
Efficient and Effective Identification of

Influential Vertices in Social Networks

(ソーシャルネットワーク上の高影響力頂点集合を特定する

効率的かつ効果的なアルゴリズム)

by

Naoto Ohsaka

大坂 直人

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 8, 2017

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Hiroshi Imai 今井 浩

Professor of Computer Science

ABSTRACT

Social influence and information sharing occur in daily life, and social networks have
been a place where such social interactions diffuse. The recent advancement of social
networking services has significantly boosted the scale and speed of influence and infor-
mation diffusion and enabled us to exploit influence diffusion for business use such as
viral marketing. Moreover, we have been able to access a vast amount of trace of user
actions at an individual level, which has encouraged a deep understanding of the mech-
anism of social influence at scale. Computational social influence is one of the research
fields utilizing such data, aiming at analyzing, understanding, and optimizing social in-
fluence through modeling of the diffusion process, learning of model parameters, and
optimization of the obtained networks. One of the most fundamental problems involving
social influence optimization is influence maximization, which was formulated by Kempe,
Kleinberg, and Tardos in 2003. Influence maximization is a graph optimization problem
of finding a set of vertices that maximize the expected number of influenced vertices,
i.e., the size of influence diffusion. Due to approximation algorithms with a theoretical
guarantee and the potential application to marketing strategies and information dissem-
ination, it has been actively studied in graph mining and graph database community for
the last ten-odd years.

However, from an algorithmic point of view, the following challenges have remained
unresolved. Firstly, influence maximization is still difficult to solve on real-world social
networks even though there have been developed nearly-linear time approximation al-
gorithms. This is due to the massive scale and dynamic nature of networks of the day
and insufficient evaluation of algorithmic efficiency. Notably, the benchmarking study
on existing influence maximization algorithms published by Arora, Galhotra, and Ranu
in May 2017 has demonstrated that the setting of model parameters assigned to each
edge has a significant impact on algorithmic efficiency, and there is no single state-of-
the-art with the best trade-off between computation time and solution quality. Hence,
boosting algorithmic efficiency even in an experimental sense is an urgent task. Sec-
ondly, influence maximization may result in ineffective strategies for influence diffusion.
Since network diffusion is a probabilistic process, influence maximization has adopted
expectation as a statistic to be optimized due to its simplicity and tractability. However,
influence diffusion may end with a much smaller number of influenced vertices than the
expectation. Expectation itself is not able to capture such a risk. Thus, it is unclear
whether expectation maximization is able to produce low-risk strategies.

In this thesis, we address the above two challenges. In the first aspect, we explore
efficient computation of influence maximization in practice. Our common tool for this
purpose is the empirical observations of the diffusion process. There are two factors
that may affect influence diffusion, i.e., the network structure and the setting of edge
parameters. We conduct comprehensive experimental analysis using eighteen real-world
networks and seven settings of edge parameters. We then discover the configurations of
network and edge parameter setting for which existing algorithms become inefficient. We
also find that existing algorithms incur redundant computation for such configurations.
Based on the empirical analysis, we devise efficient algorithms under three situations
below. First, we propose a fast algorithm for influence maximization. Our empirical
observation tells us that for real-world networks, the difficult subproblem of influence
maximization can be solved more quickly by using a simple linear time preprocessing
technique. We experimentally compare the proposed algorithm with a number of ex-
isting algorithms. We show that heuristic algorithms often provide 10% less influential
solutions while running faster than the proposed algorithm, and existing algorithms that
have a theoretical guarantee of the solution quality demonstrate high-quality solutions;
however, they cannot handle ten-million-edge networks for a certain setting of edge pa-
rameters. For such parameter settings, the proposed algorithm works and it provides
comparable solutions to the existing algorithms. In particular, the proposed algorithm
runs within two hours for a large network with hundreds of millions of edges. Further, we
confirm the computation time reduction due to the proposed techniques by several or-
ders of magnitude. Next, we develop a dynamic indexing algorithm for real-time influence
maximization on evolving networks. We design a dynamic index structure, query algo-
rithms for influence maximization, index update algorithms for graph changes. Then, we

propose techniques for improving the algorithmic efficiency of naive update algorithms
based on our empirical observation. We experimentally verify that our algorithm can
update an index within one second on networks with tens of millions of edges for almost
all configurations, which is several orders of magnitude smaller than that required to
reconstruct an index from scratch. Then, we present a reduction algorithm for massive
networks. In order to process billion-edge-scale networks, we consider reducing the size
of an input at the expensive of solution quality. We propose a strategy for effectively
identifying subgraphs that cause redundant computation and algorithms that produce a
smaller graph that approximates an input graph. Throughout experimental evaluations
using real-world networks with up to billions of edges, we confirm that an input graph is
reduced to up to 4% and running influence maximization on the obtained graph achieves
a few times speed-up without significant loss of solution quality.

In the second aspect, we address the risk of having a few influenced individuals. To
this end, we employ portfolio optimization approach, which is a standard approach for
risk management. Conceptually, in our context of influence diffusion, we virtually invest
in the possible sets of vertices. Then, we adopt conditional value at risk as a statistic
to be optimized instead of expectation. Conditional value at risk is one of the most
popular risk measures in financial economics and actuarial science. Since we cannot use
a standard approach for portfolio optimization because of exponentially many variables,
we develop a new polynomial-time approximation algorithm. Our algorithm constructs
a portfolio that approximates the maximum conditional value at risk within a constant
additive error. Using relatively small network dataset, we experimentally demonstrate
that the portfolios that our algorithm constructs achieve two times larger conditional
value at risk than standard influence maximization, and the distribution of the number
of influenced vertices is well concentrated on the expectation, which is desirable in terms
of risk aversion.

論文要旨

日常生活で見られる社会的影響や情報共有はソーシャルネットワークを通じて拡散し、

普及していく。ソーシャル・ネットワーキング・サービスの台頭により、その拡散の速度

と規模は急上昇し、マーケティング戦略や情報流布といった応用の可能性が広がった。さ

らに、これらのサービスを通じて個人ユーザの膨大な行動履歴が入手可能となったことで、

計算機科学の手法を利用して社会的影響や情報拡散の機構を解析・理解する需要が高まって

いる。このような解析を行う一般的な枠組みは、ソーシャルネットワークをグラフにより

表現し、拡散過程のモデル化、モデルパラメータの学習、そして、得られたグラフの最適

化という三段階を踏む。特に、社会的影響の最適化に関する最も基本的な問題は、影響最

大化と呼ばれる Kempe、Kleinberg、Tardosにより 2003年に提案されたグラフ上の最適

化問題である。影響最大化の目標は、影響を伝える頂点数の期待値が最大となるような頂

点集合を選択することである。この問題に対する近似アルゴリズムの存在やバイラルマー

ケティングへの潜在的な応用可能性により、十数年に渡りグラフマイニングやグラフデー

タベースの領域で活発に研究が行われてきた。

しかしながら、この問題にはアルゴリズム的観点において挑戦的課題がある。まず、ほ

ぼ線形時間の近似アルゴリズムが提案されているにもかかわらず、現実のソーシャルネッ

トワークで影響最大化を効率的に解くことは依然として難しい点である。これは、ネット

ワークの規模やその成長速度だけではなく、これまでの研究における不十分な性能評価に

起因する。2017年 5月には、Arora、Galhotra、Ranuが影響最大化の既存アルゴリズムを

様々なネットワークデータと辺に割り当てられたモデルパラメータで実験するベンチマー

キング論文を発表した。この研究により、モデルパラメータはアルゴリズムの効率に多大

な影響をもたらすこと、及び、計算時間と解の質の最良のトレードオフを達成する単一の

手法は無い、という示唆が得られた。したがって、計算効率を実験的な点で改善及び実証

することが重要な課題となる。次に、影響最大化そのものが非効果的な戦略を生み出す可

能性がある点が挙げられる。確率的な現象である拡散は実行のたびに異なる結果をもたら

すため、何らかの指標を導入し最適化する必要がある。影響最大化は期待値をその扱いや

すさから採用している。しかしながら、実際には期待値に比べて非常に小さい拡散が発生

してしまう可能性がある。期待値はそのようなリスクを捉えることはできないため、期待

値最大化がリスク回避に効果的な戦略に結びつくとは限らない。

本論文では、これらの課題の解決に取り組む。一つ目の観点では、影響最大化の効率的

計算を目指す。共通する道具は拡散過程の実験的観察である。拡散過程にはネットワーク

の構造と辺のパラメータからなる二つの因子が大きな変化を生じうる。そこで、十八種の

現実のネットワークデータ及び七種の辺確率設定を用いた実験的解析を行い、既存アルゴ

リズムの性能劣化が起こってしまう設定を重点的に調べる。さらに、そのような設定にお

いては既存アルゴリズムが冗長な計算をしうる点を説明する。この観察に基づき、以下の

三種の状況設定における効率的アルゴリズムの開発及びその実験的実証を行った。まず、

影響最大化の効率的アルゴリズムを提案する。提案手法は影響最大化アルゴリズムの一つ

のカテゴリに属するが、そこでボトルネックとなる部分問題に対する線形時間前処理によ

る高速化技法を提案する。実ソーシャルネットワークを用いた実験評価によって、ヒュー

リスティックに基づく手法は提案手法よりも速い一方、しばしば影響力の低い解を出力す

る点、理論的保証のある手法の多くは拡散の大きい設定において性能劣化を起こす点、ま

た、提案手法は数億辺を有するグラフを処理し、ほとんど多くの設定において一貫して影

響力の高い解を出力することを示す。特に、既存手法が性能劣化を起こす設定において提

案手法は解の質と計算時間の最良トレードオフを達成する。次に、成長するグラフにおけ

る実時間解析のための動的索引手法を提案する。まず、索引構造、影響最大化のクエリ処

理手法、グラフ変化に対する索引更新手法の設計を行う。ここで、拡散過程の実験的解析

に基づいた索引更新手法の高速化技法を提案する。数千万辺を有するグラフを用いた計算

機実験により、多数の設定で索引を一秒以内に更新できることを確認する。これは索引の

再構築に要する時間の数千分の一である。そして、巨大なネットワークの縮小アルゴリズ

ムを提案する。数十億辺規模のネットワークを処理するために、影響最大化の質の劣化を

ゆるし、事前にグラフを縮小することを考える。実験的観察に基づき、冗長な計算の原因

となる部分を特定する戦略及びそれに基づき入力グラフを縮小するアルゴリズムを与える。

数十億辺を有する現実のネットワークを用いた実験によって、提案手法がグラフの大きさ

を最大で 4%に縮小する点、及び、影響最大化を縮小されたグラフで行うことで、入力グ

ラフと遜色ない質の解を数分の一の時間で得られることを確認する。

第二の観点では、影響が広範囲に拡散せずに終了してしまうリスクの回避を取り扱う。

まず、リスクマネジメントにおいて標準的なアプローチであるポートフォリオ最適化を導

入し、複数の頂点集合に仮想的な投資を行うことを考える。そして、期待値の代わりに

Conditional Value at Risk という金融経済や保険数理の分野のリスク指標を導入する。定

式化した問題は指数個の変数を含み、ポートフォリオ最適化の標準的手法は適用できないた

め、新たな多項式時間近似アルゴリズムを提案する。比較的小さなグラフデータを用いた実

験により、提案手法は影響最大化やヒューリスティックと比較して最大で二倍の Conditional

Value at Risk を持つポートフォリオを構築した。さらに、影響の大きさの分布は期待値に

より集中しておりリスク回避の点で望ましい点を示す。

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor, Pro-
fessor Hiroshi Imai for his precious advice and comments. His guidance helped
me in all the time of conducting research, presenting research talks, and writing
of this thesis. Without his guidance and persistent help, I would not have been
able to accomplish my five-year research in the graduate school.

I am also thankful to my thesis committee chair, Prof. Tetsuo Shibuya, and
the committee members, Prof. Naoki Kobayashi, Prof. Mary Inaba, Prof. Rui
Yamaguchi, and Prof. Junya Honda, for the time and effort taken to review this
thesis and for the valuable feedback and suggestions.

I am deeply grateful to all my research collaborators, Takuya Akiba, Sumio
Fujita, Takuro Fukunaga, Kazuhiro Inaba, Yoichi Iwata, Naonori Kakimura, Ken-
ichi Kawarabayashi, Takanori Maehara, Tomoaki Ogasawara, Tomohiro Sonobe,
Yutaro Yamaguchi, and Yuichi Yoshida. I have been extremely fortunate to
have worked with these talented researchers. I want to offer my special thanks to
Takuya Akiba for guiding me how to proceed experimental evaluations effectively
and giving a lot of knowledge, and Yuichi Yoshida for countless discussions with
him.

I also would like to thank all members in Imai Laboratory. I received insightful
comments and feedback from these members through internal seminars. I would
like to list all members, Akitoshi Kawamura, François Le Gall, Vorapong Sup-
pakitpaisarn, Masato Edahiro, Kenta Takahashi, Takahiko Satoh, Jean-Francois
Baffier, Toshihiro Tanuma, Yoichi Iwata, Bingkai Lin, Akiba Takuya, Hide-
fumi Hiraishi, Alonso Gragera, Keigo Oka, Akira Motoyama, Yuto Hirakuri,
Prompong Pakawanwong, Yosuke Yano, Yuki Kawata, Chihiro Komaki, Takeo
Asai, Takuto Ikuta, Takanori Hayashi, Fumiya Satoh, Makoto Soejima, Shuichi
Hirahara, Kentaro Yamamoto, Tomohiro Katayama, Shogo Nakajima, Kohei
Uezato, Satoru Yasuda, Seiya Takahara, Ly Nguyen, Anthony D’Amato, Ken-
suke Imanishi, Wataru Inariba, Tomoaki Ogasawara, Takashi Shimada, Shinya
Shiroshita, Hyonsoku Chang, Sakuya Hashimoto, Shogo Murai, Shuma Okamura,
Kanto Teranishi, Kohji Liu, Naosuke Shindo, Takuto Shigemura, Tsuyoki Ku-
mazaki, Emanuel Gedin, Marius Kaufmann, Ruben Wohlgenannt, Clara Tersen,
Az-elrabe Bitane, Amaury Josse, Rohit Kumar Singh, Vu Phan Thanh, Arasu
Arun, Shaswat Chaubey, Kittiphon Phalakarn, Kittiphop Phalakarn, Tanguy Po-
mas, Tatiana Neuer, Simon Klein, Florian Steinberg, Jeremy Cohen, and Holger
Thies.

In addition to the laboratory, I have been a member of complex network and
map graph group at JST ERATOKawarabayashi Large Graph Project. Through-
out weekly group seminar and annual events, I have broadened my knowledge and
experience. I would like to list all the group members, Ken-ichi Kawarabayashi,
Yuichi Yoshida, Masato S. Abe, Takuya Sekiguchi, Wataru Inariba, Ryosuke
Nishi, Yutaka Horita, Taro Takaguchi, Takahiro Ezaki, Junichi Teruyama, Naoki
Masuda, Takehisa Hasegawa, Kazuhiro Inaba, Mitsuru Kusumoto, Takuya Ak-

vi

iba, Yoichi Iwata, Tatsuro Kawamoto, Yuki Kawata, Yukie Sano, Leo Speidel,
Yosuke Yano, Takanori Hayashi, Mao Fukadai, Ryohei Hisano, Keigo Oka, Kodai
Saito, Daiki Takeuchi, Yoshitaka Murai, and Takuto Ikuta. Additionally, I have
had a lot of opportunities to collaborate with other group members, specifically,
Takuro Fukunaga, Naonori Kakimura, Takanori Maehara, Tomohiro Sonobe, and
Yutaro Yamaguchi.

I also have been involved in Yahoo! JAPAN Research for four years. Espe-
cially, I would like to thank Tajima Akira and Sumio Fujita for permission to
access a large volume of valuable data and their technical assistance.

Lastly, I would like to express my profound gratitude to my family for their
emotional and financial support.

vii

Contents

1 Introduction 1
1.1 Influence and Information Diffusion 1

1.1.1 Social Networking Services and Microbloggings 1
1.1.2 Viral Marketing . 2

1.2 Computational Social Influence . 2
1.2.1 Modeling . 2
1.2.2 Learning . 3
1.2.3 Optimizing . 4

1.3 Influence Maximization Problem 4
1.3.1 Informal Definition and Computational Properties 4
1.3.2 Previous Studies . 5

1.4 Challenges . 7
1.4.1 Efficient Computation . 7
1.4.2 Effective Strategies . 7

1.5 Contributions . 8
1.5.1 Analysis of the Trends of Diffusive Behaviors (Chapter 4) . 8
1.5.2 Fast Algorithm for Influence Maximization (Chapter 5) . . 9
1.5.3 Dynamic Indexing Algorithm for Real-time Influence Anal-

ysis (Chapter 6) . 10
1.5.4 Reduction Algorithms of Massive Influence Graphs (Chap-

ter 7) . 11
1.5.5 Portfolio Optimization for Acquiring Low-risk Strategies

(Chapter 8) . 12
1.6 Organization of This Thesis . 13

2 Preliminaries 15
2.1 Definitions and Notations . 15

2.1.1 Set and Partitions . 15
2.1.2 Graphs . 15
2.1.3 Local Properties . 16
2.1.4 Paths, Reachability, and Connectivity 17
2.1.5 Trees . 18
2.1.6 Influence Graph . 18

2.2 Basic Graph Algorithms . 19
2.2.1 Breadth First Search . 19
2.2.2 Depth First Search . 19
2.2.3 Finding Strongly Connected Components 19

2.3 Submodular Set Functions . 19
2.3.1 Definitions and Properties 20
2.3.2 Monotone Submodular Function Maximization 21

2.4 Diffusion Models . 21
2.4.1 Independent Cascade Model 21

viii

2.4.2 Linear Threshold Model . 23
2.5 Influence Maximization . 24

2.5.1 Definition . 24
2.5.2 Hardness Results . 24
2.5.3 Approximability Results . 25

2.6 Risk Measures . 25
2.6.1 Definition of Coherent Risk Measures 25
2.6.2 Examples of Risk Measures 26

2.7 Multiplicative Weights Update Algorithm 27

3 Categorization of Influence Maximization Algorithms 29
3.1 Greedy algorithm of Kempe, Kleinberg, and Tardos [98] 29
3.2 Simulation-based Algorithms . 30

3.2.1 Naive Estimation . 30
3.2.2 Snapshot-based Estimation 31

3.3 Reverse Influence Sampling . 33
3.3.1 Concept . 33
3.3.2 Applying to Influence Estimation 34
3.3.3 Applying to Influence Maximization 34
3.3.4 Stopping Conditions of RR Set Generation 35
3.3.5 RR Set Generation under the IC Model 36

3.4 Heuristics . 37
3.4.1 Restricting the Range of Influence 37
3.4.2 Linear System Approximation 38
3.4.3 Graph Reduction . 38
3.4.4 Others Strategies . 38

4 Analysis of the Trends of Diffusive Behaviors 39
4.1 Strategies of Influence Probability Assignment 39
4.2 Network Data . 40

4.2.1 Detailed Description . 41
4.2.2 Preprocessing . 43
4.2.3 Structural Properties of Complex Networks 43

4.3 Analysis of Reachable Sets . 44
4.3.1 Average Size . 44
4.3.2 Size Distribution of Reachable Sets 46

4.4 Analysis of RR Sets . 52
4.4.1 Unweighted Settings . 52
4.4.2 Degree-weighted Settings 52

5 Fast Algorithm for Influence Maximization 57
5.1 Overview . 57
5.2 Technique 1: Pruned BFS . 58
5.3 Technique 2: BFS Avoidance . 59
5.4 Putting It Together . 60

5.4.1 Degree-1 Optimization . 60
5.5 Experiments . 61

5.5.1 Setup . 61
5.5.2 Performance Comparison with Existing Algorithms 62
5.5.3 Summary . 75
5.5.4 Analyzing of the Proposed Techniques 76

ix

6 Dynamic Indexing Algorithm for Real-time Influence Analysis 82
6.1 Proposed Indexing Algorithm . 82

6.1.1 Index Structure . 83
6.1.2 Index Construction . 83
6.1.3 Supporting Queries . 84
6.1.4 Supporting Dynamic Update Operations 85

6.2 Theoretical Analysis . 87
6.2.1 Correctness . 87
6.2.2 Time Complexity . 90

6.3 Scaling-up Practical Performance 90
6.3.1 Reachability-tree-based Pruning Techniques 91
6.3.2 A Skipping Method for Vertex Addition 92

6.4 Experiments . 93
6.4.1 Setup . 93
6.4.2 Index Construction . 95
6.4.3 Dynamic Updates . 95
6.4.4 Influence Estimation Queries 100
6.4.5 Influence Maximization Queries 102
6.4.6 Case Study on Flixster Social Network 103

7 Reduction Algorithms of Massive Influence Graphs 104
7.1 Reduction Strategy . 104

7.1.1 Definition of Coarsening . 104
7.1.2 Theoretical Properties of Coarsening 106
7.1.3 Creating a Partition to be Coarsened 108

7.2 Algorithm Implementations . 111
7.2.1 Overview . 111
7.2.2 Linear-space Implementation 111
7.2.3 Sublinear-space Implementation 112
7.2.4 Parallelization . 114

7.3 Frameworks for Scaling-up Influence Analysis 115
7.3.1 Framework for Influence Estimation 115
7.3.2 Framework for Influence Maximization 116

7.4 Experiments . 117
7.4.1 Setup . 117
7.4.2 Scalability Evaluation . 118
7.4.3 Power of Parallelization . 120
7.4.4 Graph Size Reduction . 122
7.4.5 Analyzing Extracted r-robust SCCs 124
7.4.6 Evaluating Influence Estimation Framework 124
7.4.7 Evaluating Influence Maximization Framework 127
7.4.8 Comparison with Existing Reduction Algorithms. 129

8 Portfolio Optimization for Acquiring Low-risk Strategies 130
8.1 Proposed Algorithm . 130

8.1.1 Overview . 130
8.1.2 Empirical CVaR Maximization 131
8.1.3 Finding Approximate Feasible Solutions via MWU 132
8.1.4 Implementation of a ρ-oracle 133
8.1.5 Putting All Together . 135

8.2 Experimental Evaluations . 137
8.2.1 Setup . 137

x

8.2.2 Results . 137

9 Conclusions 143

A Additional Experimental Results in Chapter 4 161

B Additional Experimental Results in Chapter 5 198

C Additional Experimental Results in Chapter 7 235

xi

List of Figures

1.1 Flow of computational social influence. 3
1.2 Illustration of this thesis. 14

2.1 Illustration of the IC model. Green and white vertices are active
and inactive, respectively. Green, red, black edges correspond to
successful activation trials, failed activation trials, and undeter-
mined trials, respectively. 22

2.2 Random-graph interpretation of the IC model. 23
2.3 Illustration of expectation, value at risk, and conditional value at

risk. 26

4.1 Cumulative distribution of in-degree and out-degree of each network. 41
4.2 These figures explain the mechanism of getting bimodal distribu-

tions or decreasing distributions of reachable sets. Orange vertices
can reach the giant component (GC) and green vertices are reach-
able from the GC. When the GC exists, vertices that can reach the
GC have large reachable sets (left figure). When the GC is small or
does not exists, no vertices have huge reachable sets (right figure).
Note that white vertices have seldom large reachable sets. 46

4.3 Size distribution of reachable sets in wiki-Vote network. 49
4.4 Size distribution of reachable sets in soc-Slashdot0922 network. . . 49
4.5 Size distribution of reachable sets in web-Stanford network. 50
4.6 Size distribution of reachable sets in com-Youtube network. 50
4.7 Size distribution of reachable sets in soc-Pokec network. 51
4.8 Size distribution of reachable sets in com-Orkut network. 51
4.9 Structures of RR sets in wiki-Vote network. 54
4.10 Structures of RR sets in soc-Slashdot0922 network. 54
4.11 Structures of RR sets in web-Stanford network. 55
4.12 Structures of RR sets in com-Youtube network. 55
4.13 Structures of RR sets in soc-Pokec network. 56
4.14 Structures of RR sets in com-Orkut network. 56

5.1 An example of pruned BFS. Square vertices are temporarily re-
moved during a BFS from a circular vertex. 58

5.2 Example of BFS avoidance. 60
5.3 Influence spread of each algorithm for ca-HepTh network. 64
5.4 Influence spread of each algorithm for wiki-Vote network. 64
5.5 Influence spread of each algorithm for soc-Epinions1 network. . . . 65
5.6 Influence spread of each algorithm for web-NotreDame network. . . 65
5.7 Influence spread of each algorithm for wiki-Talk network. 66
5.8 Influence spread of each algorithm for web-BerkStan network. . . . 66
5.9 Influence spread of each algorithm for higgs-twitter network. 67
5.10 Influence spread of each algorithm for soc-Pokec network. 67

xii

5.11 Influence spread of each algorithm for soc-LiveJournal1 network. . . 68
5.12 Influence spread of each algorithm for com-Orkut network. 68
5.13 Running time of each algorithm for ca-HepTh network. 70
5.14 Running time of each algorithm for wiki-Vote network. 70
5.15 Running time of each algorithm for soc-Epinions1 network. 71
5.16 Running time of each algorithm for web-NotreDame network. . . . 71
5.17 Running time of each algorithm for wiki-Talk network. 72
5.18 Running time of each algorithm for web-BerkStan network. 72
5.19 Running time of each algorithm for higgs-twitter network. 73
5.20 Running time of each algorithm for soc-Pokec network. 73
5.21 Running time of each algorithm for soc-LiveJournal1 network. . . . 74
5.22 Running time of each algorithm for com-Orkut network. 74
5.23 Distributions of the number of vertices visited during each BFS. . 78
5.24 Transitions of the number of BFSes for each iteration. 80

6.1 Overview of our dynamic index for real-time influence analysis in
Chapter 6. 82

6.2 Structural comparison among RR sets, our index, and full infor-
mation. Our index is a sweet spot between memory consumption
and correct updates. 83

6.3 Reachability-tree-based techniques for fast edge deletion. Orange
edges are the edges of the reachability tree. 92

6.4 Degree distribution of each dataset. 94
6.5 The change of indexing time, index size, and average processing

times of dynamic updates with the increase of β on Epinions. . . . 98
6.6 Average times for estimating influence of a single vertex with β on

Epinions. 100
6.7 Average times for estimating influence of a vertex set of various

sizes on Epinions. 100
6.8 Correlation between the ground truth and influence estimation cal-

culated by our method. 101
6.9 Accuracy improvements of influence estimation with the increase

of β on Epinions. 101
6.10 Running times for extracting a seed set of size from 1 to 100 for

each algorithm. 102
6.11 The influence spreads of a seed set of size from 1 to 100 computed

by each algorithm. 102
6.12 Transition of the influence spread of popular vertices in a real-

world network. 103
6.13 Transition of the approximated maximum influence spread of a

seed set of size 100. 103

7.1 Overview of our approach for influence graph reduction in Chapter 7.104
7.2 Influence graph G. 105
7.3 Coarsened graph H. 105
7.4 Example of r-robust SCCs with regard to three subgraphs. Each

blue dotted curve corresponds an SCC and each red solid curve
corresponds an r-robust SCC. 109

7.5 Run time with varying r (exp0.1). 120
7.6 Memory usage with varying r (exp0.1). 120
7.7 Edge reduction ratio with varying r (exp0.1). 122
7.8 Size distribution of r-robust SCCs (exp0.1). 124

xiii

7.9 Cumulative distribution of the maximum SCC rate of the subgraph
induced by the largest r-robust SCC (exp0.1). 125

7.10 Influence correlation between the ground truth and our frame-
work’s estimation. 127

7.11 Estimation accuracy with varying r (exp0.1). 127

8.1 Overview of the proposed algorithm in Chapter 8. 131
8.2 Histogram of cascade sizes for portfolios constructed by each algo-

rithm on Physicians (α = 0.01, owc). 141
8.3 Visualization of Karate network. Each vertex is colored according

to its portfolio weight (α = 0.01, owc). 142

A.1 Size distribution of reachable sets in ca-GrQc network. 162
A.2 Size distribution of reachable sets in ca-HepTh network. 163
A.3 Size distribution of reachable sets in wiki-Vote network. 164
A.4 Size distribution of reachable sets in ca-HepPh network. 165
A.5 Size distribution of reachable sets in soc-Epinions1 network. 166
A.6 Size distribution of reachable sets in soc-Slashdot0922 network. . . 167
A.7 Size distribution of reachable sets in web-NotreDame network. . . . 168
A.8 Size distribution of reachable sets in ego-Twitter network. 169
A.9 Size distribution of reachable sets in loc-Gowalla network. 170
A.10 Size distribution of reachable sets in web-Stanford network. 171
A.11 Size distribution of reachable sets in wiki-Talk network. 172
A.12 Size distribution of reachable sets in web-Google network. 173
A.13 Size distribution of reachable sets in com-Youtube network. 174
A.14 Size distribution of reachable sets in web-BerkStan network. 175
A.15 Size distribution of reachable sets in higgs-twitter network. 176
A.16 Size distribution of reachable sets in soc-Pokec network. 177
A.17 Size distribution of reachable sets in soc-LiveJournal1 network. . . . 178
A.18 Size distribution of reachable sets in com-Orkut network. 179
A.19 Structures of RR sets in ca-GrQc network. 180
A.20 Structures of RR sets in ca-HepTh network. 181
A.21 Structures of RR sets in wiki-Vote network. 182
A.22 Structures of RR sets in ca-HepPh network. 183
A.23 Structures of RR sets in soc-Epinions1 network. 184
A.24 Structures of RR sets in soc-Slashdot0922 network. 185
A.25 Structures of RR sets in web-NotreDame network. 186
A.26 Structures of RR sets in ego-Twitter network. 187
A.27 Structures of RR sets in loc-Gowalla network. 188
A.28 Structures of RR sets in web-Stanford network. 189
A.29 Structures of RR sets in wiki-Talk network. 190
A.30 Structures of RR sets in web-Google network. 191
A.31 Structures of RR sets in com-Youtube network. 192
A.32 Structures of RR sets in web-BerkStan network. 193
A.33 Structures of RR sets in higgs-twitter network. 194
A.34 Structures of RR sets in soc-Pokec network. 195
A.35 Structures of RR sets in soc-LiveJournal1 network. 196
A.36 Structures of RR sets in com-Orkut network. 197

B.1 Influence spread of each algorithm for ca-GrQc network. 199
B.2 Influence spread of each algorithm for ca-HepTh network. 200
B.3 Influence spread of each algorithm for wiki-Vote network. 201

xiv

B.4 Influence spread of each algorithm for ca-HepPh network. 202
B.5 Influence spread of each algorithm for soc-Epinions1 network. . . . 203
B.6 Influence spread of each algorithm for soc-Slashdot0922 network. . 204
B.7 Influence spread of each algorithm for web-NotreDame network. . . 205
B.8 Influence spread of each algorithm for ego-Twitter network. 206
B.9 Influence spread of each algorithm for loc-Gowalla network. 207
B.10 Influence spread of each algorithm for web-Stanford network. 208
B.11 Influence spread of each algorithm for wiki-Talk network. 209
B.12 Influence spread of each algorithm for web-Google network. 210
B.13 Influence spread of each algorithm for com-Youtube network. 211
B.14 Influence spread of each algorithm for web-BerkStan network. . . . 212
B.15 Influence spread of each algorithm for higgs-twitter network. 213
B.16 Influence spread of each algorithm for soc-Pokec network. 214
B.17 Influence spread of each algorithm for soc-LiveJournal1 network. . . 215
B.18 Influence spread of each algorithm for com-Orkut network. 216
B.19 Running time of each algorithm for ca-GrQc network. 217
B.20 Running time of each algorithm for ca-HepTh network. 218
B.21 Running time of each algorithm for wiki-Vote network. 219
B.22 Running time of each algorithm for ca-HepPh network. 220
B.23 Running time of each algorithm for soc-Epinions1 network. 221
B.24 Running time of each algorithm for soc-Slashdot0922 network. . . . 222
B.25 Running time of each algorithm for web-NotreDame network. . . . 223
B.26 Running time of each algorithm for ego-Twitter network. 224
B.27 Running time of each algorithm for loc-Gowalla network. 225
B.28 Running time of each algorithm for web-Stanford network. 226
B.29 Running time of each algorithm for wiki-Talk network. 227
B.30 Running time of each algorithm for web-Google network. 228
B.31 Running time of each algorithm for com-Youtube network. 229
B.32 Running time of each algorithm for web-BerkStan network. 230
B.33 Running time of each algorithm for higgs-twitter network. 231
B.34 Running time of each algorithm for soc-Pokec network. 232
B.35 Running time of each algorithm for soc-LiveJournal1 network. . . . 233
B.36 Running time of each algorithm for com-Orkut network. 234

xv

List of Tables

2.1 Notations frequently used throughout this thesis. 15

3.1 Categorization of existing influence maximization algorithms. . . . 29

4.1 Datasets examined in Chapter 4. (d) and (u) denote “directed”
and “undirected,” respectively. All networks were downloaded
from SNAP [116]. 40

4.2 Average size of reachable sets for each configuration. 45
4.3 Average number of vertices in 10,000 RR sets for each configuration

of network data and influence probability. 53

5.1 The running time in second to compute a seed set of size 1,000 for
each variant of the proposed method with r = 10. 77

5.2 The average number of visited vertices for solving the descendant
counting problem. 79

5.3 The total number of BFSes performed when k = 1, 000. 81

6.1 Datasets used in Chapter 6. 94
6.2 Indexing time, index size, and average processing times of dynamic

updates. 97
6.3 Effectiveness of the proposed techniques compared to naive imple-

mentations. 99
6.4 Impact of reachability-tree-based technique in Sec. 6.3.1 on edge

deletion. 99
6.5 Average running time for estimating the influence spread of a single

vertex. 100

7.1 Datasets used in Chapter 7. (d) and (u) denote “directed” and
“undirected,” respectively. 117

7.2 Run time and memory usage of the proposed algorithm under
exp0.1 and tri. 119

7.3 Run time of our parallel implementations for exp0.1. 121
7.4 Effect of the proposed algorithm on graph size under exp0.1 and

tri. V and E denote vertex and edge sets of an input graph,
and W and F denote vertex and edge sets of a coarsened graph,
respectively. 123

7.5 Average estimation time of the influence of a single vertex for
plain MC and our framework with MC under exp0.1 and tri.
MARE and RCC stand for “mean absolute relative error” and
“rank correlation coefficient,” respectively. 126

7.6 Run time for selecting a seed set of size 100 and solution quality
for plain D-SSA and our framework with D-SSA under exp0.1 and
tri. OOM denotes “out of memory.” 128

xvi

7.7 Comparison of the run time of each algorithm under exp0.1. OOM
denotes “out of memory.” . 129

8.1 CVaR for portfolios obtained by each method under owc. Best
results are in bold. 139

8.2 Mean value for portfolios obtained by each method under owc.
Best results are in bold. 139

8.3 CVaR for portfolios obtained by each method under uc0.1. Best
results are in bold. 140

8.4 Mean value for portfolios obtained by each method under uc0.1.
Best results are in bold. 140

8.5 Number of positive weights of portfolios obtained by our method
(α = 0.01, owc). 141

C.1 Run time and memory usage of the proposed algorithm under uc0.1

and iwc. 236
C.2 Effect of the proposed algorithm on graph size under uc0.1 and

iwc. V and E denote vertex and edge sets of an input graph,
and W and F denote vertex and edge sets of a coarsened graph,
respectively. 237

C.3 Average influence estimation time for plain MC and our frame-
work with MC under uc0.1 and iwc. MARE and RCC stand for
“mean absolute relative error” and “rank correlation coefficient,”
respectively. 238

C.4 Run time for selecting a seed set of size 100 and solution quality
for plain D-SSA and our framework with D-SSA under uc0.1 and
iwc. OOM denotes “out of memory.” 239

xvii

Chapter 1

Introduction

This thesis deals with graph-algorithmic problems related to computational social
influence. In this chapter, we will describe the role of social networks in influence
and information diffusion, review the research on computational social influence,
and provide an overview of the contribution of the thesis.

1.1 Influence and Information Diffusion

When people make a decision, they are frequently influenced by others. For
example, when a new product is just released, you may consult with your relatives,
friends, or colleagues in order to decide whether to purchase it or not. The
change in people’s decisions, opinions, emotions, or behaviors caused by others is
called social influence. Social influence happens in daily life and takes place in a
social network, which is defined as a graph made up of vertices corresponding to
persons and edges describing relationships between them. We are connected to
a surprising number of persons (indirectly) on social networks [88, 185]. Hence,
social influence diffuses over social networks and would form an explosive cascade.
Moreover, social networks also play a substantial role in information sharing and
acquisition.

1.1.1 Social Networking Services and Microbloggings

While social influence and information sharing have suffered from temporal or
spatial restrictions for a long period, the Internet has broken them. We can
communicate with persons throughout the world instantaneously via various on-
line services. Moreover, social networking services and microbloggings have been
rapidly popularized since the 2000s. A social networking service (SNS) is an on-
line site that promotes closed person-to-person communication activities among
its users who share similar interests, careers, or residences. A microblogging is a
website where its users can post a short text concerning their thoughts or notes
and exchange it with other users. These services include social media Facebook,
Google+, and Tumblr, photo-sharing websites Flickr, Instagram, and Pinterest,
a business-oriented SNS LinkedIn, and a microblogging Twitter. They provide a
“platform” allowing people to produce, share, and distribute contents and com-
municate with each other, and form massive-scale social networks: the Twitter
social network contains 288 million users and 60 billions of following links [6] and
the Facebook social network contains 1.4 billion users and 400 billion edges [48].
Further, a countless number of productions are continually published on these
services: 300 hours of video are uploaded to YouTube every minute [4], 6,000
tweets are tweeted on Twitter every second [5], 52 million photos are uploaded to
Instagram each day and 1.65 billion favorite markings are generated [2]. Content

1

sharing or communication among the users causes social influence. Its cascade
may grow at scale beyond the publisher’s intention and become a social phe-
nomenon.

1.1.2 Viral Marketing

Influence diffusion on the Internet has also a potential impact for business use.
Viral marketing is a marketing strategy that intentionally triggers a rapid diffu-
sion of message sharing, with the aim of product promoting, customer acquisition,
or brand awareness increasing. The term “viral” is an analogy to the spread of
virus over a population. The message to be diffused takes the form of texts,
images, videos, or web pages, and it is called “going viral” when being shared
with a number of individuals.

Hotmail, a web-based e-mail service, is one of the most successful examples
of viral marketing. For every e-mail sent by its users, the tagline “Get your free
email at Hotmail” is inserted at the bottom. By clicking this tagline, a receiver
is guided to Hotmail’s web page. This approach was really effective; Hotmail has
acquired twenty millions of new sign-ups in a mere eighteen months [175].

1.2 Computational Social Influence

While a theory to explain the speed and scale of diffusion of a specific entity over
a population has been initiated by sociologists [53, 166] by the name of “Diffusion
of Innovations” [165] in the middle of the 20th century, the recent advancement
of online social networking services has enabled us to collect a vast amount of
traces of user actions at an individual level. Moreover, the service administrators
have the whole platform under control, which encourages a deep understanding
of the mechanism of social influence at scale [10, 17, 35] and an enhancement of
influence diffusion, which has a potential in business use such as viral marketing
and information dissemination.

Computer social influence [39] is an emerging field that aims at analyzing,
understanding, and optimizing social influence with computational methods. To
this end, we use graphs to describe social networks. However, unlike usual social
network analysis, it is essential to capture the probabilistic nature of social in-
fluence; we consider graphs where parameters are assigned to every edge. These
edge parameters represent the strength of influence between a pair of vertices.
We refer those graphs as influence graphs throughout this thesis.

Figure 1.1 illustrates a flow of computational social influence. It is entailed
three steps: (1) modeling of the diffusion process, (2) learning of the model
parameters, and (3) optimization of the obtained influence graph. We finally
make use of the analysis result in real-world applications. We describe each step
in the following subsections.

1.2.1 Modeling

First of all, we need a model for network diffusion. Diffusion models state the
(random) process by which social influence diffuses over a network. Classical
models such as the susceptible-infected-recovered (SIR) model [101] in epidemi-
ology and the Bass model [22] in marketing research have a few parameters that
are able to control the global behavior only. In order to capture social interactions
at the individual level, researchers have proposed a plethora of diffusion models.

2

Influence graph

0.8

a

b

d

fe

c

0.6 0.1

0.3

0.4

0.2 0.5

Analysis result

a b

Influential individuals

Log data

Modeling

Learning
Optimizing

Figure 1.1: Flow of computational social influence.

The most fundamental and extended models are the independent cascade model
and the linear threshold model.

Independent cascade model.

The independent cascade (IC) model was proposed by Goldenberg, Libai, and
Muller [70, 71] in marketing research and has been popularized in computational
social influence. In the IC model, each vertex takes the state of either active or
inactive, and each edge has a parameter called influence probability. The diffusion
process begins with a set of initially activated vertices called seeds. Then, an
active vertex is given a single chance to activate each of its inactive neighbors.
It succeeds with a probability associated with the corresponding edge. In this
sense, the IC model is “sender-centric”.

Linear threshold model.

The linear threshold (LT) model was proposed by Kempe, Kleinberg, and Tardos
[98] as a variation of the models of Granovetter [83] and Schelling [171]. The
LT model has vertex-specific thresholds, each of which defines how hard it is to
activate the vertex and is uniformly distributed between zero and one. Each edge
has a weight representing the strength of influence. The diffusion process begins
with a set of seeds. Then, an inactive vertex becomes active whenever the total
weight of already-activated neighbors goes beyond its threshold. In this sense,
the LT model is “receiver-centric”.

Extensions.

To reproduce the actual cascades observed in the real world more accurately,
complex factors have been incorporated into the models. Those include a fac-
tor of topic [21], time-delay [76, 168] time-dependent process [85], vertex at-
tributes [169], and locations [54].

1.2.2 Learning

Having defined diffusion models, we are required to learn those parameters.
We usually assume that the underlying graph is known and the log data of
user actions is available since these can be extracted from the platform. Ex-
isting learning methods use ad-hoc techniques [79, 113] or machine learning tech-
niques [56, 68, 167]. It may be also the case that diffusion takes implicit networks
and we have to infer the unobserved and unknown network structure [74, 75]. Be-
sides, it is strongly demanded to determine how many training-samples are suffi-

3

cient to learn model parameters. In learning theory, this question has been stud-
ied with the notion of sample complexity and learnability [7, 60, 60, 77, 143, 145].

1.2.3 Optimizing

Now, using influence graphs, we optimize social influence. We can come up with
diverse objectives and situations. For example, one wants to make the diffusion of
influence as large as possible by seeding influential individuals [98] for an effective
viral marketing. Conversely, it might be demanded to confine already-propagated
undesirable “misinformation” by broadcasting the correct information from ap-
propriately selected individuals [33, 107]. Another one may manipulate the net-
work topology to control the global behaviors [36, 102, 179], or monitor several
vertices so as to detect the information diffusion as quickly as possible [118].

All the problems described above can be formulated as optimization prob-
lems on influence graphs. It should be noted that the probabilistic nature of
network diffusion yields exponentially many possible observations. Hence, we
choose a statistic to summarize them and then optimize it. Expectation is typi-
cally adopted due to its simplicity and tractability.

1.3 Influence Maximization Problem

Our interest is in graph-algorithmic optimization problems, the third step in com-
putational social influence. In this thesis, we intensively study one of the most
fundamental problems involving influence optimization called influence maxi-
mization. This section provides an overview and previous studies of influence
maximization.

1.3.1 Informal Definition and Computational Properties

The motivation of influence maximization is the question in viral marketing that
“what are the most effective individuals in the network to use for product pro-
motion?” The seminal work of Domingos and Richardson [58, 162] in the early
2000s modeled a viral marketing using a Markov random field and considered
to find a subset of customers that leads to the maximum increase in profits.
In 2003, Kempe, Kleinberg, and Tardos [98] formulated influence maximization
as a discrete optimization problem on influence graphs inspired by the study
of Domingos and Richardson. Informally speaking, the influence maximization
problem is defined as follows.

Given an influence graph, a budget k, and a diffusion model, find
k seeds such that activating them results in the maximum expected
number of active vertices under the diffusion model.

In other words, the objective function of influence maximization so-called the
influence spread is the expected number of vertices influenced by a set of seeds.

The computational complexity concerning influence maximization has been
thoroughly investigated [37, 38, 98, 99, 103, 142]. Firstly, it is NP-hard to exactly
solve influence maximization even in the special case of IC and LT [98]. Indeed,
exactly computing the influence spread is #P-hard [41, 42]. Meanwhile, we are
able to obtain approximate solutions as described below. Kempe, Kleinberg,
and Tardos [98] have proven that the influence spread exhibits monotonicity
and submodularity. Monotonicity is a property of set functions that captures
an intuition that adding new elements into the input set does not decrease the

4

function value. Submodularity is a property that roughly speaks that the change
in the function value that the addition of a single element makes decreases as the
size of an input set increases. For monotone submodular function maximization,
the gold-standard greedy algorithm returns a (1 − e−1)-approximate (k-sized)
solution against the optimal solution, which was proven by Nemhauser, Wolsey,
and Fisher [144] in 1978. More precisely, the greedy algorithm selects a new vertex
that makes the largest increase in the influence spread and adds it into the seed
set until k vertices have been inserted. Hence, the greedy algorithm requires a
value oracle for the influence spread and calls it at most nk times, where n is the
size of the ground set. Despite the #P-hardness of influence spread computation,
fortunately, it is possible to obtain an estimate of the influence with an arbitrary
accuracy by running Monte-Carlo simulations. Consequently, we are able to
compute (1− e−1 − ϵ)-approximate solutions in polynomial time.

The problem formulation of influence maximization using influence graphs
has motivated a diversified range of subsequent studies as reviewed below.

1.3.2 Previous Studies

Development of efficient algorithms.

Because of the computational issue of evaluating the objective function, there
has been remained a large room for efficient algorithm development. We de-
scribe three categories of existing influence maximization algorithms, which will
be further reviewed Chapter 3.

The first category is simulation-based methods, which estimate the influ-
ence spread by repeatedly running Monte-Carlo simulations. They can be further
classified into two types. Naive estimation algorithms [80, 118, 150, 151, 191, 192]
conduct a number of Monte-Carlo simulations naively when required to estimate
the influence spread during the greedy seed selection. This is computationally
prohibitive since we need influence estimates for nk seed sets.

Snapshot-based algorithms [40, 46, 52, 106, 128, 131] is an application of sam-
ple average approximation. To be precise, snapshot-based algorithms sample a
kind of random graphs from an input influence graph, each of which corresponds
to an outcome of the random activation process and reuse them over greedy
seed selection. Note that the empirical influence spread defined over the ran-
dom graphs is the average number of reachable vertices on the random graphs.
Therefore, we aim at selecting a vertex set that maximizes the total number of
reachable vertices.

While snapshot-based algorithms yield well-influential seed sets and run faster
than naive estimation algorithms, running them on large graphs is still costly.
Even in the case of k = 1, we need to “compute the number of vertices that are
reachable from each vertex” for all random graphs. This problem is known as
descendant counting [27, 49]. We are able to solve descendant counting by running
a graph traversal algorithm, e.g., a breadth first search (BFS) in linear time, for
each vertex, which consumes quadratic time in the graph size. Unfortunately,
this simple algorithm is almost best possible; the descendant counting problem
is not solvable in less than quadratic time under a computational complexity
assumption [28].

The second category is algorithms based reverse influence sampling. Re-
verse influence sampling (RIS) is the first nearly-linear time randomized algorithm
(for constant k) pioneered by Borgs, Brautbar, Chayes, and Lucier [29] in 2014.
This was a theoretical and experimental breakthrough in influence maximization

5

algorithms. RIS-based algorithms generate reverse reachable (RR) sets, which
is a set of vertices that would have influenced a uniformly-chosen target vertex.
Then, for a vertex set, the fraction of RR sets intersecting it (multiplied by the
graph size) is an unbiased estimator of its influence spread.

The central problem concerning RIS-based algorithms is to decide the time
at which we stop RR set generation. Since the stopping condition of Borgs,
Brautbar, Chayes, and Lucier [29] demands a hidden constant being quite large,
there have been established follow-up work [30, 57, 92, 147, 148, 149, 152, 176,
177]. Until recently, RIS-based algorithms have been regarded as state-of-the-
art [148, 177].

The last category is heuristic algorithms [40, 41, 42, 45, 47, 67, 81, 94, 96,
104, 105, 122, 138, 153, 161, 182, 184, 189, 190]. Heuristic algorithms perform
neither direct Monte-Carlo simulations nor RR set generations. Basically, they
assume ad-hoc conditions so as to make it easy to compute the influence spread.
For example, one assumes influence flowing along with shortest paths [105] and
another assumes influence diffusing only local neighbors [40]. As expected, the
resulted seed sets are less influential.

More sophisticated formulations.

As the original problem formulation was simple, it is natural to think about
making it more suitable for practical situations. One may consider maximizing
the probability that a particular vertex is influenced [86], minimizing the time
required to influence a certain fraction of the entire network [82], or selecting a
set of seeds, each of which incurs a different cost [154].

Further, it is also easy to imagine to incorporate factors that affect the dif-
fusion process. Those factors cover time-delay [43, 59, 73, 127] geographic lo-
cation [121, 183, 194], novelty decay [64], product value [129] and product de-
sign [20], intermediate levels of influence [55], or new diffusion processes, e.g.,
voter model [61, 124, 193] and heat diffusion [133]. Note that the ultimate goal
of these studies is the use for viral marketing.

The situational limitation of influence maximization is that we must complete
the seed set selection before implementing viral campaigns. We never know the
result unless we try, and this hinders us from reflecting the feedback of the acti-
vation process to improve the current strategy. In machine learning community,
there have been emerged new frameworks that reflect the feedback for more effec-
tive viral marketing. One adopts an online setting [115], where we execute viral
campaigns and refine model parameters alternately. In each step, we pick up a
small seed set, which may not be influential, and run a viral campaign starting
from the set. Then, we observe the feedback of this small campaign to improve
the knowledge of model parameters. The other adopts an adaptive setting [72],
where we adaptively select the next seed every time observing the result of the
activation process made so far. Importantly, those frameworks require to repeat-
edly select an influential seed set. Thus, influence maximization is used as a
“subroutine” inside them rather than as a standalone.

Field experiments and other possible applications.

Lastly, we describe the applicability of influence maximization. The original mo-
tivation for this problem comes from the viral marketing application. However,
to the best of our knowledge, there have been no concrete cases of such applica-
tions. This is because of ideal assumptions of influence maximization described

6

so far; there has been a discrepancy regarding the intricacy of diffusion models
between the predicting side and the algorithmic side.

Nonetheless, due to its simplicity and generality, influence maximization can
be used for (slightly) different purposes. For example, a project at the Univer-
sity of Southern California [3] aims at increasing awareness about a dangerous
disease among a homeless population. To this end, it has posed to exploit net-
work diffusion effect and has developed a decision support system for finding
the most influential individuals [187, 188]. In addition, we can run influence
maximization on other types of network. In computational biology, a genetic
regulatory network is described as a graph where vertices represent genes, pro-
teins, or messenger ribonucleic acids, and edges represent interactions between
them. On such networks, identifying a group of vertices that plays a role in infor-
mation dissemination is a fundamental task. Recent studies have made attempts
to apply influence maximization for such purpose [69, 95].

1.4 Challenges

Having reviewed the studies of influence maximization, we would like to point
out two challenges from an algorithmic aspect. In particular, we will explore how
to “efficiently” and “effectively” identify influential seed vertices from a social
network.

1.4.1 Efficient Computation

Despite a considerable effort for the development of efficient algorithms for the
last ten-odd years, influence maximization is still difficult to solve on real-world
networks. This is due to the massive scale and dynamic nature of networks of the
day and insufficient evaluation of algorithmic efficiency. While the algorithmic
study has received much attention from researchers, the influence graph dataset
has been almost publicly unavailable. Consequently, we have no choice but to
assign influence probabilities for each edge artificially. This caused a bias in
parameter settings for performance evaluation. Notably, Arora, Galhotra, and
Ranu [12] have revealed this bias by their paper presented at the 43rd ACM
SIGMOD International Conference on Management of Data in May 2017. This
paper has conducted an exhaustive benchmarking study of existing algorithms
with a number of graph data and several model parameter settings, e.g., an IC
with constant probabilities, an IC with degree-weighted probabilities, and an LT
with degree-weighted weights. The result of [12] implicated that (1) the setting
of influence probabilities has a significant impact on algorithmic efficiency, and
(2) there is no single state-of-the-art that achieves the best trade-off between
computation time and solution quality. Hence, boosting algorithmic efficiency
even in an “experimental sense” is an urgent task.

1.4.2 Effective Strategies

What is an effective strategy for information dissemination? Since network diffu-
sion is a probabilistic process, influence maximization has adopted expectation as
an objective function due to its simplicity and tractability. However, this choice
is rather ad-hoc; influence diffusion may end with a much smaller size than the
expectation.

Suppose that we have two seed sets, where one influences either 10 or 90 indi-
viduals with equal probability and the other influences either 40 or 60 individuals

7

with equal probability. Both influence 50 individuals on average. However, in
some realistic scenario, a campaign planner may want to avoid having fewer in-
fluenced individuals than the average frequently, and the latter solution is thus
preferable. Expectation itself cannot capture such a risk, and hence, expectation
maximization is not necessarily able to produce low-risk strategies.

1.5 Contributions

In this thesis, we address the challenges involving efficient computation (Chap-
ters 4–7) and effective strategies (Chapter 8) especially for against influence max-
imization under the independent cascade model. In what follows, we describe an
overview of our contributions and the key ideas behind them.

1.5.1 Analysis of the Trends of Diffusive Behaviors (Chapter 4)

In the first aspect, we explore how to boost influence maximization in practice.
Our common tool for this purpose is the empirical analysis of the trends if dif-
fusive behaviors. There are two factors that may affect influence diffusion. One
factor is the structure of networks. Real-world networks made up of relationships
concerning social, communication, web, biology, and computers share essential
structural features and are referred to as complex networks. They look like nei-
ther trees nor truly random; they have heavy-tailed degree distributions [19, 62]
and include an amazing number of triangles [185], which helps us interpret the
obtained outcomes. The other is the strategy of influence probability assignment.
Intuitively, the higher influence probability is, the more frequently activation tri-
als succeed.

The objective is to answer the difference in diffusive behaviors and algorithm
efficiency among configurations of the two factors. For this purpose, we carry
out comprehensive experimental investigation of two concepts related to influ-
ence maximization, using eighteen real-world networks and seven strategies for
influence probability assignment. The strategies can be roughly categorized into
two types below.

� Unweighted settings. Each influence probability is independently drawn
from a certain distribution, e.g., uniform or exponential. Vertices with
many neighbors have many chances to influence neighbors. Hence, what
to expect is that influence triggered by higher-degree vertices diffuses more
widely over the network.

� Degree-weighted settings. Each influence probability is determined
based on vertex degrees, which equalizes vertices’ impact on the neighbors.
Hence, one can expect that any influence does not widely diffuse.

Concept 1: Reachable sets.

A reachable set of a vertex is a set of vertices that the vertex can reach. Com-
puting the reachable sets for each vertex in random graphs is a key step in
snapshot-based algorithms. Our main observation is that there are two extreme
types of the size distribution of reachable sets, i.e., bimodal distributions and
decreasing distributions. We have bimodal distributions only when we use un-
weighted settings and the giant component (GC) is present in random graphs. In
such a case, the total size is quite large, and running snapshot-based algorithms
naively is computationally prohibitive. However, we also find that it comprises

8

redundant graph traversal, which is easily avoidable. When we have decreasing
distributions if either the GC is not present or we use degree-weighted settings.
In such a case, the total size is tiny.

Concept 2: Reverse reachable sets.

A reverse reachable (RR) set is a set of vertices that would have influenced a
randomly-chosen vertex. Generating RR sets is a key step in RIS-based algo-
rithms. As an RR set is identical to a reachable set (in a transposed influence
graph), we observe the similar trends to reachable sets. If the size distribution
of RR sets is bimodal, RIS-based algorithms may consume more computational
effort. Meanwhile, RR sets under degree-weighted settings are consistently small.
Moreover, we find that vertices in larger RR sets are connected to more edges
than the whole network. To put it differently, large RR sets seldom change when
the underlying graph has been updated.

In summary, our observations acquired so far prompt “simple but powerful”
speeding-up techniques for managing static networks (Chapter 5) and dynamic
networks (Chapter 6) and a “redundancy reduction” strategy (Chapter 7).

1.5.2 Fast Algorithm for Influence Maximization (Chapter 5)

First, we present an efficient algorithm for influence maximization. We propose
a new snapshot-based algorithm pruned Monte-Carlo (PMC). PMC comprises of
two boosting techniques which do not affect influence estimation.

Technique 1: Pruned BFS.

The first technique is pruned breadth first search (pruned BFS) for fast descendant
counting. Based on our empirical observation, we aim at cutting down the redun-
dant graph traversal. We perform a linear-time preprocessing for each random
graph to find the GC and compute related information. Then, before beginning
a BFS from a vertex, we check whether it can reach the GC or not, If this is the
case, then “knowing” that we will visit the GC, we prune the graph traversal from
the GC. This simple pruning achieves incredible speeding-up in real-world social
networks. For unweighted settings, pruned BFS reduces the number of vertices
explored during solving descendant counting by several orders of magnitude.

Technique 2: BFS avoidance.

