
Reachability Analysis of Hybrid Systems

via Predicate and Relational Abstraction

（述語と関係を用いた抽象化による
ハイブリッドシステムの到達可能性解析）

by

Kengo Kido

木戸 肩吾

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 8, 2017

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Naoki Kobayashi 小林 直樹
Professor of Computer Science



ABSTRACT

Cars, robots, drones, medical equipment and other embedded systems are ubiq-
uitous these days. In such systems, the embedded computer (controller) and the
controlled physical object (plant) interact with each other via sensors and actuators.
The combined system of the controller software and the physical plant is called a
cyber-physical system (CPS).

Since the plant in a CPS behaves in the physical environment, a malfunction of
the system has physical effects. Therefore safety assurance of CPSs is an important
topic. There are mainly two approaches for safety assurance of CPSs: one is simula-
tion/testing, and the other is formal methods. Currently, the dominant approach for
safety assurance of CPSs in industry is simulation and testing, in which the behavior of
the system is checked by giving some concrete inputs to the system. However, testing
may miss a malfunction because for complex systems we cannot check all the possible
inputs. Thus taking advantage of formal methods, which are mathematically valid
techniques to analyze the behavior of systems, is recognized as an important direction
of safety assurance.

The main topic of this thesis is formal methods for CPSs. More concretely, among
a lot of techniques in formal methods, we focus on reachability analysis in this thesis.
Compared to software that works in desktop computers, CPSs have special character-
istics. Among those characteristics of CPSs, we focus on its real-time property and
hybrid dynamics.

First, we consider the real-time property. One of the common ways a CPS works
is that the sensing occurs periodically, and the controller determines the next input
to the plant based on the sensed data. In an ideal system, the input to the plant
is changed periodically, at the same moment as the data is sensed. However, in
practice, computation and data transfer cause delays from the sensing of the data to
the change of the input. The usage of networked control—digital control of physical
systems via computer networks—makes analyzing the effect of delays more important.
In networked control, plants and controllers are separated physically. This physical
distance leads to inevitable communication delays. What is worse, the use of cloud
control makes both physical and logical distances between system components even
bigger and unpredictable. In such settings, precise estimation of communication delays
is often hard, and the delays have effects on the behavior of the system that cannot
be ignored.

Then, we consider the hybrid dynamics of CPSs. A CPS consists of a plant and a
controller, and it exhibits the hybrid behavior of continuous behavior in the physical
environment and discrete behavior of the controller software. In that sense, a CPS is
called a hybrid system.

Taking the above two characteristics into consideration, we consider a hybrid sys-
tem with bounded time-delays as a model of a CPS. In this thesis, we introduce a
methodology to calculate an overapproximation of its reachable set in two steps: an
overapproximation of the errors due to time-delays in the first step, and an overapprox-
imation of the reachable set of the delay-free model in the second. This separation of
concern enables us to replace the methodology used in each step with another existing
methodology. In particular, for the second step where we do reachability analysis of
delay-free hybrid systems, there is a lot of existing work and we can choose a suitable
technique depending on the system under consideration.

The first step is to approximate a CPS with time-delays with the ideal model
without time-delays. Under the assumption of incremental stability, our proposed
methodology gives an upper bound of the error between the system with bounded
delays and the system without delays. In order to do this, we construct a transition



system whose state is a triple consisting of a memory state, time and a mode. We
define a premetric on these extended states, and give an upper bound of the premetric
by constructing an approximate bisimulation relation on the transition system. As
the first example, we show that our method can successfully analyze the effect of the
delays of the boost DC-DC converter that is used in hybrid and electric vehicles. The
dynamics of this example is characterized by linear ODEs, but we also show that our
method can be applied to nonlinear ODEs using an example of nonlinear water tank.

In the above methodology to approximate a delayed system with its delay-free
model, we computed an upper bound of the error of the two states at the same time
instant. We extend this methodology by changing the definition of the premetric so
that it can give a more precise upper bound of the Skorokhod distance between the
trajectories of the two systems. The Skorokhod distance allows some mismatches
in time. In spite of the timing mismatches, the resulting overapproximation of the
Skorokhod distance can be used, for example, to reduce the reachability analysis of
the delayed system to that of its delay-free model.

Then, we compute an overapproximation of the reachable set in the second step.
For this purpose, we extend Cousot and Cousot’s abstract interpretation framework to
hybrid systems, using Robinson’s nonstandard analysis (NSA). The approach of using
NSA for verification of hybrid systems has been introduced by Suenaga and Hasuo.
They model hybrid systems as programs with an infinitesimal constant, by regarding
continuous behavior as infinitely many infinitesimal discrete jumps. This approach
enables us to extend usual formal methods for discrete systems to hybrid systems
almost as they are, thanks to the transfer principle in NSA. As a result, our extended
abstract interpretation framework enables us a sound approximation of the reachable
sets of hybrid systems. Using the domain of convex polyhedra, we can analyze linear
water tank example with fixed time-delays, and nonlinear water tank without delays.

As mentioned above, the proposed methodologies for both of the two steps are
applicable to nonlinear dynamics. Thus, by combining the two analysis, we successfully
analyze the nonlinear water tank with bounded delays, and verify that the water
level stays within a certain region. We also illustrate an advantage of the two-step
analysis—the methodologies proposed in this thesis for each step can be replaced with
another existing methodology—using the example of boost DC-DC converter. For this
example, we can even synthesize a controller using the existing work by Girard instead
of the extension of abstract interpretation.



論文要旨

　自動車，ロボット，ドローン，医療機器といったシステムにはコンピュータが組み込
まれ，それによって制御されて動作する．これらに組み込まれたコンピュータ（コント
ローラ）はセンサとアクチュエータを介して物理的な物体（プラント）と相互に作用する．
コントローラとプラントとを合わせたシステム全体を物理情報システム（cyber-physical

system, CPS）と呼ぶ．CPSのプラントは物理的な振る舞いをし，その誤動作は物理
的な影響を持つため，CPSの安全保証は重要な課題である．CPSの安全保証へのアプ
ローチには，大きく分けてテスト，形式手法の二つがある．現在のところ産業界におけ
る CPSの安全保証に向けた主要な取り組みはテストである．しかしながらテストはシ
ステムに入力を与えてその動作を確認するものであり，未確認の入力が残るため，誤動
作を見逃す可能性がある．そのため，数学的に正しい解析を行う形式手法の活用が安全
保証に向けた重要な方向性であると考えられている．
　本論文ではCPSに対する形式手法，その中でも特にCPSの形式手法の中で重要な

役割を果たす過大近似を扱う．CPSには従来のデスクトップコンピュータで動作するソ
フトウェアでは考えられてこなかった特有の性質が多数ある．私の提案する手法は，そ
のうちリアルタイム性，ハイブリッド性の二つに着目し，CPSの振る舞いの到達可能性
を二段階に分けて過大近似するものである．まずリアルタイム性を考える．CPSではセ
ンサでプラントの状態をセンシングし，そのセンシングしたデータを用いてコントロー
ラがプラントをリアルタイムにアクチュエートする．理想的なシステムではセンシング
と同時にアクチュエーションがおきるが，実際にはデータの転送やコントローラにおけ
る計算によりセンシングからアクチュエーションまでに遅延が生じる．特にコントロー
ラがプラントとネットワークを通じて繋がっているようなネットワークコントロール，
さらにはコントローラがクラウド上にあるクラウドコントロールではデータ転送による
遅延は避けられず，その影響の考慮が必要になる．二つ目にハイブリッド性を考える．
これは，微分方程式で表されるような物理環境下における連続的な振る舞い（例えばア
クセル開度に応じた自動車の速度の連続的変化）と，プログラムとして表されるコント
ローラの離散的な振る舞いの双方を含んでいるという性質である．この意味で CPSは
ハイブリッドシステムと呼ばれる．
　上記二つの性質を考慮に入れ，本論文ではセンシングからアクチュエーションまで

に遅延を含むハイブリッドシステムを CPSのモデルとして考える．そしてその到達可
能領域の過大近似を，遅延による影響の過大近似と遅延を含まないシステムの到達可能
領域の過大近似の二段階に分けて計算する手法を提案する．解析を二段階に分けたこと
により，各段階での解析に用いるために本論文で提案する手法の代わりに，ほかの既存
の解析手法を使用することもできる．特に遅延を含まないハイブリッドシステムの到達
可能性解析を行う第二段階目については多数の既存研究が存在するため，解析したいシ
ステムに応じて適切な手法を用いることができる．
　まず一段階目として，遅延を含むシステムを遅延の含まれない理想的なシステムで



近似し，二つのシステム間の振る舞いの差を過大近似する．本論文の主要な結果として，
増分安定性を保証するリヤプノフ関数が与えられたとき，システムのセンシングからア
クチュエーションまでの遅延の上限を用いて遅延の有無による誤差の上限を与えた．こ
の上限をもとめるため，まずそれぞれのシステムからメモリ状態，時刻，モードの三つ
組からなる状態遷移系を作る．この状態間に前距離を適切に定め，近似双模倣関係を導
出することで差の上限が計算される．例として，実際にHVや EVの自動車で用いられ
るDC/DC昇圧回路を遅延のない理想的なシステムで近似した．このDC/DC昇圧回路
の例では微分方程式は線形であるが，この手法は非線形なシステムに対しても適用可能
である．実際に非線形な water tankの例を用いて，非線形なシステムにも適用できる
ことも示した．
　ここで述べた手法では，二つのシステムの同時刻の状態を比較した差の上限を求め

たが，結果のさらなる拡張として，前距離の定義を変更することにより二つのシステム
の振る舞いの Skorokhod 距離の上限をより精密に求めることのできる手法も提案する．
Skorokhod 距離では，時間軸をずらした状態を比較することが可能になる．この拡張に
よって，例えば到達可能性解析等を行う際には，はじめに定義した前距離によるものと
比較して，より正確な近似を求めることが可能となる．
　次に二段階目として，遅延を含まないハイブリッドシステムの到達可能領域を過大

近似する．本論文ではCousot・Cousotによる抽象解釈を，Robinson の超準解析を用い
ることでハイブリッドシステムに適用できるよう拡張し，到達可能領域を過大近似する
手法を提案する．超準解析をハイブリッドシステムの検証に用いるアプローチは末永・蓮
尾によって提案されている．そのアプローチでは，連続的な振る舞いを無限に繰り返さ
れる無限小の離散的な変化とみなすことにより，ハイブリッドシステムが無限小の定数
を含むプログラムとしてモデルされる．さらに，超準解析の移転原理によって，通常の
形式手法がハイブリッドシステムにほぼそのままの形で拡張される．結果として，本論
文で提案する拡張された抽象解釈により，ハイブリッドシステムの到達可能性を大きく
見積もることが可能となる．ここでは凸多角形の抽象領域を用いて，線形なwater tank

で一定の遅延を含むものと，非線形な water tankで遅延を含まないものが解析できる
ことを示した．
　以上の二段階それぞれに関して私の提案する手法はともに非線形のダイナミクス

に対しても適用可能である．実際に例としてスイッチングに遅延を含む非線形な water

tankの二つの段階の過大近似を順に計算し，結果を組み合わせることで，システムの状
態が危険な領域に到達しないことを数学的に保証することができた．また，解析を二段
階に分けたことによって各段階を既存手法で置き換えることができるという利点も，線
形なDC/DC昇圧回路の例を用いて例示する．具体的にこの例では，解析の二段階目と
して抽象解釈の拡張の代わりにGirard による手法を用いることで，到達可能性解析の
みならず，より難しい制御器生成まで行うことが可能であることを示した．
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Chapter 1

Introduction

Cars, robots, drones, medical equipment and other embedded systems are ubiq-
uitous these days. In such systems, the embedded computer (controller) and the
controlled physical object (plant) interact with each other via sensors and ac-
tuators. The combined system of the controller software and the physical plant
is called a cyber-physical system (CPS). Compared to software that works in
desktop computers, a CPS has some special characteristics such as constraints
on the energy efficiency or uncertainty of the data obtained from the sensors,
which pose new challenges (a survey can be found in [88], for example).

Among those characteristics of a CPS, one of the most important aspects
is that it exhibits hybrid behavior of continuous behavior of the plant in the
physical environment and discrete behavior of the controller software. In that
sense, a CPS is called a hybrid system. The continuous behavior of the plant is
often modeled by ordinary differential equations (ODEs). The discrete behavior
of the controller is defined by a program. Two communities have been working
together to analyze the behavior of such systems. One is control theory that
has originally worked on continuous physical dynamics. The other is formal
methods community in computer science that has dealt with discrete dynamics
of software. For researchers in formal methods, the main challenge of extending
their work to hybrid systems is to incorporate continuous flow dynamics. Most
of existing work such as those based on hybrid automata [6] uses ODEs explicitly
in the syntax to model continuous behavior.

Another important aspect of a CPS is its real-time property. One of the
common ways a CPS works is that the sensor obtains the data of the plant pe-
riodically, and the controller determines the next input to the plant based on
the sensed data. In an ideal system, the input to the plant is changed periodi-
cally, at exactly the same moment as the data is sensed. However, in practice,
computation and data transfer cause delays from the sensing of the data to the
change of the input. The usage of networked control—digital control of physical
systems via computer networks—makes analysis of the effect of delays more im-
portant. In networked control, plants and controllers are separated physically.
This physical distance leads to inevitable communication delays. What is worse,
cloud control makes both physical and logical distances between the plant and
the controller even bigger and unpredictable. In such settings, precise estima-
tion of communication delays is often hard and the delays have effects on the
behavior of the system that cannot be ignored.

Taking the above two characteristics into consideration, the overall system

1
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Figure 1.1: Architecture of our target system (omitting D/A and A/D convert-
ers).

we are interested in looks like Fig. 1.1. Since the behavior of a CPS includes
physical behavior realized by its actuators, a malfunction of the system has
physical effects. For example, a malfunction of the controller software embedded
in a car could lead to an accident resulting in injury or death. Thus safety
assurance of CPSs is obviously an important topic, and many researchers and
also people in industry are working on this challenge. There are mainly two
approaches for safety assurance of CPSs. One is simulation/testing, and the
other is formal methods. In testing, the behavior of the system is checked by
giving some concrete inputs to the system. In formal methods, we analyze the
behavior of the system using mathematically valid techniques. Currently, the
dominant approach for safety assurance of CPSs in industry is simulation and
testing. One of the main reasons is the limited applicability and scalability of
formal methods. However, testing may miss a malfunction because for complex
systems we cannot check all the possible inputs. Thus taking advantage of formal
methods is recognized as an important direction of safety assurance.

The topic of this thesis is formal methods for CPSs. More concretely, among
a lot of techniques in formal methods, we focus on reachability analysis in this
thesis. Reachability analysis computes an overapproximation of the set of reach-
able states, and plays the central role in verification of safety specifications. We
propose a reachability analysis methodology for CPSs with hybrid dynamics and
bounded time-delays. A distinctive feature of our methodology is that we sep-
arate the reachability analysis of a delayed CPS into the following two steps:
1) approximation of a delayed CPS with its delay-free model; and 2) reacha-
bility analysis of the delay-free model. The detailed comparison with existing
work for reachability analysis of hybrid dynamics with delays based on symbolic
abstraction will be in §7.4.

The first step of our proposed methodology is to approximate a CPS with
time-delays with the ideal one without time-delays. It can be applied to possibly
nonlinear dynamics under the assumption of incremental stability. Given a Lya-
punov function that certifies incremental stability, our proposed methodology
gives an upper bound of the error between the system with bounded delays and
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the system without delays. In order to do this, we construct transition systems
whose state is a triple consisting of a memory state, time and a mode. We define
a premetric on these extended states and give an upper bound of the premet-
ric by constructing an approximate bisimulation relation between the transition
system for delayed system and the one for its delay-free model. As the first
example, we show that our method can successfully analyze the effect of the
delay of the boost DC-DC converter that is used in hybrid and electric vehicles.
The dynamics of this example is characterized by linear ODEs, but we also show
that our method can be applied to nonlinear ODEs using nonlinear water tank
example.

In the above methodology to approximate a system with delays with the one
without delays, we computed an upper bound of the pointwise metric that gives
the error of the two states at the same time instant. However, this pointwise
metric sometimes returns large distances even if two systems are close in terms
of, for example, reachability. We extend this methodology by changing the
definition of the premetric so that it can give a more precise upper bound of the
Skorokhod distance between the trajectories of the two systems. The Skorokhod
metric allows mismatches in the timeline. The resulting overapproximation of
the Skorokhod distance can be used not only to the reachability analysis but
also for verification of other temporal specifications.

Then, we compute an overapproximation of the reachable set of the delay-free
model in the second step. For this purpose, we extend Cousot and Cousot’s ab-
stract interpretation framework to hybrid systems, using Robinson’s nonstandard
analysis (NSA). The approach of using NSA for verification of hybrid systems
has been introduced by Suenaga and Hasuo. They model hybrid systems as
programs with an infinitesimal constant, by regarding continuous behavior as
infinitely many infinitesimal discrete jumps. This modeling does not rely on
ODEs explicitly, and it enables us to extend usual formal methods for discrete
systems to hybrid systems almost as they are, thanks to the transfer principle
in NSA. As a result, our extended abstract interpretation framework enables us
a sound approximation of the reachable sets of hybrid systems. Using the do-
main of convex polyhedra, we can analyze linear water tank example with fixed
time-delays, and nonlinear water tank without delays.

As mentioned above, the proposed methodologies for both of the two steps
are applicable to nonlinear dynamics. Thus, by combining the two analysis, we
successfully analyze the nonlinear water tank with bounded delays and verify
that the water level stays within a certain region.

Since we separated the analysis into the two steps, the methodology used
in each step can be substituted by another methodology that is suitable for
the system we are interested in. In particular, for the second step where we
do reachability analysis of delay-free hybrid systems, there is a lot of existing
work. For the example of boost DC-DC converter, we can even synthesize a
controller using the existing work by Girard instead of the extension of abstract
interpretation.

In the subsequent sections, we discuss the background and our contribution
in each topic of the thesis.
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1.1 Approximate Bisimulation for Switching Delay

In this section, we discuss the background and our contribution regarding the
first topic of this thesis—calculation of an error bound between a CPS with
time-delays and the ideal system without time-delays.

1.1.1 Background

Delays occur in various steps in the control of a CPS. One major source of delays
is the computation time. In Fig. 1.1, even if we assume that the sensing occurs
exactly periodically, the input to the actuator can be changed only after the
computation is finished. Another major kind of delays is the ones caused by
data transfer. This kind of delay is not small enough to ignore since the use
of the networked control is getting common. In networked control, the sensed
data from the plant are transferred via network. Then some computation is
executed in the controller. Finally, the input for the actuator is sent back from
the controller via network again (see Fig. 1.1.)

We introduce a methodology to bound the error of the behavior of a CPS
caused by these potential time-delays. Given the hybrid nature of CPSs, a nat-
ural idea is to use the notion of approximate bisimulation—an achievement of
the hybrid systems community that combines ideas from control theory and
computer science. We give an approximate bisimulation relation between an
actual system (with potential time-delays) and an idealized system without de-
lays. The latter system is simpler and one can use it for the purpose of analysis;
then the result of the analysis is also true for the actual system, up-to certain
errors that are bounded by the approximate bisimulation. The idealized system
without delays can also be used for control design; then the resulting controller
is guaranteed to work well with the actual system up-to certain errors.

Approximate bisimulation is a topic that gathers attention from many re-
searchers in control theory and computer science. The notion of approximate
bisimulation was first introduced in [41] as a quantitative relaxation of bisim-
ulation, a well-established equivalence notion between discrete transition sys-
tems [74]. The theory of approximate bisimulation has been rapidly developed
since then; one of the notable results is its connection to incremental stabil-
ity [43,77]. These theoretical results have found a number of successful applica-
tions, too. A prototypical application is the construction of discretized and sym-
bolic models, and control synthesis therein via discrete synthesis techniques [40].

In this thesis, we shall focus on switched systems. A switched system is a
common model of a CPS, which can be seen as a more abstract model than a
hybrid automaton [6]. In switched systems, a plant has finitely many operation
modes, and the possible mode changes will be given as a set of switching signals
that are sent from a controller. Usually, the definition of the set of switching
signals ignores the detailed restrictions such as guard or invariant conditions in
hybrid automata. This simple model enables us to express various real-world
networked control systems, as is argued e.g. in [43].
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1.1.2 Contribution

Our technical developments are based on the previous work [43] in which approx-
imate bisimulation is used for the purpose of discretization of nonlinear switched
systems. Our system model Στ,δ0 is a (potentially nonlinear) switched system
where switching signals are nearly periodic with a fixed period τ ; the system
exhibits potential switching delays within a fixed maximum delay δ0.

More concretely, our technical contributions are as follows. We show how a
switched system Στ,δ0 with nearly periodic switching signals can be turned into
a transition system T (Στ,δ0). Between the resulting transition system T (Στ,δ0)
and the one T (Στ ) derived from the ideal delay-free system Στ , we establish an
approximate bisimulation that witnesses an upper bound of the error between
the behaviors of Στ,δ0 and Στ . The approximate bisimulation is derived from
the same incremental stability assumption as in [43] (namely δ-GUAS ). More
specifically, we introduce a construction that turns Lyapunov-type witnesses for
δ-GUAS into an approximate bisimulation. While we use the same incremen-
tal stability assumption as in [43], we also identify some additional technical
constraints (such as Assumption 3.4.1) that are unique to the current problem
setting. Using the proposed method, we successfully analyze the effect of the
time-delays in the examples of boost DC-DC converter and nonlinear water tank.

1.2 Skorokhod Distance Caused by Switching Delays

The proposed methodology discussed in the previous section is extended so that
timing mismatches are allowed. More concretely, the extended methodology
gives an upper bound of the Skorokhod metric, to obtain a tighter error bound
that can be used for reachability analysis.

1.2.1 Background

In the methodology we discussed in the previous section, the states in the tran-
sition system are equipped with a premetric that is defined so that it would ap-
proximate the pointwise distance between trajectories. The pointwise distance
is a very simple distance that compares two states at the same time instant (see
Fig. 1.2).

However, the pointwise metric sometimes returns large distances even if two
systems are close in terms of, for example, reachability. See the example in
Fig. 1.3. The pointwise distance gives the length of the black arrows at switch-
ings. Once we obtain this distance (say ε), the reachability of the blue behavior
is overapproximated by an expansion of the reachability of the red one by ε.
However, the actual reachability of the two systems in red and blue is the same.

The source of this unnecessarily large distance is that the pointwise metric
does not allow any mismatches of the timing. Quantifying the closeness between
trajectories that allows timing mismatches has recently been studied in the field
of conformance testing. A beginning of the study in this direction is the confor-
mance degree based on (T, J, (τ, ε))-closeness introduced in [2]. In this definition
of closeness, the parameter τ is the closeness in time and ε is the closeness in
space. Then in [34], the conformance between two trajectories was defined us-
ing the Skorokhod metric [4], which is related to Fréchet distance as discussed
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in [68,69].
These metrics are defined so that it captures the closeness both in time and

space. One of the advantages of these metrics is the transference of temporal
properties, which means that if two trajectories are close with respect to the
metric, their validity of temporal logic specifications is also “close”. The con-
formance degree based on (T, J, (τ, ε))-closeness can transfer the properties in
a variant of metric temporal logic (MTL). The Skorokhod metric can transfer
timed linear temporal logic (TLTL) or Freeze linear temporal logic (FLTL).

1.2.2 Contribution

Our target system is exactly the same as the one discussed in the previous
section—incrementally stable switched systems with delays and without delays.
We extend the previous methodology by changing the definition of the premet-
ric so that it can give a more precise upper bound of the Skorokhod distance
between the trajectories of the two systems (see Fig. 1.2). Then, we construct
an approximate bisimulation relation that bounds the new premetric. The ex-
amples showcase that the reachability analysis becomes more precise using this
extended methodology. This extended methodology also has an advantage that
it is applicable to the cases where the maximum delay δ0 is larger than the
switching period τ , which the previous methodology could not deal with. Al-
though we only focus on reachability in this thesis, the resulting upper bound is
also useful for verification of FLTL specifications.

Figure 1.2: For each switching, the premetric for the pointwise distance is shown
by a black arrow, and the premetric for the Skorokhod distance is a green arrow.
The behavior of the periodic system is in red, and the delayed system is in blue.
Solid and broken curves indicate two different modes.

Figure 1.3: The behavior of two systems are presented in red and blue. Solid
and broken lines indicate two different modes.
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1.3 Extension of Abstract Interpretation with Infinitesi-
mals

In this section, we discuss a methodology to overapproximate the reachable set
of hybrid systems (without delays). The proposed framework is an extension of
well-known abstract interpretation with NSA.

