmetry, 

which means the degree of asymmetry between the growth-to-arrest and arrest-to-

growth transitions in cell cycle governed by the restriction point.  

For the real control parameter in the experiments, it could correspond to the time 

a cell needs to get cycle arrest over the time it needs to wake up from the quiescence. 

And this can be measured both for a single cell or a population of cells. To this point, a 

very clear hypothesis that can be falsifiable by experiment is proposed. 

3.4 Incomplete healing in vitro and in silico 

The most eminent discrepancy between the DRDM and the ARDE model lies in 

the ability to reproduce the heterogeneous healing rates at the leading edge and the 

incomplete healing phenomenon. In the ARDE model, the varying ability of cell 

proliferation and migration depends only on the cell density, suggesting that the cells 

have the potential to grow and move (D(u) > 0, M(u) > 0) as long as any unhealed space 

with cell density u < 1 remains. By contrast, in the DRDM, the inhibition of cell growth 

and cell mobility depends not only on cell density, but also on the adherent cohesion 

among cells, the sensitivity to ECM, and on the intrinsic regulation for cell cycle arrest. 

These sophisticated factors yield a huge diversity of cell phenotypes in DRDM, 

resulting in heterogeneous healing behaviors along the wound edge. As shown in 

Fig.3.15(A) and (B), some of the leading cells invade into the wound bed quickly while 

others remain inactive, producing some finger-shaped healing fronts. Although the 

Figure 3.14 The essential interdependence structure for multicellular aging in DRDM (A) and in ARDE 

(B). The thickness of the arrows represents the transition rate. 
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macroscopic cell mitotic rate averaged along the whole edge should be equivalent to 

M(u) in the ARDE model, this equivalence holds only for smaller waiting times when 

more cells are viable with less heterogeneous cell phenotypes.  

The heterogeneity among cell phenotypes profoundly affects the healing processes 

when the waiting time is long enough, causing incomplete healings in DRDM 

especially with a low arrest threshold a, i.e. a higher tendency for cell-cycle arrest. 

As a result, healing was totally ceased in the middle of the process [Fig.3.15(C)], 

leaving the wound areas unhealed. To understand this phenomenon, one can imagine 

an extremely unfortunate case where no cell on the wound edge is reactivated to 

proliferate or move. This occurs when very few cells are active in the system with a 

finite number of total cells, hence the averaged mitotic rate along the edge can only 

decrease in a quantum manner with longer waiting times: jumping from a small value 

to zero. Even if the finger-shaped edges can form, a lower value of arrest threshold a, 

which indicates strong inhibition of cell cycle, will gradually suppress the mitosis of 

the cells during the healing, thus preventing the cells at the “finger” from further 

invasion into the denuded area.  

Figure 3.15 Incomplete healing phenomena (A) In DRDM simulation Red dots: proliferating cells; grey 

dots: temporarily arrested cells, black dots: permanently arrested cells. (B) In vitro experiment with cells 

subcultured for 40 generations. 
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In fact, incomplete healings have been observed in another series of experiment 

with a cell line of HepG2.2.15 subcultured for about 40 generations, i.e., these cells 

were “old” in contrast to the newly thawed cell line used in Experiments I and II (in the 

Ch.3.2). The reason of incomplete healing in vitro is unclear so far; yet, by associating 

with the incomplete healing phenomena in DRDM, it can be postulated that the 

accumulation of the damages to the cells over generations can correspond to the 

decrease in arrest thresholds in the DRDM simulation. Accordingly, the incomplete 

healing may be caused by the strong cell-cycle inhibition in experiments and it should 

occur for two kinds of cells: 1) the old cells which inherently have low arrest thresholds; 

2) the newly thawed cells with extremely long waiting time, which have higher arrest 

thresholds but accumulate excessive non-degradable “arrest receptors” over time. 

3.5 Analogy between bio-aging and physical aging 

As is advocated in the previous results, multicellular aging behaves like the 

relaxation processes in nonequilibrium systems such as glasses. Over the past decade, 

the analogy between glassy or jammed materials and cellular sheets has been studied 

on the basis of mechanobiology [107-112]. Many glass-like mechanics such as dynamic 

heterogeneity, cooperativity, and kinetic arrest seem to prevail in living systems or 

active matters [114]. Although the interdependency and causality between the glass-

like mechanics and the biological aging are not fully clarified, it is possible to establish 

an analogy between the slowdown of healing in the cellular sheet and the slowdown of 

relaxation in physical systems based on the current findings in experiments and 

simulations. Both of them conform to the dynamical scaling and the control parameter 

for wound healing, the restriction asymmetry which is identified by two wound healing 

models at different scales, can have many similarities with the physical control 

parameters like temperature, density, etc.  

The analogy between the two types of aging can be articulated with the trap model 

[104]. In a system with many particles (or cells), each particle (or cell) senses a local 

energy trap (or a biochemical trap that induces cell cycle arrest) formed by neighbors 

(or ECM, cell-cell adhesion), the escape from which requires more effort than does 

entering into it. When the control parameter approaches a critical value, the barrier of 

the traps will become so high that the system dynamics may easily be captured in the 

local minimum of the energy landscape. In this analogy, the two systems based on 

disparate dynamics resemble each other, having a common definition of the control 

parameters as the ratio of the effort required to fall into a trap (arrest) to the effort 

required to escape. Typically, when this ratio is small (e.g. low temperature, high 

density in physical systems and small δ in ARDE), the dynamics of the particles (or cell 
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cycles) tend to be arrested and the system loses the ability to relax in physical systems 

(or to regenerate in biological systems).  

Nevertheless, due to the low time resolution and the short observation timescale 

of the current experiments of TDWHAs, a finer comparison between the slowdown of 

healing and the slowdown of relaxation events in physical systems is limited, thus 

leaving many unclarified issues associated with the analogy between two types of aging. 

For instance, dynamical scaling of physical aging is believed to originate from the 

symmetry of time-spatial local scale invariance [105-106], a property that currently has 

not found its biological counterpart yet. Also, the scaling exponent of physical aging 

typically ranges from 0 to 1, whereas in the proposed ARDE, this exponent can be far 

greater than 1 when δ is close to zero; this suggests a possibility that the exact scaling 

of the healing curves might be exponential to the waiting time, instead of power-law. 

Meanwhile, the criticality around the critical point of the control parameter found in the 

biological model is restricted and influenced by many other factors such as cell 

movement, cell-ECM interactions, cell polarization among others, implying that the 

living systems with tremendous complexity might be no perfect analog of any physical 

systems. Finally, the concepts of equilibrium and relaxation in physics (associated with 

ergodicity and a process of reaching ergodicity) do not rigorously correspond to tissue 

homeostasis and regeneration (where only non-ergodic steady states are possible) and 

it is unclear to what extent this fundamental discrepancy could falsify the analogy and 

impair its application prospects. Future studies of TDWHAs should involve various cell 

lines and experimental settings at higher time resolution and with longer waiting periods 

for clarifying the detailed mechanism underlying the slowdown of healing and for better 

translating the theory of physical aging to bio-aging problems.  