The second is breadth first search avoidance (BFS avoidance). We aim at correctly
“guessing” the size of reachable sets of each vertex without any BFS. To this end,
we propose to reuse the reachability information obtained so far. We perform a
linear-time postprocessing at the end of each iteration to detect which vertices’
reachability information have to be updated. Henceforth, we are able to suppress
an increase in running time with increasing k. The reduction of the number of
BFSes by this technique is up to 99.8%.

Evaluations.

We conduct intensive experimental evaluations using social networks with up to
200 million edges and seven strategies of influence probability assignment. We
confirmed that PMC consistently produced high-quality solutions except for a

9

part of degree-weighted settings. PMC finished in two hours for any configu-
rations and demonstrated robust efficiency against influence probability settings
and increase in budget k. Comparing with a collection of existing algorithms, we
confirm the following remarks. Heuristic algorithms ran often faster than PMC,
but their solutions were occasionally 10% less influential than those of PMC. Ex-
isting simulation-based algorithms did not finish or ran out-of-memory errors for
networks with tens of millions of edges although providing comparable solutions
to PMC. RIS-based algorithms demonstrated the best performance for degree-
weighted settings in terms of both running time and solution quality. However,
they extremely slowed down under unweighted settings even for medium-sized
networks. Furthermore, when the GC is present in random graphs, some of
the RIS-based algorithms resulted in out-of-memory errors. To sum up, for un-
weighted settings, PMC can be the best choice in terms of the trade-off between
efficiency and quality.

Publication. This result was achieved in joint work with Takuya Akiba, Yuichi
Yoshida, and Ken-ichi Kawarabayashi. An extended abstract was also published
in the Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI
2014; technical track paper) [156].

1.5.3 Dynamic Indexing Algorithm for Real-time Influence Analysis
(Chapter 6)

Next, we consider influence maximization in dynamic networks. Real-world social
networks exhibit a highly dynamic nature and evolve rapidly over time [117],
and every information can quickly become outdated. Unfortunately, running
static algorithms such as PMC from scratch every time the graph updates is
computationally prohibitive because it requires at least linear time in the graph
size. A hopeful approach is to design a dynamic index that is able to efficiently
support both graph modifications and analysis queries.

In this chapter, we propose a dynamic indexing algorithm for real-time in-
fluence analysis in dynamic social networks. Our index is fully dynamic, i.e.,
it can instantly incorporate any kind of influence graph modification including
additions and deletions of vertices and edges, and updates of influence probabil-
ities. It enables us to quickly obtain solutions of influence maximization on the
latest graph snapshot and keep track of the influence transition of vertices. The
development of our dynamic algorithms involves complicated tasks as explained
below.

Task 1: Memory-efficient index design.

Our index structure is an extension of RR sets of Borgs, Brautbar, Chayes, and
Lucier [29]. Conceptually, once we can update RR sets according to the graph
change as if reconstructed from scratch, we maintain and reuse them. However,
the structure of the original RR set does not contain sufficient information to
implement correct update algorithms. Hence, we examine the necessary infor-
mation that should be stored and carefully design sketches that we store in an
index. We refer our empirical observation to reduce space consumption.

Task 2: Fast update algorithms.

We then design index update algorithms for each kind of graph modification.
Naive implementations for them traverse each sketch in an index and decide

10

whether it will change or not. Whereas we are able to guarantee the non-
degeneracy of the quality of solutions after an arbitrary number of updates, those
implementations are not efficient enough to track highly-dynamic networks. This
is serious in particular when adopting unweighted settings under which RR sets
can become extremely large.

To overcome this, we consider speeding-up those naive implementations. Our
empirical observation tells us that under unweighted settings, relatively large RR
sets infrequently change after a small graph modification. This is because of many
“detours” inside such RR sets. We leverage this fact to propose a reachability-
tree-based pruning technique. We make our index having reachability trees in
addition to sketches. By using them, we test whether each sketch will not change
after the deletion of edge or vertex with small computational effort. Further, for
sketches that passed the test, we perform a traversal on a limited area of the
sketch, which is determined based on the reachability tree, instead of the whole
area. It should be noted that our technique correctly updates the sketches.

Evaluations.

We conduct experiments using real-world social networks with tens of millions of
edges where each edge has the timestamp at which it was created, under both
unweighted settings and degree-weighted settings. As expected, naive update
algorithms show poor efficiency under unweighted settings. Our speeding-up
techniques drastically reduce the time required to update an index for a single
deletion of vertex and edge by the order of thousands. Consequently, our algo-
rithm can update an index within one second for almost all configurations, which
is several orders of magnitude smaller than that required to reconstruct an index
from scratch. Furthermore, using our index, we can obtain accurate estimates of
the influence spread within a millisecond, and we select highly influential vertices
approximately ten times faster than static algorithms are able to.

Publication. This result was achieved in joint work with Takuya Akiba, Yuichi
Yoshida, and Ken-ichi Kawarabayashi. An extended abstract was also published
in the Proceedings of the VLDB Endowment, Vol. 9, No. 12 (PVLDB 2016;
research track full paper) [157].

1.5.4 Reduction Algorithms of Massive Influence Graphs (Chapter 7)

Lastly, we examine the reduction of massive-scale influence graphs. Since it is
still expensive to analyze billions-edge-scale influence graphs directly, we aim at
reducing the size of an input influence graph so that existing influence maximiza-
tion algorithms can be used.

Coarsening procedure.

Let us start with a strategy for influence graph reduction. Our empirical observa-
tion tells us again that the existence of the GC (in random graphs) causes perfor-
mance degradation of influence maximization algorithms. Conversely, shrinking
down a partial influence graph which intersects random GCs frequently, we may
be able to reduce the computational cost. This motivates us to devise a proce-
dure called coarsening, which merges a vertex set into a single weighted vertex.
Intuitively speaking, the coarsening procedure aims to collapse redundant pieces
in an influence graph. In order to investigate what type of vertex set is desired

11

to be coarsened, we theoretically analyze the impact of coarsening on the diffu-
sion properties and the graph size. Based on our results, we introduce a novel
notion of vertex set which is desired to be coarsened called r-robust strongly con-
nected components. As r-robust strongly connected components are able to hold
the GC, coarsening them effectively reduces the number of edges with a little
deterioration of diffusive properties in practice.

Algorithm and frameworks.

We propose a new scalable reduction algorithm designed for influence graphs.
Given an input influence graph, the proposed algorithm produces a compact
vertex-weighted influence graph by coarsening it. We provide two implemen-
tations; a speed-oriented implementation which runs in linear time with linear
space and a scalability-oriented implementation which runs in practically linear
time with sublinear space. We further explain how to implement our algorithm
on parallel and distributed systems. In addition, we present general frameworks
that accelerate existing algorithms for influence estimation and influence maxi-
mization problems. Using these frameworks, we can quickly obtain solutions that
have accuracy guarantees under a reasonable assumption.

Evaluations.

Our intensive experiments on real-world networks with up to billions of edges
demonstrate the effectiveness, efficiency, and scalability of the proposed algorithm
and frameworks. The remarkable reduction of the graph size is accomplished
for unweighted probability settings. Specifically, we confirm that the proposed
algorithms processes billion-edge graphs within hours and reduces the number of
edges to up to 4%, the proposed influence estimation framework cuts down the
computation time of a simulation-based method [98] to 3.5% and the proposed
influence maximization framework achieves up to four times speed-up of an RIS-
based algorithm D-SSA [148] without significant loss of solution quality.

Publication. This result was achieved in joint work with Tomohiro Sonobe,
Sumio Fujita, and Ken-ichi, Kawarabayashi. An extended abstract was also
published in the Proceedings of the 43rd ACM SIGMOD International Conference
on Management of Data (SIGMOD 2017; research track full paper) [158].

1.5.5 Portfolio Optimization for Acquiring Low-risk Strategies
(Chapter 8)

Finally, in the second aspect, we deal with a risk of having a few influenced
individuals that expectation is not able to capture. This chapter comprises a
new problem formulation and the corresponding algorithm.

Problem formulation.

We adopt portfolio optimization [136], which is a standard approach for risk
management in the field of financial economics and mathematical finance. A
portfolio is a collection of investments on financial assets such as stocks and
bonds. In general, properly constructing portfolios tunes the trade-off between
return (e.g., expectation) and risk (e.g., standard deviation). In our context of
influence diffusion, we construct a portfolio by virtually investing on the possible
sets of k vertices. In other words, virtual investment corresponds to a real number

12

and assets correspond to k-vertex sets. Intuitively speaking, a portfolio is effective
in risk aversion if its seed sets show weak (or negative if possible) correlations of
the number of influenced vertices.

In the field of financial economics and actuarial science, various risk measures
have been proposed to quantify risk. We adopt the conditional value at risk
(CVaR) [163, 164], which is one of the most popular risk measures because of
its good mathematical properties [8]. In our context, roughly speaking, CVaR
measures the expected number of influenced vertices in the worst α-fraction of
cases. α is typically chosen to be 0.01 or 0.05.

Proposed algorithm.

Now, we develop an algorithm for our CVaR maximization problem. Whereas
our problem is a standard formulation of portfolio optimization, existing algo-
rithms for portfolio optimization cannot be applied because it has exponentially
many variables. To overcome this difficulty, we propose to use the multiplica-
tive weights update algorithm [15]. An essential ingredient in the multiplicative
weights algorithm is an oracle for a constraint that is a convex combination of the
constraints in the original problem. Although we cannot precisely check whether
the constraint is satisfied, we can approximately check it by running the greedy
algorithm for submodular function maximization. Our proposed algorithm re-
turns a portfolio on vertex sets that approximates the maximum CVaR within a
constant additive error.

Evaluations.

We conduct experiments using small real-world social networks with up to 70
thousand edges. In short, the portfolios that our algorithm constructs achieve
two times higher CVaRs with α = 0.01 than the seed set obtained by a standard
influence maximization algorithm in Chapter 5. Further, the distribution of the
number of influenced vertices is well concentrated on the expectation, which is
desirable in terms of risk aversion.

Publication. This result was achieved in joint work with Yuichi Yoshida. An
extended abstract was also published in the Proceedings of the 26th International
Conference on World Wide Web (WWW 2017; research track full paper) [155].

1.6 Organization of This Thesis

The structure of this thesis is depicted in Figure 1.2. In Chapter 2, we introduce
basic notions used throughout this thesis and define diffusion models and the
influence maximization problem. Chapter 3 is devoted to an extensive review
of existing algorithms of influence maximization. In Chapter 4, we conduct an
experimental analysis of the diffusion process of the independent cascade model.
In the following three chapters, we explore efficient influence maximization by
exploiting the empirical observations. In Chapter 5, we propose our fast algo-
rithm for influence maximization and experimentally compare with a collection of
existing algorithms. We next develop a dynamic indexing algorithm for real-time
influence analysis in evolving networks in Chapter 6. Then, we next present a
reduction algorithm for massive-scale influence graphs with billions of edges in
Chapter 7. Further, in Chapter 8, we consider a portfolio optimization problem
aiming at maximization of the conditional value at risk of the size of influence

13

Simulation-based approach Heuristic approach

Dynamic indexing algorithm for real-time influence analysis

(Chapter 6)

[O.-Akiba-Yoshida-Kawarabayashi. PVLDB'16]

Portfolio optimization for acquiring low-risk strategies

(Chapter 8)

[O.-Yoshida. WWW'17]

Influence Maximization Problem

Optimal solution is NP-hard [Kempe-Kleinberg-Tardos. KDD'03]

Greedy algorithm is 1 − e−1 -approx. [Nemhauser-Wolsey-Fisher. Math. Program.'78]

Computing 𝐄[# influenced vertices] is #P-hard [Chen-Wang-Wang. KDD'10]

approximation

subroutine

Fast algorithm for influence maximization

(Chapter 5)

[O.-Akiba-Yoshida-Kawarabayashi. AAAI'14]

Reduction algorithms of massive influence graphs

(Chapter 7)

[O.-Sonobe-Fujita-Kawarabayashi. SIGMOD'17]

RIS-based approach

Analysis of the trends of diffusive behaviors

(Chapter 4)

Figure 1.2: Illustration of this thesis.

diffusion, and propose a polynomial-time approximation algorithm for it. Finally,
we conclude the thesis in Chapter 9.

14

Chapter 2

Preliminaries

In this chapter, we will introduce several notations, definitions, and tools used
throughout this thesis. Section 2.1 and 2.2 provide basic definitions and algo-
rithms related to graphs. Section 2.3 explains the notion of submodularity. Sec-
tion 2.4 and 2.5 give the definition of diffusion models and influence maximization
and its computational complexity. Sections 2.6 and 2.7 explain concepts and tools
related to Chapter 8. Table 2.1 summarizes the notation used in this thesis.

Table 2.1: Notations frequently used throughout this thesis.

notation description

G = (V,E) graph
V (G), E(G) vertex set and edge set of graph G
G = (V,E, p) influence graph

(u, v) edge connecting u to v
p(u, v) influence probability of edge (u, v)
w(v) weight of vertex v

N−
G(v),N

+
G(v) set of in- and out-neighbors of vertex v in graph G

RG(v) reachable set of vertex v in graph G
rG(v) size of reachable set of vertex v in graph G
InfG(S) influence spread of vertex set S in influence graph G

2.1 Definitions and Notations

2.1.1 Set and Partitions

For a positive integer k, let [k] denote the set {1, 2, . . . , k}. For a set V and an
integer k ≤ |V |, we define

(
V
k

)
as a collection of all k-element subsets of V . A

collection P of sets is called a partition of a set S if P does not contain the empty
set ∅, the union of the sets in P equals S, and any two distinct sets in P are
disjoint. For two partitions P and Q of the same set, if every element in P is a
subset of some element in Q, we say that P is a refinement of Q, or P (Q) is finer
(coarser) than Q (P). The meet of P and Q, denoted P ∧ Q, is defined as the
coarsest partition that is finer than both P and Q.

2.1.2 Graphs

In this thesis, we consider problems on graphs. We first define directed and
undirected graphs.

Definition 2.1 (Directed graph). A directed graph is defined as a pair G =
(V,E), where V is a finite set and E ⊆ V × V .

15

Definition 2.2 (Undirected graph). An undirected graph is defined as a pair
G = (V,E), where V is a finite set and E ⊆

(
V
2

)
.

An element in V is called a vertex and an element in E is called an edge. We
denote the set of vertices and edges of a graph G by V (G) and E(G), respectively.

In an undirected graph, an edge is an ordered pair {u, v} with u, v ∈ V
and u ̸= v. However, in order to use the same notation, we will denote {u, v} by
(u, v) in accordance with convention, and hence, (u, v) and (v, u) in an undirected
graph represent the identical edge. Directed graphs and undirected graphs are
often both simply referred to as graphs. In general, we consider directed graphs
since information flow is not mutual but directed.

Definition 2.3 (Connect, leave, and enter). For a graph G = (V,E) and an edge
(u, v) ∈ E consisting of two vertices u, v ∈ V , we say that (u, v) connects u to v,
leaves u, or enters u.

For an undirected graph, we sometimes consider its directed version.

Definition 2.4 (Directed version). For an undirected graph G = (V,E), the
directed version of G is defined as a directed graph G′ = (V,E′), where E′ contains
a directed edge (u, v) if and only if (u, v) ∈ E.

In other words, for an undirected graph G = (V,E), the edge set of its directed
version is obtained from E by replacing each undirected edge (u, v) ∈ E with a
pair of two directed edges (u, v) and (v, u).

Definition 2.5 (Subgraph). For two graphs G = (V,E) and G′ = (V ′, E′), G′ is
called a subgraph of G if V ′ ⊆ V and E′ ⊆ E.

Definition 2.6 (Induced subgraph). For a graph G = (V,E) and a vertex set
V ′ ⊆ V , the subgraph of G induced by V ′ is defined as a subgraph (V ′, E′) of G,
where E′ consists of all edges in E spanned by V ′, and we denote it by G[V ′].
Moreover, we use G − V ′ to denote the subgraph of G induced by V \ V ′, i.e.,
G− V ′ := G[V \ V ′].

We sometimes deal with graphs where weights are associated to each vertex.

Definition 2.7 (Vertex weights). For a graph G = (V,E), vertex weights are a
mapping w from each vertex in V to a positive number. We denote the weight of
a vertex v ∈ V by w(v).

2.1.3 Local Properties

We here define the notion of neighbors and degrees.

Definition 2.8 (Neighbor). For a graph G = (V,E) and two vertices u, v ∈ V , u
is called an in-neighbor of v if (u, v) ∈ E and u is called an out-neighbor of v if
(v, u) ∈ E. The set of in-neighbors and out-neighbors of a vertex v is denoted by
N−

G(v) and N+
G(v), i.e., N

−
G(v) = {u | (u, v) ∈ E} and N+

G(v) = {u | (v, u) ∈ E},
respectively.

Definition 2.9 (Degree). For a graph G = (V,E) and a vertex v ∈ V , the
in-degree and out-degree of v are defined as the number of out-neighbors and
in-neighbors, i.e., |N+

G(v)| and |N
−
G(v)|, respectively.

Note that if G is undirected, then N−
G(v) and N+

G(v) are identical, and hence
in-neighbor and out-neighbor are simply referred to as neighbor, and in-degree
and out-degree are simply referred to as degree. We often omit the subscripts
when the graph is clear from the context.

16

2.1.4 Paths, Reachability, and Connectivity

We then define the notion of paths, reachability, and connectivity.

Definition 2.10 (Path). For a graph G = (V,E) and two vertices s, t ∈ V , a
path from s to t is a finite sequence (v0, v1), (v1, v2), . . . , (vk−1, vk) of edges in E,
where v0 = s and vk = t, and the vi’s are all distinct except for the first and last.

Definition 2.11 (Length). The length of a path is defined as its number of edges.

Definition 2.12 (Shortest path). For a graph G = (V,E), and two vertices
s, t ∈ V , a path from s to t is called a shortest path if its length is minimum
among all paths from s to t.

Next, we define the notion of reachability, which plays an essential role in the
process of diffusion.

Definition 2.13 (Reachable). For a graph G = (V,E) and two vertices u, v ∈ V ,
if there is a path from u to v in a graph G, we say that v is reachable from u, or
u can reach v.

Definition 2.14 (Reachable set). For a graph G = (V,E) and a vertex v ∈ V ,
the reachable set of v, denoted RG(v), is defined as the set of the vertices reachable
from v.

For a graph G and a vertex v ∈ V , we denote the size of the reachable set
of v by rG(v), i.e., rG(v) = |RG(v)|. If vertex weights w are associated with G,
we denote the total weight of vertices reachable from v by rG,w(v), i.e., rG,w(v) =∑

w∈RG(v) w(w). We abuse the notation to let act RG, rG, rG,w on a vertex set
S ⊆ V (G) by writing RG(S) =

∪
v∈S RG(v), rG(S) = |RG(S)|, and rG(S) =∑

w∈RG(S) w(w), respectively.
We then go into the notion of connectivity.

Definition 2.15 (Strongly connected). For a graph G = (V,E) and two vertices
u, v ∈ V , we say that u and v are strongly connected if they can reach each other.
We say that G is strongly connected if any pair of vertices is strongly connected.

Definition 2.16 (Weakly connected). For a graph G = (V,E) and two vertices
u, v ∈ V , we say that u and v are weakly connected if they are strongly connected
in the graph obtained from G by replacing each edge (u, v) ∈ E by a pair of edges
(u, v) and (v, u). We say that G is weakly connected if any pair of vertices is
weakly connected.

Note that an undirected graph is strongly connected if and only if it is weakly
connected.

The strongly connected relation is an equivalence relation, and the collection
of its equivalence classes forms a partition of the whole vertex set. Each of its
equivalence classes is called a strongly connected component.

Definition 2.17 (Strongly connected component). For a graph G = (V,E), a
strongly connected component (SCC) is a maximal vertex set that is strongly
connected.

Definition 2.18 (Directed acyclic graph). A directed graph is called a directed
acyclic graph (DAG) if no two distinct vertices are strongly connected.

We now introduce the condensation of a directed graph, which is obtained by
contracting each SCC in the graph into a single vertex.

17

Definition 2.19 (Condensation). For a directed graph G = (V,E), let P =
C1, . . . , Cℓ be a collection of the SCCs in G. Then, the condensation of G is
defined as a directed graph that contains vertices ci corresponding to each SCC
Ci and contains edges (ci, cj) if and only if ci ̸= cj and there is at least one
edge connecting a vertex in Ci to a vertex in Cj. The correspondence mapping
associated with the condensation is defined as a mapping π : V → V ′, which
satisfies π(v) = cj such that v ∈ Cj.

For a directed graph G, let G′ be the condensation of G and π be the corre-
spondence mapping associated with G′. Then,

V (G′) = {π(v) | v ∈ V }, (2.1)

E(G′) = {(π(u), π(v)) | π(u) ̸= π(v), (u, v) ∈ E}. (2.2)

Notice also that for two vertices u, v ∈ V , u can reach v in G if and only if π(u)
can reach π(v) in G′. We abuse the notation to let act π on a subset S ⊆ V by
writing π(S) = {π(v) | v ∈ S}.

We here also define vertex weights associated with the condensation. For a
directed graph G = (V,E), let G′ = (V ′, E′) be the condensation of G, where
V ′ = {c1, . . . , cℓ} and π be the associated correspondence mapping. Then, for
each vertex cj ∈ V ′, we define the weight of cj as the number of vertices in V
that are mapped to cj via π, i.e., w(cj) = |Cj |. Then, for any vertex set S ⊆ V ,
it holds that

rG′,w(π(S)) = rG(S). (2.3)

2.1.5 Trees

Definition 2.20 (Tree). An undirected graph G = (V,E) is called a tree if it is
weakly connected and |E| = |V | − 1.

Definition 2.21 (Directed tree). A directed graph G = (V,E) is called a directed
tree rooted at a vertex z ∈ V if z can reach every vertex in V and |E| = |V | − 1.

2.1.6 Influence Graph

We then introduce influence graphs to capture probabilistic processes among
vertices.

Definition 2.22 (Influence graph). An influence graph is defined as a triplet
G = (V,E, p), where V is a set of vertices, E is a set of edges, and p : E → (0, 1]
is influence probabilities.

The influence probability represents the magnitude of influence for each edge.
Intuitively, the higher the p(u, v), the more v will be affected by u.

Since influence graphs can be regarded as graphs with an edge influence prob-
ability function, we use the definitions and notations defined so far for influence
graphs. For example, for an influence graph G = (V,E, p) and a vertex v ∈ V ,
the set of the in-neighbors of v in G is defined as the set of the in-neighbors of v
in (V,E), i.e., N−

G (v) = N−
(V,E)(v).

Definition 2.23 (Induced influence subgraph). For an influence graph G =
(V,E, p) and a vertex set V ′ ⊆ V , the influence subgraph of G induced by V ′

is defined as an influence graph (V ′, E′, p′), where (V ′, E′) is a subgraph of G
induced by V ′, and p′ is the restriction of p to E′. We denote it by G[V ′].

18

2.2 Basic Graph Algorithms

2.2.1 Breadth First Search

Breadth first search (BFS) [141] is a classical algorithm for graph search. We
especially use BFSes to compute reachable sets. Given a graph G = (V,E) and
a source vertex s ∈ V , a BFS starting from s finds all vertices reachable from
s. We also construct a breadth first search tree (BFS-tree), which is defined as a
tree on the reachable set of s in which any path is a shortest path in G.

More precisely, a BFS from s begins with a queue including a single s and
a BFS-tree T = (s, ∅). In each step, we remove a vertex u from the queue and
visit each out-neighbor v of u. If this is the first time v has been visited, then we
insert v into the queue and add v and (u, v) to V (T) and E(T), respectively. The
procedure continues until the queue is empty. We finally return the set of the
visited vertices and the BFS-tree T . The whole algorithm completes in O(|E|)
time and requires O(|V |) space in addition to the space required to store G.

2.2.2 Depth First Search

Depth first search (DFS) [89, 178] is another classical algorithm for graph search.
For a graph G = (V,E) and a source vertex s ∈ V , a DFS starting from s finds
the reachable set of s as the same as BFS. Conceptually, DFS recursively explores
out-neighbors before backtracking.

More precisely, during a DFS from s, we visit each out-neighbor v of s. If it
is the first time v has been visited, then we start a DFS from v recursively. After
visiting all out-neighbors of s, we finish the DFS from s. The set of the visited
vertices is the reachable set of s. The whole algorithm completes in O(|E|) time
consumes O(|V |) space in addition to the space required to store G.

2.2.3 Finding Strongly Connected Components

There exist several linear-time algorithms for finding all SCCs of a graph [172,
178]. We explain the algorithm proposed by Sharir [172] which performs DFSes
twice.

For a directed graph G = (V,E), we define the transpose graph of G as
G⊤ = (V,E⊤), where E⊤ = {(v, u) | (u, v) ∈ E}. Note that G and G⊤ have the
identical SCCs.

For a directed graph G = (V,E), the algorithm of Sharir [172] works as
follows. We first scan each vertex v ∈ V in an arbitrary order and conduct a
DFS from v on G if we have not visited v during the preceding DFSes on G.
We next compute the transposed graph G⊤ of G. We then order the vertices of
V in ascending order of time when we finish the corresponding DFS. We then
scan each vertex v ∈ V in the obtained order and perform a DFS from v on G⊤

if we have not visited v during the preceding DFSes on G⊤. Finally, we return
the collection of the reachable sets, each of which is an SCC, obtained during
the DFSes on G⊤. This algorithm completes in O(|V | + |E|) time and requires
O(|V |+ |E|) space.

2.3 Submodular Set Functions

The submodularity is a property of set functions that, informally speaking, the
marginal increase of utility obtained by adding a single element to an input set
decreases as the input set gets larger. Submodular functions capture diminishing

19

marginal returns, which arises in natural problem formulations including influence
maximization. During the past twenty years, submodular set functions have
played an immense role in problem formulation in a wide range of applications,
e.g., outbreak detection [23, 118], document summarization [125, 126], network
inferring [74], optimizing CPU scheduling [174], and image segmentation [31].
This section presents the definition, properties, and optimization of submodular
set functions.

2.3.1 Definitions and Properties

We begin with the definition of submodular set functions.

Definition 2.24 (Submodular function). For a set function f : 2V → R, where
V is a finite set, f is said to be submodular if

∀S ⊆ T ⊆ V, ∀e ∈ V \ T, f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T). (2.4)

Another definition of submodular set functions is the following equivalent
condition:

∀S ⊆ V, ∀T ⊆ V, f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T). (2.5)

We often meet the case where the function of interest is monotone or sym-
metric as defined below.

Definition 2.25 (Monotone function). For a set function f : 2V → R, where V
is a finite set, f is said to be monotone if

∀S ⊆ T ⊆ V, f(S) ≤ f(T). (2.6)

Definition 2.26 (Symmetric function). For a set function f : 2V → R, where V
is a finite set, f is said to be symmetric if

∀S ⊆ V, f(S) = f(V \ S). (2.7)

Monotone submodular functions include a class of linear functions, weighted
coverage functions, the entropy function over a set of discrete-valued random
variables [66], and matroid rank functions [24]. Symmetric (non-monotone) sub-
modular functions include a class of graph cuts and the mutual information.

Submodular functions have useful properties which enable us to express prob-
lems of interest flexibly.

� For any submodular functions f1, . . . , fℓ : 2
V → R and non-negative num-

bers α1, . . . , αℓ, the non-negative linear combinations defined as g(S) :=∑
i∈[ℓ] αifi(S) is submodular.

� For any submodular function f : 2V → R and any set A ⊆ V , the residual
defined as g(S) := f(S ∪A)− f(A) is submodular.

� For any monotone submodular function f : 2V → R and any constant c ∈ R,
the truncation defined as g(S) := min{f(S), c} is submodular.

20

2.3.2 Monotone Submodular Function Maximization

We consider the problem of maximizing monotone submodular functions. In this
section, we assume to be given a value oracle of an input function f , a blackbox
that returns f(S) for any S. In particular, we deal with a cardinality constraint :

maximize f(S) subject to |S| ≤ k. (2.8)

This problem is NP-hard because it includes the NP-hard maximum coverage
problem [63] as a special case. In the following, we describe an approximation
algorithm for this problem.

Algorithm 2.1 Greedy algorithm for monotone submodular function maximiza-
tion under a cardinality constraint [144].

Input: a monotone submodular set function f : 2V → R and a budget k
1: S0 ← ∅.
2: for ℓ = 1 to k do
3: vℓ ← argmaxv∈V \Sℓ−1

f(Sℓ−1 ∪ {v})− f(Sℓ−1).
4: Sℓ ← Sℓ−1 ∪ {vℓ}.
5: return Sk.

Algorithm 2.1 shows the gold-standard greedy algorithm. Given a monotone
submodular function f : 2V → R and a budget k, it begins with an empty set
S0 = ∅, and for each iteration ℓ ∈ [k], it picks up an element vℓ that makes the
maximum increase of f , i.e., vℓ = argmaxv∈V \Sℓ−1

f(Sℓ−1 ∪ {v}) − f(Sℓ−1), and
adds it to the solution, i.e., Sℓ = Sℓ−1∪{vℓ}. Note that this algorithm accesses a
value oracle of f at most k|V | times. Theorems 2.27 guarantees that the greedy
algorithm approximates the optimum solution within a factor slightly better than
63%.

Theorem 2.27 (Nemhauser, Wolsey, and Fisher [144]). For a non-negative,
monotone, and submodular function f : 2V → R, let S ⊆ V be a set of size k
obtained by the greedy algorithm. Then, it holds that f(S) ≥ (1 − e−1)f(S∗),
where S∗ ⊆ V is the optimal solution of size k.

Remark that a factor of (1 − e−1) is tight in the worst case due to the in-
approximability result of the maximum coverage problem [63]. However, for
practical instances, it provides better solutions than those expected from the
bound [110, 118, 173].

2.4 Diffusion Models

Diffusion models define the process by which influence or information diffuses
over a network. We review two well-established probabilistic diffusion models:
independent cascade and linear threshold.

2.4.1 Independent Cascade Model

The independent cascade (IC) model was formed by Goldenberg, Libai, and
Muller [70, 71]. This model mimics the dynamics of infectious diseases and gen-
eralizes a susceptible-infected-recovered (SIR) model [101] of epidemics.

21

a

b

d

fe

c
a

b

d

fe

c
a

b

d

fe

c

0.6 0.1

0.3

0.4 0.8

0.2 0.5

Figure 2.1: Illustration of the IC model. Green and white vertices are active and
inactive, respectively. Green, red, black edges correspond to successful activation
trials, failed activation trials, and undetermined trials, respectively.

Definition.

In the IC model, each vertex takes either of two states, active and inactive. An
inactive vertex may become active, but not vice versa. Given an influence graph
G = (V,E, p) and a seed set S ⊆ V , the diffusion process begins by activating
vertices in S; all the other vertices are inactive. Then the process unfolds in
discrete steps according to the following “randomized” rule. When a vertex u
becomes active for the first time in the step t, it is given a single chance to
activate each current inactive vertex v among u’s out-neighbors. It succeeds with
probability p(u, v). If u succeeds, then v will become active in the step t + 1.
Whether or not u succeeds, it cannot make any further attempt to activate v in
subsequent steps. The process runs until no more activation is possible. Note
that this diffusion process terminates in finite steps. Figure 2.1 shows an example
of the IC process.

In order to optimize social influence, we now define the notion of influence
spread.

Definition 2.28 (Influence spread). For an influence graph G = (V,E, p) and a
vertex set S ⊆ V , the influence spread of S in G, denoted InfG(S), is defined as the
expected number of active vertices by initially activating vertices in S. Moreover,
given vertex weights w, the influence spread of S in G, denoted InfG,w(S), is defined
as the expected total weight of active vertices by initially activating vertices in S.

InfG(·) can be viewed as a function on a subset of vertices, and thus we often
call InfG : 2V → R≥0 an influence function.

Here, we describe the random-graph interpretation [98] of the IC model that
characterizes its diffusion process (Figure 2.2). For an influence graph G =
(V,E, p), consider the distribution over graphs (V,E′), where E′ is obtained from
E by maintaining each edge e with probability p(e). We use G ∼ G to mean
that G is a random graph sampled from the distribution. Hereafter, for an in-
fluence probability function p : E → (0, 1] and two edge subsets X and Y with
X ⊆ Y ⊆ E, we denote the probability of obtaining X from Y by maintaining
each edge with its influence probability as p(X | Y), i.e.,

p(X | Y) =
∏
e∈X

p(e)
∏

e∈Y \X

(1− p(e)). (2.9)

Note that the probability of sampling a fixed graph G = (V,E′) from G is exactly
p(E′ | E). Then, Kempe, Kleinberg, and Tardos [98] proved that the influence of
a seed set S in G is equal to the expected number of vertices reachable from S in

22

0.8

a

b

d

fe

c

0.6 0.1

0.3

0.4

0.2 0.5

𝐄𝐺∼𝒢[]# vertices reachable

from 𝑆 in 𝐺′Inf𝒢 𝑆 =

2|𝐸| outcomes

Diffusion process on 𝒢
Reachability on

random graph 𝐺 ∼ 𝒢=
Edge 𝑒 lives w.p. 𝑝𝑒

↝

Influence spread

𝒢 𝐺 ∼ 𝒢

a

b

d

fe

c

Figure 2.2: Random-graph interpretation of the IC model.

the random graph sampled from G, which is expressed as

InfG(S) = E
G∼G

[rG(S)] =
∑
E′⊆E

p(E′ | E) · r(V,E′)(S). (2.10)

If we have weights w for vertices in V , the following holds:

InfG,w(S) = E
G∼G

[rG,w(S)] =
∑
E′⊆E

p(E′ | E) · r(V,E′),w(S). (2.11)

Random-graph interpretation.

2.4.2 Linear Threshold Model

The linear threshold (LT) model was proposed by Kempe, Kleinberg, and Tardos
[98]. Intuitively, an inactive vertex becomes active when a sufficiently large frac-
tion of its neighbors becomes active. Note that Granovetter [83] and Schelling
[171] were the first to propose models that reflect this process.

Definition.

In the LT model, each vertex takes active or inactive, in the same way as the IC
model. Given an influence graph G = (V,E, p) where an edge weight p satisfies
that

∑
u∈N−(v) p(u, v) ≤ 1, and a seed set S ⊆ V , we first activate vertices in

S. We next assign an activation threshold θv for each vertex v chosen from the
interval [0, 1] uniformly at random. Then, the process unfolds in discrete steps
according to the following “deterministic” rule. In the step t, an inactive vertex
v will become active in the next step t+ 1 when the following holds:∑

u∈N−(v):u is active

p(u, v) ≥ θv. (2.12)

The process runs until no more activation is possible. Note that this diffusion
process terminates in finite steps.

Random-graph interpretation.

Similar to the IC model, the LT model has a random-graph interpretation. Con-
sider the randomized process in which each vertex picks up at most one entering
edge with probability equal to the edge weight. Let E′ be a set consisting of the

23

all selected edges, and we consider a distribution over possible subgraphs (V,E′).
Then, the influence spread of any vertex set S is equal to the expected number
of vertices reachable from S over the possible subgraphs [98].

2.5 Influence Maximization

2.5.1 Definition

Now that, we start this section by mathematically formulating the influence max-
imization problem as a discrete optimization problem according to [98].

Problem 1 (Influence maximization problem [98]). Given an influence graph
G = (V,E, p), a diffusion model, and a seed size k, the influence maximization
problem asks to find a seed set S ⊆ V of k vertices such that the influence spread
of S under the give diffusion model is maximized.

Besides influence maximization, estimating the influence spread of a particular
seed set itself is important.

Problem 2 (Influence estimation problem [131]). Given an influence graph G =
(V,E, p), a diffusion model, and a seed set S ⊆ V , the influence estimation
problem asks to compute the influence spread of S under the given diffusion
model.

2.5.2 Hardness Results

The complexity of influence maximization and influence estimation has been thor-
oughly analyzed. We begin with the inapproximability of influence maximization
in the general case.

Theorem 2.29 ([98, Theorem 4.1]). In general, it is NP-hard to approximate
the influence maximization problem within a factor of |V |1−ϵ for any ϵ > 0.

The proof was done by a reduction from the NP-complete set cover problem.
Hereafter, we focus on the IC model and the LT model.

Theorem 2.30 ([98, Theorem 2.4 and Theorem 2.7]). Influence maximization
under both the IC and LT models is NP-hard. Moreover, it is NP-hard even if
an oracle for the influence function is given.

The proof was done by showing that influence maximization under the IC
and LT model includes the NP-complete set cover problem and the NP-complete
vertex cover problem as a special case, respectively.

In fact, influence estimation is even difficult under both the IC and LT model.

Theorem 2.31 ([182, Theorem 1] and [41, Theorem 1]). Given an influence
graph and a seed set, it is #P-hard to compute the influence spread of the seed
set under both IC model and LT model.

The proof for the IC model was done by a reduction from the #P-complete
counting problem of s-t connectedness in a directed graph [181], while the proof
for the LT model was done by a reduction from the #P-complete counting prob-
lem of simple paths in a directed graph [181].

Utilizing the above results, we can show that solving influence maximization
with k = 1, i.e., identifying the most influential vertex is even hard.

Theorem 2.32 ([44, Corollary 3.3]). Influence maximization is #P-hard under
both IC and LT models, even if k = 1.

24

2.5.3 Approximability Results

While the exact computation of the two problems is quite difficult, it is possible
to obtain approximate solutions. We begin with the celebrated result of Kempe,
Kleinberg, and Tardos [98] as follows.

Theorem 2.33 ([98, Theorem 2.2]). For any influence graph, the influence func-
tion is non-negative, monotone, and submodular under both IC and LT models.

Hence, if we are given an oracle for an influence function, running the greedy
algorithm on the influence function derives a (1 − e−1)-approximate solution
against the optimal solution. Fortunately, albeit #P-hardness of influence estima-
tion, we are able to approximate the influence spread by performing Monte-Carlo
simulations.

Theorem 2.34 ([100, Proposition 4.1]). If we simulate the diffusion process
starting from a vertex set A ⊆ V

Θ(ϵ−2|V |2 ln δ−1) (2.13)

times, then the estimate is a (1 ± ϵ)-approximation to Inf(A) with probability at
least 1− δ.

Combining the above two theorems, we have the main result of [100].

Theorem 2.35 ([100, Theorem 1.1]). In the IC and LT models, there is a ran-
domized polynomial-time algorithm that returns a seed set that approximates the
maximum influence spread within a factor of (1− e−1 − ϵ).

2.6 Risk Measures

A risk measure ρ of a random variable X is defined as a function mapping X
to a real number. We use ρ[X] to denote the risk of X. X usually represents
loss and hence we want to avoid a large loss. However, we regard X as profit in
Chapter 8 because we want to avoid to have the number of influenced individuals
small. Hence, we use slightly different definitions from the standard ones.

2.6.1 Definition of Coherent Risk Measures

The notion of coherence defines the properties that risk measures should have.
We first define several properties on risk measures.

Definition 2.36 (Monotonicity). A risk measure ρ is said to be monotone if for
any two random variables X1, X2,

Pr[X1 ≤ X2] = 1⇒ ρ[X1] ≤ ρ[X2]. (2.14)

Definition 2.37 (Super-additivity). A risk measure ρ is said to be super-additive
if for any two random variables X1, X2,

ρ[X1 +X2] ≥ ρ[X1] + ρ[X2]. (2.15)

Definition 2.38 (Homogeneity). A risk measure ρ is said to be homogeneous if
for any random variable X and any non-negative number α,

ρ[αX] = αρ[X]. (2.16)

25

fr
e
q

u
e
n

cy

profit
probability α

CVaRα

expectation

VaRα

Figure 2.3: Illustration of expectation, value at risk, and conditional value at
risk.

Definition 2.39 (Translation invariance). A risk measure ρ is said to be trans-
lation invariant if for any random variable X and any real number α,

ρ[X + α] = ρ[X] + α. (2.17)

Then, coherent risk measures are defined as follows.

Definition 2.40 (Coherent risk measure [16]). A risk measure is said to be a
coherent risk measure if it satisfies monotonicity, sub-additivity, homogeneity,
and translational invariance.

2.6.2 Examples of Risk Measures

Here, we define two popular risk measures (Figure 2.3).

Definition 2.41 (Value at risk). For a random variable X and α ∈ (0, 1), let
FX : R → R be the cumulative distribution function of the distribution of X.
Then, the value at risk (VaR) of X at a significance level α, denoted by VaRα[X],
is the α-percentile of X, i.e.,

VaRα[X] = inf{τ ∈ R | FX(τ) ≥ α}. (2.18)

It is known that VaR is not a coherent risk measure since it does not satisfy
the super-additivity [16].

We then define conditional value at risk (CVaR), which is also called expected
shortfall, expected tail loss.

Definition 2.42 (Conditional value at risk [34]). For a random variable X and
α ∈ (0, 1), The conditional value at risk (CVaR) of X at a significance level α,
denoted by CVaRα[X], is defined as

CVaRα[X] =
1

α

∫ α

0
VaRγ [X]dγ. (2.19)

Theorem 2.43 ([8]). CVaR is a coherent risk measure.

It is known that CVaRα[X] can be written as a solution to the following
optimization problem [163]:

CVaRα[X] = max
τ∈R

{
τ − 1

α
E
X
[max{τ −X, 0}]

}
. (2.20)

26

Algorithm 2.2 The multiplicative weights update algorithm [15].

1: fix η ≤ 1/2 and set w(1) ← 1.
2: for t = 1, 2, . . . , T do

3: choose a strategy i ∈ S with probability d
(t)
i ← w

(t)
i /∥w(t)∥1.

4: observe the costs of the strategies c
(t)
1 , . . . , c

(t)
s .

5: for every strategy i ∈ S, set w(t+1)
i ← w

(t)
i (1− ηc(t)i).

The maximum is attained by choosing τ = VaRα[X] [163].
We finally explain how to approximate CVaR with the empirical CVaR. Let

X be a random variable. For a positive integer r, we define the empirical dis-
tribution made by r samples from X, denoted D̂X,r, as the uniform distribution
over {X1, . . . , Xr}, where X1, . . . , Xr are independent samples from the distri-
bution of X. Let X̂ ∼ D̂X,r be a random variable. Then, the gap CVaRα[X] and

CVaRα[X̂] is bounded as follows.

Lemma 2.44 ([155, Lemma 4.1]). Let X be a discrete random variable bounded in
[0, 1] and α, ϵ, δ ∈ (0, 1). Let X̂ ∼ D̂X,r be a random variable for r = Θ(1

ϵ2
log 1

δ).
Then, with probability at least 1− δ, we have

|CVaRα[X]− CVaRα[X̂]| ≤ ϵ. (2.21)

Notice that this technical contribution has been derived by Yuchi Yoshida, a
co-author of the extended abstract [155] published in WWW 2017.

In Chapter 8, we adopt CVaR as a risk measure to be optimized.

2.7 Multiplicative Weights Update Algorithm

This section explains the multiplicative weights update algorithm [15]. It is a
meta-algorithm based on the idea that maintains a distribution over a set of
decisions and updates it by multiplying factors determined based on the feed-
back obtained by running some other algorithm over the current distribution.
This algorithm has been repeatedly rediscovered in diverse fields such as machine
learning [65], optimization [14, 159], and game theory [84], and we describe the
one unified by Arora, Hazan, and Kale [15].

Consider the following setting. We have a set S of r strategies, and we are
required to select one strategy from S in each round. More specifically, in round t,
we select a vector d(t) in the r-dimensional simplex ∆r = {d ∈ Rr |

∑
i∈[r] di = 1}.

Then, we sample a strategy i ∈ S from the distribution determined by d(t), i.e., we

sample i ∈ S with probability d
(t)
i . Each strategy incurs a certain cost, determined

by nature or an adversary. After devising our strategy, all the costs are revealed
in the form of the vector c(t) ∈ Rr. The expected cost to the algorithm using
the vector d(t) is ⟨d(t), c(t)⟩. Hence, after T rounds, the total expected cost is∑

t∈[T]⟨d(t), c(t)⟩.
We wish to obtain an algorithm that achieves a total expected cost not too

much more than the cost of the best single strategy, that is, mini∈S
∑

t∈T c
(t)
i .

The multiplicative weights update (MWU) algorithm shown in Algorithm 2.2 is
known to have this property. More specifically, we obtain the following:

Theorem 2.45 ([15, Corollary 4]). Assume that all costs c
(t)
i ∈ [−1, 1]. By

choosing T = 16 log r
ϵ2

and η = min{ ϵ4 ,
1
2}, the MWU algorithm guarantees that,

27

after T rounds, for any strategy i ∈ S,

1

T

∑
t∈[T]

⟨c(t),d(t)⟩ ≤ 1

T

∑
t∈[T]

c
(t)
i + ϵ. (2.22)

28

Chapter 3

Categorization of Influence Maximization

Algorithms

In this chapter, we give a comprehensive review of existing research on efficient
algorithms for influence maximization, some of which also deal with influence
estimation.

3.1 Greedy algorithm of Kempe, Kleinberg, and Tardos [98]

Kempe, Kleinberg, and Tardos [98] were the first to propose an approximation al-
gorithm. Their algorithm is an application of the greedy algorithm for monotone
submodular functions (Algorithm 2.1) with f = Inf. Due of the monotonicity
and submodularity of the influence function under the IC and LT model (Theo-
rem 2.33), the greedy algorithm given an oracle for the influence function provides
a (1 − e−1)-approximate solution (Theorem 2.27). However, the difficulty of in-
fluence estimation poses an obstacle to run the above greedy algorithm. Kempe,
Kleinberg, and Tardos [98] have remained efficient computation of the influence
spread as an open problem and relied on Monte-Carlo simulations. While Monte-

Table 3.1: Categorization of existing influence maximization algorithms.

category perspective representatives

simulation

naive simulations
CELF [118], CELF++ [80], UBLF [191,
192], SIEA [150, 151].

snapshot-based
Bond Percolation [106], NewGreedy [40],
MixedGreedy [40], StaticGreedy and Stat-
icGreedyDU [46], SKIM [52].

RIS [29]
bounding optimal influence TIM+ [176], IMM [177].

degree-based thresholding LISA [57, 149], BCT [147, 152].

search and verify SSA and D-SSA [148], TipTop [123].

heuristic

local region

SPM and SP1M [105], DegreeDis-
count [40], CGA [184], PMIA [41, 182],
LDAG [42], Simpath [81], SAEDV [94],
CDH-Kcut and CDH-SHRINK [45],
CINEMA [122], IPA [104].

linear systems GSbyStep [189], IRIE [96], IMRank [47].

graph reduction coarseNet [161], Spine [138].

others
Belief Propagation [153], Inclusion-
Exclusion [190], EaSyIM [67].

29

Algorithm 3.1 Naive algorithm for influence estimation.

Input: an influence graph G = (V,E, p), a seed set S, number of simulations r
1: inf← 0.
2: for i = 1 to r do
3: Q← a queue containing vertices in S.
4: while Q ̸= ∅ do
5: remove u from Q.
6: inf← inf+ 1.
7: for all v ∈ N+

G (u) do
8: if v is not visited so far and activation succeeds with probability
p(u, v) then

9: insert v onto Q.

10: return inf/r.

Carlo simulations provide accurate estimates (Theorem 2.34), running them for
O(k|V |) vertex sets is computationally prohibitive even for small networks. In
fact, exact computation of the influence spread was proven to be #P-hard by
Chen, Wang, and Wang [41].

Under these circumstances, most of the research on scalable influence maxi-
mization have studied a way to efficiently and accurately estimate the influence
spread. Table 3.1 gives a taxonomy of existing algorithms for influence maximiza-
tion. Existing algorithms can be categorized into the following three approaches:
simulation-based, RIS-based, and heuristic.

3.2 Simulation-based Algorithms

The first category is to run Monte-Carlo simulations of the diffusion process. We
first explain naive estimation and then describe snapshot-based estimation, which
adopts sample average approximation.

3.2.1 Naive Estimation

Concept.

Naive estimation methods repeatedly simulate the diffusion process for a given
seed set and take the average number of activated vertices. Algorithm 3.1 shows
its pseudocode. The running time is bounded by O(|E|) and a naive implementa-
tion consumes O(|V |+ |E|) space. However, since each simulation touches Inf(S)
vertices in expectation, the larger influence probabilities are, the slower each sim-

ulation becomes. Theorem 2.34 guarantees that r = Ω(|V |2
ϵ2

ln δ−1) simulations
give a (1± ϵ)-approximation with probability of at least 1− δ. In practice, tens
of thousands of simulations are sufficient to obtain reasonable solutions [12, 98].

Applying to influence maximization and existing techniques.

Basically, naive simulation methods for influence maximization call Algorithm 3.1
multiple times during greedy seed selection. A basic approach for scaling up is
to prune unnecessary influence evaluation. Cost-Effective Lazy Forward (CELF)
proposed by Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, and Glance [118]
uses the greedy strategy with lazy evaluations [140]. In lazy evaluations, we use
the fact that the increase of the influence spread that the addition of a vertex v
to a vertex set S makes, i.e., Inf(S∪{v})− Inf(S), decreases as S expands. Let Sℓ

30

be an ℓ-vertex set that the greedy algorithm has selected. Then, for any positive
integer k, Inf(Sℓ∪{v})− Inf(Sℓ) for any ℓ ∈ [k−1] can be used as an upper bound
of Inf(Sk ∪ {v}) − Inf(Sk). If an upper bound of Inf(Sk ∪ {v}) − Inf(Sk) is less
than the actual value of Inf(Sk ∪{u})− Inf(Sk) for some u, then we can correctly
declare that v is never selected by the greedy algorithm at that time without
evaluating Inf(Sk ∪ {v}) − Inf(Sk). Goyal, Lu, and Lakshmanan [80] proposed
CELF++, which is a slight improvement of CELF to achieve two times speed-
up. However, it is still mandatory to evaluate Inf(v) for all vertices v at the first
iteration. Upper Bound based Lazy Forward (UBLF) for the IC model by Zhou,
Zhang, Guo, Zhu, and Guo [191] and the LT model by Zhou, Zhang, Guo, and
Guo [192] uses linear equations to derive an upper bound of the influence spread.

Near-linear time influence estimation.

Influence Estimator (InfEst) proposed by Lucier, Oren, and Singer [132] ensures
a relative error in almost linear time. The essential idea is to guess a number τ
such that the actual influence is in the interval [τ, (1 + ϵ)τ]. Note that verifying
the statement “the actual influence is at least τ” is possible by simulating the
diffusion process 1

τϵ2
times. InfEst runs in O(ϵ−2|V | log5 |V |) time and produces

(1 + ϵ)-approximate estimation.
Nguyen, Nguyen, Vu, and Dinh [150, 151] proposed Scalable Outward Influ-

ence Estimation Algorithm (SIEA). SIEA introduces an importance sampling
technique of the diffusion process and runs in time O(ϵ−2|V | log |V |), which is a
log4 |V |-time improvement over InfEst [132].

3.2.2 Snapshot-based Estimation

Concept.

Since influence maximization can be naturally viewed as stochastic discrete op-
timization, use of sample average approximation [109] is a major approach. In
short, snapshot-based algorithms sample snapshots of the diffusion process in ad-
vance and optimizes the empirical influence function defined over the snapshots.

Specifically, snapshot-based algorithms sample r random graphs G1, . . . , Gr

from G. Then, the empirical influence function ˆInf : 2V → R is defined as

ˆInf(S) :=
1

r

∑
i∈[r]

rGi(S), (3.1)

which is equal to the average size of reachable sets. Note that ˆInf(S) is an unbiased
estimator for InfG(S) . Algorithm 3.2 shows a vanilla implementation of snapshot-
based algorithms. The memory consumption is bounded by O(

∑
i∈[r] |Gi|) =

O(r(|V |+ |E|)), which is r times worse than naive estimation algorithms.
Notice that the above procedure is almost identical to naive estimation when

estimating for a single set; however, when we are aware of estimating for multiple
sets, there is much room for performance improvements.

Applying to influence maximization.

In order to solve influence maximization, we apply the greedy algorithm with
f = ˆInf(·). It is easy to observe that ˆInf(·) is monotone and submodular, and
thus, the greedy algorithm returns a (1−e−1)-approximation to the optimal ˆInf(·).

Snapshot-based algorithms have the following advantages over naive estima-
tion algorithms.

31

Algorithm 3.2 Snapshot-based algorithms for influence estimation and influence
maximization.
1: procedure Preprocess(G = (V,E, p), r)
2: sample r random graphs G1, . . . , Gr from G.

3: procedure Estimate(S ⊆ V)
4: compute rG1(S), . . . , rGr(S) by running BFSes.
5: return 1

r

∑
i∈[r] rGi(S).

6: procedure Maximize(k)
7: return a solution by greedy strategy with f(·) = 1

r

∑
i∈[r] rGi(·).

� Running the greedy algorithm on ˆInf, we are able to obtain more influential
vertices. For example, seed sets obtained with r ≈ 100 random graphs are
comparable to or even more influential than those obtained with 10,000
Monte-Carlo simulations [46, 106, 108].

� We are able to introduce acceleration techniques over fixed r random graphs
as described below.

Existing techniques.

To the best of our knowledge, Kimura, Saito, and Nakano [106] were the first
to use snapshot-based estimation. Their algorithm Bond Percolation introduces
two techniques. One is to replace the random graphs with condensations. For
each DAG Gi, let G

′
i be its condensation DAG, πi : V (Gi) → V (G′

i) be the cor-
respondence mapping, and wi be the vertex weights for G′

i defined in Section 2.1.
Then, for any vertex set S ⊆ V ,

ˆInf(S) =
1

r

∑
i∈[r]

rG′
i,wi

(πi(S)). (3.2)

The other one is to shrink the DAGs over iterations. For a graph G = (V,E), a
vertex set S ⊆ V , a vertex v ∈ V , it follows that

rG(S ∪ {v}) = rG(S) + rG−RG(S)(v). (3.3)

Therefore, we can obtain rG(S ∪ {v}) for all vertices v by first computing rG(S)
and then computing rG−RG(S)(v) for all vertices v.

Chen, Wang, and Yang [40] proposed NewGreedy, which adopts a k-mins
sketch [49] in order to speed-up the computation of the size of reachable sets.

Cheng, Shen, Huang, Zhang, and Cheng [46] proposed StaticGreedy and its
variant StaticGreedyDU. StaticGreedy is essentially equivalent to Algorithm 3.2
without any optimization techniques. StaticGreedyDU stores the reachable sets
for each vertex to efficiently compute the size of reachable sets. This technique
achieved approximately ten times speed-up against StaticGreedy; however, stor-
ing all the sets into memory is severely prohibitive in the case of high influence
probabilities [12, 156].

Cohen, Delling, Pajor, and Werneck [52] proposed Sketch-based Influence
Maximization (SKIM), which uses bottom-k min-hash sketch [50, 51] for ap-
proximate computation of the number of reachable vertices.

There have been also proposed different approaches such as graphics process-
ing unit for parallel processing [128] and subgraph partitioning [131].

32

Bottleneck of the first iteration.

We conclude this subsection with the inefficiency issue of snapshot-based algo-
rithms. In the first iteration, we compute ˆInf(v) for all vertices v. This requires
solving the following problem for each random graph {Gi}i∈[r].

Problem 3 (Descendant counting problem [27, 49]). Given a directed graph
G = (V,E), the descendant counting problem asks to compute rG(v) for every
vertex v ∈ V .

Borassi [28] has proven that the descendant counting problem is unsolvable
in time O(|V |2−ϵ) for any ϵ > 0, unless the strong exponential time hypothe-
sis is false. Most of the snapshot-based algorithms suffer from the difficulty of
descendant counting; conducting BFSes starting from every vertex may require
O(|V ||E|) time. This is too expensive.

3.3 Reverse Influence Sampling

3.3.1 Concept

Borgs, Brautbar, Chayes, and Lucier [29] established reverse influence sampling
(RIS), the first near-linear time algorithm (for constant k). Roughly speaking,
RIS builds sketches called reverse reachable sets in which influential vertices are
frequently appearing and uses them to estimate the influence spread. Let us
begin with the definition of reverse reachable sets.

Definition 3.1 (Reverse reachable set [29]). For an influence graph G = (V,E, p)
and a target vertex z ∈ V , a reverse reachable (RR) set for z (under the IC model)
is defined as a random set R of vertices that can reach z in a random graph G
sampled from G. For an RR set for a target which is selected from V uniformly
at random, we simply refer it an RR set.

An important observation is the following:

Lemma 3.2 ([29, Observation 3.2]). For an influence graph G = (V,E, p) and a
vertex set S ⊆ V , S intersects an RR set with probability InfG(S)/|V |.

We now explain how to use RR sets for influence estimation and influence
maximization. Let R be a collection of RR sets. For a vertex set S, let FR(S)
denote the fraction of RR sets in R intersecting S, i.e.,

FR(S) =
|{R ∈ R | R ∩ S ̸= ∅}|

|R|
. (3.4)

Then, due to [29, Observation 3.2], |V | ·FR(S) is an unbiased estimator of Inf(S),
i.e.,

E
R
[|V | · FR(S)] = Inf(S). (3.5)

Therefore, in RIS-based algorithms, influence estimation turns into the compu-
tation of FR(·) and influence maximization turns into the maximization of FR(·).

33

Algorithm 3.3 Reverse influence sampling for influence maximization [29].

Input: an influence graph G = (V,E, p), a diffusion model M, a seed size k.
1: R← ∅.
2: i← 1.
3: repeat
4: zi ← a vertex chosen from V uniformly at random.
5: Ri ← a random RR set for z under M.
6: R← R ∪ {Ri}.
7: i← i+ 1.
8: until R includes a sufficient number of vertex sets
9: S ← ∅.

