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Abstract

The growth of computer performance substantiated our sophisticated society with a

tremendous amount of data and numerical optimizations everywhere. Combinatorial op-

timization problems appear in many diverse fields such as route planning for logistics,

resource allocation in wireless communication, and machine learning. Many research ef-

forts have been made to define the hardness of problems and construct efficient algorithms.

In recent trends in semiconductor technologies, Moore’s law is slowing down mainly due to

the limitation of micro-fabrication heat dissipation and communication bottleneck prob-

lems on a chip. More efforts to boost the processor performance directed to parallelized

architectures including GPU, other multi/many-core processors, and neuromorphic hard-

ware. In fact, many computationally heavy tasks such as deep learning and computational

science run on GPU clusters or special purpose processors. Given the fact, recently it is

attracting more attention to build a computer based on physical dynamics which cannot

be efficiently simulatable, including quantum computers and quantum annealers, which

are distinguished from von-Neumann computer architecture. Since 2011, coherent Ising

machine (CIM), which are the optics-based special purpose computers, have been pro-

posed to exploit a rapid physical convergence time for accelerating the solution search

in hard optimization problems. The system was initially proposed with laser followed

by non-classical optical parametric oscillator (OPO) implementations, where the proof of

concept was demonstrated with small sized problems with N ≤ 16.

However, the previously proposed system lacks its scalability. In the N OPO coupling

with N − 1 optical delay lines need to be stabilized simultaneously, which is unrealistic in

the current experimental system. It is necessary to scale up to 1-2 orders of magnitude

larger problems to handle reasonable size of problems.

Hence, the measurement-feedback CIM is proposed in this dissertation. It only re-

quires a single feedback circuit with optical measurement and coupling calculation, which

can implement arbitrary topology of graphs, and scalable to the practical size in real-world

problems. In this dissertation, the physical and mathematical models of the measurement-

feedback CIM are presented. Its stochastic differential equations via truncated-Wigner

representation are formulated. The models predict the performance of the scalable CIM

and shows promising performance on dense graphs. The comparative approaches for

the baseline of performance are calculated with the approximation algorithms based on

semidefinite programming (SDP) and established heuristics – simulated annealing (SA).
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The rapid computation is confirmed with experimental implementations. It is reported

that the more than 10 times speedup is observed compared to SA implemented on a

single thread of single core of CPU in the case of N = 2000. Since the idea of CIM

originates from the quantum information science, it is necessary to be compared with the

current state-of-the-art computer performance. This paper has shown the possibility of

experimental implementation and relative speedup, which will definitely open the future

of alternative physical computer architectures.
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Chapter 1

Introduction

Since the invention of digital computers, its performance has dramatically increased, and

many applications have changed the world. The improvement comes mainly from the two

aspects, developing fast algorithms and improving hardware performance. Regarding the

latter, recent data revealed different aspects of processor trends. This is primarily due

to the limitation of energy consumption on the chip, hence an alternative architecture

is required. In this chapter, we will outline recent trends and then overview the idea of

alternative approaches.

1.1 Trends in Computer Architecture

Modern computers and architecture are beneficial to our lives. After the first operation of

the electronic general-purpose digital computer ENIAC built by Eckert and Mauchly, von

Neumann left his draft on the EDVAC in 1945. Since then, a single architecture known

as the current von Neumann computer determined the processor design [1, 2]. It has a

central processing unit (arithmetical and control part) and a memory, where the memory

hierarchy design is basically employed to manage both access and memory capacity [1].

Though, as the processor performance grows, it came to be known as the von Neumann

bottleneck, where the computational performance is limited by memory bandwidth.