3.6 Summary of Chapter 3 

Being close to the critical state, multicellular aging is a nonequilibrium critical 

phenomenon showing dynamical scaling in the DRDM. To verify and to better study 

these critical behaviors of the multicellular systems, a time-delayed wound healing 

assays on a confluent cellular sheet were performed. In the experiments, the dynamical 

scaling of wound healing was observed. In order to further merge the DRDM and the 

macroscopic phenomena observed in experiments for proposing testable theories on 

multicellular aging, another simpler asymmetric reaction-diffusion equation (ARDE) 

for wound healing is proposed. This simpler model can reproduce all the macroscopic 

phenomena observed in experiments in terms of the healing curves and the density 

profile propagations. Paralleled criticality analysis for ARDE and DRDM helps identify 

the control parameter of aging as the asymmetry between the growth-to-arrest and 
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arrest-to-growth processes of the cells (restriction asymmetry). The successful bridge 

between the two models of different scales indicates that for multicellular aging (at least 

in vitro), the complexity of the system can be reduced or self-averaged by removing the 

details that are irrelevant to restriction asymmetry and by replacing details related to 

restriction asymmetry with more simpler representations. 
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Chapter 4 

 Nonequilibrium phase transitions 

in multicellular homeostasis  

So far, the theoretic answer to the question whether and why normal homeostasis 

appears unstable and absorbed into aged and tumorigenic states in a long time is still 

absent. The restriction asymmetry as a control parameter identified by wound healing 

analysis indeed implies that the intrinsic dissipation of energy through cell cycle arrest 

may be one of the reasons. If the aging and tumorigenesis processes are potentially 

mapped to the absorbing phase transition in nonequilibrium physics, the fundamental 

scientific task here is first to draw the basic mathematical principles for such a living 

system to have the absorbing-phase transitions from healthy homeostasis to abnormal 

states. This needs a precise theory abstracted from a simple model that keep non-trivial 

macroscopic properties comparable to DRDM with no further redundant details. A 

plausible solution could be to seek for the receptor dynamics in the DRDM a Markovian 

representation, whose advantage lies in its mathematical analyzability. The following 

three subsections serve to be a tentative practice to accomplish this task. 

4.1 A simple Markovian spin model 

In the DRDM, the cells change their phenotypes according to the configuration of 

five kinds of receptors; in the correspondent Markovian representation of the phenotype 

dynamics, cells can change their phenotypes by some probability rates, which are time-

independent. Despite that cells have many phenotypes in the DRDM (such as growing, 

polarizing, dying, and moving), the basic phenotypes critical to the system lifespan and 

the system stability of subpopulation structure are the three: cell proliferation, cell death, 
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and cell cycle arrest. If the single-cell kinetics are Markovian, we can define a transition 

matrix whose elements are homogeneous probability rates between each pair of the 

three phenotypes (Fig.4.1). Note that this Markovian spin model for DRDM is by nature 

a Potts model [115], which belongs to the family of stochastic cellular-automata.   

Now since the transition matrix is defined as equivalent to the threshold dynamics 

of receptors in the DRDM, the transition rates pij ( , {p,a,d}i j ) must conform to the 

biological settings, especially of the intercellular interaction, in the DRDM. First, it 

should be noted that cells in this simple Markovian model is still assigned on the node 

in a network with predefined geometry and each node is mostly occupied by one cell, 

as is in the DRDM. Thus, the state “d” here broadly means that the node is null. As a 

universal principle for a living entity, the state “a”, which means the cell cycle arrest, 

happens only to the living cell and not to the “null” state, so pda must be zero. Next, 

let us specify the remaining transition rates one by one: 

1) If the node state is “d”: 

The probability for an empty node to become occupied by a growing cell is only 

possible when the node is surrounded by some proliferative cells and the probability of 

the proliferation of the surrounding cells characterizes the transition rate pdp . Hence,  

,d pp ~
n

n N

p N



 
 
 
 , 

where ηn is the state of the node n, δi,j is the Kronecker delta and N is the set of 

predefined neighboring nodes of this node with  denoting its size (the number of 

elements in this set). Clearly, pdp determines the rate of energy injection of the system. 

Figure 4.1 A Markovian representation of spin dynamics at each node and its transition matrix. The 

fraction number pij is the probability rate for a cell to transition from the state i to the state j 

( , {p,a,d}i j ) at each time step. The unknown fraction “X”s satisfy that sum of each row in the matrix 

equals 1.  
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2) If the node state is “p”: 

In the DRDM, a growing cell secretes much extra-cellular matrix (ECM) whose 

concentration is one of the critical signals to stimulate the cell polarization that proceeds 

to accumulate arrest receptors, with the amount of inter-cellular adhesion the other 

critical signal. Both ECM and intercellular adhesion is large with sufficient local density 

of the cells. Accordingly, the probability of a node to change the state from cell 

proliferation to cell cycle arrest depends on the number of cells surrounding: 

 ,p aa p ,~
n n

n N

p N  



 
 

 
 . 

This density-dependent growth inhibition is also called contact inhibition of cells. 

In the DRDM, the rate of cell death is highly dependent on the time the cell has 

spent in the unpolarized growing state in which the number of death receptors can 

accumulate. Unfortunately, it is very difficult to encode this time-dependent 

information into the time-independent transition probability ppd based merely on the 

last-time system configuration. Therefore, this ppd is set as constant to characterize the 

existing time of a single proliferative cell.  

3) If the node state is “a”: 

 For a cell with ceased cell cycle, the condition for it to restart the cycle is the loss 

of growth inhibition, i.e., the decrease in ECM and intercellular adhesion in the DRDM. 

This is only possible when the empty space appears around this node. Therefore, the 

transition rate pap is dependent on the number of empty nodes surrounding. Meanwhile, 

remember that in DRDM, another prerequisite for cell regrowth is its growth receptor 

amount exceeding the growth threshold g, which implies that the cell spent should not 

be deeply arrested. In the Markovian representation, this should be related to the fact 

that whether the node is still surrounded by sufficient proliferative cells: if the 

neighboring cells are proliferative, the chance by which this node is temporarily 

arrested by these proliferative cells is high; otherwise, the cell cycle of the cell at this 

node may have stayed in the quiescence for too long a time to be revocable. Combining 

the two rules, the probability for a cell to transition from cell cycle arrest to cell 

proliferation is: 

 
2
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n N n N
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 



   
   
   
  , 

where the left bracket stands for the loss of contact inhibition and the right bracket for 

a temporary cell-cycle arrest. As one may observe from the equations above, the 

regrowth probability pap is smaller than the growth probability pdp.  

Considering the death probability for an arrested cell, it also depends on the time 

the cell has spent on the non-polarized growing state during which the death receptors 
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are synthesized (the same as for ppd). Nevertheless, since the polarized state of cell 

can lock the process of death receptors accumulation by transforming the active 

receptors (growth, adhesion, and ECM) to arrest receptors, the fact that whether the 

arrested cell is still polarized will influence the death probability of the cells: to simplify 

the situation, one can relate the loss of growth inhibition to the increase in cell death 

incidence. Combining the two aspects, the transition rate pad becomes: 

,a pd d d~
n

n N

pp N 





 
 
 
 . 

By specifying these rules of intercellular interaction, one can update the transition 

matrix in Fig.4.1 as follows: 

 

Table 4.1 Transition matrix for each node i in the Markovian representation of DRDM 

ηi proliferation arrest death 

proliferation  
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N
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,pn

n N

g

N





 0  

Note: The blank elements for self-transition rate pii satisfy that the sum of each row is unity. 

 

In Table 4.1, four homogeneous parameters are introduced: the growth rate g, the 

growth inhibition strength a, the death probability d, and the regrowth power r, all 

ranging from 0 to 1. Without the loss of the generality, the growth rate can be set as 1 

and the remaining three parameters are the irreducible control parameters to determine 

the system dynamics. So far as is shown in the next subsection, the three parameters are 

sufficient to reproduce the system dynamics which are similarly seen in the DRDM.  

4.2 Simulation result  

The simulation space S is, as in the DRDM, a 2D regular lattice with periodic 

boundary conditions. The neighbors of each node are predefined as the four Von 
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Neumann neighbors (other definitions of the neighbor set will make a trivial difference). 