10: for ℓ = 1 to k do
11: sℓ ← argmaxv∈V FR(v). ▷ FR(v) is defined as |{R∈R|R∩{v}≠∅}|

|R| .

12: Sℓ ← Sℓ−1 ∪ {sℓ}.
13: remove RR sets including vℓ from R.

14: return Sk.

3.3.2 Applying to Influence Estimation

If we are aware of influence estimation, a simple application of Hoeffding’s in-
equality gives the required number of RR sets.

Theorem 3.3 (Additive error of influence estimation by RR sets). Assume that
we generated a collection R of θ RR sets. For a vertex set S ⊆ V , let ˆInf(S) :=
|V | · FR. Then, for any ϵ > 0,

Pr
[
| ˆInf(S)− Inf(S)| ≥ |V |ϵ

]
≤ 2 exp(2θϵ2). (3.6)

Proof. Let R = {R1, . . . , Rθ}. Let Xi be a random variable that takes 1 if S ∩
Ri ̸= ∅ and 0 otherwise, and let X̄ = 1

θ

∑
i∈[θ]Xi. Note that Inf(S) = |V |E[X̄]

and ˆInf(S) = |V |X̄. Since each Xi is bounded in the interval [0, 1], applying
Hoeffding’s inequality [87] yields

Pr
[
| ˆInf(S)− Inf(S)| ≥ |V |ϵ

]
= Pr

[
|X̄ −E[X̄]| ≥ ϵ

]
≤ 2 exp

(2θ2ϵ2∑
i∈[θ](1− 0)2

)
= 2 exp

(
2θϵ2

)
. (3.7)

3.3.3 Applying to Influence Maximization

Now, we describe RIS-based influence maximization. Algorithm 3.3 shows pseu-
docode of the framework of RIS. Given an influence graph G = (V,E, p), a diffu-
sion model M (e.g., the IC model), and a seed size k, it performs the following
two stages. In the first stage, beginning with an empty collection R = ∅, it it-
eratively generates an RR set and adds it to R. The above repetition continues
until R includes a “sufficiently large” number of RR sets. In the second stage, it
computes an approximate solution Sk for the maximum coverage problem, which
requires selecting a set of k vertices from V that intersects the maximum number
of RR sets in R, i.e., argmaxS∈(Vk)

FR(S), by the greedy algorithm. Finally, it

34

returns the obtained solution Sk. Since FR(·) is monotone and submodular, it
turns out that FR(Sk) ≥ (1 − e−1)maxS∈(Vk)

FR(S) Note that the second stage

completes in linear time in the size of R [29], the first stage dominates the total
running time.

3.3.4 Stopping Conditions of RR Set Generation

The central problem of RIS-based algorithms is the time at which we stop RR set
generation. Intuitively, |V | · FR should be close to Inf. Borgs, Brautbar, Chayes,
and Lucier [30] first prove a stopping condition with a theoretical guarantee on
the accuracy.

Theorem 3.4 ([30, Theorem 3.1]). For a parameter ϵ ∈ (0, 1/2), assume that
Algorithm 3.3 terminates when the number of edges touched so far in the process
of RR set generation exceeds W = ckϵ−2|E| log |V |, where c = 4(1 + ϵ)(1 + 1

k) ≤
12. Then, the seed set of size k that Algorithm 3.3 returns is a (1 − e−1 − ϵ)-
approximate solution with probability at least 3/5. Moreover, the running time is
Θ(W).

Notice here that a factor k log |V | is obtained by taking a union bound over all
sets of size at most k; there are at most |V |k sets. (In the conference version [29]
presented at SODA 2014, the authors claimed that Θ(ϵ−3(|V | + |E|) log |V |) is
sufficient, but this claim was fixed later.)

Albeit the near linear complexity, a hidden constant sorely limits the practical
efficiency against large-scale networks. On the other hand, in practice, the num-
ber of RR sets required for high-quality influence maximization is much smaller
than that envisioned from the theoretical bound. Hence, there have been devel-
oped strategies for bounding the required number of RR sets more tightly.

Most of the studies [29, 30, 57, 92, 147, 148, 149, 152, 176, 177] considered
the following requirement:

Given parameters ϵ and δ in addition to an influence graph G =
(V,E, p) and a seed size k, the algorithm is required returning a col-
lection of RR sets R such that the greedy strategy on FR yields a
(1− e−1 − ϵ)-approximate solution against the optimum with proba-
bility at least 1− δ.

Hereafter, we review existing approaches.

Bounding the optimum influence.

The first approach is to use the optimum influence. Tang, Xiao, and Shi [176]
have shown an upper bound of the required number of RR sets as

θTIM = (8 + 2ϵ)|V |
ln(2/δ) + ln

(|V |
k

)
ϵ2OPTk

, (3.8)

where OPTk = maxS∈(Vk)
Inf(S). Since the actual value of OPTk is unknown

beforehand, we need to estimate its lower bound. Tang, Xiao, and Shi [176]
proposed Two-phase Influence Maximization (TIM). TIM consists of the two
phases. The first phase estimates a lower bound of OPTk and θTIM, and the
second phase generates θTIM RR sets and then executes the greedy algorithm on

them. Specifically,
(|V |

k

)−1∑
S∈(Vk)

Inf(S) is used as a lower bound of OPTk. Also,

TIM+ was proposed as an improvement upon TIM that incorporates a heuristic

35

method. However, these lower bounds can be terribly small in the worst case,
which leads to an excessive number of RR set generation.

Influence Maximization via Martingales (IMM) proposed by Tang, Shi, and
Xiao [177] introduced a martingale approach, where we reuse RR sets in both
lower-bound estimation of OPTk and the greedy algorithm. The authors proposed
a statistical test to decide “OPTk > x?”. Then, IMM calls the test for x =
|V |, |V |/2, |V |/4,

Degree-based thresholding.

Since it is still hard to estimate OPTk, some strategies decide the stopping point
without estimating OPTk. Linear-time Influence Spectrum Algorithm (LISA) in
Dinh, Nguyen, Ghosh, and Mayo [57] and Nguyen, Ghosh, Mayo, and Dinh [149]
continues RR set generation until the maximum of |R| · FR(v) among all vertices
v exceeds a threshold value 1 + 4.6ϵ−2 ln 2

δ .
BCT in Nguyen, Dinh, and Thai [147] and Nguyen, Thai, and Dinh [152]

adopts a slightly different approach. For a given collection R of RR sets and a
k-vertex set Sk obtained by running the greedy algorithm on FR, BCT verifies
whether |R| · FR(Sk) is greater than a threshold value

ψBCT ≈ 7.4
[
ln

1

δ
+ ln

(
|V |
k

)
+

2

|V |

]
. (3.9)

If this is the case, then it stops RR set generation and returns Sk. Otherwise, it
doubles the number of RR sets in R.

Search-and-verify approach.

The last approach attempts to find an approximate solution and verify its qual-
ity forthwith. Stop-and-Stare Algorithm (SSA) of Nguyen, Thai, and Dinh [148]
directly verifies the influence spread of candidate solutions in a statistical man-
ner. SSA first applies the greedy strategy on a current collection R of RR sets
to obtain a seed set Sk. It then generates a separate collection R′ of RR sets to
test “FR(Sk) ≤ (1 + ϵ′)FR′(Sk)?” for some ϵ′, which ensures that |V | · FR(S) is
sufficiently close to Inf(S). If the verification was rejected, then it doubles the
number of RR sets in R. Dynamic Stop-and-Stare Algorithm (D-SSA) automat-
ically adjusts internal parameters of SSA.

Li, Smith, Dinh, and Thai [123] used integer programming. Tiny Integer Pro-
gram with Theoretically OPtimal (TipTop) algorithm generates a small number
of RR sets and solves the corresponding maximum coverage problem using an
integer programming solver. Then, it generates a relatively large number of RR
sets separately to verify whether the obtained solution is sufficiently influential
in a similar manner to [148].

We here note that these techniques are severely affected by the network struc-
ture and edge probability settings. In fact, most of the studies [57, 92, 148, 176,
177] have tested each proposed method under only one specific setting (in-degree
weighted in Chapter 4).

3.3.5 RR Set Generation under the IC Model

Algorithm 3.4 shows pseudocode of RR set generation under the IC model. This
is used as a subroutine in RIS-based algorithms (Algorithm 3.3, line 5). We
define an activation function as x : E → [0, 1], each of which is sampled from

36

Algorithm 3.4 RR set generation under the IC model.

Input: an influence graph G = (V,E, p), a target vertex z ∈ V
1: Q← a queue containing z.
2: while Q ̸= ∅ do
3: remove v from Q.
4: for all u ∈ N−

G (v) do
5: determine the value x(u, v) in the interval [0, 1] randomly.
6: if (u, v) is live w.r.t. x and u is not inserted into Q so far then
7: insert u onto Q.

8: return the set of vertices that have been inserted into Q so far.

[0, 1] uniformly at random. An edge (u, v) is called live with respect to x if
x(u, v) < p(u, v) and blocked otherwise, i.e., (u, v) is live with probability p(u, v).
At the beginning, we sample a target vertex z from V uniformly at random and
prepare a queue consisting of z. Then, we iteratively determine vertices that
would influence z via the following BFS-like procedure. For each iteration, we
remove a vertex v from the queue. For each in-neighbor u of v, we determine the
value of x(u, v). If (u, v) is live and u has not been inserted into the queue so far,
then we insert u into the queue. The procedure continues until the queue is empty.
We finally return the set of vertices that have been inserted into the queue. Note
that the expected number of edges touched is bounded by |E|

|V | maxv InfG(v) [30].

3.4 Heuristics

Heuristic algorithms perform neither direct Monte-Carlo simulations nor RR set
generations. Abstractly, these algorithms assume ad-hoc conditions, that make
easy to estimate the influence spread. However, the conditions are hard to hold
in general, which results in the expense of the quality of solutions.

3.4.1 Restricting the Range of Influence

One approach is to make an assumption that the spread of influence stays inside
a specific type of local region, e.g., shortest paths [105], neighbors [40, 94], com-
munities [45, 122, 184], and maximum influence paths [41, 42, 104, 182] so as to
make it easier to estimate the influence spread.

Shortest paths.

Kimura and Saito [105] proposed the Shortest-Path Model (SPM) under which
influence diffuses along with shortest paths and its relaxation SP1 Model further
allows paths whose length is one more than the shortest. The authors provided
an efficient way to compute the influence spread under both assumptions.

Neighbors.

Chen, Wang, and Yang [40] assumed that influence from a seed cannot spread
outside the seed’s neighbors. Thus the influence spread of a seed equals the total
influence probabilities of edges leaving the seed. The proposed method, called
DegreeDiscount, exploits the above fact and runs in near-linear time. Simulated
Annealing with Effective Diffusion Values (SAEDV) proposed by Jiang, Song,
Cong, Wang, Si, and Xie [94] also adopts a similar assumption to DegreeDiscount
and uses simulated annealing instead of the greedy strategy.

37

Communities.

Wang, Cong, Song, and Xie [184] assume that influence stays inside small sub-
graphs called communities, where vertices of a community are connected with
more vertices inside the same community than others. Community-based Greedy
Algorithm (CGA) first divides a given influence graph into communities, then
solves influence maximization on each community, and finally puts the solutions
together via a dynamic programming.

Maximum influence paths.

Prefix excluding Maximum Influence Arborescence (PMIA) algorithm proposed
by Chen, Wang, and Wang [41] assumes that influence diffuses along with a tree
so as to compute the influence spread in linear time. The trees are constructed
so that a path from a vertex s to a vertex t is the most frequently appearing in
random graphs among all possible paths.

3.4.2 Linear System Approximation

The next approach assumes that the influence spread of a vertex can be ex-
pressed as a linear system, though it is not the case in reality. Yang, Chen, Liu,
Xiang, Xu, and Shad [189] used a linear system to approximate the activation
probability of each vertex and proposed an iterative algorithm to solve the linear
system. Influence Rank Influence Estimation (IRIE) by Jung, Heo, and Chen
[96] expresses the marginal influence of each vertex over a certain set of vertices
as simultaneous linear equations. IMRank by Cheng, Shen, Huang, Chen, and
Cheng [47] uses IRIE as a subroutine for influence spread estimation.

3.4.3 Graph Reduction

A few studies attempted to reduce an input influence graph in advance and then
apply any existing algorithms on the resulting smaller influence graph.

Mathioudakis, Bonchi, Castillo, Gionis, and Ukkonen [138] proposed Spar-
sification of Influence Networks (Spine) algorithm, which eliminates a specified
number of edges from an input graph so as to maximize the likelihood of repro-
ducing a given log of user actions. Purohit, Prakash, Kang, Zhang, and Subrah-
manian [161] proposed coarseNet algorithm, which contracts unimportant edges
in an input graph that are identified based on the spectrum of the adjacency
matrix.

3.4.4 Others Strategies

There have been other strategies such as Inclusion-Exclusion theorem [190], sim-
ple path enumeration [81], path counting [67], and belief propagation [153].

38

Chapter 4

Analysis of the Trends of Diffusive Behaviors

In this chapter, we analyze the diffusive behaviors of the IC model using the
configuration of network data and influence probability settings. The objective
is to answer the following questions.

� Q1. Why, how, and to what extent do diffusive properties differ among the
configurations?

� Q2. Under which configuration does a specific category of influence maxi-
mization algorithms require a long time or consume a large space?

� Q3. Under which configuration can we cut off redundant computations
that naive algorithms induce?

For this purpose, we investigate structures of two concepts below using seven
influence probability settings and eighteen real-world networks.

1. Reachable sets on random graphs, whose computation is a key step in
snapshot-based algorithms (Section 4.3).

2. RR sets, whose generation is a key step in RIS-based algorithms (Sec-
tion 4.4).

4.1 Strategies of Influence Probability Assignment

This section defines several strategies of influence probability assignment.

� Uniform (ucx): each edge has a constant influence probability x. The
value of x takes either 0.1 or 0.01. This setting was firstly proposed by
Kempe, Kleinberg, and Tardos [98].

� Exponential (expx): each influence probability is chosen independently
from the exponential distribution with mean x. Our work [158] presented
in SIGMOD 2017 adopted this setting motivated by empirical evidence of
influence probabilities [21, 56]. The mean x takes either 0.1 or 0.01.

� Trivalency (tri): each influence probability is chosen randomly from a set
{0.1, 0.01, 0.001}, which corresponds to high, medium, and low influences.
This setting was first proposed to be used by Chen, Wang, and Wang [41]
so as to make influence probabilities non-uniform.

� In-degree weighted cascade (iwc): the influence probability of edge
(u, v) is set to 1/|N−(v)|. Thus, for each vertex v,

∑
u∈N−(v) p(u, v) =

1. Kempe, Kleinberg, and Tardos [98] have incorporated this setting into
experimental evaluation as a mimic of the LT model.

39

Table 4.1: Datasets examined in Chapter 4. (d) and (u) denote “directed” and
“undirected,” respectively. All networks were downloaded from SNAP [116].

name type |V | |E|

ca-GrQc collaboration(u) 5,242 28,968
ca-HepTh collaboration(u) 9,877 51,946
wiki-Vote social(d) 7,115 103,689
ca-HepPh collaboration(u) 12,008 236,978
soc-Epinions1 social(d) 75,879 508,837
soc-Slashdot0922 social(d) 82,168 870,161
web-NotreDame web(d) 325,729 1,469,679
ego-Twitter social(d) 81,306 1,768,135
loc-Gowalla social(u) 196,591 1,900,654
web-Stanford web(d) 281,903 2,312,497
wiki-Talk social(d) 2,394,385 5,021,410
web-Google web(d) 875,713 5,105,039
com-Youtube social(u) 1,134,890 5,975,248
web-BerkStan web(d) 685,230 7,600,595
higgs-twitter social(d) 456,626 14,855,819
soc-Pokec social(d) 1,632,803 30,622,564
soc-LiveJournal1 social(d) 4,847,571 68,475,391
com-Orkut social(u) 3,072,441 234,370,166

� Out-degree weighted cascade (owc): the influence probability of edge
(u, v) is set to 1/|N+(v)|. Thus, for each vertex u,

∑
v∈N+(u) p(u, v) = 1. In

other words, each vertex activates just one neighbor in expectation. Our
work [155] presented in WWW 2017 have adopted this setting so that each
vertex has a uniform influence.

We use the degree-weighted setting as a general term for iwc and owc, where
influence probabilities are determined based on degrees. We use the unweighted
setting as a general term for ucx, expx, and tri, where influence probabilities are
unweighted and independent each other. Intuitively, the degree-weighted setting
equalizes vertices’ impact on the neighbors. Hence, one can expect that influence
does not diffuse widely. On the other hand, under the unweighted setting, vertices
of a high degree have a high chance to influence neighbors. Hence, what to expect
is that influence diffusion triggered by high-degree vertices reaches a significant
portion of the network.

4.2 Network Data

We here describe network data examined in this chapter. We use eighteen net-
works, which were downloaded from Stanford Large Network Dataset Collection
in Stanford Network Analysis Project (denoted SNAP) [116], which is maintained
by Jure Leskovec. Table 4.1 summarizes the basic statistics of each network. We
have eleven social networks, three collaboration networks, and four web graphs.
The number of vertices varies from five thousand to three million and the num-
ber of edges varies from 30 thousand to 200 million. Detailed descriptions are as
follows.

40

100

101

102

103

104

105

100 101 102 103 104

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

In-degree

ca-GrQc

ca-HepTh

wiki-Vote

ca-HepPh

soc-Epinions1

soc-Slashdot0902

(a) In-degree distribution of smaller six
networks

100

101

102

103

104

105

100 101 102 103 104

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Out-degree

ca-GrQc

ca-HepTh

wiki-Vote

ca-HepPh

soc-Epinions1

soc-Slashdot0902

(b) Out-degree distribution of smaller
six networks

100

101

102

103

104

105

106

107

100 101 102 103 104 105

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

In-degree

loc-Gowalla

web-NotreDame

ego-Twitter

web-Stanford

com-Youtube

wiki-Talk

(c) In-degree distribution of medium-
sized six networks

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106
C

u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Out-degree

loc-Gowalla

web-NotreDame

ego-Twitter

web-Stanford

com-Youtube

wiki-Talk

(d) Out-degree distribution of medium-
sized six networks

100

101

102

103

104

105

106

107

100 101 102 103 104 105

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

In-degree

web-Google

web-BerkStan

higgs-twitter

soc-Pokec

soc-LiveJournal1

com-Orkut

(e) In-degree distribution of larger six
networks

100

101

102

103

104

105

106

107

100 101 102 103 104 105

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti

o
n

Out-degree

web-Google

web-BerkStan

higgs-twitter

soc-Pokec

soc-LiveJournal1

com-Orkut

(f) Out-degree distribution of larger six
networks

Figure 4.1: Cumulative distribution of in-degree and out-degree of each network.

4.2.1 Detailed Description

Social networks.

In social networks, each vertex corresponds to a user of a social networking service,
and each edge represents social interactions or friendships between the users. Note
that social networks can be directed or undirected.

� wiki-Vote: This is a who-votes-on-whom network extracted from a free en-
cyclopedia Wikipedia (wikipedia.org). Each directed edge (u, v) means
that the user associated with v voted on the user associated with u.

� soc-Epinions1: This is a who-trust-whom network of a consumer review site
Epinions.com (epinions.com).

� soc-Slashdot0922: This is an online social network of a news website Slash-
dot (slashdot.org) collected in February 2009. This graph contains friend
or foe links between the users.

41

wikipedia.org
epinions.com
slashdot.org

� ego-Twitter: This is a social network extracted from Twitter (twitter.
com). Twitter users can create a list of users, and this network contains an
undirected edge (u, v) if users u and v belong to the same list.

� loc-Gowalla: This is a friendship network of a location-based SNS Gowalla
collected in the period February 2009 to October 2010.

� com-Youtube: This is a social network of a video-sharing website YouTube
(www.youtube.com).

� wiki-Talk: This is a social network extracted from a free online encyclope-
dia Wikipedia (www.wikipedia.org) during the beginning of Wikipedia to
January 2008. Each user has a talk page, and edge (u, v) means that user
u has edited the talk page of user v.

� higgs-twitter: This is a social network of an SNS Twitter (twitter.com).
This network consists of users who mentioned the discovery of a new particle
with the features of the Higgs boson in the period 1st July 2012 to 7th July
2012.

� soc-Pokec: This is an online social network of an SNS Pokec (pokec.azet.
sk) in Slovakia. Each friendship relation is directed.

� soc-LiveJournal1: This is an online social network of an SNS LiveJournal
(livejournal.com).

� com-Orkut: This is an online social network of an SNS Orkut (www.orkut.
com).

Collaboration networks.

In collaboration networks, each vertex corresponds to an author and if an author
has a co-authored paper with another author, then an “undirected” edge connects
them. Note that if k authors have co-authored with the same paper, then it yields(
k
2

)
edges.

� ca-GrQc: This is a collaboration network extracted from the General Rela-
tivity and Quantum Cosmology category in the e-print arXiv (arxiv.org)
in the period January 1993 to April 2003.

� ca-HepTh: This is a collaboration network extracted from the High Energy
Physics - Theory category in the e-print arXiv (arxiv.org) in the period
January 1993 to April 2003.

� ca-HepPh: This is a collaboration network extracted from the High Energy
Physics - Phenomenology category in the e-print arXiv (arxiv.org) in the
period January 1993 to April 2003.

Web graphs.

In web graphs, vertices and edges correspond to web pages and hyperlinks con-
necting them, respectively. Note that web graphs are directed.

� web-NotreDame: This is a web graph of the University of Notre Dame
domain (nd.edu) collected in 1999.

42

twitter.com
twitter.com
www.youtube.com
www.wikipedia.org
twitter.com
pokec.azet.sk
pokec.azet.sk
livejournal.com
www.orkut.com
www.orkut.com
arxiv.org
arxiv.org
arxiv.org
nd.edu

� web-Stanford: This is a web graph extracted from the Stanford University
domain (stanford.edu) collected in 2002.

� web-Google: This is a web graph released by Google in 2002.

� web-BerkStan: This is a web graph extracted from the University of Cal-
ifornia, Berkeley domain (berkely.edu) and Stanford University domain
(stanford.edu) collected in 2002.

4.2.2 Preprocessing

Since we are aware of the diffusion process, we applied the following preprocessing
for each network. We first removed self-loops, multi-edges, and isolated vertices
from each network, which does not affect the diffusion process. Note, therefore,
that the numbers of vertices and edges in some network differ from those provided
by the source websites. If the graph is undirected, we replace it with its directed
version. Further, all edges in the web graphs were reversed because it is natural
to assume that information follows hyperlinks in the opposite direction.

4.2.3 Structural Properties of Complex Networks

Networks introduced in this section are called complex networks and have com-
mon structural properties. These properties of complex networks have been stud-
ied in graph mining and network science communities. In this subsection, we
briefly review popular properties of complex networks.

Power-law degree distribution: The degree distribution follows a power-
law [19, 62], that is, the fraction of vertices of degree k is proportional
to k−γ , where 2 < γ < 3 typically. Figure 4.1 shows the cumulative degree
distribution of each network.

Short average shortest-path length: The average length of shortest-paths
over all possible pairs of vertices is small. It is known by the name of “six
degrees of separation” phenomenon [139, 180].

Large clustering coefficient: The global clustering coefficient is defined as
the number of triplets of vertices which are connected by exactly three edges
divided by the number of triplets of vertices which are connected at least
two edges. Complex networks show large global clustering coefficients [185],
which intuitively says that “friends of a friend are likely to be friends” [88].

Core-fringe structure: Complex networks can be generally decomposed into
two parts [32, 120, 135]; the core, which is well connected and contains
many edges, and the fringe, which looks like trees and contains few edges.

43

stanford.edu
berkely.edu
stanford.edu

4.3 Analysis of Reachable Sets

We first focus on the reachable sets on random graphs, computing whose size is a
key step in snapshot-based algorithms. The goal is to discover the configurations
for which reachable sets are large and hence snapshot-based algorithms become
less efficient. To that end, we sampled a random graph G from an influence graph
G = (V,E, p) randomly, and we compute rG(v) for each vertex v in V , i.e., solve
descendant counting for G. In other words, we computed the cascade size for
each vertex given a fixed outcome of the activation trials.

4.3.1 Average Size

Let us begin with the average trends. Table 4.2 reports the average size of
reachable sets, denoted r̄ = 1

|V |
∑

v∈V r(v), for each configuration.
As can be seen, there are remarkable differences in the average size among

the “probability settings.” Consider soc-Slashdot0922 network as an example, r̄
dominates only a small fraction of the graph under uc0.01 (̄r = 4.2, 0.0051% of
|V |) and exp0.01 (̄r = 7.2, 0.0088% of |V |) while a large portion under uc0.1 (̄r =
6,540.3, 8.0% of |V |) and exp0.1 (̄r = 6,483.5, 7.9% of |V |). In general, the largest
was obtained under both uc0.1 and exp0.1, followed in order by tri, uc0.01 and
exp0.01, which coincides with monotonic behaviors of the activation process with
regard to the influence probability. Note also that ucx and expx lead to almost
equivalent results, and thus we often omit the results for either ucx or expx.
This is not surprising as they exhibit the same local process of activation trials.
Under degree-weighted settings, r̄ is small (< 100) at all times.

In addition, the “network structure” has a significant impact on the average
size. For example, the largest network com-Orkut shows the highest r̄ for every
probability assignment. However, larger graphs do not necessarily result in larger
r̄, e.g., those of web graphs including web-NotreDame, web-Stanford, web-Google,
and web-BerkStan are less than 500 even when using uc0.1 and exp0.1.

44

T
ab

le
4.
2:

A
v
er
ag

e
si
ze

of
re
ac
h
ab

le
se
ts

fo
r
ea
ch

co
n
fi
gu

ra
ti
on

.

g
ra

p
h

|V
|

u
c
0
.1

u
c
0
.0
1

e
x
p
0
.1

e
x
p
0
.0
1

t
r
i

iw
c

o
w
c

ca
-G
rQ

c
5,
24
2

9
.3

1
.1

1
1
.1

1
.1

1
.8

4
.0

4
.2

ca
-H

ep
T
h

9,
87
7

4
5
.5

1
.1

6
8
.6

1
.1

1
.4

4
.2

4
.3

w
ik
i-
V
ot
e

7,
11
5

3
8
1
.8

1
.2

3
8
6
.8

1
.3

5
7
.0

1
.7

3
.6

ca
-H

ep
P
h

12
,0
08

1
,2
7
4
.4

1
8
.4

1
,3
1
9
.8

2
1
.5

2
3
8
.5

7
.4

7
.7

so
c-
E
p
in
io
n
s1

75
,8
79

1
,8
1
8
.8

2
.5

1
,8
3
0
.6

2
.7

3
1
0
.8

5
.0

1
2
.7

so
c-
S
la
sh
d
ot
09
22

82
,1
68

6
,5
4
0
.3

4
.2

6
,4
8
3
.5

7
.2

1
,3
5
7
.4

2
0
.7

8
.9

w
eb
-N

ot
re
D
am

e
32
5,
72
9

2
9
.3

1
.4

2
7
.3

1
.4

5
.2

2
.3

6
.0

eg
o-
T
w
it
te
r

81
,3
06

1
7
,0
1
8
.3

5
.0

1
6
,9
2
5
.5

2
.7

3
,1
3
4
.7

1
1
.1

7
.8

lo
c-
G
ow

al
la

19
6,
59
1

1
4
,1
3
7
.0

2
3
.2

1
4
,1
4
6
.4

2
3
.4

1
,7
4
0
.1

1
0
.5

8
.6

w
eb
-S
ta
n
fo
rd

28
1,
90
3

1
5
3
.5

1
.1

1
3
5
.3

1
.1

2
.4

4
.8

4
.5

w
ik
i-
T
al
k

2,
39
4,
38
5

4
,1
8
5
.5

3
6
.1

4
,2
5
8
.5

3
7
.1

7
3
7
.7

1
3
.0

1
.2

w
eb
-G
o
og
le

87
5,
71
3

1
3
.6

1
.1

1
1
.6

1
.1

1
.4

4
.0

3
.9

co
m
-Y
ou

tu
b
e

1,
13
4,
89
0

2
5
,8
2
0
.5

6
0
.5

2
5
,6
1
2
.7

6
3
.7

3
,3
9
6
.9

5
.9

7
.0

w
eb
-B
er
kS

ta
n

68
5,
23
0

3
7
1
.4

1
.4

4
2
9
.0

1
.3

1
2
.0

5
.0

4
.4

h
ig
gs
-t
w
it
te
r

45
6,
62
6

1
0
4
,5
1
5
.0

5
2
3
.6

1
0
5
,1
5
7
.6

4
8
3
.2

3
0
,7
2
2
.2

1
1
.5

1
2
.6

so
c-
P
ok
ec

1,
63
2,
80
3

3
6
9
,9
8
6
.2

1
.6

3
7
0
,2
3
6
.8

1
.5

6
6
,1
6
8
.5

1
6
.8

1
4
.5

so
c-
L
iv
eJ
ou

rn
al
1

4,
84
7,
57
1

5
8
7
,4
8
1
.7

4
0
5
.5

5
8
7
,7
1
1
.4

3
8
6
.6

8
6
,7
3
4
.9

1
2
.0

1
0
.0

co
m
-O

rk
u
t

3,
07
2,
44
1

2
,3
5
9
,5
1
4
.1

1
3
7
,0
9
8
.7

2
,3
6
0
,0
9
2
.6

1
3
7
,8
9
0
.3

1
,4
1
4
,5
3
9
.3

3
7
.0

5
0
.1

45

Giant

Component

(a) Random graph with high
influence probability

Giant

Component

(b) Random graph with small
influence probability

Figure 4.2: These figures explain the mechanism of getting bimodal distributions
or decreasing distributions of reachable sets. Orange vertices can reach the giant
component (GC) and green vertices are reachable from the GC. When the GC
exists, vertices that can reach the GC have large reachable sets (left figure). When
the GC is small or does not exists, no vertices have huge reachable sets (right
figure). Note that white vertices have seldom large reachable sets.

4.3.2 Size Distribution of Reachable Sets

Now, let us look the size distribution of reachable sets. Figures 4.3–4.8 illustrate
the size distribution of reachable sets {r(v)}v∈V in a logarithmic scale. Black
arrows point to the average r̄. See Appendix A for the complete experimental
results. At a first glance, there are two extreme types of distribution as below.

1. A bimodal distribution, where the left mode is decreasing and the right
mode dominates the total amount, which is likely to result in a large average
size.

2. A decreasing distribution, where the frequency decreases as the size in-
creases, which results in a small average size.

Bimodal distributions.

We then reveal the mechanism of getting bimodal distributions. Remark that
we obtain bimodal ones only if we adopt unweighted settings. Under unweighted
settings, each influence probability is drawn from the same distribution; each
vertex’s degree is expected to be multiplied by the average probability. Recall
also that the core part contains a vast amount of high-degree vertices. There-
fore, a high-degree connected component inside the core remains to be (strongly)
connected, while the fringe part can be easily broken. This is not the case with
the degree-weighted setting which equalizes the structural difference between the
core and the fringe. Therefore, if influence probabilities are adequately high, a
major part of the core remains strongly connected (Figure 4.2a). We call the
largest SCC in random graphs the giant component (GC). In this case, we have
three trends of reachable sets R(v).

� v can reach the GC (orange vertices in Figure 4.2a). Then, R(v) contains
the reachable set of the GC, which is typically extremely large.

46

� v is reachable from the GC (green vertices in Figure 4.2a). Then, R(v)
may be small.

� v cannot reach the GC and v is not reachable from the GC. (white
vertices in Figure 4.2a). Then, R(v) is small generally.

On the other hand, if influence probabilities are quite small, as shown in Fig-
ure 4.2b, the core gets almost completely disconnected, so we do not obtain a
bimodal distribution.

The following observation summarizes the above discussion.

Observation 4.1 (Mechanism of getting bimodal distributions.). The size dis-
tribution of the reachable sets is bimodal only if we use unweighted settings and
the GC is present in a random graph. Then, the average is dominated by “the
fraction of vertices that can reach the GC” times “the size of the GC.” Moreover,
the latter term decreases as the influence probability decreases.

From another perspective, BFSes from a lot of vertices visit the GC’s reachable
sets repeatedly. This is pretty redundant. In Chapter 5, we exploit this and devise
a simple but effective algorithm for descendant counting.

Remark from [54]. It is known that a random cascade starting from a fixed
vertex is either small or large [54], called the phase-transition phenomenon. Cui,
Yang, and Homan [54] explained this with the concept of giant propagation com-
ponent in which once any vertex of the component has been activated, most of
the remaining vertices in it will be eventually activated with a high probability.
If no vertices of the component become active, then the cascade quickly ends
with small size. The authors [54] also pointed out that the phase-transition phe-
nomenon does not occur in real-world social networks and introduced temporal
and spatial factors into the diffusion model in order to reproduce the actual cas-
cade, which follows a power-law distribution [119], accurately. Notice that we
investigate the size distribution of diffusion starting from all vertices under a
fixed result of activation trials, which is of interest from a computational point
of view.

Decreasing distributions.

We next examine the case where we obtain decreasing distributions. For un-
weighted settings, we obtain a decreasing distribution on ca-GrQc (uc0.01), ca-
HepTh (uc0.01 and tri), wiki-Vote (uc0.01), and web-Google (uc0.1, uc0.01, tri).
This is the case when the GC is sufficiently small, and so r̄ is small (Figure 4.2b).
On the other hand, for degree-weighted settings, size distributions are always de-
creasing. We here give an intuition behind the mechanism of the degree-weighted
settings. Recall that the sum of influence probabilities over the edges leaving
or entering a vertex is one, i.e., any vertex has just one in- or out-neighbor in
expectation. The resulting graph looks like a “tree” and it prevents most of the
vertices from having a large number of reachable vertices.

The following gives a short summary.

Observation 4.2 (Mechanism of getting decreasing distributions.). The size
distribution of reachable sets is decreasing if either (1) the GC is not present
in random graphs under unweighted settings, or (2) degree-weighted settings are
used. Moreover, it this is the case, the average size of reachable sets is relatively
small.

47

Comparison between iwc and owc.

We observe a slightly different type of distribution between iwc and owc. When
using iwc, a small number of vertices have large reachable sets. Meanwhile, we
do not observe such vertices having large R(·) using owc. This is because the
vertices under owc are expected to have just one out-neighbor while vertices may
have two or more out-neighbors in expectation under iwc.

48

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(a) wiki-Vote (uc0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(b) wiki-Vote (uc0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(c) wiki-Vote (tri)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(d) wiki-Vote (iwc)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(e) wiki-Vote (owc)

Figure 4.3: Size distribution of reachable sets in wiki-Vote network.

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) soc-Slashdot0922 (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) soc-Slashdot0922 (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) soc-Slashdot0922 (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) soc-Slashdot0922 (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) soc-Slashdot0922 (owc)

Figure 4.4: Size distribution of reachable sets in soc-Slashdot0922 network.

49

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) web-Stanford (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) web-Stanford (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) web-Stanford (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) web-Stanford (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) web-Stanford (owc)

Figure 4.5: Size distribution of reachable sets in web-Stanford network.

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(a) com-Youtube (uc0.1)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(b) com-Youtube (uc0.01)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(c) com-Youtube (tri)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(d) com-Youtube (iwc)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(e) com-Youtube (owc)

Figure 4.6: Size distribution of reachable sets in com-Youtube network.

50

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(a) soc-Pokec (uc0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(b) soc-Pokec (uc0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(c) soc-Pokec (tri)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(d) soc-Pokec (iwc)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(e) soc-Pokec (owc)

Figure 4.7: Size distribution of reachable sets in soc-Pokec network.

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(a) com-Orkut (uc0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(b) com-Orkut (uc0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(c) com-Orkut (tri)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(d) com-Orkut (iwc)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(e) com-Orkut (owc)

Figure 4.8: Size distribution of reachable sets in com-Orkut network.

51

4.4 Analysis of RR Sets

We next focus on RR sets, a key notion in RIS-based algorithms. We generated
10,000 RR sets from an influence graph G = (V,E, p) independently at random.
For each RR set, we recorded a quadruplet (z,R, L,B), where z ∈ V is the target
vertex, R ⊆ V is the RR set, L ⊆ (R × R) ∩ E is the set of live edges, and
B ⊆ (V ×R) ∩E is the set of blocked edges. Note that L ∪B contains all edges
entering vertices in R.

Table 4.3 reports the average number of vertices in RR sets for each configu-
ration. Figures 4.9–4.12 illustrate the scatter plot, where each point corresponds
to an RR set, and (x, y) = (|R|, |L|) or (x, y) = (|R|, |L|+ |B|). The black curve
is the curve y = x − 1. See Appendix A for the complete experimental results.
Similarly to the reachable set, there are two types of distribution of |R|. Bimodal
distributions are obtained only if we use unweighted settings, and both (|R|, |L|)
and (|R|, |L| + |B|) concentrate around a point in the upper right corner. In
general, |L|+ |B| is much larger than |L|, and thus, we have

Observation 4.3 (The number of edges entering RR sets). Storing (R,L∪B)’s
consumes much more space than (R,L)’s.

4.4.1 Unweighted Settings

We then examine unweighted settings. In short, if we use unweighted settings, we
may obtain bimodal distribution. In such a case, RR sets are relatively large on
average and so RIS-based algorithms may consume a significant amount of space.
Table 4.3 tells us that uc0.1 may yield RR sets of orders of magnitude greater
than uc0.01. We can observe the relation |L| ≈ (|L| + |B|) · p̄, where p̄ be the
average influence probability. This is not surprising since each edge becomes live
with probability p̄ and blocked with probability 1−p̄. Small (|R|, |L|)’s lie slightly
above the curve y = x−1. Such RR sets seem not intersect the GC. On the other
hand, large (|R|, |L|)’s are denser than small ones, e.g., soc-Slashdot0922 (uc0.1

and tri), because they intersect the GC in random graphs.

Observation 4.4 (RR sets under unweighted settings). If the GC is present, a
certain percentage of RR sets are quite large. Moreover, large RR sets include
more live edges than small ones.

4.4.2 Degree-weighted Settings

Now, let us look at the results with iwc and owc. As expected from the discus-
sion in the previous section, Table 4.3 demonstrates that RR sets are always small
even for the three largest networks. Thus, RIS-based algorithms can produce tons
of RR sets and perform the greedy algorithm on them efficiently. (|R|, |L|) is well
concentrated and slightly above y = x − 1; each vertex is expected to have just
one in-neighbor and out-neighbor in a random graph under iwc and owc, respec-
tively. On the other hand, (|R|, |L|+ |B|) is diversely distributed. This is because
(|L| + |B|)/|L| can be as large as the maximum in-degree (iwc) or out-degree
(owc).

Observation 4.5 (RR sets under degree-weighted settings). RR sets under
degree-weighted settings are consistently small.

In Chapter 6, we use these observations for the design of a space-efficient
index and efficient index update algorithms.

52

T
ab

le
4.
3:

A
v
er
ag

e
n
u
m
b
er

of
v
er
ti
ce
s
in

10
,0
00

R
R

se
ts

fo
r
ea
ch

co
n
fi
gu

ra
ti
on

of
n
et
w
or
k
d
at
a
an

d
in
fl
u
en

ce
p
ro
b
a
b
il
it
y.

g
ra

p
h

|V
|

u
c
0
.1

u
c
0
.0
1

e
x
p
0
.1

e
x
p
0
.0
1

t
r
i

iw
c

o
w
c

ca
-G
rQ

c
5,
24
2

1
2
.3

1
.1

1
1
.1

1
.1

1
.8

3
.9

4
.0

ca
-H

ep
T
h

9,
87
7

5
8
.3

1
.1

5
1
.5

1
.1

1
.4

4
.6

4
.6

w
ik
i-
V
ot
e

7,
11
5

3
8
6
.8

1
.3

3
7
4
.7

1
.3

5
2
.1

1
.8

3
.8

ca
-H

ep
P
h

12
,0
08

1
,2
8
7
.3

1
9
.3

1
,3
0
2
.4

1
9
.1

2
4
0
.3

7
.1

7
.3

so
c-
E
p
in
io
n
s1

75
,8
79

1
,8
0
7
.6

1
.9

1
,8
6
0
.7

1
.9

3
0
0
.9

5
.2

1
0
.1

so
c-
S
la
sh
d
ot
09
22

82
,1
68

6
,4
8
1
.1

7
.8

6
,5
3
8
.7

7
.0

1
,3
8
6
.0

1
1
.5

8
.8

w
eb
-N

ot
re
D
am

e
32
5,
72
9

2
6
.5

1
.5

2
6
.4

1
.5

4
.8

2
.3

8
.1

eg
o-
T
w
it
te
r

81
,3
06

1
7
,3
0
3
.5

4
.0

1
7
,2
1
4
.3

3
.7

3
,0
6
4
.3

9
.8

8
.0

lo
c-
G
ow

al
la

19
6,
59
1

1
4
,1
5
7
.9

1
7
.8

1
4
,3
4
5
.9

1
9
.0

1
,6
7
5
.1

8
.1

1
0
.0

w
eb
-S
ta
n
fo
rd

28
1,
90
3

1
0
7
.4

1
.1

1
1
2
.3

1
.1

2
.2

5
.1

5
.4

w
ik
i-
T
al
k

2,
39
4,
38
5

4
,1
1
4
.6

3
6
.5

3
,9
1
9
.2

3
2
.4

7
5
1
.4

1
3
.6

1
.2

w
eb
-G
o
og
le

87
5,
71
3

1
2
.5

1
.1

1
3
.4

1
.1

1
.4

4
.1

4
.0

co
m
-Y
ou

tu
b
e

1,
13
4,
89
0

2
4
,7
8
8
.4

5
0
.4

2
5
,2
0
0
.8

6
6
.7

3
,3
3
8
.0

5
.9

4
.6

w
eb
-B
er
kS

ta
n

68
5,
23
0

5
4
0
.8

1
.3

5
0
0
.1

1
.4

1
2
.4

5
.4

4
.4

h
ig
gs
-t
w
it
te
r

45
6,
62
6

1
0
6
,2
4
2
.1

5
5
8
.5

1
0
6
,5
2
9
.4

4
7
7
.6

3
0
,6
7
0
.9

1
2
.9

2
6
.8

so
c-
P
ok
ec

1,
63
2,
80
3

3
6
7
,2
9
3
.6

1
.4

3
7
4
,5
2
2
.3

1
.5

6
4
,4
4
5
.8

1
6
.3

1
5
.7

so
c-
L
iv
eJ
ou

rn
al
1

4,
84
7,
57
1

6
0
0
,3
7
3
.3

4
2
6
.7

5
9
0
,2
4
2
.2

3
5
5
.6

9
0
,5
5
5
.5

1
1
.0

1
0
.7

co
m
-O

rk
u
t

3,
07
2,
44
1

2
,3
6
7
,9
3
3
.1

1
3
7
,1
9
1
.6

2
,3
5
9
,4
1
3
.3

1
3
8
,2
2
9
.2

1
,4
0
7
,6
5
8
.5

4
9
.5

4
6
.5

53

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) wiki-Vote (uc0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) wiki-Vote (uc0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) wiki-Vote (tri)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) wiki-Vote (iwc)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) wiki-Vote (owc)

Figure 4.9: Structures of RR sets in wiki-Vote network.

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-Slashdot0922 (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-Slashdot0922 (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-Slashdot0922 (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-Slashdot0922 (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-Slashdot0922 (owc)

Figure 4.10: Structures of RR sets in soc-Slashdot0922 network.

54

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) web-Stanford (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) web-Stanford (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) web-Stanford (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) web-Stanford (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) web-Stanford (owc)

Figure 4.11: Structures of RR sets in web-Stanford network.

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) com-Youtube (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) com-Youtube (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) com-Youtube (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) com-Youtube (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) com-Youtube (owc)

Figure 4.12: Structures of RR sets in com-Youtube network.

55

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-Pokec (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-Pokec (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-Pokec (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-Pokec (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-Pokec (owc)

Figure 4.13: Structures of RR sets in soc-Pokec network.

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) com-Orkut (uc0.1)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) com-Orkut (uc0.01)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) com-Orkut (tri)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) com-Orkut (iwc)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) com-Orkut (owc)

Figure 4.14: Structures of RR sets in com-Orkut network.

56

Chapter 5

Fast Algorithm for Influence Maximization

In this chapter, we propose an efficient algorithm for influence maximization
called pruned Monte-Carlo simulations (PMC). Followed by an overview of PMC
(Section 5.1), we describe the proposed techniques in detail (Sections 5.2 and 5.3),
and then we bring them together (Section 5.4). We conduct extensive experiments
to compare PMC with existing algorithms and analyze the effectiveness of the
proposed techniques (Section 5.5).

5.1 Overview

Our algorithm pruned Monte-Carlo (PMC) is a snapshot-based algorithm. Recall
from Section 3.2.2 that snapshot-based algorithms [46, 106, 108] repeatedly solve
descendant counting for r random graphs {Gi}i∈[r] which were sampled from an
input influence graph G = (V,E, p). In fact, it suffices to perform descendant
counting for those condensation DAGs. Let {(G′

i, πi,wi)}i∈[r] be condensations,
correspondence mappings, vertex weights obtained from {Gi}i∈[r] by taking those
condensations. Let sℓ ∈ V denote the seed vertex chosen at the ℓth iteration
during greedy seed selection and let Sℓ := {s1, . . . , sℓ}, where S0 := ∅. Then, for
each ℓ ∈ [k],

sℓ = argmax
v∈V \Sℓ−1

∑
i∈[r]

rG′
i,wi

(πi(Sℓ−1 ∪ {v})). (5.1)

We can further use the technique of [106, 108] to compute rG′
i,wi

(πi(Sℓ−1 ∪ {v}))
for each v ∈ V . For ease of notation, let G′

i
(ℓ) denote the subgraph of G′

i obtained
by removing the reachable set of πi(Sℓ), i.e.,

G′
i
(ℓ)

:= G′
i − RG′

i
(πi(Sℓ)), (5.2)

or equivalently, G′
i
(ℓ) can be defined in a recursive way:

G′
i
(0)

:= G′
i, (5.3)

G′
i
(ℓ)

:= G′
i
(ℓ−1) − R

G′
i
(ℓ−1)(πi(sℓ)) (ℓ ∈ [k]). (5.4)

Then, it follows that for each ℓ ∈ [k],

sℓ = argmax
v∈V \Sℓ−1

∑
i∈[r]

r
G′

i
(ℓ−1),wi

(πi(v)). (5.5)

Hence, we are able to identify the ℓth seed sℓ by solving descendant counting on
G′

i
(ℓ−1)’s.

57

Algorithm 5.1 Proposed pruned BFS.

1: function Preprocess(G′
i)

2: hi ← a vertex with the maximum degree in V (G′
i).

3: Di ← a set of hi’s descendants in G
′
i.

4: Ai ← a set of hi’s ancestors in G
′
i (excluding hi itself).

5: compute rG′
i,wi

(hi) by a BFS.

6: function PrunedBFS(s ∈ G′
i, G

′
i)

7: if s ∈ Ai then
8: gaini[s]← rG′

i
(hi). ▷ In constant time.

9: else
10: gaini[s]← 0.

11: Q← a queue with only one element s.
12: while Q ̸= ∅ do
13: dequeue u from Q.
14: if s ∈ Ai ∧ u ∈ Di then
15: continue. ▷ Pruning works.

16: gaini[s]← gaini[s] + wi(u).
17: for all v ∈ N+

G′
i
(u) do

18: if v has not been visited so far then
19: enqueue v onto Q.

�

� �

�

�

�
�

vertex
vertices visited during
naive BFS pruned BFS

a 6 2
b 6 2
c 5 1

Figure 5.1: An example of pruned BFS. Square vertices are temporarily removed
during a BFS from a circular vertex.

However, this is still not efficient enough to deal with large networks because
we have to compute r

G′
i
(ℓ)(v) for all v ∈ V (G′

i), i ∈ [r], and ℓ ∈ [k]. We resolve

this issue with new boosting algorithms, i.e., pruned BFS and BFS avoidance as
will be described in the following. Note that both techniques do not affect the
estimates of the influence spread.

5.2 Technique 1: Pruned BFS

We first propose pruned BFS. Hereafter, for two vertices u, v such that u can
reach v, u is called an ancestor of v and v is called a descendant of u. Recall
from Observation 4.1 that the computational cost of descendant counting becomes
large if the GC is present. However, if we “know” the existence of the GC, we
can significantly reduce the cost as follows. For an input graph G, let G′, π, and
w be the condensation, correspondence mapping, vertex weights obtained from
G. We take a hub vertex h in G′, which corresponds to the GC in G. Then, for
any vertex v ∈ V (G′), the following holds:

h ∈ RG′(v)⇒ rG′(v) = rG′(h) + rG′−RG′ (h)(v). (5.6)

58

Algorithm 5.2 Proposed BFS avoidance.

1: function Update(G′
i
(ℓ−1), sℓ ∈ V)

2: compute a set Fi of vertices reachable from πi(sℓ) in G
′
i
(ℓ−1).

3: compute a set Bi of vertices that can reach some vertex in Fi in G
′
i
(ℓ−1).

4: oldi ← Bi. ▷ gaini[v] for v ∈ oldi is outdated.

5: remove vertices in Fi and edges leaving or entering Fi from G′
i
(ℓ−1) to

obtain G′
i
(ℓ).

6: function BFS(s ∈ V (G′
i), G

′
i
(ℓ−1)) ▷ After the first iteration.

7: if s ̸∈ G′
i
(ℓ−1) then

8: gaini[s]← 0.
9: else if s ̸∈ oldi then

10: NOP. ▷ BFS avoided.
11: else
12: run BFS from s on G′

i
(ℓ−1) to obtain r

G′
i
(ℓ−1),wi

(s) and set it to gaini[s].

In other words, if v can reach h, then we can compute rG′(v) by conducting a BFS
starting from v on G′−RG′(h). We can approximately reduce the computational
cost by the number of ancestors of v times the number of descendants of v. We
simply select a vertex with the maximum sum of in-degree and out-degree as the
hub vertex h.

Algorithm 5.1 shows pseudocode of the proposed pruned BFS. In preprocess-
ing for each G′

i, we select a hub vertex hi in G′
i and compute a set Di of the

descendants of hi and a set Ai of the ancestors of hi. Then, we run a BFS start-
ing from hi on G

′
i to compute rG′

i,wi
(hi). This requires O(|V (G′

i)|+ |E(G′
i)|) time.

Having done, we compute rG′
i,wi

(s) for each vertex s ∈ V (G′
i) as follows. First,

we check whether s is an ancestor of hi or not. If this is the case, we perform
a pruned BFS from s. That is, we run a BFS starting from s on G′

i − RG′
i
(hi)

and return the sum of rG′
i,wi

(hi) and rG′
i−RG′

i
(hi),wi

(s), which is exactly equal to

rG′
i,wi

(s). Otherwise, we conduct a naive BFS from s on G′
i.

Example 5.1. Figure 5.1 shows an example of pruned BFS. In this figure, a
vertex h is a hub because having the maximum degree, and the ancestors and
descendants of h are {a, b, c} and {h, d, e, f}, respectively. If running a naive
BFS starting from a, we will visit {a, c, h, d, e, f}. That is redundant because we
already know that a can reach to h, and so are to the descendants of h. On other
hand, a pruned BFS from a, which prunes {h, d, e, f}, will only visit two vertices
{a, c}. Similarly, starting from b, a pruned BFS visits {b, c} while a naive BFS
visits {b, c, h, d, e, f}.

5.3 Technique 2: BFS Avoidance

Then, we propose BFS avoidance. Recall that the ℓth iteration during greedy
seed selection requires to compute r

G′
i
(ℓ−1),wi

(v) for all i ∈ [r] and all vertices

v ∈ V (G′
i) , and then the (ℓ+ 1)st iteration asks to compute r

G′
i
(ℓ),wi

(v) for all

i ∈ [r] and all vertices v ∈ V (G′
i). Let us consider how to “guess” r

G′
i
(ℓ),wi

(v) by

reusing the information at the last iteration. Our insight is the following.

R
G′

i
(ℓ−1)(v) ∩ R

G′
i
(ℓ−1)(πi(sℓ)) = ∅ =⇒ r

G′
i
(ℓ),wi

(v) = r
G′

i
(ℓ−1),wi

(v). (5.7)

59

� �

� � �

� �

(a) G.

� �

� �

�

(b) G− RG(t).

v rG(v) rG−RG(t)(v)

a 5 3
b 3 3
c 2 2
d 3 2
e 1 0
f 1 1
t 2 0

Figure 5.2: Example of BFS avoidance.

Hence, detecting such vertices, we can avoid unnecessary BFSes. Fortunately, it
is possible to find all the vertices efficiently.

Algorithm 5.2 shows pseudocode of BFS avoidance. Given the ℓth seed sℓ, we
conduct the following update procedure to the DAGs G′

i
(ℓ−1). We first compute a

set Fi consisting of vertices reachable from πi(sℓ) by a BFS, and we then conduct
a reverse BFS from Fi to compute a set Bi consisting of vertices that can reach
some vertex in Fi. Here, the set Bi contains every vertex that does not satisfy the
condition in Eq. (5.7), and we store them in oldi. Note that we remove vertices

in Fi and edges leaving or entering Fi from G′
i
(ℓ−1) to obtain G′

i
(ℓ) at that time.

At the (ℓ+ 1)st iteration, we have three cases to compute r
G′

i
(ℓ),wi

(s).

� Case 1: s has been already removed, then the answer is zero.

� Case 2: If the reachable set of s did not change (denoted s ̸∈ oldi in
the code), then we reuse the previous result (denoted gaini[s] in the code)
without any BFS.

� Case 3: Otherwise, run a BFS from a vertex s naively.

Example 5.2. Let us take an example in Figure 5.2. Suppose that a vertex t is
chosen as a seed. Then, we remove the descendants of t, i.e., t and e, from the
current graph G and obtain a new DAG H. At that time, we can see that rG(·)
changes for vertices that can reach to t or e, that is, a, d, e, and t. This fact
tells us that we do not need to recompute the gain of b, c, and f .

5.4 Putting It Together

Combining the aforementioned two techniques, we obtain a new snapshot-based
algorithm for influence maximization as shown in Algorithm 5.3. In the first iter-
ation, we use pruned BFS for each DAG. In the second and following iterations,
we use BFS avoidance. For each iteration, we select a seed vertex greedily. We
notice that the proposed algorithm requires O(r(|V |+ |E|)) space.

5.4.1 Degree-1 Optimization

Here, we briefly describe a minor improvement upon BFSes. Assume that a
vertex u has one unique out-neighbor v, then, it turns out that

r(u) = r(v) + w(v), (5.8)

and thus, once we have computed r(v), we need not to run a BFS from u.

60

Algorithm 5.3 Pruned Monte-Carlo simulation.

Input: an influence graph G = (V,E, p), a seed set k, the number of random
graphs r

1: for i = 1 to r do
2: sample a random graph Gi independently from G.
3: construct a DAG G′

i with vertex weights wi and a mapping πi from Gi.
4: call Preprocess(G′

i).

5: S0 ← ∅.
6: for ℓ = 1 to k do
7: if ℓ = 1 then
8: call PrunedBFS(v, G′

i
(ℓ−1)) for all v ∈ V (G′

i).
9: else

10: call BFS(v, G′
i
(ℓ−1)) for all v ∈ V (G′

i).

11: sℓ ← argmaxv∈V
1
r

∑
i∈r gaini[πi(v)]. ▷ gaini[πi(v)] = r

G′
i
(ℓ−1),wi

(πi(v))

12: Sℓ ← Sℓ−1 ∪ {sℓ}.
13: Update(G′

i
(ℓ−1), sℓ).

14: return Sk.

5.5 Experiments

5.5.1 Setup

Datasets.

We use real-world networks introduced in Chapter 4, Table 4.1 provides a sum-
mary of the networks. In brief, we use 18 networks, and the number of vertices
varies from five thousand to three million and the number of edges varies from
30 thousand to 200 million.

Influence probability settings.

To investigate the behavior of each method below with various probability set-
tings, we adopt the settings of influence probabilities introduced in Chapter 4,
i.e., uniform cascade uc0.1 and uc0.01, exponential exp0.1 and exp0.01, trivalency
tri, in-degree weighted iwc, and out-degree weighted owc.

Algorithms and implementations.

The proposed algorithm is parameterized by r. We set the value of r to 200.
We compare our algorithm with the following algorithms. The value of each
parameter is set to the one suggested by the corresponding paper.

The following simulation-based algorithms will be used.

� CELF++ [80]: A standard greedy algorithm with lazy evaluations plus
a pruning technique. We set the number of simulations as 10,000. We
downloaded the implementation from the website of Amit Goyal [78].

� StaticGreedy [46]: A snapshot-based algorithm with no optimization. We
set the number of simulations as 200. We downloaded the implementation
from the repository [11] for influence maximization benchmarking [12].

� StaticGreedyDU [46]: A snapshot-based algorithm with speeding-up tech-
niques. We set the number of random graphs as 200. We downloaded the

61

implementation from the repository [11] for influence maximization bench-
marking [12].

The following RIS-based algorithms will be used.

� IMM [177]: An RIS-based algorithm with a martingale technique and a
statistical test method. We set the parameters as ℓ = 1 and ϵ = 0.1. We
downloaded the implementation (version 1.1) from [90].

� D-SSA [148]: An RIS-based algorithm with a search-and-verify approach.
We set the parameters as ℓ = 1 and ϵ = 0.1. We downloaded the imple-
mentation (version 2.1) from [146].

The following heuristic algorithm will be used.