1.3.1 Background

Hybrid systems exhibit both discrete jump and continuous flow dynamics. Re-
searchers in control theory and formal methods have been working together to
analyze the behavior of such systems. For researchers in formal methods who
originally work on discrete behavior of software, the main challenge is how to
deal with continuous behavior of the physical plant. Most existing work models
continuous behavior using ODEs explicitly An example is hybrid automata [6]
(see the discussion of related work in Chapter 7 for more details.)

In [91], instead, an alternative approach of nonstandard static analysis—
combining static analysis and NSA—has been proposed. Its basic idea is to
introduce a constant dt for an infinitesimal (i.e. infinitely small) value, and turn
flow into infinitely many jumps. With the constant dt, the continuous operation
of integration can be represented by a while-loop. To this program with an
infinitesimal constant, existing discrete techniques such as Hoare-style program
logics [55] can be applied almost as they are. For a rigorous mathematical
development, they employ NSA beautifully formalized by Robinson [84].

Concretely, in [91] they took the common combination of a While-language
and a Hoare logic (e.g. in the textbook [95]); and added a constant dt to obtain
a modeling and verification framework for hybrid systems. Its components are
called Whiledt and Hoaredt. The soundness of Hoaredt is proved against
denotational semantics defined in the language of NSA. Then in [50], they pre-
sented a prototype automatic theorem prover for Hoaredt. In [92], they applied
the same idea to stream processing systems, realizing a verification framework
for signal processing as in Simulink.

These technical developments are based on the idea of so-called sectionwise
execution. Although the methodology we propose in this thesis does not rely
explicitly on it, it is still useful to give some intuition of Whiledt modeling in
nonstandard static analysis. See the following example.

Example 1.3.1. Let celapse be the program in Code 1.1. The value of dt is
infinitesimal; therefore the while loop will not terminate within finitely many
steps. Nevertheless, it is somehow intuitive to expect that after an “execution”
of this program, the value of t should be infinitesimally close to 1 and larger
than it.

1 t := 0

2 while t <= 1 do

3 t := t+dt

Code 1.1: celapse

1 t := 0

2 while t <= 1 do

3 t := t+1/(i+1)

Code 1.2: celapse|i
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One possible way of thinking is to imagine sectionwise execution. Note that
an infinitesimal number can be approximated progressively by the sequence

( 1, 1
2
, 1

3
, . . . , 1

i+1
, . . . ) .

Based on this approximation of the infinitesimal constant dt, we consider the
i-th section of the program celapse, denoted by celapse|i and shown in Code 1.2,
for each natural number i. Concretely, celapse|i is obtained by replacing the
infinitesimal dt in celapse with

1
i+1

. Informally celapse|i is the “i-th approximation”
of the original celapse.

Note that each section celapse|i is just a usual imperative program without
infinitesimal constants. It terminates within finite steps and yields 1+ 1

i+1
as the

value of t. Now we collect the outcomes of sectionwise executions and obtain a
sequence

( 1 + 1, 1 + 1
2
, 1 + 1

3
, . . . , 1 + 1

i+1
, . . . ) , (1.1)

which is thought of as a progressive approximation of the actual outcome of
the original program celapse. Indeed, in the language of NSA, the sequence (1.1)
represents a hyperreal number r that is infinitesimally close to 1.

We note thatWhiledt is a modeling language andWhiledt programs are not
intended to be executed: the program celapse does not terminate. However, it is an
advantage of static approaches to verification and analysis, that programs need
not be executed to prove their correctness. Instead, well-defined mathematical
semantics suffices. This is what we do here as well as in [50, 91, 92], with the
denotational semantics of Whiledt exemplified in Example 1.3.1.

1.3.2 Contribution

In the previous work [50,91,92] of nonstandard static analysis, reachability anal-
ysis (or invariant discovery in other words) has been a big obstacle in scalabil-
ity of the proposed verification techniques—as is usual in deductive verifica-
tion. We tackle this problem in nonstandard static analysis. Technically, we
extend abstract interpretation [28] with infinitesimals. The abstract interpreta-
tion methodology is known for its ample applicability (it is employed in model
checking as well as in many deductive verification frameworks) and scalability
(the static analyzer Astrée [30] has been successfully used e.g. for Airbus’s flight
control system).

We establish the theory of nonstandard abstract interpretation where (stan-
dard) abstract domains are “∗-transformed,” in a rigorous NSA sense, to the
abstract domains for hyperreals. It includes their soundness in overapproximat-
ing the semantics of Whiledt programs (hence reachability of hybrid systems
modeled in them). We also introduce the notion of uniform widening operators.
Using uniform widening operators, the inductive approximation is guaranteed
to terminate within finitely many steps even after extension to the nonstandard
setting. We show that many known widening operators, if not all, are indeed
uniform. Although we focus on the domain of convex polyhedra in this thesis, it
is also possible to extend other abstract domains like ellipsoids [35] in the same
way.

These theoretical results form a basis for our prototype implementation,1 that
successfully analyzes: linear water tank, a common example of piecewise-linear

1The prototype is available online: http://group-mmm.org/˜kkido/

http://group-mmm.org/~kkido/
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hybrid dynamics; and also nonlinear water tank. The prototype deals with the
constant dt as a truly infinitesimal number using computer algebra system.

1.4 Two-Step Analysis of Switched Systems with Delays

In this section, we discuss the overall two-step reachability analysis workflow
we propose for switched systems with delays. In Chapter 6, we illustrate the
two-step reachability analysis using the example of nonlinear water tank. It is
analyzed by combining the results of Chapter 4 and Chapter 5. Also for the
example of the boost DC-DC converter, a safety controller is synthesized by
combining the result of Chapter 4 and the results in [40,43].

1.4.1 Background

Our goal is the reachability analysis of a hybrid system with delays. We assume
that the controller of the hybrid system is state-dependent. In Chapter 3 and
Chapter 4, we construct approximate bisimulation relations that can be used to
reduce the reachability of the delayed system to that of the delay-free model.
However, in these results, we do not consider the existence of a controller and just
assume that the same mode is always enabled for both the delayed system and
its delay-free model. This is not the case if the system with delays and its delay-
free model are controlled by the same state-dependent controller. Following the
results in [40], we need to consider different controllers for the delayed system
and the delay-free model, so that the same mode is always enabled.

Here we discuss the results in [40], which aim at controller synthesis based
on approximate bisimulation. Assume that we have a complicated transition
system and its ε-approximately bisimilar simple transition system. The goal
is to synthesize a safety controller that keeps the trajectory of the complicated
transition system within a designated safety region. Its workflow for this purpose
is as follows: first, we define a safety region for the simpler transition system,
by contracting the safety region for the complicated model by ε; then, for that
shrunk safety region, a safety controller for the simpler model is synthesized;
finally, using the approximate bisimulation relation, we can construct a safety
controller for the original complicated model, from the safety controller obtained
for the simpler model with respect to the contracted safety region.

This methodology has been applied to the example of delay-free boost DC-
DC converter in [40]. The approximately bisimilar simpler model they consider
is the symbolic model with discretized state space obtained in [43]. For this
model, its safety controller can be constructed using supervisory control in [81].

1.4.2 Contribution

Our goal is two-step reachability analysis of switched systems with delays. A
distinctive feature of our proposed framework from existing work for reachability
analysis of nonlinear control systems with delays is that we abstract away the
effect of delays in the first step.

In the first step of the two-step analysis, using the methodology introduced
in Chapter 4, we compute an upper bound of the Skorokhod distance between
the trajectory of the switched system with delays and the one without delays, as
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Thm. 4.2.4 and Thm. 4.2.6 ensures. We can also use the methodology introduced
in Chapter 3 in the same way, but we use the one in Chapter 4 for better
precision. Using the resulting upper bound, the reachability of the switched
system with delays reduces to the reachability of the delay-free model.

Then, in the second step, we need to analyze the reachability of the switched
system without delays. Since we have separated the first step and the second
step, we can choose any existing reachability analysis technique for hybrid sys-
tems that is suitable for the target system. One possibility is the methodology
introduced in Chapter 5. In §6.2, we use the nonlinear water tank as an example
to show the applicability of our method to nonlinear dynamics. In §6.3, we use
the boost DC-DC converter as an example. For this example, we do not use
the methodology in Chapter 5. Instead, since the dynamics of this dynamics is
linear, we can even synthesize a safety controller that keeps the trajectory within
a safe region, using the state-space discretization method introduced in [40].

The soundness of the overall two-step analysis for state-dependent controller
is guaranteed because we combine two sound steps using the shrunk safe region
as we explained in the previous background section.

1.5 Thesis Organization

In Chapter 2, we will recall necessary definitions and results that will be used
later in Chapter 3–Chapter 5. In Chapter 3, a methodology for calculation of
an error bound between a switched system with time-delays and the ideal model
without time-delays is introduced. In Chapter 4, the methodology introduced
in the previous chapter is extended to enable more accurate analysis by finding
an upper bound of the Skorokhod distance between trajectories. In Chapter 5,
a methodology to overapproximate the reachability of a hybrid system is intro-
duced. In Chapter 6, by combining 1) the error analysis between a switched
system with delays and its delay-free model, and 2) the reachability analysis of
the delay-free model, two examples of switched systems with delays are analyzed.
In Chapter 7, we discuss related work. In Chapter 8, we conclude this thesis,
including discussion on the future direction of research.



Chapter 2

Preliminaries

In this chapter, we review a minimal set of definitions and results that are
necessary for our main results in Chapter 3–Chapter 5. In §2.1, we recall switched
systems and its incremental stability. It also introduces Lyapunov functions to
witness the incremental stability. We also review the notion of approximate
bisimulation on transition systems. The contents of this section will be used in
Chapter 3 and Chapter 4. Then in §2.2, we review the basic definitions and
results in NSA and abstract interpretation. It also includes the basic definitions
and results of domain theory transferred by NSA. For abstract interpretation,
we also recall a specific abstract domain of convex polyhedra that will be used in
Chapter 5. The contents in §2.2 will only be used in Chapter 5, and the readers
can skip this section until it is needed.

Notations The set of real numbers, nonnegative real numbers and natural
numbers are denoted by R, R+ and N respectively. The set of boolean values
is denoted by B = {tt,ff} We let ∥ ∥ denote the usual Euclidean norm on Rn.
Given a set X, P(X) denotes the powerset of X. The basic notions in real
analysis such as smoothness, Lipschitz continuity and so on can be found in [90],
for example. In this thesis, for a set X, a function d : X × X → R+ ∪ {∞} is
called a premetric on X.

2.1 Preliminaries for Approximate Bisimulation for
Switching Delays

2.1.1 Switched Systems

We first review switched systems. It is one of the common modeling methodolo-
gies for hybrid systems used in control theory, and more abstract model than a
hybrid automaton. In the following definition, a function is said to be non-Zeno
if it has only finitely many discontinuities, or has infinitely many discontinuities
at t1 < t2 < · · · < tk < · · · , and satisfies limk→∞tk = ∞.

Definition 2.1.1 (switched system). A switched system is a quadruple Σ =
(Rn, P,P, F ) that consists of:

• A state space Rn;

• A finite set P = {1, 2, . . . ,m} of modes ;

11
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• A set of switching signals P ⊆ S(R+, P ), where S(R+, P ) is the set of
functions from R+ to P that satisfy the following conditions: 1) piecewise
constant, 2) continuous from the right, and 3) non-Zeno;

• The set of vector fields F = {f1, f2, . . . , fm} indexed by p ∈ P , where each
fp is a locally Lipschitz continuous function from Rn to Rn.

Given a switched system model, its trajectory is defined as follows.

Definition 2.1.2 (trajectory). A continuous and piecewise C1 function x : R+ →
Rn is called a trajectory of the switched system Σ if there exists a switching signal
p ∈ P such that

ẋ(t) = fp(t)(x(t))

holds at each time t ∈ R+ when the switching signal p is continuous.
We let x(t, x,p) denote the point reached at time t ∈ R+, starting from the

state x ∈ Rn (at t = 0), under the switching signal p ∈ P. In the special case
where the switching signal is constant (i.e. p(s) = p for all s ∈ R+), the point
reached at time t ∈ R+ starting from x ∈ Rn is denoted by x(t, x, p). The
continuous subsystem of Σ with the constant switching signal p(s) = p for all
s ∈ R+ is denoted by Σp. If P is a singleton P = {1}, the system Σ = Σ1 is a
continuous system without switching.

2.1.2 Incremental Stability

After the pioneering work [77], a number of frameworks rely on the assumption
of incremental stability for the construction of approximate bisimulations. Our
results in Chapter 3 and Chapter 4 are also based on this assumption. Intuitively,
a dynamical system is incrementally stable if, under any choice of an initial state,
the resulting trajectory asymptotically converges to one reference trajectory. In
this section, we review the notion of incremental stability. We also recall the
result that it is witnessed by the existence of a variant of Lyapunov function.

In the subsequent definitions we will be using the following classes of func-
tions. A continuous function γ : R+ → R+ is a class K function if it is strictly
increasing and γ(0) = 0. A K function is a K∞ function if γ(x) → ∞ when
x → ∞. A continuous function β : R+ × R+ → R+ is a class KL function if
1) the function defined by x 7→ β(x, t) is a K∞ function for any fixed t; and 2)
for any fixed x, the function defined by t 7→ β(x, t) is strictly decreasing, and
β(x, t) → 0 when t→ ∞.

Definition 2.1.3 (δ-GAS system [8]). Let Σ = (Rn, P,P, F ) be a switched
system. For each mode p ∈ P , the continuous subsystem Σp is incrementally
globally asymptotically stable (δ-GAS) if there exists a KL function β such that

∥x(t, x, p)− x(t, y, p)∥ ≤ β(∥x− y∥, t)

for all x, y ∈ Rn and t ∈ R+.

The notion of δ-GAS is a well-known one among various notions of incremen-
tal stability. Directly establishing that a given system is δ-GAS is often hard.
A usual technique in the field is to let a Lyapunov-type function play the role of
witness for δ-GAS [8].
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Definition 2.1.4. Let Σ = (Rn, P,P, F ) be a switched system, and for each
mode p ∈ P , Σp be the continuous subsystem of Σ. A smooth function V :
Rn×Rn → R+ is a δ-GAS Lyapunov function for Σp if there exist K∞ functions
α, α and κ > 0 such that the following hold for all x, y ∈ Rn.

α(∥x− y∥) ≤ V (x, y) ≤ α(∥x− y∥) (2.1)

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) (2.2)

Note that the left-hand side of (2.2) is much like the Lie derivative of V along
the vector field fp.

Theorem 2.1.5 (Rem. 2.4 in [8]). Let Σ = (Rn, P,P, F ) be a switched system.
For each mode p ∈ P , the continuous subsystem Σp is δ-GAS if and only if it
has a δ-GAS Lyapunov function.

The notions so far are for continuous systems without switching. Their ex-
tensions to switched systems are introduced in [43].

Definition 2.1.6. Let Σ = (Rn, P,P, F ) be a switched system. Σ is said to be
incrementally globally uniformly asymptotically stable (δ-GUAS) if there exists
a KL function β such that the following holds for all x, y ∈ Rn, t ∈ R+ and
p ∈ P.

∥x(t, x,p)− x(t, y,p)∥ ≤ β(∥x− y∥, t)

This incremental stability (δ-GUAS) has been used in [43] as the main as-
sumption to establish an approximate bisimulation relation for symbolic ab-
straction of nonlinear switched systems. We will also use δ-GUAS as the main
assumption to establish an approximate bisimulation relation for delay abstrac-
tion of nonlinear switched systems in Chapter 3 and Chapter 4.

As was the case with δ-GAS, δ-GUAS can be witnessed by the existence of
a variant of Lyapunov function. A sufficient condition for a switched system to
be δ-GUAS is the existence of a common δ-GAS Lyapunov function.

Definition 2.1.7. Let Σ = (Rn, P,P, F ) be a switched system. A smooth
function V : Rn×Rn → R+ is called a common δ-GAS Lyapunov function for Σ
if there exist K∞ functions α, α and κ > 0 that make the following hold for all
x, y ∈ Rn.

α(∥x− y∥) ≤ V (x, y) ≤ α(∥x− y∥) (2.3)

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) for all p ∈ P (2.4)

Theorem 2.1.8 (Thm. 2 in [43]). Let Σ be a switched system. If there exists a
common δ-GAS Lyapunov function V of Σ, then Σ is δ-GUAS.

Another sufficient condition is the existence of multiple δ-GAS Lyapunov
functions, under an additional assumption on the set of switching signals [43].
The use of multiple Lyapunov functions for hybrid and switched systems was
first advocated in [20]. We let Sτd(R+, P ) ⊆ S(R+, P ) denote the set of switch-
ing signals with a dwell time τd > 0, which means that the intervals between
switching times are always longer than τd.
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We introduce the following notations. Given a switched system Σ = (Rn, P =
{1, 2, · · · , p, . . . ,m},P, F ), recall that Σp denotes the switching-free subsystem
where the mode is fixed to p (see §2.1). Assume that, for each p ∈ {1, 2, . . . ,m},
we have a δ-GAS Lyapunov function Vp for the subsystem Σp. Then there exist
a constant κp ∈ R+ and two K∞ functions αp and αp as in Def. 2.1.3. Let us
now define

α := min(α1, . . . , αm) , α := max(α1, . . . , αm) ,
κ := min(κ1, . . . , κm) ,

(2.5)

where min(f1, . . . , fk) and max(f1, . . . , fk) are defined by min(f1, . . . , fk)(x) =
min(f1(x), . . . , fk(x)) and max(f1, . . . , fk)(x) = max(f1(x), . . . , fk(x)), respec-
tively.

Theorem 2.1.9 (Thm. 3 in [43]). Let Σ = (Rn, P,P, F ) be a switched system.
Assume that P = {1, 2, . . . ,m}, and that its set P of switching signals satisfies
P ⊆ Sτd(R+, P ). Assume further that, for each p ∈ P , there exists a δ-GAS
Lyapunov function Vp for the subsystem Σp. We also assume that there exists
µ ∈ R+ such that

Vp(x, y) ≤ µVp′(x, y) for all x, y ∈ Rn and p, p′ ∈ P.

If the dwell time τd satisfies τd >
logµ
κ

, then Στd is δ-GUAS.

Remark 2.1.10. Incremental stability notion such as δ-GAS and δ-GUAS re-
quires that any pair of trajectories converges to each other. It is known that
for linear systems, δ-GAS is equivalent to usual global asymptotic stability that
requires the convergence to the equilibrium (see e.g. [97]). However, for nonlin-
ear systems, it is stronger than usual asymptotic stability with respect to the
equilibrium. In the results in this thesis, we will assume that Lyapunov func-
tions that witness δ-GUAS are given. Therefore, the applicability of our results
depends on how strong this incremental stability assumption is. Proving that a
nonlinear system is incrementally stable is a challenging task and it is studied
in control theory (e.g. [58]). Combining our results with such work is imminent
future work.

2.1.3 Approximate Bisimulation

Our main results in Chapter 3 and Chapter 4 to obtain an error bound between
a switched system with delays and its delay-free model are given by establishing
an approximate bisimulation relation. In this section, we review the notion
of approximate bisimulation [41, 42], a (co)inductive construct that guarantees
henceforth proximity of behaviors of two states. It is a relation between the
states of two transition systems.

Definition 2.1.11 (transition system). A transition system is a sextuple T =

(Q,L,GGGA, O,H, I), where

• Q is a set of states;

• L is a set of labels;
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• GGGA ⊆ Q× L×Q is a transition relation;

• O is a set of outputs;

• H : Q→ O is an output function; and

• I ⊆ Q is a set of initial states.

We let q
l

GGGGAq′ denote the fact that (q, l, q′) ∈ GGGA. A transition system T is

said to be premetric if the set O of outputs is equipped with a premetric d.
An infinite sequence

(
(q0, l0), (q1, l1), · · · , (qi, li), · · ·

)
in (Q × L)ω is a state

trajectory of the transition system T if q0 ∈ I and qi
li

GGGGAqi+1 for all i ∈ N.

An output trajectory
(
(H(q0), l0), (H(q1), l1), · · · , (H(qi), li), · · ·

)
in (O × L)ω is

associated with a state trajectory
(
(q0, l0), (q1, l1), · · · , (qi, li), · · ·

)
. We also con-

sider state trajectories and output trajectories of finite length N ∈ N, defined
similarly.

Note that in [41,42], they defined approximate bisimulation on metric transi-
tion systems, but we have weakened this condition to premetric, to fit our setting
used in Chapter 3 and Chapter 4.

Then, approximate bisimulation relation is defined between states.

Definition 2.1.12. Let Ti = (Qi, L,GGGA
i
, O,Hi, Ii) (i = 1, 2) be two premetric

transition systems with premetric d; note that T1 and T2 share the same sets of
actions L and outputs O. Let ε ∈ R+ be a nonnegative real number; we call
it a precision. A relation R ⊆ Q1 × Q2 is called an ε-approximate bisimulation
relation between T1 and T2 if the following three conditions hold for all (q1, q2) ∈
R.

• d(H1(q1), H2(q2)) ≤ ε;

• For all l and q′1 satisfying q1
l

GGGGA

1
q′1, there exists q

′
2 such that q2

l
GGGGA

2
q′2 and

(q′1, q
′
2) ∈ R hold; and

• For all l and q′2 satisfying q2
l

GGGGA

2
q′2, there exists q

′
1 such that q1

l
GGGGA

1
q′1 and

(q′1, q
′
2) ∈ R hold.

The transition systems T1 and T2 are approximately bisimilar with precision ε if
there exists an ε-approximate bisimulation relation R that satisfies the following
conditions:

• For all q1 ∈ I1, there exists q2 ∈ I2 such that (q1, q2) ∈ R;

• For all q2 ∈ I2, there exists q1 ∈ I1 such that (q1, q2) ∈ R.

We let T1 ∼ε T2 denote the fact that T1 and T2 are approximately bisimilar with
precision ε.

An approximate bisimulation relation gives an upper bound of the language
metric between two transition systems. The details will be found in [42]. The
construction of the transition system from a given switched system, and how
approximate bisimulation relation is established under the assumption of incre-
mental stability will be discussed later in Chapter 3 and Chapter 4.
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2.2 Preliminaries for Abstract Interpretation with In-
finitesimals

The definitions and results introduced in this section will be used in Chapter 5
and are not necessary in Chapter 3 and Chapter 4. Readers can skip this section
until reaching Chapter 5.

First, some basic notions in NSA are explained in §2.2.1. Then, an extension
of domain theory using NSA is presented in §2.2.2. They are based on [92]. Next,
the general theory of abstract interpretation and the specific domain of convex
polyhedra is introduced in §2.2.3. Finally in §2.2.4, we showcase how standard
abstract interpretation on convex polyhedra computes an overapproximation of
the reachable set using an example of discretized water tank.

2.2.1 Nonstandard Analysis

In this section we present necessary definitions and results in NSA [84]. Further
details of NSA are found e.g. in [44,57].

The following notions will play important roles:

• Hyperreals that extend reals by infinitesimals, infinites, etc.;

• The transfer principle, a celebrated result in NSA that states that reals
and hyperreals share “the same properties”;

• The first-order language LX that specifies formulas in which syntax, pre-
cisely, are preserved by the transfer principle; and finally

• The semantical construct of superstructure for interpreting LX-formulas.

Among these notions, the transfer principle is particularly important; in order
to formulate it in a mathematically rigorous manner, the two last items (the
language LX on the syntactic side, and superstructures on the semantical side)
are used. The first-order language LX is essentially that of set theory and
has two predicates = and ∈. The superstructure V (X) is then a semantical
“universe” for such formulas, constructed from the base set X: concretely V (X)
is the union of X, P(X), P(X∪P(X)), and so on. Finally, when we take X = R
then the set ∗X = ∗R is that of hyperreals ; and the transfer principle claims that
A holds for reals if and only if ∗A—a formula essentially the same as A—holds
for hyperreals. Its precise statement is:

Lemma 2.2.1 (the transfer principle). For any closed formula A in LX , the
following are equivalent.

• The formula A is valid in the superstructure V (X).

• The *-transform ∗A of A—this is a formula in the language L∗X—is valid
in the superstructure V (∗X).