Fig.4.2 shows the snapshots of the system dynamics with different parameter 

settings. The lattice size is 100×100 and the initial condition is η(50,50)= p and η 

(others)= d, i.e., seeding one proliferative cell at the center of the lattice. 

By changing the control parameters, one can still observe several growth patterns 

such as degenerate, normal to degenerate, normal to tumorigenesis, tumorigenesis. As 

is in the DRDM, the normal state can be quasi-stable with extremely large relaxation 

time to reach the final degenerate state [Fig.4.2 (A)]. The red dots represent proliferative 

cells and grey ones represent arrested cells. Fig.4.2 also shows for each growth pattern 

the time evolution of the vitality index v =0.1Pa+Pp (which is defined similarly as in the 

Figure 4.2 Simulation output for five kinds of parameter settings for linear system size L = 100. Red 

dots represent proliferative cells and grey ones arrested cells. The time plots on the rightmost column 

show the evolution of the vitality index v (black line) and the portion of arrested cells (red line).  



 

87 

 

Eq. 2.3), where Pη is the percentage of the cells in the state η. One can compare Fig.4.2 

to Fig.2.2 and find two models have a very similar diversity of the growth patterns but 

the Markovian system can hardly keep stabilized morphology as is shown in the DRDM 

because the events like cell death and cell cycle arrest occur with spatial homogeneity. 

This small discrepancy between threshold dynamics and Markovian dynamics of cell 

phenotype transition reveals the fact that the time-independent probability “rate” of cell 

death loses some information which is accumulating through time in the DRDM 

although this might be trivial compared to other parts of the dynamics in the model.  

4.3 Mean-field analysis 

The Markovian spin model here is conceived for investigating the reason why the 

system has quasi-stable normal homeostasis and why the system has the intention of 

being absorbed into degeneration and tumorigenesis. One can approach this by 

mathematical analysis on the dynamics of system variables. The system has two degrees 

of freedom: the number of arrested cells and the number of proliferative cells; thus, the 

populations of these two types of cells are the two dynamic variables to be tackled. Let 

me denote these two fractions of populations at time t as Pa(t) and Pp(t). The “master 

equation” of this system is characterized as follows: 
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
(Eqs.4.1) 

with the initial condition Pp(0)=1/|S| and Pa (0)=0. |S| is the system size LL. In order 

to solve this dynamic equation, one can use a mean-field approximation. The transition 

rate pn
ij (t) ( , {p,a,d}i j ) at each node n, which is fluctuating across the whole space, 

can be replaced by an effective global transition rate pe
ij(t), which can be shared by all 

the nodes at the time t. This mean-field assumption is only valid when the cell number 

is large enough, i.e., the node state configuration in a local subsystem (which is the Von 

Neumann neighboring area in the simulation) in can be statistically approached by the 

configuration in the global system. Thence, one can obtain the effective transition rates 

by substituting the global node set S for the local node set N in the definitions of all 

transition rates (see Table 4.1) and Eqs.4.1 with the limit of infinitesimal time interval 

becomes: 
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  (Eqs.4.2) 

Now, Eqs.4.2 is a set of nonlinear differential equations with only two time-

dependent variables. The fixed points of Eqs.4.2 can be solved by setting  

p a0, 0P P   

under different circumstances: 

(i) When r, a, d = 0, the system has the fixed points lying at two lines: Pa + Pp=1 and 

Pp =0, the former one is stable and the latter unstable. Considering the initial 

condition (1/|S|,0), the two lines of fixed points predicts that Pp, i.e., the percentage 

of proliferative cells, keeps diverging until it reaches 1 and the system is in the all-

proliferative configuration. This is easily understood that the cell-cycle arrest and 

the cell death are mutated hence the proliferative cells multiply to dominate the 

whole space. 

(ii) When r, d = 0 and a0, Eqs.4.2 have fixed points located only on the line Pp = 0. 

This is also very evident that the percentage of arrest cells is monotonically 

increasing, i.e., a 0P  , until the proliferative cells die out and the system reach an 

all-arrested configuration. The Pp = 0 serves as an absorbing wall of the system 

dynamics. 

(iii)When rd 0, which is the general non-trivial case encountered in the simulations, 

Eqs.4.2 has three fixed points (Pp*, Pa*) within Pp*, Pa*[0,1]:  

(Pp*1, Pa*1) = (0,0), (Pp*2, Pa*2) =(0,1), for all r, d, a 

  and (Pp*3, Pa*3) = ( p(1 )(1 )d a rd    , a(1 )a d rd   ) 

where εp and εa are two correction terms.  

For (Pp*3, Pa*3) to fall in the valid interval, one needs rd  a. If rd  a, this fixed 

point does not exist. 

Next, one can derive the Jacobian of Eqs.4.2 to analyze the stability of these fixed 

points. For simplicity of notation, the variable of time t can be omitted and let me set x 

= Pp, y = Pa, and then the Jacobian of the system becomes:  
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x y
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              
  

             

. 

For the fixed point (0,0), the determinant of J is (1 ) 0d d     ; thus, the fixed 

point (0,0) is a saddle point with the stable manifold at x = 0. 

For the fixed point (0,1), the determinant of J is ( ) 0a d d     , which 
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indicates that the fixed point (0,1) is also a saddle point but this time x = 0 is the unstable 

manifold.  

For the fixed point ( (1 )(1 )d a rd  + εp, (1 )a d rd  εa), the determinant and 

the trace of J and the trace τ satisfies
2 4 0    (demonstration not shown here); 

therefore, this fixed point is a spiral.  

A summary of the stability analysis is shown in the phase portrait of the system 

[Fig.4.3 (left)], which predicts the time logs in the simulation [Fig.4.3 (right)]. The red 

and blue dashed spirals in Fig.4.3 (left) only exists for rd a; particularly, the red spiral 

exists when rd  a [see the panel 2 in Fig.4.3; also refer to the Fig.4.2(A)] and the blue 

one exists when rd a [the panel 3 in Fig.4.3; also refer to Fig.4.2 (E)]. If rda, only 

degenerative processes absorbed into (0,0) is possible (the panel 1 in Fig.4.3). 

 

4.4 Finite size effect and memory effect   

Knowing that the system trajectory may become a spiral around the fixed point, 

one needs further to look into the details of the Jacobian to estimate how “stable” the 

spiral might be in a turbulent environmental setting. In fact, the trace of the Jacobian 

can be positive if the fixed point is extremely large in Pa and extremely small in Pp 

Figure 4.3 System trajectories in the space of Pp, Pa. Left: phase portrait from mean-field approximation. 

Right 1-3: the time log from the simulation of the spin flipping dynamics (for system linear size L = 10). 
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while the fixed point with small Pa and large Pp is always negative, which means that 

the spiral of the tumorigenic system (the blue dashed line in Fig.4.3) is rather stable but 

the spiral of the normal system (the red dashed line in Fig.4.3) has the risk to derail 

from the spiral and unfortunately absorbed into the stable manifold of the extinction 

point (0,0) (i.e., becomes extinctive degenerate). 

From a theoretical point of view, most system trajectories of normal homeostasis 

could be a stable spiral, as is the trajectories of the tumorigenesis. The only difference 

between the two spirals is that the spiral of normal homeostasis is closer to the stable 

manifold of the extinction point (0,0) and is less stable in theory, thus having rare 

chances to be absorbed into the wall of non-proliferation (i.e., Pp=0). However, the 

mean field approximation does not consider the non-trivial heterogeneity among cells 

which may bring substantial spatiotemporal fluctuations to local variables, especially 

in smaller systems. 