� IRIE [96]: A heuristic algorithm using linear systems. We set the parame-
ters as α = 0.7 and θ = 1/320. We downloaded the implementation from
[11].

� IMRank [47]: A heuristic algorithm based on non-greedy strategy. We set
the parameter as ℓ = 1. We downloaded the implementation from [11].

� Degree [98]: A baseline algorithm that chooses the topmost k vertices in
decreasing order of out-degrees.

Environments.

All algorithms were implemented in C++ and compiled using g++v4.8.2 with
the -O2 option. We conducted experiments on a Linux server with Intel Xeon E5-
2670 (2.60GHz) CPU and 512 GB memory. However, we set limits on the system
resources by the setrlimit system call so that each program cannot consume
over 256 GB.

5.5.2 Performance Comparison with Existing Algorithms

We set k = 1, 5, 10, 20, 40, 100, 200, 400, 1000 and run the algorithms for each
configuration of the graph, the influence probability, and the seed size. However,
some of the settings resulted in out-of-memory error (i.e., the memory usage
exceeds 256 GB) or did not finish in three hours. We were unable to obtain seed
sets in these settings.

Influence spread.

We begin with the quality of solutions. Figures 5.3–5.12 show the influence
spread of the solutions that algorithms produced for each configuration. See
Appendix B for complete experimental results. We ran Monte-Carlo simulations
of the diffusion process 10, 000 times for each seed set and took the average to
obtain reasonable estimates of the influence spread.

We first investigate an overall trend. In general, we can see the increase in the
influence spread every time k increases. However, we can observe the influence
immediately reaches a plateau on com-Orkut (uc0.1, uc0.01, and tri). This means
that choosing the most influential vertex is enough to trigger wide cascades. Plus,
such vertices are easy to guess even for Degree heuristic.

Now we compare PMC with each of the algorithms. As representative in-
stances of simulations-based algorithms, we ran CELF++, StaticGreedy , and

62

StaticGreedyDU . CELF++ often produces less influential solutions than PMC ,
e.g., 16% less on ca-GrQc (tri, k = 100) and 20% less wiki-Vote (owc, k =
1). This is because naive estimation algorithms require more simulations than
snapshot-based algorithms requires. StaticGreedy and StaticGreedyDU return
almost identical solutions to those of PMC ; all of the techniques incorporated
into each algorithm do not affect influence estimates. However, these algorithms
were not able to handle large-scale networks as discussed later.

As representative instances of RIS-based algorithms, we ran IMM and D-
SSA. IMM gives closely-influential seed sets to PMC in general. Besides, D-SSA
tends to generate a fewer number of RR sets than IMM , and hence, its solution
quality is almost always worse than IMM . Further, it results in quite bad solutions
under some configurations, e.g., the seed set of D-SSA on ca-HepTh (exp0.01,
k = 1) and ca-HepTh (exp0.01, k = 5) is 38% and 12% less influential than
PMC , respectively. One exceptional probability setting is owc; IMM has clear
advantages over PMC . For example, IMM ’s solution is 23% more influential on
soc-Epinions1 (owc, k = 1), 19% more influential on soc-Pokec (owc, k = 1),
and 16% more influential on soc-LiveJournal1 (owc, k = 1).

Finally, we compare PMC with heuristics including IRIE, IMRank, and De-
gree. These heuristics often misestimate the actual influence spread. Hence, they
selected less influential seeds under iwc and owc. This is the case even under
unweighted settings. To take a few example, compared to the solutions of PMC ,
IMRank (ℓ = 1) shows 82% and 23% less influence on wiki-Talk (uc0.01, k = 1) and
web-BerkStan (tri, k = 5), respectively; IMRank (ℓ = 2) shows 14% and 12% less
influence on web-BerkStan (uc0.01, k = 5) and web-NotreDame (uc0.1, k = 10), re-
spectively; Degree shows 82% and 12% less influence on wiki-Talk (uc0.01, k = 1)
and higgs-twitter (uc0.01, k = 1, 000), respectively.

63

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) ca-HepTh (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) ca-HepTh (uc0.01)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) ca-HepTh (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) ca-HepTh (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) ca-HepTh (owc)

Figure 5.3: Influence spread of each algorithm for ca-HepTh network.

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) wiki-Vote (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) wiki-Vote (uc0.01)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) wiki-Vote (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) wiki-Vote (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) wiki-Vote (owc)

Figure 5.4: Influence spread of each algorithm for wiki-Vote network.

64

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-Epinions1 (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-Epinions1 (uc0.01)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-Epinions1 (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-Epinions1 (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-Epinions1 (owc)

Figure 5.5: Influence spread of each algorithm for soc-Epinions1 network.

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-NotreDame (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-NotreDame (uc0.01)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-NotreDame (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-NotreDame (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-NotreDame (owc)

Figure 5.6: Influence spread of each algorithm for web-NotreDame network.

65

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) wiki-Talk (uc0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) wiki-Talk (uc0.01)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) wiki-Talk (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 2⋅105

 4⋅105

 6⋅105

 8⋅105

 1⋅106

 1⋅106

 1⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) wiki-Talk (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) wiki-Talk (owc)

Figure 5.7: Influence spread of each algorithm for wiki-Talk network.

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-BerkStan (uc0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-BerkStan (uc0.01)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-BerkStan (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-BerkStan (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 9⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-BerkStan (owc)

Figure 5.8: Influence spread of each algorithm for web-BerkStan network.

66

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) higgs-twitter (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) higgs-twitter (uc0.01)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 9⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) higgs-twitter (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) higgs-twitter (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) higgs-twitter (owc)

Figure 5.9: Influence spread of each algorithm for higgs-twitter network.

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 8⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-Pokec (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-Pokec (uc0.01)

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-Pokec (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-Pokec (iwc)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-Pokec (owc)

Figure 5.10: Influence spread of each algorithm for soc-Pokec network.

67

 0⋅100

 2⋅105

 4⋅105

 6⋅105

 8⋅105

 1⋅106

 1⋅106

 1⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-LiveJournal1 (uc0.1)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-LiveJournal1 (uc0.01)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-LiveJournal1 (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-LiveJournal1 (iwc)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-LiveJournal1 (owc)

Figure 5.11: Influence spread of each algorithm for soc-LiveJournal1 network.

 0⋅100

 5⋅105

 1⋅106

 2⋅106

 2⋅106

 2⋅106

 3⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) com-Orkut (uc0.1)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) com-Orkut (uc0.01)

 0⋅100

 5⋅105

 1⋅106

 2⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) com-Orkut (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) com-Orkut (iwc)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) com-Orkut (owc)

Figure 5.12: Influence spread of each algorithm for com-Orkut network.

68

Running time.

We then examine the efficiency and scalability of the algorithms. Here, we say
that an algorithm “did not finish” if it did not finish in three hours and that it
ran “out-of-memory error” if it consumed over 256GB. Figure 5.13–5.22 show the
transition of the running time that each algorithm requires to compute a seed
set. See Appendix B for complete experimental results. Note that the running
time do not include the time for reading the input graph from secondary storage.
We omit results for Degree because it always finished within one second.

We first examine the scalability trend of PMC . PMC finished in two hours
for all configurations. It is worth to mention that PMC requires approximately
6,000 seconds even for com-Orkut network with hundreds of millions of edges.
It also works robustly against the setting of influence probability. For a single
seed selection, web-BerkStan yields the largest difference in running time among
the probability settings; PMC requires 34.6 seconds on web-BerkStan (exp0.01)
while 155.6 seconds on web-BerkStan (exp0.1). Moreover, PMC shows at most a
tenfold increase in the running time from k = 1 to k = 1, 000, and the largest
increase was obtained on com-Orkut (uc0.01).

Now, we compare PMC with each algorithm. We first examine simulation-
based algorithms. CELF++ was the slowest among the algorithms and did not
finish all the networks except for the smallest five networks. StaticGreedy took
longer time by several tens to several hundreds of times compared to PMC and
did not finish even for medium-sized graphs at k = 1, e.g., ego-Twitter (uc0.1).
This is because StaticGreedy naively solves descendant counting for each ran-
dom graph. The running time of StaticGreedyDU is not affected by k and al-
most always shorter than StaticGreedy for k ≥ 10, However, StaticGreedyDU
shows sensitive performance to the probability setting, e.g., it required approxi-
mately 4,600 seconds (900 times longer than PMC) on soc-Epinions1 (uc0.1) while
only 5.6 seconds on soc-Epinions1 (uc0.01). Also, it ran out-of-memory error on
soc-Slashdot0922 (uc0.1). These are because StaticGreedyDU naively stores the
reachable sets, which consume vast amounts of time and space.

We then proceed to RIS-based algorithms. Both D-SSA and IMM have the
sensitive performance to the probability setting. Under iwc, they constantly
terminate more quickly than PMC . On the other hand, they were a few times
slower than PMC for most configurations under owc and ran out-of-memory on
soc-LiveJournal1 and com-Orkut at k = 1. Moreover, for unweighted settings, we
confirm severe efficiency degradation. In particular, IMM and D-SSA were sev-
eral tens of times slower than PMC for the largest four graphs (higgs-twitter, soc-
Pokec, soc-LiveJournal1, and com-Orkut) except for soc-Pokec (uc0.01), and run-
ning them on soc-LiveJournal1 (uc0.1), com-Orkut (uc0.1), and com-Orkut (tri)
resulted in out-of-memory. We now explain why these algorithms ran out-of-
memory. Recall that both algorithms generate a pre-specified number of RR sets
as a first step and then iteratively double the number of RR sets. However, Chap-
ter 4 has shown that the average size can be extremely large under unweighted
setting because of the existence of the GC. Hence, even the first step ran out-
of-memory error. On the other hand, both algorithms were able to handle web
graphs and soc-Pokec (uc0.01) in which the GC is tiny or not present.

Finally, we evaluate heuristic algorithms. IMRank (ℓ = 1) almost always ran
faster than PMC . IMRank (ℓ = 2) showed unstable performance against k and
did not finish on com-Orkut with some configurations. The running time of IRIE
is clearly proportional to k. Compared to PMC , IRIE required a longer time if
k ≥ 100, while a shorter time if k ≤ 100.

69

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) ca-HepTh (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) ca-HepTh (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) ca-HepTh (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) ca-HepTh (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000
R

un
ni

ng
 ti

m
e

[s
]

Seed size

(e) ca-HepTh (owc)

Figure 5.13: Running time of each algorithm for ca-HepTh network.

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) wiki-Vote (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) wiki-Vote (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) wiki-Vote (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) wiki-Vote (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) wiki-Vote (owc)

Figure 5.14: Running time of each algorithm for wiki-Vote network.

70

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-Epinions1 (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-Epinions1 (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-Epinions1 (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-Epinions1 (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000
R

un
ni

ng
 ti

m
e

[s
]

Seed size

(e) soc-Epinions1 (owc)

Figure 5.15: Running time of each algorithm for soc-Epinions1 network.

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-NotreDame (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-NotreDame (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-NotreDame (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-NotreDame (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-NotreDame (owc)

Figure 5.16: Running time of each algorithm for web-NotreDame network.

71

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) wiki-Talk (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) wiki-Talk (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) wiki-Talk (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) wiki-Talk (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000
R

un
ni

ng
 ti

m
e

[s
]

Seed size

(e) wiki-Talk (owc)

Figure 5.17: Running time of each algorithm for wiki-Talk network.

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-BerkStan (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-BerkStan (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-BerkStan (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-BerkStan (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-BerkStan (owc)

Figure 5.18: Running time of each algorithm for web-BerkStan network.

72

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) higgs-twitter (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) higgs-twitter (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) higgs-twitter (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) higgs-twitter (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000
R

un
ni

ng
 ti

m
e

[s
]

Seed size

(e) higgs-twitter (owc)

Figure 5.19: Running time of each algorithm for higgs-twitter network.

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-Pokec (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-Pokec (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-Pokec (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-Pokec (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) soc-Pokec (owc)

Figure 5.20: Running time of each algorithm for soc-Pokec network.

73

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-LiveJournal1 (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-LiveJournal1 (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-LiveJournal1 (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-LiveJournal1 (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000
R

un
ni

ng
 ti

m
e

[s
]

Seed size

(e) soc-LiveJournal1 (owc)

Figure 5.21: Running time of each algorithm for soc-LiveJournal1 network.

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) com-Orkut (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) com-Orkut (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) com-Orkut (tri)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) com-Orkut (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) com-Orkut (owc)

Figure 5.22: Running time of each algorithm for com-Orkut network.

74

5.5.3 Summary

We summarize the experimental comparison. First of all, simulation-based al-
gorithms (CELF++, StaticGreedy , and StaticGreedyDU) ran slower than PMC
for almost all configurations and did not finish or ran out-of-memory error even
for medium-sized networks under unweighted settings. In the following, for each
influence probability setting, we compare the proposed algorithm PMC with RIS-
based algorithms and heuristics.

High unweighted probability (uc0.1 and exp0.1). Overall, we did observe
no large difference in the influence spread among the algorithms. This is due to
the existence of the GC in random graphs. Identifying the most influential vertex,
which seems to be included in the GC, is sufficient to obtain a large influence
spread. Even Degree heuristic was comparable to PMC for some configurations
and it was the fastest. RIS-based algorithms provided comparable solutions to
PMC , but they were not able to finish for the largest three networks as explained
so far. Hence, either PMC or heuristic algorithms is promising for this setting.

Low unweighted probability (uc0.01 and exp0.01). Finding influential ver-
tices is not as easy as the above setting. Heuristic algorithms were no longer
able to find high-quality solutions. RIS-based algorithms provided high-quality
solutions to a larger extent. However, they exhibit unstable performance; when
the average cascade size is large, both IMM and D-SSA ran orders of magnitude
slower than PMC . On the other hand, PMC demonstrated stable and consis-
tent scalability and provided comparable-quality solutions to IMM and D-SSA.
Therefore, PMC is a promising algorithm for this setting.

Trivalency (tri). This setting resembles the trend of either high probability
settings or low probability settings. Hence, either PMC or fast heuristics such as
Degree is promising.

In-degree weighted (iwc). Heuristic algorithms were not reliable anymore
since high-degree vertices may not be influential. RIS-based algorithms ran al-
ways quickly. More specifically, D-SSA is faster than IMM at the expense of
quality. PMC produced comparable seed sets to them but ran slower than them
in general. Hence, either of RIS-based algorithms is the best choice.

Out-degree weighted (owc). Heuristic algorithms failed to detect influential
vertices at all. RIS-based algorithms required a longer time for smaller k. IMM
was slower than PMC and did not finish on large networks for small k; however, it
consistently provided the most influential seed sets. D-SSA ran faster than IMM ,
though its solutions were less influential than IMM . PMC was consistently faster
than IMM and D-SSA, though its solutions were sometimes less influential than
IMM . Thus, we are required to carefully select either RIS-based algorithms or
PMC according to the trade-off between quality and efficiency.

75

5.5.4 Analyzing of the Proposed Techniques

Now, let us investigate the effectiveness of our two speed-up techniques, i.e.,
pruned BFS and BFS avoidance. We first examine the running time of snapshot-
based algorithms without our techniques. Then, we analyze the effectiveness of
each of the two techniques on cost reduction of BFSes.

Running time without the proposed techniques.

We first compare the efficiency of algorithms without the proposed speed-up
techniques. We have three variants: one with pruned BFS (Section 5.2), one
with BFS avoidance (Section 5.3), and one with no techniques. We run each
algorithm in addition to our algorithm with r = 10 random graphs and seed size
k = 1, 000.

Table 5.1 shows the running time of each algorithm for larger eight networks.
Variants without either of two techniques run several dozen times slower than our
algorithm. Incorporating pruned BFS achieves up to 90 times speed-up on soc-
LiveJournal1 (uc0.1). The BFS-avoiding technique makes the naive algorithm over
100 times faster on soc-LiveJournal1 (iwc and owc). Pruned BFS is apparently
effective on large networks with uc0.1 and tri while less effective on iwc and owc.
On the other hand, BFS avoidance is effective on iwc and owc. Incorporating
both the techniques enhances the robust performance against various settings of
influence probability.

76

Table 5.1: The running time in second to compute a seed set of size 1,000 for
each variant of the proposed method with r = 10.

network model PMC BFS avoidance pruned BFS none

com-Youtube

uc0.1 16.3 s 147.0 s 415.1 s 572.0 s
uc0.01 7.8 s 8.7 s 235.3 s 238.1 s
tri 13.7 s 43.1 s 316.1 s 334.8 s
iwc 17.7 s 18.5 s 948.4 s 968.1 s
owc 12.1 s 12.1 s 789.9 s 790.4 s

wiki-Talk

uc0.1 22.4 s 92.2 s 676.2 s 634.9 s
uc0.01 15.3 s 17.4 s 343.7 s 351.6 s
tri 18.2 s 38.1 s 462.9 s 474.5 s
iwc 89.2 s 90.6 s 981.6 s 1,023.7 s
owc 14.6 s 13.9 s 480.6 s 552.7 s

web-Google

uc0.1 9.7 s 10.0 s 584.2 s 659.1 s
uc0.01 5.3 s 5.2 s 240.4 s 246.5 s
tri 6.4 s 6.4 s 418.3 s 375.2 s
iwc 10.0 s 9.8 s 838.5 s 814.4 s
owc 8.8 s 8.8 s 977.0 s 862.6 s

web-BerkStan

uc0.1 12.1 s 16.7 s 261.1 s 259.7 s
uc0.01 4.7 s 4.8 s 138.4 s 128.8 s
tri 5.5 s 5.6 s 205.9 s 210.6 s
iwc 6.9 s 6.8 s 371.7 s 356.1 s
owc 6.2 s 6.3 s 533.9 s 542.2 s

higgs-twitter

uc0.1 19.1 s 144.6 s 154.4 s 281.6 s
uc0.01 7.0 s 20.5 s 192.3 s 201.8 s
tri 18.1 s 146.4 s 187.4 s 326.6 s
iwc 12.8 s 13.0 s 551.7 s 557.2 s
owc 11.3 s 10.8 s 533.8 s 538.2 s

soc-Pokec

uc0.1 80.3 s 2,158.1 s 715.8 s 2,899.8 s
uc0.01 13.6 s 13.6 s 953.9 s 777.7 s
tri 84.6 s 2,325.9 s 1,031.1 s 3,259.6 s
iwc 61.9 s 59.1 s 3,406.3 s 3,513.2 s
owc 36.1 s 35.3 s 3,195.8 s 3,519.2 s

soc-LiveJournal1

uc0.1 138.8 s 12,606.4 s 2,531.5 s 15,619.7 s
uc0.01 41.3 s 110.9 s 2,084.2 s 1,984.6 s
tri 146.1 s 6,641.7 s 2,775.7 s 9,547.3 s
iwc 127.6 s 125.2 s 12,654.3 s 14,127.2 s
owc 77.3 s 78.5 s 9,989.1 s 11,964.8 s

com-Orkut

uc0.1 118.8 s 413.1 s 638.9 s 950.7 s
uc0.01 177.7 s 8,696.6 s 2,643.0 s 11,271.4 s
tri 128.2 s 4,721.0 s 1,066.2 s 5,853.0 s
iwc 273.1 s 280.9 s 9,108.6 s 9,653.8 s
owc 157.0 s 160.3 s 9,204.4 s 10,783.0 s

77

Effectiveness of pruned BFS.

We show the effectiveness of pruned BFS. Let us start with the computation cost
of the first iteration in snapshot-based algorithms, i.e., the total cost of BFSes
required to solve descendant counting. To this end, we sample a random graph
G from G and compute rG(v) for every vertex v using naive and pruned BFSes.
Table 5.2 shows the average number of vertices visited during naive BFSes and
pruned BFSes. While each naive BFS consumes a significant amount of costs
under unweighted settings as investigated in Section 4.3, pruned BFS reduces
this by several orders of magnitude, e.g., the cost ratio of pruned BFS to naive
BFS is 0.0033 % for soc-Pokec (uc0.1), 0.0017 % for soc-LiveJournal1 (uc0.1), and
0.0014 % for com-Orkut (tri). However, pruned BFS has almost no effect under
iwc and owc because there is no such GC that dominates the total amount of
BFS costs.

Figure 5.23 illustrates distributions of the number of visited vertices for each
BFS, where each point corresponds to a vertex, and the x and y coordinates
represent the number of vertices that a naive BFS and a pruned BFS starting
from the vertex visits, respectively. We can see several trends from these figures.
A group of points on the diagonal line (i.e., x = y) corresponds to vertices that
cannot reach the hub. A group of points below diagonal line corresponds to
vertices that can reach the hub, and hence pruning has occurred. Note that an
isolated point in the upper right corresponds to the hub vertex itself. From an
ancestor of the hub vertex on soc-LiveJournal1 (uc0.1), each pruned BFS scans
at most only 120 vertices though each naive BFS scans at least 560,000 vertices.
Meanwhile, the effectiveness is weakened when using uc0.01; we visit at most 721
vertices during pruned BFSes while at most 28,000 vertices during naive BFSes.
Notice that if we use lower influence probabilities, e.g., uc0.001, naive BFSes
quickly finish though pruned BFS does not work anymore.

100

101

102

103

104

105

106

100 101 102 103 104 105 106

P
ru

ne
d

B
F

S

Naive BFS

(a) soc-LiveJournal1 (uc0.1)

100

101

102

103

104

105

100 101 102 103 104 105

P
ru

ne
d

B
F

S

Naive BFS

(b) soc-LiveJournal1 (uc0.01)

100

101

102

103

104

105

106

100 101 102 103 104 105 106

P
ru

ne
d

B
F

S

Naive BFS

(c) soc-LiveJournal1 (tri)

100

101

102

103

104

105

100 101 102 103 104 105

P
ru

ne
d

B
F

S

Naive BFS

(d) soc-LiveJournal1 (iwc)

100

101

102

103

100 101 102 103

P
ru

ne
d

B
F

S

Naive BFS

(e) soc-LiveJournal1 (owc)

Figure 5.23: Distributions of the number of vertices visited during each BFS.

78

Table 5.2: The average number of visited vertices for solving the descendant
counting problem.

average number of visited vertices

network model naive BFS pruned BFS
pruned BFS
naive BFS %

com-Youtube

uc0.1 1.29 9,075.26 0.0142 %
uc0.01 1.19 46.11 2.6 %
tri 1.19 1,618.45 0.0737 %
iwc 4.94 4.94 100.0 %
owc 5.85 5.86 99.8 %

wiki-Talk

uc0.1 1.15 1,756.78 0.0657 %
uc0.01 1.04 22.95 4.5 %
tri 1.07 370.41 0.2893 %
iwc 12.35 12.35 100.0 %
owc 1.15 1.15 99.9 %

web-Google

uc0.1 7.56 8.02 94.3 %
uc0.01 1.07 1.07 100.0 %
tri 1.39 1.39 100.0 %
iwc 3.39 3.39 99.9 %
owc 3.39 3.39 100.0 %

web-BerkStan

uc0.1 88.22 99.08 89.0 %
uc0.01 1.25 1.25 100.0 %
tri 2.48 2.49 99.4 %
iwc 4.20 4.20 100.0 %
owc 3.66 3.66 100.0 %

higgs-twitter

uc0.1 1.33 10,390.30 0.0128 %
uc0.01 2.06 321.29 0.6413 %
tri 1.46 6,471.26 0.0226 %
iwc 10.80 10.80 100.0 %
owc 11.58 11.83 97.9 %

soc-Pokec

uc0.1 1.53 46,528.40 0.0033 %
uc0.01 1.44 1.56 92.0 %
tri 1.84 20,144.80 0.0091 %
iwc 15.90 15.90 100.0 %
owc 13.80 13.83 99.7 %

soc-LiveJournal1

uc0.1 1.46 87,371.20 0.0017 %
uc0.01 1.59 207.46 0.7657 %
tri 1.60 24,708.30 0.0065 %
iwc 10.58 10.93 96.8 %
owc 9.20 9.20 100.0 %

com-Orkut

uc0.1 1.38 57,978.90 0.0024 %
uc0.01 2.25 43,103.60 0.0052 %
tri 1.53 112,618.00 0.0014 %
iwc 35.86 35.87 100.0 %
owc 48.47 48.48 100.0 %

79

Effectiveness of BFS avoidance.

We finally discuss the effectiveness of the BFS-avoidance technique. Table 5.3
shows the total number of BFSes conducted in a certain DAG during k = 1, 000
iterations. The reduction of the number of BFSes by our technique is 85.6–99.8%.
Therefore, it turns out that a large portion of r(·)’s do not change during seed
selection. Figure 5.24 shows the transition of the number of BFSes conducted in
a certain DAG for each iteration. Note that the number of BFSes decreases even
without our technique because the DAG shrinks over iterations; however, it is
less helpful. The reduction by our technique is impressive; only a small number
of BFSes were required in most iterations after the first iteration.

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 0 200 400 600 800 1000

B

F
S

es

Iteration

BFS avoid naive

(a) soc-LiveJournal1 (uc0.1)

 0⋅100
 1⋅104
 2⋅104
 3⋅104
 4⋅104
 5⋅104
 6⋅104
 7⋅104
 8⋅104
 9⋅104
 1⋅105

 0 200 400 600 800 1000

B

F
S

es

Iteration

BFS avoid naive

(b) soc-LiveJournal1 (uc0.01)

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 0 200 400 600 800 1000

B

F
S

es

Iteration

BFS avoid naive

(c) soc-LiveJournal1 (tri)

 0⋅100
 1⋅105
 2⋅105
 3⋅105
 4⋅105
 5⋅105
 6⋅105
 7⋅105
 8⋅105
 9⋅105
 1⋅106

 0 200 400 600 800 1000

B

F
S

es

Iteration

BFS avoid naive

(d) soc-LiveJournal1 (iwc)

 0⋅100
 1⋅105
 2⋅105
 3⋅105
 4⋅105
 5⋅105
 6⋅105
 7⋅105
 8⋅105

 0 200 400 600 800 1000

B

F
S

es

Iteration

BFS avoid naive

(e) soc-LiveJournal1 (owc)

Figure 5.24: Transitions of the number of BFSes for each iteration.

80

Table 5.3: The total number of BFSes performed when k = 1, 000.

total number of BFSes in 1,000 iterations

network model naive BFS avoidance BFS avoidance
naive %

com-Youtube

uc0.1 245,903 9,394,239 2.62 %
uc0.01 36,679 2,977,448 1.23 %
tri 156,038 5,742,274 2.72 %
iwc 221,285 93,457,266 0.24 %
owc 174,213 62,791,614 0.28 %

wiki-Talk

uc0.1 166,279 1,906,348 8.72 %
uc0.01 75,405 2,243,130 3.36 %
tri 171,791 2,400,999 7.15 %
iwc 201,023 12,646,070 1.59 %
owc 23,778 11,664,959 0.20 %

web-Google

uc0.1 105,477 44,599,935 0.24 %
uc0.01 5,365 4,583,337 0.12 %
tri 33,087 24,384,211 0.14 %
iwc 125,325 68,738,337 0.18 %
owc 103,194 88,216,511 0.12 %

web-BerkStan

uc0.1 70,172 19,265,366 0.36 %
uc0.01 10,480 5,109,137 0.21 %
tri 37,574 13,916,296 0.27 %
iwc 81,086 35,345,530 0.23 %
owc 103,257 79,048,400 0.13 %

higgs-twitter

uc0.1 444,862 3,303,399 13.47 %
uc0.01 160,570 10,050,437 1.60 %
tri 729,776 6,023,075 12.12 %
iwc 225,065 52,230,808 0.43 %
owc 346,251 51,317,419 0.67 %

soc-Pokec

uc0.1 2,054,351 19,634,805 10.46 %
uc0.01 56,776 46,019,579 0.12 %
tri 3,726,617 54,578,508 6.83 %
iwc 975,567 274,014,245 0.36 %
owc 769,826 287,174,601 0.27 %

soc-LiveJournal1

uc0.1 2,560,612 59,615,657 4.30 %
uc0.01 295,079 73,645,716 0.40 %
tri 4,287,233 115,534,268 3.71 %
iwc 1,717,407 835,384,868 0.21 %
owc 1,368,856 733,839,019 0.19 %

com-Orkut

uc0.1 53,465 727,733 7.35 %
uc0.01 5,878,463 130,286,233 4.51 %
tri 1,207,661 13,601,604 8.88 %
iwc 2,756,350 586,598,513 0.47 %
owc 2,312,479 689,721,865 0.34 %

81

Chapter 6

Dynamic Indexing Algorithm for Real-time

Influence Analysis

In this chapter, we propose a dynamic indexing algorithm for real-time influ-
ence analysis on evolving networks. Figure 6.1 shows an overview of our overall
approach. We first design the index structure, present query algorithms for in-
fluence estimation and influence maximization, and provide update algorithms
(Section 6.1). We then provide a theoretical analysis, which guarantees the non-
degeneracy of the update algorithms and the solution quality of our query algo-
rithm (Section 6.2). Further, we introduce several techniques for improving the
performance of our indexing method (Section 6.3). We finally report experimen-
tal evaluations of the proposed indexing algorithm and the comparison between
our index and existing static algorithms (Section 6.4).

6.1 Proposed Indexing Algorithm

In this section, we present our indexing algorithm for influence analysis in evolv-
ing influence graphs. First, we explain what we store in our index, and how it
is constructed from a static influence graph. Then, we demonstrate how to an-
swer queries of influence estimation and influence maximization using our index.
Finally, we explain how the index is dynamically updated.

b

a

I0

b

a

I1

b

a

I2

a is influential b's influence is 3 b's influence is 2

Analysis query

Sec. 6.1.3 & 6.2

Index update

Sec. 6.1.4 & 6.3

Indexing

Sec. 6.1.1 & 6.1.2

Figure 6.1: Overview of our dynamic index for real-time influence analysis in
Chapter 6.

82

b

d

fe

(a) RR sets (Section 3.3)

zi

d

fe

(b) Our sketch structure

zi

d

fe

(c) Complete information

Figure 6.2: Structural comparison among RR sets, our index, and full infor-
mation. Our index is a sweet spot between memory consumption and correct
updates.

6.1.1 Index Structure

Let us begin with our index structure by extending RR sets [29]. For a static
influence graph G = (V,E, p), The proposed index consists of a set of triplets
I = {(zi, xi,Hi)}i, where zi ∈ V is a target vertex, xi : E → [0, 1] is an activation
function, and Hi is a subgraph of (V,E) consisting of live edges with respect to
xi. Recall from Section 3.3.5 that an edge (u, v) is called live with respect to xi
if xi(u, v) < p(u, v) and blocked otherwise, Here, every vertex in V (Hi) is able to
reach zi in Hi. We call each (zi, xi,Hi) a sketch.

Since storing xi requires O(|E|) space, we reduce the memory consumption
by using a pseudorandom generator called Random123 [170]. Random123 is
counter-based, that is, it maps an integer to a (pseudo)random value. Instead
of explicitly storing xi(u, v) for each i ∈ [|I|] and (u, v) ∈ E, for each time that
we need xi(u, v), we call Random123 with an integer representation of the pair
(i, (u, v)), and we use the obtained value after normalizing it to be in [0, 1].

The number of sketches in I is determined as follows: The weight of a subgraph
H, denoted by w(H), is defined as |V (H)|+

∑
v∈V (H) |N

−
G (v)|, which is an upper

bound of the space required to store H. Then, we will always keep the condition∑
i∈[|I|−1]

w(Hi) < W and
∑
i∈[|I|]

w(Hi) ≥W. (6.1)

Here, W is a parameter for tuning the trade-off between efficiency and accuracy,
and we discuss how to set the value of W in Section 6.2. Note that the space
complexity of our index is roughly bounded by O(W).

For a vertex v ∈ V , let Iv denote the set of indices i ∈ [|I|] with v ∈ V (Hi), and
for a vertex set S ⊆ V , let IS denote the set of indices i ∈ [|I|] with S∩V (Hi) ̸= ∅,
i.e., IS =

∪
v∈S Iv. Our index stores Iv for every vertex v, so that we can quickly

fetch the sketches that include a particular vertex.

Comparison against RIS [29, 30]. Here, we compare our sketches with RR
sets and complete information (Figure 6.2). First, RR sets cannot support dy-
namic updates efficiently, because these correspond to V (Hi)’s in our language.
On the other hand, Observation 4.3 tells us that storing both live and blocked
edges consumes a significant amount of memory. Therefore, our index is a sweet
spot.

6.1.2 Index Construction

Here, we describe how we construct our index from a static influence graph. Given
an influence graph G = (V,E, p), we begin with an empty index I = ∅, and we

83

Algorithm 6.1 Influence queries.

1: procedure EstimateInfluence(I, S)
2: if S = {v} then
3: return |V | · |Iv|/|I|.
4: else
5: return |V | ·

∣∣∪
v∈S Iv

∣∣ /|I|.
6: procedure MaximizeInfluence(I, k)
7: S ← ∅.
8: for i = 1 to k do
9: sℓ ← argmaxv∈V \S dI−S(S ∪ {v}).

10: S ← S ∪ {sℓ}.
11: return S.

repeatedly create new sketches and add them into I for as long as the total weight
of the current index is less than W . A sketch is constructed using the following
reverse-BFS-like method: First, we sample a target vertex zi ∈ V uniformly at
random, and add it to an empty queue. If the queue is not empty, then we remove
a vertex v from the queue. If this is the first time that v is visited, then for each
live edge (u, v) entering v, we add u to the queue. This procedure continues until
the queue gets empty. Finally, we set V (Hi) to the visited vertices and E(Hi) to
the examined live edges. Building a single sketch (zi, xi,Hi) requires O(w(Hi))
time, and thus the entire index construction requires O(W) time.

6.1.3 Supporting Queries

In this subsection, we will describe how we approach influence estimation and in-
fluence maximization queries using the index constructed in the previous subsec-
tion. Remark that our query algorithms are based on those of RIS and introduce
techniques for boosting empirical efficiency.

Influence estimation.

We will start with influence estimation. EstimateInfluence in Algorithm 6.1
shows pseudocode of our query algorithm. In a similar way to RIS, we approxi-
mate the influence spread of a vertex set S as

|V | · |IS |
|I|

. (6.2)

Given a singleton v, we can obtain its influence estimation by computing |V | ·
|Iv|/|I| in constant time, as we have stored Iv in our index. For a vertex set S of
size greater than one, by storing each V (Hi) using a hash so that we can check
v ∈ V (Hi) in constant time, we can compute |V | · |IS |/|I| in time O(|S| · |I|).
However, we can improve the running time by using Iv stored in our index. That
is, we compute IS as IS =

∪
v∈S Iv. This technique reduces the running time to

O(
∑

v∈S |Iv|), and our experimental results demonstrate it is much faster than a
naive O(|S| · |I|)-time method.

Influence maximization.

We next proceed to influence maximization. MaximizeInfluence in Algo-
rithm 6.1 shows pseudocode of our query algorithm. In fact, our algorithm is
almost equivalent to the seed selection procedure in RIS-based algorithms [29],

84

Algorithm 6.2 Auxiliary functions.

1: procedure Expand(I, i, z)
2: Q← a queue with only one element z.
3: Hi ← Hi ∪ {z}.
4: while Q ̸= ∅ do
5: dequeue v from Q.
6: for all (u, v) ∈ E do
7: if xi(u, v) < p(u, v) then
8: E(Hi)← E(Hi) ∪ {(u, v)}.
9: if v ̸∈ V (Hi) then

10: enqueue u onto Q.
11: V (Hi)← V (Hi) ∪ {u}.

12: procedure Shrink(I, i)
13: Hi ← the subgraph consisting of vertices that can reach zi by passing through

live edges.

14: procedure Adjust(I)
15: while

∑
1≤i≤|I|

w(Hi) < W do

16: sample target vertex z|I|+1 uniformly at random.
17: Expand(I, |I|+ 1, z|I|+1).

18: while
∑

1≤i≤|I|−1

w(Hi) ≥W do

19: discard the last element from I.

which solves the maximum coverage on a collection of RR sets as shown in Al-
gorithm 3.3. For the sake of completeness, we will describe that procedure in
our language. For a vertex v, define the degree dI(v) of v in I as the number of
i ∈ [|I|] with v ∈ V (Hi). In other words, dI(v) = |Iv| initially. We choose the
vertex with the maximum degree in I and denote this by v1. Then, examining
each sketch (zi, xi,Hi), we remove it if v1 ∈ V (Hi). Next, we choose the vertex
with the maximum degree in the resulting index and denote this by v2. Then,
examining each sketch (zi, xi,Hi), we remove it if v2 ∈ V (Hi). We repeat this
process k times, and then output the vertex set {v1, v2, . . . , vk}.

Now, we consider the computation time. When we add a vertex vℓ to the
output, we need to decrement the degrees of vertices v ∈ V (Hi) for each i ∈ Iv.
However, this decrementation occurs only once for each sketch. Hence, the total
time complexity is O(

∑
i∈[|I|] |V (Hi)|). To boost the empirical performance, we

further employ the lazy evaluation technique [140].

6.1.4 Supporting Dynamic Update Operations

In this subsection, we explain how we update our index. We consider five op-
erations: vertex additions, vertex deletions, edge additions, edge deletions, and
influence probability updates. First, we present three subroutines used in our up-
date operations, and then we describe how we update the index when the graph
changes. The details are provided in Algorithms 6.2, 6.3, and 6.4.

Auxiliary subroutines.

Expand(I, i, z). Suppose that we have added an edge (z, w) or increased the
influence probability of an edge (z, w). Then, for each i ∈ [|I|] with w ∈ V (Hi),
we want to add vertices from which we can newly reach the vertex zi to Hi. To
this end, we perform a reverse BFS from z, and add the traversed vertices to Hi.

85

Note that all of the newly added vertices can reach z.

Shrink(I, i). Suppose that we have removed an edge (u, v) or decreased the
influence probability of an edge (u, v). Then, for i ∈ [|I|] with v ∈ V (Hi), we
want to remove the vertices in Hi from which we can no longer reach zi anymore.
To this end, we recompute the set of vertices that can reach zi by conducting a
reverse BFS from zi.

Adjust(I). While we are processing edge and vertex updates, the total weight
of the index may violate the condition on the total weight (Eq. (6.1)). In such a
case, we create new sketches or remove current sketches as follows. If the total
weight is smaller than the threshold W , then we create a new sketch (z, x,H) by
sampling z ∈ V , and calling Expand on z to make H. On the other hand, if
the total weight of sketches, excluding the last one, is larger than or equal to W ,
then we remove the last sketch from the index.

Dynamic update routines.

Now, we explain how we update our index when the graph changes.

AddVertex(I, v). Suppose that we have added a new vertex v to the current
graph. In such a case, we must update the target vertices in the index to preserve
the property that each vertex in the graph is chosen uniformly at random as a
target vertex.

Let V and V ′ denote the vertex set of a graph before and after we add a new
vertex v, respectively, that is, V ′ = V ∪{v}. Suppose that we construct an index
from scratch after inserting v. Obviously, for each time we choose a sketch, the
probability that the target vertex is chosen from V is |V |

|V |+1 , and the probability

that the target vertex is v is 1
|V |+1 . In order to ensure that this property holds,

we update the target vertex in the current index to v with probability 1
|V |+1 .

DeleteVertex(I, v). Suppose that we have removed a vertex v from the cur-
rent graph. Then, for each i ∈ [|I|], we check whether v is contained in Hi. If this
is the case, then we update the triplet (zi, xi,Hi) as follows: If zi = v, we sample
zi from V \ {v} uniformly at random and reconstruct Hi. Otherwise, we remove
v and the edges leaving or entering v from Hi, and then we call Shrink(I, i) to
shrink Hi.

Change(I, (u, v), p). Suppose that we have changed the influence probability
of an edge (u, v) from p′ to p. If the state of (u, v) with respect to xi changes,
then we need to update subgraphs in the index I. More specifically, we carry out
the following for each i ∈ [|I|]. If p′ < xi(u, v) ≤ p, then we expand Hi by calling
Expand(I, i, u). If p < xi(u, v) ≤ p′, then we shrink Hi by calling Shrink(I, i).

AddEdge(I, (u, v), p). Suppose that we have added an edge (u, v) with influ-
ence probability p to the current graph. First, we add (u, v) to the current edge
set E and set p(u, v) = 0. Then, we update the influence probability p(u, v) to p,
by calling Change(I, (u, v), p).

86

Algorithm 6.3 Vertex operations.

1: procedure AddVertex(I, v)
2: for i = 1 to |I| do
3: continue with probability 1− 1

|V |+1 .

4: Hi ← ∅, zi ← v.
5: Expand(I, i, zi).

6: Adjust(I).

7: procedure DeleteVertex(I, v)
8: remove the edges leaving or entering V from each E(Hi).
9: for all i ∈ Iv do

10: if zi = v then
11: Hi ← ∅.
12: sample target vertex zi uniformly at random.
13: Expand(I, i, zi).
14: else
15: Shrink(I, i).

16: Adjust(I).

Algorithm 6.4 Edge operations.

1: procedure Change(I, (u, v), p)
2: p(u, v)← p.
3: for all i ∈ Iv do
4: P ← [[(u, v) ∈ E(Hi)]], Q← [[xi(u, v) < p]].
5: if ¬P ∧Q then ▷ blocked → live
6: E(Hi)← E(Hi) ∪ {(u, v)}.
7: Expand(I, i, u).

8: if P ∧ ¬Q then ▷ live → blocked
9: E(Hi)← E(Hi) \ {(u, v)}.

10: Shrink(I, i).

11: Adjust(I).

12: procedure AddEdge(I, (u, v), p)
13: p(u, v)← 0.
14: Change(I, (u, v), p).

15: procedure DeleteEdge(I, (u, v))
16: Change(I, (u, v), 0).

DeleteEdge(I, (u, v)). Suppose that we have deleted an edge (u, v) from the
current graph. Then, we first update the influence probability p(u, v) to zero, by
calling Change(I, (u, v), 0), and then remove (u, v) from E.

6.2 Theoretical Analysis

In this section, we will show the correctness of our indexing method and then
proceed to analyze its time complexity.

6.2.1 Correctness

In this subsection, we consider the correctness of our indexing method. The proof
in this subsection has been derived by Yuichi Yoshida, a co-author of the extended
abstract [157] published in PVLDB 2016. In this thesis, we revise Theorems 6.9
and 6.10, for the quality of our query algorithms so that a hidden constant is

87

clear.
Note that our method is randomized. We first define IstaW (G) and I

dyn
W (G) as the

distribution of indices in the case that we apply our method to a static influence
graph G and the sequence of dynamic updates that results in G, respectively. Our
goal is to show that IstaW (G) = I

dyn
W (G). If this is the case, then queries on the

index following any dynamic updates will inherit the same guarantees to the ones
in [30].

Given an influence graph G = (V,E, p), consider the following random process
that generates a sequence of pairs. For each step, we sample a target vertex z ∈ V
and an activation function x : E → [0, 1] uniformly at random, and add the pair
(z, x) to the sequence. Let X∞(G) denote the distribution of infinite sequences
of pairs obtained in this way. Let H(z, x) be the subgraph consisting of vertices
that can reach z under x. Furthermore, let I∞(G) denote the distribution of
infinite sequences of triplets obtained from X∞(G) by replacing each pair (z, x)
by (z, x,H(z, x)).

We say that a distribution X of pair sequences is valid for G if it can be
obtained by sampling a random sequence from X∞(G) uniformly at random and
taking a prefix of it (of arbitrary length). Similarly, we say that a distribution
I of triplet sequences is valid for G if it can be obtained by sampling a random
sequence from I∞(G) uniformly at random and taking a prefix of it.

For a positive integer W , we define IW (G) as the distribution over prefixes
of triplet sequences in I∞(G) that are obtained as follows: We sample a triplet
sequence (z1, x1,H1), (z2, x2,H2), . . . from I∞(G) and take the minimum prefix
of it such that the total weight of the subgraphs is at least W . It is easy to see
that IW (G) = IstaW (G). We will establish that IstaW (G) = I

dyn
W (G) by showing that

I
dyn
W (G) = IW (G).

For the empty influence graph G = (∅, ∅, p), we clearly have I
dyn
W (G) = IW (G).

We will show that for any influence graph G with I
dyn
W (G) = IW (G) and an influ-

ence graph G′ obtained from G by a dynamic update, we again have I
dyn
W (G′) =

IW (G′). Then, we are done by induction on the number of updates.
The following auxiliary lemma states that we can change the length of a valid

distribution to W using Adjust(·).

Lemma 6.1. Let G be an influence graph, and let I be a valid distribution of
finite pair sequences for G. Then, I′ = Adjust(I) is equal to IW (G), where W is
a parameter used in Adjust.

Remark 6.2. By Adjust(I), we mean the distribution of sequences obtained by
applying Adjust to a sequence I sampled from I. We will use similar conventions
for other procedures in the following.

Proof. We obtain IW (G) from I as follows. Let I = (z1, x1,H1), . . . , (z|I|, x|I|,H|I|)
be a triplet sequence sampled from I. Then, we repeat the following process. If∑

1≤i≤|I|w(Hi) < W , then we sample a target vertex z and an activation func-
tion x : E → [0, 1] uniformly at random. Then, we compute the corresponding
subgraph H, and add the triplet (z, x,H) to I. If

∑
1≤i≤|I|−1w(Hi) ≥ W , then

we remove the last element from I. This exactly corresponds to what is carried
out in Adjust, and it follows that I′ = IW (G).

In the following, we will show that our update routines in Algorithms 6.3
and 6.4 transform a valid distribution for the original influence graph to a valid
distribution for the new influence graph.

88

Lemma 6.3. Let G be an influence graph and G′ be the influence graph obtained
from G by changing the influence probability of an edge e ∈ E(G) to p ∈ (0, 1]).
If I is a valid distribution of triplet sequences for G, then the distribution I′ =
Change(I, (u, v), p) is a valid distribution of triplet sequences for G′.

Proof. Let X and X′ be the distributions of the pair sequences corresponding to
I and I′, respectively. Then, it is clear that X = X′. Because X is valid for G, it
follows that X′ is also valid for G′. Hence, I′ is valid for G′.

Lemma 6.4. Let G be an influence graph and G′ be the influence graph obtained
from G by adding a new vertex v ̸∈ V (G). If I is a valid distribution for G, then
I′ = AddVertex(I, v) is a valid distribution for G′.

Proof. Let X and X′ be the distributions of the pair sequences corresponding
to I and I′, respectively. Then, we can obtain X′ from X as follows. Let
(z1, x1), (z2, x2), . . . be a sequence sampled from X. Then, we replace each of
zi by v with probability 1−1/|V (G′)|. We can observe that X′ is valid for G′, and
it follows that I′ is valid for G′.

Lemma 6.5. Let G be an influence graph and G′ be the influence graph obtained
from G by removing a vertex v ∈ V (G). If I is a valid distribution for G, then
I′ = DeleteVertex(I, v) is a valid distribution for G′.

Proof. Let X and X′ be the distributions of the pair sequences corresponding
to I and I′, respectively. Then, we can obtain X′ from X as follows. Let
(z1, x1), (z2, x2), . . . be a sequence sampled from X. If zi = v, then we again
replace zi from V (G) \ {v} uniformly at random again. We can observe that X′

is valid for G′, and it follows that I′ is valid for G′.

Lemma 6.6. Let G be an influence graph and G′ be the influence graph obtained
from G by adding a new edge (u, v) ̸∈ E(G) with influence probability p ∈ (0, 1].
If I is a valid distribution for G, then I′ = AddEdge(I, (u, v), p) is a valid dis-
tribution for G′.

Proof. Let X and X′ be the distribution of pair sequences corresponding to I and
I′, respectively. We can obtain X′ from X as follows. Let (z1, x1), (z2, x2), . . .
be a sequence sampled from X. Then, we replace (zi, xi) by (zi, x

′
i), where x

′
i is

obtained from xi by choosing x′i(u, v) from [0, 1] uniformly at random. We can
observe that X′ is valid for G′, and it follows that I′ is valid for G′.

Lemma 6.7. Let G be an influence graph and G′ be the influence graph obtained
from G by removing an edge (u, v) ∈ E(G). If I is a valid distribution for G, then
I′ = DeleteEdge(I, (u, v)) is a valid distribution for G′.

Proof. Let X and X′ be the distribution of pair sequences corresponding to I and
I′, respectively. We can obtain X′ from X as follows. Let (z1, x1), (z2, x2), . . . be
a sequence sampled from X. Then, we replace (zi, xi) by (zi, x

′
i), where x

′
i is the

restriction of x to E \ {(u, v)}. We can observe that X′ is valid for G′, and it
follows that I′ is valid for G′.

Theorem 6.8. I
dyn
W (G) = IW (G).

Proof. From Lemmas 6.3–6.7, we have that the distribution of indices obtained by
our dynamic update procedures is always a valid distribution of triplet sequences
for the current influence graph. Because we apply Adjust at the end of each
update, the distribution of indices is exactly IW (G) by Lemma 6.1.

89

By Theorems 6.8 and 3.3, we obtain the following guarantee for influence
estimation.

Theorem 6.9. Let I be the index obtained by a sequence of dynamic updates, and
assume that I contains θ sketches. Then, for any ϵ > 0, an estimate returned by
EstimateInfluence(I, S) in Algorithm 6.1 approximates the influence Inf(S)
with an additive error of ϵ|V | with probability exp(2θϵ2) over the choice of zi’s
and xi’s.

By Theorems 6.8 and 3.4, we obtain the following guarantee for influence
maximization.

Theorem 6.10. Let W = 12kϵ−2(|V | + |E|) log |V |, and let I be the index
obtained by a sequence of dynamic updates. Then, MaximizeInfluence(I, k)
in Algorithm 6.1 returns a set S of size k, such that Inf(S) ≥ (1 − e−1 −
ϵ)maxS∗∈(Vk)

Inf(S∗) with probability at least 3/5 over the choice of zi’s and xi’s.

6.2.2 Time Complexity

Now, we turn our focus to analyzing the time complexity of our indexing method.
We note that it is difficult to precisely bound the time complexity of dynamic
update operations because it depends on the sizes of cascades and hence the
structure of the input graph. Instead, we will analyze the number of sketches
examined in each update operation.

To this end, we will apply the following lemma.

Lemma 6.11. For a vertex set S ⊆ V (G) and a randomly sampled sketch
(zi, xi,Hi), it holds that

Pr[V (Hi) ∩ S ̸= ∅] =
Inf(S)

|V (G)|
, (6.3)

where the probability is over the choice of zi and xi.

Proof. From the construction of Hi, the proof is a direct consequence of [29,
Observation 3.2].

Theorem 6.12. AddVertex examines |I| sketches, and on average, Delete-

Vertex, Change, AddEdge, and DeleteEdge examine Inf(v)
|V | |I| sketches.

Proof. The first claim is obvious as the number of sketches is |I|. Suppose that
DeleteVertex(I, v), Change(I, (u, v), p), AddEdge(I, (u, v), p), or Delete-
Edge(I, (u, v), p) was called. Then, we only examine the sketches containing v

and thus the expected number of examined sketches is Inf(v)
|V | |I|, following from

Lemma 6.11.

6.3 Scaling-up Practical Performance

In this section, we introduce several techniques to improve the performance of the
index update algorithms without deteriorating the quality of influence estimation
and influence maximization.

90

6.3.1 Reachability-tree-based Pruning Techniques

Although we have demonstrated that the number of updated sketches resulting
from vertex deletions and update operations on edges is small, naive implementa-
tions of these are computationally expensive, because a whole subgraph is scanned
for each relevant sketch in the Shrink procedure. Here, we will address this issue.

Observation 4.4 tells us that the removal of a single edge or vertex rarely
effects the reachability among the vertices in a sketch, To exploit this, for each
sketch we will store a directed reachability tree Ti in Hi rooted at zi. Therefore,
each sketch is now a quadruplet (zi, xi,Hi, Ti).

Definition of reachability trees.

Let us begin with the definition of the reachability tree (Figure 6.3a). The reach-
ability tree Ti for a sketch (zi, xi,Hi) is a subgraph of Hi with V (Ti) = V (Hi)
and E(Ti) ⊆ E(Hi) which satisfies that (1) it contains exactly |V (Hi)| − 1 edges
and (2) each vertex in V (Hi) is able to reach zi along with Ti. For a vertex
v ∈ V (Ti), we define the subtree Ti(v) rooted at v as the subgraph of Ti induced
by the vertices that can reach v.

Speeding up the Shrink procedure.

Next, we will explain how we use the reachability tree to efficiently prune the
Shrink procedure without scanning the whole subgraph.

Suppose that an edge (u, v) becomes blocked in theChange procedure. Then,
we need to update each sketch (zi, xi,Hi, Ti) with (u, v) ∈ E(Hi) by calling the
procedure Shrink(I, i) (Algorithm 6.4, line 10). Previously, we updated Hi by
performing a reverse BFS from zi. Because we now have Ti, we can update Hi

more efficiently. We present the details as follows.
If (u, v) ̸∈ E(Ti), then u can still reach zi along with Ti after the removal

of (u, v), as we know there exists a “detour” from u to zi avoiding (u, v) (Fig-
ure 6.3b). Thus, we do nothing; we call this the technique of detour existence
checking. Otherwise, the vertices in V (Ti(u)) are the only candidates that may no
longer reach zi. Thus, we check whether the vertices in V (Ti(u)) can still reach
V (Hi) \ V (Ti(u)). With this aim, we first explicitly compute the set V (Ti(u))
(Figure 6.3c). Then, we compute the set R of vertices in V (Ti(u)) connected to
V (Hi) \ V (Ti(u)). Finally, we compute the set of vertices in V (Ti(u)) that can
reach R, using a reverse BFS from R (Figure 6.3d). We call this the technique
of limiting the search range. Then, we remove the vertices that can no longer
reach R from V (Hi) and update Hi and Ti. The pseudocode is presented as
Shrink-after-Edge-Removal in Algorithm 6.5.

In addition, we can speed up Shrink(I, i) at line 15 in the DeleteVertex
procedure in a similar manner. The pseudocode is presented as Shrink-after-
Vertex-Removal in Algorithm 6.5.

Maintaining reachability trees.

Now, we discuss how we maintain reachability trees. First, when creating a new
sketch (zi, xi,Hi, Ti), Ti is a tree consisting of a single vertex zi. When updating
Ti in an existing sketch (zi, xi,Hi, Ti), we have the following four cases.

1. Suppose that an edge (u, v) ∈ E(Hi) becomes blocked. Let H ′
i be the new

subgraph computed by calling Shrink-after-Edge-Removal(I, i, (u, v)).

91

zi
v

u

Reachability tree Ti
(a) Reachability tree

zi
v

u

(b) Detour existence checking

u
v

zi

Ti(u)

V(Hi) ∖ V(Ti(u))

(c) Limiting the search range (before
deletion)

R V(Hi) ∖ V(Ti(u))

u
v

zi

(d) Limiting the search range (after dele-
tion)

Figure 6.3: Reachability-tree-based techniques for fast edge deletion. Orange
edges are the edges of the reachability tree.

Note that the vertices in R′ = V (H ′
i)∩V (Ti(u)) are obtained by performing

a reverse BFS from R (see Shrink-after-Edge-Removal for the defini-
tions of R and R′). Hence, by removing the subtree V (Ti(u)) from Ti and
concatenating the tree formed by this reverse BFS, we obtain a new reach-
ability tree for H ′

i.

2. Suppose that an edge (u, v) with v ∈ V (Hi) becomes live. Then, we perform
a reverse BFS from u, and add the edge (u, v) and the obtained subtree
rooted at u to Ti.

3. When deleting a vertex v with v ∈ V (Hi), we can update Ti, in a similar
manner as in the case where an edge becomes blocked.

4. When adding a vertex, we are not required to do anything.

6.3.2 A Skipping Method for Vertex Addition

When adding a vertex, we are required to change the target vertex of each sketch
with probability 1

|V |+1 . However, running through all of the sketches in I is a
costly procedure. We can avoid this issue by applying the following technique.
Let k be the first index for which we change the target vertex zk. Then, for each
positive integer t, we have Pr[k = t] = (1− α)t−1α, where α = 1

|V |+1 . Hence, we

can sample k by first sampling y ∈ [0, 1] uniformly at random, and then taking
the minimum k such that

∑
t∈[k](1 − α)t−1α ≥ y. This is equivalent to k ≥

log 1
1−y/ log

1
1−α . We choose minimum such k with these properties and change

the target vertex of the kth sketch to v. Then, we repeat the same procedure
for the remainder of the index. See AddVertex’ in Algorithm 6.5 for complete
details.

92

Algorithm 6.5 Improved operations.

1: procedure Shrink-after-Edge-Removal(I, i, (u, v))
2: if (u, v) ̸∈ E(Ti) then
3: return
4: T ′ ← the subtree rooted at u.
5: R← vertices in T ′ connected to V (Hi) \ T ′.
6: R′ ← the set of vertices in T ′ that can reach R.
7: for w ∈ T ′ \R′ do
8: remove w and the edges entering w from Hi and Ti, resp.

9: procedure Shrink-after-Vertex-Removal(I, i, v)
10: T ′ ← the subtree rooted at v.
11: R← vertices in T ′ connected to V (Hi) \ T ′.
12: R′ ← the set of vertices in T ′ that can reach R.
13: for w ∈ T ′ \R′ do
14: remove w and the edges entering w from Hi and Ti, resp.

15: procedure AddVertex’(I, v)
16: α← 1

|V |+1 , i← 0.

17: while i < |I| do
18: sample y from [0, 1] uniformly at random.
19: k ← ⌈log 1

1−y/ log
1

1−α⌉.
20: i← i+ k.
21: if i ≤ |I| then
22: Hi ← ∅, zi ← v.
23: Expand(I, i, zi).