The transfer principle guarantees that we can employ the same abstract inter-
pretation framework, for reals and hyperreals. Concretely, various constructions
and meta results (such as soundness and termination) in abstract interpretation
will be expressed as LR-formulas, and since they are valid in V (R), they are
valid in the “nonstandard universe” V (∗R) too, by the transfer principle.
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Hyperreals We fix an index set I = N throughout this thesis. A family
F ⊆ P(I) is a filter on I if it is closed under supersets and finite intersections,
i.e. 1) if X ⊆ Y and X ∈ F , then Y ∈ F ; and 2) if X,Y ∈ F , then X ∩ Y ∈ F .
A proper filter is a nonempty filter that does not contain the empty set ∅. A
proper filter F is called an ultrafilter if it is maximal, i.e. there is no filter F ′

such that F ⊊ F ′ ⊊ P(I). Note that 1) for any S ⊆ I, either S ∈ F or I \S ∈ F
(but not both); and 2) if S ⊆ I is cofinite (i.e. I \ S is finite), then S ∈ F . We
fix an ultrafilter F throughout this thesis.

Definition 2.2.2 (hyperreal r ∈ ∗R). We define the set ∗R of hyperreal numbers
(or hyperreals) by ∗R := RI/∼F . It is therefore the set of infinite sequences on
R modulo the following equivalence ∼F : we have (a0, a1, . . . ) ∼F (a′0, a

′
1, . . . ) if

{i ∈ I | ai = a′i} ∈ F , for which we say “di = d′i for almost every i.” (2.6)

A hypernatural n ∈ ∗N is defined similarly.

Remark 2.2.3 (choice of the index set I). In NSA, it is common to consider
an index set I that is larger than N. The advantage of taking such I is beyond
the scope of this thesis; see [57, Chap. II] for more details. In this thesis, we will
keep using the set N of natural numbers as the index set I for concreteness.

It follows that: two sequences (ai)i and (a′i)i that coincide except for finitely
many indices i represent the same hyperreal. The predicates besides = (such
as <) are defined in the same way. A notable consequence is the existence of
infinite numbers in the set of hyperreals and hypernaturals: ω := [(1, 2, 3, . . . )]
is a positive infinite since it is larger than any positive real r = [(r, r, . . . )] (i > r
for almost every i ∈ N). In addition, the set of hyperreals includes infinitesimal
numbers: a hyperreal ω−1 := [ (1, 1

2
, 1
3
, . . . ) ] is positive (0 < ω−1) but is smaller

than any (standard) positive real r.

Superstructure A superstructure is a “universe,” constructed step by step
from a certain base set X (whose typical examples are R and ∗R). We assume
N ⊆ X.

Definition 2.2.4 (superstructure). A superstructure V (X) over X is defined by
V (X) :=

∪
n∈N Vn(X), where V0(X) := X and Vn+1(X) := Vn(X) ∪ P(Vn(X)).

The superstructure V (X) might seem to be a closure of X only under pow-
ersets, but it accommodates many set-forming operations. For example, ordered
pairs (a, b) and tuples (a1, . . . , am) are defined in V (X) as is usually done in set
theory, e.g. (a, b) := {{a}, {a, b}}.The function space a → b is thought of as a
collection of special binary relations (i.e. a→ b ⊆ P(a× b)), hence is in V (X).

The First-Order Language LX We use the following first-order language
LX , defined for each choice of the base set X like R and ∗R.

Definition 2.2.5 (the language LX). Terms in LX consist of: variables
x, y, x1, x2, . . . ; and a constant a for each entity a ∈ V (X).

Formulas in LX are constructed as follows:
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• The predicate symbols are = and ∈; both are binary. The atomic formulas
are of the form s = t or s ∈ t (where s and t are terms).

• We allow Boolean combinations of formulas. We use the symbols ∧,∨,¬
and ⇒.

• Given a formula A, a variable x and a term s, the expressions ∀x ∈ s. A
and ∃x ∈ s. A are formulas.

Note that quantifiers always come with a bound s. The language LX depends
on the choice of X (it determines the set of constants). We shall also use the
following syntax sugars in LX , as is common in set theory and NSA.

(s, t) pair (s1, . . . , sm) tuple s× t direct product
s ⊆ t inclusion, short for ∀x ∈ s. x ∈ t
s(t) function application; short for x such that (t, x) ∈ s
s ◦ t function composition, (s ◦ t)(x) = s(t(x))
s ≤ t inequality in N; short for (s, t) ∈ ≤ where ≤ ⊆ N2

Definition 2.2.6 (semantics of LX). We interpret LX in the superstructure
V (X) in the obvious way. Let A be a closed formula; we say A is valid if A is
true in V (X).

The ∗-Transform and the Transfer Principle As we mentioned, the trans-
fer principle says that a closed formula A in the language LX is valid in V (X) if
and only if ∗A in L∗X is valid in V (∗X). We shall describe how we syntactically
transform A in LX into ∗A in L∗X .

For that purpose, in particular in translating constants in LX (for entities
in V (X)) to L∗X , we will need the semantical translation

∗( ) : V (X) −→ V (∗X) , a 7−→ ∗a (2.7)

that is called the *-transform. It is a map from the universe V (X) of standard
entities to V (∗X) of nonstandard entities. This mapping factorizes into the
following three steps.

V (X)
∗( )

//

( ) ��

V (∗X)

∪
n∈N

(
Vn(X) \ Vn−1(X)

)I
[ ]

//
∏0

F V (X)

M
OO

(2.8)

The first factor ( ) maps a ∈ V (X) to the constant function a such that a(i) = a
for each i ∈ I; recall that we have chosen I = N (Rem. 2.2.3). The second [ ]
takes a quotient modulo the ultrafilter F ; finally the third factor M is the so-
called Mostowski collapse. The details of this construction are beyond our scope;
they are found in [57, §II.4].

For an intuition let us exhibit these maps in the simple setting with a ∈
X. The first factor ( ) corresponds to forming constant streams: a 7→ a =
(a, a, . . . ). The second [ ] is quotienting modulo ∼F of (2.6). The third map M
does nothing—it is a book-keeping function that is only needed in the extended
setting of superstructures.

The above map ∗( ) : V (X) → V (∗X) becomes a monomorphism, a notion
in NSA. Most notably it will satisfy the transfer principle (Lem. 2.2.8).
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Definition 2.2.7 (*-transform of formulas). Let A be a formula in LX . The
*-transform of A, denoted by ∗A, is a formula in L∗X obtained by replacing
each constant a occurring in A with the constant ∗a that designates the element
∗a ∈ V (∗X).

Lemma 2.2.8 (the transfer principle). For any closed formula A in LX , A is
valid (in V (X)) if and only if ∗A is valid (in V (∗X)).

The transfer principle is a powerful result and we rely on it in §2.2.2 and
Chapter 5. Here are the first examples of its use; they are proved by transferring
a suitable formula A.

Lemma 2.2.9. 1. For a ∈ V (X) \X we obtain an injective map

∗( ) : a −→ ∗a , (b ∈ a) 7−→ (∗b ∈ ∗a) (2.9)

as a restriction of ∗( ) in (2.7).

2. If a is a finite set, the map (2.9) is an isomorphism a
∼=→ ∗a.

3. Let a→ b be the set of functions from a to b. We have ∗(a→ b) ⊆ ∗a→ ∗b.

4. ∗(a1 × · · · × am) =
∗a1 × · · · × ∗am; and

∗(a1 ∪ · · · ∪ am) = ∗a1 ∪ · · · ∪ ∗am.

5. For a binary relation r ⊆ a × a, we have ∗r ⊆ ∗a × ∗a. Moreover, r is an
order if and only if ∗r is an order.

Internal Sets In §2.2.2, especially Rem. 2.2.19, we will see that being internal
is crucial for transfer. The difference between internal and external entities is
important in NSA, but we present only the necessary definition and lemma here.
For more detailed discussion, see [57, §II.6].

Definition 2.2.10 (internal entity). An element b ∈ V (∗X) is internal with
respect to ∗( ) : V (X) → V (∗X) if there is a ∈ V (X) such that b ∈ ∗a. It is
external if it is not internal.

Lemma 2.2.11. A function f : ∗a → ∗b is internal if and only if f ∈ ∗(a→ b).

2.2.2 Domain Theory, Transferred

The collecting semantics of Whiledt is introduced by solving recursive equations
on ∗P(Rn). Here we present necessary theoretical foundations for that. We
identify the set ∗P(Rn) as a hyperdomain and *-transferring domain theory.

The current section is an adaptation of what appeared in the appendix of [92];
and the definitions and results are similar to those in [15, §2.2]. In [15], a
hyperdomain is called an internal domain, and a *-continuous function is called
an internal continuous function.

Definition 2.2.12. In what follows we employ the theory of NSA presented in
§2.2.1. As the base set of a superstructure V (X) (Def. 2.2.4), we take X =
R ∪ B ∪Var.
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Definition 2.2.13 (hyperdomain). Let (D,⊑) be a cpo. The pair (∗D, ∗⊑) of
its *-transforms is called a hyperdomain.

Example 2.2.14. The set P(Var → R) is a complete lattice with respect to
the inclusion order ⊆, therefore is a cpo. Its ∗-transform

( ∗(P(Var → R)
)
, ∗⊆

)
constitutes a hyperdomain.

We note that the set ∗(P(Var → R)
)
coincides with the set of internal subsets

of the space {f : ∗Var → ∗R | f is an internal function}. Moreover, under the
assumption that Var is a finite set (e.g. the set of variables occurring in a pro-
gram c), we can see that the last set {f : ∗Var → ∗R | f is an internal function}
coincides with the function space Var → ∗R. For this we use Lem. 2.2.9.4.

Note that for a hyperdomain (∗D, ∗⊑), ∗⊑ is an order in ∗D (Lem. 2.2.9.5).
We will establish a fixed point theorem on a hyperdomain. First, we encode the
definitions of cpo and continuous functions as LX-formulas to be used in the
proofs.

Definition 2.2.15. We define the following LX-formulas:

BinRela,r :≡ r ⊆ a× a

Refla,r :≡ ∀x ∈ a. (x, x) ∈ r

Transa,r :≡ ∀x, y, z ∈ a.
(
(x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r

)
AntiSyma,r :≡ ∀x, y ∈ a.

(
(x, y) ∈ r ∧ (y, x) ∈ r ⇒ x = y

)
Preorda,r :≡ BinRela,r ∧ Refla,r ∧ Transa,r

Poseta,r :≡ Preorda,r ∧ AntiSyma,r

HasBota,r :≡ ∃x ∈ a.∀y ∈ a. (x, y) ∈ r

AscCna,r(s) :≡ ∀x, x′ ∈ N. (x ≤ x′ ⇒ (s(x), s(x′)) ∈ r)

UpBda,r(b, s) :≡ ∀x ∈ N. ((s(x), b) ∈ r)

Supa,r(p, s) :≡ UpBda,r(p, s) ∧ ∀b ∈ a. (UpBda,r(b, s) ⇒ (p, b) ∈ r)

CPOa,r :≡ Poseta,r ∧ HasBota,r

∧ ∀s ∈ (N → a).
(
AscCna,r(s) ⇒ ∃p ∈ a. Supa,r(p, s)

)
Contia1,r1,a2,r2(f) :≡ ∀s ∈ (N → a1). ∀p ∈ a1.((

AscCna1,r1(s) ∧ Supa1,r1(p, s)
)
⇒ Supa2,r2(f(p), f ◦ s)

)
.

Definition 2.2.16 (*-continuous function). Let (∗D1,
∗⊑1) and (∗D2,

∗⊑2) be
hyperdomains. A function f : ∗D1 → ∗D2 is *-continuous if it is internal and
satisfies the *-transform of the formula ContiD1,⊑1,D2,⊑2 . That is to be precise:
∗(ContiD1,⊑1,D2,⊑2)(f) is valid. The set of *-continuous functions from

∗D1 to
∗D2

is denoted by ∗D1 →∗ct
∗D2.

Note that in the condition ∗(ContiD1,⊑1,D2,⊑2)(f), the range of a chain s is the
set of internal functions ∗(N → D1).

Lemma 2.2.17. (∗D1 →∗ct
∗D2) =

∗(D1 →ct D2). Here →ct denotes the set of
continuous functions.

Proof. Assume f ∈ ∗(D1 →ct D2). The following closed formula is valid in
V (X):

∀f ′ ∈ (D1 → D2).
(
f ′ ∈ (D1 →ct D2) ⇔ Conti(f ′)

)
,
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where Conti is short for ContiD1,⊑1,D2,⊑2 . By transfer we have

∀f ′ ∈ ∗(D1 → D2).
(
f ′ ∈ ∗(D1 →ct D2) ⇔ ∗Conti(f ′)

)
(2.10)

valid in V (∗X). Thus f satisfies ∗Conti(f ′). Obviously f is internal; therefore
f ∈ (∗D1 →∗ct

∗D2).
Conversely, assume f ∈ (∗D1 →∗ct

∗D2). By the definition of *-continuity, f
is internal, hence by Lem. 2.2.11 we have f ∈ ∗(D1 → D2). Moreover, using the
definition of *-continuity and (2.10), we have f ∈ ∗(D1 →ct D2).

The following lemma enables us to define a collecting semantics of Whiledt

programs as a least fixed point later in §5.1.

Lemma 2.2.18. Let (∗D, ∗⊑) be a hyperdomain. Then a *-continuous function
f : ∗D → ∗D has a least fixed point. Moreover, the function ∗lfp that maps f to
its least fixed point (∗lfp)(f) is *-continuous.

Proof. By the usual construction in a cpo, we obtain the map

lfp : (D →ct D) →ct D , f 7→
⊔

n∈N f
n(⊥) .

Continuity of lfp is easy and standard. As its *-transform we obtain a function
∗lfp : (∗D →∗ct

∗D) →∗ct
∗D, where we used Lem. 2.2.17 and Lem. 2.2.9. The

fact that ∗lfp returns least fixed points is shown by the transfer of the following
LX-formula.

∀f ∈ (D →ct D).
(
f(lfp(f)) = lfp(f) ∧ ∀x ∈ D. (f(x) = x ⇒ lfp(f) ⊑ x)

)
Remark 2.2.19. In the proofs of the previous lemmas, it is necessary that f :
∗D → ∗D is an internal function. The transfer principle Lem. 2.2.8 can be applied
only to a closed formula in LX ; and LX only allows bounded quantifiers (∀x ∈ s
with some bound s). When f is internal, we have such a bound f ∈ ∗(D → D),
but there are no such bounds for external f .

2.2.3 Theory of Abstract Interpretation

Abstract interpretation [31] is a well-established technique in static analysis. We
make a brief review of its basic theory. The goal of abstract interpretation is
to overapproximate a concrete semantics defined on an concrete domain by an
abstract semantics on an abstract domain. We also review the specific abstract
domain of convex polyhedra in this section.

Concretization-Based Abstract Interpretation Framework First we re-
call the concretization-based framework described in [29]. Note that we are not
using the formalization in [31], which is based on Galois connection.

We assume that the concrete semantics is defined as a least fixed point on the
concrete domain. The following proposition guarantees the overapproximation
of the least fixed point in the concrete domain by a prefixed point in the abstract
domain. In the proposition, the order ⊑ on the domain L is extended to the
order on L→ L pointwisely. And the least fixed point relative to ⊥- , denoted by
lfp⊥- F , is the least among the fixed points of F above ⊥- ; by the cpo structure
of L and the continuity of F , it is given by

⊔
n∈N F

n(⊥- ).
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Proposition 2.2.20. Let (L,⊑) be a cpo; F : L→ L be a continuous function;
and ⊥- ∈ L be such that ⊥- ⊑ F (⊥- ). Let (L,⊑) be a preorder; γ : L → L be
a function (it is called concretization) such that a ⊑ b ⇒ γ(a) ⊑ γ(b) for all
a, b ∈ L; and F : L → L be a monotone function such that F ◦ γ ⊑ γ ◦ F .
Assume further that x ∈ L is a prefixed point of F (i.e. F (x) ⊑ x) such that
⊥- ⊑ γ(x).

Then x overapproximates lfp⊥- F , that is, lfp⊥- F ⊑ γ(x).

Later in §2.2.4 where we analyze the discretized linear water tank, the set
P(Rn) of subsets of memory states is used as a concrete domain L; and the
domain of convex polyhedra is used as an abstract domain L. The interpretations
F and F on each domains are defined in a standard manner. Towards the goal of
obtaining x in Prop. 2.2.20, (i.e. finding a prefixed point in the abstract domain),
the following notion of widening is used (often together with narrowing that we
will not be using). Note that in the following definition and proposition, the
domain (L,⊑) is the abstract domain, corresponding to (L,⊑) in Prop. 2.2.20.

Definition 2.2.21 (widening operator). Let (L,⊑) be a preorder. A function
∇ : L× L→ L is said to be a widening operator if the following two conditions
hold.

• (Covering) For any x, y ∈ L, x ⊑ x∇y and y ⊑ x∇y.

• (Termination) For any ascending chain ⟨xi⟩ ∈ LN, the chain ⟨yi⟩ ∈ LN

defined by y0 = x0 and yi+1 = yi∇xi+1 for each i ∈ N is ultimately
stationary.

A widening operator on a fixed abstract domain L is not at all unique. In this
thesis, we will discuss three widening operators previously introduced for the
domain of convex polyhedra CPn.

The use of widening is as in the following proposition: the covering condition
in Def. 2.2.21 ensures that the outcome is a prefixed point; and the procedure
terminates thanks to the termination condition in Def. 2.2.21.

Proposition 2.2.22 (convergence of iteration sequences). Let (L,⊑) be a pre-
order; F : L → L be a monotone function; ⊥- ∈ L be such that ⊥- ⊑ F (⊥- );
∇ : L×L→ L be a widening operator; and ⟨Xi⟩i∈N ∈ LN be the infinite sequence
defined by

X0 = ⊥- ; and, for each i ∈ N, Xi+1 =

{
Xi (if F (Xi) ⊑ Xi)

Xi∇F (Xi) (otherwise)

Then the sequence ⟨Xi⟩i∈N is increasing and ultimately stationary; moreover its
limit

⊔
i∈NXn is a prefixed point of F such that ⊥- ⊑

⊔
i∈NXn.

The Domain of Convex Polyhedra The domain of convex polyhedra, in-
troduced in [31], is one of the most often used relational abstract domain.

Definition 2.2.23 (domain of convex polyhedra CPn). An n-dimensional convex
polyhedron is the intersection of finitely many (closed) affine half-spaces. We
denote the set of convex polyhedra in Rn by CPn. Its preorder ⊑ is given by
the inclusion order (actually it is a partial order). The concretization function
γCPn : CPn → P(Rn) is defined in an obvious manner.
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A convex polyhedron can be represented in two ways: as a constraint system
and a generator system. A constraint system is a finite set of linear constraints.
A constraint system C represents the convex polyhedron that consists of all the
points that satisfies all linear constraints in C. A constraint system is sometimes
implicitly required to be in so-called minimal form. Its details are in [31], and
we skip them in this thesis. The function con maps a constraint system to the
corresponding convex polyhedron. The linear constraints include both linear
equations and linear inequalities. The function eq maps a constraint system C
to the set of linear equations in C. The function repr maps a constraint system
to the set of linear inequalities splitting each linear equation into two linear
inequalities.

A generator system is a triple of three finite sets of vectors (L,R, P ), where
L is the set of lines, R is the set of rays and P is the set of points. The generator
system (L = {l⃗1, · · · , l⃗l}, R = {r⃗1, · · · , r⃗r}, P = {p⃗1, · · · , p⃗p}) represents the
convex polyhedron{ l∑

i=1

λil⃗i +
r∑

i=1

ρir⃗i +

p∑
i=1

πip⃗i

∣∣∣∣λi ∈ R, ρi ∈ R+, πi ∈ R+,

p∑
i=1

πi = 1

}
.

A generator system is sometimes implicitly required to be in so-called orthogonal
form, but we skip the details. The function gen maps a generator system to the
corresponding convex polyhedron.

The function F is defined in a obvious manner and we skip it. (Implementing
them is a little hard. See [31] for more details.)

We recall three widening operators on convex polyhedra: the standard widen-
ing operator introduced in [46], the widening operator ∇M up to M introduced
in [47,49] and the precise widening operator introduced in [13].

Definition 2.2.24 (Standard widening). Let P1 = con(C1), P2 = con(C2) ∈ CPn

be two convex polyhedra. The standard widening operator ∇s : CPn × CPn →
CPn on CPn is defined by

P1∇sP2 :=


P2 if P1 = ∅

con

{i ∈ repr(C1) | i is true everywhere in P2}

∪
{
j ∈ repr(C2)

∣∣∣∣there exists i ∈ repr(C1)
s.t. P1 = con(repr(C1)[j/i])

} otherwise.

Intuitively, P1∇sP2 is represented by the set of linear constraints of P1 that
are satisfied by P2. The second argument of ∪ in the second case is just for
well-definedness.

A widening operator that is more precise than the standard widening operator
is the following widening up to.

Definition 2.2.25 (Widening up to). Let P1, P2 ∈ CPn be two convex poly-
hedra, ∇s be the standard widening operator on CPn and M be a finite set of
linear constraints. The widening operator up to M is defined by

P1∇MP2 := P1∇sP2 ∩ con({m ∈M | Pi ⊆ con({m}) for i ∈ {1, 2}}).

By applying the standard widening operator ∇s, we just discard the linear
constraints of P1 that are violated by P2. By applying ∇M , the linear constraints
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of P1 that is violated by P2 are discarded, but instead the linear constraints in
a fixed set M that are satisfied by both P1 and P2 are added if any. The set M
of linear constraints is usually fixed to the set of linear inequalities that occur in
the boolean expressions in the given program (we regard an linear equation as
the conjunction of two linear inequalities).

Another widening operator is the precise widening operator. It is defined
using a kind of strict preorder defined as follows.

Definition 2.2.26 (∇-compatible limited growth ordering). Let L be a poset.
The strict version of a finitely computable preorder on L that satisfies the as-
cending chain condition is a limited growth ordering (lgo). Let ∇ be a widening
operator on L. An lgo ↷ is ∇-compatible if x < y ⇒ x↷ x∇y for all x, y ∈ L.

Definition 2.2.27 (Upper bound operators). Let L be a poset. An operator
h : L × L → L is an upper bound operator if for any x, y ∈ L, x ⊑ h(x, y) and
y ⊑ h(x, y).

The following proposition defines a more precise widening operator than (or
a widening operator as precise as) given widening operator.

Proposition 2.2.28 (Improving widening operators). Let L be a poset, ∇ be a
widening operator on L, ↷ be a ∇-compatible lgo on L and h : L×L→ L be an
upper bound operator. The operator ∇′ defined as follows is a widening operator
on L that is at least as precise as ∇:

x∇′y =

{
h(x, y) if x↷ h(x, y) ⊑ x∇y
x∇y otherwise.

To apply Prop. 2.2.28 to the standard widening operator ∇s that is defined
in Def. 2.2.24, a ∇s-compatible lgo and an upper bound operator are needed.
First, we define a ∇-compatible lgo on the domain of convex polyhedra. As
preparations, we introduce the three notions: ⊥-lifting, multiset ordering [33]
and the number of non-null coordinates.

Definition 2.2.29 (⊥-lifting). The ⊥-lifting of a preorder ⪯ on L is the preorder
{(⊥, x)|x ∈ L}∪ ⪯.

Definition 2.2.30 (Multiset ordering). Let M and N be finite multisets over
N. The multiset ordering ⊑ms is defined as follows:

M ⊑ms N
def⇐⇒

M = N, or there exists i ∈ N s.t.(
#(i,M) > #(i, N) and
for all j ∈ N,

(
j > i⇒ #(j,M) = #(j,N)

) )
,

where #(k, S) is the number of occurrences of k ∈ N in S. Note that ⊑ms is a
partial order satisfying the ascending chain condition.

Definition 2.2.31 (Number of non-null coordinates). Let V be a subset of Rn.
The multiset κ(V ) is the multiset of the number of non-null coordinates of each
vectors in V .
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Using these three notions, we define the following order on CPn.

Definition 2.2.32 (↷N⊆ CPn×CPn). Let P1 = con(C1) = gen((L1, R1, P1)) ∈
CPn and P2 = con(C2) = gen((L2, R2, P2)) ∈ CPn. Assume that P1 and P2 are
both nonempty. The five preorders ⪯d,⪯l,⪯c,⪯p and ⪯r on CPn are defined as
the ⊥-lifting of the following preorders:

P1 ⪯d P2
def⇐⇒ #eq(C1) ≥ eq(C2);

P1 ⪯l P2
def⇐⇒ #L1 ≤ #L2;

P1 ⪯c P2
def⇐⇒ #C1 ≥ #C2;

P1 ⪯p P2
def⇐⇒ #P1 ≥ #P2;

P1 ⪯r P2
def⇐⇒ κ(R1) ⊑ms κ(R2).