The most famous empirical processor scaling will be Moore’s law, predicting the num-

ber of transistor on a processor doubles in every 18 months [3]. The processor performance

is growing in accordance with it, although, the growth rate slowed down around 2003 as

shown in Figure 1.1 [1]. Hence, to compensate the ability of the single-core, recent trends

of hardware architectures shifted to the multi-core and many-core systems including the

graphics processing unit (GPU) as shown in Figure 1.1 [4, 5]. Recently, the general pur-

pose GPU (GPGPU) is used from scientific simulations such as the molecular dynamics

simulation [6], visualizing CT scan images [7] and astrophysical many-body systems [8]

to artificial intelligence (AI) and machine learning (ML) [9, 10], which exploit the accel-

erated matrix operation with parallel single-instruction-multiple-data (SIMD) operations

on GPU.
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Figure 1.1. Relative performance of processors measured on the Standard Perfor-
mance Evaluation Corporation (SPEC) benchmarks with integer arithmetic
(SPECint) [14] is indicated with blue dots. It can be seen that the relative
gain of performance is decreased to around 22% per year It is mainly due
to power limits and instruction-level parallelism [1]. In recent microproces-
sor trends, the number of cores on a single chip is exponentially increasing
as indicated by the bottom red triangles. Original data up to the year
2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K.
Olukotun, L. Hammond, and C. Batten. New plot and data collected for
2010-2015 by K. Rupp [5].

In addition to general purpose processors, configurable logic can benefit from hard-

ware acceleration especially when we have a high throughput, low latency or real-time

demand. In such area, field programmable gate array (FPGA) is used to reduce the la-

tency throughout from the data input to computation. While the FPGA is configurable

with software, an application specific integrated circuit (ASIC) is also a choice when

we need higher performance and energy efficiency, which is used in many fields including

AI/ML [11, 12, 13]. Since hardware options are expanding, it is becoming more important

to select and design the appropriate ones according to the problem to solve.

1.2 NP-hard Combinatorial Optimization Problem

1.2.1 Combinatorial Optimization Problem

A combinatorial optimization problem is everywhere in the real world. It is defined

as a maximization or minimization problem on a discrete mathematical structure. For

example, LSI circuit design in processor [15], sparse sensing in image processing [16], the

frequency channel allocation in wireless communication [17], lead optimization in drug

design [18], truss structure optimization in architecture [19], and more. Some of them

belong to the difficult class of problems, to which no polynomial time algorithm believed

to exist. The difficulty usually originates from the combinatorial structure in a non-convex

objective function.
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1.2.2 Computational Complexity Theory

In the computational complexity theory, computational problems are classified according

to the difficulty to solve the problems. Here in the computational problem, we are given

an input, that is assumed to be a sequence of alphabets {0, 1}∗ without loss of generality,

and return an output. Then the problem can be described by the property that the output

should satisfy.

In a decision problem, given an input x ∈ {0, 1}∗ and we are asked if the output is

YES or NO. It can also be stated that a decision problem can be specified by finding the

subset of input L ⊂ {0, 1}∗ in which the answer is YES. The subset of {0, 1}∗ is called

a language. Hence each decision problem is specified by a language L ⊂ {0, 1}∗ and vice

versa.

Complexity classes can be defined with the above language or using an abstract model

of computer, Turing machine. Both definitions are equivalent. Turing machines read and

write symbols written on an infinite length tape with a moving head depending on its

internal state, which is defined as follows.

Definition 1.1 (Turing Machine [20]). Let A the set of alphabets with an empty letter.

A Turing machine Φ is the function with a tape of length N ∈ Z+:

Φ : {0, . . . , N}×A→ {−1, . . . , N}×A× {−1, 0, 1}. (1.1)

To estimate and define how much resources the computational problems require, es-

pecially computation time, they are classified as the computational complexity. Here we

define some of these classes on Turing machine which are important in the following ar-

guments. P is the class of decision problems which are solvable in polynomial time. NP

is the class of decision problems where once we can find the solution, we can check the

feasibility of it in polynomial time. We can define NP-hard class, to which all the NP

problems can be reduced in polynomial time. The intersection of NP and NP-hard is

called NP-complete.

The solution of a NP problem can be verified in polynomial time by a deterministic

Turing machine. Here, we can immediately know that P ⊂ NP by the definition of a

Turing machine. The language can be redefined by properties of prover P and verifier V .