24: Adjust(I).

Because we are only required to seeing sketches for which we change the target
vertex, the expected number of sketches we look at is |I|

|V |+1 , which is much smaller

than |I|.

6.4 Experiments

In this section, we will demonstrate the efficiency and effectiveness of our dynamic
indexing method by performing experiments on real-world networks.

6.4.1 Setup

Datasets.

We selected seven real-world dynamic networks, where each edge has the times-
tamp at which it was created, from the Koblenz Network Collection [111, 112].
We ordered edges in ascending time order. The basic information regarding each
dataset is presented in Table 6.1 and the degree distribution of each dataset is
plotted in Figure 6.4.

Influence probability settings.

These networks do not contain information concerning influence probabilities.
Therefore, we adopt uc0.1, uc0.01, tri, and iwc settings described in Chapter 4.

93

Table 6.1: Datasets used in Chapter 6.

network |V | |E| Type

Digg 30,398 85,247 communication (directed)
Enron 87,273 320,154 communication (directed)
Epinions 131,828 840,799 social (directed)
Facebook 63,731 1,634,070 social (undirected)
DBLP 1,314,050 10,724,828 collaboration (undirected)
YouTube 3,223,585 18,750,748 social (undirected)
Flickr 2,302,925 33,140,017 social (directed)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y

In-degree

Digg
Enron
Epinions
Facebook
DBLP
YouTube
Flickr

Figure 6.4: Degree distribution of each dataset.

Algorithms.

Our method is parameterized by W , which represents the threshold of the total
weight. In order to apply the same parameter for various networks, we introduce
the parameter β, which determines W in a manner such that W = β(|V | +
|E|) log |V |. Unless otherwise specified, we set β = 32. This choice will be
justified in Section 6.4.4 empirically in terms of accuracy.

For the purpose of our comparison, we use the following algorithms in our ex-
periments, which have been reviewed in Chapter 3. Recall that all the algorithms
handle static graphs only.

� RIS [29]: A reverse influence sampling method on which our method is
based. We set the total number of traversed edges to be 32(|V |+|E|) log |V |.

� TIM+ [176]: A sketch-based method with the two-phase strategy. We use
the implementation of [91]. We set the precision parameters as ℓ = 1 and
ϵ = 0.5.

� IMM [177]: A sketch-based method that uses martingales. We use the
implementation of [90]. We set the precision parameters as ℓ = 1 and
ϵ = 0.5.

� PMC [156]: The pruned Monte-Carlo simulation algorithm proposed in
Chapter 5. The number of subgraphs is set to 200.

� IRIE [96]: A heuristic-based method that uses a linear system. We use the
code provided by Kyomin Jung, an author of [96]. We set the parameters
as α = 0.7 and θ = 1/320.

� Degree [98]: A baseline method that chooses the topmost k vertices in
decreasing order of out-degrees.

94

� MC [98]: A simulation-based influence estimation method that simulates
the diffusion process 10,000 times, and calculates the average number of
activated vertices.

Environments.

We conducted the experiments on a Linux server, with Intel Xeon E5-2690
2.90GHz CPU and 256GB memory. All algorithms were implemented in C++
and compiled using g++v4.6.3 with the -O2 option.

6.4.2 Index Construction

We first examine the scalability of our indexing algorithm. For each network,
we constructed our index using the entire network. The indexing times and
index sizes are presented in Table 6.2. From this, we can observe the scalability
and efficiency of our method. For the larger three networks, which incorporate
tens of millions of edges, it only requires a few hours to construct the index.
However, we note that without our dynamic method, this amount of time is
required to estimate or maximize the influence spread. We here note that the
difference in the index size under the iwc model comes from the differences in the
degree distribution. For example, YouTube has more vertices with high in-degree
than DBLP. Thus, for each sketch construction, the total weight of the index for
YouTube increases faster than DBLP. As a result, the obtained index for YouTube
has a small number of sketches (1 million), which requires only 3.9GB, while
the index for DBLP has a larger number of sketches (37 million) and consumes
34.8GB.

Table 6.3 reports the size of two types of index, where one is the proposed
index that stores only live edges and the other one stores both the live edges
and blocked edges. By discarding blocked edges from the sketches, the space
consumption is reduced by a factor from 4 to 50. Figure 6.5 depicts the change
of the indexing time and index size with the value of β from 2 to 2,048. Both of
these values are scaled to β.

6.4.3 Dynamic Updates

We then evaluate the efficiency of our methods in terms of dynamic updates.
Specifically, we have measured the running time of each operation as follows.

� Vertex additions: The average running time for adding 1,000 new isolated
vertices to the index constructed using the whole network.

� Vertex deletions: The average running time for deleting 1,000 uniformly
chosen vertices from the index constructed using the whole network.

� Influence probability updates: The average running time for updating the
influence probabilities of 1,000 uniformly chosen edges of the index con-
structed using the whole network. The update is conducted as follows. Sup-
pose that an edge e with influence probability p(e) is chosen. When using
the tri setting, we randomly choose a probability from {0.1, 0.01, 0.001} \
{p(e)} as the new influence probability of e. When using other settings, we
randomly assign p(e)× 2 or p(e)/2 to e.

� Edge additions: The average running time for adding the final 1,000 edges
to the index constructed using all of the edges except for the final 1,000
edges.

95

� Edge deletions: The average running time for deleting 1,000 edges in the
reverse of the order that they were added, from the index constructed using
the whole network.

Table 6.2 presents the average running times of the dynamic update opera-
tions. Each vertex addition and edge deletion is processed within a few millisec-
onds. For the three largest networks, an edge addition requires several hundred
milliseconds under the uc0.1 setting, several ten milliseconds under the tri set-
ting, and a few milliseconds under the iwc setting. The reason for this is that
under unweighted settings, sketches are likely to expand more following the ad-
dition of edges in comparison with the iwc setting. Vertex deletion exhibits a
similar tendency to edge addition, where it becomes slower for the probability set-
ting of uc0.1. In the slowest case, it took four seconds for deleting a single vertex
on Flickr because vertex deletion causes a number of edge deletions. Figure 6.5
suggests that the average processing times of dynamic operations are roughly
proportional to the value of β, because the expected size of I is proportional to
β.

Next, we analyze the effectiveness of the proposed speed-up techniques in-
troduced in Sections 6.3.1 and 6.3.2. Table 6.3 presents the average running
times of dynamic updates with or without the proposed pruning techniques. The
proposed techniques improve the performances of edge deletion, vertex deletion,
and vertex addition, making them several hundred times faster. Notice that our
techniques for deletion operations are more effective for larger networks.

Here, we discuss how our technique improves the efficiency of edge deletions.
Table 6.4 reports the detailed information of the reachability-tree-based tech-
nique on edge deletion. In this table, the third column shows the number of
sketch updates examined during 1,000 edge deletions, the fourth column shows
the number of sketch updates that were skipped by our technique of detour exis-
tence checking, the fifth column shows the average size of the sketches that were
not skipped, and the sixth column shows the average size of the subtrees that
our technique of limiting the search range computed. Firstly, our detour exis-
tence checking skipped a significant fraction of sketches without any BFS, e.g.,
24% have been skipped for Flickr (uc0.1). Then, for sketches that have not been
skipped, we perform a BFS on subtrees. Those subtrees contain a few vertices
on average, thus we were able to cut down the computation cost significantly.

96

T
ab

le
6.
2:

In
d
ex
in
g
ti
m
e,

in
d
ex

si
ze
,
an

d
av
er
ag

e
p
ro
ce
ss
in
g
ti
m
es

of
d
y
n
am

ic
u
p
d
at
es
.

in
d
e
x
in
g

in
d
e
x

v
e
rt
e
x

v
e
rt
e
x

p
ro

b
a
b
il
it
y

e
d
g
e

e
d
g
e

n
e
tw

o
rk

m
o
d
e
l

ti
m
e

si
z
e

a
d
d
it
io
n

d
e
le
ti
o
n

ch
a
n
g
e

a
d
d
it
io
n

d
e
le
ti
o
n

D
ig
g

u
c
0
.0
1

42
.0

s
3.
2
G
B

3.
1
m
s

2.
8
m
s

0.
16

m
s

0.
16

m
s

0.
20

m
s

u
c
0
.1

19
.4

s
1.
3
G
B

1.
3
m
s

5.
9
m
s

3.
1
m
s

1.
2
m
s

1.
6
m
s

t
r
i

36
.3

s
3.
0
G
B

2.
6
m
s

2.
9
m
s

0.
59

m
s

0.
32

m
s

0.
39

m
s

iw
c

20
.3

s
1.
4
G
B

1.
6
m
s

4.
0
m
s

0.
92

m
s

0.
81

m
s

1.
3
m
s

E
n
ro
n

u
c
0
.0
1

95
.3

s
5.
9
G
B

2.
3
m
s

5.
4
m
s

0.
81

m
s

0.
40

m
s

0.
54

m
s

u
c
0
.1

41
.3

s
1.
0
G
B

1.
1
m
s

11
.7

m
s

6.
4
m
s

5.
6
m
s

2.
0
m
s

t
r
i

27
.3

s
0.
6
G
B

0.
46

m
s

8.
1
m
s

3.
4
m
s

1.
2
m
s

1.
2
m
s

iw
c

16
.5

s
0.
6
G
B

0.
33

m
s

4.
6
m
s

1.
4
m
s

0.
39

m
s

0.
94

m
s

E
p
in
io
n
s

u
c
0
.0
1

65
.2

s
0.
8
G
B

0.
68

m
s

13
.1

m
s

2.
9
m
s

1.
2
m
s

1.
8
m
s

u
c
0
.1

11
9.
1
s

2.
3
G
B

1.
7
m
s

57
.4

m
s

27
.5

m
s

15
.8

m
s

3.
3
m
s

t
r
i

89
.1

s
1.
4
G
B

0.
80

m
s

14
.8

m
s

5.
8
m
s

4.
1
m
s

1.
0
m
s

iw
c

62
.2

s
1.
1
G
B

0.
69

m
s

8.
3
m
s

1.
7
m
s

1.
0
m
s

1.
8
m
s

F
ac
eb
o
ok

u
c
0
.0
1

12
7.
3
s

1.
1
G
B

2.
6
m
s

80
.4

m
s

3.
0
m
s

0.
32

m
s

0.
74

m
s

u
c
0
.1

20
0.
0
s

3.
6
G
B

2.
4
m
s

36
0.
7
m
s

35
.8

m
s

47
.6

m
s

3.
1
m
s

t
r
i

16
5.
0
s

2.
1
G
B

2.
7
m
s

95
.8

m
s

11
.1

m
s

6.
9
m
s

0.
75

m
s

iw
c

13
5.
2
s

1.
6
G
B

2.
7
m
s

61
.0

m
s

3.
6
m
s

1.
2
m
s

2.
3
m
s

D
B
L
P

u
c
0
.0
1

5,
68

4.
9
s

10
6.
2
G
B

8.
3
m
s

12
.2

m
s

1.
3
m
s

0.
44

m
s

0.
39

m
s

u
c
0
.1

4,
98

2.
3
s

53
.0

G
B

3.
5
m
s

93
0.
4
m
s

89
5.
4
m
s

73
5.
2
m
s

24
.2

m
s

t
r
i

2,
96

5.
9
s

27
.7

G
B

5.
2
m
s

12
4.
0
m
s

85
.7

m
s

42
.5

m
s

2.
1
m
s

iw
c

3,
39

5.
7
s

34
.8

G
B

4.
0
m
s

18
.1

m
s

2.
7
m
s

0.
87

m
s

1.
3
m
s

Y
ou

T
u
b
e

u
c
0
.0
1

3,
23

8.
7
s

18
.3

G
B

1.
2
m
s

14
.1

m
s

26
.8

m
s

0.
54

m
s

0.
16

m
s

u
c
0
.1

6,
59

3.
6
s

92
.8

G
B

7.
9
m
s

72
2.
0
m
s

1,
77

7.
9
m
s

38
8.
6
m
s

0.
68

m
s

t
r
i

5,
00

0.
4
s

44
.6

G
B

0.
01

m
s

92
.2

m
s

23
6.
2
m
s

31
.8

m
s

0.
26

m
s

iw
c

1,
98

5.
5
s

3.
9
G
B

0.
65

m
s

5.
7
m
s

1.
5
m
s

0.
14

m
s

0.
04

m
s

F
lic
kr

u
c
0
.0
1

4,
98

4.
1
s

17
.0

G
B

0.
00

m
s

10
8.
5
m
s

17
.0

m
s

5.
2
m
s

0.
29

m
s

u
c
0
.1

6,
75

8.
6
s

65
.7

G
B

0.
00

m
s

3,
82

0.
4
m
s

61
0.
4
m
s

70
0.
1
m
s

19
.3

m
s

t
r
i

5,
46

7.
6
s

31
.3

G
B

0.
00

m
s

45
9.
0
m
s

12
5.
2
m
s

89
.6

m
s

2.
4
m
s

iw
c

4,
25

3.
7
s

12
.2

G
B

2.
1
m
s

53
.8

m
s

4.
8
m
s

0.
19

m
s

0.
08

m
s

97

10
-1

10
0

10
1

10
2

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

In
d

e
x
in

g
 t

im
e

 [
s
]

Value of β

TRI
IWC

(a) Indexing time

10
0

10
1

10
2

10
3

10
4

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

M
e

m
o

ry
 u

s
a

g
e

 [
G

B
]

Value of β

TRI
IWC

(b) Index size

10
-4

10
-3

10
-2

10
-1

10
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

A
v
e

ra
g

e
 p

ro
c
e

s
s
in

g
 t

im
e

 [
s
]

Value of β

Vertex addition
Vertex deletion

(c) Vertex operations (tri)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

A
v
e

ra
g

e
 p

ro
c
e

s
s
in

g
 t

im
e

 [
s
]

Value of β

Probability change
Edge addition
Edge deletion

(d) Edge operations (tri)

Figure 6.5: The change of indexing time, index size, and average processing
times of dynamic updates with the increase of β on Epinions.

98

T
ab

le
6.
3:

E
ff
ec
ti
v
en

es
s
of

th
e
p
ro
p
os
ed

te
ch
n
iq
u
es

co
m
p
ar
ed

to
n
ai
v
e
im

p
le
m
en
ta
ti
on

s.

e
d
g
e
d
e
le
ti
o
n

v
e
rt
e
x
d
e
le
ti
o
n

v
e
rt
e
x
a
d
d
it
io
n

in
d
e
x
si
z
e

n
e
tw

o
rk

m
o
d
e
l

S
ec
.
6.
3.
1

n
a
iv
e

S
ec
.
6
.3
.1

n
a
iv
e

S
ec
.
6
.3
.2

n
a
iv
e

li
v
e
ed
g
es

a
ll
ed
g
es

E
p
in
io
n
s

t
r
i

1.
0
m
s

16
3
.1

m
s

1
4
.8

m
s

5
7
5
.3

m
s

0
.8
0
m
s

1
.6

m
s

1
.4

G
B

5
.5

G
B

iw
c

1.
8
m
s

1
.4

m
s

8
.3

m
s

7
.4

m
s

0
.6
9
m
s

6
.4

m
s

1
.1

G
B

7.
0
G
B

D
B
L
P

t
r
i

2.
1
m
s

91
4
.5

m
s

1
2
4
.0

m
s

>
1
0
,0
0
0
.0

m
s

5
.2

m
s

2
.4

m
s

2
7
.7

G
B

1
3
0
.7

G
B

iw
c

1.
3
m
s

0.
9
4
m
s

1
8
.1

m
s

2
3
.4

m
s

4
.0

m
s

1
7
8
.9

m
s

3
4
.8

G
B

1
2
0
.3

G
B

F
lic
kr

t
r
i

2.
4
m
s

1,
70
5
.5

m
s

4
5
9
.0

m
s

>
1
0
,0
0
0
.0

m
s

0
.0
0
m
s

6
.5

m
s

3
1
.3

G
B

∗
≈

2
8
2
.0

G
B

iw
c

0.
08

m
s

0.
1
0
m
s

5
3
.8

m
s

4
1
.2

m
s

2
.1

m
s

3
3
.6

m
s

1
2
.2

G
B

∗
≈

2
9
2.
1
G
B

∗
W
e
re
p
or
t
tw

ic
e
th
e
in
d
ex

si
ze

fo
r
β
=

1
6
a
s
a
n
a
p
p
ro
x
im

a
ti
o
n
o
f
th
a
t
fo
r
β
=

3
2
.

T
ab

le
6.
4:

Im
p
ac
t
of

re
ac
h
ab

il
it
y
-t
re
e-
b
as
ed

te
ch
n
iq
u
e
in

S
ec
.
6.
3.
1
on

ed
ge

d
el
et
io
n
.

a
v
e
ra

g
e
si
z
e
o
f

a
v
e
ra

g
e
si
z
e
o
f

n
e
tw

o
rk

m
o
d
e
l

#
e
x
a
m
in
e
d

sk
e
tc
h
e
s

#
sk

ip
p
e
d

sk
e
tc
h
e
s

re
m
a
in
e
d

sk
e
tc
h
e
s

re
m
a
in
e
d

su
b
tr
e
e
s

E
p
in
io
n
s

t
r
i

2
4
,6
8
4

1
4
,1
5
9

8
,7
3
5
.2

3
.2

iw
c

8
,8
7
5

3
8
6

5
8
.8

5
.8

D
B
L
P

t
r
i

1
4
,4
5
0

3
0
8

6
5
,8
2
7
.4

1
.5

iw
c

1
2
,7
5
1

1
,1
7
8

2
8
.1

3
.4

F
lic
kr

t
r
i

5
,0
0
3

6
2
0

1
8
4
,2
7
5
.0

1
.0

iw
c

3
,2
7
7

3
5
9

2
1
.7

1
.1

99

Table 6.5: Average running time for estimating the influence spread of a single
vertex.

this work static methods

network model indexing query MC RIS

Epinions

uc0.01 65.2 s 1.43 µs 0.1 s 8.9 s
uc0.1 119.1 s 0.99 µs 13.0 s 8.1 s
tri 89.1 s 0.97 µs 6.3 s 8.7 s
iwc 62.2 s 0.96 µs 0.01 s 9.3 s

DBLP

uc0.01 5,684.9 s 1.60 µs 0.006 s 504.4 s
uc0.1 4,982.3 s 1.63 µs > 100.0 s 271.1 s
tri 2,965.9 s 1.62 µs 48.0 s 267.1 s
iwc 3,395.7 s 1.41 µs 0.02 s 298.1 s

10
-7

10
-6

10
-5

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

A
v
e
ra

g
e
 e

s
ti
m

a
ti
n
g
 t
im

e
 [
s
]

Value of β

TRI
IWC

Figure 6.6: Average times for estimat-
ing influence of a single vertex with β
on Epinions.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 2 4 8 16 32 64

A
v
e
ra

g
e
 e

s
ti
m

a
ti
o
n
 t
im

e
 [
s
]

Seed size k

TRI
IWC
TRI naive
IWC naive

Figure 6.7: Average times for estimat-
ing influence of a vertex set of various
sizes on Epinions.

6.4.4 Influence Estimation Queries

Now, we will show that our method efficiently and accurately estimates the in-
fluence spread using the index constructed from a given graph. As the exact
computation of the influence spread is #P-hard, we regard the estimate given
using MC as the ground truth of the influence spread.

First, we focus on the influence estimation for a single vertex. For each net-
work, we randomly sampled 1,000 vertices, and then estimated the influence
spread for each vertex. Table 6.5 presents the average estimation time for each
method. The average query time for our method is of the order of a few mi-
croseconds, which is several orders of magnitude faster than both RIS and MC .
Therefore, once we construct our index, we can perform efficient tracking of in-
fluential vertices. Figure 6.6 indicates that the average estimation time is robust
against changes in β, because it requires only constant time.

Figure 6.8 illustrates the accuracy of our method, where each point corre-
sponds to a seed set consisting of a single vertex, and the x and y coordinates
represent the influence spreads computed by MC and our method, respectively.
It can be seen that as β increases, our method becomes more accurate. Even
when β = 1, our method is stable, in the sense that all the points are close to the
diagonal (i.e., the line of y = x) and we do not have any outliers. This property
is desirable, because such outliers would result in huge errors when we want to
maximize the influence spread. We here justify our choice of parameter β. We

100

(a) Epinions (TR, β = 1) (b) Epinions (TR, β = 32)

Figure 6.8: Correlation between the ground truth and influence estimation cal-
culated by our method.

 0.1

 1

 10

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

R
o
o
t
m

e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Value of β

TRI
IWC

(a) Root mean squared error

 0

 0.2

 0.4

 0.6

 0.8

 1

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

V
a
lu

e
 o

f
ρ

Value of β

TRI

IWC

(b) Rank correlation coefficient

Figure 6.9: Accuracy improvements of influence estimation with the increase of
β on Epinions.

plotted the root mean squared error, which is calculated as

∑
v∈V

(Înf(v)− Inf(v)

Inf(v)

)2
, (6.4)

where Înf(v) is an estimation by our method and Spearman’s rank correlation
coefficient between the influence estimations of our method with various values
of β and those from MC , as presented in Figure 6.9. Higher values of β yield more
accurate influence estimations, but the improvements are limited when β > 32.
Because the efficiency of index construction and dynamic updates depends on the
value of β, we adopted β = 32 as a sweet spot between accuracy and efficiency.

Next, we evaluate the efficiency of the influence estimation for a set of multiple
vertices. We randomly generated 1,000 vertex sets of a specific size, and then
estimated the influence spread for each vertex set. Figure 6.7 presents the average
estimation times for a vertex set of sizes ranging from 1 to 64. The estimation
times are scaled to the seed set size, and under one millisecond is required for a
seed set of size 64, which is 10–100 times faster than the required times without
our speed-up technique.

101

6.4.5 Influence Maximization Queries

Finally, we will demonstrate that our method processes influence maximization
queries efficiently and accurately using the index constructed from a given graph.

Figure 6.10 summarizes the running times required to compute seed sets of
sizes 1, 10, 20, . . . , 100 after reflecting all of the edges in each network. Note that
the running times do not include the times needed to read the input graph from
a secondary storage location. Both TIM+ and IMM did not finish within two
hours on Flickr (tri, k ≥ 1). Our method returns a seed set within 20 seconds
for all of the settings, whereas other static methods require a time of at least
one order of magnitude longer. It should be noted that finding a seed set of the
same quality that our method delivers from scratch requires ten times longer, as
the performance of RIS demonstrates. We can also observe the robustness of our
method against the seed size k, while TIM+, IMM , and IRIE become slower as
k increases.

Figure 6.11 presents the influence spread for seed sets of sizes 1, 10, 20, . . . , 100,
as computed using each method. As we can see, our method and RIS deliver
almost the same quality. This is not a coincidence because we have a theoretical
guarantee that both our method and RIS generate indices sampled from the same
distribution. TIM+, IMM , and PMC also gave seed sets of a similar quality to
our method, and this is because they also have accuracy guarantees. IRIE and
Degree perform comparatively badly on Enron (tri).

This work RIS TIM
+ IMM PMC IRIE Degree

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0 20 40 60 80 100

R
u

n
n

in
g

 t
im

e
 [

s
]

Seed size k

(a) Enron (tri)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 0 20 40 60 80 100

R
u

n
n

in
g

 t
im

e
 [

s
]

Seed size k

(b) Flickr (tri)

Figure 6.10: Running times for extracting a seed set of size from 1 to 100
for each algorithm.

This work RIS TIM
+ IMM PMC IRIE Degree

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 0 20 40 60 80 100

In
fl
u

e
n

c
e

 s
p

re
a

d

Seed size k

(a) Enron (tri)

 180000

 185000

 190000

 195000

 200000

 0 20 40 60 80 100

In
fl
u

e
n

c
e

 s
p

re
a

d

Seed size k

(b) Flickr (tri)

Figure 6.11: The influence spreads of a seed set of size from 1 to 100
computed by each algorithm.

102

6.4.6 Case Study on Flixster Social Network

Here, we finally apply our dynamic index to track the important individuals in
real-world networks. To that end, we downloaded the dataset of a movie review
site Flixster provided by Mohsen Jamali [93]. This dataset contains the social
network of Flixster, where vertices correspond to users of Flixster, and undirected
edges correspond to the friendship between a pair of users, and the log of movie
ratings, each of which is a triplet consisting of a user id, a movie id, and a rating
with timestamps between February 2006 and November 2009. We then learned
the influence probability of edges at the beginning of each month by applying a
method in [79].

First, we show the influence spread for individuals. Figure 6.12 illustrates
the transition of the influences of selected vertices in the Flixster network. We
observe that several vertices have critical times at which their influences rapidly
grow or decline. This type of query is therefore useful for evaluating, comparing,
and identifying influential people or groups on the latest snapshot of a dynamic
network.

Then, we issue a number of queries of influence maximization on this evolving
network. Figure 6.13 illustrates the transition of the (approximated) maximum
influence spread of a seed vertex set of size 100 computed by our method. Re-
markable difference can be observed between the static setting (i.e., the outdated
solution) and the dynamic setting (i.e., the updated solution), which suggests the
usefulness of dynamic methods.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Jan/2006

Jul/2
006

Jan/2007

Jul/2
007

Jan/2008

Jul/2
008

Jan/2009

Jul/2
009

Jan/2010

In
fl
u
e
n
c
e
 s

p
re

a
d

Figure 6.12: Transition of the influence
spread of popular vertices in a real-
world network.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Jan/2006

Jul/2
006

Jan/2007

Jul/2
007

Jan/2008

Jul/2
008

Jan/2009

Jul/2
009

Jan/2010

M
a
x
im

u
m

 i
n
fl
u
e
n
c
e
 s

p
re

a
d

Dynamic
Static

Figure 6.13: Transition of the approxi-
mated maximum influence spread of a
seed set of size 100.

103

Chapter 7

Reduction Algorithms of Massive Influence

Graphs

In this chapter, we propose a new algorithm for influence graph reduction. Fig-
ure 7.1 shows an overview of our overall approach. We first introduce the cen-
tral reduction strategy called coarsening followed by a theoretical analysis of its
impact on the graph size and the influence function (Section 7.1). We then pro-
vide two implementations according to the available space and their extensions
to distributed and parallel systems (Section 7.2). We further present general
frameworks using our coarsened graphs that accelerate existing algorithms for
both influence estimation and influence maximization (Section 7.3). We end this
chapter with intensive experimental evaluations on real-world massive networks
with up to billions of edges (Section 7.4).

7.1 Reduction Strategy

7.1.1 Definition of Coarsening

We begin with the proposed influence graph reduction strategy. The overall idea
is to shrink the giant component in advance. The central strategy for this purpose
is coarsening, which merges a certain vertex set into a single weighted vertex, in
the intention of making no distinction among vertices in the set. Our coarsening
procedure is formally defined as follows.

Definition 7.1 (Coarsened influence graph). Let G = (V,E, p) be an influence
graph and P = {Cj}j∈[ℓ] be a partition of V , where each Cj is strongly connected.
Then, a coarsened influence graph obtained from G by coarsening P is defined as

≈

Fast Fast

Slow
Solution for

the input graph

Solution for

the small graph

0.7
0.44

0.6

0.4

0.3

0.10.5

0.2

0.6

0.2

0.73

0.7

0.9

0.1

0.8

0.9

0.3 0.7

0.9

0.7

1
0.8

0.2

0.6

0.2

0.9

0.8

0.4

0.3

0.1

0.5

0.6
0.7

0.2

Coarsening (Sec. 7.1)

Algorithms (Sec. 7.2)
Frameworks (Sec. 7.3)

Figure 7.1: Overview of our approach for influence graph reduction in Chapter 7.

104

C1

C2

C3

C4

C5

v3 v6
v7

v9v8
v4
v2

v1 v5

0.7
0.9
0.1

0.8 0.9

0.3 0.7
0.9
0.7

10.8

0.2

0.6

0.2

0.9
0.8

0.40.3

0.1
0.5

0.60.7
0.2

Figure 7.2: Influence graph G.

c1
c2 c4

c3
0.7 0.44 0.6

0.4
0.3

0.10.5

0.2
0.6
0.2

0.73

w(c5)=2
w(c4)=1

w(c3)=2
w(c1)=3

w(c2)=1 c5
Figure 7.3: Coarsened graph H.

an influence graph H = (W,F, q,w), where

W = {cj | j ∈ [ℓ]}, (7.1)

F = {(cx, cy) | cx ̸= cy,∃(u, v) ∈ E, u ∈ Cx, v ∈ Cy}, (7.2)

q(cx, cy) = 1−
∏

(u,v)∈E
u∈Cx,v∈Cy

(1− p(u, v)) (∀(cx, cy) ∈ F), (7.3)

w(cj) = |Cj | (∀cj ∈W). (7.4)

The correspondence mapping π : V → W is defined as π(v) = cj such that v ∈
Cj .

We abuse the notation to let π act on subsets by writing π(S) = {π(v) | v ∈
S}. It should also be noted that F = {(π(u), π(v)) | π(u) ̸= π(v), (u, v) ∈ E}.

Example 7.2. Let us take an example to give an intuition of the definition. Fig-
ures 7.2 and 7.3 show an influence graph G and a coarsened influence graph H,
respectively. Here, a vertex partition to be coarsened is P = {C1, C2, C3, C4, C5}
= {{v1, v2, v3}, {v4}, {v5, v6}, {v7}, {v8, v9}}. There is a one-to-one correspon-
dence between a vertex set Cj in P and a vertex cj in H, i.e., P consists of
five vertex sets, and thus, H consists of five vertices. Each vertex in H has a
weight that is the size of the corresponding component in G, e.g., |C1| = 3; thus,
w(c1) = 3. When there is an edge connecting from Cx to Cy with x ̸= y in G,
then there is a corresponding edge from cx to cy in H, e.g., (v2, v4) is in G, and
thus (π(v2), π(v4)) = (c1, c2) is in H. An activation through edge (cx, cy) in H

corresponds to some activation among edges from Cx to Cy in G, whose event
probability is given by Eq. (7.3), e.g., influence probabilities of two edges connect-
ing from C1 to C2 are 0.3 and 0.2, and thus, the influence probability of edge
(c1, c2) is calculated as 1− (1− 0.3)(1− 0.2) = 0.44.

Intuitively, for a seed set S ⊆ V , the diffusion process on H starting from π(S)
“emulates” the diffusion process on G starting from S. We use Inf(W,F,q),w(π(S))
as an approximation of InfG(S). Hereafter, we use InfH(·) to denote Inf(W,F,q),w(·).
Hence, a coarsened influence graph H is preferable if (1) H is much smaller than
G and (2) InfH(π(·)) is close to InfG(·). Of course, there are exponentially many
candidates for the vertex partition to be coarsened, and we cannot evaluate all
the candidates. To resolve this issue, in subsequent sections, we will investigate
what type of vertex partition is desired and discuss how to create such a partition.

105

7.1.2 Theoretical Properties of Coarsening

We investigate the impact of coarsening on the influence function and the graph
size. For an influence graph G = (V,E, p) and a partition P = {Cj}j∈[ℓ] of V , let
H = (W,F, q,w) be an influence graph and π : V → W be the correspondence
mapping obtained from G by coarsening P. Then, an intermediate influence graph
between G and H is defined as I = (V,E, p′), where p′(u, v) = 1 if u, v ∈ Cj for
some j ∈ [ℓ], otherwise p′(u, v) = p(u, v).

Here, we show the equivalence between I and H in terms of the influence
function. Therefore, it is sufficient to examine the influence on I, which is of the
same structure as G, rather than H.

Lemma 7.3. For any S ⊆ V , InfI(S) = InfH(π(S)).

Proof. For each j ∈ [ℓ], we define Ej = {(u, v) ∈ E | u, v ∈ Cj} and Eo =
E \ (

∪
j∈[ℓ]Ej). Note that a family consisting of E1, . . . , Eℓ and Eo forms a

partition of E. For Xj ⊆ Ej , p
′(Xj | Ej) is 1 if Xj = Ej , otherwise 0. Thus, by

Eq. (2.10),

InfI(S) =
∑
X⊆E

p′(X | E) · r(V,X)(S)

=
∑

X1⊆E1

p′(X1 | E1) · · ·
∑

Xℓ⊆Eℓ

p′(Xℓ | Eℓ)
∑

Xo⊆Eo

p′(Xo | Eo) · r(V,Xo∪
∪

j Xj)(S)

=
∑

Xo⊆Eo

p′(Xo | Eo) · r(V,Xo∪
∪

j Ej)(S). (7.5)

For each Y ⊆ F , we define a family XY of edge sets as XY = {Xo ⊆
Eo | {(π(u), π(v)) | π(u) ̸= π(v), (u, v) ∈ Xo} = Y }. Note that a collection
of {XY }Y⊆F forms a partition of the power set 2Eo . Recall that q(Y | F) =∏

e∈Y q(e)
∏

e∈F\Y (1− q(e)). From the construction of q (Eq. (7.3)), it turns out
that

q(Y | F) =
∑

Xo∈XY

p′(Xo | Eo). (7.6)

For any s and t in V and Xo ∈ XY , “s can reach t by passing through the edges
in Xo ∪

∪
j Ej” if and only if “π(s) can reach π(t) by passing through the edges

in Y ” since every subgraph (Cj , Ej) for j ∈ [ℓ] is strongly connected; therefore,
it holds that r(V,Xo∪

∪
j Ej)(S) = r(W,Y),w(π(S)) for all Xo ∈ XY . Thus,

InfI(S) =
∑
Y⊆F

∑
Xo∈XY

p′(Xo | Eo) · r(V,Xo∪
∪

j Ej)(S)

=
∑
Y⊆F

q(Y | F) · r(W,Y),w(π(S)) = InfH(π(S)). (7.7)

The gap of influence between G and H.

We first give a lower bound of the influence on I. From the following lemma, it
turns out that InfI(S) ≥ InfG(S) for any S ⊆ V .

Lemma 7.4. Let G = (V,E, p) and G′ = (V,E, p′) be two influence graphs with
the same structure, where p(e) ≤ p′(e) for every edge e. Then, InfG(S) ≤ InfG′(S)
for any S ⊆ V .

106

Proof. We can construct a sequence of |E| + 1 influence probability functions
p = p0, p1, . . . , p|E|−1, p|E| = p′ such that pi−1 and pi differ in only at most one
element, say e∗, and pi−1(e∗) ≤ pi(e∗) for i ∈ [|E|]. Then, Inf(V,E,pi−1)(S) ≤
Inf(V,E,pi)(S) for each i ∈ [|E|] follows from Eq. (2.10), and thus we obtain that
InfG(S) ≤ InfG′(S).

For an influence graph G = (V,E, p), the strongly connected reliability of G,
denoted Rel(G), is defined as the probability that the random graph sampled from
G is strongly connected, i.e.,

Rel(G) =
∑
X⊆E

p(X | E) ·
[
(V,X) is SC

]
, (7.8)

where
[
·
]
returns 1 if the given statement is true, and 0 otherwise.

We now show an upper bound of the influence on I by using the strongly
connected reliability of the subgraph of G.

Lemma 7.5. For any S ⊆ V ,

InfI(S) ≤
∏
j∈[ℓ]

Rel(G[Cj])
−1 · InfG(S). (7.9)

Proof. For each j ∈ [ℓ], we define Ej = {(u, v) ∈ E | u, v ∈ Cj} and Eo =
E \ (

∪
j∈[ℓ]Ej). For Xj ⊆ Ej (j ∈ [ℓ]) and Xo ⊆ Eo, r(V,Xo∪

∪
j Xj)(S) =

r(V,Xo∪
∪

j Ej)(S) holds if every subgraph (Cj , Xj) for j ∈ [ℓ] is strongly connected.
Thus,

InfG(S) =
∑

X1⊆E1

p(X1 | E1) · · ·
∑

Xℓ⊆Eℓ

p(Xℓ | Eℓ)∑
Xo⊆Eo

p(Xo | Eo) · r(V,Xo∪
∪

j Xj)(S)

≥
∑

X1⊆E1
(C1,X1) is SC

p(X1 | E1) · · ·
∑

Xℓ⊆Eℓ
(Cℓ,Xℓ) is SC

p(Xℓ | Eℓ)

∑
Xo⊆Eo

p(Xo | Eo) · r(V,Xo∪
∪

j Xj)(S)

=
(∑

X1⊆E1
(C1,X1) is SC

p(X1 | E1)
)
· · ·

(∑
Xℓ⊆Eℓ

(Cℓ,Xℓ) is SC

p(Xℓ | Eℓ)
)

·
(∑
Xo⊆Eo

p(Xo | Eo) · r(V,Xo∪
∪

j Ej)(S)
)

=
∏
j∈[ℓ]

Rel(G[Cj]) · InfI(S). (7.10)

By Lemmas 7.3, 7.4, and 7.5, we have the following:

Theorem 7.6. For any S ⊆ V ,

InfG(S) ≤ InfH(π(S)) ≤
∏
j∈[ℓ]

Rel(G[Cj])
−1 · InfG(S). (7.11)

In summary, InfH(π(·)) well approximates InfG(·) when
∏

j∈[ℓ] Rel(G[Cj])
−1 is

small, i.e.,
∏

j∈[ℓ] Rel(G[Cj]) is large. The factor
∏

j∈[ℓ] Rel(G[Cj]) takes a value
from zero to one, and it approaches one if, for every j ∈ [ℓ], the random graph
sampled from G[Cj] is strongly connected with a high probability.

107

Monotonicity.

Apart from the above results, we here show the monotonicity of the size and the
influence function of coarsened graphs with respect to the refinement relation.
Let G = (V,E, p) be an influence graph and P1 and P2 be two partitions of V .
Then, for i = 1, 2, let Hi = (Wi, Fi, qi,wi) and πi : V →Wi be a vertex-weighted
influence graph and the correspondence mapping obtained from G by coarsening
Pi, respectively. We obtain the following as a consequence of Definition 7.1 and
Lemmas 7.3 and 7.4.

Theorem 7.7. If P1 is a refinement of P2, then, |W1| ≥ |W2| and |F1| ≥ |F2|.

Proof. The proof is a direct consequence of Definition 7.1.

In particular, coarsening P =
∪

v∈V
{
{v}

}
, which is a refinement of any par-

tition, yields the original G; therefore, coarsening definitely does not increase the
graph size.

Theorem 7.8. If P1 is a refinement of P2, then, InfH1(π1(S)) ≤ InfH2(π2(S))
for any S ⊆ V .

Proof. Let I1 and I2 be two intermediate influence graphs for H1 and H2, re-
spectively. It is easy to see that every influence probability of I1 is at least that
of I2. Hence, the proof is a direct consequence of Lemmas 7.3 and 7.4.

To sum up, it is desirable if the fineness of a vertex partition is tunable.

7.1.3 Creating a Partition to be Coarsened

Definition of r-robust SCCs.

We consider how to create a vertex partition which is desired to be coarsened. In
the previous section, we demonstrated that

� coarsening {Cj}j∈[ℓ] with large
∏

j∈[ℓ] Rel(G[Cj]) preserves the influence on
G (Theorem 7.6),

� the coarser a vertex partition is, the smaller a coarsened graph is (Theo-
rem 7.7), and

� the finer a vertex partition is, the closer an influence function is to that of
G (Theorem 7.8).

Unfortunately, computing the strongly connected reliability exactly is proven
to be #P-hard [18, 181], and even approximate computation through sampling
requires a number of random graph generations. Thus, we rely on the following
intuition:

if a vertex set is strongly connected in a small number of random
graphs, then it is likely to be strongly connected in other random
graphs.

Now, we formally define the notion of r-robust SCCs.

Definition 7.9 (r-robust SCC). Let G = (V,E, p) be an influence graph and
G1 = (V,E1), . . . , Gr = (V,Er) be r (fixed) random graphs sampled from G.
Then, a vertex set C ⊆ V (or an induced influence subgraph G[C]) is identified
as an r-robust SCC with regard to G1, . . . , Gr if

108

v3 v6
v7

v9v8
v4
v2

v1 v5

(a) Subgraph G1.

v3 v6
v7

v9v8
v4
v2

v1 v5

(b) Subgraph G2.

v3 v6
v7

v9v8
v4
v2

v1 v5

(c) Subgraph G3.

v3 v6
v7

v9v8
v4
v2

v1 v5

(d) r-robust SCCs.

Figure 7.4: Example of r-robust SCCs with regard to three subgraphs. Each
blue dotted curve corresponds an SCC and each red solid curve corresponds an
r-robust SCC.

1. for all i ∈ [r], C is strongly connected in Gi, i.e., vertices in C are mutually
reachable in Gi,

2. C is maximal.

Example 7.10. Figure 7.4 illustrates three subgraphs G1, G2, and G3 with the
same vertex set and r-robust SCCs with regard to G1, G2, and G3. Each r-robust
SCC is strongly connected in all the three subgraphs and maximal, e.g., adding a
vertex v4 to an r-robust SCC {v1, v2, v3} violates the former condition.

r-robust SCCs have the following convenient characterization, whose proof is
straightforward from Definition 7.9.

Theorem 7.11. Let Ci be a partition consisting of all SCCs in Gi for each i ∈ [r],
and let Pr be a collection of all r-robust SCCs with regard to G1, . . . , Gr. Then,
Pr =

∧
i∈[r] Ci.

Thus, a collection of r-robust SCCs forms a vertex partition, and it is easy
to find, i.e., a partition consisting of all i-robust SCCs with regard to G1, . . . , Gi

can be computed incrementally as the meet of a partition consisting of all (i−1)-
robust SCCs with regard to G1, . . . , Gi−1 and a partition consisting of SCCs in
Gi. Note that an isolated vertex forms an r-robust SCC for any r ≥ 1 since it is
an SCC by itself. Furthermore, the value of r controls the fineness; a partition
consisting of r-robust SCCs becomes finer as r increases.

Robustness.

Here, we give a justification of r-robust SCCs and discuss the choice of r from
a theoretical point of view. We first claim that coarsening r-robust SCCs will
not significantly affect the influence function. Rather than aiming to bound the
strongly connected reliability of r-robust SCCs, we show the following:

Theorem 7.12. For an influence graph G = (V,E, p) and an integer r, let Pr

be a (random) vertex partition consisting of r-robust SCCs with regard to r ran-
dom graphs G1, . . . , Gr sampled from G. Then, for any vertex set V ′ ⊆ V , the
probability that V ′ is contained inside some element in Pr is at least Rel(G[V ′])r.

Proof. This event is equivalent to the event that V ′ is contained inside some SCC
in Gi for all i ∈ [r], which occurs with probability at least Rel(G[V ′])r.

The above fact implies that the “most part” of an r-robust SCC has a
large strongly connected reliability. In our experiments, we set r = 16 so that

109

r-robust SCCs contain vertex sets with a large strongly connected reliability.
For example, in Figure 7.2, a simple calculation according to Eq. (7.8) yields
Rel(G[C1]) = 0.88848; thus, some 16-robust SCC contains C1 with probability
at least 0.8884816 ≈ 0.15. Our experimental results in Section 7.4.5 verify this
implication.

Density.

We then claim that coarsening r-robust SCCs leads to a powerful edge reduction
in the sense that r-robust SCCs are dense in practice. Our spotlight for this
purpose is on the core-fringe structure. An undirected graph is called k-edge-
connected if it remains weakly connected after removing fewer than k edges.
Akiba, Iwata, and Yoshida [9] observed that complex networks contain a large
k-edge-connected subgraph for high k, e.g., k = 100. Then, the following theorem
suggests that r-robust SCCs contain k-edge-connected subgraphs with high k.

Theorem 7.13. Assume that G = (V,E, p) is undirected and the influence prob-
ability function p is a constant α, i.e., p(e) = α for every edge e. Let Pr be a
(random) vertex partition consisting of r-robust SCCs with regard to r random
graphs sampled from G. If there exists a vertex set V ′ ⊆ V such that the subgraph
of (V,E) induced by V ′ is k-edge-connected and it holds that αk = |V ′|−(2+δ) for
some δ > 0, then, the probability that V ′ is contained inside some element in Pr

is at least (1− |V ′|−δ(1 + 2/δ))r.

Proof. By [97, Theorem 2.9], the random graph sampled from G[V ′] is connected
with probability at least 1 − |V ′|−δ(1 + 2/δ). Thus, by combining with Theo-
rem 7.12, we obtain the desired bound.

Note that every vertex in a k-edge-connected subgraph is of degree at least
k, and thus, r-robust SCCs are expected to contain such a dense vertex set.
For example, suppose that there exists a 100-edge-connected subgraph of size
|V ′| = 106, α = 0.1, and r = 16. Then, δ = 44/3 satisfies αk = |V ′|−(2+δ), and
thus, the desired probability is at least (1 − 10−88(1 + 3/22))16, which is close
to one. Note that the above discussion holds for undirected graphs. However, in
Section 7.4.5, we will experimentally verify that the directed subgraph induced
by the largest r-robust SCC is much denser than the whole graph.

Monotonicity.

We finally show that the value of r controls the trade-off between size reduction
and estimation accuracy. For an influence graph G = (V,E, p) and an integer r,
let Hr = (Wr, Fr, qr,wr) and πr : V → Wr be random variables representing a
vertex-weighted influence graph and the correspondence mapping obtained from
G by coarsening Pr, respectively. As a consequence of Theorems 7.7, 7.8, and
7.11, we have the following:

Theorem 7.14. The expected size of Hr increases as r increases, i.e.,

E[|W1|] ≤ E[|W2|] ≤ · · · ≤ |V |,
E[|F1|] ≤ E[|F2|] ≤ · · · ≤ |E|, (7.12)

where the expectation is taken over the choice of random graphs.

110

Theorem 7.15. The expected influence on Hr decreases as r increases, i.e., for
any S ⊆ V ,

E[InfH1(π1(S))] ≥ E[InfH2(π2(S))] ≥ · · · ≥ InfG(S), (7.13)

where the expectation is taken over the choice of random graphs.

7.2 Algorithm Implementations

In this section, we present a scalable algorithm for coarsening an influence graph.
We provide an overview of our algorithm followed by its implementations accord-
ing to the available space and analyze their time, space, and I/O complexities.
We further describe how to parallelize those implementations.

7.2.1 Overview

Here, we give an overview of the proposed method. Given an influence graph
G = (V,E, p) and an integer r, the proposed method produces a (smaller) vertex-
weighted influence graph H = (W,F, q,w). At a high level, the proposed method
executes the following two stages.

� First stage: Create a partition Pr of V consisting of all r-robust SCCs
with respect to r random graphs sampled from G.

� Second stage: Construct an influence graph H obtained from G by coars-
ening Pr.

In the following, we provide detailed implementations according to the available
space, i.e., a speed-oriented implementation with linear space and a scalability-
oriented implementation with sublinear space.

7.2.2 Linear-space Implementation

We first consider a situation wherein the entire input G can be stored in memory.
Assume that G is already stored in memory, which actually requires O(|V |+ |E|)
I/O cost. Our implementation with linear space is presented in Algorithm 7.1,
and the two stages are performed as follows.

First stage.

In the first stage (Algorithm 7.1, lines 1–5), we create a partition consisting of all
r-robust SCCs with regard to r random graphs. Since generating r random graphs
at once consumes O(r(|V |+ |E|)) space, we reduce the memory consumption to
O(|V |+ |E|) by sequential generation of random graphs and incremental updates.

More precisely, beginning with P0 = {V }, which is actually the partition
consisting of the (single) 0-robust SCC, we repeat the following process to obtain
Pi from Pi−1, r times. In the ith process, we sample the ith random graph Gi

from G, compute all of its SCCs Ci, and identify a partition Pi consisting of all
i-robust SCCs by computing the meet Pi−1∧Ci. Eventually, we obtain a partition
Pr consisting of all r-robust SCCs with regard to G1, . . . , Gr.

111

Algorithm 7.1 Proposed algorithm with linear space.

Input: an influence graph G = (V,E, p) and an integer r.
Output: a vertex-weighted influence graph H = (W,F, q,w) and the correspondence

mapping π : V →W .
1: P0 ← {V }.
2: for i = 1 to r do
3: Gi ← a random graph sampled from G.
4: compute a partition Ci consisting of all SCCs in Gi.
5: Pi ← Pi−1 ∧ Ci.

6: build W,F, π,w from G and Pr according to Definition 7.1.
7: q[cx, cy]← 1 for all (cx, cy) ∈ F .
8: for all (u, v) ∈ E do
9: if (π(u), π(v)) ∈ F then

10: q[π(u), π(v)]← q[π(u), π(v)] · (1− p(u, v)).
11: q(e)← 1− q[e] for all e ∈ F .
12: return H = (W,F, q,w) and π.

Second stage.

In the second stage (Algorithm 7.1, lines 6–12), we construct a coarsened influence
graph H.

Given an influence graph G and a partition Pr = {Cj}j∈[ℓ] of V , we naively
construct the vertex set W , the edge set F , the vertex weights w, and the corre-
spondence mapping π according to Definition 7.1. Here, the only non-trivial pro-
cedure is the calculation of the influence probability q(e) for each e in F according
to Eq. (7.3). We perform this with a single scan of (u, v)’s and p(u, v)’s using a
hash table. Let q be a hash table storing influence probabilities for all edges in F
with initial values of one. For each scanned edge (u, v) in E, we translate it onto
W ×W , i.e., we compute (π(u), π(v)). If (π(u), π(v)) is not a self-loop, we update
the entry of key (π(u), π(v)) in q as q[π(u), π(v)] ← q[π(u), π(v)] · (1 − p(u, v)).
After scanning all edges, q(e) = 1 − q[e] holds for every edge e in F , and we
finally output an influence graph H = (W,F, q,w).

Efficiency analysis.

Theorem 7.16. Algorithm 7.1 requires O(r(|V |+ |E|)) time, O(|V |+ |E|) space,
and O(|V |+ |E|) I/O cost.

Proof. In the first stage, O(|V |+|E|) time is sufficient to generate a single random
graph, find all of its SCCs, and compute the meet of two partitions. Thus, the
whole process completes in O(r(|V | + |E|)) time. During the ith process, we
maintain only the ith random graph Gi, all of its SCCs Ci, the (i− 1)th partition
Pi−1, and the ith partition Pi; thus, O(|V |+ |E|) space is sufficient.

In the second stage, O(|V |+ |E|) time is required to construct H because each
edge and influence probability are scanned once, and H consumes O(|W | + |F |)
space, which is dominated by O(|V |+ |E|).

Note that reading G from and writing H to secondary storage can be com-
pleted with O(|V |+ |E|) I/O cost.

7.2.3 Sublinear-space Implementation

Next, we consider a situation wherein we cannot store the input graph G in
memory. This situation happens frequently because simply storing all edges into

112

Algorithm 7.2 Proposed algorithm with sublinear space.

Input: disk DG storing G = (V,E, p) and an integer r.
Output: disk DH storing H = (W,F, q,w) and π : V →W .
1: P0 ← {V }.
2: for i = 1 to r do
3: for all ⟨u, v, p(u, v)⟩ read from disk DG do
4: write (u, v) to disk DGi with probability p(u, v).

5: run a disk-based SCC algorithm on Gi stored in disk DGi
.

6: Ci ← a partition of V consisting of all SCCs in Gi.
7: Pi ← Pi−1 ∧ Ci.

8: build W,w, π from G and Pr according to Definition 7.1.
9: write W,w, π to disk DH.

10: F ′ ← {(cx, cy) ∈ F | w(cx) > 1 ∨ w(cy) > 1}.
11: q[cx, cy]← 1 for all (cx, cy) ∈ F ′.
12: for all ⟨u, v, p(u, v)⟩ read from disk DG do
13: if (π(u), π(v)) is not a self-loop then
14: if (π(u), π(v)) ∈ F ′ then
15: q[π(u), π(v)]← q[π(u), π(v)] · (1− p(u, v)).
16: else ▷ (π(u), π(v)) ∈ F \ F ′.
17: write ⟨π(u), π(v), p(u, v)⟩ to disk DH.

18: for all (cx, cy) ∈ F ′ do
19: q(cx, cy)← 1− q[cx, cy].
20: write ⟨cx, cy, q(cx, cy)⟩ to disk DH.

21: return disk DH.

memory consumes 8|E| bytes when a single edge is represented by a pair of 4-
byte integers. To address this, we can reasonably assume that G is stored on
a disk DG in the form of a sequence of triplets ⟨u, v, p(u, v)⟩, i.e., we can read
⟨u, v, p(u, v)⟩ sequentially in a certain order. Hereafter, DI denotes a disk storing
some information I (e.g., a graph).

Our implementation with sublinear space, presented in Algorithm 7.2, reduces
its space complexity from O(|V | + |E|) to O(|V | + |F ′|), where F ′ is defined as
F ′ = {(cx, cy) ∈ F | w(cx) > 1 ∨ w(cy) > 1} and |F ′| ≪ |F | in practice.

First stage.

In the first stage (Algorithm 7.2, lines 1–7), we construct a partition consisting
of all r-robust SCCs using only O(|V |) space, rather than O(|V |+ |E|) space. To
achieve this space requirement, we write each random graph to a disk and run a
disk-based SCC algorithm with O(|V |) space, e.g., [114].

Specifically, beginning with P0 = {V }, we repeat the following process r
times, similar to the linear-space implementation. In the ith process, consuming
constant space, we read each triplet ⟨u, v, p(u, v)⟩ from DG and write (u, v) on
DGi with probability p(u, v) one by one. Eventually, DGi stores all edges in Gi.
Next, we apply a disk-based SCC algorithm to DGi and obtain a partition Ci

consisting of all SCCs in Gi. We then compute Pi from Pi−1 and Ci.

Second stage.

In the second stage (Algorithm 7.2, lines 8–21), we construct a coarsened influence
graph H given G and Pr using O(|V |+ |F ′|) space, rather than O(|V |+ |E|) space.
Recall that F ′ = {(cx, cy) ∈ F | w(cx) > 1∨w(cy) > 1}. A key factor of this space
reduction is that q(π(u), π(v)) = p(u, v) holds if (π(u), π(v)) ∈ F \ F ′. Thus, we

113

Algorithm 7.3 Parallel implementation.
Input: G, r, and the number of threads T .
Output: H and π.
1: for t = 1 to T do
2: rt ← ⌊ r+t−1

T ⌋. ▷
∑

1≤t≤T rt = r

3: launch the tth thread to execute CreatePartition(t, rt).

4: wait until all the threads have completed.
5: Pr ←

∧
t∈[T] P(t).

6: construct H and π for G and Pr according to Def. 7.1.
7: return H and π.

8: procedure CreatePartition(t, rt)
9: P(t)← a partition consisting of all rt-robust SCCs.

do not need to store an entry with key (π(u), π(v)) in F \ F ′ in a hash table.
More precisely, sequentially scanning each triplet ⟨u, v, p(u, v)⟩ from DG, we

update the entry q[π(u), π(v)] in the same manner as the linear-space implemen-
tation if (π(u), π(v)) ∈ F ′; otherwise, we immediately write ⟨π(u), π(v), p(u, v)⟩
to DH. After the scan is complete, we write ⟨cx, cy, q(cx, cy)⟩ to DH for each edge
(cx, cy) in F

′.
Our space reduction technique is effective if w(cj) = 1 holds for most cj ∈W .

This is the case in reality because vertices in the tree-like fringe part are rarely
strongly connected. In fact, our experimental results demonstrate 90% reduction
of memory usage compared to the linear-space implementation.

Efficiency analysis.

Theorem 7.17. Algorithm 7.2 requires O(r(|V |+ |E|+tA(V,E))) time, O(|V |+
|F ′|) space, and O(r(|V |+|E|+ioA(V,E))) I/O cost, where tA(V,E) and ioA(V,E)
are the time and I/O complexities of a disk-based SCC algorithm A given a graph
(V,E), respectively.

Proof. In the first stage, the whole process obviously completes in O(r(|V |+ |E|+
tA(V,E))) time and O(r(|V |+ |E|+ ioA(V,E))) I/O cost. During the ith process,
we maintain only Ci, Pi−1, and Pi, which require O(|V |) space, and a disk-based
SCC algorithm A is assumed to consume O(|V |) space. Thus, O(|V |) space is
sufficient.

In the second stage, O(|V |+ |E|) time is required to construct H because DG

is scanned once. W , w, and π consume O(|W |) = O(|V |) space, F ′ and q consume
O(|F ′|) space, and writing all information involving H requires O(|W |+ |F |) I/O
cost, which is dominated by O(|V |+ |E|).

7.2.4 Parallelization

Thanks to its flexibility, we can easily extend the proposed algorithm so as to
support parallel processing.

Let us begin with an overview of our parallel algorithm, which is applicable
to both shared-memory and distributed-memory systems. Essentially, we simply
parallelize the first stage. This significantly gains the scalability of the sublinear-
space implementation (Algorithm 7.2), since the first stage runs a disk-based
SCC algorithm many times, which is quite expensive (though depends on which
method is employed).

Our parallel algorithm is presented in Algorithm 7.3. In addition to the
ordinary input G and r, we are given the number T of threads to be created.

114

Algorithm 7.4 Proposed influence estimation framework.

Input: an influence graph G = (V,E, p), a vertex set S, a coarsened graph H =
(W,F, q,w), the correspondence mapping π : V → W , an influence estimation al-
gorithm A.

1: T ← π(S).
2: Infout ← (approximately) compute InfH(T) using A.
3: return Infout.

For each t in [T], we assign the number rt of random graphs that the tth thread
will create in a balanced way so that

∑
i∈[T] rt = r and |rt1 − rt2 | ≤ 1 for any

t1, t2 ∈ [T]. Then, we launch the tth thread and execute CreatePartition(t, rt),
which creates a partition P(t) that consists of all rt-robust SCCs with regard to
rt random graphs. When all the T threads have been completed, we have T
partitions P(1), . . . ,P(T). By computing the meet of them, we obtain a partition
Pr consisting of all r-robust SCCs. We finally construct H and π according to
Definition 7.1.