The strict version of the lexicographic product of the five preorders ⪯d,⪯l,⪯c,⪯p

and ⪯r in this order is denoted by ↷N and this is a ∇s-compatible lgo on CPn.

Four upper bound operators have been introduced in [13]: do not widen
(given P1 and P2, and just output P2), combining constraints hc, evolving points
hp, evolving rays hr. We do not go into their details because they are not
necessary when transferring the meta-theorems with NSA later. The precise
widening operator on the domain of convex polyhedra is defined as follows. In
the following definition, we assume that P1 ⊑ P2. This condition is usually
satisfied because P2 is often defined as the convex hull of P1 and another convex
polyhedron.

Definition 2.2.33 (Precise widening operator ∇N). Let P1, P2 ∈ CPn. Assume
that P1 ⊑ P2. The precise widening operator ∇N is defined as follows:

P1∇NP2 :=



P2 if P1 ↷N P2;

hc(P1, P2) if P1 ↷N hc(P1, P2) ⊂ P1∇sP2;

hp(P1, P2) if P1 ↷N hp(P1, P2) ⊂ P1∇sP2;

hr(P1, P2) if P1 ↷N hr(P1, P2) ⊂ P1∇sP2;

P1∇sP2 otherwise.

2.2.4 Analysis of Discretized Linear Water Tank by (Standard) Ab-
stract Interpretation

In this section, we illustrate how the abstract interpretation on the domain of
convex polyhedra analyzes standard programs (without infinitesimals), using a
discretized version of the linear water tank example. The concrete problem is as
follows. See Fig.2.1. A water tank has a constant drain (2 cm per second). When
the water level x gets lower than 5 cm the switch is turned on, which eventually
makes the pump work but only after a time lag of two seconds. While the pump
is working, the water level x rises by 1 cm per second. Once x reaches 10 cm,
the switch is turned off, which will shut down the pump but again after a time
lag of two seconds. Our goal is the reachability analysis of this hybrid dynamics,
that is, to see the water level x remains in a certain “safe” range (for the hybrid
model, we will see that the range is 1 ≤ x ≤ 12 later in Chapter 5).
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Figure 2.1: A water tank with a drain and a pump, adapted from [91].

1 /*Discretized Linear Water Tank*/

2 l := 0; x := 1; p := 1; s := 0; dtprime := 0.2;

3 while true do {

4 if p = 1 then x := x + dtprime

5 else x := x - 2 * dtprime;

6 if (x <= 5 && p = 0) then s := 1

7 else {

8 if (x >= 10 && p = 1) then s := 1

9 else s := 0

10 };

11 if s = 1 then l := l + dtprime

12 else skip;

13 if s = 1 && l >= 2 then {p := 1 - p; s := 0; l := 0}

14 else skip

15 }

Code 2.1: Discretized linear water tank

We will use the discretized model of the linear water tank in Code 2.1, where
each iteration of its unique loop amounts to the lapse of dt′ = 0.2 (the variable
dtprime in the code) seconds. The model in Code 2.1 is in an imperative pro-
gramming language with while loops, a typical subject of analyses by abstract
interpretation.

More specifically: x is the water level, l is the counter for the time lag, p
stands for the state of the pump (p = 0 if the pump is off, and p = 1 if on) and
s is for “signals,” meaning that s = 1 if the pump has not yet responded to a
signal from the switch (such as, when the switch is on but the pump is not on
yet).

The first step in the usual abstract interpretation workflow is to fix concrete
and abstract domains. Here in §2.2.4 we will use the followings.

• The concrete domain:
(
P(R2)

)4
. We have two numerical variables

l, x and two Boolean ones p, s in Code 2.1, therefore a canonical concrete
domain would be P(B2 × R2). We have the powerset operation P in it
since we are now interested in the reachable set of memory states.
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However, for a better fit with our abstract domain (namely convex poly-

hedra), we shall use the set
(
P(R2)

)4
that is isomorphic to the above set

P(B2 × R2).

• The abstract domain: (CP2)
4. We use the domain of convex polyhe-

dra [31], one of the most commonly-used abstract domains. Recall that
a convex polyhedron is a subset of a Euclidean space characterized by a
finite conjunction of linear inequalities. Specifically, we let CP2, the set of
2-dimensional convex polyhedra, approximate the set P(R2). Therefore,
as an abstract domain for the program in Code 2.1, we take (CP2)

4 (that

approximates
(
P(R2)

)4
).

The next step in the workflow is to overapproximate the set of memory
states that are reachable by the program in Code 2.1—this is a subset of the

concrete domain
(
P(R2)

)4
—using the abstract domain (CP2)

4. Since the desired
set can be thought of as a least fixed point, this overapproximation procedure
involves: 1) abstract execution of the program in (CP2)

4 (that is straightforward,
see e.g. [31]); and 2) acceleration of least fixed-point computation in (CP2)

4 via
suitable use of a widening operator. We will use here ∇M , the widening up to
M operator in Def. 2.2.25. One big reason for this choice is the uniformity of
the operator (a notion we introduce later in §5.2.3), among others. The set M
of linear constraints is a parameter for this widening operator; we fix it as usual,
collecting the linear constraints that occur in the program in question. That is,
M = {x ≤ 5, x ≥ 5, x ≤ 10, x ≥ 10, l ≤ 2, l ≥ 2}.

This overapproximation procedure is depicted in the iteration sequence in
Fig. 2.2. Let us look at some of its details. The graph 0 represents the initial
memory state (before the first iteration), where the pump is on and the water
level x is precisely 1. After one iteration the water level will be incremented by
1 × dt′ = 0.2 cm; as usual in abstract interpretation, however, at this moment
we invoke the widening operator ∇M , and the next “abstract reachable set”
is x ∈ [1, 5] instead of x ∈ [1, 1.2]. Here the upper bound 5 comes from the
constraint x ≤ 5 that is in the parameter M of the widening operator ∇M . This
results in the graph 1 in Fig. 2.2.

In the iteration sequence (Fig. 2.2) the four polyhedra (in four different colors)
gradually grow: in the graph 2 the water level x can be 10 cm so in the graph
3 appears a green polyhedron (meaning that a signal is sent from the switch to
the pump); after the graphs 3 and 9 we delay widening, a heuristic commonly
employed in abstract interpretation [26]. In the end, in the graph 12 we have
a prefixed point (meaning that the polyhedra do not grow any further). There
we can see, from the range of x spanned by the polyhedra, that the water level
never reaches beyond 0.6 ≤ x ≤ 12.2.
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Figure 2.2: An iteration sequence for the linear water tank example.
To save space, here we depict an element of (CP2)

4—i.e. a quadruple of convex
polyhedra—on the same plane R2. The four convex polyhedra come in different
colors: those in blue, green, red and yellow correspond to the values (p, s) =
(1, 0), (1, 1), (0, 0) and (0, 1) of the Boolean variables, respectively.



Chapter 3

Approximate Bisimulation for
Switching Delays

In this chapter, we propose a methodology to overapproximate the error caused
by the switching time delays using approximate bisimulation. The technical
development is based on the previous work [43], where the notion of approximate
bisimulation is used to obtain symbolic models of incrementally stable switched
systems. We consider two switched systems: the ideal one in which switching
can only occur at exactly every τ seconds; and the delayed version in which
each switching time has a possible delay less than δ0 seconds. From each of
the two switched systems, we first construct a corresponding transition system.
We put the same incremental stability assumption δ-GUAS as the one in [43],
and assume that Lyapunov functions to witness δ-GUAS are given. Using the
Lyapunov functions, we construct a variant of approximate bisimulation relation
between the two transition systems.

3.1 Periodic Switched Systems with and without Delays

The models we are considering are given as switched systems introduced in
Def. 2.1.1. We are interested in the error between ideal periodic switched sys-
tem without delays and the one with switching delay. Note that when we say
“periodic” in this thesis, we do not mean that the same behavior of the system
is repeated with a certain period τ . What we mean is that the change of the
mode can occur only at every τ . This is defined formally as follows.

Definition 3.1.1 (periodicity, switching delay). Given a switching signal p,
those time instants t ∈ R+ where the switching signal p is discontinuous are
called switching times. If a switching signal is continuous except at kτ (where
τ > 0 is a constant and k ∈ N), it is called τ -periodic. A switched system
Σ = (Rn, P,P, F ) is called τ -periodic if all the switching signals in P are τ -
periodic.

Let 0 ≤ δ0 < τ . A switching signal p is said to be τ -periodic with switching
delays within δ0 if it has at most one discontinuity in each interval [kτ, kτ + δ0]
(where k ∈ N). A switched system Σ = (Rn, P,P, F ) is called τ -periodic with
switching delays within δ0 if all the switching signals in P are τ -periodic with
switching delays within δ0.

Given a τ -periodic switching signal, even though switching does not always
occur at every t = kτ , we denote the switching that occurs at t = kτ by k-th

29



CHAPTER 3. APPROXIMATE BISIMULATION FOR DELAYS 30

0 τ

2τ 3
τ

2

3

4

5

m
o
d
e

periodic signal

0 τ

2τ 3τ

2

3

4

5

δ 0

τ
+

δ 0

2τ
+

δ 0

periodic signal with delays within δ0

Figure 3.1: Periodic switching signals, with and without delays.

switching. Similarly, given a τ -periodic switching signal with switching delays,
k-th switching means the switching that occurs at t ∈ [kτ, kτ + δ0].

See Fig. 3.1 for illustration of periodic switching signals and those with delays.

In this thesis, we focus on periodic switched systems with switching delays,
and their difference from those without switching delays. More specifically, we
consider two switched systems

Στ,δ0 = (Rn, P,Pτ,δ0 , F ) τ -periodic with delays ≤ δ0

Στ = (Rn, P,Pτ , F ) τ -periodic
(3.1)

that have a common state space Rn, a common set P of modes and a common
set F of vector fields. For the former system Στ,δ0 , the set Pτ,δ0 consists of all
τ -periodic signals with delays within δ0; for the latter system Στ the set Pτ

consists of all τ -periodic switching signals.

3.2 Transition Systems Constructed from Switched Sys-
tems

For the two switched systems Στ,δ0 = (Rn, P,Pτ,δ0 , F ) and Στ = (Rn, P,Pτ , F )
in (3.1), we shall construct associated transition systems T (Στ,δ0) and T (Στ ),
respectively.

Definition 3.2.1 (T (Στ,δ0), T (Στ )). The transition system

T (Στ,δ0) = (Qτ,δ0 , L,GGGAτ, δ0
, O,Hτ,δ0 , I) ,

associated with the switched system Στ,δ0 with delays in (3.1), is defined as
follows:

• the set of states is Qτ,δ0 := Rn ×
∪

k∈N[kτ, kτ + δ0]× P ;

• the set of labels L is the set of modes, i.e. L := P ;
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• the transition relation GGGA

τ, δ0
⊆ Qτ,δ0 × L × Qτ,δ0 is defined by

(x, t, p)
p′′

GGGGGA

τ, δ0
(x′, t′, p′) if p = p′′, x′ = x(t′ − t, x, p) and there exists k ∈ N

such that t ∈ [kτ, kτ + δ0] and t
′ ∈ [(k + 1)τ, (k + 1)τ + δ0];

• the set of outputs is O := Rn × R+ × P ;

• the output function Hτ,δ0 : Qτ,δ0 → O is the canonical embedding function
Rn ×

∪
k∈N[kτ, kτ + δ0]× P → Rn × R+ × P ; and

• the set of initial states is I := Rn × {0} × P .

Intuitively, each state (x, t, p) of T (Στ,δ0) marks switching in the system Στ,δ0 :
x ∈ Rn is the (continuous) state at switching; t is time of switching; and p is the
next mode. Note that, by the assumption on Στ,δ0 , t necessarily belongs to the
interval [kτ, kτ + δ0] for some k ∈ N.

Similarly, the transition system

T (Στ ) = (Qτ , L,GGGA
τ
, O,Hτ , I) ,

associated with the switched system Στ without delays in (3.1), is defined as
follows:

• the set of states is Qτ := Rn × {0, τ, 2τ, . . . } × P ;

• the set of labels L is the set of modes, i.e. L := P ;

• the transition relation GGGA

τ
⊆ Qτ × L × Qτ is defined by

(x, t, p)
p′′

GGGGGA

τ
(x′, t′, p′) if p = p′′, t′ = t+ τ and x′ = x(τ, x, p);

• the set of outputs is O := Rn × R+ × P ;

• the output function Hτ : Qτ → O is the canonical embedding function; and

• the set of initial states is I := Rn × {0} × P .

Note that, in both of T (Στ,δ0) and T (Στ ), the label p′′ for a transition is
uniquely determined by the mode component p of the transition’s source (x, t, p).
Therefore, mathematically speaking, we do not need transition labels.

In [43], the state space Q of the transition system is defined to be Rn and is
the same as the state space of the original switched system. In comparison, our
definition has two additional components, namely time t and the current mode
p. It is notable that moving a mode p from transition labels to state labels allows
us to analyze what happens during switching delays, that is, when the system
keeps operating under the mode p while it is not supposed to do so.

Definition 3.2.2 (premetric on outputs). On the set of outputs O = Rn×R+×P
that is common to the two transition systems T (Στ,δ0) and T (Στ ), we define the
following premetric d:

d((x, t, p), (x′, t′, p′)) := ∥x− x(t− t′, x′, p)∥ if p = p′, t′ = kτ and
t ∈ [t′, t′ + δ0] for some k ∈ N

∞ otherwise.
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3.3 Relaxation of Approximate Bisimulation

In this thesis we are interested not only in a time-invariant precision ε, but
also in an error bound that can grow in time. For this purpose we introduce
the following relaxed notion of approximate bisimulation. It allows errors to
potentially grow after each transition, in a manner regulated by some increasing
function g : R+ → R+.

Definition 3.3.1 (g-incrementing approximate bisimulation). Let Ti =

(Qi, L,GGGA
i
, O,Hi, Ii) (i = 1, 2) be two premetric transition systems with pre-

metric d; they share the same sets of actions L and outputs O. Let ε ∈ R+ be
a precision, and g : R+ → R+ be an increasing function.

A family {Rε}ε≥0 of relations Rε ⊆ Q1 × Q2 indexed by ε ≥ 0 is called
an g-incrementing approximate bisimulation between T1 and T2 if the following
conditions hold for all ε ≥ 0 and for all (q1, q2) ∈ Rε:

1. d(H1(q1), H2(q2)) ≤ ε; and

2. There exists a function g such that

(a) for all l and q′1 satisfying q1
l

GGGGA

1
q′1, there exists q

′
2 such that q2

l
GGGGA

2
q′2

and (q′1, q
′
2) ∈ Rg(ε) hold; and

(b) for all l and q′2 satisfying q2
l

GGGGA

2
q′2, there exists q

′
1 such that q1

l
GGGGA

1
q′1

and (q′1, q
′
2) ∈ Rg(ε) hold.

3.4 Approximate Bisimulation for Switching Delays I:
Common Lyapunov Functions

In §2.1.2, we reviewed two witness notions for the incremental stability notion of
δ-GUAS: common and multiple δ-GAS Lyapunov functions. In [43], these two
notions are successfully exploited to yield discrete-state abstraction of switched
systems. It is our main contribution to leverage the same incremental stability
assumptions and derive upper bounds for errors caused by switching delays. We
focus on systems with periodic switching intervals, as already announced. The
use of common δ-GAS Lyapunov functions is described in this section; the use
of multiple δ-GAS Lyapunov functions is in the next section.

We will be using the following assumption.

Assumption 3.4.1 (bounded intermode derivative). Let Σ = (Rn, P,P, F ) be a
switched system, with P = {1, 2, . . . ,m} and F = {f1, f2, . . . , fm} being the set
of vector fields associated with each mode. We say a function V : Rn×Rn → R+

has bounded intermode derivatives if there exists a real number ν ≥ 0 such that,
for any p, p′ ∈ P that are distinct (p ̸= p′), the inequality

∂V

∂x
(x, y)fp(x) +

∂V

∂y
(x, y)fp′(y) ≤ ν (3.2)

holds for each x, y ∈ Rn.
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Remark 3.4.2. Assumption 3.4.1 seems to be new: it is not assumed in the
previous works on approximate bisimulation for switched systems, such as [43].

Imposing the assumption on δ-GAS Lyapunov functions, however, is
not a severe restriction. In [43], they assume that there exists γ ∈
R+ such that, for all x, y, z ∈ Rn,

|V (x, y)− V (x, z)| ≤ γ(∥y − z∥) (3.3)

(we do not need this assumption in the current work). It is claimed in [43]
that (3.3) is readily guaranteed if the dynamics of the switched system is confined
to a compact set C ⊆ Rn, and if V is class C1 in the domain C. We can use the
same compactness argument to ensure Assumption 3.4.1.

Definition 3.4.3 (the function V ′). Let Σ = (Rn, P,P, F ) be a switched system,
and let V : Rn × Rn → R+ be a common δ-GAS Lyapunov function for Σ.

We define a function V ′ : (Rn × R+ × P ) × (Rn × R+ × P ) → R+ in the
following manner:

V ′((x, t, p), (x′, t′, p′)) :={
V
(
x,x(t− t′, x′, p′)

)
if p = p′ and t ∈ [t′, t′ + δ0]

∞ otherwise.

Recall that x(t− t′, x′, p′) is the state reached from x′ after time t− t′ following
the vector field fp′ .

Here is our main technical lemma.

Lemma 3.4.4. Let Στ = (Rn, P,Pτ , F ) be a τ -periodic switched system, and
Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -periodic switched system with delays within δ0.
Assume that there exists a common δ-GAS Lyapunov function V for Στ , and that
V satisfies the additional assumption in Assumption 3.4.1. Then, for a suitable
g, there exists a g-incrementing approximate bisimulation {Rε}ε≥0 between the
transition systems T (Στ,δ0) and T (Στ ).

Specifically, we define a function g by

g(ε) := α−1
(
e−κ(τ−δ0)α(ε) + νδ0

)
,

where α and κ are from Def. 2.1.7 and ν is from Assumption 3.4.1. For each
ε ≥ 0, we define a relation Rε ⊆ (Rn × R+ × P )× (Rn × R+ × P ) by

(q, q′) ∈ Rε
def.⇐⇒ V ′(q, q′) ≤ α(ε) . (3.4)

Here V ′ is from Def. 3.4.3.

Proof. We will show that Condition 1 and Condition 2a in Def. 3.3.1 hold.
Condition 2b can be proved in a similar way as Condition 2a, so we omit it.

For qτ,δ0 = (xτ,δ0 , tτ,δ0 , pτ,δ0) and qτ = (xτ , tτ , pτ ), we assume that (qτ,δ0 , qτ ) ∈
Rε holds. From the construction of the transition system T (Στ ), we have

tτ = kτ for some k ∈ N. (3.5)
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By the definition (3.4) of the relation Rε and Def. 3.4.3, we have

pτ,δ0 = pτ , (3.6)

tτ,δ0 ∈ [tτ , tτ + δ0], and (3.7)

V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) ≤ α(ε). (3.8)

By (2.3), we have

α∥xτ,δ0 − x(tτ,δ0 − tτ , xτ , pτ )∥ ≤ V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )). (3.9)

Then, by (3.8) and (3.9), we can say that α∥xτ,δ0 − x(tτ,δ0 − tτ , xτ , pτ )∥ ≤ α(ε).
Thus, using the monotonicity of α, we have ∥xτ,δ0 − x(δ, xτ , pτ )∥ ≤ ε. By this
inequality with the side conditions (3.5)–(3.7), we have d(qτ,δ0 , qτ ) ≤ ε. This
proves Condition 1.

Next, we assume that qτ,δ0
pτ

GGGGGA

τ, δ0
q′τ,δ0 = (x(t′τ,δ0 − tτ,δ0 , xτ,δ0 , pτ ), t

′
τ,δ0
, p′τ,δ0)

and (qτ,δ0 , qτ ) ∈ Rε for some ε. We note that in addition to (3.5)–(3.8), we have

t′τ,δ0 ∈ [(k + 1)τ, (k + 1)τ + δ0], (3.10)

for the same k as in (3.5). Our goal is to show that there exists q′τ = (x′τ , t
′
τ , p

′
τ )

such that qτ
pτ

GGGGGA

τ
q′τ and (q′τ,δ0 , q

′
τ ) ∈ Rg(ε). Specifically, we define q′τ by q′τ =

(x(τ, xτ , pτ ), t
′
τ , p

′
τ ) where

t′τ = (k + 1)τ, and (3.11)

p′τ = p′τ,δ0 .

This definition of q′τ guarantees qτ
pτ

GGGGGA

τ
q′τ .

Now we show (q′τ,δ0 , q
′
τ ) ∈ Rg(ε) for this q

′
τ . Note that (3.8) refers to the states

of the two systems at the same time instant t = tτ,δ0 . When time progresses for
t′τ − tτ,δ0 with mode pτ,δ0 = pτ for both systems from t = tτ,δ0 , we have

V (x(t′τ − tτ,δ0 , xτ,δ0 , pτ ),x(t
′
τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ ))

≤ e−κ(t′τ−tτ,δ0 )V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) ∵ (2.4)

≤ e−κ(τ−δ0)V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) ∵ (3.7) and (3.10). (3.12)

Note that the inequality (3.12) refers to the states of the two systems at t = t′τ .
When time progresses for t′τ,δ0 − t′τ with mode pτ,δ0(= pτ ) for Tτ,δ0(Στ,δ0) and
with mode p′τ for Tτ (Στ )) from t = t′τ , we have

V ′(q′τ,δ0 , q
′
τ )

= V (x(t′τ,δ0 − t′τ ,x(t
′
τ − tτ,δ0 , xτ,δ0 , pτ ), pτ ),

x(t′τ,δ0 − t′τ ,x(t
′
τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ ), p

′
τ ))

≤ V (x(t′τ − tτ,δ0 , xτ,δ0 , pτ ),x(t
′
τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ )) + ν(t′τ,δ0 − t′τ )

∵ (3.2)

≤ e−κ(τ−δ0)V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) + ν(t′τ,δ0 − t′τ ) ∵ (3.12)

≤ e−κ(τ−δ0)V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) + νδ0 ∵ (3.10) and (3.11)

≤ e−κ(τ−δ0)α(ε) + νδ0 ∵ (3.8)

= α(g(ε)). (3.13)

Thus we have (q′τ,δ0 , q
′
τ ) ∈ Rg(ε) and this proves Condition 2a in Def. 3.3.1.
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The last lemma about the step-wise growth of errors is used below to derive
global error bounds. We compare the trajectories of Στ,δ0 and Στ from the same
initial state x.

Theorem 3.4.5. Assume the same assumptions as in Lem. 3.4.4. Let pτ be a
τ -periodic switching signal, and pτ,δ0 be the same signal but with delays within
δ0. That is, for each s ∈ R+,

pτ,δ0(s) =

{
pτ (s) or pτ (s− δ0) if s ∈

∪
k∈N,k≥1[kτ, kτ + δ0)

pτ (s) otherwise.

(a) We have, for each k ∈ N and t ∈ [kτ, (k + 1)τ),∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥ ≤

α−1

(
νδ0

1− e−κ(τ−δ0)
+ e−κ(τ−δ0)k

(
− νδ0
1− e−κ(τ−δ0)

))
.

(b) We have, for each t ∈ R+,∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥ ≤ α−1

(
νδ0

1− e−κ(τ−δ0)

)
.

Note that the bound in Thm. 3.4.5 (a) can grow over time (i.e. over the
number k of switching); the one in Thm. 3.4.5 (b) is a conservative bound that is
time-invariant. We also note that, for any desired precision ε, there always exists
a small enough delay bound δ0 that achieves the precision ε (i.e.

νδ0
1−e−κ(τ−δ0)

≤ ε).

Proof. Lem. 3.4.4 serves as a recurrence relation with respect to the number
k of switching. By solving it with the initial condition of d(qτ,δ0,0, qτ,0) = 0, we
obtain the result of

d(qτ,δ0 , qτ ) ≤ gk(0)

= α−1

(
νδ0

1− e−κ(τ−δ0)
+ e−κ(τ−δ0)k

(
− νδ0
1− e−κ(τ−δ0)

))
,

for all states qτ,δ0 and qτ that can be reached via a same sequence of actions of
length k.