The chance for the normal homeostasis to be absorbed to the degeneration (or the 

characteristic timescale for the system dynamics to be active) decreases with the system 

Figure 4.4 Absorbing phase transition under finite size and memory effect. Panels (A-C) show the system 

trajectories under the same parameter setting with increasing system linear size L= 10, 20, 30. Panel (D) 

shows the absorbing phase transition of normal homeostasis appears in large system with a periodically 

oscillation in death rate d.  
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size [Fig.4.4 (A)-(C)] because the spiral becomes more centered and appears rather 

stable. Being near the absorption wall, the system will also become sensitive to time-

dependent fluctuations such as turbulent environments and synchronization of cell 

phenotype due to memory effect (e.g. brought by threshold dynamics). Fig.4.4 (D) 

shows that if the constant death rate d is imposed by a periodically oscillatory signal 

with zero average, the large system dynamics of normal homeostasis again look like 

that in a small system [Fig.4.4 (A)]. This also implies that the normal homeostasis in 

DRDM which might have stable spiral trajectories, in theory, is less stable than those 

in the Markovian spin model because the DRDM adopts a threshold formalism that 

brings about large time-dependent fluctuations (refer to the periodic growing patterns 

in Fig.2.2).  

4.5 Summary of Chapter 4 

The quasi-stability of normal homeostasis and the existence of three absorbing 

states with the relation to the value of control parameters has been fully understood in 

this simple Markovian spin model based on the DRDM. Some simple rules of the 

coordination of cell growth, cell death, and cell cycle arrest can produce very complex 

growth patterns and life excursions of tissues.  

One can elaborate a theoretical picture for the Markovian spin system (and its 

complex equivalence, the DRDM), in which three possible fates appear according to 

the parameter setting regrowth ability r, death rate d and arrest tendency a:  

(i) Degenerate, which happens when rda and the dynamics terminates very fast;  

(ii) Normal, which happens when rd a and whose system trajectories is a quasi-stable 

spiral around a fixed point close to wall of non-proliferative absorption wall (i.e., 

Pp = 0 in Fig.4.2) until it hits the wall and becomes degenerate after a very long 

time of relaxation; 

(iii) Tumorigenic, which happens when rd a, and whose system trajectories are 

spiraling towards the fixed point with a period of time.  

One may notice that the transition between degeneration and normal homeostasis 

is abrupt since the existence or disappearance of the fixed point for the spiral is a 

qualitative change for the system; by contrast, the boundary between normal 

homeostasis and tumorigenesis is rather obscure and the transition is continuous. This 

can also be similarly observed in the phase diagram of the DRDM (refer to Fig.2.6). 

Finally, let us discuss why rd/a turns to be the ultimate essential interdependence 

structure controlling the homeostasis: large r and d and small a help the system to stay 

in detailed balance (symmetry of ergodicity) [105-106] or away from the breaking of 

ergodicity in a turbulent environment. In this sense, rd/a resembles δ in their controlling 
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“detailed balance of cell phenotypes” and rd/a<1 corresponds to δ<1.  

In a more vivid picture, if the three phenotypes can “flow” from site to site, the 

regrowth and death ability in compare with cell cycle inhibition will decide how watery 

the “phenotype fluid” is. Tumorigenic system in DRDM and its Markovian version is a 

perfect detailed balanced system with huge fluidity (old cells die quickly and reduce 

the contact inhibition for the healthy and strong cells to maintain system activeness), 

thus very robust against external perturbations; by contrast, normal homeostasis is 

weakly broken in the detail balance and may undergo glass transition until it gets 

degenerate; degeneration is a totally jammed condition of the “phenotype fluid” and the 

system becomes a “solid” with no other adaptive ability to any external turbulence. 

Refer to Fig.4.5 for a schematic illustration.  

Figure 4.5 Non-equilibrium phase transitions in Markovian spin system and the DRDM for multicellular 

homeostasis. 
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Chapter 5 

    A generalized methodology for CASs 

In the foregoing chapters, I have shown how multicellular system can be studied 

with models at several mesoscopic levels to deal with reducible and self-averaging 

complexities. As a result, these models embracing the same essential interdependence 

structure of dynamics can reproduce consistent macroscopic phenomena and propose 

testable theories for multicellular homeostasis and multicellular aging. Moreover, the 

coupling effect of non-adaptive relaxation and adaptation is also investigated. In this 

chapter, I will discuss the generalization of this mesoscopic modeling methodology to 

a broader class of complex adaptive systems (CASs) and its application prospect on 

pragmatic system engineering. 

5.1 Complexity problem in CASs 

Non-adaptive relaxation and adaptation are two fundamental equilibrium 

dynamics in CASs [79]. “Equilibrium dynamics” here broadly means that the process 

of dynamic optimization of some system functions, e.g. the minimization of energy for 

structural relaxation, the maximization of entropy for thermodynamic relaxation, or the 

maximization of fitness for biological evolution. The relaxation processes, prevalent in 

physical systems, depends on local individual interactions that facilitate to reach a stable 

microscopic configuration under some mechanical and behavioral principles. By 

contrast, the adaptive processes, a bequeathed wisdom by C. Darwin, are deemed as the 

essence of life [117] and depends on some autonomous variations of individual properties 

(i.e., the mutation in the biological context) that facilitate the interspecies competitions 

under the law of “the survival of the fittest”. Despite that adaptive processes have long 

been treated as the analogs of relaxations in evolutionary dynamics with concepts and 
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formulas borrowed from statistical physics [118-119], relaxation and adaptation are 

governed by laws on disparate levels yet extensively intertwined in CASs.  

In a long history, relaxation and adaptation have been studied within distinctive 

academic disciplines for their incomparable characteristic spatiotemporal scales. The 

one process with shorter characteristic scales predominantly controls the system 

evolution with the other one yielding epiphenomena. For instance, in all many-body 

physical systems embracing fixed mechanical laws with non-mutable particles, the 

characteristic timescale of adaptation is infinitely long so that the system only 

equilibrates through relaxation, reaching a stable particle configuration; by contrast, 

for the systems with large-scale living entities such as cells, people, or even groups of 

people, the timescale of relaxation can be rather long, hence the system tends to 

equilibrate through adaptation to reach a configuration wherein no individual can gain 

more fitness, e.g., the Nash equilibrium in game theory[125]. 

Relaxation processes not only constitute the dynamics in condensed matters and 

material sciences[120], but also extends to pattern formations in diffusion-reaction 

systems[28], the self-organization of homeostasis in biological organisms [121], the 

Pareto optimization of resource allocation in neo-classical economics [122], the 

emergence of behavioral patterns in macroscopic socioeconomics[123] amongst others; 

whereas, the studies on adaptation tackles mainly ecological and biological issues[124], 

and has been extended to cancer biology [71-73], game theory[125-125], 

sociobiology[127], psychology[128], evolutionary economics[129], and so forth. 

Complex adaptive systems (CASs) [130] are the systems where relaxation and 

adaptation feature comparable characteristic scales and intertwine to generate huge 

complexity (as one has seen in Ch.2.3) [131]. Variations of individual properties during 

adaptation changes the interaction laws and reciprocally, the ongoing relaxation of the 

individual configuration will interfere with the way of variation and selection.  

A conventional approach to dealing with this complexity in the framework of the 

Darwinian evolutionary theory is to encapsulate the impact of both processes into the 

fitness function as two types of noises, which, nevertheless, is very difficult to formulate 

[118,132]. Particularly, Game theory [125] addresses this problem via a paradigm in 

which the fitness of an individual genotype dynamically varies as a function of the 

composition of other individual genotypes by assuming random phenotypic interactions. 

Note that a genotype is a replicable individual intrinsic trait that contributes to the 

phenotype, whereas a phenotype is a transient behavioral state resulted from not only 

the genotypes but the local interactions and the environment as well. This simplification 

of phenotypic interactions facilitates mathematical formulation at the sacrifice of non-

trivial structures in the interactive dynamics that define the features of specific CASs.  