7.3 Frameworks for Scaling-up Influence Analysis

Here, we present general frameworks that exploit our coarsened graphs for accel-
erating existing algorithms for influence estimation and influence maximization.
Throughout this section, G = (V,E, p) is an input influence graph, {Cj}j∈[ℓ] is
a partition of V , H = (W,F, q,w) is a vertex-weighted influence graph obtained
from G by coarsening {Cj}j∈[ℓ], and π : V → W is a correspondence mapping.
Note that H is not limited to be an output of our algorithm but a coarsened
graph obtained by coarsening any partition.

7.3.1 Framework for Influence Estimation

Recall that the influence estimation problem requires the computation of InfG(S)
given a seed set S ⊆ V . To improve efficiency, our influence estimation framework
runs an existing algorithm on H rather than directly running on G. Specifically,
given H, π, S, and an influence estimation algorithm A, our framework shown
in Algorithm 7.4 translates S onto W via π, i.e., it computes T = π(S), (approx-
imately) computes InfH(T) using A, and returns an obtained estimation Infout.
Since H is smaller than G, processing on H is expected to be more efficient than
on G. Moreover, we bound the relative error of our framework’s estimation as
follows.

Theorem 7.18. For a non-empty seed set S ⊆ V , let Infout be an output of Algo-
rithm 7.4, i.e., an estimation of InfH(π(S)). If Infout is a (1± ϵ)-approximation
of InfH(π(S)), then, the relative error between InfG(S) and Infout is bounded by

−ϵ ≤ Infout − InfG(S)

InfG(S)
≤ 1 + ϵ∏

j∈[ℓ] Rel(G[Cj])
− 1. (7.14)

Proof. Remark that InfG(S) > 0 since S ̸= ∅. Hence, The proof is a direct
consequence of Lemmas 7.3, 7.4, and 7.5.

For example, consider applying our framework to a naive simulation method.
In our framework, the naive method simulates the diffusion process from π(S)
on H and takes the average weight of active vertices. Since H is smaller than
G, the diffusion process in H terminates earlier than in G. Furthermore, Infout

115

Algorithm 7.5 Proposed influence maximization framework.

Input: an influence graph G = (V,E, p), a seed size k, a coarsened graph H =
(W,F, q,w), the correspondence mapping π : V → W , an influence maximization
algorithm A.

1: compute a solution T of size k that (approximately) maximizes InfH(·) using A.
2: Sout ← select random S such that π(S) = T .
3: return Sout.

is a (1 ± ϵ)-approximation of InfH(π(S)) with high probability for a sufficiently
large number of simulations; thus, Theorem 7.18 can be applied. Remark that
when an output of our algorithm with r is used as H, we can expect that the
estimation accuracy improves as r increases due to Theorem 7.15.

7.3.2 Framework for Influence Maximization

Recall that the influence maximization problem seeks to select a seed set S of
size k with the maximum influence on G. Similar to the influence estimation
framework described above, our influence maximization framework applies an
existing method to H. More precisely, given H, π, a seed size k, and an in-
fluence maximization algorithm A, our framework shown in Algorithm 7.5 first
(approximately) solves the influence maximization problem for H and k using
A. Let T ⊆ W be an obtained solution of size k. Then, in contrast to influence
estimation, we translate T onto G. To this end, we simply convert each vertex
w in T to a random vertex v such that π(v) = w and return an obtained set
Sout. Processing on H is faster than on G, and the following theorem gives an
approximation ratio of Algorithm 7.5.

Theorem 7.19. For an integer k, let Sout be an output of Algorithm 7.5. If T is
an α-approximate solution of size k for H, then, Sout is an (α ·

∏
j∈[ℓ] Rel(G[Cj]))-

approximate solution of size k for G.

Proof. Let S∗ and T ∗ be the optimal solutions of size k for G and H, respectively.
Since Lemmas 7.3 and 7.4 ensure InfH(T

∗) ≥ InfG(S
∗), we have

InfH(π(Sout)) = InfH(T) ≥ α · InfH(T ∗) ≥ α · InfG(S∗).

Then, applying Lemmas 7.3 and 7.5 yields the following:

InfG(Sout) ≥
(∏
j∈[ℓ]

Rel(G[Cj])
)
· α · InfG(S∗). (7.15)

For example, consider applying our framework to RIS-based algorithms. In
our framework, to build sketches, sketching algorithms repeatedly perform re-
verse simulations on H starting from a vertex selected from W with probability
proportional to its weight. Then, they greedily select a vertex that intersects
the maximum number of sketches and construct a seed set T of size k for H.
They finally return a random S such that π(S) = T . Here, T is a (1− e−1 − ϵ)-
approximate solution to the optimal solution of size k for H with high probability
for some parameter ϵ; thus, Sout is a ((1−e−1−ϵ) ·

∏
j∈[ℓ] Rel(G[Cj]))-approximate

solution of size k for G.

116

Table 7.1: Datasets used in Chapter 7. (d) and (u) denote “directed” and “undi-
rected,” respectively.

name type |V | |E|

ca-GrQc collab.(u) 5,242 28,968
ca-HepTh collab.(u) 9,877 51,946
wiki-Vote social(d) 7,115 103,689
ca-HepPh collab.(u) 12,008 236,978
soc-Epinions1 social(d) 75,879 508,837
soc-Slashdot0922 social(d) 82,168 870,161
web-NotreDame web(d) 325,729 1,469,679
ego-Twitter social(d) 81,306 1,768,135
loc-Gowalla social(u) 196,591 1,900,654
web-Stanford web(d) 281,903 2,312,497
wiki-Talk commu.(d) 2,394,385 5,021,410
web-Google web(d) 875,713 5,105,039
com-Youtube social(u) 1,134,890 5,975,248
web-BerkStan web(d) 685,230 7,600,595
higgs-twitter social(d) 456,626 14,855,819
soc-Pokec social(d) 1,632,803 30,622,564
soc-LiveJournal1 social(d) 4,847,571 68,475,391
com-Orkut social(u) 3,072,441 234,370,166
twitter-2010 social(d) 41,652,230 1,468,364,884
com-Friendster social(u) 65,608,366 3,612,134,270
uk-2007-05 web(d) 105,218,569 3,717,169,969
ameblo web(d) 272,687,914 6,910,266,107

7.4 Experiments

We conducted experiments using real-world networks to demonstrate the effec-
tiveness, efficiency, and scalability of our algorithm and frameworks.

7.4.1 Setup

Datasets.

We used real-world social networks and web graphs. Table 7.1 summarizes the
basic statistics of each network. twitter-2010 and uk-2007-05 were downloaded
from Laboratory for Web Algorithmics (LAW) [25, 26], which is maintained by
Paolo Boldi, Andrea Marino, Corrado Monti, Massimo Santini, and Sebastiano
Vigna. ameblo is a crawled web graph of the ameblo.jp domain provided by
Yahoo Japan Corporation, which was used to demonstrate the scalability of our
algorithm. The other networks were downloaded from Stanford Network Anal-
ysis Project Datasets (SNAP) [116]. We have applied the preprocessing to each
network described in Section 4.2.

Influence probability settings.

To investigate the behavior of the algorithms under different probability settings,
we employed the exp0.1, tri, uc0.1, and iwc settings introduced in Chapter 4.
Since we have similar trends on uc0.1 and exp0.1, the results for uc0.1 are deferred
to Appendix C. The results for the iwc are also deferred to Appendix C.

117

ameblo.jp

Parameter settings.

Our algorithm has a parameter r that controls the trade-off between size reduction
and estimation accuracy. Unless otherwise specified, we set r = 16. This choice
will be justified in Section 7.4.6 in terms of accuracy. Note that the sublinear-
space implementation (Algorithm 7.2) uses an existing disk-based SCC algorithm
proposed by Laura and Santaroni [114].

Environments.

Unless otherwise specified, the experiments were conducted on a Linux server
with an Intel Xeon E5-2690 2.90GHz CPU and 256GB memory. Experiments for
ameblo were conducted on a Linux server with an Intel Xeon E5-2630L 2.00GHz
CPU and 256GB memory because this dataset is only available on this machine
at the moment. The proposed algorithm and frameworks were implemented in
C++ and compiled using g++v4.6.3 with the -O2 option.

7.4.2 Scalability Evaluation

First, we examined the scalability of the proposed algorithm (Algorithms 7.1
and 7.2). Table 7.2 reports the run times and memory usages of the two imple-
mentations for each setting.

Note that the run time of the linear-space implementation does not include
the time required to read the input graph from and write the coarsened graph to
secondary storage. Obviously, both the run time and memory usage scale linearly
to the graph size and are robust against the probability setting. The linear-space
implementation took approximately one hour and required roughly one hundred
gigabytes for billion-edge graphs, but it ran out-of-memory for ameblo because
the input and output graphs cannot fit in memory at the same time. Compared
to the linear-space implementation, the sublinear-space implementation reduced
the memory usage by 90% and ran on ameblo, while it is ten times slower.

Figures 7.5 and 7.6 plot the run time and memory usage of the two imple-
mentations against the value of r, respectively. As expected from the efficiency
analyses (Theorems 7.16 and 7.17), the run time of both implementations scales
linearly to r and the memory usage of linear-space implementation is not affected
by r. Note that the memory usage of the sublinear-space implementation is also
robust against the value of r.

118

T
ab

le
7.
2:

R
u
n
ti
m
e
an

d
m
em

or
y
u
sa
ge

of
th
e
p
ro
p
os
ed

al
go

ri
th
m

u
n
d
er

e
x
p
0
.1
an

d
t
r
i.

e
x
p
o
n
e
n
ti
a
l
(e
x
p
0
.1
)

tr
iv
a
le
n
c
y
(t
r
i)

li
n
ea
r
sp
ac
e
(A

lg
.
7.
1)

su
b
li
n
ea
r
sp
a
ce

(A
lg
.
7
.2
)

li
n
ea
r
sp
a
ce

(A
lg
.
7
.1
)

su
b
li
n
ea
r
sp
a
ce

(A
lg
.
7
.2
)

d
a
ta

se
t

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ca
-G
rQ

c
0.
02

s
4
M
B

0
.1
9
s

2
M
B

0
.0
2
s

4
M
B

0
.1
8
s

2
M
B

ca
-H

ep
T
h

0.
04

s
6
M
B

0
.3
6
s

2
M
B

0
.0
3
s

6
M
B

0
.3
1
s

2
M
B

w
ik
i-
V
ot
e

0.
04

s
8
M
B

0
.6
9
s

2
M
B

0
.0
3
s

9
M
B

0
.6
3
s

2
M
B

ca
-H

ep
P
h

0.
09

s
14

M
B

1
.4
6
s

3
M
B

0
.0
7
s

1
6
M
B

1
.3
4
s

3
M
B

so
c-
E
p
in
io
n
s1

0.
38

s
38

M
B

3
.4
2
s

1
0
M
B

0
.3
3
s

4
1
M
B

3
.2
6
s

8
M
B

so
c-
S
la
sh
d
ot
09
22

0.
54

s
57

M
B

5
.5
7
s

1
3
M
B

0
.4
4
s

6
1
M
B

5
.2
8
s

1
1
M
B

w
eb
-N

ot
re
D
am

e
1.
77

s
12
2
M
B

1
0
.8
6
s

2
8
M
B

1
.6
7
s

1
2
5
M
B

1
0
.5
7
s

2
6
M
B

eg
o-
T
w
it
te
r

0.
80

s
10
3
M
B

1
1
.6
6
s

1
4
M
B

0
.6
0
s

1
1
1
M
B

1
0
.6
8
s

1
1
M
B

lo
c-
G
ow

al
la

1.
29

s
13
8
M
B

1
2
.6
7
s

2
6
M
B

1
.0
6
s

1
3
2
M
B

1
1
.9
0
s

2
2
M
B

w
eb
-S
ta
n
fo
rd

1.
86

s
15
7
M
B

1
8
.0
6
s

2
6
M
B

1
.5
1
s

1
5
7
M
B

1
4
.9
2
s

2
4
M
B

w
ik
i-
T
al
k

42
.3
1
s

60
3
M
B

5
7
.3
7
s

2
7
0
M
B

2
5
.6
7
s

5
8
8
M
B

5
5
.4
7
s

2
4
9
M
B

w
eb
-G
o
og
le

7.
93

s
34
4
M
B

4
3
.3
6
s

7
5
M
B

7
.0
0
s

3
4
3
M
B

3
5
.6
4
s

6
9
M
B

co
m
-Y
ou

tu
b
e

14
.5
9
s

45
2
M
B

4
4
.8
9
s

1
4
7
M
B

1
2
.2
2
s

4
7
2
M
B

4
4
.2
5
s

1
2
1
M
B

w
eb
-B
er
kS

ta
n

6.
44

s
39
8
M
B

5
6
.2
3
s

7
0
M
B

5
.7
1
s

4
0
6
M
B

4
9
.4
7
s

5
7
M
B

h
ig
gs
-t
w
it
te
r

7.
64

s
53
0
M
B

1
0
0
.3
5
s

8
5
M
B

5
.0
0
s

6
8
6
M
B

9
4
.9
6
s

6
3
M
B

so
c-
P
ok
ec

35
.2
0
s

1,
28
0
M
B

2
2
4
.1
9
s

2
3
7
M
B

3
0
.4
9
s

1
,4
8
9
M
B

2
1
6
.4
4
s

1
6
4
M
B

so
c-
L
iv
eJ
ou

rn
al
1

94
.5
8
s

2,
96
6
M
B

5
0
7
.5
4
s

6
7
7
M
B

8
3
.4
5
s

3
,3
2
9
M
B

4
7
3
.8
3
s

4
8
0
M
B

co
m
-O

rk
u
t

12
2.
34

s
6,
28
8
M
B

1
,5
2
7
.2
1
s

5
2
3
M
B

1
0
3
.5
5
s

7
,1
8
3
M
B

1
,4
5
2
.2
9
s

5
7
6
M
B

tw
it
te
r-
20
10

1,
76
2.
93

s
50
,8
01

M
B

1
1
,5
2
2
.3
8
s

5
,6
3
5
M
B

1
,2
0
9
.8
9
s

5
8
,4
6
7
M
B

1
0
,3
5
4
.6
6
s

5
,3
2
5
M
B

co
m
-F
ri
en
d
st
er

3,
96
4.
05

s
10
1,
39
8
M
B

2
6
,4
2
3
.5
0
s

7
,6
8
3
M
B

3
,1
2
0
.6
2
s

1
1
3
,3
3
7
M
B

2
3
,9
2
9
.7
5
s

8
,3
1
5
M
B

u
k-
20
07
-0
5

3,
10
5.
88

s
13
6,
65
9
M
B

2
9
,5
4
0
.4
5
s

1
0
,8
4
1
M
B

2
,6
1
9
.0
0
s

1
6
6
,6
7
0
M
B

2
5
,3
4
5
.3
1
s

8
,0
8
7
M
B

am
eb
lo

O
O
M

O
O
M

3
5
,7
6
1
.3
7
s

2
7
,5
0
2
M
B

O
O
M

O
O
M

1
6
,9
2
6
.9
3
s

20
,6
8
4
M
B

119

ca-HepPh (linear)
ca-HepPh (sublinear)
web-NotreDame (linear)
web-NotreDame (sublinear)

com-Youtube (linear)
com-Youtube (sublinear)
soc-Pokec (linear)
soc-Pokec (sublinear)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

R
u
n
-t

im
e
 [
s
]

Value of r

Figure 7.5: Run time with varying r
(exp0.1).

10
0

10
1

10
2

10
3

10
4

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

M
e
m

o
ry

 [
M

B
]

Value of r

Figure 7.6: Memory usage with vary-
ing r (exp0.1).

7.4.3 Power of Parallelization

We here demonstrate the effectiveness of our parallelization (Algorithm 7.3). The
implementation and environmental setup required in this subsection have been
performed by Tomohiro Sonobe, a co-author of the extended abstract [158] pub-
lished in SIGMOD 2017. Our parallelization works for two systems below. We
first adopt a shared-memory system, i.e., there exists a global address space, and
parallel threads read from it and write to it concurrently. We used OpenMP for
parallelization and ran the OpenMP implementation on the same environment
as that described in Section 7.4. Table 7.3 shows the run times of the shared-
memory parallel implementation, with linear and sublinear space, and with a
different number of threads (1, 4, and 16). Table 7.3 indicates that our parallel
algorithm exhibited good scalability on both linear- and sublinear-space imple-
mentations, around 3–4 times speed-up with 16 threads.

We then consider a distributed-memory system, i.e., multiple processes that
run on multiple machines send and receive data through Message Passing Inter-
face (MPI). One master process constructs r random graphs and sends them to
slave processes through MPI. Each slave, given a number rt, creates a partition
that consists of all rt-robust SCCs and sends it back to the master. Finally, the
master process computes Pr and constructs a coarsened influence graph. We
used OpenMPI for message passing and ran the OpenMPI implementation on
three Linux machines with the following specifications: (1) Intel Core i7-6850K
3.6GHz and 128GB RAM, (2) Intel Core i7-5960X 3.0GHz and 64GB RAM, and
(3) Intel Xeon E5-1603 2.8GHz and 64GB RAM. All the machines were placed
on the same LAN over 1000BASE-T Ethernet. Table 7.3 shows the run time of
the distributed-memory parallel algorithm with 16 slaves. Note that we were not
able to use this distributed environment for ameblo dataset due to its availability.
For the linear-space implementation, communication overheads by MPI dominate
the processing time, resulting in the same or even worse performance than the
sequential algorithm (Algorithm 7.1). However, thanks to the decentralization of
disk access to multiple computing nodes, the distributed-memory algorithm with
sublinear space achieved better performance than the shared-memory one, up to
six times speed-up.

120

T
ab

le
7.
3:

R
u
n
ti
m
e
of

ou
r
p
ar
al
le
l
im

p
le
m
en
ta
ti
on

s
fo
r
e
x
p
0
.1
.

li
n
ea
r
sp
ac
e
(A

lg
.
7
.3

w
it
h
im

p
l.
o
f
A
lg
.
7
.1
)

su
b
li
n
ea
r
sp
a
ce

(A
lg
.
7
.3

w
it
h
im

p
l.
o
f
A
lg
.
7
.2
)

sh
a
re

d
d
is
tr
ib
u
te
d

sh
a
re

d
d
is
tr
ib
u
te
d

d
a
ta

se
t

1
th
re
ad

4
th
re
a
d
s

1
6
th
re
a
d
s

1
6
th
re
a
d
s

1
th
re
a
d

4
th
re
a
d
s

1
6
th
re
a
d
s

1
6
th
re
a
d
s

ca
-G
rQ

c
0.
02

s
0.
05

s
0
.0
3
s

0
.0
5
s

0
.1
9
s

0
.2
8
s

2
.4
6
s

0
.0
4
s

ca
-H

ep
T
h

0.
04

s
0.
11

s
0
.0
6
s

0
.0
9
s

0
.3
6
s

0
.2
9
s

0
.1
8
s

0
.0
7
s

w
ik
i-
V
ot
e

0.
04

s
0.
05

s
0
.0
3
s

0
.1
0
s

0
.6
9
s

0
.5
0
s

0
.2
9
s

0
.1
1
s

ca
-H

ep
P
h

0.
09

s
0.
19

s
0
.1
1
s

0
.2
1
s

1
.4
6
s

1
.2
0
s

0
.7
7
s

0
.2
3
s

so
c-
E
p
in
io
n
s1

0.
38

s
0.
69

s
0
.3
5
s

0
.6
3
s

3
.4
2
s

2
.1
9
s

1
.1
6
s

0
.6
6
s

so
c-
S
la
sh
d
ot
09
22

0.
54

s
1.
01

s
0
.6
3
s

1
.2
8
s

5
.5
7
s

3
.8
8
s

1
.7
9
s

1
.0
1
s

w
eb
-N

ot
re
D
am

e
1.
77

s
3.
43

s
1
.7
3
s

2
.2
7
s

1
0
.8
6
s

8
.2
4
s

3
.8
5
s

2
.3
1
s

eg
o-
T
w
it
te
r

0.
80

s
1.
24

s
0
.6
5
s

1
.7
4
s

1
1
.6
6
s

6
.8
1
s

2
.9
7
s

2
.0
9
s

lo
c-
G
ow

al
la

1.
29

s
2.
30

s
0
.8
7
s

2
.2
3
s

1
2
.6
7
s

6
.9
3
s

4
.1
1
s

2
.6
9
s

w
eb
-S
ta
n
fo
rd

1.
86

s
3.
60

s
1
.3
8
s

3
.7
4
s

1
8
.0
6
s

1
1
.5
1
s

4
.2
4
s

3
.0
5
s

w
ik
i-
T
al
k

42
.3
1
s

25
.7
0
s

1
2
.3
9
s

2
4
.2
6
s

5
7
.3
7
s

4
2
.0
9
s

2
2
.0
8
s

1
8
.3
5
s

w
eb
-G
o
og
le

7.
93

s
8.
95

s
5
.1
5
s

8
.7
6
s

4
3
.3
6
s

2
2
.5
9
s

1
0
.5
1
s

9
.1
2
s

co
m
-Y
ou

tu
b
e

14
.5
9
s

11
.9
9
s

6
.9
5
s

1
4
.6
0
s

4
4
.8
9
s

2
9
.0
3
s

1
3
.7
2
s

1
3
.3
7
s

w
eb
-B
er
kS

ta
n

6.
44

s
7.
87

s
4
.3
1
s

1
2
.1
4
s

5
6
.2
3
s

2
9
.7
5
s

1
3
.7
8
s

9
.9
1
s

h
ig
gs
-t
w
it
te
r

7.
64

s
7.
76

s
3
.5
8
s

1
8
.3
8
s

1
0
0
.3
5
s

4
7
.1
5
s

2
3
.4
3
s

1
5
.2
6
s

so
c-
P
ok
ec

35
.2
0
s

21
.7
4
s

1
0
.7
5
s

3
7
.1
0
s

2
2
4
.1
9
s

1
0
2
.7
3
s

5
2
.0
9
s

4
0
.8
5
s

so
c-
L
iv
eJ
ou

rn
al
1

94
.5
8
s

60
.9
7
s

3
3
.4
5
s

1
0
2
.6
4
s

5
0
7
.5
4
s

2
4
4
.7
1
s

1
2
7
.3
6
s

1
0
6
.6
9
s

co
m
-O

rk
u
t

12
2.
34

s
59
.8
2
s

3
8
.2
9
s

2
0
9
.9
0
s

1
,5
2
7
.2
1
s

6
5
7
.5
0
s

3
4
9
.7
1
s

21
7
.3
2
s

tw
it
te
r-
20
10

1,
76
2.
93

s
1,
01
7.
31

s
6
1
1
.9
8
s

1
,7
5
1
.0
2
s

1
1
,5
2
2
.3
8
s

4
,9
2
3
.6
9
s

2
,6
1
9
.6
7
s

1
,9
2
8
.3
1
s

co
m
-F
ri
en
d
st
er

3,
96
4.
05

s
2,
17
1.
24

s
1
,1
4
2
.7
0
s

4
,3
8
1
.4
4
s

2
6
,4
2
3
.5
0
s

1
1
,3
3
3
.6
0
s

5
,8
4
3
.5
3
s

4
,0
8
3
.3
8
s

u
k-
20
07
-0
5

3,
10
5.
88

s
2,
16
4.
21

s
1
,0
3
5
.6
9
s

4
,4
2
5
.9
4
s

2
9
,5
4
0
.4
5
s

1
2
,8
5
6
.1
5
s

6
,3
2
8
.5
7
s

4
,4
9
4
.1
9
s

am
eb
lo

O
O
M

O
O
M

O
O
M

–
3
5
,7
6
1
.3
7
s

2
3
,0
7
4
.5
1
s

7
,6
1
2
.5
3
s

–

121

7.4.4 Graph Size Reduction

Next, we investigated the effect of the proposed algorithm on graph size. Table 7.4
shows the numbers of vertices and edges and the corresponding reduction ratio
of each coarsened graph.

The proposed method reduced the number of edges to 3.6%–72.4% (exp0.1)
and 15.4%–95.6% (tri). Note that the edge reduction ratio is higher than the
vertex reduction ratio because we extracted dense r-robust SCCs, as will be
discussed in Section 7.4.5. Figure 7.7 shows the edge reduction ratio with various
values of r. We can observe that the number of edges in the coarsened graphs
logarithmically increases with r.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

|F
|
/
|E

|

Value of r

ca-HepPh
soc-Slashdot0922
web-NotreDame
wiki-Talk
com-Youtube
higgs-twitter

Figure 7.7: Edge reduction ratio with varying r (exp0.1).

122

T
ab

le
7
.4
:
E
ff
ec
t
of

th
e
p
ro
p
os
ed

al
go

ri
th
m

on
gr
ap

h
si
ze

u
n
d
er

e
x
p
0
.1

an
d
t
r
i.
V

an
d
E

d
en

ot
e
v
er
te
x
an

d
ed

ge
se
ts

of
an

in
p
u
t
g
ra
p
h
,
a
n
d
W

a
n
d
F

d
en

ot
e
v
er
te
x
an

d
ed

ge
se
ts

of
a
co
ar
se
n
ed

gr
ap

h
,
re
sp
ec
ti
v
el
y.

e
x
p
o
n
e
n
ti
a
l
(e
x
p
0
.1
)

tr
iv
a
le
n
c
y
(t
r
i)

d
a
ta

se
t

|W
|

|W
| /
|V

|
|F
|

|F
| /
|E

|
|W
|

|W
| /
|V

|
|F
|

|F
| /
|E

|

ca
-G
rQ

c
5,
17
4

9
8
.7
%

2
4
,7
7
8

8
5
.5
%

5
,2
4
2

1
0
0
.0
%

2
8
,9
6
8

1
0
0
.0
%

ca
-H

ep
T
h

9,
86
6

9
9
.9
%

5
1
,3
7
0

9
8
.9
%

9
,8
7
7

1
0
0
.0
%

5
1
,9
4
6

1
0
0
.0
%

w
ik
i-
V
ot
e

6,
95
6

9
7
.8
%

7
2
,0
3
4

6
9
.5
%

7
,1
1
5

1
0
0
.0
%

1
0
3
,6
8
9

1
0
0
.0
%

ca
-H

ep
P
h

10
,6
56

8
8
.7
%

7
4
,0
3
6

3
1
.2
%

1
1
,5
9
2

9
6
.5
%

1
2
7
,6
1
8

5
3
.9
%

so
c-
E
p
in
io
n
s1

73
,8
84

9
7
.4
%

2
2
0
,5
1
1

4
3
.3
%

7
5
,6
0
9

9
9
.6
%

4
1
0
,4
3
6

8
0
.7
%

so
c-
S
la
sh
d
ot
09
22

78
,2
02

9
5
.2
%

3
1
3
,5
2
6

3
6
.0
%

8
1
,4
5
0

9
9
.1
%

6
0
9
,0
0
7

7
0
.0
%

w
eb
-N

ot
re
D
am

e
32
1,
19
6

9
8
.6
%

1
,0
6
4
,3
0
5

7
2
.4
%

3
2
4
,5
2
5

9
9
.6
%

1
,2
6
2
,8
0
1

8
5
.9
%

eg
o-
T
w
it
te
r

72
,7
48

8
9
.5
%

7
0
5
,2
6
8

3
9
.9
%

8
0
,4
3
1

9
8
.9
%

1
,4
7
2
,8
3
2

8
3
.3
%

lo
c-
G
ow

al
la

18
9,
58
6

9
6
.4
%

1
,0
2
8
,8
4
4

5
4
.1
%

1
9
5
,6
8
6

9
9
.5
%

1
,5
0
7
,1
5
0

7
9
.3
%

w
eb
-S
ta
n
fo
rd

28
1,
63
8

9
9
.9
%

2
,2
1
4
,1
4
0

9
5
.7
%

2
8
1
,9
0
3

1
0
0
.0
%

2
,3
1
2
,4
9
7

1
0
0
.0
%

w
ik
i-
T
al
k

2,
38
9,
03
4

9
9
.8
%

3
,0
8
4
,8
5
6

6
1
.4
%

2
,3
9
2
,6
1
2

9
9
.9
%

3
,6
7
7
,7
2
2

7
3
.2
%

w
eb
-G
o
og
le

87
5,
68
0

1
0
0
.0
%

5
,0
9
9
,7
2
1

9
9
.9
%

8
7
5
,7
1
3

1
0
0
.0
%

5
,1
0
5
,0
3
9

1
0
0
.0
%

co
m
-Y
ou

tu
b
e

1,
12
0,
46
3

9
8
.7
%

3
,4
3
7
,1
3
4

5
7
.5
%

1
,1
3
2
,3
0
5

9
9
.8
%

4
,4
7
1
,4
3
6

7
4
.8
%

w
eb
-B
er
kS

ta
n

67
9,
66
6

9
9
.2
%

6
,3
5
9
,4
9
1

8
3
.7
%

6
8
4
,3
2
1

9
9
.9
%

7
,3
8
9
,1
4
7

9
7
.2
%

h
ig
gs
-t
w
it
te
r

40
6,
48
1

8
9
.0
%

4
,0
7
7
,3
1
4

2
7
.4
%

4
4
6
,6
0
1

9
7
.8
%

9
,8
9
1
,0
9
8

6
6
.6
%

so
c-
P
ok
ec

1,
45
3,
54
8

8
9
.0
%

1
3
,2
9
2
,1
1
6

4
3
.4
%

1
,6
2
6
,4
7
2

9
9
.6
%

2
9
,2
7
7
,6
5
6

9
5
.6
%

so
c-
L
iv
eJ
ou

rn
al
1

4,
49
8,
12
7

9
2
.8
%

2
8
,9
2
5
,7
4
2

4
2
.2
%

4
,8
0
0
,6
6
0

9
9
.0
%

5
3
,5
2
3
,0
6
3

7
8
.2
%

co
m
-O

rk
u
t

1,
33
0,
37
9

4
3
.3
%

8
,4
4
6
,7
2
6

3
.6
%

2
,4
7
4
,6
8
1

8
0
.5
%

6
4
,0
3
5
,0
0
2

2
7
.3
%

tw
it
te
r-
20
10

38
,8
05
,7
87

9
3
.2
%

3
4
5
,0
7
3
,2
6
1

2
3
.5
%

4
0
,7
4
6
,0
6
4

9
7
.8
%

5
9
2
,4
3
4
,2
4
0

4
0
.3
%

co
m
-F
ri
en
d
st
er

46
,7
09
,5
41

7
1
.2
%

1
7
1
,2
3
0
,2
9
4

4
.7
%

5
6
,7
5
0
,3
3
4

8
6
.5
%

5
5
7
,2
1
4
,0
4
0

1
5
.4
%

u
k-
20
07
-0
5

10
2,
40
2,
59
9

9
7
.3
%

1
,5
5
3
,0
8
4
,9
9
8

4
1
.8
%

1
0
4
,3
3
5
,2
4
4

9
9
.2
%

2
,5
7
8
,7
4
1
,4
8
7

6
9
.4
%

am
eb
lo

27
1,
04
2,
15
9

9
9
.4
%

5
,4
7
8
,1
1
1
,7
9
0

7
9
.3
%

2
7
2
,6
2
4
,0
1
6

9
9
.9
%

6
,8
3
6
,4
6
0
,5
1
2

9
8
.9
%

123

7.4.5 Analyzing Extracted r-robust SCCs

Size distribution and density.

Third, we analyzed the structural properties of the extracted r-robust SCCs. Fig-
ure 7.8 illustrates the size distribution of the extracted r-robust SCCs (exp0.1).
As can be seen, a giant r-robust SCC exists, e.g., for soc-LiveJournal1 and com-
Friendster, the largest r-robust SCCs are of size 3,370,90 and 18,897,527, respec-
tively, while the second largest is of size 281 and 80, respectively. Furthermore,
as discussed in Section 7.1.3, these components are dense; for soc-LiveJournal1
and com-Friendster, the average degree of the subgraph induced by the largest r-
robust SCC is 57.9 and 154.8, while the average degree of the whole graph is 14.1
and 55.1, respectively. Thus, r-robust SCCs provide a vertex set whose coars-
ening leads to powerful edge reduction. We also observe that 99.9% of r-robust
SCCs are of size one, which indicates that |F ′| ≪ |F |.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

F
ra

c
ti
o
n
 o

f
r
-r

o
b
u
s
t
S

C
C

s
o
f
s
iz

e
 a

t
le

a
s
t
s

SCC size s

ca-HepPh
soc-Slashdot0922

web-NotreDame
wiki-Talk

com-Youtube
higgs-twitter

(a) Smaller graphs

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

F
ra

c
ti
o
n
 o

f
r
-r

o
b
u
s
t
S

C
C

s
o
f
s
iz

e
 a

t
le

a
s
t
s

SCC size s

soc-Pokec
soc-LiveJournal1

com-Orkut
twitter-2010

com-Friendster
uk-2007-05

(b) Larger graphs

Figure 7.8: Size distribution of r-robust SCCs (exp0.1).

Robustness.

Here, we investigated the robustness of the extracted r-robust SCCs. For a graph
G, we define the maximum SCC rate as the size of the largest SCC in G divided
by the number of vertices in G. This rate takes one if G is strongly connected in
whole. Then, we consider the distribution of the maximum SCC rate of G[Cmax],
where Cmax is the largest r-robust SCC. To this end, we evaluate the probability
that “the maximum SCC rate of the random graph sampled from G[Cmax] is more
than a threshold θ.” We estimated this value by sampling 10,000 random graphs
from G[Cmax].

Figure 7.9 shows the cumulative distribution of the maximum SCC rate. We
can see that the most part of Cmax is strongly connected with a high probabil-
ity. For example, 93% of the vertices in Cmax of soc-Slashdot0922 are strongly
connected in the random graph with probability 0.9. This coincides with the
discussion in Section 7.1.3.

7.4.6 Evaluating Influence Estimation Framework

Fourth, we evaluated our influence estimation framework (Algorithm 7.4). We
applied our framework to the naive Monte-Carlo simulation method MC , which
repeatedly simulates the diffusion process and takes the average number (weight)
of active vertices.

124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

P
ro

b
a

b
ili

ty
 o

f
th

e
 m

a
x
im

u
m

S
C

C
 r

a
te

 t
a

k
in

g
 a

t
le

a
s
t

θ

θ

ca-HepPh
soc-Slashdot0922
web-NotreDame
wiki-Talk
com-Youtube
higgs-twitter
soc-Pokec
soc-LiveJournal1

Figure 7.9: Cumulative distribution of the maximum SCC rate of the subgraph
induced by the largest r-robust SCC (exp0.1).

Efficiency improvement.

We first observe the efficiency improvement. To this end, we randomly sampled
10,000 vertices from the input graph and ran plain MC and our framework with
MC to estimate the influence of each sampled vertex. Table 7.5 shows the total
run time of each method. Our framework drastically reduced the computation
time to up to 3.5%. As the simulation cost is dominated by edge traversal costs,
the time reduction ratio is roughly equal to the edge reduction ratio.

Estimation accuracy.

We now examine the estimation accuracy of our framework. For each vertex v in
the input graph, our framework ran MC on the coarsened graph, i.e., it simulated
the diffusion process 100,000 times on the coarsened graph. We approximated the
ground truth of the influence of each vertex v by simulating the diffusion process
100,000 times on the input graph. Since twitter-2010, com-Friendster, and uk-
2007-05 are too large to compute the ground truth for every vertex, we were
unable to obtain the results for these datasets. We denote the ground truth and
our framework’s estimation for v’s influence as Infgt(v) and Infout(v), respectively.
First, we quantitatively evaluated our estimation accuracy. Table 7.5 reports the

mean absolute relative error (MARE) defined as 1
|V |

∑
v∈V

∣∣ Infgt(v)−Infout(v)
Infgt(v)

∣∣ and
Spearman’s rank correlation coefficient (RCC) between the ground truth and
our estimation. The MAREs are at most 0.1025, i.e., our estimation errors are
within 10% on average, and the RCCs are always greater than 0.8834. These
results demonstrate both the accuracy and stability of our framework.

We then qualitatively analyzed the estimation accuracy. Figure 7.10 illus-
trates the relationship between the two estimations, where each point corresponds
to a single vertex v, and the x and y coordinate Infgt(v) and Infout(v), respec-
tively. The estimation with r = 1 was heavily biased to higher values because we
accidentally merged a 1-robust SCC, which has a small strongly connected reli-
ability. For r = 16, we avoided merging such “fragile” components. As a result,
most of the estimations are close to the diagonal line, i.e., the ground truth.

We here justify our choice of parameter r in terms of accuracy. Figure 7.11
presents MAREs with various values of r. Higher values of r yield more accurate
estimations, but the improvements are limited when r ≥ 16. Because our algo-
rithm with lower r produces smaller coarsened graphs, we adopted r = 16 as a
sweet spot between accuracy and size reduction.

125

T
ab

le
7
.5
:
A
v
er
a
ge

es
ti
m
at
io
n
ti
m
e
of

th
e
in
fl
u
en

ce
of

a
si
n
gl
e
v
er
te
x
fo
r
p
la
in

M
C

an
d
ou

r
fr
am

ew
or
k
w
it
h
M
C

u
n
d
er

e
x
p
0
.1
a
n
d
t
r
i.

M
A
R
E
a
n
d

R
C
C

st
a
n
d
fo
r
“m

ea
n
ab

so
lu
te

re
la
ti
v
e
er
ro
r”

an
d
“r
an

k
co
rr
el
at
io
n
co
effi

ci
en
t,
”
re
sp
ec
ti
v
el
y.

e
x
p
o
n
e
n
ti
a
l
(e
x
p
0
.1
)

tr
iv
a
le
n
c
y
(t
r
i)

ru
n

ti
m
e

a
c
c
u
ra

c
y

ru
n

ti
m
e

a
c
c
u
ra

c
y

d
a
ta

se
t

M
C

A
lg
.7
.4
(M

C
)

A
lg
.7
.4
(M

C
)

M
C

M
A
R
E

R
C
C

M
C

A
lg
.7
.4
(M

C
)

A
lg
.7
.4
(M

C
)

M
C

M
A
R
E

R
C
C

ca
-H

ep
P
h

9.
0
s

1.
8
s

2
0
.1
%

0
.0
1
6
3

0
.9
9
9
1

2
.8

s
9
2
6
.5

m
s

3
2
.9
%

0
.0
2
8
4

0
.9
9
9
5

so
c-
S
la
sh
d
ot
09
22

31
.6

s
8.
0
s

2
5
.4
%

0
.0
1
5
6

0
.9
9
9
8

9
.1

s
5
.2

s
5
7
.1
%

0
.0
3
7
0

0
.9
9
9
6

w
eb
-N

ot
re
D
am

e
22
9.
8
m
s

46
.5

m
s

2
0
.2
%

0
.0
0
9
0

0
.9
9
8
9

6
0
.9

m
s

1
6
.6

m
s

2
7
.3
%

0
.0
0
2
1

0
.9
9
4
2

co
m
-Y
ou

tu
b
e

13
5.
2
s

51
.9

s
3
8
.4
%

0
.0
4
9
7

0
.9
9
9
9

2
8
.0

s
1
4
.1

s
5
0
.4
%

0
.1
0
2
5

0
.9
9
7
8

h
ig
gs
-t
w
it
te
r

1,
21
3.
4
s

28
0.
7
s

2
3
.1
%

0
.0
1
7
7

0
.9
9
4
2

4
4
3
.0

s
2
4
8
.8

s
5
6
.2
%

0
.0
2
4
6

0
.9
9
9
8

so
c-
P
ok
ec

2,
44
2.
3
s

89
7.
1
s

3
6
.7
%

0
.0
1
4
3

0
.9
9
6
9

6
0
6
.0

s
4
8
1
.7

s
7
9
.5
%

0
.0
4
2
2

1
.0
0
0
0

so
c-
L
iv
eJ
ou

rn
al
1

5,
34
8.
8
s

1,
78
2.
6
s

3
3
.3
%

0
.0
2
4
0

0
.9
9
9
5

8
5
9
.2

s
6
6
8
.9

s
7
7
.9
%

0
.0
9
1
3

0
.9
9
9
9

co
m
-O

rk
u
t

33
,1
22
.7

s
1,
23
9.
0
s

3
.7
%

0
.0
0
7
1

0
.8
8
3
4

2
6
,0
8
0
.0

s
6
,6
9
6
.2

s
2
5
.7
%

0
.0
1
1
4

0
.9
9
1
3

tw
it
te
r-
20
10

10
6,
42
8.
0
s

24
,2
12
.4

s
2
2
.8
%

–
–

3
1
,2
3
4
.2

s
1
1
,3
1
2
.4

s
3
6
.2
%

–
–

co
m
-F
ri
en
d
st
er

54
0,
48
3.
0
s

18
,9
67
.8

s
3
.5
%

–
–

2
7
9
,1
3
7
.0

s
3
2
,4
6
7
.3

s
1
1
.6
%

–
–

u
k-
20
07
-0
5

5,
71
8.
6
s

1,
90
0.
2
s

3
3
.2
%

–
–

2
0
.2

s
1
.6

s
8
.0
%

–
–

126

0

5k

10k

15k

20k

25k

30k

0 5k 10k 15k 20k 25k 30k

O
u

r
e

s
ti
m

a
ti
o

n

Ground truth

soc-Slashdot0922 (exp0.1, r = 1)

0

5k

10k

15k

20k

25k

30k

0 5k 10k 15k 20k 25k 30k

O
u

r
e

s
ti
m

a
ti
o

n

Ground truth

soc-Slashdot0922 (exp0.1, r = 16)

Figure 7.10: Influence correlation between the ground truth and our framework’s
estimation.

10
-4

10
-3

10
-2

10
-1

10
0

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

M
A

R
E

Value of r

ca-HepPh
soc-Slashdot0922
web-NotreDame
wiki-Talk
com-Youtube
higgs-twitter

Figure 7.11: Estimation accuracy with varying r (exp0.1).

7.4.7 Evaluating Influence Maximization Framework

Fifth, we examined the effectiveness of our influence maximization framework
(Algorithm 7.5). To this end, we applied our framework to D-SSA [148]. Recall
D-SSA produces a (1 − e−1 − ϵ)-approximate solution with probability at least
1− δ for parameters ϵ ∈ [0, 1−2 · e−1] and δ ∈ [0, 1]. We set ϵ = 0.1 and δ = 0.01.

Efficiency improvement.

Table 7.6 summarizes the run time of plain D-SSA and our framework with D-SSA
required to compute a solution of size 100. Our framework exhibited remarkable
computation time reduction (up to 27.5%), which is approximately equal to the
edge reduction ratio. This coincides with the D-SSA mechanism that iteratively
performs RR set generation, whose computational cost is dominated by edge
traversal costs.

Solution quality.

Table 7.6 reports the influence of a seed set extracted by plain D-SSA and our
framework with D-SSA. To obtain reasonably accurate estimations, we conducted
Monte-Carlo simulations 10,000 times. As expected from our framework’s esti-
mation accuracy, it provided solutions that were nearly the same quality as plain
D-SSA.

127

T
ab

le
7.
6:

R
u
n
ti
m
e
fo
r
se
le
ct
in
g
a
se
ed

se
t
of

si
ze

10
0
an

d
so
lu
ti
on

q
u
al
it
y
fo
r
p
la
in

D
-S
S
A

an
d
ou

r
fr
am

ew
or
k
w
it
h
D
-S
S
A

u
n
d
er

e
x
p
0
.1
a
n
d
t
r
i.

O
O
M

d
en

o
te
s
“
o
u
t
of

m
em

or
y.
”

e
x
p
o
n
e
n
ti
a
l
(e
x
p
0
.1
)

tr
iv
a
le
n
c
y
(t
r
i)

ru
n

ti
m
e

in
fl
u
e
n
c
e
(I
n
f G
/
|V
|)

ru
n

ti
m
e

in
fl
u
e
n
c
e
(I
n
f G
/|
V
|)

d
a
ta

se
t

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

ca
-H

ep
P
h

26
.1

s
14
.3

s
5
4
.8
%

0
.3
5
7
4

0
.3
5
8
6

2
8
.8

s
1
0
.6

s
3
6
.8
%

0
.1
66
8

0
.1
6
7
1

so
c-
S
la
sh
d
ot
09
22

14
0.
6
s

78
.9

s
5
6
.1
%

0
.2
9
5
1

0
.2
9
5
5

2
7
1
.4

s
1
5
8
.2

s
5
8
.3
%

0
.1
3
5
9

0
.1
3
5
8

w
eb
-N

ot
re
D
am

e
3.
0
s

1.
1
s

3
4
.9
%

0
.0
8
2
8

0
.0
8
3
0

1
.8

s
1
.7

s
9
3
.9
%

0
.0
3
2
9

0
.0
3
2
9

w
ik
i-
T
al
k

52
1.
6
s

15
4.
7
s

2
9
.7
%

0
.1
3
9
6

0
.1
3
9
7

2
2
1
.8

s
8
4
.4

s
3
8
.1
%

0
.0
5
2
1

0
.0
5
2
1

co
m
-Y
ou

tu
b
e

2,
80
8.
7
s

77
2.
8
s

2
7
.5
%

0
.1
5
1
1

0
.1
5
0
9

9
2
7
.7

s
6
3
6
.6

s
6
8
.6
%

0
.0
5
4
7

0
.0
5
4
8

h
ig
gs
-t
w
it
te
r

3,
87
3.
8
s

1,
22
8.
1
s

3
1
.7
%

0
.3
5
1
0

0
.3
5
1
0

5
,2
5
1
.6

s
3
,2
7
5
.6

s
6
2
.4
%

0
.1
7
7
6

0
.1
7
7
6

so
c-
P
ok
ec

18
,3
49
.5

s
6,
21
5.
7
s

3
3
.9
%

0
.4
7
3
9

0
.4
7
3
9

5
,5
3
8
.9

s
5
,1
2
9
.3

s
9
2
.6
%

0
.1
9
7
2

0
.1
9
7
1

so
c-
L
iv
eJ
ou

rn
al
1

O
O
M

O
O
M

–
%

–
–

7
,8
0
6
.3

s
1
1
,7
7
1
.8

s
1
5
0
.8
%

0
.1
30
7

0
.1
3
1
0

co
m
-O

rk
u
t

O
O
M

O
O
M

–
%

–
–

O
O
M

O
O
M

–
%

–
–

tw
it
te
r-
20
10

O
O
M

O
O
M

–
%

–
–

O
O
M

O
O
M

–
%

–
–

co
m
-F
ri
en
d
st
er

O
O
M

O
O
M

–
%

–
–

O
O
M

O
O
M

–
%

–
–

u
k-
20
07
-0
5

O
O
M

O
O
M

–
%

–
–

5
9
5
.4

s
2
0
8
.5

s
3
5
.0
%

0
.0
7
9
2

0
.0
7
9
0

128

7.4.8 Comparison with Existing Reduction Algorithms.

Finally, we compared the scalability of the proposed algorithm to the follow-
ing existing algorithms for influence graph reduction: coarseNet [161] and
Spine [138].

Settings.

For coarseNet, we used a C++ implementation [160] provided by the authors
of [161] with GNU Octave [1] version 3.2 for eigenvalue calculation. We ran
coarseNet with the same edge reduction rate as that shown in Table 7.2.

For Spine, we used a Java implementation [137] provided by the authors
of [138]. Since Spine requires a log of cascades to produce a sparsified graph, we
conducted Monte-Carlo simulations from |V | randomly selected vertices for each
graph. We ran Spine with the input graph and generated cascade logs so that
the edge reduction ratio was the same as that of our algorithm’s output.

Results.

Table 7.7 compares the run time of our linear-space implementation, coarseNet,
and Spine for the exponential setting. Note that we observed the same tendency
for the trivalency setting. The proposed method is several orders of magnitude
faster than both existing algorithms for larger graphs. Moreover, due to out-of-
memory error, coarseNet could handle only medium-sized graphs with tens of
millions of edges and Spine could process only the smallest four graph. These
results demonstrate the superiority of the proposed algorithm over existing algo-
rithms in terms of both computation time and memory consumption.

Table 7.7: Comparison of the run time of each algorithm under exp0.1. OOM
denotes “out of memory.”

exponential (exp0.1)

dataset This work (Alg. 7.1) coarseNet [161] Spine [138]

ca-GrQc 0.02 s 0.01 s 10.83 s
ca-HepTh 0.04 s 0.01 s 29.81 s
wiki-Vote 0.04 s 1.54 s 183.51 s
ca-HepPh 0.09 s 2.11 s 3,800.05 s
soc-Epinions1 0.38 s 57.54 s OOM
soc-Slashdot0922 0.54 s 116.75 s OOM
web-NotreDame 1.77 s 55.26 s OOM
ego-Twitter 0.80 s 238.93 s OOM
loc-Gowalla 1.29 s 69.26 s OOM
web-Stanford 1.86 s 158.89 s OOM
wiki-Talk 42.31 s 4,760.76 s OOM
web-Google 7.93 s 1.30 s OOM
com-Youtube 14.59 s 570.05 s OOM
web-BerkStan 6.44 s 552.80 s OOM
higgs-twitter 7.64 s 9,574.53 s OOM
soc-Pokec 35.20 s 28,158.00 s OOM
soc-LiveJournal1 94.58 s OOM OOM
com-Orkut 122.34 s OOM OOM
twitter-2010 1,762.93 s OOM OOM
com-Friendster 3,964.05 s OOM OOM
uk-2007-05 3,105.88 s OOM OOM

129

Chapter 8

Portfolio Optimization for Acquiring

Low-risk Strategies

In this chapter, we will address the risk of having a small number of influenced
vertices that expectation may not capture. Now that, we formally define our
portfolio optimization problem for CVaR maximization. Let rG(S) denote the
random variable representing rG(S) for G ∼ G. For a finite set V and a positive

integer k, let ∆V,k be the
(|V |

k

)
-dimensional simplex indexed by a set in

(
V
k

)
, i.e.,

∆V,k = {π ∈ R(
V
k) | ∥π∥1 = 1}. (8.1)

We call each vector in ∆V,k a
(|V |

k

)
-dimensional portfolio. Our problem is defined

as follows.

Problem 4 (Portfolio optimization for cascade CVaR maximization). Given an
influence graph G = (V,E, p), an integer k, and a significance parameter α ∈
(0, 1), find a

(|V |
k

)
-dimensional portfolio π ∈ ∆V,k that maximizes the CVaR of

the cascade size at significance level α, i.e., CVaRα[
∑

S∈(Vk)
πSrG(S)].

In this chapter, we propose a polynomial-time algorithm with a guarantee of
an additive error for Problem 4 (Section 8.1), and then we evaluate our algorithm
and compare it with the original influence maximization (Section 8.2).

8.1 Proposed Algorithm

8.1.1 Overview

An overview of the proposed algorithm for Problem 4 is illustrated in Figure 8.1.
First, we consider to optimize the empirical CVaR defined over the samples and
write it as a linear program (Section 8.1.2). Next, we will explain a way to check
the feasibility of the linear program using the MWU algorithm (Section 8.1.3).
Here, the MWU algorithm assumes an oracle for a relaxation of the linear pro-
gram. Then, we describe a greedy-based approximation oracle (Section 8.1.4).
Finally, we put all together and analyze the total time complexity and accuracy
guarantee (Section 8.1.5).

For ease of notation, for a vertex set S ⊆ V , we use XS to denote a random
variable rG(S)/|V | bounded in [0, 1]. Let X = (XS)S∈(Vk)

and DX denote the

distribution ofX. Note that our problem is equivalent to find a portfolio π ∈ ∆V,k

that maximizes CVaRα[⟨π,X⟩].
The main result of this section is as follows.

130

Sampling

Feasibility “ ≥ γ ”

Relaxing

ρ-oracle with greedy algorithm

Multiplicative weights

update

Error is bounded

Bisection search on γ

≈

Exact CVaR

optimization

Empirical CVaR

optimization

Linear

programming

Convex

combination

Solution

Solution

Solution

Solution

Figure 8.1: Overview of the proposed algorithm in Chapter 8.

Theorem 8.1. Given an influence graph G = (V,E, p), an integer k, and α, ϵ, δ ∈
(0, 1), there exists an algorithm that returns a portfolio π ∈ ∆V,k such that

CVaRα[⟨π,X⟩] ≥
(

max
π∈∆V,k

CVaRα[⟨π,X⟩]
)
− e−1 − ϵ (8.2)

with probability at least 1− δ. The running time is O(log ϵ
−1·log r
ϵ2

k|V ||E|r), where
r satisfies r = O

(
1
ϵ2

(k log r
ϵ2

log |V |
k + log 1

δ

))
.

Remark that for the problem of selecting a “single vertex set” that maxi-
mizes the CVaR of the cascade size, there is no polynomial time multiplicative
approximation algorithm as proved by Maehara [134].

8.1.2 Empirical CVaR Maximization

Since it is hard to optimize CVaR under DX directly, we consider the empiri-
cal distribution of DX. For a positive integer, we define D̂X,r as the uniform
distribution over {X1, . . . ,Xr}, where X1, . . . ,Xr are independent samples from
DX. Then, we optimize CVaRα[⟨π,Y⟩], where Y is a vector of random variables
sampled from D̂X,r. The value of r is determined in Section 8.1.5. Note that X is

of size
(|V |

k

)
, and therefore we cannot explicitly sample X1, . . . ,Xr from DX. We

use a trick based on the random-graph interpretation and implicitly construct
D̂X,r by sampling random graphs G1, . . . , Gr from G, and set Xi

S = rGi(S)/|V |
for any vertex set S ⊆ V . In summary, we optimize CVaR under D̂X,r. Recalling
Eq. (2.20), we restate the problem as

maximize τ − 1
αr

∑
i∈[r]max

{
τ − ⟨π,Xi⟩, 0

}
subject to τ ∈ [0, 1]

π ∈ ∆V,k.

(8.3)

We can add the extra constraint τ ∈ [0, 1] without loss of generality because
Xi

S ∈ [0, 1] for every i ∈ [r] and S ∈
(
V
k

)
. By introducing auxiliary variables y =

131

(yi)i∈[r], this problem can be further rephrased as the following linear program:

maximize τ − 1
αr

∑
i∈[r] yi

subject to yi ≥ τ − ⟨π,Xi⟩ ∀i ∈ [r]
τ ∈ [0, 1]
y ∈ [0, 1]r

π ∈ ∆V,k.

(8.4)

We aim at solving Eq. (8.4) via bisection search on the objective value. However,
we cannot solve the feasibility version of Eq. (8.4) because of exponentially many
variables π ∈ ∆V,k. To resolve this difficulty, we further relax the feasibility
version by using the MWU algorithm.

8.1.3 Finding Approximate Feasible Solutions via MWU

Here, we discuss how to use the MWU algorithm to approximately check the
feasibility of Eq. (8.4). Before that, we introduce several definitions to simplify
the feasibility problem. Let γ ∈ [0, 1] be a midpoint for the bisection search. We
define a set

Pγ =
{
(τ,y,π) | τ ∈ [0, 1],y ∈ [0, 1]r,π ∈ ∆V,k, τ −

1

αr

∑
i∈[r]

yi ≥ γ
}
. (8.5)

If Pγ is not empty, then the maximum of Eq. (8.4) is at least γ. Given a triplet
(τ,y,π), we define a vector v := v(τ,y,π), where vi = yi + ⟨π,Xi⟩ − τ for each
i ∈ [r]. Then, the feasibility version of Eq. (8.4) for a midpoint γ can be written
as follows.

∃? (τ,y,π) ∈ Pγ : v ≥ 0. (8.6)

Here goes the main part. We will approximately solve Eq. (8.6) via the
MWU algorithm. We adapt the feasibility checking algorithm presented in [15,
Section 3.3]. The MWU algorithm repeatedly generates a distribution d ∈ ∆r

and requires to check the feasibility of the following problem.

∃? (τ,y,π) ∈ Pγ : ⟨d,v⟩ ≥ 0. (8.7)

Note that the constraint “⟨d,v⟩ ≥ 0” is a convex combination of “v ≥ 0”. Thus,
we may expect the existence of a solver that checks Eq. (8.7). To be precise, we
define a notion of ρ-oracle for such a solver.

Definition 8.2 (ρ-oracle). For a parameter ρ ∈ (0, 1), a ρ-oracle for Eq. (8.7) is
an algorithm which given a distribution d ∈ ∆r, either finds a triplet (τ,y,π) ∈
Pγ such that ⟨d,v⟩ ≥ −ρ, or correctly declares that Eq. (8.7) is infeasible. More-
over, whenever the oracle returns a triplet (τ,y,π) ∈ Pγ, |vi| ≤ 1 holds for every
i ∈ [r].

We defer the implementation of a ρ-oracle to the next subsection.
In the following, we describe how to use a ρ-oracle in the MWU algorithm for

approximate feasibility checking. Given a ρ-oracle, we consider Algorithm 8.1.
In each round t, given a distribution d(t) over the constraints, the algorithm runs
the ρ-oracle with d(t). It immediately declares reject if the oracle failed to find
any feasible solution. Otherwise, it uses the feedback (τ (t),y(t),π(t)) of the oracle
to adjust the distribution. After all rounds, it takes the average over the triplets
{(τ (t),y(t),π(t))}t∈[T]. We obtain the following guarantee:

132

Algorithm 8.1 Approximate checking of Eq. (8.6) via the MWU algorithm.

Input: random graphs G1, . . . , Gr, α, ϵmw, γ.
1: T ← 16 log r

ϵ2mw
.