Since the definition of the premetric d is as Def. 3.2.2, this re-
sult only refers to the error between two systems at the switching time
in [kτ, (k + 1)τ). It is straightforward, however, to have that this

α−1
(

νδ0
1−e−κ(τ−δ0)

+ e−κ(τ−δ0)k
(
− νδ0

1−e−κ(τ−δ0)

))
is actually an upper bound of∥∥x(t, x,pτ,δ0)− x(t, x,pτ )

∥∥, for all t ∈ [kτ, (k + 1)τ), from (2.4).
The error bound given in (a) is easily seen to be increasing with respect to

k, and to have an obvious upper bound. This proves (b).

Remark 3.4.6. It turns out that the upper bound α of a δ-GAS Lyapunov
function V (see (2.1)) is not used in the above results nor their proofs. In [43],
the upper bound α is used to define the state space discretization parameter η
so that, for each initial state q1 ∈ I1, there will be an approximately bisimilar
initial state in I2 and vice versa. This is not necessary in our current setting
where there is an obvious correspondence between the initial states.

That α is unnecessary is also the case with the multiple Lyapunov function
case in the next section.
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3.5 Approximate Bisimulation for Switching Delays II:
Multiple Lyapunov Functions

We follow [43] and investigate the use of another witness for δ-GUAS incremental
stability—namely multiple δ-GAS Lyapunov functions, see §2.1.2—for bounding
errors caused by switching delays.

The following is an analogue of Assumption 3.4.1.

Assumption 3.5.1. Let Σ = (Rn, P,P, F ) be a switched system with P =
{1, 2, . . . ,m}. Let V1, . . . , Vm : Rn × Rn → R+ be smooth functions. We say the
functions V1, . . . , Vm have bounded intermode derivatives if there exists a real
number ν ′ ≥ 0 such that, for each p, p′ ∈ P that are distinct (p ̸= p′), the
inequality

∂Vp′

∂x
(x, y)fp(x) +

∂Vp′

∂y
(x, y)fp′(y) ≤ ν ′ (3.14)

holds for each x, y ∈ Rn. (Note the occurrences of p and p′.)

Lemma 3.5.2. Let Στ = (Rn, P,Pτ , F ) be a τ -periodic switched system and
Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -periodic switched system with delays within
δ0. Assume that for each p ∈ P , there is a δ-GAS Lyapunov function Vp for
the single-mode subsystem Στ,p. We additionally assume Assumption 3.5.1 for
V1, . . . , Vm, and that there exists µ ∈ R+ such that

Vp(x, y) ≤ µVp′(x, y) for all x, y ∈ Rn and p, p′ ∈ P . (3.15)

The last assumption is the same as in Thm. 2.1.9.
Then, for a suitable g, there exists a g-incrementing approximate bisimulation

{Rε}ε≥0 between the transition systems T (Στ,δ0) and T (Στ ).
Specifically, we define g by g(ε) := α−1

(
µe−κ(τ−δ0)α(ε) + ν ′δ0

)
, where α and

κ are from (2.5) and ν ′ is from Assumption 3.5.1. For each ε ≥ 0, we define a

relation Rε ⊆ (Rn×R+×P )×(Rn×R+×P ) by (q, q′) ∈ Rε
def.⇐⇒ V ′(q, q′) ≤ α(ε).

Here the function V ′ is defined as follows, adapting Def. 3.4.3 to the current
multiple Lyapunov function setting.

V ′((x, t, p), (x′, t′, p′)) :={
Vp
(
x,x(t− t′, x′, p′)

)
if p = p′ and t ∈ [t′, t′ + δ0]

∞ otherwise.

Proof. The proof of this lemma is almost the same as that of Lem. 3.4.4. The
only difference is, after we derive

Vp(x(t
′
τ − tτ,δ0 , xτ,δ0 , pτ ),

x(t′τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ ))

≤ e−κ(τ−δ0)Vp(xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )),

which is the counterpart of the inequality (3.12), we derive

Vp′(x(t
′
τ − tτ,δ0 , xτ,δ0 , pτ ),

x(t′τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ ))

≤ µe−κ(τ−δ0)Vp(xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ))
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by using (3.15). Then, similarly to (3.13), we obtain the inequality

Vp′(x(t
′
τ,δ0

− t′τ ,x(t
′
τ − tτ,δ0 , xτ,δ0 , pτ ), pτ ),

x(t′τ,δ0 − t′τ ,x(t
′
τ − tτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ ), pτ ), p

′
τ ))

≤ µe−κ(τ−δ0)V (xτ,δ0 ,x(tτ,δ0 − tτ , xτ , pτ )) + ν ′δ0.

The rest of the proof is straightforward.

The next result follows from Lem. 3.5.2. The proof is omitted since it is
almost the same as Thm. 3.4.5. Note that in the following theorem, we need a
dwell-time assumption τ − δ0 >

logµ
κ

, which was not necessary for the common
Lyapunov function case in Thm. 3.4.5, to derive the time-invariant upper bound.
It is used to guarantee the convergence of the sequence [gk(0)]k∈N

Theorem 3.5.3. Assume the same assumptions as in Lem. 3.5.2, and let pτ

and pτ,δ0 be those periodic switching signals, without and with delays, as in
Thm. 3.4.5.

(a) We have, for each k ∈ N and t ∈ [kτ, (k + 1)τ),∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥ ≤

α−1

(
ν ′δ0

1− µe−κ(τ−δ0)
+ µe−κ(τ−δ0)k

(
− ν ′δ0
1− µe−κ(τ−δ0)

))
.

(b) If τ − δ0 >
log µ
κ

, we have, for each t ∈ R+,

∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥ ≤ α−1

(
ν ′δ0

1− µe−κ(τ−δ0)

)
.

3.6 Examples

We demonstrate our framework using two examples. The first is the boost DC-
DC converter from [16], a common example of switched systems that is also used
in [43]. For this example we have a common δ-GAS Lyapunov function V , and
therefore we appeal to the results in §3.4. The second example is a water tank
with nonlinear dynamics. It has multiple δ-GAS Lyapunov functions, and we
use the results in §3.5.

3.6.1 Boost DC-DC Converter

System Description The system we consider is the boost DC-DC converter in
Fig. 3.2. It is taken from [16]; here we follow and extend its analysis in [43]. The
circuit includes a capacitor with capacitance xc and an inductor with inductance
xl. The capacitor has the equivalent series resistance rc, and the inductor has
the internal resistance rl. The input voltage is vs, and the resistance ro is the

output load resistance. The state x(t) =

[
il(t)
vc(t)

]
of this system consists of the

inductor current il and the capacitor voltage vc.
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Vs

rl xl il

xc vc

rc
ro

Figure 3.2: The boost DC-DC converter circuit.

The dynamics of this system has two modes {ON,OFF}1, depending on
whether the switch in the circuit is on or off. By elementary circuit theory, the
dynamics in each mode is modeled by

ẋ(t) = Apx(t) + b for p ∈ {ON,OFF} , where

AON =

[
− rl

xl
0

0 − 1
xc(ro+rc)

]
,

AOFF =

[
− rlro+rlrc+rorc

xl(ro+rc)
− rlro+rlrc+rorc

xl(ro+rc)
ro

xc(ro+rc)
− 1

xc(ro+rc)

]
and

b =

[
vs
xl

0

]
.

We use the parameter values from [16], that is, xc = 70 p.u., xl = 3 p.u.,
rc = 0.005 p.u., rl = 0.05 p.u., ro = 1 p.u. and vs = 1 p.u. The same parameter
values are used in [43].

Analysis Following [43], we rescale the second variable of the system and

redefine the state x(t) =

[
il(t)
5vc(t)

]
for better numerical conditioning. The ODEs

are updated accordingly.
It is shown in [43] that the dynamics in each mode is δ-GAS. They share a

common δ-GAS Lyapunov function

V (x, y) =
√

(x− y)TM(x− y), with M =

[
1.0224 0.0084
0.0084 1.0031

]
.

The common Lyapunov function V has α(s) = s, α(s) = 1.0127s and κ = 0.014.
This common Lyapunov function was discovered in [43] via SDP optimization;
we use the same function as an ingredient for our approximate bisimulation.

Our ultimate goal is to synthesize a switching signal that keeps the dynamics
in a safe region S := [1.3, 1.7]× [5.7, 5.8]. We shall follow the two-step workflow
in Fig. 6.1.

Let us first use Thm. 3.4.5 and derive a bound ε1 for errors caused by switch-
ing delays. We set the switching period τ = 0.5 (this is the same as in [43]), and
the maximum delay δ0 =

τ
1000

. On top of the analysis in [43], we have to verify

1In the formalization of §2.1, the set P of modes is declared as {1, · · · ,m}. Here we instead
use P = {ON,OFF} for readability. The same applies to the water tank example in §3.6.2.
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the condition we additionally impose (namely Assumption 3.4.1). Let us now
assume that the dynamics stays in the safe region S = [1.3, 1.7]× [5.7, 5.8]—this
assumption will be eventually discharged when we synthesize a safe controller.
Then it is not hard to see that ν = 0.41 satisfies the inequality (3.2). By
Thm. 3.4.5, we obtain that the error between Στ,δ0 (the boost DC-DC converter
with delays) and Στ (the one without delays) is bounded by ε = 0.0294176.

3.6.2 Nonlinear Water Tank

System Description The second example demonstrates our framework’s ap-
plicability to nonlinear dynamics.

The water tank we consider is equipped with a drain and a valve. The system
has two modes. When the switch is off, the drain is open and the valve is closed,
causing the water level to decrease. When the switch is on, the drain is closed
and the valve aperture is set according to the water level. We assume that
dynamics of the water level x is modeled by:

ẋ =

{
fOFF(x) := −a

√
x when the switch is off,

fON(x) := b(c− x) when the switch is on.
(3.16)

The behavior for the mode OFF is a well-known water level behavior, found e.g.
in the MATLAB R⃝/Simulink R⃝ example [93]. The water leaves at a rate that is
proportional to

√
x. The behavior of the mode ON is a natural one when the

valve aperture is governed by a float, as found in many toilet tanks.
Let us set the three parameters a = 1

5
, b = 1

10
and c = 11. Our scenario is

that we would like to control the switch so that the water level should stay in
[1, 10]. We assume there are switching delays within δ0 = 0.1 seconds. We fix
the switching period τ to be 10 seconds.

Analysis The dynamics of each mode has a δ-GAS Lyapunov function defined
by

VOFF(x, y) := |e
√
x − e

√
y| and VON(x, y) := |

√
6(x− y)| .

We obtain the following characteristics for these two δ-GAS Lyapunov functions
in the safe region [1, 10]: αOFF(s) = s, αON(s) =

√
6s, κOFF = κON = 1

10
,

µ = 2
√
6

3
, and ν ′ = 2.94.

These characteristics satisfy the dwell-time assumption τ − δ0 > log µ
κ

in
Thm. 3.5.3, and thus we obtain that the error between Στ,δ0 and Στ is bounded
by ε = 0.747678.

Remark 3.6.1. The above Lyapunov functions VOFF(x, y) and VON(x, y) for
nonlinear water tank are not smooth at x = y, and it is not allowed in Def. 2.1.4.
Intuitively, it is not a problem because we just need to consider the three direc-
tional derivatives at x = y. To deal with this nonsmoothness in a technically
rigorous way, we can rely on Clarke’s nonsmooth analysis, which nicely accommo-
dates set-valued generalized derivatives of our Lyapunov functions when x = y.
More concretely, our functions are Clarke regular and locally Lipschitz, and
therefore we can apply standard results such as those in [11]. We do not get into
its details in this thesis.



Chapter 4

Skorokhod Distance Caused by
Switching Delays

In this chapter, we will extend the methodology we introduced in Chapter 3 by
changing the definition of the distance. In Chapter 3, the distance in Def. 3.2.2
between two states of the transition systems is defined pointwisely, so that it will
compare the states of the switched systems at the same time moment. There-
fore, as stated in Thm. 3.4.5 and Thm. 3.5.3, the obtained bound ε overap-
proximates supt∈R+

∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥, i.e. the error between the states

of the switched systems at the same time instant. However, for a wide variety
of applications, it is not necessary to compare the states at the same time in-
stant. One simple example application is the reachability analysis. Assume that
we obtain the error bound ε between Στ and Στ,δ0 . We can easily compute an
overapproximation of the reachable set of the system Στ,δ0 with delays from an
overapproximation of the reachable set of the system Στ without delays, just by
enlarging it with the error bound ε. However, the necessary and sufficient condi-
tion to obtain a sound overapproximation of the reachable set of the system with
delays is that ε is larger than suptτ∈R+

(
inftτ,δ0∈R+

∥∥x(tτ,δ0 , x,pτ,δ0)−x(tτ , x,pτ )
∥∥),

which is smaller than supt∈R+

∥∥x(t, x,pτ,δ0)− x(t, x,pτ )
∥∥.

In [34], the conformance between two trajectory was defined using the Sko-
rokhod metric. It has more general applications than the reachability analysis
explained above. This distance is smaller than the pointwise distance in Chap-
ter 3, but still can be used for sound analysis of a variant of the timed linear time
logic (TLTL) or Freeze linear time logic (FLTL) specifications. We show that
our extended methodology computes an upper bound of the Skorokhod metric.

4.1 Changing the Definition of the Premetric

The setting we consider in this section is almost the same as the one in Chapter 3.
Let Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -periodic switched system with switching de-
lays within δ0, and Στ = (Rn, P,Pτ , F ) be a τ -periodic switched system (without
delays). The only difference is that we do not impose that the maximum delay δ0
is smaller than the switching period τ . This is because in the proof of Lem. 4.1.4,
we do not need this condition, while in the proof of Lem. 3.4.4, it has been used
implicitly.

Then, we construct the same transition systems T (Στ,δ0) and T (Στ ) as we
did in Def. 3.2.1. We assume that the dynamics has a common δ-GAS Lyapunov

40
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function. Since the extension to the multiple δ-GAS Lyapunov function case can
be done in the same way as in Chapter 3, we skip its details and just state the
main theorem at the end of § 4.2. The main technical difference in this section
from Chapter 3 is the definition of the premetric defined in Def. 3.2.2.

Definition 4.1.1 (timing discrepant premetric). On the set of outputs O =
Rn ×R+ ×P that is common to the two transition systems T (Στ,δ0) and T (Στ ),
we define the following premetric d′:

d′((x, t, p), (x′, t′, p′)) := ∥x− x′∥ if p = p′, t′ = kτ and
t ∈ [t′, t′ + δ0] for some k ∈ N

∞ otherwise.

Note that in this definition of premetric, the Euclidean metric between two
states is taken as it is without adjusting the time of the two states.

As preparation to prove our main lemma and theorem, we redefine the fol-
lowing function V ′ from δ-GAS Lyapunov function V . In this section we use the
following V ′ instead of the one we defined before in Def. 3.4.3

Definition 4.1.2 (the function V ′). Let Σ = (Rn, P,P, F ) be a switched system,
and let V : Rn × Rn → R+ be a common δ-GAS Lyapunov function for Σ.

We define a function V ′ : (Rn × R+ × P ) × (Rn × R+ × P ) → R+ in the
following manner:

V ′((x, t, p), (x′, t′, p′)) :={
V (x, x′) if p = p′ and t ∈ [t′, t′ + δ0]

∞ otherwise.

Now we prove our technical main lemma, which is an analogue of Lem. 3.4.4.
In Lem. 3.4.4, we put Assumption 3.4.1 but in this section, we use the following
assumption instead.

Assumption 4.1.3 (bounded partial derivative). Let Σ = (Rn, P,P, F ) be a
switched system, with P = {1, 2, . . . ,m} and F = {f1, f2, . . . , fm} being the set
of vector fields associated with each mode. We say a function V : Rn×Rn → R+

has bounded partial derivatives if there exists a real number ν ′′ ≥ 0 such that,
for any p ∈ P , the inequality ∣∣∣∣∂V∂x (x, y)fp(x)

∣∣∣∣ ≤ ν ′′

holds for each x, y ∈ Rn.

Our main technical lemma is as follows.

Lemma 4.1.4. Let Στ = (Rn, P,Pτ , F ) be a τ -periodic switched system, and
Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -periodic switched system with delays within δ0.
Assume that there exists a common δ-GAS Lyapunov function V for Στ , and that
V satisfies the additional assumption in Assumption 4.1.3. Then, for a suitable
g, there exists a g-incrementing approximate bisimulation {Rε}ε≥0 between the
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transition systems T (Στ,δ0) and T (Στ ), where the premetric on the transition
systems is d′ in Def. 4.1.1.

Specifically, we define a function g by

g(ε) := α−1
(
e−κτα(ε) + ν ′′δ0

)
,

where α and κ are from Def. 2.1.7 and ν ′′ is from Assumption 4.1.3. For each
ε ≥ 0, we define a relation Rε ⊆ (Rn × R+ × P )× (Rn × R+ × P ) by

(q, q′) ∈ Rε
def.⇐⇒ V ′(q, q′) ≤ α(ε) . (4.1)

Here V ′ is from Def. 4.1.2.

Proof. To prove that {Rε}ε≥0 is a g-incrementing approximate bisimulation, we
need to prove the conditions in Def. 3.3.1. We omit Condition 2b again, as the
proof of Lem. 3.4.4. Condition 1 can be proved in the same way as in the proof
of Lem. 3.4.4, so we also omit it and only prove Condition 2a.

We assume that qτ,δ0
pτ

GGGGGA

τ, δ0
q′τ,δ0 = (x(t′τ,δ0 − tτ,δ0 , xτ,δ0 , pτ ), t

′
τ,δ0
, p′τ,δ0) and

(qτ,δ0 , qτ ) ∈ Rε for some ε. Then, we define q′τ by q′τ := (x(τ, xτ , pτ ), t
′
τ , p

′
τ )

where

t′τ = (k + 1)τ, and

p′τ = p′τ,δ0 .

This definition of q′τ guarantees qτ
pτ

GGGGGA

τ
q′τ . Now we show (q′τ,δ0 , q

′
τ ) ∈ Rg(ε) for

this q′τ in the following manner.

V ′(q′τ,δ0 , q
′
τ )

= V (x(t′τ,δ0 − tτ,δ0 , xτ,δ0 , pτ ),x(τ, xτ , pτ ))

≤ e−κτV (xτ,δ0 , xτ ) + ν ′′|t′τ,δ0 − tτ,δ0 − τ |
≤ e−κτV ′(qτ,δ0 , qτ ) + ν ′′δ0

≤ e−κτα(ε) + ν ′′δ0

= α(g(ε)).

Thus we have (q′τ,δ0 , q
′
τ ) ∈ Rg(ε) and this proves Condition 2a in Def. 3.3.1.

4.2 Upper Bound of Skorokhod Metric

In Lem. 4.1.4, we proved that the new premetric between states is bounded by
ε. There is timing discrepancy between states. Therefore we cannot bound the
errors between the two systems in the same way as Thm. 3.4.5. Instead, what
we obtain is actually an upper bound of the Skorokhod metric. The following
definitions are taken from [34] and adapted to our setting. In the definitions, let
I be R+ or its closed interval. It is used as the domain of time.

First we define retiming functions.

Definition 4.2.1 (retiming). A function r : I → I is a retiming if it is order-
preserving, bijective and continuous. The set of all retiming functions is denoted
by R. The identity retiming is denoted by I ∈ R.
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Then, we define the Skorokhod metric using the sup norm ∥ ∥∞ on the set
of retimings R.

Definition 4.2.2 (Skorokhod metric). Let r be a retiming, and π, π′ : I → Rn be
two trajectories. Note that ∥r−I∥∞ = supt∈I |r(t)− t|, and that ∥π ◦ r−π′∥∞ =
supt∈I ∥π(r(t))− π′(t)∥. Here, ∥ ∥ on Rn is the usual Euclidean norm.

The Skorokhod distance between the trajectories π and π′ is defined by

DS(π, π
′) := inf

r∈R
max (∥r − I∥∞, ∥π ◦ r − π′∥∞) .

The transference of temporal specifications enables one of the most important
application of the Skorokhod metric—the application to conformance testing. In
this thesis, we do not refer the full transference theorem for temporal specifica-
tions in [34], since we only use the Skorokhod metric for reachability analysis,
not complicated temporal properties. For reachability, the following obvious
proposition is enough.

Proposition 4.2.3. Let Σ and Σ′ be switched systems. Assume that for every
trajectory π of Σ, there exists a trajectory π′ of Σ′ such that DS(π, π

′) ≤ ε. Then,
the reachable set of Σ is included in the ε-expansion Eε(S) of the reachable set S
of Σ′, where the ε-expansion Eε(S) is {x ∈ Rn | there exists y ∈ S such that ∥x−
y∥ ≤ ε}.

The following is our main theorem. It ensures that we can compute an over-
approximation of the Skorokhod distance using the approximate bisimulation
relation given in Lem. 4.1.4.

Theorem 4.2.4. Assume the same assumptions as in Lem. 4.1.4. Let pτ be a
τ -periodic switching signal, and pτ,δ0 be the same signal but with delays within
δ0. That is, for each s ∈ R+,

pτ,δ0(s) =

{
pτ (s) or pτ (s− δ0) if s ∈

∪
k∈N,k≥1[kτ, kτ + δ0)

pτ (s) otherwise.

Given a state x ∈ Rn, we define two trajectories πτ,δ0,x, πτ,x : R+ → Rn by

πτ,δ0,x(t) := x(t, x,pτ,δ0), and

πτ,x(t) := x(t, x,pτ ).

We also consider their restrictions to a closed interval I, i.e., πτ,δ0,x|I , πτ,x|I :
I → Rn.

Then, we obtain an upper bound of the Skorokhod distance DS(πτ,δ0,x, πτ,x) in
the following way.

(a) We have, for each k ∈ N and t ∈ [kτ, (k + 1)τ),

DS(πτ,δ0,x|[0,t], πτ,x|[0,t])

≤max

(
δ0, α

−1

(
ν ′′δ0
κτ

)
, α−1

(
ν ′′δ0

1− e−κτ
+ e−κτk

(
− ν ′′δ0
1− e−κτ

)))
.
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(b) We have, for each t ∈ R+,

DS(πτ,δ0,x, πτ,x) ≤ max

(
δ0, α

−1

(
ν ′′δ0
κτ

)
, α−1

(
ν ′′δ0

1− e−κτ

))
.

Proof. Note that pτ is a τ -periodic switching signal, and pτ,δ0 is the same signal
but with delays within δ0. For k ∈ N, the k-th switching of pτ occurs at t = kτ .
The k-th switching time of pτ,δ0 is denoted by stpτ,δ0

(k). We define a retiming r
as follows: for every k ∈ N and t ∈ [0, τ),

r(kτ + t) =
(τ − t)stpτ,δ0

(k) + tstpτ,δ0
(k + 1)

τ
. (4.2)

Intuitively, this retiming r adjusts each switching time of the periodic signal
to that with delays, and the intervals between switchings are lengthened or
shortened uniformly. It is easy to check that this r is order-preserving, bijective
and continuous.

For this r, we have

∥r − I∥∞ ≤ δ0. (4.3)

Then, our next goal is to show that for every k ∈ N,

sup
t∈[kτ,(k+1)τ ]

∥πτ,δ0,x(r(t))− πτ,x(t)∥

≤max

(
α−1

(
ν ′′δ0
κτ

)
, α−1

(
ν ′′δ0

1− e−κτ
+ e−κτk

(
− ν ′′δ0
1− e−κτ

)))
. (4.4)

In the similar way as the proof of Thm. 3.4.5, using the result of Lem. 4.1.4
as a recurrence relation, it is not hard to see that

∥πτ,δ0,x(r(kτ))− πτ,x(kτ)∥ ≤ α−1

(
ν ′′δ0

1− e−κτ
+ e−κτk

(
− ν ′′δ0
1− e−κτ

))
. (4.5)

Note that r(kτ) = stpτ,δ0
(k).

We can see from (4.2) that in t ∈ [kτ, (k+1)τ ], the application of r quickens

or slows down time progress uniformly by multiplying
stpτ,δ0

(k+1)−stpτ,δ0
(k)

τ
. In

other words, in t ∈ [kτ, (k + 1)τ ], dr(t)
dt

=
stpτ,δ0

(k+1)−stpτ,δ0
(k)

τ
.

This means that after the application of r, the trajectory x = πτ,δ0,x◦r follows

ẋ = ˙(πτ,δ0,x ◦ r) =
dπτ,δ0,x(r(t))

dr(t)

dr(t)

dt

=
stpτ,δ0

(k + 1)− stpτ,δ0
(k)

τ
fp(x), (4.6)

where p is the mode after k-th switching. By (2.4) and (4.6), we have

∂V

∂x
(x, y) ˙(πτ,δ0,x ◦ r) +

∂V

∂y
(x, y)fp(y)

≤− κV (x, y) +
stpτ,δ0

(k + 1)− stpτ,δ0
(k)− τ

τ

∂V

∂x
(x, y)fp(x).
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Using stpτ,δ0
(k) ∈ [kτ, kτ + δ0] and stpτ,δ0

(k + 1) ∈ [(k + 1)τ, (k + 1)τ + δ0],
we have

∂V

∂x
(x, y) ˙(πτ,δ0,x ◦ r) +

∂V

∂y
(x, y)fp(y)

≤− κV (x, y) +
δ0
τ

∣∣∣∣∂V∂x (x, y)fp(x)
∣∣∣∣ .