Take multicellular system, which is the research object in this thesis, for example. 

On one hand, many biologists assert that Darwinian adaptation governs the complex 

diseases like cancer, in which cells with cancerous genes are advantaged and selected 
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to survive; on the other hand, the multicellular system is constantly subject to the 

relaxation mechanism stemming from the biochemical negative feedbacks among 

different bio-entities to stabilize the multicellular culture for the maintenance of overall 

biological functions, i.e., homeostasis. In the studies of multicellular homeostasis, cells 

are presumed to be homogeneously programmed automaton without mutations because 

mutation rate is considered as too small to affect homeostasis. By contrast, in studies 

focusing on the genetic mutations and evolutionary origin of cancer, those non-

mutational factors (including the multicellular relaxation) can only be simplified as 

some “source of noise” added to the fitness function for the sake of theory formulation. 

How the two processes exactly couple in complex diseases like cancer is still obscure 

and the study oriented to practical uses is lacking. 

As opposed to many existing paradigms which studies genotype dynamics in detail, 

the main methodology present in this thesis for addressing the complexity in 

multicellular systems is to disentangle the complexity by first focusing the non-

mutational phenotypic dynamics of local interactions then tailoring the phenotypic 

dynamics by the impact of adaptation. In other words, the mesoscopic approach treats 

the CAS as a physical system composed of many mutable particles for abstracting the 

specifiable non-trivial interdependence structures (e.g. rd/a in Ch.4) and then utilizes 

the non-adaptive phase diagrams for analyzing adaptation.  

5.2 Generalized framework 

As is emphasized in 5.1, the methodology advocates a mesoscopic deconstruction 

of the system details into non-adaptive phenotypic interactions and the genotypic 

variation strategies for adaptation. The non-adaptive parts have been fully discussed in 

the thesis for multicellular systems in terms of model simplification, model comparison, 

and theory establishment and are summarized in Ch.5.2.1 as a systematical review. The 

coupling of non-adaptive relaxations and adaptation has been studied by the mutational 

DRDM and a general picture of how adaptation tailors the relaxation processes has also 

been established and summarized in Ch.5.2.2.  

5.2.1 Models for non-adaptive relaxations  

Fig.5.1 is an overview of the non-adaptive models discussed in this thesis on the 

plane of model analyzability (horizontal axis) and model scale (vertical axis). A model 

with full empirical details can reproduce richest phenomena; yet, the larger the scope 

of reproducible phenomena is, the lower mechanistic power the models has. By contrast, 

a model on a larger scale with fewer details can reproduce a more specific scope 
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phenomenon whose relation to the model assumption is clearer and more analyzable; 

yet phenomenon produced by simpler models may not lie within the scope of the 

phenomena reproduced by a complicated model or in reality. This is a gap between the 

pragmatic and theoretic approach in systems biology (refer back to Fig.1.1).  

Fortunately, the non-adaptive details contributing to relaxation might have many 

isomorphic representations on different levels of scale because they compromise the 

huge amount of self-averaging complexity. As shown in Fig.5.1, the model with more 

microscopic details (IBcell) can be simplified to the DRDM, which loses the precise 

morphological information but keeps reproducing diverse homeostasis; a simpler 

Markovian spin model can further be simplified from the DRDM to analytically explain 

why diverse homeostasis occurs but totally loses the morphological patterns and 

memory effect in the DRDM. Meanwhile, a macroscopic model ARDE with only one 

parameter is specifically proposed to tackle with multicellular aging and is found to be 

isomorphic to the DRDM with normal-to-degenerate parameter settings through 

criticality analysis. Once the simple model is found to be isomorphic to a complicated 

model and they both reproduce consistent phenomena, the model assumptions used in 

the simple model should find its equivalent complex representation in the complicated 

model, which is the essential interdependence structure responsible for the self-

averaging complexity. In most cases, the isomorphism between models on different 

scales cannot easily be confirmed, unlike the strictly defined universality classes in 

statistical physics for the models on similar levels. Therefore, it is always valuable to 

have models at many different scales and to compare them for cultivating an intuition 

Figure 5.1 Non-adaptive models on different scales. 
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on the model selection. With suitable models on the mesoscopic scales, the gap between 

the pragmatic and theoretic models can be merged for generating testable theories 

applicable to pragmatic problems.  

One should also note that the roads from complex models to simple models are 

diverse and phenomenon-oriented. A simple model usually can only address very few 

well-defined phenomena (e.g., the current ARDE can only explain the complete healing 

with late onset of the aging regime, while the DRDM can further reproduce incomplete 

healing because of more degrees of freedom in the parameter space). Therefore, 

defining a phenomenon of interest precisely will help one find the nearest mesoscopic 

path from the complex details to some simple theories. 

    

5.2.2 Adaptation coupled with relaxation 

Then, what is the role of adaptation in CASs? Based on the results in Ch.2.3.5, one 

can have a simple formulation to help abstract the essence of complicated dynamics 

under both relaxation and adaptation as:  

  f(x)=fsys(x) + μ fin(x)  (Eq.5.1) 

where x is a multi-dimensional control parameter for non-adaptive relaxation and 

meanwhile the “genotypes” to be selected. f(x) is the Wright potential for selecting 

individual genotypes,  fsys(x) is the order parameter of non-adaptive relaxation serving 

as the potential under “system selection”, and fin(x) is the potential under non-

interactive selection(e.g. natural selection). The coefficient μ weighs the scale 

difference between the two terms and can also be interpreted as an effective mutation 

rate µ= µ0 G(fsys(xx)), in which µ0 is the speed of variation of individual genotype 

without being the constraint by others and G(fsys(xx)) is a factor that adds a nonlinear 

dependence of μ on fsys(xx). In the case of tumorigenesis in the DRDM, G(fsys(xx)) is 

a non-zero increasing function of fsys(xx) because the mutation of cells only happens 

when the cell is dividing, and a system with a higher fsys(xx) will have a higher 

frequency of cell division, thus a higher mutation frequency. For other CASs, the 

prerequisite of mutation could be different. For instance, in the free market systems, 

G(fsys(xx)) can be a decreasing function of fsys because the mutation of investment 

strategies of one company in the market may only happen when the current strategy 

becomes non-profitable (inducing low fitness). Therefore, the formulation of μ is 

context-specified. 

Then, the system’s trajectory on the topologically complicated fitness landscape 

f(x) through variations involves five determinants: 

i) fsys(xx), which is also a phase function resulted from the non-adaptive relaxation 
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where all individuals have the same set of genotypes (control parameter), 

ii) fin(x), 

iii) strategies of variation, which define dx/dt for each individual; 

And if the variation strategies are rigid (like the hereditary mutations in the 

DRDM), the following two are critical: 

iv) μ, controlling the time scale difference between relaxation and adaptation,  

v) the initial condition of xx. 

 

It should also be mentioned that although fin(xx) and fsys(xx) are two different 

representations of fitness, they can be positively correlated because fsys(xx) by its 

definition is contributed by all the individuals’ fitness under the effect of phenotypic 

interactions. For instance, v, indicating the percentage of proliferating cells in the 

system, is low at the left-top corner in Fig.8 while the single cell vitality is also close to 

zero. On the other hand, the system composed of individuals with a high fin(xx) can have 

a low fsys(xx) because the resources and space are limited (by whatever means), then the 

conflicts among those strong competitors may harm the interactive cooperation, 

diminishing the collective fitness of the system. 