This formulation is called interactive proof, which will be the building blocks in theoretical

bounds and presented in Section 2.5.

1.2.3 Motivation to focus on NP-hard problem

It is mostly believed that P ̸= NP. Hence, there exists problems which cannot be solved in

polynomial time by conventional computers (we refer to deterministic Turing machines)

in NP-hard. By definition, any problems in NP can be reduced to the problem which

exists in NP-hard. If we could find the optimal solution of any NP-hard problems effi-

ciently, then we can obtain solutions to any problems in NP with additional polynomial
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NP
P = NP 
= NP-complete

P

NP-complete

NP-hard NP-hard

P ≠ NP P = NP

Figure 1.2. Relationship between the complexity classes. The left panel shows the case
of P ̸= NP. If P = NP, it becomes as the right panel.

time. This existence of polynomial-time mapping is the initial motivation to tackle NP-

hard problems. Note that if we have an infinite precision analog computer, NP-hard (or

precisely PSPACE) problems are efficiently solvable [21].

1.3 Alternative Approaches to Computation

Given the fact on the trends in the computer architecture, it would be reasonable to

think of the architecture more deeply into the physical layer as redefining the way of

computation. The point is to use the dynamics of physical devices which are not efficiently

simulatable. Here, several approaches will be introduced, which exploit the physical

property, especially for quantum mechanics.

1.3.1 Quantum Computing

While quantum computer is not directly related to the current research focus, we mention

here to clarify our relative stance. The field of the quantum computer is recently attracting

more and more attention both in the academia and industry [22, 23]. Quantum computers

exploit entanglement in a quantum system to simulate processes in nature efficiently.

There are known several quantum algorithms for intractable problems.

In the algorithm side, there have been known several famous successful examples, such

as Deutsch-Jozsa [24] algorithm followed by Shor’s prime factorization [25] and Grover’s

database search [26], which are proposed in the 1990s.

For example, the most used Rivest-Shamir-Adleman (RSA) cryptography system relies

on the computational difficulty of RSA problem, which is solvable with integer factoriza-

tion [27]. While the prime factorization is in class NP, Shor’s algorithm solves the prime
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factorization in polynomial time of the input. Note that there are several types of post-

quantum cryptograph [28], which are secure against the attack using quantum computers,

such as lattice-based cryptography [29, 30] and elliptic curve cryptography [31, 32].

More recently, the Harrow-Hassidim-Lloyd (HHL) algorithm for matrix inversion [33,

34], semidefinite programming [35] are proposed, which show exponential speed up. There

are studies on quantum machine learning [36]. Note that the quantum computer is not

expected to solve NP-hard problems since the quantum hard problems are distinct from

the classical counterpart in the complexity theory.

Physical qubit implementations

Physical realization is recent hot topic since the successful implementation of error correct-

ing superconducting qubits [37], originally invented by Nakamura, Pashkin, and Tsai [38,

22]. One of the near-term milestone in the experiment is making intermediate-scale quan-

tum circuit around 50 qubits, which cannot be efficiently simulated by existing digital

computers1.

Quantum error correction and scalability

In practice, it needs quantum error correction towards large-scale fault-tolerant quantum

computers, to implement quantum algorithms on assumed error-free qubits and gates [39].

The distillation when running Shor’s algorithm takes most of (90% in 2048-bit and 75%

in 4096-bit) resources of quantum computers. Then it will require 6,144 (application) +

66,564 (logical distillation) qubits, hence millions or billions of physical qubits and 1.81

days to solve 1024-bit factorization. In addition, the energy consumption is still high,

so that the realization of the fault-tolerant quantum computer with enough number of

qubits would be still far.

Hence, recently applications using bare qubits attract more attention such as simulat-

ing the electronic structure of a Fermionic system with quantum computers [40].

Quantum Simulation

The origin of the idea of using a quantum system as a computational resource is referred

to Feynman’s talk in 1981, where he mentioned the possibility of using a quantum system

as a quantum simulator [41]. Quantum simulation is a method to directly simulate the

difficult many-body problems in quantum physics or chemistry by a controllable quantum

system, such as ultracold atoms in an optical lattice or quantum computers [42, 43, 44].