Using Assumption 4.1.3, we can say that

∂V

∂x
(x, y) ˙(πτ,δ0,x ◦ r) +

∂V

∂y
(x, y)fp(y) ≤ −κV (x, y) +

δ0
τ
ν ′′.

We can see that the RHS of this inequality is negative when V (x, y) ≥ ν′′δ0
κτ

.
By combining this result with (4.5), we obtain (4.4) as desired. Thus, by

(4.3) and (4.4), we have

DS(πτ,δ0,x|[stpτ,δ0
(k),stpτ,δ0

(k+1)], πτ,x|[kτ,(k+1)τ ])

≤max

(
δ0, α

−1

(
ν ′′δ0
κτ

)
, α−1

(
ν ′′δ0

1− e−κτ
+ e−κτk

(
− ν ′′δ0
1− e−κτ

)))
.

Since this inequality holds for all k ∈ N, the statement (a) of this theorem is
proved.

The proof of (b) is straightforward.

So far in this section we have assumed a common Lyapunov function. We
can easily extend the setting to multiple Lyapunov functions in a similar way as
§3.5, so we skip its details and present only the main theorem.

First, the following assumption is an analogue of Assumption 4.1.3.

Assumption 4.2.5. Let Σ = (Rn, P,P, F ) be a switched system with P =
{1, 2, . . . ,m}. Let V1, . . . , Vm : Rn × Rn → R+ be smooth functions. We assume
that the functions V1, . . . , Vm satisfy the following condition: there exists two
real numbers ν ′′′ ≥ 0 and ν ′′′′ ≥ 0 such that, for each p, p′ ∈ P that are distinct,
the inequalities

∂Vp
∂x

(x, y)fp(x) ≤ ν ′′′, and∣∣∣∣∂Vp∂y
(x, y)fp′(y)

∣∣∣∣ ≤ ν ′′′′

hold for each x, y ∈ Rn.

Then, the main theorem for multiple Lyapunov function case is the following.
The proof is omitted because it is almost the same as Thm. 4.2.4.

Theorem 4.2.6. Let Στ = (Rn, P,Pτ , F ) be a τ -periodic switched system and
Στ,δ0 = (Rn, P,Pτ,δ0 , F ) be a τ -periodic switched system with delays within
δ0. Assume that for each p ∈ P , there is a δ-GAS Lyapunov function Vp for
the single-mode subsystem Στ,p. We additionally assume Assumption 4.2.5 for
V1, . . . , Vm, and that there exists µ ∈ R+ such that

Vp(x, y) ≤ µVp′(x, y) for any x, y ∈ Rn and p, p′ ∈ P . (4.7)
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The last assumption is the same as in Thm. 2.1.9.
Let pτ be a τ -periodic switching signal, and pτ,δ0 be the same signal but with

delays within δ0. Given a state x ∈ Rn, we define two trajectories πτ,δ0,x, πτ,x :
R+ → Rn by

πτ,δ0,x(t) = x(t, x,pτ,δ0), and

πτ,x(t) = x(t, x,pτ ).

We also consider their restrictions to a closed interval I, i.e., πτ,δ0,x|I , πτ,x|I :
I → Rn.

Then, we obtain an upper bound of the Skorokhod distance DS(πτ,δ0,x, πτ,x) in
the following way.

(a) We have, for each k ∈ N and t ∈ [kτ, (k + 1)τ),

DS(πτ,δ0,x|[0,t], πτ,x|[0,t])

≤max

(
δ0, α

−1

(
ν ′′′δ0
κτ

)
, α−1

(
ν ′′′′δ0

1− µe−κτ
+ µe−κτk

(
− ν ′′′′δ0
1− µe−κτ

)))
.

(b) If τ > log µ
κ

, we have, for each t ∈ R+,

DS(πτ,δ0,x, πτ,x) ≤ max

(
δ0, α

−1

(
ν ′′′δ0
κτ

)
, α−1

(
ν ′′′′δ0

1− µe−κτ

))
.

4.3 Examples

In this section we use the same examples as in §3.6 to show how precise our ex-
tended framework makes the analysis compared to the one introduced in Chap-
ter 3.

4.3.1 Boost DC-DC Converter

The first example is the boost DC-DC converter. The detailed system description
is in §3.6.1. As in §3.6.1, we analyze the rescaled version of the system.

We will use the same common δ-GAS Lyapunov function V (x, y) =√
(x− y)TM(x− y) as §3.6.1, where M =

[
1.0224 0.0084
0.0084 1.0031

]
. It has α(s) =

s, α(s) = 1.0127s and κ = 0.014. We set the switching period τ = 0.5 and
the maximum delay δ0 = τ

1000
. It is not hard to see that for a safe region

S := [1.3, 1.7]× [5.7, 5.8], ν ′′ = 0.33 satisfies Assumption 4.1.3).
By Thm. 4.2.4, we obtain that the Skorokhod distance between Στ,δ0 (the

boost DC-DC converter with delays) and Στ (the one without delays) is bounded
by ε = 0.023655, which is 20 percent smaller than the error bound ε = 0.0294176.

4.3.2 Nonlinear Water Tank

The second example is the nonlinear water tank. The detailed system description
is in §3.6.2.

We use the same δ-GAS Lyapunov functions as in §3.6.2, which are

VOFF(x, y) := |e
√
x − e

√
y| and VON(x, y) := |

√
6(x− y)| .
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We obtain the following characteristics for these two δ-GAS Lyapunov functions
in the safe region [1, 10]: αOFF(s) = s, αON(s) =

√
6s, κOFF = κON = 1

10
, and

µ = 2
√
6

3
.

The new constants we need to find are ν ′′′ and ν ′′′′ in Assumption 4.2.5. It
is not hard to see that ν ′′′ = 2.45 and ν ′′′ = 1.55 satisfy Assumption 4.2.5.

By Thm. 4.2.6, for τ = 10 and δ0 = 0.1, we obtain that the Skorokhod
distance between Στ,δ0 and Στ is bounded by ε = 0.388234, which is almost the
half of the error bound ε = 0.747678 found in §3.6.



Chapter 5

Extension of Abstract Interpretation
with Infinitesimals

In this chapter, we extend abstract interpretation for the purpose of reacha-
bility analysis of hybrid systems (without delays). It is well-known that the
reachability problem of hybrid systems is undecidable (even for linear ones) [6].
Therefore, overapproximation has been playing an important role in many veri-
fication methodologies for hybrid systems. Compared to the overapproximation
of the reachable set of discrete programs, that of hybrid systems usually needs
some special care to cope with continuous dynamics defined by ODEs. We ap-
ply Cousot and Cousot’s framework of abstract interpretation to hybrid systems,
almost as it is, by regarding continuous dynamics as an infinite iteration of in-
finitesimal discrete jumps. This extension follows the line of work by Suenaga,
Hasuo and Sekine [50, 91, 92], where deductive verification is extended for hy-
brid systems by 1) introducing a constant dt for an infinitesimal value; and 2)
employing Robinson’s nonstandard analysis (NSA) to define mathematically rig-
orous semantics. Our theoretical results include soundness and termination via
uniform widening operators. Our prototype implementation successfully verifies
some examples.

In §5.1, we start with an explanation of the modeling language Whiledt

introduced in [91]. It is an extension of a usual imperative language with a con-
stant for an infinitesimal. In §5.2 we extend the theory of abstract interpretation
with infinitesimals and build the theory of nonstandard abstract interpretation.
Its theorems include soundness of approximation, and termination guaranteed
by (the ∗-transform of) a uniform widening operator. In §5.3, we present how
our nonstandard abstract interpretation framework works using the linear wa-
ter tank example. In §5.4, we present our prototype implementation and the
experimental results.

5.1 The Modeling Language Whiledt

Whiledt, a modeling language for hybrid systems based on NSA, was introduced
in [91]. It is an augmentation of a usual imperative language (such as IMP
in [95]) with a constant dt that expresses an infinitesimal number. In the follow-
ing definition of Whiledt syntax, we add a command “if ∗ then c1 else c2”
for nondeterministic branching to the syntax introduced in [91]. It will be used
in Code 5.2.

48
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1 /*Linear Water Tank*/

2 l := 0; x := 1; p := 1; s := 0;

3 while true do {

4 if p = 1 then x := x + dt

5 else x := x - 2 * dt;

6 if (x <= 5 && p = 0) then s := 1

7 else {

8 if (x >= 10 && p = 1) then s := 1

9 else s := 0

10 };

11 if s = 1 then l := l + dt

12 else skip;

13 if s = 1 && l >= 2 then {p := 1 - p; s := 0; l := 0}

14 else skip

15 }

Code 5.1: Linear water tank in Whiledt

Definition 5.1.1. Let Var be the set of variables. The syntax of Whiledt is
as follows:

AExp ∋ a ::= x | r | a1 aop a2 | dt
where x ∈ Var, r ∈ R and aop∈ {+,−, ·, ^}

BExp ∋ b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2
Cmd ∋ c ::= skip | x := a | c1; c2 | if b then c1 else c2

| if ∗ then c1 else c2 | while b do c.

An expression a ∈ AExp is an arithmetic expression, b ∈ BExp is a Boolean
expression and c ∈ Cmd is a command.

The infinitesimal constant dt enables us to model not only discrete dynamics
but also continuous dynamics without explicit ODEs. For example, the example
of linear water tank [6] is modeled as a Whiledt program shown in Code 5.1.
The analysis of this program will be presented later in §5.3.

The continuous dynamics modeled in this example is piecewise-linear. Even
dynamics defined by nonlinear ODEs can be modeled in Whiledt in the same
manner.

In the usual, standard abstract interpretation (without dt), a command c is
assigned its collecting semantics P(Var → R) → P(Var → R) (see e.g. [28]) as
the concrete semantics. This is semantics by reachable sets of memory states,
since a memory state is a function from the set of variables Var to R. Presence
of dt in the syntax of Whiledt calls for an infinitesimal number in the picture.
The first thing to try would be to replace R with ∗R, and interpret Whiledt

commands as functions of the type P(Var → ∗R) → P(Var → ∗R). This
however is not suited for the purpose of interpreting recursion in presence of dt.1

We rely instead on our theory of hyperdomains that is used in [92] and described

1If we interpret commands as functions P(Var → ∗R) → P(Var → ∗R), the interpretationJwhile x < 10 do x := x + dtK{(x 7→ 0)} by a least fixed point will be {x 7→ r | ∃n ∈ N. r =
n ∗ dt}, not {x 7→ r | ∃n ∈ ∗N. r = n ∗ dt ∧ r ≤ 10} as we expect. The problem is that
internality—an “well-behavedness” notion in NSA—is not preserved in such a modeling.
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JxKσ := σ(x) for each x ∈ Var JtrueKσ := ttJrKσ := r for each r ∈ R JfalseKσ := ffJa1 aop a2Kσ := Ja1K aop Ja2K Jb1 ∧ b2Kσ := Jb1K ∧ Jb2KJdtKσ := [(1, 1
2
, 1
3
, · · · )] J¬bKσ := ¬(JbKσ)Ja1 < a2Kσ := Ja1K < Ja2K

JskipKS := SJx := aKS := {σ[JaKσ/x] | σ ∈ S}Jc1; c2KS := Jc2K(Jc1KS)Jif b then c1 else c2KS :=
{Jc1Kσ | σ ∈ S, JbKσ = tt}
∪ {Jc2Kσ | σ ∈ S, JbKσ = ff}Jif ∗ then c1 else c2KS := {Jc1Kσ | σ ∈ S} ∪ {Jc2Kσ | σ ∈ S}Jwhile b do cK := ∗lfp

(∗Φ (JbK) (JcK))
where Φ : (St → B ∪ {⊥}) →

(
P (Var → R) → P (Var → R)

)
→((

P (Var → R) → P (Var → R)
)
→

(
P (Var → R) → P (Var → R)

))
is defined by

Φ(f)(g) = λψ. λS. S ∪ ψ{(g(σ)) | σ ∈ S, f(σ) = tt}
∪ {σ | σ ∈ S, f(σ) = ff}.

Table 5.1: Whiledt collecting semantics

in §2.2.2 ; see the interpretation of while loops in Table 5.1. This calls for the
interpretation of commands to be of the type ∗(P(Var → R) → P(Var → R)

)
,

a subset of ∗P(Var → R) → ∗P(Var → R). The last type will be used in the
following definition.

Definition 5.1.2. Collecting semantics for Whiledt, in Table 5.1, has the
following types where B is {tt,ff}: JaK : ∗(Var → R) → ∗R for a ∈ AExp;JbK : ∗(Var → R) → B for b ∈ BExp; and JcK : ∗P(Var → R) → ∗P(Var → R)
for c ∈ Cmd.

In [91], the semantics of a while loop is defined using the idea of sectionwise
execution, instead of as a least fixed point. This is not suited for employing
abstract interpretation—the latter is after all for computing least fixed points.
The collecting semantics in Def. 5.1.2 (Table 5.1) does use least fixed points;
it is based on the alternative Whiledt semantics introduced in [63]. In the
definition of this alternative Whiledt semantics, Lem. 2.2.18 justifies the use of
∗lfp as the least fixed point operator. The equivalence of the two semantics is
also established in [63].

In what follows, we restrict the set of variables Var to be finite. This as-
sumption—a realistic one when we focus on the program to be analyzed—makes
our NSA framework much simpler. Therefore P(Var → R) and ∗P(Var → R)
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are equal to P(Rn) and ∗P(Rn) for some n ∈ N respectively; we prefer the latter
notations hereafter. This enables us to work on the superstructure U = V (R),
instead of V (R ∪ B ∪Var) used in §2.2.2.

5.2 Abstract Interpretation Augmented with Infinitesi-
mals

In this section, as our main theoretical contribution, a metatheory of nonstandard
abstract interpretation that justifies the workflow in §5.3 is described. (Standard)
abstract interpretation infrastructure such as Prop. 2.2.20 and Prop. 2.2.22 is
not applicable to Whiledt programs, since ∗P(Rn) is not a cpo. One can see
that the ascending chain defined by Xn := {k ∗ dt | 0 ≤ k ≤ n} does not have
the supremum in ∗P(Rn) since {k ∗ dt | k ∈ N} is not internal (see § 2.2.1).
Thus, we now extend the abstract interpretation framework for the analysis of
Whiledt programs (and the hybrid systems modeled thereby). We introduce an
abstract hyperdomain over ∗R as the transfer of the (standard, over R) domain of
convex polyhedra. We then interpret Whiledt programs in it, and transfer the
three widening operators mentioned in §2.2.3 to the nonstandard setting. We
classify them into uniform ones—for which termination is guaranteed even in the
nonstandard setting—and non-uniform ones. The main theorems are Thm. 5.2.4
and Thm. 5.2.10, for soundness (in place of Prop. 2.2.20) and termination (in
place of Prop. 2.2.22) respectively.

5.2.1 The Domain of Convex Polyhedra over Hyperreals

We extend convex polyhedra to the current nonstandard setting.

Definition 5.2.1 (convex polyhedra over ∗R). A convex polyhedron on (∗R)n is
an intersection of finite number of affine half-spaces on (∗R)n, that is, the set of
points x ∈ (∗R)n that satisfy a certain finite set of linear inequalities. The set of
all convex polyhedra on (∗R)n is denoted by CP∗R

n .

Proposition 5.2.2. The set CP∗R
n of all convex polyhedra over (∗R)n is a (proper)

subset of ∗CPn, the ∗-transform of the (standard) domain of convex polyhedra
over Rn.

Proof. The constraint system C for a (standard) convex polyhedron P ∈ CPn

can be expressed by a pair (A,b) of anm×n-matrixA and anm-vector b, where
m is the number of linear inequalities in C. The same applies to a (nonstandard)
convex polyhedron P ∈ CP∗R

n . For each of X ∈ {R, ∗R}, let us denote, by
ConstrX,m,n, the set of all convex polyhedra over Xn that can be expressed with
m linear inequalities.

Then CPn =
∪

m∈N ConstrR,m,n (with
∪

m∈N expressed using an existential
quantifier ∃m ∈ N) is a valid LR-sentence by Def. 2.2.23. By the transfer prin-
ciple (Lem. 2.2.8), we have a valid L∗R-sentence

∗(CPn) =
∪

m∈∗N Constr∗R,m,n. It

has as its subset the set CP∗R
n =

∪
m∈N Constr∗R,m,n since N ⊆ ∗N. This proves

the claim.

What lies in the difference between the two sets CP∗R
n ⊊ ∗CPn is, for example,

a disk as a subset of R2 (hence of ∗R2). In ∗CP2 one can use a constraint system
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whose number of linear constraints is a hypernatural number m ∈ ∗N; using
e.g. m = ω = [(0, 1, 2, . . . )] allows us to approximate a disk with progressive
precision.

In the following development of nonstandard abstract interpretation, we will
use ∗CPn as an abstract domain since it allows transfer of properties of CPn. We
note, however, that our overapproximation of the interpretation JcK of a loop-
free Whiledt program c is always given in CP∗R

n , i.e. with finitely many linear
inequalities.

5.2.2 Theory of Nonstandard Abstract Interpretation

Our goal is to overapproximate the collecting semantics for Whiledt programs
(Table 5.1) on convex polyhedra over ∗R. As we mentioned at the beginning
of this section, however, abstract interpretation infrastructure cannot be ap-
plied since ∗P(Rn) is not a cpo. Fortunately it turns out that we can rely on
the ∗-transform (§2.2.1) of the theory in §2.2.3, where it suffices to impose the
cpo structure only on P(R) and the ∗-continuity—instead of the (standard)
continuity—on the function JcK. This theoretical framework of nonstandard ab-
stract interpretation, which we shall describe here, is an extension of the trans-
ferred domain theory in § 2.2.2.

In the proofs of the results in this section, we will use the following notations
in addition to those defined in Def. 2.2.15.

Definition 5.2.3. We define the following LR-formulas:

ConcrL1,⊑1,L2,⊑2,γ :≡ ∀x, y ∈ L2. x ⊑2 y ⇒ γ(x) ⊑1 γ(y)

MonotoneL1,⊑1,L2,⊑2(f) :≡ ∀x, y ∈ L1. x ⊑1 y ⇒ f(x) ⊑2 f(y)

BasisL,⊑(⊥- , f) :≡ ⊥- ⊑ f(⊥- )
CoverL,⊑,∇ :≡ ∀x, y ∈ L. (x ⊑ x∇y) ∧ y ⊑ x∇y)
TermL,⊑,∇ :≡ ∀x ∈ N → L. AscCn(x) ⇒(

∀y ∈ N → L.
((
y(0) = x(0) ∧ ∀n ∈ N. y(n+ 1) = y(n)∇x(n+ 1)

)
⇒ ∃k ∈ N. y(k) = y(k + 1)

))
WidenL,⊑,∇ :≡ CoverL,⊑,∇ ∧ TermL,⊑,∇

WidenSeqL,⊑,∇(X,⊥- , F ) :≡
X(0) = ⊥- ∧ ∀n ∈ N. X(n+ 1) = X(n)∇F (X(n)).

Then, the following theorem ensures the conservative approximation.

Theorem 5.2.4. Let (L,⊑) be a cpo; F : ∗L → ∗L be a *-continuous function;
and ⊥- ∈ ∗L be such that ⊥- ∗⊑ F (⊥- ). Let (L,⊑) be a preorder; γ : L → L be
a function such that a ⊑ b ⇒ γ(a) ⊑ γ(b) for all a, b ∈ L; and F : ∗L → ∗L
be a *-continuous function that is monotone with respect to ∗⊑ and satisfies
F ◦ ∗γ ∗⊑ ∗γ ◦ F . Note that (∗L, ∗⊑) is also a preorder. Assume further that
x ∈ ∗L is a prefixed point of F (i.e. F (x) ∗⊑ x) such that ⊥- ∗⊑ ∗γ(x).

Then x overapproximates lfp⊥- F , that is, lfp⊥- F
∗⊑ ∗γ(x).
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Proof. Let L,L ∈ U be sets, ⊑∈ P(L×L) and ⊑∈ P(L×L) be binary relations
on L and L respectively, α : L → L and γ : L → L be functions. Then, the
following LR-sentence is valid (because it is equivalent to Prop. 2.2.20):

∀F ∈ L→ L. ∀F ∈ L→ L. ∀⊥- ∈ L. ∀x ∈ L.(
CpoL,⊑ ∧ PreordL,⊑ ∧ ContiL,⊑,L,⊑(F ) ∧MonotoneL,⊑,L,⊑(F ) ∧ ConcrL,⊑,L,⊑,γ

∧ F ◦ γ ⊑ γ ◦ F ∧ ⊥- ⊑ F (⊥- ) ∧ ⊥- ⊑ γ(x) ∧ F (x) ⊑ x

⇒ lfp⊥- F ⊑ γ(x)
)
.

By applying Lem. 2.2.8 to this LR-sentence, we have the following valid L∗R-
sentence:

∀F ∈ ∗(L→ L). ∀F ∈ ∗(L→ L). ∀⊥- ∈ ∗L. ∀x ∈ ∗L.(
∗CpoL,⊑ ∧ ∗PreordL,⊑ ∧ ∗ContiL,⊑,L,⊑(F ) ∧ ∗MonotoneL,⊑,L,⊑(F ) ∧ ∗ConcrL,⊑,L,⊑,γ

∧ F ◦ ∗γ ∗⊑ ∗γ ◦ F ∧ ⊥- ∗⊑ F (⊥- ) ∧ ⊥- ∗⊑ ∗γ(x) ∧ F (x) ∗⊑ x

⇒ ∗lfp⊥- F
∗⊑ ∗γ(x)

)
.

This yields the statement of this theorem. For example, we can confirm that
∗ConcrL,⊑,L,⊑,γ holds from the following hypothesis in the theorem statement:

a ⊑ b⇒ γ(a) ⊑ γ(b) for all a, b ∈ L.

Our goal is overapproximation of the semantics of iteration of a loop-free
Whiledt program c, relying on Thm. 5.2.4. Towards the goal, the next step is
to find a suitable F : ∗L→ ∗L that “stepwise approximates” F = JcK, the collect-
ing semantics of c. The next result implies that the ∗-transformation of J KCP
(defined in a usual manner in standard abstract interpretation, as mentioned
in §2.2.3) can be used in such F .

Proposition 5.2.5. Let (L,⊑), (L,⊑), γ : L → L satisfy the hypotheses in
Thm. 5.2.4. Assume that a continuous function F : L → L is stepwise approx-
imated by a monotone function F : L → L, that is, F ◦ γ ⊑ γ ◦ F . Then the
*-continuous function ∗F : ∗L → ∗L is overapproximated by the monotone and
internal function ∗F : ∗L→ ∗L, i.e. ∗F ◦ ∗γ ∗⊑ ∗γ ◦ ∗F .

Proof. It can be proved by applying the transfer principle to F ∈ L → L ∧
MonotoneL,⊑,L,⊑(F ) ∧ F ◦ γ ⊑ γ ◦ F .

We summarize what we observed so far on nonstandard abstract interpreta-
tion by instantiating the abstract domain to ∗CPn. In the following JcK is from
Def. 5.1.2.

Corollary 5.2.6 (soundness of nonstandard abstract interpretation on ∗CPn).
Let c be a loop-free Whiledt command; and let ⊥- ∈ ∗(P(Rn)) and x ∈ ∗CPn

be such that (∗JcKCP)(x) ∗⊑ x and ⊥- ∗⊑ ∗γCPn(x). Then we have lfp⊥- JcK ∗⊑
∗γCPn(x).
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5.2.3 Hyperwidening and Uniform Widening Operators

Towards our goal of using Thm. 5.2.4, the last remaining step is to find a prefixed
point x, i.e. F (x) ∗⊑ x. This is where widening operators are standardly used;
see §2.2.3.

We can try ∗-transforming a (standard) notion—a strategy that we have
used repeatedly in the current section. This yields the following result, that has
a problem that is discussed shortly.