The rigidity of the variation strategies tends to foster huge complexity in CASs 

(e.g. the clonal expansions in the DRDM). In reality, especially for systems on larger 

scales like economic systems or social organizations, variations of individual can hardly 

be isotropic since living entities are prone to inherit many settings from their ancestors 

or to imitate the successful individuals in a constraint-ridden setting, hence the 

evolutions in real CASs may exhibit huge complexities as in the computational 

tumorigenesis. Using the Eq.5.2, one can, to some extent, foresee the evolutionary paths 

under rigid mutations and predict the system’s evolution. The lesson from the stochastic 

mutation results in the DRDM tells us that given a high plasticity of variation strategies, 

it is possible to predict the final state of the evolution through the fsys (i.e., phase diagram 

for non-adaptive relaxations) alone because the system can efficiently find the fittest 

phase and tend to self-organized at the critical boundary between different phases if the 

individual fitness and system fitness have opposite trends. 

5.3 Application: multicellular aging as an example 

The central theme of this thesis is to help find testable theories for complex 

adaptive systems that help produce applications in system engineering. The greatest 

contribution of the paralleled modeling of ARDE and DRDM is its proposal of the 

theory that delayed response to regrowth signals of cells controls multicellular aging. 

This can be tested in real experiments and may open several new research directions on 
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tissue aging and regeneration modulation. 

From the model analyses, two key factors in bio-aging were identified as 1) growth 

inhibition (resulting from cell-cell contact, cell-ECM interactions among others), which 

is the prerequisite, and 2) restriction asymmetry, the controller for the “wake-up” 

dynamics from the deep growth inhibition. For better regeneration, reducing the 

inhibition of cell growth is risky because growth inhibition is naturally programmed for 

tumor suppression. Nevertheless, reducing the asymmetry of cell-cycle regulation can 

enhance regeneration without risking tumorigenesis assuming natural growth inhibition 

is undisturbed. Therefore, administrating restriction asymmetry in the clutter of 

biological details is crucial. Restriction asymmetry in tissue may result from 

irreversibility of the activation route of signaling pathways [135-136] or can emerge 

from the monotonic shift of cell subpopulation structure [143]. Practical application to 

the regeneration of a specific tissue such as the liver tissue requires a full understanding 

of restriction asymmetry in a computational model exclusive to the hepatocytes in a 

multicellular context before key factors can be tuned in relevant experiments. However, 

we should always be aware that the delayed wake-up of cell activity may only be one 

possible ingredient attributed to tissue aging. In some circumstances, other factors such 

as the deterioration of the environment or the age-dependent pathogenesis can play 

more prominent roles. Within this scope, the effect of many medicines of interest can 

also be evaluated through its impact on the slowdown of healing. 

Another potential application is the measurement of aging rate. Measurements of 

aging are difficult because of the complexity of the interactions among contributing 

factors [138-142]. Numerous studies have revealed the genetic determinants of 

longevity [134] and place a focus on life expectancy, i.e., the chronic distance to life 

termination (death; Fig. 5.2). However, the distance from the beginning of life (birth) 

and the speed of aging should also provide much information about the regenerative 

potential, which would facilitate health maintenance. The dynamical scaling exponent 

θ obtained by fitting the wait-dependent healing processes in our study can serve as a 

quantitative description of the regeneration-related aging rate of a tissue on its life 

Figure 5.2 Measuring aging in a system’s life excursion. Traditional biomarkers are focused on life 

expectancy (i.e., the chronological distance from the present to death); whereas, the dynamical scaling 

exponent θ quantitatively describes regeneration-related aging rate from young to old. 
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excursion from young to old age. Even though our protocol for measuring θ is 

inconvenient for in vivo experiments, θ can be easily measured in vitro for any cell lines 

of interest with any specific environment settings. 

5.4 Final remarks 

For a broader class of CASs, crucial interdependence structures providing non-

reductionist theories for complex phenomena are also supposed to explain the 

correspondent complex phenomenon. Given any well-defined problem regarding a 

specific CAS, one should first confirm whether the timescales of relaxation and 

adaptation are comparable in the phenomenon of interest. If so, one can separate the 

adaptive processes from the non-adaptive ones and use mesoscopic models to reduce 

degrees of freedom and to figure out the interdependence structure responsible for the 

non-adaptive part. Then, according to the distinctive features of system adaptation, one 

should measure the individual/system fitness landscapes and analyze the system 

dynamics on the synthesized Wright potential as defined in Eq.5.2. More translations 

between the mesoscopic modeling and experiments as has been done for the ARDE and 

the TDWHA in Ch.3 should play the central role in advancing the CAS engineering in 

future.  
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Appendix A．Adhere function in DRDM 

1. Cell-cell adhesion 

Adhesion between two cells is dependent on the sizes of the cells and the distance 

between their cell membranes. There exists the largest distance (denoted as l) within 

which two receptors can be adhesive to each other. Since the single cell morphology is 

not presented, the receptors are regarded as uniformly distributed on the virtual cell 

membranes with a density, hence, in 2D space, the length scale of the cells should be 

proportional to the total amount of cell receptor R. In other words, the calculation of the 

number of receptors and the calculation of geometric properties of the two cells are 

equivalent. Assume that when two neighboring cells grow to the physically maximal 

size with a total amount of receptor RM for each, the cells have the largest radius RM / 

(hereafter =1 for simplicity). The amount of the adhesion receptor attaching the two 

cells should at most reach 1/4 of the total free receptors for each cell because any single 

cell has at most four neighbors. The free receptors (denoted as Rf), i.e., the receptors 

that can be transformed into adhesion receptors merely through a cell-cell interaction, 

can be calculated as the sum of growth and adhesion receptors. In Fig. A1, when both 

cells have the maximal number of total receptors RM, the central angle of adhesive range 

becomes π/2, thus 1/4 number of free receptors turning into the adhesion receptors for 

each cell.  

Referring to Fig. A2, let any cell A and cell B be at a distance of 2RM and with a 

radius r1 and r2 respectively. The maximal adhesive range of cell B is indicated by the 

circle in the dashed line with a radius r2 + l. The adhesion range of cell A attached by 

cell B can be found at the intersection part of the circle A and the circle in the dashed 

line. The adhesion rate of cell A interacting with B (denoted as kB), which is the portion 

of the adhesion receptors attached by cell B in the total free receptors, becomes φ/2π, 

where φ is the central angle corresponding to the adhesion range of cell A. Hence kB can 

be calculated in the triangle ABC from laws of cosine as:  

2 2 2

1 2

1

4 ( )1
arccos

4

B M

M

R r r l
k

R r

  
 . 

Considering that kB =1/4 for r1 = r2 = RM, the largest adhesion range is 

 5 2 2 1 0.47M Ml R R     

Thus the amount of the adhesive receptor obtained by the cell A is the summation 

over four neighbor nodes: 
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( 1) ( )A B A

h fB neighbors
R t k R t


   

Note that the precision of this Adhere function is not crucial because, at this level 

of receptor dynamics, any description of the adhesion process is a coarse-grained one 

which qualitatively follows the principle that cell-cell adhesion is proportional to the 

cell size and inversely proportional to the distance in between the cell membranes. 

2. Cell-ECM Adhesion 

Adhesion between a cell and its ECM is dependent on its ECM concentration. 

Suppose that a unit mass of growth receptor can secrete ECM with the maximal amount 

of concentration escr. The density of ECM, denoted as dE, is defined as follows: 

( )
( )

( )
E

scr g

E t
d t

e R t
 , 

hence the amount of ECM receptor transformed from the growth receptor is  

 
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( 1) min ( ) ( ), ( ) min , ( )E E g g g
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E t
R t d t R t R t R t

e

 
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 
 

  

𝑟2 

Figure A2 The adhesive receptors in any two cells 

shown in the colored area. The circle with a dashed 

line is the maximal range r2 + l within which the 

receptors on cell A can be attached by cell B. 