One of the focus is to find the ground state of the Fermi-Hubbard model, which is believed

to be an important key of high-temperature superconductivity [45].

1Google, Intel, IBM have recently announced 49-qubit, 49-qubit, and 50-qubit implementations based
on superconducting circuits, respectively
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1.4 Ising Machine

An Ising machine is a completely different approach but more reasonable in near-term

practical implementation. It aims to exactly or approximately solve intractable problems

using physical dynamics.

1.4.1 Target Problem

Ising problem

An Ising problem is to find the ground state of an Ising model of spin glass, which is

studied in the field of statistical physics. In a (classical) Ising model, Ising spin σi = ±1

is associated with each site on the d-dimensional hypercubic lattice Λ. The hamiltonian of

the system is defined on the collection of spins, spin configuration σ = (σi)i∈Λ ∈ {1,−1}|Λ|

H(σ) = −
∑

i,j∈Λ
Jijσiσj , (1.2)

where Jij ∈ R denotes Ising interactions. While the computational complexity of the

Ising model is studied with lattice [46, 47], here we treat an equivalent problem in graph

theory.

Maximum cut problem (MAX-CUT)

A maximum cut problem (MAX-CUT) on a graph is a binary quadratic programming

without constraints. It is essentially equivalent to the Ising problem on the σi = ±1

variable, and also referred to unconstrained binary quadratic programming (UBQP) [48]

or quadratic unconstrained binary optimization (QUBO) [49] on boolean binary variables

{0, 1}. Details will be described in the next Chapter.

1.4.2 Quantum Annealing

Quantum annealing is recognized to be proposed by Kadowaki and Nishimori in 1998,

which aimed to find the ground state in Ising model faster than the simulated anneal-

ing [50, 51]. Later, it is reinvented as the adiabatic quantum computation [52]. Recently,

it attracts the big attention since experimental quantum annealers are implemented by

D-Wave Systems Inc., initially with 128 qubits and currently with 2000 qubits. The quan-

tum nature of the machine is investigated [53, 54] and recently it is believed to exploit

the quantum tunneling as theory shows [55, 56, 57].

In the process of quantum annealing, an n-spin system is prepared with a superposition

of up and down eigen states. They are represented by eigen values of σzi (±1) which are

initialized with transverse field
∑n

i=1 σ
x
i . Here the Pauli matrices 2

σxi
..=

(
0 1
1 0

)
, σzi

..=

(
1 0
0 −1

)

2They are related to the generator of the special unitary group of degree 2, SU(2).
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Figure 1.3. The component of a chimera graph is a complete bipartite graph K4,4 de-
fined in Section 2.3.4.

have eigen vectors {(1, 1)⊤/
√
2, (1,−1)⊤/

√
2} and {|1⟩ ..= (1, 0)⊤, |−1⟩ ..= (0, 1)⊤}, respec-

tively. The system keeps the ground states and reaches to the optimal solution while

gradually releasing the field with Γ(t) ≥ 0. The time dependent Hamiltonian is written

as

HQA = −
n∑

i=1,i ̸=j

Jijσ
z
i σ

z
j − Γ(t)

n−1∑

i=0

σxi . (1.3)

One of popular methods to simulate the dynamics of quantum annealing is quantum

Monte Carlo (QMC) simulation, which treats the classical expansion of (1.3). In the QMC

algorithm, an imaginary dimension is introduced and spins are spread into that direction,

which is called Suzuki-Trotter decomposition into P ∈ N slices [58]:

HQMC = −
P∑

k=1

⎛

⎝
∑

i ̸=j

Jijs
k
i s

k
j + J⊥

n−1∑

i=0

ski s
k+1
i

⎞

⎠ , (1.4)

where new binary variables ski = ±1 are introduced and the coupling between the slices

is

J⊥ ..= −PT

2
log tanh

Γ

PT
(1.5)

with temperature T .