Theorem 5.2.7. Let (L,⊑) be a preorder and ∇ : L × L → L be a widening
operator on L. Let F : ∗L → ∗L be a monotone and internal function; and
⊥- ∈ ∗L be such that ⊥- ∗⊑ F (⊥- ). The iteration hyper-sequence ⟨Xi⟩i∈∗N—indexed
by hypernaturals i ∈ ∗N—that is defined by

X0 = ⊥- , Xi+1 =

{
Xi (if F (Xi)

∗⊑ Xi)

Xi
∗∇F (Xi) (otherwise)

for all i ∈ ∗N

reaches its limit within some hypernatural number of steps and the limit
⊔

i∈NXi

is a prefixed point of F such that ⊥- ∗⊑
⊔

i∈NXi.

Proof. Let L ∈ U be a set, ⊑∈ P(L × L) be a binary relation on L and
∇ : L×L→ L be a function. Then, the following LR-sentence is valid (because
it is equivalent to Prop. 2.2.22):

∀F ∈ L→ L. ∀⊥- ∈ L. ∀X ∈ N → L.

PreordL,⊑ ∧MonotoneL,⊑,L,⊑(F ) ∧ BasisL,⊑(⊥- , F ) ∧WidenL,⊑,∇

∧WidenSeqL,⊑,∇(X,⊥- , F )
⇒ ∃i ∈ N. ∀j ∈ N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ N.
((

∀l ∈ N. k ≤ l ⇒ X(k) = X(l)
)
⇒ F

(
X(k)

)
⊑ X(k)

)
.

By applying Lem. 2.2.8 to this LR-sentence, we have the following valid L∗R-
sentence:

∀F ∈ ∗(L→ L). ∀⊥- ∈ ∗L. ∀X ∈ ∗(N → L).
∗PreordL,⊑ ∧ ∗MonotoneL,⊑,L,⊑(F ) ∧ ∗BasisL,⊑(⊥- , F ) ∧ ∗WidenL,⊑,∇

∧∗WidenSeqL,⊑,∇(X,⊥- , F )
⇒ ∃i ∈ ∗N. ∀j ∈ ∗N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ ∗N.
((

∀l ∈ ∗N. k ≤ l ⇒ X(k) = X(l)
)
⇒ F

(
X(k)

) ∗⊑ X(k)
)

This yields the statement of this theorem. Note that the well-definedness of
the iteration hyper-sequence (by induction on i ∈ ∗N) is implicit in the above
transfer arguments.

The problem of Thm. 5.2.7 is that the finite-step convergence of iteration
sequences for the original widening operator (described in Prop. 2.2.22) is now
transferred to hyperfinite-step convergence. This is not desired. All the entities
from NSA that we have used so far are constructs in denotational semantics—
whose only role is to ensure soundness of verification methodologies2 and on

2Recall that Whiledt is a modeling language and we do not execute them.
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which we never actually operate—and therefore their infinite/infinitesimal na-
ture has been not a problem. In contrast, computation of the iteration hyper-
sequence ⟨Xi⟩i∈∗N is what we actually compute to overapproximate program se-
mantics; and therefore its termination guarantee within i ∈ ∗N steps (Thm. 5.2.7)
is of no use.

As a remedy we introduce a new notion of uniformity of the (standard) widen-
ing operators. It strengthens the original termination condition (Def. 2.2.21) by
imposing a uniform bound i for stability of arbitrary chains ⟨xi⟩ ∈ LN. Logically
the change means replacing ∀∃ by ∃∀.

Definition 5.2.8 (uniform widening). Let (L,⊑) be a preorder. A function
∇ : L × L → L is said to be a uniform widening operator if the following two
conditions hold.

• (Covering) For any x, y ∈ L, x ⊑ x∇y and y ⊑ x∇y.

• (Uniform termination) Let x0 ∈ L. There exists a uniform bound i ∈ N
such that: for any ascending chain ⟨xk⟩ ∈ LN starting from x0, there exists
j ≤ i at which the chain ⟨yk⟩ ∈ LN, defined by y0 = x0 and yk+1 =
yk∇xk+1 for all k ∈ N, stabilizes (i.e. yj = yj+1).

It is straightforward that uniform termination implies termination.
We investigate uniformity of some of the commonly-known widening opera-

tors on convex polyhedra.

Theorem 5.2.9. Among the three widening operators in §2.2.3, ∇S

(Def. 2.2.24) and ∇M (Def. 2.2.25) are uniform, but ∇N (Def. 2.2.33) is not.

Proof. First, the uniformity of ∇S is proved as follows. Let ⟨Xi⟩i be a iteration
sequence defined by ∇CPn , a basis X0 = con(C0) and a monotone function F .
Let ⟨Ci⟩i be the sequence of constraint systems that corresponds to ⟨Xi⟩i. By
definition of ∇CPn and the construction of ⟨Xi⟩i, regardless of the function F ,
Ci+1 ⊆ Ci for all i ∈ N. Thus for any basis X0 = con(C0) and monotone
function F , we can reach a prefixed point by iterating the widening operator at
most #(C0) times and this means the widening operator ∇CPn is uniform.

Then, we can prove that ∇M is also uniform in the following way. The
constraints in M may be added in the iteration sequence, but by the definition
of the standard widening ∇S, a constraint in M will never appear once it is
violated. Therefore the number of steps for an iteration sequence to converge is
at most #(M) larger than the case of standard widening.

Finally, ∇N is proved to be nonuniform as follows. Assume that P1 =
con{0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0} ∈ CP3, P2 ∈ CP3 includes P1 and the
linear equation “z = 0” is not included in C2. Then P1 ↷N P2 holds because
#eq(C1) > #eq(C2). The maximum number of steps for an iteration sequence
starting from P2 to converge is #C2. This is not limited uniformly because you
can define P2 such that #C2 is as large as you like.

The following theorem is a “practical” improvement of Thm. 5.2.7; its proof
relies on instantiating the uniform bound i in a suitable LR-formula with a
Skolem constant, before transfer.
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Theorem 5.2.10. Let (L,⊑) be a preorder and ∇ ∈ L × L → L be a uniform
widening operator on L. Let F : ∗L → ∗L be a monotone and internal function;
and ⊥- ∈ L be such that ∗⊥- ∗⊑ F (∗⊥- ). The iteration sequence ⟨Xi⟩i∈N defined by

X0 =
∗⊥- , Xi+1 =

{
Xi if F (Xi)

∗⊑ Xi

Xi
∗∇ F (Xi) otherwise

for all i ∈ N

reaches its limit within some finite number of steps; and the limit
⊔

i∈NXi is a
prefixed point of F such that ∗⊥- ∗⊑

⊔
i∈NXi.

Proof. We can characterize uniform widening operators as an LR-sentence as
follows (covering condition has been already expressed as an LR-formula in
Def. 2.2.15):

UnifTermL,⊑,∇ :≡ ∀x0 ∈ L. ∃i ∈ N. ∀x ∈ N → L. (AscCn(x) ∧ x(0) = x0) ⇒(
∀y ∈ N → L.

((
y(0) = x(0) ∧ ∀n ∈ N. y(n+ 1) = y(n)∇x(n+ 1)

)
⇒ ∃j ∈ N.

(
j ≤ i ∧ y(j) = y(j + 1)

)))
UnifWidenL,⊑,∇ :≡ CoverL,⊑,∇ ∧ UnifTermL,⊑,∇

Let L ∈ U be a set, ⊑ ∈ P(L×L) be a binary relation on L and ∇ : L×L→ L
be a function. Then, we can see directly that the following LR-sentence is valid:

∀⊥- ∈ L. ∃i ∈ N. Ψ(⊥- )(i), (5.1)

where

Ψ(⊥- )(i) =
∀F ∈ L→ L. ∀X ∈ N → L.

PreordL,⊑ ∧MonotoneL,⊑,L,⊑(F ) ∧ BasisL,⊑(⊥- , F ) ∧ UnifWidenL,⊑,∇

∧WidenSeqL,⊑,∇(X,⊥- , F )
⇒ ∀j ∈ N. i ≤ j ⇒ X(i) = X(j)

∧ ∀k ∈ N.
((

∀l ∈ N. k ≤ l ⇒ X(k) = X(l)
)
⇒ F

(
X(k)

)
⊑ X(k)

)
.

Assume that ⊥- ∈ L is given. Then, by the LR-sentence (5.1), there exists
i ∈ N such that Ψ(⊥- )(i) holds. Therefore, by transferring Ψ(⊥- )(i), ∗Ψ(⊥- )(i)
holds for such i ∈ N. Note that ∗Ψ(⊥- )(i) is the following L∗R-sentence (⊥- and
i are dealt with as constants in the following L∗R-sentence because ⊥- and i are
defined outside the LR-sentence):

∀F ∈ ∗(L→ L). ∀X ∈ ∗(N → L).
∗PreordL,⊑ ∧ ∗MonotoneL,⊑,L,⊑(F ) ∧ ∗BasisL,⊑(

∗⊥- , F ) ∧ ∗UnifWidenL,⊑,∇

∧∗WidenSeqL,⊑,∇(X,
∗⊥- , F )

⇒ ∀j ∈ ∗N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ ∗N.
((

∀l ∈ ∗N. k ≤ l ⇒ X(k) = X(l)
)
⇒ F

(
X(k)

) ∗⊑ X(k)
)
.

This yields Thm. 5.2.10.



CHAPTER 5. NONSTANDARD ABSTRACT INTERPRETATION 57

Note that uniformity of ∇ is a sufficient condition for the termination of
nonstandard iteration sequences (by ∗∇); Thm. 5.2.10 does not prohibit other
useful widening operators in the nonstandard setting. Furthermore, there can be
a useful (nonstandard) widening operator other than a hyperwidening operator
∗∇ that arise via a standard widening operator ∇.

It is a direct consequence of Thm. 5.2.10 and Thm. 5.2.9 that the analysis of
Whiledt programs on ∗CPn is terminating with ∇S or ∇M .

5.3 Analysis of Linear Water Tank Example

In this section we illustrate how our framework described in §5.2 works. We use
the well-known example of the linear water tank introduced in [6]. The details
of the system can be also found in §2.2.4.

Recall that in §2.2.4, we reviewed the usual abstract interpretation work-
flow without extension with infinitesimals. We emphasize that our extended
framework works just in the same manner: without any explicit ODEs or any
additional theoretical infrastructure for ODEs; but only adding a constant dt.
In the “standard” scenario in §2.2.4, we approximated the dynamics of the water
level by discretizing the continuous notion of time (dt′ = 0.2). While this made
the usual abstract interpretation workflow go around, there is a price to pay—
the analysis result is not precise. Specifically, the reachable region thus over-
approximated is 0.6 ≤ x ≤ 12.2, while the real reachable region is 1 ≤ x ≤ 12.
There are also examples in which discretization even leads to unsound analysis
results.

In our extended framework, the same (hybrid) dynamics of the linear water
tank is modeled by a program in Code 5.1. Here we used the infinitesimal
constant dt in Whiledt, instead of dt′ = 0.2 in Code 2.1. For the analysis
of this Whiledt program in Code 5.1, we can follow exactly the same path as
in §2.2.4. The collecting semantics of the Whiledt program in Code 5.1 follows
Def. 5.1.2. As in §2.2.4, we separate the state space using the values of the

Boolean variables p and s. Therefore, the concrete domain is
(
∗(P(R2)

))4

. The

corresponding abstract domain of convex polyhedra over hyperreals is (∗CP2)
4.

On this abstract domain, we can iterate the loop in Code 5.1. After each
iteration of the loop, we apply ∗(∇M), the *-transform of the uniform widening
operator ∇M . It accelerates the convergence of the iteration sequence, and
Thm. 5.2.9 and Thm. 5.2.10 ensure that it reaches a prefixed point in finitely
many steps. The iteration sequence is much like in Fig. 2.2 obtained in §2.2.4,
but here the two parallelograms depicted in green and yellow have infinitely small
width of dt and 2dt, respectively. This leads to the analysis result 1−2dt ≤ x ≤
12 + dt. The soundness of this result is guaranteed by Thm. 5.2.4. Since dt is
an infinitesimal number, the last result is practically as good as 1 ≤ x ≤ 12. In
the next section, we will introduce a prototype implementation that automates
this analysis.
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5.4 Implementation and Experiments

5.4.1 Implementation

We implemented a prototype tool for analysis of Whiledt programs. The tool
currently supports: ∗CPn as an abstract domain; and ∗∇M , *-transformation of
∇M in Def. 2.2.25 as a widening operator. Its input is a Whiledt program. It
outputs a convex polyhedron that overapproximates the set of reachable mem-
ory states for each modes (or the values of discrete variables). Our tool consists
principally of the following two components: 1) an OCaml frontend for pars-
ing, forming an iteration sequence and making the set M for ∗∇M ; and 2) a
Mathematica backend for executing operations on convex polyhedra. The two
components are interconnected via MathLink.

There are some libraries such as Parma Polyhedra Library [12] that are com-
monly used to execute operations on convex polyhedra. They cannot be used
in our implementation because we have to handle the infinitesimal constant
dt as an truly infinitesimal value. Instead we implemented Chernikova’s algo-
rithm [22–24,65] symbolically, using computer algebra system (CAS) on Mathe-
matica based on Prop. 5.4.1.

In the implementation, we rely on the following proposition to check the
validity of formulas including the infinitesimal constant dt.

Proposition 5.4.1. Let A be an LR-formula with a unique free variable x; to
emphasize it we write A(x) for A. Then the validity of the formula

∃r ∈ R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x)))

(in V (R)) implies the validity of ∗A(dt) in V (∗R).

Proof. Assume that

0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x))

is valid for some r ∈ R. By transfer,

0 < r ∧ ∀x ∈ ∗R. (0 < x < r ⇒ ∗A (x))

is also valid for that r. This implies ∗A(dt) since 0 < dt < r for any positive
r ∈ R.

Prop. 5.4.1 ensures that the transformation from ∗A(dt) to

∃r ∈ R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x)))

does not violate the soundness of the analysis. When we have
to evaluate a formula including dt, we instead resolve ∃r ∈
R. (0 < r ∧ ∀x ∈ R. (0 < x < r ⇒ A (x))) using CAS (e.g. quantifier elimi-
nation).

Remark 5.4.2. When we model nonlinear ODEs in Whiledt, we have nonlin-
ear expressions with an infinitesimal constant dt in the RHS of assignments. In
classical abstract interpretation on the domain of convex polyhedra, when we
encounter a nonlinear assignment to a variable, we discard all the information
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about the variable (see [31]). This leads to an unacceptable imprecision of the
analysis. In the current prototype implementation in which we rely on Mathe-
matica backend, the constraints that must be satisfied after a nonlinear assign-
ment are computed symbolically, and the linear constraints among them give the
abstract state after the assignment. To deal with such nonlinear expressions in
numerical implementation (which is an important direction of future work), we
are considering combining our methodology with linearization techniques such
as [3].

5.4.2 Experiments

We analyzed two Whiledt programs—the linear water tank (Code 5.1) and the
nonlinear water tank (Code 5.2)—with our prototype. The experiments were on
Apple MacBook Air with 2.2 GHz Intel Core i7 CPU and 8 GB memory. The
execution times are the average of 10 runs.

Linear Water Tank The first example we analyzed using our prototype im-
prementation is the linear water tank in Code 5.1. This is a piecewise-linear
dynamics and a typical example used in hybrid automata literature. Our tool
automates the analysis presented in §5.3; the execution time was 20.815 sec.

Nonlinear Water Tank We consider the same dynamics as the one used in
§3.6.2 and §4.3.2. Its Whiledt model is presented in Code 5.2. In the previous
example of the linear water tank, we assumed the fixed time lag of 2 seconds and
it was taken into account in the Whiledt model. In this example, the Whiledt

program does not include time lags. The reachability analysis of this nonlinear
water tank example with bounded delays can be done by combining the analysis
in this section with the results in §3.6 or §4.3. It will be presented later in §6.2.

As we discussed in Rem. 5.4.2, the nonlinear ODE is modeled as a non-
linear assignment (in line 6 and 9 in Code 5.2). Our approach of nonstandard
abstract interpretation successfully analyzes this example without explicit piece-
wise-linear approximation. We believe this result witnesses a potential of our
approach. We skip how it analyzes this example since the procedure is the same
as the linear water tank case. Our tool executes in 5.242 sec. and outputs an
approximation from which we obtain an invariant 1− dt

5
≤ x ≤ 10 + dt

10
.
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1 /*Nonlinear Water Tank*/

2 x := 1;

3 while true do {

4 if x < 1 then x := x + ((11 - x) * dt / 10)

5 else {

6 if x > 10 then x := x - (((x ^ (1 / 2)) * dt) / 5)

7 else {

8 if * then x := x + ((11 - x) * dt / 10)

9 else x := x - (((x ^ (1 / 2)) * dt) / 5)

10 }

11 }

12 }

Code 5.2: Nonlinear Water Tank in Whiledt



Chapter 6

Two-Step Analysis of Switched Systems
with Delays

In this chapter, we introduce a two-step reachability analysis workflow of a
switched system with delays. It is a combination of an abstraction method-
ology of delays and the reachability analysis of delay-free hybrid systems. In
§6.1, we explain some theoretical results to guarantee the soundness of the over-
all two-step analysis under state-dependent controllers. It is an adaptation of
the results in [40]. Then in §6.2 and §6.3, we illustrate our proposed two-step
analysis using examples.

In the first step of the two-step analysis, using the methodology introduced
in Chapter 4, we compute an upper bound of the Skorokhod distance between
the trajectory of the switched system with delays and the one without delays, as
Thm. 4.2.4 and Thm. 4.2.6 ensures. We can also use the methodology introduced
in Chapter 3 in the same way, but we use the one in Chapter 4 for better
precision. Using the resulting upper bound, the reachability of the switched
system with delays reduces to the reachability of the delay-free model.

Then, in the second step, we need to analyze the reachability of the switched
system without delays. Because we have separated the first step and the sec-
ond step, we can apply any existing reachability analysis technique for hybrid
systems. One possibility is the methodology introduced in Chapter 5. In §6.2,
we use the nonlinear water tank as an example to show the applicability of our
method to nonlinear dynamics. In §6.3, we use the boost DC-DC converter as an
example. We do not use the methodology in Chapter 5. Instead, since the dy-
namics of this example is linear, we can even synthesize a safety controller that
keeps the trajectory within a safe region, using the state-space discretization
method introduced in [40].

6.1 Theoretical Background for Reachability Analysis by
Approximate Bisimulation under State-Dependent
Controllers

In the subsequent examples, we will consider the reachability of the system
controlled by a state-dependent controller. In Chapter 3 and Chapter 4, we did
not consider the existence of a controller and just assumed that the same mode
is always enabled for both systems. This is not the case if the system with delays
and its delay-free model is controlled by the same state-dependent controller. In
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this section, we describe necessary theoretical results for reachability analysis
based on approximate bisimulations when a state-dependent controller is given.
The following definitions and results are adaptations of the ones in [40], which
are originally for safety controller synthesis, to our reachability analysis setting.

To analyze the reachability, we first fix a controller for the system. We focus
on the controllers that only depend on the current state x ∈ Rn of a switched
system.

Definition 6.1.1. Let Σ = (Rn, P,P, F ) be a τ -periodic switched system or a
τ -periodic switched system with switching delays within δ0. A controller for Σ
is a function S : Rn → P(P ).

The dynamics of the transition system T (Σ) = (Q,L,GGGA, O,H, I) con-

trolled by S from a set of initial states X0 ⊆ Rn is described by another

transition system T (Σ)S,X0 = (Q,L,GGGA
S
, O,H, IX0), where GGGA

S
is defined by

(x, t, p)
p′′

GGGGGA

S
(x′, t′, p′) if p′ ∈ S(x) and (x, t, p)

p′′

GGGGGA(x′, t′, p′), and IX0 is defined

by {(x0, 0, p) ∈ I | x0 ∈ X0 and p ∈ P}.

Remark 6.1.2. We explain some technical differences between our setting and
the one in [40]. In our setting, a controller is not a function from the set of states
Q to the set of transition labels L on the transition systems we constructed in
§3.2. In these transition systems, the next possible transition label is uniquely
determined by the third element of the current state q ∈ Q.

Another difference is that for the transition systems constructed in that man-
ner, any controller in Rn → P(P ) is well-defined. In the definitions and theorems,
we restrict ourselves to the transition systems obtained from switched systems
in such a way that we described in §3.2, and assume the well-definedness of the
controllers. For details of well-definedness, see [40].

Definition 6.1.3. Let S be a controller for a switched system Σ, and X0 ⊆ Rn

be a set of initial states. A subset Os ⊆ O is said to be a controlled invariant
for T (Σ)S,X0 if for all initial state q0 ∈ IX0 with H(q0) ∈ Os, and for each state
trajectory

(
(q0, l0), (q1, l1), · · · , (qi, li), · · ·

)
of T (Σ)S,X0 , H(qi) ∈ Os for all i ∈ N.

In the subsequent theorem and the corollary, we only consider Os ⊆ O =
Rn ×R+ × P defined by Os = X ×R+ × P for some X ⊆ Rn, and regard Os as
the subset X of Rn. We use the following notations.

• For X ⊆ Rn, the ε-expansion Eε(X) is defined by {y ∈
Rn | there exists x ∈ X such that ∥x− y∥ ≤ ε}.

• For X ⊆ Rn, the ε-contraction Cε(X) is defined by {y ∈ X | for all x ∈
Rn, if ∥x− y∥ ≤ ε then x ∈ X}.

• For X ⊆ Rn and S : Rn → P(P ), S(X) is defined by
∪

x∈X S(x).

• For Rε ⊆ Qτ,δ0 × Qτ and x ∈ Rn, R−1
ε (x) is defined by {y ∈

Rn | there exists t, t′ ∈ R+ and p, p′ ∈ P such that (y, t, p)Rε(x, t
′, p′)}.

• For Rε ⊆ Qτ,δ0 × Qτ and x ∈ Rn, Rε(x) is defined by {y ∈
Rn | there exists t, t′ ∈ R+ and p, p′ ∈ P such that (x, t, p)Rε(y, t

′, p′)}.
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The following theorem guarantees the soundness of the reachability analysis
in §6.2. The proof is omitted because it can be proved easily in a similar way
as [40, Thm. 1].

Theorem 6.1.4. Let Στ,δ0 be a τ -periodic switched system and Στ be its delay-
free model. Assume that there exists an ε-approximate bisimulation relation
Rε ⊆ Qτ,δ0 × Qτ between the state spaces of T (Στ,δ0) and T (Στ ). Let Sτ,δ0 be a
controller for Στ,δ0. Let X0 ⊆ Rn be a set of initial states.

Now we consider a controller Sτ satisfying Sτ (x) ⊇ Sτ,δ0(R
−1
ε (x)) for all

x ∈ Rn. If Os is a controlled invariant for T (Στ )Sτ ,X0, then Eε(Os) is a controlled
invariant for T (Στ,δ0)Sτ,δ0

,X0.

For controller synthesis, we add the notion of non-blockingness for controllers.

Definition 6.1.5. Given a controller S ∈ Rn → P(P ), a state x ∈ Rn is said to
be non-blocking if S(x) ̸= ∅.

Let Σ be a switched system (either periodic or periodic with delays), Os be a
subset of the set of outputs O, andX0 ⊆ Rn be a set of initial states. A controller
S for Σ is said to be a safety controller for specification Os with initial states
X0 if for all non-blocking initial state q0 ∈ IX0 with H(q0) ∈ Os, and for each
state trajectory

(
(q0, l0), (q1, l1), · · · , (qN−1, lN−1), qN

)
of length N of T (Σ)S,X0 ,

H(qi) ∈ Os for all i ∈ {0, · · · , N} and qN is non-blocking.

The following corollary is an adaptation of [40, Thm. 1]. It will be used in
§6.3.

Corollary 6.1.6. Let Στ,δ0 be a τ -periodic switched system and Στ be its delay-
free model. Assume that there exists an ε-approximate bisimulation relation
Rε ⊆ Qτ,δ0 ×Qτ between the state spaces of T (Στ,δ0) and T (Στ ). Let Os ⊆ O be
a given safety specification. Let Sτ be a safety controller for Στ , for specification
Cε(Os) with initial states X0 ⊆ Rn.

Now we consider a controller Sτ,δ0 defined by Sτ,δ0(x) = Sτ (Rε(x)) for all
x ∈ Rn. Then Sτ,δ0 is a safety controller for Στ,δ0, for specification Os with
initial states X0.

Soundness of the overall two-step reachability analysis is guaranteed by the
combination of soundness of the abstraction of delays in the first step (e.g.,
Thm. 4.2.4 or Thm. 4.2.6), soundness of the reachability analysis in the second
step (e.g., Thm. 5.2.4) and Thm. 6.1.4 (Cor. 6.1.6 for controller synthesis). In
the following two sections, we will illustrate the two-step reachability analysis
and safe controller synthesis using two examples.