B 

 

Figure A1 The adhesive receptors between two cells 

with the maximized cell sizes. The colored area shows 

the adhesive region with 1/4 amount of free receptor 

number transformed into the adhesion receptors.  
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Appendix B. Parameter settings of DRDM simulations 

1. Basic simulations without mutation 

Table B1 All the parameters for the simulation in Ch. 2.1 and Ch. 2.2.  

Parameter Definition Baseline Value 

L System size 7171 

B The number of basic growth receptors for a newly born cell 30 

RM The number of total receptors required for mitosis 100 

s1 The secretion rate of ECM 10 

s2 The decrease rate of ECM 0.5 

g Growth threshold 0.3 RM 

p Polarization threshold 0.09 RM 

h Adhesion threshold 0.2 RM 

d Death threshold From 0 to 3.0RM 

e ECM threshold From 0 to1.0RM 

a Arrest threshold From 0 to1.0RM 

γ Growth rate of growth receptor amount 0.1 

ascr The transforming rate of arrest receptor 0.25 

dscr The transforming rate of death receptor 0.001 

escr Maximal amount of ECM secreted by per mass of growth receptors 20 

Note: Three thousand sessions of simulations are conducted by varying the death threshold, arrest 

threshold and ECM threshold at an interval of 0.1 RM [results in Fig.2.6 (A-C)] ; For the results in Fig. 

2.6(D-E), ECM threshold was varied at an interval of 0.05RM. The unit of B, RM is 10-10 mol per cell. The 

unit of s, c ,γ , ascr, dscr and escr is 1/step. 
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2. Simulations with mutation 

Table B2 All the parameters for the simulation in Ch. 2.3.  

Parameter Definition Baseline Value 

L System size 7171 

B The number of basic growth receptors for a newly born cell 30 

RM The number of total receptors required for mitosis 100 

s1 The secretion rate of ECM 0.01 

s2 The decrease rate of ECM 0.0005 

g Growth threshold 0.3RM 

p Polarization threshold 0.09 RM 

h Adhesion threshold 0.2 RM 

d Death threshold 3.0 RM 

e ECM threshold 0.2 RM 

a Arrest threshold 0.1 RM 

γ Growth rate of growth receptor amount 0.1 

ascr The transforming rate of arrest receptor 0.25 

dscr The transforming rate of death receptor 0.001 

escr Maximal amount of ECM secreted by per mass of growth receptors 0.18 
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3. Simulations for wound healing phenomena 

Table B3 Parameter settings used for time-delayed wound healing simulations in Ch.3. 

Note: Death threshold d is set to a sufficiently large number to ensure that cell death was negligible 

during the wound healing simulation. ECM threshold e and growth threshold g were two variables 

scanned from 0 to 2 RM with sampling interval 0.05 RM. For the simulations in Fig.3.13 (B), g was fixed 

as 0.05 RM and e as 0.8 RM. The simulation space was a rectangular space with the 71 columns and the 

10000 rows. The wound bed was a rectangular space with 16 columns and 10000 rows located at the 

center of the space. 

  

Parameter Definition Baseline Value 

S Lattice size 71×10000 

W The size of the wound bed 16×10000 

B The number of basic growth receptors for a newly born cell 30 

RM The minimum of total receptor numbers for mitosis 100 

s The secretion rate of ECM 10 

c The decrease rate of ECM 0.5 

g Growth threshold From 0 to 2.0 RM 

p Polarization threshold 0.09 RM 

h Adhesion threshold 0.2 RM 

d Death threshold 109 RM 

e ECM threshold From 0 to2.0 RM 

a Arrest threshold 3 RM 

γ Growth rate of growth receptor concentration 0.1 

ascr The transforming rate of arrest receptor 0.25 

dscr The transforming rate of death receptor 0.5 

escr Maximal amount of ECM secreted by per mass of growth receptors 20 
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Appendix C. Evolutionary Cont-Bouchaud Model  

Financial price fluctuations exhibit many scaling laws in the statistics [145]. The 

simplest model for reproducing these scaling laws is the percolation model proposed 

by Cont and Bouchaud[144]. The model uses percolation theory to explain the spread 

of information based on the geometry of the connectivity of the investors. For 

reproducing the fat-tailed price return distribution, Cont-Bouchaud model (CB) needs 

fine-tuning of its control parameter, the connectivity, to a critical value. However, even 

with this fine-tuning of parameters, the tail of price return distribution is too fat to be 

representative of the real market. 

A simple Darwinian mechanism coupled with a system feedback on individual 

participation rate can address these problems. Consider an investor in a lattice space 

with well-defined neighbors with an intention p (0< p <1) for participating in the market 

investment. The investor updates his intention p according to two rules:  

(1) When he is not participating in the market: he will look at the neighbors and be 

influenced by their participation intention as: 

 ( 1) avg( ( ))+neighborsp t p t X  , 

where X ~ (0,1) is a Gaussian random variable and σ measures the strength of 

stochasticity.    

(2) When he is in the market, his intention for continuing participation in the market is 

proportionally influenced by the price return of last time step. The price return serves 

as a macroscopic indicator of the system that “select” the gene, i.e., the intention p of 

investors, in the following way: 

 ( 1) ( )[1 ( )]p t p t r t   , 

where r(t) is the log return of price(shortly termed as return) and β[0,1] measures the 

sensitivity to the system behaviors.  

The trading behavior of the investors and the price formation mechanisms are 

totally the same with the original C-B model. The only modification is to make the 

original control parameter p adaptive and the control parameters now are β and σ. 

The influence from the neighbor, in fact, imposes a Darwinian selection for higher 

intention p because an investor with a lower p has more chances to look at other, while 

an investor with a higher p is more probably participating in the market thus not 

influenced by the neighbors. Therefore σ also serves as the mutation rate in Darwinian 

adaptation. With time iteration increasing, investors with low p gradually “die out” and 

the average participation rate of the investors is always increasing until the percolation 

effect happens when most of the investors are connected and share the same opinion on 

the market. Then the percolation of the investor’s opinion results in such a huge positive 

or minus return that eventually will decrease the intention of participation if the return 

is minus by chance. 
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The two rules serve as two forces that push the system self-organized to the critical 

value of the participation p, induce fat-tailed exponent -2.5~ -4 (Fig.C1) in all parameter 

spaces except for the sub-critical(black) and super-critical(white) region and produce 

the volatility clustering (Fig.C2).  

The participation rate (which is the average p) of the investors evolve with time 

around the critical value of the percolation rate. As demonstrated in Ch.3.3, the 

variation of control parameters could be a driving force for the system approaching its 

critical state and showing self-organized criticaling when the interaction-based Wright 

potential (here is the price return) tends to propel the system in the opposite direction.   

Figure C1 The tail exponent of price 

return distribution. 

Figure C2 Statistics of evolutionary 

C-B model. (A) The exemplary time 

series of price, return, and 

participation rate averaged across all 

investors. (B) The distributions of 

returns, which exhibit the self-

organized criticality in evolutionary 

CB model with =0.005, =0.1  . 



 

108 

 

Appendix D. Material and methods for TDWHAs 

1. Cell line and cell culture 

HepG2.2.15 hepatocellular carcinoma cells were maintained in high-glucose 

Dulbecco’s minimal essential medium (DMEM; Gibco, ThermoFisher Scientific), 

supplemented with 10% fetal bovine serum (US origin, Gibco, ThermoFisher Scientific) 

at 37°C and 5% CO2. The medium was changed twice a day to ensure sufficient 

nutrients for the cells throughout the entire experiment. 