2: η ← min{ ϵmw
4 , 12}.

3: w(1) ← 1.
4: for t = 1 to T do
5: d(t) ← w(t)/∥w(t)∥1.
6: call the ρ-oracle for Eq. (8.7) (Algorithm 8.2) with d(t).
7: if the oracle declares no feasible solution then
8: reject.

9: (τ (t),y(t),π(t))← the solution returned by the oracle.
10: for all i ∈ [r] do
11: v(t) ← v(τ (t),y(t),π(t)).

12: w
(t+1)
i ← w

(t)
i (1− ηv(t)i).

13: τ̄ ← 1
T

∑
t∈[T] τ

(t), ȳ← 1
T

∑
t∈[T] y

(t), π̄ ← 1
T

∑
t∈[T] π

(t).
14: return (τ̄ , ȳ, π̄).

Lemma 8.3. Algorithm 8.1 either finds a triplet (τ̄ , ȳ, π̄) ∈ Pγ such that v̄ :=
v(τ̄ , ȳ, π̄) satisfies v̄i ≥ −ρ − ϵmw for every i ∈ [r], or correctly declares that
Eq. (8.6) is infeasible. The algorithm makes at most T = 16 log r

ϵ2mw
calls to the

ρ-oracle.

Proof. If the ρ-oracle declares that there is no (τ,y,π) ∈ P such that ⟨d(t),v(t)⟩ ≥
0, then we terminate because d(t) is the proof that Eq. (8.6) is infeasible.

Now, let us assume that this does not occur, that is, in all rounds t, the ρ-
oracle manages to find a solution (τ (t),y(t),π(t)) ∈ Pγ such that ⟨d(t),v(t)⟩ ≥ −ρ.
Note that (τ̄ , ȳ, π̄) ∈ Pγ since Pγ is a convex set.

Since the cost vector to the MWU algorithm is specified as v(t), we conclude
that the expected cost in each round is ⟨d(t),v(t)⟩ ≥ −ρ. Hence, Theorem 2.45

tells us that after T rounds, for any i ∈ [r], we obtain v̄i = 1
T

∑
t∈[T] v

(t)
i ≥

−ρ − ϵmw. Let τ̄ = 1
T

∑
t∈[T] τ

(t), ȳ = 1
T

∑
t∈[T] y

(t), and π̄ = 1
T

∑
t∈[T] π

(t).

Setting v̄ = 1
T

∑
t∈[T] v

(t), we get v̄i ≥ −ρ − ϵmw, which means that v̄ satisfies
the feasibility problem Eq. (8.6) to within ρ+ ϵmw.

The number of calls to the oracle that the algorithm makes is obvious.

8.1.4 Implementation of a ρ-oracle

In this section, we implement an e−1-oracle for the feasibility problem Eq. (8.7).
Note that it still contains exponentially many variables π; however, it contains
only a “single” constraint. Our crucial observation for the design of the oracle is
the following:

We do not need to construct a portfolio but just choose a single set.
Furthermore, it suffices to solve an instance of influence maximization.

For a vertex set S ∈
(
V
k

)
, let 1S ∈ ∆V,k be the portfolio where all entries are

zero except the entry at S is one. We define fd : 2V → R as fd(S) =
∑

i∈[r] diX
i
S .

Then, given a midpoint γ and a distribution d, the objective of the oracle is

133

maximizing ⟨d,v⟩ subject to (τ,y,π) ∈ Pγ . Note that expanding ⟨d,v⟩ yields

⟨d,v⟩ =
∑
i∈[r]

di(yi − τ) +
∑

S∈(Vk)

πSfd(S)

=
∑
i∈[r]

diyi +
∑

S∈(Vk)

πSfd(S)− τ. (8.8)

Let S∗
k be a maximizer of the problem maxS∈(Vk)

fd(S). Then, we have the

following lemma.

Lemma 8.4. If (τ,y,π) attains the maximum of ⟨d,v⟩, then we can assume that
π = 1S

∗
k .

Proof. This is clear from Eq. (8.8); otherwise, we can increase the objective value
by decreasing πS for S ̸= S∗

k with πS > 0 and by increasing πS∗
k
.

Although it is NP-hard to exactly compute S∗
k , we can compute Sk ∈

(
V
k

)
such that fd(Sk) ≥ (1− e−1)fd(S

∗
k) due to the monotonicity and submodularity

of fd.

Lemma 8.5. fd(·) is monotone and submodular.

Proof. For each i ∈ [r], rGi(S) is monotone and submodular in S and so is Xi
S =

rGi(S)/|V |. Note that a class of monotone submodular functions is closed under
non-negative linear combinations. fd(·) is therefore monotone and submodular.

Lemma 8.6. Assume d1 ≥ d2 ≥ · · · ≥ dr. If (τ,y,π) is a feasible solution to
Eq. (8.7), then we can assume the following:

� For every i ∈ [r], if di ≥ 1
αr , then we have

yi = min
{
αr −

∑
j∈[i−1]

yj , 1
}
, (8.9)

and otherwise we have yi = 0.

� τ = 1− 1
αr

∑
i∈[r] yi.

Proof. Fixing π, we want to maximize
∑

i∈[r] diyi−τ subject to τ− 1
αr

∑
i∈[r] yi ≥

γ.
If there exists yi < 1 and yj > 0 with i < j, then we can increase the objective

value by increasing yi and decreasing yj .
If there exists yi > 0 with di <

1
αr , we can increase the objective value

decreasing yi and increasing τ .
From these observations, we have the claim.

These lemmas motivate us to consider Algorithm 8.2.

Theorem 8.7. Algorithm 8.2 is an e−1-oracle for Eq. (8.7) and runs in time
O(k|V ||E|r). Moreover, it returns a portfolio π consisting of a single vertex set.

Proof. We have the following two cases.

� Suppose that Algorithm 8.2 returned a triplet (τ,y,π).
Then, we clearly have ⟨d,v⟩ ≥ −e−1. In addition, we have |vi| ≤ 1.

134

Algorithm 8.2 An e−1-oracle for Eq. (8.7).

Input: random graphs G1, . . . , Gr, α, and d.
1: order d so that d1 ≥ d2 ≥ · · · ≥ dr.
2: for i = 1 to r do
3: if di ≥ 1

αr then
4: yi ← min{αs−

∑
j∈[i−1] yj , 1}.

5: else
6: yi ← 0.

7: τ ← 1− 1
αr

∑
i∈[r] yi.

8: compute Sk ∈
(
V
k

)
by applying the greedy algorithm to fd.

9: π ← 1Sk .
10: if ⟨d,v⟩ ≥ −1/e then
11: return (τ,y,π).
12: else
13: reject.

Algorithm 8.3 Generating random graphs from a given influence graph.

Input: G = (V,E, p), α, ϵ, δ.
1: r ← the number of samples determined in Theorem 8.1.
2: generate r random graphs G1, . . . , Gr from G,
3: call Algorithm 8.4 with G1, . . . , Gr, α, and ϵ

′ = ϵ/3.
4: return the obtained portfolio π.

� Suppose that Algorithm 8.2 rejected.
Then, the triplet (τ∗,y∗,π∗) := (τ,y,1S

∗
k) maximizes ⟨d,v∗⟩, which is

bounded as

⟨d,v∗⟩ =
∑
i∈[r]

diyi + fd(S
∗
k)− τ∗ ≤

∑
i∈[r]

diyi +
e

e− 1
fd(Sk)− τ

≤ e

e− 1

(∑
i∈[r]

diyi + fd(Sk)− τ
)
+

1

e− 1
(Since τ ≤ 1)

<
e

e− 1

(
−e−1

)
+

1

e− 1
= 0. (8.10)

This is the proof that Eq. (8.7) is infeasible.

Hence, Algorithm 8.2 is an e−1-oracle for Eq. (8.7).
The total running time is dominated by that of the greedy algorithm. The

greedy algorithm evaluates fd(·) for at most k|V | vertex sets, and each function
evaluation completes in time O(r|E|). Therefore, it requires O(k|V ||E|r) time.

8.1.5 Putting All Together

The overall algorithm is shown in Algorithms 8.3 and 8.4. In Algorithms 8.3, we
first generate r random graphs G1, . . . , Gr from G and then invoke Algorithm 8.4
with these random graphs. Algorithm 8.4 performs bisection search lg 2

ϵ′ times
on the interval [γl, γh]. For the midpoint γ = (γl + γh)/2, we call Algorithm 8.1
to check the feasibility of Eq. (8.6). At the end of the algorithm, we return the
portfolio having the maximum CVaR made so far.

135

Algorithm 8.4 Bisection search with approximate feasibility checking.

Input: random graphs G1, . . . , Gr, α, ϵ
′

1: γl ← 0 and γh ← 1.
2: for lg 2

ϵ′ times do
3: γ ← (γl + γh)/2.
4: call Algorithm 8.1 with G1, . . . , Gr, α, ϵmw = ϵ′/2, and γ = γ.
5: if Algorithm 8.1 declares no feasible solution then
6: γh ← γ.
7: else
8: γl ← γ.

9: call Algorithm 8.1 with G1, . . . , Gr, α, ϵmw = ϵ′/2, and γ = γl.
10: return the obtained portfolio π.

We now prove Theorem 8.1. We first measure the gap of the empirical CVaR
between the optimal portfolio and the obtained portfolio.

Lemma 8.8. Algorithm 8.4 returns a portfolio π ∈ ∆V,k such that

CVaRα[⟨π,Y⟩] ≥ γ̂∗ − e−1 − ϵ′, (8.11)

where γ̂∗ is the optimal value of Eq. (8.4). It runs in O(k|V ||E|r log r
ϵ′2 log 1

ϵ′) time.
Moreover, each weight of π is a multiple of 1/T .

Proof. We note that γh ≥ γ̂∗ (because Algorithm 8.1 always returns a solution
when there is a feasible solution to Eq. (8.6)), and γh − γl ≤ ϵ′/2. It follows that
γl ≥ γ̂∗ − ϵ′/2.

Let (τ,y,π) be the solution obtained at line 9 and let v := v(τ,y,π). Then,
we obtain vi ≥ −e−1 − ϵ′/2 for any i ∈ [r] from Lemma 8.3 and Theorem 8.7.
This means that (τ − e−1 − ϵ′/2,y,π) is a feasible solution to Eq. (8.4) with an
objective value of at most γl − e−1 − ϵ′/2 ≥ γ̂∗ − e−1 − ϵ′.

The time complexity and requirement for π are obvious from Lemma 8.3 and
Theorem 8.7.

We then bound the gap between the actual CVaR and empirical CVaR for
every portfolio that the proposed algorithm may produce and for the optimal
portfolio. Let L ⊆ ∆V,k be the set of all portfolios such that each coordinate is a
multiple of 1/T .

Lemma 8.9. It holds that∣∣∣CVaRα[⟨π′,X⟩]− CVaRα[⟨π′,Y⟩]
∣∣∣ ≤ ϵ

3
and∣∣∣CVaRα[⟨π∗,X⟩]− CVaRα[⟨π∗,Y⟩]

∣∣∣ ≤ ϵ

3
(8.12)

for every portfolio π′ that Algorithm 8.4 may return and for the optimal portfolio
π∗ ∈ ∆V,k with probability at least 1− δ.
Proof. Remark that Algorithm 8.4 returns a portfolio only in L as its weights are
a multiple of 1/T . Then, we use Lemma 2.44 with ϵ/3 and δ/(|L| + 1). Since

|L| ≤
((|V |

k)+T−1

T

)
holds, the required number of random graphs is

r = Ω
(1

ϵ2
log
|L|+ 1

δ

)
= Ω

(1

ϵ2
(
T log

(|V |
k

)
+ T − 1

T
+ log

1

δ

))
= Ω

(1

ϵ2
(k log r

ϵ2
log
|V |
k

+ log
1

δ

))
. (8.13)

By taking union bound over L ∪ {π∗}, we obtain the desired claim.

136

Finally, by using Lemmas 8.8 and 8.9, we prove Theorem 8.1.

Proof. Approximation guarantee. Let γ∗ = maxπ∈∆V,k
CVaRα[⟨π,X⟩] be

the optimal CVaR, and let γ̂∗ be the optimal value of Eq. (8.4). We obtain
CVaRα[⟨π,Y⟩] ≥ γ̂∗ − e−1 − ϵ′ = γ̂∗ − e−1 − ϵ/3 by Lemma 8.8.

Since π ∈ L, we obtain

CVaRα[⟨π,X⟩] ≥︸︷︷︸
Lem. 8.9

CVaRα[⟨π,Y⟩]− ϵ/3

≥︸︷︷︸
Lem. 8.8

γ̂∗ − e−1 − 2ϵ/3 ≥ CVaRα[⟨π∗,Y⟩]− e−1 − 2ϵ/3

≥︸︷︷︸
Lem. 8.9

CVaRα[⟨π∗,X⟩]− e−1 − ϵ = γ∗ − e−1 − ϵ (8.14)

with probability at least 1− δ.
Time complexity. The analysis of the time complexity is obvious.

8.2 Experimental Evaluations

In this section, we demonstrate the effectiveness of the proposed algorithm by
experiment. We conducted experiments on a Linux server with an Intel Xeon
E5-2670 2.60 GHz CPU and 512 GB memory. All algorithms were implemented
in C++ and compiled using g++ 4.8.2 with the -O2 option.

8.2.1 Setup

We used three publicly available real-world network datasets, Karate with 34 ver-
tices and 78 bidirectional edges, Physicians with 117 vertices and 542 directed
edges, and Advogato with 5,042 vertices and 78,454 directed edges from the
Koblenz Network Collection [112, 112]. We extracted the subgraphs induced
by the largest connected components. For edge influence probabilities, we adopt
the owc and uc0.1 settings. The significance level α was set to be 0.01 and 0.05.

For our method, we set ϵ = 0.4 and assigned s = k log |V |
ϵ4

, T = log r
ϵ2
, η =

√
log s
T ,

and the bisection search was repeated 32 times. We compared our method with
the following three baseline algorithms that output only a single seed set:

� Greedy , which is a standard influence maximization algorithm. We use
PMC proposed in Chapter 5.

� Degree, which selects k vertices in the decreasing order of degrees.

� Random, which selects k vertices uniformly at random.

8.2.2 Results

First, we verify the effectiveness of our proposed method. Tables 8.1 and 8.3
report the CVaR at α = 0.01 and α = 0.05 of the portfolio obtained by each
method. We conducted Monte Carlo simulations of influence spread 10,000 times
to obtain an estimation of the CVaR for each portfolio. Under the owc setting,
the proposed method significantly outperformed existing methods for all settings.
The difference is especially large when k is small, but even when k is large,
e.g., the CVaRs at α = 0.01 of our portfolios on Physicians and Advogato for
k = 15 are 17.5% and 67.6% better than the second-best, respectively. If we

137

use the uc0.1 setting, we can observe smaller than owc or no improvements.
For example, portfolio construction is of almost no benefit for Advogato network.
This is because of the giant component (GC); once we select a vertex frequently
appearing the GC, we get a large cascade with a certain probability. Still, we
are able to obtain high-CVaR portfolios for networks where cascades immediately
stop spreading, e.g., Physicians network.

Tables 8.2 and 8.4 show the expected cascade sizes. Although our method
does not explicitly optimize the expected cascade size, we can observe that those
of the portfolios obtained by our method are comparable to those of seed sets
obtained by the greedy method.

Figure 8.2 shows the histogram of the cascade size for each method. The
histograms of baseline algorithms spread out, which easily result in extremely
smaller cascades than the average. On the other hand, the histograms of the
portfolios computed by our method are promising; they are well concentrated on
the mean value, which is more desirable in terms of risk aversion.

Table 8.5 shows the number of positive weights of each portfolio obtained by
our method. The number of positive weights is at most 100, which are reasonably
small.

Finally, we show the structure of the portfolio obtained by our method. Fig-
ure 8.3 illustrates the weights in the portfolio obtained by applying our method
to Karate network with k = 1 and α = 0.01. In this network, there are two over-
lapping communities centered at vertices 1 and 34. Our method assigns positive
weights to vertices in both communities, for example, vertices 12 and 27, which
are connected to vertex 1 and 34, respectively. Note that Greedy , Degree, and
Random selected vertices 12, 34, and 19 as a seed vertices, respectively.

From the abovementioned results, we have shown the effectiveness of a port-
folio optimization approach for risk aversion.

138

T
ab

le
8.
1:

C
V
aR

fo
r
p
or
tf
ol
io
s
ob

ta
in
ed

b
y
ea
ch

m
et
h
o
d
u
n
d
er

o
w
c
.
B
es
t
re
su
lt
s
ar
e
in

b
ol
d
.

α
=

0
. 0
1

K
ar
at
e
d
a
ta
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

1
0

1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k

1.
7

8
.7

1
5
.6

2
1
.3

1
.5

1
2
.0

2
3
.6

3
4
.2

1
.2

1
8
.7

4
2
.3

6
9
.9

G
re
ed
y

2
.0

6.
8

1
4
.5

2
0
.3

1
.0

5
.7

1
6
.9

2
9
.1

1
.0

7
.5

2
1
.5

4
1
.7

D
eg
re
e

1.
0

5.
0

1
0
.2

1
5
.4

1
.0

5
.5

1
4
.2

2
4
.1

1
.0

5
.3

1
4
.7

2
6
.8

R
an

d
om

1.
0

5.
5

1
2
.8

1
7
.6

1
.0

5
.5

1
5
.1

2
2
.8

1
.0

6
.5

1
7
.8

3
4
.4

α
=

0
.0
5

K
ar
at
e
d
a
ta
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

1
0

1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k

1.
9

9
.6

1
6
.8

2
2
.4

1
.9

1
3
.7

2
6
.3

3
7
.2

1
.4

2
2
.3

4
8
.9

7
8
.7

G
re
ed
y

2
.0

8.
1

1
5
.8

2
1
.6

1
.0

7
.6

2
0
.9

3
3
.4

1
.0

9
.0

2
7
.1

5
0
.7

D
eg
re
e

1.
0

5.
8

1
0
.8

1
6
.1

1
.0

7
.0

1
6
.9

2
7
.3

1
.0

6
.5

1
8
.8

3
4
.4

R
an

d
om

1.
0

6.
6

1
3
.9

1
8
.6

1
.0

6
.8

1
7
.8

2
5
.7

1
.0

7
.9

2
3
.1

4
3
.4

T
ab

le
8.
2:

M
ea
n
va
lu
e
fo
r
p
or
tf
ol
io
s
ob

ta
in
ed

b
y
ea
ch

m
et
h
o
d
u
n
d
er

o
w
c
.
B
es
t
re
su
lt
s
ar
e
in

b
ol
d
.

K
ar
at
e
d
a
ta
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

1
0

1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k
(α

=
0
.0
1)

3.
9

1
4
.0

2
1
.0

2
6
.1

5
.6

2
2
.8

3
7
.7

4
9
.0

1
1
.3

5
0
.8

9
4
.0

1
3
1
.6

G
re
ed
y

4
.3

1
4
.3

2
1
.2

2
6
.2

6
.2

2
3
.6

3
8
.2

4
9
.9

1
1
.3

5
0
.7

9
2
.9

1
3
0
.3

D
eg
re
e

3.
3

1
0
.0

1
4
.8

1
9
.7

5
.2

2
1
.0

3
0
.8

4
0
.7

9
.9

4
0
.4

6
8
.9

9
3
.6

R
an

d
om

3.
8

1
2
.6

1
8
.9

2
2
.6

4
.5

1
8
.3

3
1
.0

3
8
.2

9
.1

4
5
.6

8
6
.3

1
1
9
.6

139

T
ab

le
8.
3:

C
V
aR

fo
r
p
or
tf
ol
io
s
ob

ta
in
ed

b
y
ea
ch

m
et
h
o
d
u
n
d
er

u
c
0
.1
.
B
es
t
re
su
lt
s
ar
e
in

b
ol
d
.

α
=

0
. 0
1

K
ar
at
e
d
at
a
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

10
1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k

1
.1

5
.8

1
1
.3

1
6
.3

1
.0

5
.7

1
3
.5

2
0
.9

1
,8
0
9
.2

2
,1
8
7
.1

2
,0
8
3
.8

2
,1
9
9
.1

G
re
ed
y

1.
0

5.
7

10
.8

1
5
.8

1
.0

5
.0

1
1
.6

1
8
.6

1
,9
4
1
.7

2
,0
7
8
.0

2
,1
2
7
.6

2
,1
5
5
.1

D
eg
re
e

1.
0

5.
7

10
.3

1
5
.0

1
.0

5
.0

1
1
.5

1
8
.6

2
,1
8
1
.3

2
,1
8
1
.3

2
,1
8
1
.3

2
,1
8
1
.3

R
an

d
om

1.
0

5.
0

10
.0

1
5
.0

1
.0

5
.0

1
0
.4

1
6
.1

1
.0

5
.0

2
,1
6
6
.3

2
,1
9
0
.9

α
=

0
.0
5

K
ar
at
e
d
at
a
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

10
1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k

1
.3

6
.6

1
2
.1

1
7
.0

1
.0

6
.4

1
4
.6

2
2
.4

2
,1
2
5
.0

2
,2
0
5
.8

2
,1
8
9
.8

2
,2
1
7
.8

G
re
ed
y

1.
0

6.
4

11
.6

1
6
.6

1
.0

5
.6

1
3
.1

2
0
.4

2
,1
5
1
.7

2
,1
8
3
.7

2
,1
9
8
.6

2
,2
0
8
.9

D
eg
re
e

1.
0

6.
5

11
.0

1
5
.7

1
.0

5
.7

1
2
.7

2
0
.2

2
,2
0
0
.1

2
,2
0
0
.1

2
,2
0
0
.1

2
,2
0
0
.1

R
an

d
om

1.
0

5.
0

10
.0

1
5
.5

1
.0

5
.0

1
1
.3

1
7
.3

1
.0

5
3
8
.5

2
,2
0
2
.4

2
,2
0
9
.7

T
ab

le
8.
4:

M
ea
n
va
lu
e
fo
r
p
or
tf
ol
io
s
ob

ta
in
ed

b
y
ea
ch

m
et
h
o
d
u
n
d
er

u
c
0
.1
.
B
es
t
re
su
lt
s
ar
e
in

b
ol
d
.

K
ar
at
e
d
a
ta
se
t

P
h
ys
ic
ia
n
s
d
a
ta
se
t

A
d
vo
ga
to

d
a
ta
se
t

S
ee
d
si
ze
k

1
5

1
0

1
5

1
5

1
0

1
5

1
5

1
0

1
5

T
h
is

w
or
k
(α

=
0
.0
1)

3.
4

10
.6

1
5
.8

2
0
.2

2
.4

1
1
.5

2
1
.0

2
9
.3

2
,2
6
0
.8

2
,2
7
0
.1

2
,2
7
5
.0

2
,2
8
2
.1

G
re
ed
y

3
.5

1
0
.7

1
5
.8

2
0
.4

2
.5

1
1
.5

2
1
.2

2
9
.3

2
,2
6
2
.2

2
,2
6
8
.9

2
,2
7
5
.5

2
,2
8
1
.6

D
eg
re
e

3
.5

10
.5

1
4
.6

1
8
.9

2
.3

1
1
.5

1
9
.7

2
8
.2

2
,2
6
4
.7

2
,2
6
4
.7

2
,2
6
4
.7

2
,2
6
4
.7

R
an

d
om

1.
6

7.
8

1
4
.2

1
9
.4

2
.0

9
.3

1
7
.3

2
3
.9

5
8
4
.8

2
,1
8
2
.9

2
,2
7
1
.0

2
,2
7
4
.2

140

Table 8.5: Number of positive weights of portfolios obtained by our method
(α = 0.01, owc).

Seed size k 1 5 10 15

Karate dataset 9 31 36 30
Physicians dataset 10 39 42 45
Advogato dataset 5 36 44 51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

F
re

q
u

en
cy

Cascade size

This work
Greedy
Degree
Random

(a) Seed size k = 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60

F
re

q
u

en
cy

Cascade size

This work
Greedy
Degree
Random

(b) Seed size k = 5

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50 60 70

F
re

q
u

en
cy

Cascade size

This work
Greedy
Degree
Random

(c) Seed size k = 10

Figure 8.2: Histogram of cascade sizes for portfolios constructed by each algo-
rithm on Physicians (α = 0.01, owc).

141

10

12

15
21

22

25

26

27

31

1

2
3

4

5

6

7

8

9

11

131416

17

18

19
20

23

24

28

29
30

32

33
34

0.00

0.25

0.20

0.15

0.10

0.05

v πv

12 0.233
27 0.133
10 0.100
15 0.100
21 0.100
22 0.100
25 0.100
26 0.100
31 0.033

Figure 8.3: Visualization of Karate network. Each vertex is colored according to
its portfolio weight (α = 0.01, owc).

142

Chapter 9

Conclusions

In this thesis, we studied the influence maximization problem, which is a central
graph problem in computational social influence. While influence maximization
has been made more suitable for practical situations, solving itself has remained
as a difficult task. This difficulty comes from the massive scale of today’s real-
world networks and the probabilistic nature of diffusion process. We approached
these issues with algorithmic studies in two aspects.

Efficient Computation

Summary. In the first aspect, we explored how to boost influence maximization
in practice. Our tool for this purpose was the empirical observation of diffusive
behaviors (Chapter 4). We conducted intensive experimental studies in order to
grasp the trend of the diffusion process on real-world networks. In particular, we
revealed the differences between the strategies of influence probability assignment,
unweighted and degree-weighted. Then, we exploited the empirical observations
to devise efficient algorithms under various situations. First, we proposed a fast
influence maximization algorithm (Chapter 5). Our observation told us that
descendant counting – the most challenging part – can be solved more quickly by
using a simple linear-time preprocessing. We experimentally confirmed that the
proposed technique plays a critical role in performance improvements.

Next, we developed a dynamic indexing algorithm for real-time influence anal-
ysis in evolving networks (Chapter 6). We first designed an index structure, query
algorithm for influence maximization, and vanilla update algorithm for an index,
and devised theoretical analysis. Then, we exploited our observation to speed-up
index update algorithms. We experimentally verified that our speed-up tech-
niques enabled our indexing algorithm to track dynamically-changing networks.

Then, we presented a reduction algorithm for massive influence networks
(Chapter 7). Our observation provided a guideline to identify which part of
influence graphs is redundant. We designed a coarsening strategy for influence
graph reduction and the corresponding algorithms. We demonstrated that our
coarsening strategy produced smaller graphs, and running influence maximization
on them was much faster than on the input graph.

Throughout these applications, we demonstrated the effectiveness of our ap-
proach.

Future directions. While most of the previous research has aimed at the de-
velopment of the single state-of-the-art, we observed that the best algorithm is
different for different problem instances. This was first revealed in the bench-
marking study paper of Arora, Galhotra, and Ranu [12]. Since its publication,

143

researchers have been actively discussing this fact [13, 130]. Then, we need a
systematic way for automatically choosing an appropriate algorithm according
to an instance of influence maximization. Chapter 5 and [12] provide a guideline
for such a selection strategy.

In addition, one may be interested in handling other diffusion models. For
example, whereas it is not difficult to extend our methods for another well-
established model called linear threshold, where the diffusion process is equiv-
alent to the reachability on random graphs like the independent cascade model,
our methods cannot directly manage time-independent activation trials.

Effective Strategies

Summary. In the second aspect, we aimed at answering the question “what is
an effective strategy for influence diffusion?” We considered an effective strat-
egy should avoid a risk ending with a few influenced individuals. To this end,
we employed portfolio optimization to optimize the conditional value at risk –
a common approach for risk aversion – and presented the corresponding algo-
rithm (Chapter 8). We found that our approach yielded a low-risk strategy while
standard influence maximization was not able to resolve that risk.

Future directions. While our algorithm was able to construct a risk-averse
portfolio on vertex sets that achieves a higher conditional value at risk compared
to a single vertex set, we still have a number of possible choices for both the
objective function (e.g., the conditional value at risk) and the representation of
solutions (e.g., portfolios on sets). We need further investigation from several
aspects, e.g., how easy to interpret the solution is. For example, Wilder [186]
proposes to maximize the conditional value at risk of continuous submodular
functions, where we are able to assign a continuous value to each element in the
ground set.

144

References

[1] Gnu octave. https://www.gnu.org/software/octave/.

[2] https://www.statisticbrain.com/instagram-company-statistics/.
Accessed on December 1st, 2017.

[3] Influence maximization for social good. http://teamcore.usc.edu/

people/SocialGood/. Accessed on Devember 7th, 2017.

[4] https://www.statisticbrain.com/youtube-statistics/. Accessed on
December 1st, 2017.

[5] Twitter usage statistics, 2017. URL http://www.internetlivestats.

com/twitter-statistics/. Accessed on December 1st, 2017.

[6] An exhaustive study of twitter users across the world, 2017. URL http:

//www.beevolve.com/twitter-statistics/. Accessed on December 1st,
2017.

[7] Bruno D. Abrahao, Flavio Chierichetti, Robert Kleinberg, and Alessandro
Panconesi. Trace complexity of network inference. In KDD – Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 491–499, 2013.

[8] Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall.
Journal of Banking & Finance, 26(7):1487–1503, 2002.

[9] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumera-
tion of maximal k-edge-connected subgraphs in large networks by random
contraction. In CIKM – Proceedings of the 22nd ACM International Con-
ference on Information and Knowledge Management, pages 909–918, 2013.

[10] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influence
and correlation in social networks. In KDD – Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 7–15, 2008.

[11] Akhil Arora, Galhotra Sainyam, and Ranu Sayan. im benchmarking repos-
itory. https://github.com/sigdata/im_benchmarking. Accessed on
September 30th, 2017.

[12] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. Debunking the myths of
influence maximization: An in-depth benchmarking study. In SIGMOD –
Proceedings of the 43rd ACM SIGMOD International Conference on Man-
agement of Data, pages 651–666, 2017.

[13] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. Refutations to ”refu-
tations on debunking the myths of influence maximization: An in-depth
benchmarking study”. Technical report, 2017.

145

https://www.gnu.org/software/octave/
https://www.statisticbrain.com/instagram-company-statistics/
http://teamcore.usc.edu/people/SocialGood/
http://teamcore.usc.edu/people/SocialGood/
https://www.statisticbrain.com/youtube-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://www.beevolve.com/twitter-statistics/
http://www.beevolve.com/twitter-statistics/
https://github.com/sigdata/im_benchmarking

[14] Sanjeev Arora, Elad Hazan, and Satyen Kale. o(
√
log n) approximation to

sparsest cut in Õ(n2) time. SIAM Journal on Computing, 39(5):1748–1771,
2010.

[15] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: A meta-algorithm and applications. Theory of Computing,
8(1):121–164, 2012.

[16] Philippe Artzner, Freddy Delbaen, Jean Marc Eber, and David Heath.
Coherent measures of risk. Mathematical Finance, 9(3):203–228, 1999.

[17] Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada A. Adamic.
The role of social networks in information diffusion. InWWW – Proceedings
of the 21st International Conference on World Wide Web, pages 519–528,
2012.

[18] Michael O. Ball. Complexity of network reliability computations. Networks,
10(2):153–165, 1980.

[19] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[20] Nicola Barbieri and Francesco Bonchi. Influence maximization with viral
product design. In SDM – Proceedings of the 14th SIAM International
Conference on Data Mining, pages 55–63, 2014.

[21] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Topic-aware social
influence propagation models. In ICDM – Proceedings of the 12th IEEE
International Conference on Data Mining, pages 81–90, 2012.

[22] Frank M. Bass. A new product growth model for consumer durables. Man-
agement Science, 15(5):215–227, 1969.

[23] Jonathan Berry, William E. Hart, Cynthia A. Phillips, James G. Uber,
and Jean-Paul Watson. Sensor placement in municipal water networks
with temporal integer programming models. Journal of Water Resources
Planning and Management, 132(4):218–224, 2006.

[24] Garrett Birkhoff. On the combination of subalgebras. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 29(4):441–464, 1933.

[25] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compres-
sion techniques. In WWW – Proceedings of the 13th International Confer-
ence on World Wide Web, pages 595–602, 2004.

[26] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Lay-
ered label propagation: A multiresolution coordinate-free ordering for com-
pressing social networks. In WWW – Proceedings of the 20th International
Conference on World Wide Web, pages 587–596, 2011.

[27] Michele Borassi. Algorithms for metric properties of large real-world net-
works from theory to practice and back. PhD thesis, IMT School for Ad-
vanced Studies Lucca, 2016.

[28] Michele Borassi. A note on the complexity of computing the number of
reachable vertices in a digraph. Information Processing Letters, 116(10):
628–630, 2016.

146

[29] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier.
Maximizing social influence in nearly optimal time. In SODA – Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
946–957, 2014.

[30] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan
Lucier. Maximizing social influence in nearly optimal time. CoRR,
abs/1212.0884v5, 2016.

[31] Yuri Boykov and Marie-Pierre Jolly. Interactive graph cuts for optimal
boundary & region segmentation of objects in n-d images. In ICCV –
Proceedings of the 8th International Conference on Computer Vision, pages
105–112, 2001.

[32] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L.
Wiener. Graph structure in the web. Computer Networks, 33(1-6):309–
320, 2000.

[33] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the spread
of misinformation in social networks. In WWW – Proceedings of the 20th
International Conference on World Wide Web, pages 665–674, 2011.

[34] Javier Calatrava and Alberto Garrido. Spot water markets and risk in
water supply. Agricultural Economics, 33(2):131–143, 2005.

[35] Meeyoung Cha, Mislove. Alan, and Krishna P. Gummadi. A measurement-
driven analysis of information propagation in the flickr social network. In
WWW – Proceedings of the 18th International Conference on World Wide
Web, pages 721–730, 2009.

[36] Vineet Chaoji, Sayan Ranu, Rajeev Rastogi, and Rushi Bhatt. Recommen-
dations to boost content spread in social networks. In WWW – Proceedings
of the 21st International Conference on World Wide Web, pages 529–538,
2012.

[37] Ning Chen. On the approximability of influence in social networks. In
SODA – Proceedings of the 19th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 1029–1037, 2008.

[38] Ning Chen. On the approximability of influence in social networks. SIAM
Journal on Discrete Mathematics, 23(3):1400–1415, 2009.

[39] Wei Chen. Computational social influence. In SocInf – Proceedings of the
1st International Workshop on Social Influence Analysis, pages 1–1, 2015.

[40] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization
in social networks. In KDD – Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
199–208, 2009.

[41] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization
for prevalent viral marketing in large-scale social networks. In KDD – Pro-
ceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1029–1038, 2010.

147

[42] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in
social networks under the linear threshold model. In ICDM – Proceedings
of the 10th IEEE International Conference on Data Mining, pages 88–97,
2010.

[43] Wei Chen, Wei. Lu, and Ning Zhang. Time-critical influence maximization
in social networks with time-delayed diffusion process. In AAAI – Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence, pages 592–598,
2012.

[44] Wei Chen, Laks V.S. Lakshmanan, and Carlos Castillo. Information and
Influence Propagation in Social Networks. Synthesis Lectures on Data Man-
agement. Morgan & Claypool Publishers, 2013.

[45] Yi-Cheng Chen, Wen-Chih Peng, and Suh-Yin Lee. Efficient algorithms
for influence maximization in social networks. Knowledge and Information
Systems, 33(3):577–601, 2012.

[46] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi
Cheng. StaticGreedy: Solving the scalability-accuracy dilemma in influence
maximization. In CIKM – Proceedings of the 22nd ACM International
Conference on Information and Knowledge Management, pages 509–518,
2013.

[47] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng.
IMRank: Influence maximization via finding self-consistent ranking. In
SIGIR – Proceedings of the 37th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 475–484, 2014.

[48] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. One trillion edges: Graph processing at
Facebook-scale. Proceedings of the VLDB Endowment, 8(12):1804–1815,
2015.

[49] Edith Cohen. Size-estimation framework with applications to transitive
closure and reachability. Journal of Computer and System Sciences, 55(3):
441–453, 1997.

[50] Edith Cohen. All-distances sketches, revisited: HIP estimators for mas-
sive graphs analysis. In PODS – Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages
88–99, 2014.

[51] Edith Cohen and Haim Kaplan. Summarizing data using bottom-k
sketches. In PODC – Proceedings of the 26th Annual ACM Symposium
on Principles of Distributed Computing, pages 225–234, 2007.

[52] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F Werneck.
Sketch-based influence maximization and computation: Scaling up with
guarantees. In CIKM – Proceedings of the 23rd ACM International Con-
ference on Information and Knowledge Management, pages 629–638, 2014.

[53] James S. Coleman, Elihu Katz, and Herbert Menzel. Medical Innovation:
A Diffusion Study. Bobbs Merrill, 1966.

148

[54] Biru Cui, Shanchieh Jay Yang, and Christopher Homan. Non-independent
cascade formation: Temporal and spatial effects. In CIKM – Proceedings
of the 23rd ACM International Conference on Information and Knowledge
Management, pages 1923–1926, 2014.

[55] Erik D. Demaine, Hajiaghayi. MohammadTaghi, Hamid Mahini, David L.
Malec, S. Raghavan, Anshul Sawant, and Morteza Zadimoghaddam. How
to influence people with partial incentives. In WWW – Proceedings of the
23rd International Conference on World Wide Web, pages 937–948, 2014.

[56] Luke Dickens, Ian Molloy, Jorge Lobo, Pau-Chen Cheng, and Alessandra
Russo. Learning stochastic models of information flow. In ICDE – Pro-
ceedings of the 28th International Conference on Data Engineering, pages
570–581, 2012.

[57] Thang Dinh, Hung Nguyen, Preetam Ghosh, and Michael Mayo. Social in-
fluence spectrum with guarantees: Computing more in less time. In CSoNet
– Proceedings of the 4th International Conference on Computational Social
Networks, pages 84–103, 2015.

[58] Pedro Domingos and Matt Richardson. Mining the network value of cus-
tomers. In KDD – Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 57–66, 2001.

[59] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scal-
able influence estimation in continuous-time diffusion networks. In NIPS –
Proceedings of the Advances in Neural Information Processing Systems 26,
pages 3147–3155, 2013.

[60] Nan Du, Yingyu Liang, Maria-Florina Balcan, and Le Song. Influence
function learning in information diffusion networks. In ICML – Proceedings
of the 31st International Conference on Machine Learning, pages 2016–
2024, 2014.

[61] Eyal Even-Dar and Asaf Shapira. A note on maximizing the spread of
influence in social networks. InWINE – Proceedings of the 3rd International
Workshop on Internet and Network Economics, pages 281–286, 2007.

[62] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM – Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 251–262, 1999.

[63] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the
ACM, 45(4):634–652, 1998.

[64] Shanshan Feng, Xuefeng Chen, Gao Cong, Yifeng Zeng, Yeow Meng Chee,
and Yanping Xiang. Influence maximization with novelty decay in social
networks. In AAAI – Proceedings of the 28th AAAI Conference on Artificial
Intelligence, pages 37–43, 2014.

[65] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[66] Satoru Fujishige. Polymatroidal dependence structure of a set of random
variables. Information and Control, 39(1):55–72, 1978.

149

[67] Sainyam Galhotra, Akhil Arora, and Shourya Roy. Holistic influence maxi-
mization: Combining scalability and efficiency with opinion-aware models.
In SIGMOD – Proceedings of the 42nd ACM SIGMOD International Con-
ference on Management of Data, pages 743–758, 2016.

[68] Wojciech Galuba, Karl Aberer, Dipanjan Chakraborty, Zoran Despotovic,
and Wolfgang Kellerer. Outtweeting the twitterers - predicting information
cascades in microblogs. In WOSN – Proceedings of the 3rd Wonference on
Online Social Networks, 2010.

[69] David L Gibbs and Ilya Shmulevich. Solving the influence maximization
problem reveals regulatory organization of the yeast cell cycle. PLoS com-
putational biology, 13(6):e1005591, 2017.

[70] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Market-
ing Letters, 12(3):211–223, 2001.

[71] Jacob Goldenberg, Barak Libai, and Eitan Muller. Using complex systems
analysis to advance marketing theory development: Modeling heterogene-
ity effects on new product growth through stochastic cellular automata.
Academy of Marketing Science Review, 9(3):1–18, 2001.

[72] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory
and applications in active learning and stochastic optimization. Journal of
Artificial Intelligence Research, 42:427–486, 2011.

[73] Manuel Gomez-Rodriguez and Bernhard Schölkopf. Influence maximization
in continuous time diffusion networks. In ICML – Proceedings of the 29th
International Conference on Machine Learning, pages 313–320, 2012.

[74] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring
networks of diffusion and influence. In KDD – Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 1019–1028, 2010.

[75] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring
networks of diffusion and influence. In KDD – Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 1019–1028, 2010.

[76] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. Un-
covering the temporal dynamics of diffusion networks. In ICML – Pro-
ceedings of the 28th International Conference on Machine Learning, pages
561–568, 2011.

[77] Manuel Gomez-Rodriguez, Le Song, Hadi Daneshmand, and Bernhard
Schölkopf. Estimating diffusion networks: Recovery conditions, sample
complexity and soft-thresholding algorithm. Journal of Machine Learning
Research, 17:90:1–90:29, 2016.

[78] Amit Goyal. Source code release of amit goyal’s home page. https://

www.cs.ubc.ca/~goyal/code-release.php. Accessed on September 30th,
2017.

150

https://www.cs.ubc.ca/~goyal/code-release.php
https://www.cs.ubc.ca/~goyal/code-release.php

[79] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning in-
fluence probabilities in social networks. In WSDM – Proceedings of the 3rd
ACM International Conference on Web Search and Data Mining, pages
241–250, 2010.

[80] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. CELF++: Optimizing
the greedy algorithm for influence maximization in social networks. In
WWW – Proceedings of the 20th International Conference on World Wide
Web, pages 47–48, 2011.

[81] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. SIMPATH: An efficient
algorithm for influence maximization under the linear threshold model. In
ICDM – Proceedings of the 11th IEEE International Conference on Data
Mining, pages 211–220, 2011.

[82] Amit Goyal, Francesco Bonchi, Laks V. S. Lakshmanan, and Suresh
Venkatasubramanian. On minimizing budget and time in influence prop-
agation over social networks. Social Network Analysis and Mining, 3(2):
179–192, 2013.

[83] Mark Granovetter. Threshold models of collective behavior. The American
Journal of Sociology, 83(6):1420–1443, 1978.

[84] Michael D. Grigoriadis and Leonid G. Khachiyan. A sublinear-time ran-
domized approximation algorithm for matrix games. Operations Research
Letters, 18(2):53–58, 1995.

[85] Adrien Guille and Hakim Hacid. A predictive model for the temporal
dynamics of information diffusion in online social networks. In WWW
– Proceedings of the 21st International Conference on World Wide Web,
Companion Volume, pages 1145–1152, 2012.

[86] Jing Guo, Peng Zhang, Chuan Zhou, Yanan Cao, and Li Guo. Personal-
ized influence maximization on social networks. In CIKM – Proceedings
of the 22nd ACM International Conference on Information and Knowledge
Management, pages 199–208, 2013.

[87] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963.

[88] Paul W. Holland and Samuel Leinhardt. Transitivity in structural models
of small groups. Comparative Group Studies, 2(2):107–124, 1971.

[89] John Hopcroft and Robert Tarjan. Efficient algorithms for graph manipu-
lation. Communications of the ACM, 16(6):372–378, 1973.

[90] Keke Huang, Tang Youze, and Xiaokui Xiao. Influence Maximization via
Martingales. https://sourceforge.net/projects/im-imm/, . Accessed
on September 30th, 2017.

[91] Keke Huang, Tang Youze, and Xiaokui Xiao. Tim plus. https://

sourceforge.net/projects/timplus/, . Accessed on September 30th,
2017.

151

https://sourceforge.net/projects/im-imm/
https://sourceforge.net/projects/timplus/
https://sourceforge.net/projects/timplus/

[92] Keke Huang, Sibo Wang, Glenn S. Bevilacqua, Xiaokui Xiao, and Laks
V. S. Lakshmanan. Revisiting the stop-and-stare algorithms for influence
maximization. Proceedings of the VLDB Endowment, 10(9):913–924, 2017.

[93] Mohsen Jamali. http://www.cs.ubc.ca/~jamalim/datasets/. Accessed
on October 7th, 2015.

[94] Qingye Jiang, Guojie Song, Gao Cong, Yu Wang, Wenjun Si, and Kunqing
Xie. Simulated annealing based influence maximization in social networks.
In AAAI – Proceedings of the 25th AAAI Conference on Artificial Intelli-
gence, pages 127–132, 2011.

[95] Kyuri Jo, Inuk Jung, Ji Hwan Moon, and Sun Kim. Influence maximiza-
tion in time bounded network identifies transcription factors regulating
perturbed pathways. Bioinformatics, 32(12):i128–i136, 2016.

[96] Kyomin Jung, Wooram Heo, and Wei Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM – Proceedings of the
12th IEEE International Conference on Data Mining, pages 918–923, 2012.

[97] David R. Karger. A randomized fully polynomial time approximation
scheme for the all-terminal network reliability problem. SIAM Journal
on Computing, 29(2):492–514, 1999.

[98] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of
influence through a social network. In KDD – Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 137–146, 2003.

[99] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a dif-
fusion model for social networks. In ICALP – Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Programming, pages
1127–1138, 2005.

[100] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. Theory of Computing, 11:105–147,
2015.

[101] William O. Kermack and Anderson G. McKendrick. A contribution to the
mathematical theory of epidemics. In Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, volume 115,
pages 700–721, 1927.

[102] Elias Boutros Khalil, Bistra N. Dilkina, and Le Song. Scalable diffusion-
aware optimization of network topology. In KDD – Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1226–1235, 2014.

[103] Sanjeev Khanna and Brendan Lucier. Influence maximization in undirected
networks. In SODA – Proceedings of the 25th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 1482–1496, 2014.

[104] Jinha Kim, Seung-Keol Kim, and Hwanjo Yu. Scalable and parallelizable
processing of influence maximization for large-scale social networks. In
ICDE – Proceedings of the 29th International Conference on Data Engi-
neering, pages 266–277, 2013.

152

http://www.cs.ubc.ca/~jamalim/datasets/

[105] Masahiro Kimura and Kazumi Saito. Tractable models for information
diffusion in social networks. In PKDD – Proceedings of the 10th European
Conference on Principle and Practice of Knowledge Discovery in Databases,
pages 259–271, 2006.

[106] Masahiro Kimura, Kazumi Saito, and Ryohei Nakano. Extracting influ-
ential nodes for information diffusion on a social network. In AAAI –
Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages
1371–1376, 2007.

[107] Masahiro Kimura, Kazumi Saito, and Hiroshi Motoda. Blocking links to
minimize contamination spread in a social network. ACM Transactions on
Knowledge Discovery from Data, 3(2):9:1–9:23, 2009.

[108] Masahiro Kimura, Kazumi Saito, Ryohei Nakano, and Hiroshi Motoda.
Extracting influential nodes on a social network for information diffusion.
Data Mining and Knowledge Discovery, 20(1):70–97, 2010.

[109] Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The
sample average approximation method for stochastic discrete optimization.
SIAM Journal on Optimization, 12(2):479–502, 2002.

[110] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and empirical
studies. Journal of Machine Learning Research, 9:235–284, 2008.

[111] Jérôme Kunegis. KONECT – the Koblenz Network Collection. In WWW
– Proceedings of the 22nd International Conference on World Wide Web,
pages 1343–1350, 2013.

[112] Jérôme Kunegis. Konect Network Dataset – KONECT. http://konect.

uni-koblenz.de/networks/konect, April 2017.

[113] Konstantin Kutzkov, Albert Bifet, Francesco Bonchi, and Aristides Gionis.
Strip: Stream learning of influence probabilities. In KDD – Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 275–283, 2013.

[114] Luigi Laura and Federico Santaroni. Computing strongly connected com-
ponents in the streaming model. In TAPAS – Proceedings of the 1st Inter-
national ICST Conference on Theory and Practice of Algorithms in (Com-
puter) Systems, pages 193–205, 2011.

[115] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart.
Online influence maximization. In KDD – Proceedings of the 21st ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 645–654, 2015.

[116] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[117] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge
Discovery from Data, 1(1):2, 2007.

153

http://konect.uni-koblenz.de/networks/konect
http://konect.uni-koblenz.de/networks/konect
http://snap.stanford.edu/data

[118] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne VanBriesen, and Natalie Glance. Cost-effective outbreak detec-
tion in networks. In KDD – Proceedings of the 13th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
420–429, 2007.

[119] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie S. Glance,
and Matthew Hurst. Cascading behavior in large blog graphs. In SDM
– Proceedings of the 7th SIAM International Conference on Data Mining,
pages 551–556, 2007.

[120] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-
honey. Statistical properties of community structure in large social and
information networks. In WWW – Proceedings of the 17th International
Conference on World Wide Web, pages 695–704, 2008.

[121] Guoliang Li, Shuo Chen, Jianhua Feng, Kian-Lee Tan, and Wen-Syan Li.
Efficient location-aware influence maximization. In SIGMOD – Proceedings
of the 40th ACM SIGMOD International Conference on Management of
Data, pages 87–98, 2014.

[122] Hui Li, Sourav S. Bhowmick, and Aixin Sun. CINEMA: conformity-aware
greedy algorithm for influence maximization in online social networks. In
EDBT – Proceedings of the 16th International Conference on Extending
Database Technology, pages 323–334, 2013.

[123] Xiang Li, J. David Smith, Thang N. Dinh, and My T. Thai. Why approxi-
mate when you can get the exact? optimal targeted viral marketing at scale.
In INFOCOM – Proceedings of the 36th IEEE International Conference on
Computer Communications, pages 1–9, 2017.

[124] Yanhua Li, Wei Chen, Yajun Wang, and Zhi-Li Zhang. Influence diffusion
dynamics and influence maximization in social networks with friend and
foe relationships. In WSDM – Proceedings of the 6th ACM International
Conference on Web Search and Data Mining, pages 657–666, 2013.

[125] Hui Lin and Jeff Bilmes. A class of submodular functions for document
summarization. In ACL-HLT – Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 510–520, 2011.

[126] Hui Lin and Jeff Bilmes. Learning mixtures of submodular shells with
application to document summarization. In UAI – Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence, pages 479–490, 2012.

[127] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. Time constrained influence
maximization in social networks. In ICDM – Proceedings of the 12th IEEE
International Conference on Data Mining, pages 439–448, 2012.

[128] Xiaodong Liu, Mo Li, Shanshan Li, Shaoliang Peng, Xiangke Liao, and Xi-
aopei Lu. IMGPU: GPU-accelerated influence maximization in large-scale
social networks. IEEE Transactions on Parallel and Distributed Systems,
25(1):136–145, 2014.

[129] Wei Lu and Laks V. S. Lakshmanan. Profit maximization over social net-
works. In ICDM – Proceedings of the 12th IEEE International Conference
on Data Mining, pages 479–488, 2012.

154

[130] Wei Lu, Xiaokui Xiao, Amit Goyal, Keke Huang, and Laks V. S. Laksh-
manan. Refutations on ”Debunking the Myths of Influence Maximization:
An In-Depth Benchmarking Study”. CoRR, abs/1705.05144, 2017.

[131] Wei-Xue Lu, Peng Zhang, Chuan Zhou, Chunyi Liu, and Li Gao. Influence
maximization in big networks: An incremental algorithm for streaming
subgraph influence spread estimation. In IJCAI – Proceedings of the 24th
International Joint Conference on Artificial Intelligence, pages 2076–2082,
2015.

[132] Brendan Lucier, Joel Oren, and Yaron Singer. Influence at scale: Dis-
tributed computation of complex contagion in networks. In KDD – Pro-
ceedings of the 21st ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 735–744, 2015.

[133] Hao Ma, Haixuan Yang, Michael R. Lyu, and Irwin King. Mining social
networks using heat diffusion processes for marketing candidates selection.
In CIKM – Proceedings of the 17th ACM International Conference on In-
formation and Knowledge Management, pages 233–242, 2008.

[134] Takanori Maehara. Risk averse submodular utility maximization. Opera-
tions Research Letters, 43(5):526–529, 2015.

[135] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi
Kawarabayashi. Computing personalized pagerank quickly by exploiting
graph structures. Proceedings of the VLDB Endowment, 7(12):1023–1034,
2014.

[136] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91,
1952.

[137] Michael Mathioudakis. http://queens.db.toronto.edu/~mathiou/

spine/. Accessed on October 22nd, 2015.

[138] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis,
and Antti Ukkonen. Sparsification of influence networks. In KDD – Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 529–537, 2011.

[139] Stanley Milgram. The small-world problem. Psychology Today, 1(1):61–67,
1967.

[140] Michel Minoux. Accelerated greedy algorithms for maximizing submodular
set functions. Optimization Techniques, 7:234–243, 1978.

[141] Edward F. Moore. The shortest path through a maze. In Proceedings of
the International Symposium on the Theory of Switching, pages 285–292,
1959.

[142] Elchanan Mossel and Sebastien Roch. Submodularity of influence in social
networks: From local to global. SIAM Journal on Computing, 39(6):2176–
2188, 2010.

[143] Harikrishna Narasimhan, David C. Parkes, and Yaron Singer. Learnability
of influence in networks. In NIPS – Proceedings of the Advances in Neural
Information Processing Systems 28, pages 3186–3194, 2015.

155

http://queens.db.toronto.edu/~mathiou/spine/
http://queens.db.toronto.edu/~mathiou/spine/

[144] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An
analysis of the approximations for maximizing submodular set functions.
Mathematical Programming, 14:265–294, 1978.

[145] Praneeth Netrapalli and Sujay Sanghavi. Learning the graph of epidemic
cascades. In SIGMETRICS – ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Computer
Systems, pages 211–222, 2012.

[146] Hung T. Nguyen and Thang N. Dinh. SSA/D-SSA Influence Maximization
Algorithms. https://github.com/hungnt55/Stop-and-Stare. Accessed
on September 30th, 2017.

[147] Hung T. Nguyen, Thang N. Dinh, and My T. Thai. Cost-aware targeted
viral marketing in billion-scale networks. In INFOCOM – Proceedings of the
35th IEEE International Conference on Computer Communications, pages
1–9, 2016.

[148] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. Stop-and-stare: Op-
timal sampling algorithms for viral marketing in billion-scale networks. In
SIGMOD – Proceedings of the 42nd ACM SIGMOD International Confer-
ence on Management of Data, pages 695–710, 2016.

[149] Hung T. Nguyen, Preetam Ghosh, Michael L. Mayo, and Thang N. Dinh.
Social influence spectrum at scale: Near-optimal solutions for multiple bud-
gets at once. ACM Transactions on Information Systems, 36(2):14:1–14:26,
2017.

[150] Hung T. Nguyen, Tri P. Nguyen, Tam N. Vu, and Thang N. Dinh. Outward
influence and cascade size estimation in billion-scale networks. In SIG-
METRICS – Proceedings of the 2017 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, page 63,
2017.

[151] Hung T. Nguyen, Tri P. Nguyen, Tam N. Vu, and Thang N. Dinh. Outward
influence and cascade size estimation in billion-scale networks. Proceedings
of the ACM on Measurement and Analysis of Computing Systems, 1(1):
20:1–20:30, 2017.

[152] Hung T. Nguyen, My T. Thai, and Thang N. Dinh. A billion-scale approx-
imation algorithm for maximizing benefit in viral marketing. IEEE/ACM
Transactions on Networking, 25(4):2419–2429, 2017.

[153] Huy Nguyen and Rong Zheng. Influence spread in large-scale social net-
works — a belief propagation approach. In ECML PKDD – Proceedings
of the 2012 European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 515–530, 2012.

[154] Huy Nguyen and Rong Zheng. On budgeted influence maximization in
social networks. IEEE Journal on Selected Areas in Communications, 31
(6):1084–1094, 2013.

[155] Naoto Ohsaka and Yuichi Yoshida. Portfolio optimization for influence
spread. In WWW – Proceedings of the 26th International Conference on
World Wide Web, pages 977–985, 2017. doi: 10.1145/3038912.3052628.
URL http://doi.acm.org/10.1145/3038912.3052628.

156

https://github.com/hungnt55/Stop-and-Stare
http://doi.acm.org/10.1145/3038912.3052628

[156] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi
Kawarabayashi. Fast and accurate influence maximization on large
networks with pruned monte-carlo simulations. In AAAI – Proceedings of
the 28th AAAI Conference on Artificial Intelligence, pages 138–144, 2014.

[157] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi
Kawarabayashi. Dynamic influence analysis in evolving networks. Pro-
ceedings of the VLDB Endowment, 9(12):1077–1088, 2016. doi: 10.14778/
2994509.2994525. URL http://dx.doi.org/10.14778/2994509.2994525.

[158] Naoto Ohsaka, Tomohiro Sonobe, Sumio Fujita, and Ken-ichi
Kawarabayashi. Coarsening massive influence networks for scalable dif-
fusion analysis. In SIGMOD – Proceedings of the 43rd ACM SIGMOD In-
ternational Conference on Management of Data, pages 635–650, 2017. doi:
10.1145/3035918.3064045. URL http://doi.acm.org/10.1145/3035918.

3064045.

[159] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation
algorithms for fractional packing and covering problems. In FOCS – Pro-
ceedings of the IEEE 32nd Annual Symposium on Foundations of Computer
Science, pages 495–504, 1991.

[160] B. Aditya Prakash. http://people.cs.vt.edu/~badityap/CODE/

coarsenet.tgz. Accessed on October 22nd, 2015.

[161] Manish Purohit, B. Aditya Prakash, Chanhyun Kang, Yao Zhang, and
V.S. Subrahmanian. Fast influence-based coarsening for large networks. In
KDD – Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1296–1305, 2014.