6.2 Reachability Analysis of Nonlinear Water Tank

In this section, we compute an overapproximation of the reachability of the non-
linear water tank example with delays. The detailed description of the example
can be found in §3.6.2.
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To analyze the reachability of the delayed system, we first fix a controller.
We assume the following controller Sτ,δ0 for the delayed system Στ,δ0 :

Sτ,δ0(x) =


{ON } if x < 2

{OFF } if x > 9

{ON,OFF } otherwise

.

Note that we do not assume the periodic sensing for this example. To allow
the similar analysis as §5.4.2, we assume that the sensing can occur at anytime.
Hereafter, instead of assuming a period τ , we restrict ourselves to the switching
signals whose minimum dwell time is τ , among the switching signals that are
enabled by the controllers. It is easy to see that this restriction enables us to
reuse exactly the same results in Chapter 3 and Chapter 4.

Recall that, in §4.3.2, we gave an approximate bisimulation relation Rε with
ε = 0.388234 between the two transition systems constructed from the nonlin-
ear water tank Στ,δ0 with delays and its delay-free model Στ . To analyze the
reachability of Στ,δ0 controlled by the controller Sτ,δ0 , we first define a controller
Sτ for Στ by Sτ (x) = Sτ,δ0(R

−1
ε (x)). From the definition of Rε, it is easy to see

that the controller Sτ works in the following way:

Sτ (x) =


{ON } if x < 1.61177 . . .

{OFF } if x > 9.38823 . . .

{ON,OFF } otherwise

.

By a similar analysis as §5.4.2, we can obtain that [1.61177, 9.38824] is a
controlled invariant for T (Στ )Sτ . Finally, by Thm. 6.1.4, we can say that the
delayed system is kept in the ε-expansion [1.22354, 9.77647] by the controller
Sτ,δ0 .

6.3 Controller Synthesis of Boost DC-DC Converter

In this section, we use the boost DC-DC converter as an example. The descrip-
tion of the example is in §3.6.1. Since the dynamics of this example is linear,
we can even synthesize a safety controller that keeps the trajectory within a
safe region, based on the safety controller synthesis workflow using approximate
bisimulation in [40]. For the reachability analysis in the previous example, we
have reduced it to that of its delay-free model. The reachability of the delay-free
model was analyzed by the methodology in Chapter 5. We follow a similar work-
flow for the safety controller synthesis here: first the controller synthesis problem
of the original system is reduced to that of its delay-free discretized model via
two approximate bisimulations; then the safety controller synthesis can be done
for that symbolic model using an existing controller synthesis methodology.

The details of the workflow are shown in Fig. 6.1. Note that we use two
different approximate bisimulations. Our proposed methodology in Chapter 4 is
used to derive the first error bound ε1 between (the transition system T (Στ,δ0)
derived from) the actual system Στ,δ0 , and (the transition system T (Στ ) derived
from) the delay-free model Στ . The latter system Στ is a delay-free periodic
switched system, to which we can apply the results of [43]. We thus construct a
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Actual system T (Στ,δ0)
A switched system with
nearly periodic switching
signals, with delays within
δ0 > 0

∼ε1
approximately bisimilar
(the result in Chapter 4)

A switching sig-
nal for Στ,δ0 with
precision ε1 + ε2

Delay-free model T (Στ )
A switched system with
periodic switching signals,
with no switching delays

∼ε2
approximately bisimilar

(by e.g. [43])

A switching sig-
nal for Στ with
precision ε2

Symbolic model T symb
τ

A discrete transition system
built from Στ

discrete
synthesis

(games etc.)
//
A switching sig-
nal for T symb

τ

Figure 6.1: A control synthesis workflow for switched systems with delays. We
separate two concerns: time-delays and discretization of state spaces. The same
stability assumption on Στ can be used for establishing both ∼ε1 and ∼ε2 .

discretized symbolic model T symb
τ and establish the second approximate bisimu-

lation ∼ε2 in Fig. 6.1. The fact that our construction relies on same incremental
stability assumptions as in [43] means that, for establishing both of the approx-
imate bisimulations ∼ε1 and ∼ε2 , we can reuse the same ingredient (namely a
Lyapunov function for δ-GUAS). This can save a lot of efforts. Concretely, we
obtained ε1 = 0.023655 in §4.3.1. For ε2, we can make ε2 as small as you wish
(see [43].)

We briefly sketch the concrete controller synthesis for this example, since it
is just an adaptation of [40]. Our goal is to synthesize a safety controller for the
system Στ,δ0 with delays, for the safe set [1.3, 1.7]× [5.7, 5.8]. First, we consider a
shrunk safe region [1.3+(ε1+ε2), 1.7−(ε1+ε2)]×[5.7+(ε1+ε2), 5.8−(ε1+ε2)] for
the symbolic model T symb

τ . Then, we can apply to it various discrete techniques
such as automata-theoretic synthesis [94], supervisory control of discrete event
systems [81], algorithmic game theory [9], etc. Following [40,43], we can employ
an algorithm from supervisory control [81] and synthesize a set of safe switching
signals that confine the dynamics of T symb

τ to the shrunk safe region. This is
the horizontal arrow at the bottom of Fig. 6.1. From the resulting controller,
using Cor. 6.1.6, we can construct a safety controller for the original system with
delays, for the safe set [1.3, 1.7]× [5.7, 5.8]. For more detailed description of the
resulting controllers, see [43, Fig. 3].



Chapter 7

Related Work

We will discuss related work on the methodologies we have proposed in Chap-
ter 3–Chapter 5 so far. Then, we will discuss related work of the two-step
reachability analysis as a whole.

7.1 Approximate Bisimulation for Switching Delays

In this section, we discuss related work on our methodology proposed in Chap-
ter 3, where we used approximate bisimulation to find an error bound between a
delayed system and its delay-free model. The notion of approximate bisimulation
is first introduced in [41]. The classical bisimulation relation [71,74] is the equiv-
alence relation between transition systems, that requires the external behavior
of the two systems to be identical. Since this exact bisimulation is too restric-
tive for the systems that have continuous state space, the notion of approximate
bisimulation does not impose the identical behavior and allows the possibility of
error. Use of incremental stability as a source of approximate bisimulations is
advocated in [77]. This useful technique has found its applications in a variety
of system classes as well as in a variety of problems. A notable application is
discretization of continuous state spaces to employ discrete verification/synthe-
sis techniques. The original framework in [77] has been extended to switched
systems [43], systems with disturbance [80], and so on. A comprehensive frame-
work where discrete control synthesis is integrated is presented in [39]; the works
discussed so far are nicely summarized in the overview paper [42].

In [59], they further generalize approximate bisimulation by allowing some
mismatches on the transition labels. By regarding transition labels as time,
it gives a framework that allows a kind of time-delays. However, the delays
captured by this methodology can accumulate as the switching occurs repeatedly.
This accumulation of delays does not suit our application scenario described
in Chapter 1. In our framework, we put time in the states, rather than the
transition labels, so that the accumulation of delays is prohibited.

The work in [78,79] is relevant to ours, which addresses the issue of time-delay.
The work [79] deals with fixed time-delays and the one [78] considers unknown
time-delays. The goal of these works, which is different from ours, is to con-
struct a comprehensive symbolic (discretized) model that encompasses all possi-
ble delays and switching signals. In particular, possible delays are thought of as
disturbances (i.e. demonic/adversarial nondeterminism) and consequently, they
use alternating approximate bisimulations introduced in [80]. The main techni-

66



CHAPTER 7. RELATED WORK 67

cal gadget in doing so is a spline-based finitary approximation of continuous-time
signals. The work in [18,96] also studies symbolic abstraction of hybrid systems
with delays based on alternating approximate bisimulations, assuming delays are
discretized.

A recent line of works [61,62] tackles the challenge of time-delays too. They
take timing contracts as specifications; and study a verification problem [61],
and a scheduling problem under the single-processor multiple-task setting [62].
A crucial difference from the current work is that they assume linear dynamics,
while we can deal with nonlinear dynamics (under the assumption of incremental
stability).

7.2 Skorokhod Distance Caused by Switching Delays

In Chapter 4, we have extended the methodology proposed in Chapter 3 so that it
allows some timing mismatches. Quantifying the closeness between trajectories
that allows timing mismatches has recently been studied in the field of confor-
mance testing. A beginning of the study in this direction is the conformance
degree based on (T, J, (τ, ε))-closeness introduced in [1, 2]. In this definition of
closeness, the parameter τ is the closeness in time and ε is the closeness in space.

In [2], the authors present two algorithms to compute the conformance degree
between given two systems. The first algorithm is based on Rapidly-exploring
Random Trees (RRTs) [25]. One major difference from ours is that it estimates
the conformance degree by computing its underapproximation, not overapproxi-
mation. Another difference is that it assumes that a controller is given. Thus, we
cannot apply this algorithm to the control synthesis scenario that we discussed
in Chapter 6, for example. The second algorithm they introduced computes an
overapproximation of the conformance degree as our proposed method. However,
their algorithm is only applicable to linear switched systems. Ours can analyze
incrementally stable nonlinear switched systems, by restricting ourselves to error
analysis caused by switching delays.

Then in [34], the conformance between two trajectories was defined using
the Skorokhod metric [4], which is related to Fréchet distance as discussed in
[68,69]. An algorithm to compute the Skorokhod metric between given traces is
introduced also in [34]. In each of [34,68,69], the Skorokhod metric is computed
for some restricted type of traces (or the set of traces). A major difference
from our proposed method is that they compute the Skorokhod metric between
“given” traces (or trajectories). This is because their use case scenario is for
conformance testing, where the traces are obtained by simulation. In our setting,
the computation of the trace, which is hard for nonlinear ODEs, is not needed.
Instead, we input the models and output an upper bound of the Skorokhod
metric between the traces generated by the models.

In [32], a relaxation of the strict order-preservation condition for retiming
to weak order-preservation is introduced. This relaxation is natural for hybrid
settings such as ours, and adaptation of this relaxation may improve our result
in Chapter 4.
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7.3 Extension of Abstract Interpretation with Infinitesi-
mals

In Chapter 5, we introduced an extension of abstract interpretation by Cousot
& Cousot [28], with Robinson’s nonstandard analysis (NSA) [84] for verifica-
tion of hybrid systems. There has been a lot of research work for verification
of hybrid systems, both from formal methods and control theory. One of the
most successful work is the model of timed automata [7], an extension of usual
finite automata with the notion of time. Technically, the extension is done by
introducing real-valued clocks. For timed automata, the reachability problem is
known to be decidable [7]. Abstract interpretation and symbolic model check-
ing of real-time systems are also studied. For example, in [54], symbolic model
checking of timed automata based on zones is introduced. In [47], delays in syn-
chronous programs that express real-time systems are analyzed using abstract
interpretation. There are some tools available for verification of timed automata,
such as UPPAAL [64] and Kronos [19].

Since clock values increase at the same speed, we cannot model complicated
continuous behavior in timed automata. A more general modeling methodology
that allows us to model complicated dynamics is hybrid automata [5, 6]. A
hybrid automaton is another extension of a finite automaton, in which a state
corresponds to a continuous behavior expressed as ODEs, and a state transition
corresponds to a discrete change of the control mode. In fact, the model of timed
automata is a subclass of hybrid automata. The reachability of hybrid automata
is undecidable even for linear hybrid automata.

There are quite a few hybrid system verification tools, including HyTech [53],
PHAVer [37], SpaceEx [38], HySAT/iSAT [36], d/dt [10], CheckMate [89],
Flow* [21] and KeYmaera [76]. KeYmaera is based on differential dynamic logic
introduced in [75]; it is a kind of dynamic logic and verifies a hybrid system in
a deductive manner. The other tools listed above are aiming at model checking
or flowpipe construction of hybrid systems. There are also not a few invariant
generation techniques for hybrid systems, e.g. in [66, 85–87]. All these rely on
ODEs (or the explicit solutions of them) for expressing continuous dynamics,
much like hybrid automata do.

Our nonstandard static analysis approach is completely different from those
in the following point: we do not use ODEs at all, and model hybrid systems
as an imperative program with an infinitesimal constant. Our usage of NSA to
extend formal methods for hybrid systems is based on [50,91,92], and continuous
flow is regarded as infinitely many infinitesimal jumps based on NSA. In [91],
the framework Whiledt, Assndt and Hoaredt is introduced. They do not de-
fine the semantics of while loop command in Whiledt as the least fixed point
directly, but define it based on their original idea of “sectionwise execution.”
When transferring meta-theorems of abstract interpretation, it is more conve-
nient if the semantics of Whiledt is given as the least fixed point. This was done
in [63]. In [50], some invariant generation techniques are transferred and an au-
tomated Hoaredt analyzer is introduced. In [92], a stream processing language
is extended with infinitesimals. More recently, a denotational semantics of a
functional programming language with infinitesimals is introduced in [73]. The
nonstandard static analysis approach enables us to apply static methodologies
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for discrete systems as they are.
The most relevant tool to our methodology is PHAVer, based on the work

in [48, 49]. In [48, 49], they also use the domain of convex polyhedra to over-
approximate the reachable sets of linear hybrid automata. We separate the
discrete variables (p and s) and the continuous variables (x and l) in §5.3. This
corresponds to make a hybrid automaton from the given Whiledt program, by
separating the discrete and continuous behavior. The difference between our
nonstandard abstract interpretation and [48, 49] that applies abstract interpre-
tation on the domain of convex polyhedra to hybrid automata is the following.
In our framework, continuous flow is interpreted as infinitely many infinitesimal
jumps and the abstract interpretation techniques can be applied to a continuous
behavior as they are, even if the behavior is not piecewise linear. In the approach
of [48, 49], they need some special techniques such as linear phase-portrait [52],
to reduce piecewise affine dynamics into piecewise linear one. In addition, it
cannot analyze the dynamics beyond piecewise affine (such as the nonlinear wa-
ter tank example we have used). Instead, we have to introduce the “uniformity”
condition to guarantee the finite step convergence of iteration sequences.

7.4 Two-step Reachability Analysis of Switched Systems
with Delays

In this section, we discuss related work on our two-step reachability methodology
as a whole. Our framework is a combination of an abstraction of the effect of
delays and a hybrid system reachability analysis that cannot deal with delays.
The first step overapproximates the effect of delays to reduce the reachability
analysis of a delayed hybrid system to that of the delay-free model. The proposed
techniques for the reduction rely on the assumption of the incremental stability
δ-GUAS. The precision loss in the first reduction is determined by how good
Lyapunov function we can find.

To the best of our knowledge, the only existing work that can do reachability
analysis or safe controller synthesis of nonlinear hybrid systems with delays is
a combination of a symbolic abstraction methodology based on approximate
bisimulation (e.g. [18, 78, 96] as we discussed in §7.1) with reachability analysis
or controller synthesis of the obtained discrete systems.

In [18, 78, 96], approximate bisimulation-based frameworks for symbolic ab-
straction of the state space have been studied. The assumption of incremental
stability is essentially the same as our framework. For example, in [78], its ap-
plication to safe controller synthesis is explained as follows. The results in [78]
yield a symbolic model as a two-player finite-state game G where angelic moves
switching signals and demonic moves are time-delays. By solving the game G
(e.g. by the algorithm in [60]) one obtains a control strategy.

The biggest difference of them from our two-step framework is that they do
not abstract away the effect of delays. Instead, they make a symbolic model
that takes all the possible delays into consideration. It seems that our two-step
workflow has an advantage in complexity: by considering all the possible delays
and switching signals, the obtained symbolic model tends to have a big number
of transitions. It has to be noted, however, that the workflow following [18,78,96]
applies to a greater variety of systems (than switched systems) and a resulting



CHAPTER 7. RELATED WORK 70

control strategy can be more fine-grained (reacting to delays, while our controller
always assumes the worst time-delays). One can make the proximity as small as
desired, in a trade-off with the size of the symbolic model. In our results, the
precision loss in abstracting away the delays is fixed from the given Lyapunov
functions. Numerical comparison of the precision and scalability of the analysis
using some benchmark examples is future work.



Chapter 8

Conclusions

In this thesis, we have tackled the reachability analysis of hybrid systems that
include time-delays. For this purpose, we have proposed a two-step abstraction
methodology. The first step of the analysis reduces the reachability of hybrid
systems including delays to that of its delay-free model. The obtained delay-free
model is a usual hybrid system without delays, and its reachability is analyzed in
the second step. Note that the second step of the proposed two-step framework
is the usual reachability analysis and there is a lot of existing work for it.

As a concrete methodology for the reduction in the first step, we have in-
troduced a relational abstraction technique based on approximate bisimulation,
to obtain an upper bound of the pointwise distance between the delayed system
and its delay-free model in Chapter 3. We have also introduced an extension
of the previous methodology to bound the Skorokhod distance instead of the
pointwise distance in Chapter 4. Both of them can be applied to possibly non-
linear incrementally stable hybrid systems. The precision of the obtained error
bounds depends on given Lyapunov functions. For the reachability analysis of
delay-free hybrid systems in the second step, we have proposed a predicate ab-
straction methodology by extending abstract interpretation on the domain of
convex polyhedra with an infinitesimal constant in Chapter 5. It can be applied
to possibly nonlinear hybrid systems. Soundness of the analysis is proved by the
transfer principle. Termination is also proved, but only for uniform widening
operators. Soundness of the two-step analysis as a whole can be guaranteed by
the fact that the obtained bound in the first step is an upper bound, and that
the reachability analysis in the second step is sound.

We have successfully analyzed the reachability of the example of nonlinear
water tank with delays, by combining the proposed methodologies in Chapter 4
and Chapter 5. We have also shown that a safety controller for the example
of boost DC-DC converter with delays can be synthesized by combining the
methodology in Chapter 4 and the one proposed in [40]. For both examples, we
assumed that Lyapunov functions to ensure δ-GUAS are given.

Let us conclude this thesis with the summary and the future work of each of
the concrete methodologies we have introduced in Chapter 3 to Chapter 5.
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8.1 Conclusions and Future Work on Approximate
Bisimulations for Switching Delays

In Chapter 3, based on the results in [43], we have introduced an approximate
bisimulation framework and provided upper bounds for the pointwise errors that
arise from switching delays in switched systems. The proposed methodology is
applicable to possibly nonlinear dynamics under the assumption of δ-GUAS. Our
focus on switched systems allows us to use the same incremental stability notion
(δ-GUAS) as in [43] as an ingredient for an approximate bisimulation. This is an
advantage in the two-step control synthesis workflow for switched systems with
delays in §6.3.

In Chapter 4, we extended the methodology to bound the Skorokhod dis-
tance, instead of the pointwise metric. It gives us more precise error bounds for
reachability analysis. It also enables us to deal with the cases where the delays
might be longer than the switching period τ .

The first direction of future work is regarding the assumption of the incre-
mental stability δ-GUAS. In the results, we assumed that a common δ-GAS
function or multiple δ-GAS Lyapunov functions are given, as in [43] and other
symbolic abstraction methodologies based on approximate bisimulation. The
obtained upper bounds by our methodologies rely on these Lyapunov functions,
and for better precision, we need to find Lyapunov functions that have better
characteristics. Finding Lyapunov functions for δ-GUAS itself is a challenging
task. For linear systems, it is well-known that a quadratic template often works
well and SDP optimization can be used to find parameters for that. We need to
investigate how to find a Lyapunov function for nonlinear systems, such as the
work in [17]. Moreover, in [98], the authors introduced a methodology to estab-
lish an approximate simulation relation for constructing a symbolic model from
a nonlinear control system without incremental stability assumption. Instead,
they rely on the assumption of incremental forward completeness. It is also fu-
ture work to check if the same assumption of incremental forward completeness
can be used in our framework to deal with delays.

Secondly, since we have given an upper bound of the Skorokhod distance
in Chapter 4, it is natural to apply the result to verification of temporal logic
specifications other than reachability. For example, we are considering combining
our result with the one in [82], for controller synthesis from STL specifications.

This direction of future work is related to our Global Design Workshop
(GDWS), a requirement of the Graduate Program for Social ICT Global Creative
Leaders (GCL). As GDWS, we organized a workshop that aims at examining
the challenges in writing down formal temporal specifications extensively. Note
that we did not aim at obtaining statistical data, and therefore the results are
just informal suggestions from the observation of the participants. The main
suggestions from the observation in the workshop include the effectiveness of
support tools such as ViSpec [56] and the possibility of extension of the dual
language approach [14]. Making a user-friendly environment for verification of
hybrid systems with delays with respect to temporal specifications using these
examinations is future work.

Extending the current results to a broader class of systems is another impor-
tant direction of future work. In particular, we are interested in disturbances
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and the consequent use of alternating approximate bisimulation [80]. Such an
extension should be carefully devised so that the two-step workflow will remain
valid.

8.2 Conclusions and Future Work on Extension of Ab-
stract Interpretation with Infinitesimals

In Chapter 5, we have presented an extended abstract interpretation frame-
work in which hybrid systems are exactly modeled as Whiledt programs that
contain infinitesimal constants. In spite of the additional constant dt for an
infinitesimal number, they can be soundly analyzed by our extended abstract
interpretation. To ensure its termination, however, there is a gap from stan-
dard abstract interpretation—it is proved only for uniform widening operators.
These meta-theorems (namely, soundness and termination) are established by
using the logical infrastructure of NSA. We implemented a prototype analyzer
that automates the nonstandard abstract interpretation; it currently supports
the domain of convex polyhedra.

Regrettably, our current implementation is premature and does not
compare—in precision or scalability—with the state-of-the-art tools for hybrid
system reachability such as SpaceEx [38] and Flow* [21]. In fact, the two exam-
ples in §5.4.2 are the only ones that we have so far succeeded to analyze. For
other complicated examples—especially nonlinear ones, to which our framework
is applicable in principle—the analysis results are too imprecise to be useful.
There are some possible directions of future work to enhance the precision and
scalability.

The first direction is to make use of existing techniques in the domain of con-
vex polyhedra in the standard abstract interpretation. For example, we could
utilize narrowing operators (the use of narrowing operators in the domain of con-
vex polyhedra is indicated in [51, §3.4]) to enhance the precision of the analysis.
To guarantee the soundness and the termination of the analysis, we may need to
impose new technical conditions as we restricted ourselves to uniform widening
operators for termination.

The second possible direction is regarding hyperwidening operators and uni-
formity condition. Uniformity is a sufficient condition which ensures that a
widening operator is also a widening operator when transferred. There might
be widening operators in the nonstandard setting with infinitesimals that are
not transferred uniform widening operators. In addition, even though the finite
step convergence is not guaranteed, hyperwidening operators can be used as ex-
trapolation operators in the nonstandard setting. We might make use of such
operators.

Thirdly, we believe other abstract domains than convex polyhedra would
be useful for scalability and precision. A lot of abstract domains are left un-
extended to our nonstandard setting: interval domain [27, 28], pentagons [67],
octagons [72], ellipsoids [35], trace partitioning abstract domain [70, 83], etc.
Moreover, these domains can be combined (see [45]). It would be also useful to
come up with some new abstract domains that are tailored to nonlinear dynam-
ics. In this regard, the uniformity of the widening operators for the abstract
domains other than convex polyhedra must be checked.
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Finally, the lack of scalability of our prototype analyzer is mainly due to our
current way of eliminating dt (namely via Prop. 5.4.1): it relies on quantifier
elimination (QE) that is highly expensive. We should improve our theory to
make numerical methodology applicable.
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two polygonal curves. International Journal of Computational Geometry
and Applications, 05(01n02):75–91, 1995.

[5] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.
Sci., 138(1):3–34, 1995.

[6] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[7] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[8] David Angeli. A Lyapunov approach to incremental stability properties.
IEEE Trans. Automat. Contr., 47(3):410–421, 2002.

[9] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of con-
trollers with partial observation. Theor. Comput. Sci., 303(1):7–34, June
2003.

[10] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verifi-
cation of hybrid systems. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Computer Aided Verification: 14th International Conference, CAV
2002 Copenhagen, Denmark, July 27–31, 2002 Proceedings, pages 365–370,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

75



REFERENCES 76

[11] Bacciotti, Andrea and Ceragioli, Francesca. Stability and stabilization of
discontinuous systems and nonsmooth Lyapunov functions. ESAIM: COCV,
4:361–376, 1999.

[12] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[13] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Precise
widening operators for convex polyhedra. Sci. Comput. Program., 58(1-
2):28–56, 2005.

[14] Luciano Baresi, Alessandro Orso, and Mauro Pezzè. Introducing formal
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