2. Cell counting with a hemocytometer 

Cell suspension (10 μL) was taken using a pipette and the pipette tip was placed 

near the edge of the chamber, allowing the cell suspension to enter the counting 

chamber by capillary action. The microscope was then focused on an area of the 

counting chamber and the cells were counted using a tally counter. The average cell 

count was taken from each of the sets of 16 corner squares and multiplied by 10000-

fold. The final value was the number of viable cells per mL in the original cell 

suspension. The cell number in a total well can be calculated by the density times the 

total suspension volume (10mL) in the well. 

3. Cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-          

diphenyltetrazolium bromide (MTT) Assays 

The medium was removed from each sample of the well and replaced with fresh 

culture medium. Then MTT (5 mg/ml) was added to each well to a final concentration 

of 10%. The cells were incubated at 37°C for 4 h. SDS-HCL solution (10% SDS in 0.01 

M HCL) was then added to each well and mixed thoroughly using a pipette tip. Cells 

were then incubated at 37°C for another 4 h in a humidified chamber. Finally, the 

samples were mixed and absorbance was read at 550 nm (reference, 750 nm) with a 

spectrophotometer, indicating the metabolic viability of the total cells in the well. 
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4. Experiment parameter settings 

Item Description/Value 

Pipette type Gilson, 200μL/tips (200μL) 

Average wound bed width 0.25 mm 

Starvation time before waiting 24 h 

Initial seeding cell density 5×105 cells/well (I), 2×106  cells/well( II) 

Group number  4 (I), 5(II) 

Table D1. Parameter settings for two separate experiments with time-delayed wound healing assays. 
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Appendix E. Pseudo codes for DRDM simulation 
The DRDM is implemented on C++. Here I present the pseudo codes for non-

mutational DRDM simulation (results in Fig.2.6). The annotation is in green. 

 

1. Header 

#ifndef header_h 

#define header_h 

#include "stdlib.h" 

const int s =71; //system size 

const double basic_r=30; //B 

const double max_r=100; //RM 

const double scr = 10; //s1 

const double dc=0.05*scr; // s2 

const double e_scr=2*scr; //ecm secretion max 

const double ad=0.01; //adhesion threshold  

const double g= 0.03*max_r; //the growth threshold 

const double gf = 0.1; //growth factor γ 

const double a_scr=0.25; 

const double d_scr=0.5; 

/*time constant*/ 

const int max_t =1000; //simulation time 

const int w_t = 20; //wounding time 

 

 

class node //lattice node profile 

{  public:  

  node(int num):no(num),ar(false),age(0) //Initialization 

  {   for(int i=0;i<5;i++) 

   {  receptor[i]=0; }   

   ecm=0; 

   for(int i=0;i<8;i++) 

   {    observable[i]=0;} 

   left=NULL; right=NULL; top=NULL;bottom=NULL; 

   a=0;d=0;e=0; } 

/*cellular parameter*/ 

 bool ar; //cell cycle arrest index, 1 for arrested 

 int no; //the node index 

 double receptor[5]; //[growth][adhesion][ecm][arrest][death] 

 double ecm; //extra cellular matrix amount E 

 double observable[8]; //[num][age][G0][G1][S][death][permanent arrest][moving] for output  

 int age; 

double a; //arrest threshold 

double d; //death threshold 

double e; //ECM threshold 

/*neighbours*/ 

 node *left; node *right; node *top; node *bottom; 
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 void cycle(); //cell cycle 

 void wd(); //wound 

/*cellular function*/ 

private: 

 void growth(double gf); //accumulation of mass 

 void proliferation(node *daughter);//give birth to a daughter 

 void adhesion(); //adhere to other cell 

void rpoint(); //Restriction point 

 bool death(); 

void moveto(node *n); 

 // void mutation(); }; 

/*Multicellular function*/ 

int maxN(double * e, int l); // find the neighbor with least totalE 

double totalE(node * x); //calculate the total ECM concentration around 

int neighbour(node *x); //count the number of neighbors 

#endif  

 

The definition and realization of these functions are following the Table 2.3, and I 

show the realization function of growth for an example. Others not shown here for 

saving space. 

 
void node::growth(double gf) 

{  if (!ar) //not arrested    

{     observable[3]=1; //a growing cell counted} 

  else 

  {  gf=0;  } 

   if (receptor[0]+receptor[1]<max_r) //smaller than the mass of division 

  { 

receptor[0]=((1+gf)*(receptor[0])); //growth receptor accumulation 

   ecm = ecm+scr*receptor[0]-dc*(receptor[1]+receptor[2]+receptor[3]+receptor[4]);}}//ECM 

accumulation 

 

2. Main body 

#include "header.h" 

#include "stdlib.h" 

#include "fstream" 

#include "math.h" 

/*according to the simulation tasks, other headers may be included*/ 

using namespace std; 

 

/*Establish the lattice*/ 

void create_network(node *first,int size) 

{  2D-regular lattice: realization not shown.}  

void destroy_network(node *first) 

{  realization not shown. } 

void seed(node *n,double aT,double eT,double dT)//aT,eT,dT arrest,ECM,death thresholds 

{   

    n->receptor[0] = basic_r; 

    n->ecm = (double)scr*n->receptor[0]; 
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       n->a = aT; n->d = dT; n->e=eT;    

} 

void process(node *n, int a) 

{ 

 node *temp=n; 

 for(int i=0;i<h;i++) 

 {    for(int j=0;j<a;j++) 

  {    for(int i=0;i<8;i++) 

   {    temp->observable[i]=0;} 

   if(temp->ecm!=0)//is there a cell already 

   {    temp->cycle();} 

   temp=temp->right;  } 

   temp=temp->bottom; 

 } 

} 

void wound(node *n,int a,int b)//scratch an area of cells 

{ 

 node *temp=n; 

 for (int x = 0; x < (a - b) / 2; x++) 

 {    temp = temp->right;  } 

 for (int l = 0; l< b; l++) 

 {    for (int r= 0; r< h; r++) 

  {    temp->wd(); 

temp=temp->bottom; 

  }   temp=temp->right;} 

} 

/*End*/ 

/*************************************************************/ 

/*Main function of cell dynamics*/ 

int main() 

{   

 srand(time(NULL)); //random seed 

 double a=0; double e=0; double d=0; 

 double w_t=0; 

 /*defining output file*/ 

     realization not shown here 

 

 int t=0; 

 double Rw = 0.3;//wound bet width rati 

   

 /*repeat for different parameter settings*/ 

 for (a=0;a<=1*max_r; a = a + 0.05*max_r) 

 { 

  for (d = 0; d <= 3*max_r; d = d + 0.1*max_r) 

  { 

              for (e = 0; e <= 1*max_r; e = e + 0.05*max_r) 

    { node *first = new node(1); 

    create_network(first, s); 

    seed(first, a, e, d); 

    int time = 0; 

    for (time = 0; time < max_t; time++) 

    { 

     /*instant data collection */ 
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     int num = 0; 

     int g0 = 0; //temporary arrested cell No. 

     int age = 0; //average age 

     int pm = 0;//permanent arrest 

     /*end*/ 

     /*wounding*/ 

     if (time == w_t) 

     {    wound(first, s, Rw*s);  } 

     /*Natural growth*/ 

     if ((time != w_t)) 

     {    process(first, s); } 

     

     /*collect instant data, and output them*/ 

     node * temp = first; 

     for (int r = 0; r < s; r++) 

     {    for (int l = 0; l < h; l++)         

      { num += (int)temp->observable[0]; 

        age += (int)temp->observable[1]; 

        g0 += (int)temp->observable[2]; 

        pm += (int)temp->observable[6]; 

        ecm += temp->ecm; 

        temp = temp->bottom; 

      } 

      temp = temp->right; 

     } 

 

     }}}} 

    /*close output files*/      realization not shown here. 

 return 0;} 
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