[162] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites
for viral marketing. In KDD – Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
61–70, 2002.

[163] R T Rockafellar and S Uryasev. Optimization of conditional value-at-risk.
Journal of Risk, 2:21–42, 2000.

[164] R Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for
general loss distributions. Journal of Banking & Finance, 26(7):1443–1471,
2002.

[165] Everett M. Rogers. Diffusion of Innovations. Free Press, 1962.

[166] Bryce Ryan and Neal C. Gross. The diffusion of hybrid seed corn in two
iowa communities. Rural Sociology, 8(1):15–24, 1943.

[167] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of in-
formation diffusion probabilities for independent cascade model. In KES
– Proceedings of the 12th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems, pages 67–75, 2008.

[168] Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda.
Learning continuous-time information diffusion model for social behavioral
data analysis. In ACML – Proceedings of the 1st Asian Conference on
Machine Learning, pages 322–337, 2009.

157

http://dx.doi.org/10.14778/2994509.2994525
http://doi.acm.org/10.1145/3035918.3064045
http://doi.acm.org/10.1145/3035918.3064045
http://people.cs.vt.edu/~badityap/CODE/coarsenet.tgz
http://people.cs.vt.edu/~badityap/CODE/coarsenet.tgz

[169] Kazumi Saito, Kouzou Ohara, Yuki Yamagishi, Masahiro Kimura, and Hi-
roshi Motoda. Learning diffusion probability based on node attributes in
social networks. In ISMIS – Proceedings of the 19th International Sympo-
sium on Methodologies for Intelligent Systems, pages 153–162, 2011.

[170] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel
random numbers: as easy as 1, 2, 3. In SC – Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1–12, 2011.

[171] Thomas C. Schelling. Micromotives and Macrobehavior. Norton, 1978.

[172] Micha Sharir. A strong-connectivity algorithm and its applications in data
flow analysis. Computers and Mathematics with Applications, 7(1):67–72,
1981.

[173] Dravyansh Sharma, Ashish Kapoor, and Amit Deshpande. On greedy max-
imization of entropy. In ICML – Proceedings of the 32nd International
Conference on Machine Learning, pages 1330–1338, 2015.

[174] Matthew J. Streeter and Daniel Golovin. An online algorithm for maxi-
mizing submodular functions. In NIPS – Proceedings of the Advances in
Neural Information Processing Systems 21, pages 1577–1584, 2008.

[175] Mani R. Subramani and Balaji Rajagopalan. Knowledge-sharing and influ-
ence in online social networks via viral marketing. Communications of the
ACM, 46(12):300–307, 2003.

[176] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In SIGMOD –
Proceedings of the 40th ACM SIGMOD International Conference on Man-
agement of Data, pages 75–86, 2014.

[177] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influence maximization in
near-linear time: A martingale approach. In SIGMOD – Proceedings of the
41st ACM SIGMOD International Conference on Management of Data,
pages 1539–1554, 2015.

[178] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[179] Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos,
and Christos Faloutsos. Gelling, and melting, large graphs by edge manip-
ulation. In CIKM – Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, pages 245–254, 2012.

[180] Jeffrey Travers and Stanley Milgram. An experimental study of the small
world problem. Sociometry, 32:425–443, 1969.

[181] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

[182] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization
for independent cascade model in large-scale social networks. Data Mining
and Knowledge Discovery, 25(3):545–576, 2012.

158

[183] Xiaoyang Wang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Distance-
aware influence maximization in geo-social network. In ICDE – Proceedings
of the 32nd International Conference on Data Engineering, pages 1–12,
2016.

[184] Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. Community-based
greedy algorithm for mining top-k influential nodes in mobile social net-
works. In KDD – Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1039–1048,
2010.

[185] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, 393(6684):440–442, 1998.

[186] Bryan Wilder. Risk-sensitive submodular optimization. In AAAI – Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018. To
appear.

[187] Amulya Yadav, Hau Chan, Albert Xin Jiang, Haifeng Xu, Eric Rice, and
Milind Tambe. Using social networks to aid homeless shelters: Dynamic
influence maximization under uncertainty. In AAMAS – Proceedings of
the 15th International Conference on Autonomous Agents and Multiagent
Systems, pages 740–748, 2016.

[188] Amulya Yadav, Bryan Wilder, Eric Rice, Robin Petering, Jaih Craddock,
Amanda Yoshioka-Maxwell, Mary Hemler, Laura Onasch-Vera, Milind
Tambe, and Darlene Woo. Influence maximization in the field: The ar-
duous journey from emerging to deployed application. In AAMAS – Pro-
ceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems, pages 150–158, 2017.

[189] Yu Yang, Enhong Chen, Qi Liu, Biao Xiang, Tong Xu, and Shafqat Ali
Shad. On approximation of real-world influence spread. In ECML PKDD
– Proceedings of the 2012 European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, pages 548–
564, 2012.

[190] Miao Zhang, Chunni Dai, Chris Ding, and Enhong Chen. Probabilistic so-
lutions of influence propagation on social networks. In CIKM – Proceedings
of the 22nd ACM International Conference on Information and Knowledge
Management, pages 429–438, 2013.

[191] Chuan Zhou, Peng Zhang, Jing Guo, Xingquan Zhu, and Li Guo. Ublf:
An upper bound based approach to discover influential nodes in social net-
works. In ICDM – Proceedings of the 13th IEEE International Conference
on Data Mining, pages 907–916, 2013.

[192] Chuan Zhou, Peng Zhang, Jing Guo, and Li Guo. An upper bound based
greedy algorithm for mining top-k influential nodes in social networks. In
WWW – Proceedings of the 23rd International Conference on World Wide
Web, Companion Volume, pages 421–422, 2014.

[193] Chuan Zhou, Peng Zhang, Wenyu Zang, and Li Guo. Maximizing the long-
term integral influence in social networks under the voter model. In WWW
– Proceedings of the 23rd International Conference on World Wide Web,
Companion Volume, pages 423–424, 2014.

159

[194] Tao Zhou, Jiuxin Cao, Bo Liu, Shuai Xu, Ziqing Zhu, and Junzhou Luo.
Location-based influence maximization in social networks. In CIKM – Pro-
ceedings of the 24th ACM International Conference on Information and
Knowledge Management, pages 1211–1220, 2015.

160

Appendix A

Additional Experimental Results in

Chapter 4

We here provide complete experimental results performed in Chapter 4. Fig-
ures A.1–A.18 show the size distribution of reachable sets for each configuration
of network and influence probability setting. Figures A.19–A.32 show the scatter
plot of the structure of RR sets for each configuration of network and influence
probability setting.

161

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(a) ca-GrQc (uc0.1)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(b) ca-GrQc (uc0.01)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(c) ca-GrQc (tri)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(d) ca-GrQc (exp0.1)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(e) ca-GrQc (exp0.01)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(f) ca-GrQc (iwc)

20

22

24

26

28

210

212

20 21 22 23 24 25 26 27 28

F
re

qu
en

cy

Cascade size

(g) ca-GrQc (owc)

Figure A.1: Size distribution of reachable sets in ca-GrQc network.

162

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(a) ca-HepTh (uc0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(b) ca-HepTh (uc0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(c) ca-HepTh (tri)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(d) ca-HepTh (exp0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(e) ca-HepTh (exp0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(f) ca-HepTh (iwc)

20

22

24

26

28

210

212

214

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(g) ca-HepTh (owc)

Figure A.2: Size distribution of reachable sets in ca-HepTh network.

163

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(a) wiki-Vote (uc0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(b) wiki-Vote (uc0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(c) wiki-Vote (tri)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(d) wiki-Vote (exp0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(e) wiki-Vote (exp0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(f) wiki-Vote (iwc)

20

22

24

26

28

210

212

20 22 24 26 28 210

F
re

qu
en

cy

Cascade size

(g) wiki-Vote (owc)

Figure A.3: Size distribution of reachable sets in wiki-Vote network.

164

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(a) ca-HepPh (uc0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(b) ca-HepPh (uc0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(c) ca-HepPh (tri)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(d) ca-HepPh (exp0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(e) ca-HepPh (exp0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(f) ca-HepPh (iwc)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(g) ca-HepPh (owc)

Figure A.4: Size distribution of reachable sets in ca-HepPh network.

165

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) soc-Epinions1 (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) soc-Epinions1 (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) soc-Epinions1 (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) soc-Epinions1 (exp0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) soc-Epinions1 (exp0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(f) soc-Epinions1 (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(g) soc-Epinions1 (owc)

Figure A.5: Size distribution of reachable sets in soc-Epinions1 network.

166

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) soc-Slashdot0922 (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) soc-Slashdot0922 (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) soc-Slashdot0922 (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) soc-Slashdot0922 (exp0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) soc-Slashdot0922 (exp0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(f) soc-Slashdot0922 (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(g) soc-Slashdot0922 (owc)

Figure A.6: Size distribution of reachable sets in soc-Slashdot0922 network.

167

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) web-NotreDame (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) web-NotreDame (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) web-NotreDame (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) web-NotreDame (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) web-NotreDame (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(f) web-NotreDame (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(g) web-NotreDame (owc)

Figure A.7: Size distribution of reachable sets in web-NotreDame network.

168

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(a) ego-Twitter (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(b) ego-Twitter (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(c) ego-Twitter (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(d) ego-Twitter (exp0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(e) ego-Twitter (exp0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(f) ego-Twitter (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(g) ego-Twitter (owc)

Figure A.8: Size distribution of reachable sets in ego-Twitter network.

169

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(a) loc-Gowalla (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(b) loc-Gowalla (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(c) loc-Gowalla (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(d) loc-Gowalla (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(e) loc-Gowalla (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(f) loc-Gowalla (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(g) loc-Gowalla (owc)

Figure A.9: Size distribution of reachable sets in loc-Gowalla network.

170

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(a) web-Stanford (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(b) web-Stanford (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(c) web-Stanford (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(d) web-Stanford (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(e) web-Stanford (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(f) web-Stanford (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214

F
re

qu
en

cy

Cascade size

(g) web-Stanford (owc)

Figure A.10: Size distribution of reachable sets in web-Stanford network.

171

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(a) wiki-Talk (uc0.1)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(b) wiki-Talk (uc0.01)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(c) wiki-Talk (tri)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(d) wiki-Talk (exp0.1)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(e) wiki-Talk (exp0.01)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(f) wiki-Talk (iwc)

20

25

210

215

220

20 22 24 26 28 210212214216218

F
re

qu
en

cy

Cascade size

(g) wiki-Talk (owc)

Figure A.11: Size distribution of reachable sets in wiki-Talk network.

172

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(a) web-Google (uc0.1)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(b) web-Google (uc0.01)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(c) web-Google (tri)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(d) web-Google (exp0.1)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(e) web-Google (exp0.01)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(f) web-Google (iwc)

20

25

210

215

220

20 22 24 26 28 210 212

F
re

qu
en

cy

Cascade size

(g) web-Google (owc)

Figure A.12: Size distribution of reachable sets in web-Google network.

173

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(a) com-Youtube (uc0.1)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(b) com-Youtube (uc0.01)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(c) com-Youtube (tri)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(d) com-Youtube (exp0.1)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(e) com-Youtube (exp0.01)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(f) com-Youtube (iwc)

20

25

210

215

220

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(g) com-Youtube (owc)

Figure A.13: Size distribution of reachable sets in com-Youtube network.

174

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(a) web-BerkStan (uc0.1)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(b) web-BerkStan (uc0.01)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(c) web-BerkStan (tri)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(d) web-BerkStan (exp0.1)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(e) web-BerkStan (exp0.01)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(f) web-BerkStan (iwc)

20

25

210

215

220

20 22 24 26 28 210 212 214 216

F
re

qu
en

cy

Cascade size

(g) web-BerkStan (owc)

Figure A.14: Size distribution of reachable sets in web-BerkStan network.

175

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(a) higgs-twitter (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(b) higgs-twitter (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(c) higgs-twitter (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(d) higgs-twitter (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(e) higgs-twitter (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(f) higgs-twitter (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210 212 214 216 218

F
re

qu
en

cy

Cascade size

(g) higgs-twitter (owc)

Figure A.15: Size distribution of reachable sets in higgs-twitter network.

176

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(a) soc-Pokec (uc0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(b) soc-Pokec (uc0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(c) soc-Pokec (tri)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(d) soc-Pokec (exp0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(e) soc-Pokec (exp0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(f) soc-Pokec (iwc)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(g) soc-Pokec (owc)

Figure A.16: Size distribution of reachable sets in soc-Pokec network.

177

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(a) soc-LiveJournal1 (uc0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(b) soc-LiveJournal1 (uc0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(c) soc-LiveJournal1 (tri)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(d) soc-LiveJournal1 (exp0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(e) soc-LiveJournal1 (exp0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(f) soc-LiveJournal1 (iwc)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(g) soc-LiveJournal1 (owc)

Figure A.17: Size distribution of reachable sets in soc-LiveJournal1 network.

178

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(a) com-Orkut (uc0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(b) com-Orkut (uc0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(c) com-Orkut (tri)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(d) com-Orkut (exp0.1)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(e) com-Orkut (exp0.01)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(f) com-Orkut (iwc)

20

25

210

215

220

20 25 210 215 220

F
re

qu
en

cy

Cascade size

(g) com-Orkut (owc)

Figure A.18: Size distribution of reachable sets in com-Orkut network.

179

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) ca-GrQc (uc0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) ca-GrQc (uc0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) ca-GrQc (tri)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) ca-GrQc (exp0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) ca-GrQc (exp0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) ca-GrQc (iwc)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) ca-GrQc (owc)

Figure A.19: Structures of RR sets in ca-GrQc network.

180

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) ca-HepTh (uc0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) ca-HepTh (uc0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) ca-HepTh (tri)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) ca-HepTh (exp0.1)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) ca-HepTh (exp0.01)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) ca-HepTh (iwc)

20

22

24

26

28

210

212

20 22 24 26 28 210 212

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) ca-HepTh (owc)

Figure A.20: Structures of RR sets in ca-HepTh network.

181

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) wiki-Vote (uc0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) wiki-Vote (uc0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) wiki-Vote (tri)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) wiki-Vote (exp0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) wiki-Vote (exp0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) wiki-Vote (iwc)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) wiki-Vote (owc)

Figure A.21: Structures of RR sets in wiki-Vote network.

182

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) ca-HepPh (uc0.1)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) ca-HepPh (uc0.01)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) ca-HepPh (tri)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) ca-HepPh (exp0.1)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) ca-HepPh (exp0.01)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) ca-HepPh (iwc)

20
22
24
26
28

210
212
214
216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) ca-HepPh (owc)

Figure A.22: Structures of RR sets in ca-HepPh network.

183

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-Epinions1 (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-Epinions1 (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-Epinions1 (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-Epinions1 (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-Epinions1 (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) soc-Epinions1 (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) soc-Epinions1 (owc)

Figure A.23: Structures of RR sets in soc-Epinions1 network.

184

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-Slashdot0922 (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-Slashdot0922 (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-Slashdot0922 (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-Slashdot0922 (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-Slashdot0922 (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) soc-Slashdot0922 (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) soc-Slashdot0922 (owc)

Figure A.24: Structures of RR sets in soc-Slashdot0922 network.

185

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) web-NotreDame (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) web-NotreDame (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) web-NotreDame (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) web-NotreDame (exp0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) web-NotreDame (exp0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) web-NotreDame (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) web-NotreDame (owc)

Figure A.25: Structures of RR sets in web-NotreDame network.

186

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) ego-Twitter (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) ego-Twitter (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) ego-Twitter (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) ego-Twitter (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) ego-Twitter (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) ego-Twitter (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) ego-Twitter (owc)

Figure A.26: Structures of RR sets in ego-Twitter network.

187

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) loc-Gowalla (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) loc-Gowalla (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) loc-Gowalla (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) loc-Gowalla (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) loc-Gowalla (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) loc-Gowalla (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) loc-Gowalla (owc)

Figure A.27: Structures of RR sets in loc-Gowalla network.

188

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) web-Stanford (uc0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) web-Stanford (uc0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) web-Stanford (tri)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) web-Stanford (exp0.1)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) web-Stanford (exp0.01)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) web-Stanford (iwc)

20

22

24

26

28

210

212

214

216

20 22 24 26 28 210 212 214 216

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) web-Stanford (owc)

Figure A.28: Structures of RR sets in web-Stanford network.

189

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) wiki-Talk (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) wiki-Talk (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) wiki-Talk (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) wiki-Talk (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) wiki-Talk (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) wiki-Talk (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) wiki-Talk (owc)

Figure A.29: Structures of RR sets in wiki-Talk network.

190

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) web-Google (uc0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) web-Google (uc0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) web-Google (tri)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) web-Google (exp0.1)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) web-Google (exp0.01)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) web-Google (iwc)

20

22

24

26

28

210

212

214

20 22 24 26 28 210 212 214

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) web-Google (owc)

Figure A.30: Structures of RR sets in web-Google network.

191

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) com-Youtube (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) com-Youtube (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) com-Youtube (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) com-Youtube (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) com-Youtube (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) com-Youtube (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) com-Youtube (owc)

Figure A.31: Structures of RR sets in com-Youtube network.

192

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) web-BerkStan (uc0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) web-BerkStan (uc0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) web-BerkStan (tri)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) web-BerkStan (exp0.1)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) web-BerkStan (exp0.01)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) web-BerkStan (iwc)

20
22
24
26
28

210
212
214
216
218

20 22 24 26 28 210212214216218

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) web-BerkStan (owc)

Figure A.32: Structures of RR sets in web-BerkStan network.

193

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) higgs-twitter (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) higgs-twitter (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) higgs-twitter (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) higgs-twitter (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) higgs-twitter (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) higgs-twitter (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) higgs-twitter (owc)

Figure A.33: Structures of RR sets in higgs-twitter network.

194

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-Pokec (uc0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-Pokec (uc0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-Pokec (tri)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-Pokec (exp0.1)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-Pokec (exp0.01)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) soc-Pokec (iwc)

20

25

210

215

220

20 25 210 215 220

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) soc-Pokec (owc)

Figure A.34: Structures of RR sets in soc-Pokec network.

195

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) soc-LiveJournal1 (uc0.1)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) soc-LiveJournal1 (uc0.01)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) soc-LiveJournal1 (tri)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) soc-LiveJournal1 (exp0.1)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) soc-LiveJournal1 (exp0.01)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) soc-LiveJournal1 (iwc)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) soc-LiveJournal1 (owc)

Figure A.35: Structures of RR sets in soc-LiveJournal1 network.

196

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(a) com-Orkut (uc0.1)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(b) com-Orkut (uc0.01)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(c) com-Orkut (tri)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(d) com-Orkut (exp0.1)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(e) com-Orkut (exp0.01)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(f) com-Orkut (iwc)

20

25

210

215

220

225

20 25 210 215 220 225

li

ve
 o

r
bl

oc
ke

d
ed

ge
s

in
 R

R
 s

et
s

vertices in RR sets

(|R|, |L|+|B|)
(|R|, |L|)

(g) com-Orkut (owc)

Figure A.36: Structures of RR sets in com-Orkut network.

197

Appendix B

Additional Experimental Results in

Chapter 5

We here provide complete experimental results performed in Chapter 5. Fig-
ures B.1–B.18 show the influence spread of the solution that each algorithm pro-
duced for each influence probability setting. Figures B.19–B.36 show the running
time of each algorithm each influence probability setting.

198

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) ca-GrQc (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) ca-GrQc (uc0.01)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) ca-GrQc (tri)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) ca-GrQc (exp0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) ca-GrQc (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) ca-GrQc (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) ca-GrQc (owc)

Figure B.1: Influence spread of each algorithm for ca-GrQc network.

199

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) ca-HepTh (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) ca-HepTh (uc0.01)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) ca-HepTh (tri)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) ca-HepTh (exp0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) ca-HepTh (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) ca-HepTh (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) ca-HepTh (owc)

Figure B.2: Influence spread of each algorithm for ca-HepTh network.

200

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) wiki-Vote (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) wiki-Vote (uc0.01)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) wiki-Vote (tri)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) wiki-Vote (exp0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) wiki-Vote (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) wiki-Vote (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) wiki-Vote (owc)

Figure B.3: Influence spread of each algorithm for wiki-Vote network.

201

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) ca-HepPh (uc0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) ca-HepPh (uc0.01)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) ca-HepPh (tri)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) ca-HepPh (exp0.1)

 0⋅100

 2⋅102

 4⋅102

 6⋅102

 8⋅102

 1⋅103

 1⋅103

 1⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) ca-HepPh (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) ca-HepPh (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) ca-HepPh (owc)

Figure B.4: Influence spread of each algorithm for ca-HepPh network.

202

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-Epinions1 (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-Epinions1 (uc0.01)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-Epinions1 (tri)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-Epinions1 (exp0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-Epinions1 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) soc-Epinions1 (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) soc-Epinions1 (owc)

Figure B.5: Influence spread of each algorithm for soc-Epinions1 network.

203

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-Slashdot0922 (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-Slashdot0922 (uc0.01)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-Slashdot0922 (tri)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-Slashdot0922 (exp0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-Slashdot0922 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 5⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) soc-Slashdot0922 (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) soc-Slashdot0922 (owc)

Figure B.6: Influence spread of each algorithm for soc-Slashdot0922 network.

204

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-NotreDame (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-NotreDame (uc0.01)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-NotreDame (tri)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-NotreDame (exp0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-NotreDame (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) web-NotreDame (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) web-NotreDame (owc)

Figure B.7: Influence spread of each algorithm for web-NotreDame network.

205

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 5⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) ego-Twitter (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) ego-Twitter (uc0.01)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) ego-Twitter (tri)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 5⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) ego-Twitter (exp0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) ego-Twitter (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) ego-Twitter (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) ego-Twitter (owc)

Figure B.8: Influence spread of each algorithm for ego-Twitter network.

206

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) loc-Gowalla (uc0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) loc-Gowalla (uc0.01)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) loc-Gowalla (tri)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) loc-Gowalla (exp0.1)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) loc-Gowalla (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) loc-Gowalla (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) loc-Gowalla (owc)

Figure B.9: Influence spread of each algorithm for loc-Gowalla network.

207

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 9⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-Stanford (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-Stanford (uc0.01)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-Stanford (tri)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 9⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-Stanford (exp0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-Stanford (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) web-Stanford (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) web-Stanford (owc)

Figure B.10: Influence spread of each algorithm for web-Stanford network.

208

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) wiki-Talk (uc0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) wiki-Talk (uc0.01)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) wiki-Talk (tri)

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) wiki-Talk (exp0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) wiki-Talk (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 2⋅105

 4⋅105

 6⋅105

 8⋅105

 1⋅106

 1⋅106

 1⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) wiki-Talk (iwc)

 0⋅100

 5⋅102

 1⋅103

 2⋅103

 2⋅103

 2⋅103

 3⋅103

 4⋅103

 4⋅103

 4⋅103

 5⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) wiki-Talk (owc)

Figure B.11: Influence spread of each algorithm for wiki-Talk network.

209

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-Google (uc0.1)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 9⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-Google (uc0.01)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-Google (tri)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-Google (exp0.1)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 9⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-Google (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) web-Google (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 9⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) web-Google (owc)

Figure B.12: Influence spread of each algorithm for web-Google network.

210

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) com-Youtube (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) com-Youtube (uc0.01)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) com-Youtube (tri)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) com-Youtube (exp0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) com-Youtube (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) com-Youtube (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) com-Youtube (owc)

Figure B.13: Influence spread of each algorithm for com-Youtube network.

211

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) web-BerkStan (uc0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) web-BerkStan (uc0.01)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) web-BerkStan (tri)

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) web-BerkStan (exp0.1)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 4⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) web-BerkStan (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) web-BerkStan (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 9⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) web-BerkStan (owc)

Figure B.14: Influence spread of each algorithm for web-BerkStan network.

212

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) higgs-twitter (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) higgs-twitter (uc0.01)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 9⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) higgs-twitter (tri)

 0⋅100

 2⋅104

 4⋅104

 6⋅104

 8⋅104

 1⋅105

 1⋅105

 1⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) higgs-twitter (exp0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) higgs-twitter (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 8⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) higgs-twitter (iwc)

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

 6⋅103

 7⋅103

 8⋅103

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) higgs-twitter (owc)

Figure B.15: Influence spread of each algorithm for higgs-twitter network.

213

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 8⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-Pokec (uc0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-Pokec (uc0.01)

 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-Pokec (tri)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 8⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-Pokec (exp0.1)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-Pokec (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) soc-Pokec (iwc)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 2⋅104

 2⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) soc-Pokec (owc)

Figure B.16: Influence spread of each algorithm for soc-Pokec network.

214

 0⋅100

 2⋅105

 4⋅105

 6⋅105

 8⋅105

 1⋅106

 1⋅106

 1⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) soc-LiveJournal1 (uc0.1)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) soc-LiveJournal1 (uc0.01)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) soc-LiveJournal1 (tri)

 0⋅100

 2⋅105

 4⋅105

 6⋅105

 8⋅105

 1⋅106

 1⋅106

 1⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) soc-LiveJournal1 (exp0.1)

 0⋅100

 1⋅104

 2⋅104

 3⋅104

 4⋅104

 5⋅104

 6⋅104

 7⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) soc-LiveJournal1 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) soc-LiveJournal1 (iwc)

 0⋅100

 2⋅103

 4⋅103

 6⋅103

 8⋅103

 1⋅104

 1⋅104

 1⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) soc-LiveJournal1 (owc)

Figure B.17: Influence spread of each algorithm for soc-LiveJournal1 network.

215

 0⋅100

 5⋅105

 1⋅106

 2⋅106

 2⋅106

 2⋅106

 3⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(a) com-Orkut (uc0.1)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(b) com-Orkut (uc0.01)

 0⋅100

 5⋅105

 1⋅106

 2⋅106

 2⋅106

 2⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(c) com-Orkut (tri)

 0⋅100

 5⋅105

 1⋅106

 2⋅106

 2⋅106

 2⋅106

 3⋅106

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(d) com-Orkut (exp0.1)

 0⋅100

 1⋅105

 2⋅105

 3⋅105

 4⋅105

 5⋅105

 6⋅105

 7⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(e) com-Orkut (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2

Degree
 0⋅100

 5⋅104

 1⋅105

 2⋅105

 2⋅105

 2⋅105

 3⋅105

 4⋅105

 4⋅105

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(f) com-Orkut (iwc)

 0⋅100

 5⋅103

 1⋅104

 2⋅104

 2⋅104

 2⋅104

 3⋅104

 1 10 100 1000

In
fl

ue
nc

e
sp

re
ad

Seed size

(g) com-Orkut (owc)

Figure B.18: Influence spread of each algorithm for com-Orkut network.

216

(a) ca-GrQc (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) ca-GrQc (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) ca-GrQc (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) ca-GrQc (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) ca-GrQc (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) ca-GrQc (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) ca-GrQc (owc)

Figure B.19: Running time of each algorithm for ca-GrQc network.

217

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) ca-HepTh (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) ca-HepTh (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) ca-HepTh (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) ca-HepTh (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) ca-HepTh (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) ca-HepTh (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) ca-HepTh (owc)

Figure B.20: Running time of each algorithm for ca-HepTh network.

218

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) wiki-Vote (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) wiki-Vote (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) wiki-Vote (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) wiki-Vote (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) wiki-Vote (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) wiki-Vote (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) wiki-Vote (owc)

Figure B.21: Running time of each algorithm for wiki-Vote network.

219

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) ca-HepPh (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) ca-HepPh (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) ca-HepPh (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) ca-HepPh (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) ca-HepPh (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) ca-HepPh (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) ca-HepPh (owc)

Figure B.22: Running time of each algorithm for ca-HepPh network.

220

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-Epinions1 (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-Epinions1 (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-Epinions1 (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-Epinions1 (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) soc-Epinions1 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) soc-Epinions1 (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) soc-Epinions1 (owc)

Figure B.23: Running time of each algorithm for soc-Epinions1 network.

221

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-Slashdot0922 (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-Slashdot0922 (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-Slashdot0922 (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-Slashdot0922 (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) soc-Slashdot0922 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) soc-Slashdot0922 (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) soc-Slashdot0922 (owc)

Figure B.24: Running time of each algorithm for soc-Slashdot0922 network.

222

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-NotreDame (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-NotreDame (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-NotreDame (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-NotreDame (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-NotreDame (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) web-NotreDame (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) web-NotreDame (owc)

Figure B.25: Running time of each algorithm for web-NotreDame network.

223

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) ego-Twitter (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) ego-Twitter (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) ego-Twitter (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) ego-Twitter (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) ego-Twitter (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) ego-Twitter (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) ego-Twitter (owc)

Figure B.26: Running time of each algorithm for ego-Twitter network.

224

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) loc-Gowalla (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) loc-Gowalla (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) loc-Gowalla (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) loc-Gowalla (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) loc-Gowalla (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) loc-Gowalla (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) loc-Gowalla (owc)

Figure B.27: Running time of each algorithm for loc-Gowalla network.

225

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-Stanford (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-Stanford (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-Stanford (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-Stanford (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-Stanford (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) web-Stanford (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) web-Stanford (owc)

Figure B.28: Running time of each algorithm for web-Stanford network.

226

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) wiki-Talk (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) wiki-Talk (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) wiki-Talk (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) wiki-Talk (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) wiki-Talk (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) wiki-Talk (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) wiki-Talk (owc)

Figure B.29: Running time of each algorithm for wiki-Talk network.

227

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-Google (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-Google (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-Google (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-Google (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-Google (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) web-Google (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) web-Google (owc)

Figure B.30: Running time of each algorithm for web-Google network.

228

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) com-Youtube (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) com-Youtube (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) com-Youtube (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) com-Youtube (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) com-Youtube (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) com-Youtube (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) com-Youtube (owc)

Figure B.31: Running time of each algorithm for com-Youtube network.

229

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) web-BerkStan (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) web-BerkStan (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) web-BerkStan (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) web-BerkStan (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) web-BerkStan (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) web-BerkStan (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) web-BerkStan (owc)

Figure B.32: Running time of each algorithm for web-BerkStan network.

230

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) higgs-twitter (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) higgs-twitter (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) higgs-twitter (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) higgs-twitter (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) higgs-twitter (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) higgs-twitter (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) higgs-twitter (owc)

Figure B.33: Running time of each algorithm for higgs-twitter network.

231

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-Pokec (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-Pokec (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-Pokec (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-Pokec (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) soc-Pokec (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) soc-Pokec (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) soc-Pokec (owc)

Figure B.34: Running time of each algorithm for soc-Pokec network.

232

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) soc-LiveJournal1 (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) soc-LiveJournal1 (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) soc-LiveJournal1 (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) soc-LiveJournal1 (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) soc-LiveJournal1 (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) soc-LiveJournal1 (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) soc-LiveJournal1 (owc)

Figure B.35: Running time of each algorithm for soc-LiveJournal1 network.

233

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(a) com-Orkut (uc0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(b) com-Orkut (uc0.01)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(c) com-Orkut (tri)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(d) com-Orkut (exp0.1)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(e) com-Orkut (exp0.01)

PMC

CELF++

BSG

SGD

IMM

D-SSA

IRIE

IMRank1

IMRank2
10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(f) com-Orkut (iwc)

10-3

10-2

10-1

100

101

102

103

104

 1 10 100 1000

R
un

ni
ng

 ti
m

e
[s

]

Seed size

(g) com-Orkut (owc)

Figure B.36: Running time of each algorithm for com-Orkut network.

234

Appendix C

Additional Experimental Results in

Chapter 7

This section provides additional experimental results under uc0.1 and iwc. Ta-
ble C.1 shows the run times and memory usages of both Algorithms 7.1 and 7.2.
Table C.2 shows the numbers of vertices and edges, and the corresponding re-
duction ratio. Table C.3 shows the total run time and accuracy of each influence
estimation method. Table C.4 shows the run time and solution quality of each
influence maximization method. For the uc0.1 setting, we observe similar trends
to those for the exp0.1 setting. On the other hand, our coarsening for iwc is not
much effective. It should be noted, however, that both influence estimation and
influence maximization under iwc can be solved quickly as shown in Tables C.3
and C.4.

235

T
ab

le
C
.1
:
R
u
n
ti
m
e
an

d
m
em

or
y
u
sa
ge

of
th
e
p
ro
p
os
ed

al
go

ri
th
m

u
n
d
er

u
c
0
.1
an

d
iw

c
.

u
n
if
o
rm

c
a
sc
a
d
e
(u

c
0
.1
)

in
-d

e
g
re

e
w
e
ig
h
te
d

c
a
sc
a
d
e
(i
w
c
)

li
n
ea
r
sp
ac
e
(A

lg
.
7.
1)

su
b
li
n
ea
r
sp
a
ce

(A
lg
.
7
.2
)

li
n
ea
r
sp
a
ce

(A
lg
.
7
.1
)

su
b
li
n
ea
r
sp
a
ce

(A
lg
.
7
.2
)

d
a
ta

se
t

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ru
n

ti
m
e

m
e
m

u
sa

g
e

ca
-G
rQ

c
0.
02

s
4
M
B

0
.4
5
s

2
M
B

0
.0
3
s

4
M
B

0
.2
1
s

2
M
B

ca
-H

ep
T
h

0.
04

s
6
M
B

0
.3
2
s

2
M
B

0
.0
5
s

6
M
B

0
.3
3
s

2
M
B

w
ik
i-
V
ot
e

0.
11

s
8
M
B

0
.9
3
s

2
M
B

0
.0
4
s

9
M
B

0
.5
8
s

2
M
B

ca
-H

ep
P
h

0.
10

s
14

M
B

1
.3
6
s

3
M
B

0
.0
8
s

1
8
M
B

1
.7
1
s

3
M
B

so
c-
E
p
in
io
n
s1

0.
44

s
38

M
B

3
.2
9
s

1
0
M
B

0
.3
7
s

4
4
M
B

3
.4
0
s

8
M
B

so
c-
S
la
sh
d
ot
09
22

0.
53

s
58

M
B

4
.8
6
s

1
3
M
B

0
.4
8
s

6
8
M
B

5
.2
7
s

9
M
B

w
eb
-N

ot
re
D
am

e
1.
71

s
12
2
M
B

9
.5
4
s

2
8
M
B

1
.6
7
s

1
2
9
M
B

1
0
.0
0
s

2
8
M
B

eg
o-
T
w
it
te
r

0.
85

s
10
4
M
B

1
0
.5
1
s

1
4
M
B

0
.6
5
s

1
1
2
M
B

1
0
.7
7
s

9
M
B

lo
c-
G
ow

al
la

1.
29

s
13
9
M
B

1
1
.3
5
s

2
6
M
B

1
.2
6
s

1
3
0
M
B

1
2
.0
9
s

1
9
M
B

w
eb
-S
ta
n
fo
rd

1.
96

s
15
7
M
B

1
5
.5
4
s

2
6
M
B

2
.0
3
s

1
5
7
M
B

1
4
.8
3
s

2
6
M
B

w
ik
i-
T
al
k

37
.8
9
s

60
3
M
B

6
0
.7
8
s

2
7
0
M
B

3
8
.7
6
s

5
4
5
M
B

5
6
.3
5
s

2
1
7
M
B

w
eb
-G
o
og
le

9.
55

s
34
4
M
B

3
4
.5
6
s

7
5
M
B

1
0
.1
8
s

3
4
4
M
B

3
4
.8
1
s

7
8
M
B

co
m
-Y
ou

tu
b
e

13
.6
8
s

45
2
M
B

3
9
.1
8
s

1
4
7
M
B

1
4
.4
8
s

4
3
0
M
B

4
0
.1
0
s

1
0
0
M
B

w
eb
-B
er
kS

ta
n

6.
30

s
40
1
M
B

4
9
.2
3
s

7
0
M
B

6
.5
6
s

4
0
8
M
B

4
6
.4
7
s

6
3
M
B

h
ig
gs
-t
w
it
te
r

7.
68

s
56
2
M
B

8
7
.8
3
s

8
5
M
B

4
.4
9
s

6
6
6
M
B

8
7
.1
1
s

4
1
M
B

so
c-
P
ok
ec

27
.1
2
s

1,
28
0
M
B

1
8
8
.9
4
s

2
3
7
M
B

2
3
.3
2
s

1
,4
4
8
M
B

2
0
1
.9
5
s

1
4
8
M
B

so
c-
L
iv
eJ
ou

rn
al
1

89
.3
3
s

2,
96
5
M
B

4
5
2
.9
4
s

6
7
6
M
B

8
4
.6
0
s

4
,2
6
5
M
B

4
9
2
.4
9
s

4
3
0
M
B

co
m
-O

rk
u
t

11
2.
78

s
6,
29
2
M
B

1
,3
2
6
.5
1
s

5
2
7
M
B

7
6
.6
5
s

1
0
,0
4
7
M
B

1
,4
6
9
.6
2
s

2
8
4
M
B

tw
it
te
r-
20
10

16
18
.7
4
s

50
,7
89

M
B

1
0
,4
1
9
.0
8
s

5
,6
2
9
M
B

1
,0
7
6
.5
0
s

7
2
,5
6
7
M
B

9
,9
5
5
.6
1
s

3
,4
0
3
M
B

co
m
-F
ri
en
d
st
er

35
37
.5
7
s

10
1,
42
9
M
B

2
2
,6
5
9
.6
4
s

7
,7
1
1
M
B

2
,2
9
3
.7
7
s

1
5
8
,5
9
6
M
B

2
8
,0
6
5
.9
0
s

5
,2
0
3
M
B

u
k-
20
07
-0
5

31
03
.5
8
s

13
6,
57
2
M
B

2
7
,0
2
9
.8
4
s

1
0
,7
7
8
M
B

2
,4
9
1
.0
7
s

1
6
5
,4
2
8
M
B

2
7
,2
3
2
.5
9
s

8
,1
6
8
M
B

am
eb
lo

O
O
M

O
O
M

2
7
,0
1
7
.3
0
s

2
7
,4
7
9
M
B

O
O
M

O
O
M

6
,8
6
0
.4
5
s

2
0
,4
8
8
M
B

236

T
ab

le
C
.2
:
E
ff
ec
t
of

th
e
p
ro
p
os
ed

al
go

ri
th
m

on
gr
ap

h
si
ze

u
n
d
er

u
c
0
.1

an
d
iw

c
.
V

an
d
E

d
en

ot
e
v
er
te
x
an

d
ed

ge
se
ts

of
an

in
p
u
t
g
ra
p
h
,
a
n
d
W

a
n
d
F

d
en

ot
e
v
er
te
x
an

d
ed

ge
se
ts

of
a
co
ar
se
n
ed

gr
ap

h
,
re
sp
ec
ti
v
el
y.

u
n
if
o
rm

c
a
sc
a
d
e
(u

c
0
.1
)

in
-d

e
g
re

e
w
e
ig
h
te
d

c
a
sc
a
d
e
(i
w
c
)

d
a
ta

se
t

|W
|

|W
| /
|V

|
|F
|

|F
| /
|E

|
|W
|

|W
| /
|V

|
|F
|

|F
| /
|E

|

ca
-G
rQ

c
5,
17
8

9
8
.8
%

2
4
,8
7
6

8
5
.9
%

5
,0
6
5

9
6
.6
%

2
8
,6
1
4

9
8
.8
%

ca
-H

ep
T
h

9,
86
8

9
9
.9
%

5
1
,5
3
4

9
9
.2
%

9
,6
1
3

9
7
.3
%

5
1
,4
1
8

9
9
.0
%

w
ik
i-
V
ot
e

6,
97
3

9
8
.0
%

7
4
,9
7
5

7
2
.3
%

7
,1
1
5

1
0
0
.0
%

1
0
3
,6
8
9

1
0
0
.0
%

ca
-H

ep
P
h

10
,7
30

8
9
.4
%

7
6
,6
8
0

3
2
.4
%

1
1
,8
4
8

9
8
.7
%

2
3
6
,6
5
8

9
9
.9
%

so
c-
E
p
in
io
n
s1

74
,0
52

9
7
.6
%

2
2
9
,3
8
9

4
5
.1
%

7
5
,5
2
0

9
9
.5
%

5
0
8
,0
6
6

9
9
.8
%

so
c-
S
la
sh
d
ot
09
22

78
,3
60

9
5
.4
%

3
1
7
,1
1
0

3
6
.4
%

8
2
,1
6
8

1
0
0
.0
%

8
7
0
,1
6
1

1
0
0
.0
%

w
eb
-N

ot
re
D
am

e
32
1,
48
4

9
8
.7
%

1
,0
7
6
,8
2
9

7
3
.3
%

3
2
5
,6
2
8

1
0
0
.0
%

1
,4
6
9
,0
6
2

1
0
0
.0
%

eg
o-
T
w
it
te
r

73
,2
57

9
0
.1
%

7
2
6
,1
9
6

4
1
.1
%

8
1
,3
0
6

1
0
0
.0
%

1
,7
6
8
,1
3
5

1
0
0
.0
%

lo
c-
G
ow

al
la

18
9,
92
3

9
6
.6
%

1
,0
3
9
,7
7
4

5
4
.7
%

1
9
6
,5
9
1

1
0
0
.0
%

1
,9
0
0
,6
5
4

1
0
0
.0
%

w
eb
-S
ta
n
fo
rd

28
1,
67
5

9
9
.9
%

2
,2
2
8
,4
3
0

9
6
.4
%

2
8
1
,4
9
8

9
9
.9
%

2
,3
1
1
,3
1
5

9
9
.9
%

w
ik
i-
T
al
k

2,
38
9,
28
3

9
9
.8
%

3
,1
0
2
,1
6
7

6
1
.8
%

2
,3
9
4
,2
8
4

1
0
0
.0
%

5
,0
2
1
,2
0
3

1
0
0
.0
%

w
eb
-G
o
og
le

87
5,
68
2

1
0
0
.0
%

5
,1
0
0
,1
0
2

9
9
.9
%

8
7
3
,8
8
1

9
9
.8
%

5
,0
9
5
,5
0
2

9
9
.8
%

co
m
-Y
ou

tu
b
e

1,
12
1,
28
2

9
8
.8
%

3
,4
6
0
,1
3
8

5
7
.9
%

1
,1
3
4
,8
8
8

1
0
0
.0
%

5
,9
7
5
,2
4
4

1
0
0
.0
%

w
eb
-B
er
kS

ta
n

67
9,
80
8

9
9
.2
%

6
,5
1
7
,8
1
7

8
5
.8
%

6
8
4
,4
4
1

9
9
.9
%

7
,5
9
8
,6
3
9

1
0
0
.0
%

h
ig
gs
-t
w
it
te
r

40
9,
25
0

8
9
.6
%

4
,3
6
7
,7
0
3

2
9
.4
%

4
5
3
,6
2
3

9
9
.3
%

1
4
,8
4
6
,8
6
2

9
9
.9
%

so
c-
P
ok
ec

1,
46
4,
49
3

8
9
.7
%

1
3
,7
5
9
,9
2
4

4
4
.9
%

1
,6
3
2
,0
4
8

1
0
0
.0
%

3
0
,6
2
0
,7
0
1

1
0
0
.0
%

so
c-
L
iv
eJ
ou

rn
al
1

4,
51
4,
95
3

9
3
.1
%

2
9
,5
6
2
,7
4
7

4
3
.2
%

4
,8
3
8
,0
2
6

9
9
.8
%

6
8
,4
5
3
,3
7
3

1
0
0
.0
%

co
m
-O

rk
u
t

1,
35
9,
95
0

4
4
.3
%

8
,8
8
4
,0
2
0

3
.8
%

3
,0
7
2
,4
4
1

1
0
0
.0
%

2
3
4
,3
7
0
,1
6
6

1
0
0
.0
%

tw
it
te
r-
20
10

38
,9
52
,3
57

9
3
.5
%

3
5
9
,6
7
5
,9
5
2

2
4
.5
%

4
1
,5
9
7
,7
5
9

9
9
.9
%

1
,4
6
8
,2
1
8
,9
1
6

1
0
0
.0
%

co
m
-F
ri
en
d
st
er

47
,0
22
,9
49

7
1
.7
%

1
7
5
,2
2
2
,2
2
2

4
.9
%

6
5
,6
0
8
,3
6
2

1
0
0
.0
%

3
,6
1
2
,1
3
4
,2
6
2

1
0
0
.0
%

u
k-
20
07
-0
5

10
2,
50
6,
08
2

9
7
.4
%

1
,5
8
2
,1
9
7
,2
1
8

4
2
.6
%

1
0
5
,1
9
7
,1
8
3

1
0
0
.0
%

3
,7
1
7
,0
9
7
,3
2
0

1
0
0
.0
%

am
eb
lo

27
1,
13
4,
72
3

9
9
.4
%

5
,4
8
9
,2
6
2
,3
6
4

7
9
.4
%

2
6
9
,8
1
2
,5
6
0

9
8
.9
%

6
,8
3
7
,6
6
3
,0
2
1

9
8
.9
%

237

T
ab

le
C
.3
:
A
v
er
ag

e
in
fl
u
en

ce
es
ti
m
at
io
n
ti
m
e
fo
r
p
la
in

M
C

an
d
ou

r
fr
am

ew
or
k
w
it
h
M
C

u
n
d
er

u
c
0
.1
an

d
iw

c
.
M
A
R
E

an
d
R
C
C

st
a
n
d
fo
r
“
m
ea
n

ab
so
lu
te

re
la
ti
v
e
er
ro
r”

an
d
“r
an

k
co
rr
el
at
io
n
co
effi

ci
en
t,
”
re
sp
ec
ti
v
el
y.

u
n
if
o
rm

c
a
sc
a
d
e
(u

c
0
.1
)

in
-d

e
g
re

e
w
e
ig
h
te
d

c
a
sc
a
d
e
(i
w
c
)

ru
n

ti
m
e

a
c
c
u
ra

c
y

ru
n

ti
m
e

a
c
c
u
ra

c
y

d
a
ta

se
t

M
C

A
lg
.7
.4
(M

C
)

A
lg
.7
.4
(M

C
)

M
C

M
A
R
E

R
C
C

M
C

A
lg
.7
.4
(M

C
)

A
lg
.7
.4
(M

C
)

M
C

M
A
R
E

R
C
C

ca
-H

ep
P
h

9.
6
s

2.
2
s

2
2
.6
%

0
.0
1
2
8

0
.9
9
9
2

8
4
.6

m
s

8
7
.8

m
s

1
0
3
.8
%

0
.0
1
0
0

0
.9
9
9
7

so
c-
S
la
sh
d
ot
09
22

35
.2

s
8.
7
s

2
4
.6
%

0
.0
1
0
6

0
.9
9
5
3

2
7
.4

m
s

2
5
.9

m
s

9
4
.6
%

0
.0
0
0
0

1
.0
0
0
0

w
eb
-N

ot
re
D
am

e
20
7.
4
m
s

51
.6

m
s

2
4
.9
%

0
.0
1
3
6

0
.9
9
2
8

9
.8

m
s

7
.7

m
s

7
8
.7
%

0
.0
0
8
7

0
.9
9
8
5

w
ik
i-
T
al
k

10
.1

s
6.
1
s

6
0
.5
%

0
.0
0
0
6

0
.9
9
9
9

5
.2

m
s

4
.5

m
s

8
7
.9
%

0
.0
0
8
8

1
.0
0
0
0

co
m
-Y
ou

tu
b
e

11
7.
4
s

50
.0

s
4
2
.6
%

0
.0
2
7
7

0
.9
9
0
7

1
2
.9

m
s

1
2
.7

m
s

9
8
.9
%

0
.0
6
2
6

0
.8
6
0
0

h
ig
gs
-t
w
it
te
r

1,
12
4.
0
s

25
2.
9
s

2
2
.5
%

0
.0
1
0
3

0
.9
9
5
1

1
0
4
.3

m
s

9
0
.2

m
s

8
6
.5
%

0
.0
3
0
2

0
.9
9
9
1

so
c-
P
ok
ec

2,
92
6.
2
s

94
0.
0
s

3
2
.1
%

0
.0
1
0
7

0
.9
9
7
4

8
6
.9

m
s

8
6
.0

m
s

9
9
.0
%

0
.0
2
7
9

0
.9
9
9
5

so
c-
L
iv
eJ
ou

rn
al
1

4,
29
3.
8
s

1,
62
7.
2
s

3
7
.9
%

0
.0
1
2
5

0
.9
9
9
3

4
5
.6

m
s

5
2
.5

m
s

1
1
5
.0
%

0
.0
2
7
1

0
.9
9
8
8

co
m
-O

rk
u
t

33
,7
71
.9

s
1,
22
7.
5
s

3
.6
%

0
.0
0
6
9

0
.8
9
1
5

7
2
0
.2

m
s

6
9
4
.1

m
s

9
6
.4
%

0
.0
0
0
0

1
.0
0
0
0

tw
it
te
r-
20
10

10
5,
74
3.
0
s

21
,8
89
.5

s
2
0
.7
%

–
–

4
2
.9

m
s

4
4
.7

m
s

1
0
4
.2
%

–
–

co
m
-F
ri
en
d
st
er

45
0,
45
2.
0
s

18
,1
45
.4

s
4
.0
%

–
–

5
8
3
.2

m
s

5
8
3
.7

m
s

1
0
0
.1
%

–
–

u
k-
20
07
-0
5

4,
55
5.
2
s

1,
81
3.
6
s

3
9
.8
%

–
–

5
6
.4

m
s

5
7
.7

m
s

1
0
2
.2
%

–
–

238

T
ab

le
C
.4
:
R
u
n
ti
m
e
fo
r
se
le
ct
in
g
a
se
ed

se
t
of

si
ze

10
0
an

d
so
lu
ti
on

q
u
al
it
y
fo
r
p
la
in

D
-S
S
A

an
d
ou

r
fr
am

ew
or
k
w
it
h
D
-S
S
A

u
n
d
er

u
c
0
.1
a
n
d
iw

c
.

O
O
M

d
en

o
te
s
“
o
u
t
of

m
em

or
y.
”

u
n
if
o
rm

c
a
sc
a
d
e
(u

c
0
.1
)

in
-d

e
g
re

e
w
e
ig
h
te
d

c
a
sc
a
d
e
(i
w
c
)

ru
n

ti
m
e

in
fl
u
e
n
c
e
(I
n
f G
/
|V
|)

ru
n

ti
m
e

in
fl
u
e
n
c
e
(I
n
f G
/|
V
|)

d
a
ta

se
t

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

A
lg
.7
.5
(D

-S
S
A
)

D
-S
S
A

D
-S
S
A

A
lg
.7
.5
(D

-S
S
A
)

ca
-H

ep
P
h

51
.7

s
15
.3

s
2
9
.5
%

0
.3
5
2
8

0
.3
5
2
5

1
.0

s
1
.0

s
1
0
4
.6
%

0
.1
8
2
6

0
.1
8
2
7

so
c-
S
la
sh
d
ot
09
22

29
1.
9
s

84
.3

s
2
8
.9
%

0
.2
9
5
8

0
.2
9
5
9

1
.2

s
1
.2

s
9
7
.7
%

0
.2
6
5
3

0
.2
6
5
3

w
eb
-N

ot
re
D
am

e
3.
3
s

1.
1
s

3
3
.0
%

0
.0
8
2
7

0
.0
8
2
8

0
.5

s
0
.5

s
9
9
.1
%

0
.1
2
3
2

0
.1
2
3
3

w
ik
i-
T
al
k

26
6.
1
s

94
.9

s
3
5
.6
%

0
.1
3
9
4

0
.1
3
9
4

2
.3

s
2
.3

s
9
8
.5
%

0
.4
0
3
8

0
.4
0
4
1

co
m
-Y
ou

tu
b
e

2,
80
3.
1
s

1,
86
0.
2
s

6
6
.4
%

0
.1
5
1
0

0
.1
5
1
1

2
.4

s
2
.4

s
9
9
.4
%

0
.1
7
2
7

0
.1
7
2
8

h
ig
gs
-t
w
it
te
r

3,
83
7.
2
s

1,
31
7.
1
s

3
4
.3
%

0
.3
5
1
1

0
.3
5
1
1

6
.7

s
6
.9

s
1
0
2
.8
%

0
.0
6
5
4

0
.0
6
5
4

so
c-
P
ok
ec

17
,4
27
.8

s
7,
92
4.
7
s

4
5
.5
%

0
.4
7
4
1

0
.4
7
4
1

7
.5

s
7
.5

s
9
9
.9
%

0
.0
5
2
8

0
.0
5
2
7

so
c-
L
iv
eJ
ou

rn
al
1

O
O
M

O
O
M

–
%

–
–

2
5
.0

s
2
6
.0

s
1
0
4
.2
%

0
.0
22
2

0
.0
2
2
2

co
m
-O

rk
u
t

O
O
M

O
O
M

–
%

–
–

5
7
.6

s
5
8
.3

s
1
0
1
.3
%

0
.0
66
7

0
.0
6
6
7

tw
it
te
r-
20
10

O
O
M

O
O
M

–
%

–
–

5
0
.5

s
8
0
.2

s
1
5
8
.8
%

0
.2
5
8
2

0
.2
5
8
6

co
m
-F
ri
en
d
st
er

O
O
M

O
O
M

–
%

–
–

5
,2
9
7
.2

s
5
,2
2
0
.4

s
9
8
.5
%

0
.0
04
0

0
.0
0
4
0

u
k-
20
07
-0
5

O
O
M

O
O
M

–
%

–
–

8
1
.9

s
9
2
.7

s
1
1
3
.2
%

0
.0
3
5
0

0
.0
3
5
1

239

	Introduction
	Influence and Information Diffusion
	Social Networking Services and Microbloggings
	Viral Marketing

	Computational Social Influence
	Modeling
	Learning
	Optimizing

	Influence Maximization Problem
	Informal Definition and Computational Properties
	Previous Studies

	Challenges
	Efficient Computation
	Effective Strategies

	Contributions
	Analysis of the Trends of Diffusive Behaviors (Chapter 4)
	Fast Algorithm for Influence Maximization (Chapter 5)
	Dynamic Indexing Algorithm for Real-time Influence Analysis (Chapter 6)
	Reduction Algorithms of Massive Influence Graphs (Chapter 7)
	Portfolio Optimization for Acquiring Low-risk Strategies (Chapter 8)

	Organization of This Thesis

	Preliminaries
	Definitions and Notations
	Set and Partitions
	Graphs
	Local Properties
	Paths, Reachability, and Connectivity
	Trees
	Influence Graph

	Basic Graph Algorithms
	Breadth First Search
	Depth First Search
	Finding Strongly Connected Components

	Submodular Set Functions
	Definitions and Properties
	Monotone Submodular Function Maximization

	Diffusion Models
	Independent Cascade Model
	Linear Threshold Model

	Influence Maximization
	Definition
	Hardness Results
	Approximability Results

	Risk Measures
	Definition of Coherent Risk Measures
	Examples of Risk Measures

	Multiplicative Weights Update Algorithm

	Categorization of Influence Maximization Algorithms
	Greedy algorithm of *kempe2003maximizing
	Simulation-based Algorithms
	Naive Estimation
	Snapshot-based Estimation

	Reverse Influence Sampling
	Concept
	Applying to Influence Estimation
	Applying to Influence Maximization
	Stopping Conditions of RR Set Generation
	RR Set Generation under the IC Model

	Heuristics
	Restricting the Range of Influence
	Linear System Approximation
	Graph Reduction
	Others Strategies

	Analysis of the Trends of Diffusive Behaviors
	Strategies of Influence Probability Assignment
	Network Data
	Detailed Description
	Preprocessing
	Structural Properties of Complex Networks

	Analysis of Reachable Sets
	Average Size
	Size Distribution of Reachable Sets

	Analysis of RR Sets
	Unweighted Settings
	Degree-weighted Settings

	Fast Algorithm for Influence Maximization
	Overview
	Technique 1: Pruned BFS
	Technique 2: BFS Avoidance
	Putting It Together
	Degree-1 Optimization

	Experiments
	Setup
	Performance Comparison with Existing Algorithms
	Summary
	Analyzing of the Proposed Techniques

	Dynamic Indexing Algorithm for Real-time Influence Analysis
	Proposed Indexing Algorithm
	Index Structure
	Index Construction
	Supporting Queries
	Supporting Dynamic Update Operations

	Theoretical Analysis
	Correctness
	Time Complexity

	Scaling-up Practical Performance
	Reachability-tree-based Pruning Techniques
	A Skipping Method for Vertex Addition

	Experiments
	Setup
	Index Construction
	Dynamic Updates
	Influence Estimation Queries
	Influence Maximization Queries
	Case Study on Flixster Social Network

	Reduction Algorithms of Massive Influence Graphs
	Reduction Strategy
	Definition of Coarsening
	Theoretical Properties of Coarsening
	Creating a Partition to be Coarsened

	Algorithm Implementations
	Overview
	Linear-space Implementation
	Sublinear-space Implementation
	Parallelization

	Frameworks for Scaling-up Influence Analysis
	Framework for Influence Estimation
	Framework for Influence Maximization

	Experiments
	Setup
	Scalability Evaluation
	Power of Parallelization
	Graph Size Reduction
	Analyzing Extracted r-robust SCCs
	Evaluating Influence Estimation Framework
	Evaluating Influence Maximization Framework
	Comparison with Existing Reduction Algorithms.

	Portfolio Optimization for Acquiring Low-risk Strategies
	Proposed Algorithm
	Overview
	Empirical CVaR Maximization
	Finding Approximate Feasible Solutions via MWU
	Implementation of a -oracle
	Putting All Together

	Experimental Evaluations
	Setup
	Results

	Conclusions
	Additional Experimental Results in Chapter 4
	Additional Experimental Results in Chapter 5
	Additional Experimental Results in Chapter 7