While the D-Wave machines implement QA and the performance is studied in against

QMC, the shortage is its graph topology. Because of physical restriction, the qubits are

coupled by the chimera structure, which consists of multiple complete bipartite graphs

K4,4 connected left side in the vertical and right side in the horizontal (see Figure 1.3).

Since the chimera graph is very sparse, it needs O(n2) spins to map a complete graph

of order n (or even an expander graph). This technique is called minor embedding, in

which the graph minor of the chimera graph is considered and the desired graph topology

is constructed. The order of the original chimera graph will shrink to the O(
√
n) by the

graph minor operation in the worst case (complete graph or even sparse expander graph).
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1.4.3 Other Approaches

Recently, several hardware designs of Ising problem-oriented chips are reported from Hi-

tachi [59, 60] and Fujitsu [61, 62, 63]. They are based on the variant of SA, in which

the energy evaluation and flip judgment process are implemented with hardware. It is

worth mentioning that the quantum-oscillator-based optimization machine using Kerr

nonlinearity is also proposed [64].

1.4.4 Applications

Not only the mathematical optimization problems, a lot of other efforts have been made to

find a promising specific applications of such quantum computers, annealers, and Ising-

type computers. For example: prime factorization by Ising model via Gröbner basis

expansion [65], detecting the Higgs-boson-signal from background noise [66], optimizing

the traffic flow [67]. Other examples related to our work are discussed in the Appendix A.

1.5 Coherent Computing

Since 2011, a series of research about the optical computer targeting to NP-hard com-

binatorial optimization problems, collectively referred to coherent Ising machine (CIM),

has been activated. It was studied initially with spacially coupled laser, in which the bi-

nary Ising spin variable was represented by laser light polarization degree of freedom [68].

Later, the degenerate optical parametric oscillator (DOPO) was proposed to use [69].

Unlike the laser, which has phase-insensitive gain, DOPO has intrinsically bistable steady

state in phase space. It contributes to the experimental stability and the demonstration

of n = 4 spin network in a free-space cavity succeeded [70].

A major difference in the n = 4 DOPO experiment from the initial proposal was that

one long optical cavity is designed to contain time-multiplexed pulsed DOPOs not to be

spatially distributed to many cavities. This made the number of Ising pulses scalable

followed by subsequent experiments of n = 16 in free-space [71] and n ≥ 10000 in an

optical fiber [72].

At this point, the scalability for the number of pulse itself is resolved, but the con-

nectivity problem remains. The main difficulty of physically connecting pulses is the

limitation of the topology. For example, the n = 16 system is implemented with a bow-

tie ring cavity and 3 optical delay lines. Suppose tRT is the cavity round trip time, then

we can make a n-pulse cavity by pumping the gain medium with pulse repetition interval

of tRT/n. Then n equally spaced pulses are generated. We can put optical delay lines

to connect pulses. Here, the length of the delay lines should be an integer multiple of

tRT/n. The delay line is shared by each pulse, so n−1 delay lines can implement all-to-all

connections between n pulses.

Experimentally, it is hard to stabilize all of the n − 1 delay lines. So, the setting in

Reference [71] only has 3 delay lines. It implements 1, 8, and 15 pulses delay in n = 16
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system hence cubic graph. It seems that the number of delay line is enough as far as we

are interested in sparse graphs. But it is false. This is because, even if we implement

random sparse graphs, the number of delay lines required is at least the maximum degree

of the vertices in the graph. The delay lines in the physical system can only implement

regular structure, hence a random sparse graph requires much more delay lines than the

average graph degree.

1.6 Contribution

Implementing arbitrary topology of graphs requires dense connectivity due to non-regular

edge structures of problem instances. In this thesis, the scalable architecture of CIM is

proposed [73] and the computational performance of the model is estimated compared to

existing algorithms [74, 75]. The linear coupling term is implemented with an external

FPGA feedback circuit, along with a long optical fiber with nonlinear gain of DOPO

pulses. To estimate its computational performance, the system is mathematically modeled

and numerical simulation results are presented. It is reported with experimental results

that CIM can implement arbitrary topology of graphs [76] up to n = 2048 [77]. To show

the computational ability in contrast with an implementation on a many-core processor,

we implemented several neural network based heuristics. It indicates relative speedup

with n = 2000 (experiment) and n = 20000 (simulation) [78].

The system proposed here is interesting from three perspectives:

• It exploits physical degrees of freedom for optimization problem.

• It has a problem specific architecture and is scalable to thousands of pulses.

• It showed comparable performance to the heuristic algorithms run on current general-

purpose processors.

1.7 Dissertation Structure

This dissertation is structured as follows. In the next chapter, the MAX-CUT problem,

which is the main target problem, is defined and review existing algorithms and known

theoretical results. In chapter 3, the physics of DOPO is introduced and the stochastic

differential equations (SDEs) based on truncated Wigner representation in phase space

is presented. Chapter 4 presents the computational system for MAX-CUT using DOPO

is described and the scalable architecture, measurement-feedback scheme is proposed.

The numerical simulation based on the SDEs is performed in Chapter 5 in order to

estimate the computational performance of CIM. Then, the experimental demonstrations

are performed in Chapters 6 and 7. In the former chapter, the results are compared to

the simulation in Chapter 5. In the latter chapter, benchmark studies against existing

algorithms are presented. Chapter 8 concludes the dissertation.
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Chapter 2

Maximum Cut Problem

In this chapter we define the problem, review existing algorithms, and summarize theo-

retical results. Before that, we start from the preliminary knowledge of the graph.

2.1 Graph

Typical combinatorial optimization problems are defined on a graph. The graph is a

discrete mathematical structure to express the relationship among any objects. It is

introduced in the study of Leonhard Euler in 1735 and became more popular concept due

to the emergence of the real-life applications such as search engine of web pages, social

networks, and road networks [79, 80].

Definition 2.1 (Graph). A graph is a pair G(V,E) of a set of vertices V and edges E.

The number of vertices n = |V | is called graph order and the number of edges m = |E| is
size of the graph.

A graph G can be described with an adjacency matrix A ∈ {0, 1}n×n. Unless otherwise

noted, we assume the A is symmetric, which is the case that G is an undirected graph.

Definition 2.2 (Weighted Graph). A graph G is called a weighted graph when each edge

(i, j) = e ∈ E has the weight wij ∈ R. Otherwise, the graph is called unweighted graph,

whose weight matrix is identical to its adjacency matrix.

Definition 2.3 (Vertex Degree). The degree k of the vertex v ∈ V in an unweighted

graph is the number of edges whose one endpoint is v. If the G is weighted graph, the

vertex degree of vi is defined as
n∑

j=1,j ̸=i

wij .

2.1.1 Typical Topology of Graphs

Definition 2.4 (Complete Graph). The graph G is called a complete graph if all pairs

of vertices are connected. The complete graph of order n is denoted by Kn.
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(a) (b)

Figure 2.1. (a) A typical graph with 4 vertices and 6 edges (the complete graph K4).
It is the only cubic graph of n = 4. (b) A cut is demonstrated with red
curve, which attains the maximum cut (defined in Def. 2.9) with 2 vertex
signed as 1 (black) and the others as −1 (white).

Definition 2.5 (Cubic Graph). The graph G is called a k-regular graph if the vertex

degree of all the vertices V are exactly k. Especially, a 3-regular graph is called the cubic

graph. Note that the cubic graphs exist only when n is the even number.

Definition 2.6 (Cycle Graph). A cycle graph Cn of order n is the 2-regular graph where

n vertices are connected by n edges.

The cycle graph is sometimes called (ferromagnetic/anti-ferromagnetic Ising) ring

when we regard it as an Ising model. The length of the cycle is the number of edges

contained.

Definition 2.7 (Möbius Ladder Graph). A Möbius ladder graph Mn is a cubic graph

of order n (n ∈ 2Z), which can be created from a Cn with adding edges connecting each

opposite pair of node in the cycle.

Definition 2.8 (Erdös-Rényi Random Graph). Erdös-Rényi model is a model to generate

random graphs with m edges, in which the edges are connected in probability m/nC2.

2.2 Problem Definition of MAX-CUT

One of the well-known examples of combinatorial optimization problems is a maximum

cut problem (MAX-CUT) on a graph. It is essentially equivalent to finding the ground

state of the Ising model in statistical mechanics [81, 82, 83].

Definition 2.9 (Cut). A cut in a graph G(V,E) is a partition of vertices into two subsets

{Vl, Vr}, where Vl ∩ Vr = ∅ and Vl ∪ Vr = V . The size of the cut {Vl, Vr} is defined as

the total weight of edges separated by the partition, i.e., edges which have one endpoint

in Vl and the other in Vr:

CUT({Vl, Vr}) =
∑

v∈Vl,u∈Vr

wvu.
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Definition 2.10 (MAX-CUT). MAX-CUT is a problem to find the largest cut in a given

undirected graph G = (V,E).

If we put the binary values xi = ±1 to express which side of the cut the vertex i ∈ V

belongs to, the judgement of edge whether it is cut or not can be done with checking the

sign of xi, namely 1−xixj

2 . Then the objective function of MAX-CUT can be written as

CUT(x) =
∑

1≤i<j≤n

wij
1− xixj

2
, (2.1)

where wij is the weight (or the adjacency matrix of the graph G). The MAX-CUT is a

classically known example of NP-hard problems as in Reference [83].

2.3 Approximation Algorithm

In this section, approximate algorithms for MAX-CUT is presented. They have per-

formance guarantee in terms of the solution quality, and run in polynomial time. The

performance of an algorithm is described with approximation ratio and asymptotic be-

havior.

Definition 2.11 (Big-O Notation). Let f and g be functions defined on some subset of

R. If and only if ∃M,x0 > 0 s.t. |f(x)| < M |g(x)| (∀x > x0), we say f scales as O(g) or

simply write f(x) = O(g(x)).

Definition 2.12 (Polynomial Time Algorithm). An algorithm which finishes with ∃k >

0 s.t. O(nk) time operations is called polynomial-time algorithm.

We refer to a polynomial-time algorithm as efficient.

Definition 2.13 (Approximation Algorithm). An algorithm is an α-approximation for

a maximization problem when it finds the solution of the value CUT in polynomial time

which satisfies

αOPT ≤ CUT ≤ OPT, (2.2)

where 0 < α < 1 and OPT is the optimal solution of the problem.

2.3.1 Goemans-Williamson Algorithm (GW)

The Goemans-Williamson algorithm (GW) based on SDP is an αGW-approximation al-

gorithm for NP-hard MAX-CUT problems [84], where

αGW
..= min

0<θ<π

θ/π

(1− cos θ)/2
. (2.3)

The minimum value αGW = 2
π sin θ∗ ≈ 0.87856 is achieved when θ = tan(θ/2).
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Figure 2.2. In this example, 2 (in n) vectors are separated by a hyper plane in SDP.

It achieves the best approximation ratio for MAX-CUT problems so far. With this

algorithm, the original MAX-CUT problem is extended to a vector-valued optimization

problem as maximizing
1

2

∑

i<j

wij(1− v⃗i · v⃗j), v⃗i ∈ Sk−1, (2.4)

where Sk−1 is a unit sphere in Rk and k ≤ n = |V |. There exists a polynomial time

algorithm to find the optimal solution of this extended problem (with error ε > 0), and

its value is commonly called the SDP upper bound. A final solution to the original MAX-

CUT problem is obtained by projecting the solution vector sets to randomly chosen one-

dimensional Euclidean spaces, i.e., dividing the sphere by random hyperplanes, resulting

in the geometric value of αGW above.

There are three types of computational complexities of the best-known algorithms for

solving the SDP relaxation. The matrix multiplicative weights method runs in almost

linear time O(m(log n)2ε−4) when we have a graph with bounded degree (or more gen-

erally, weighted graph with bounded ratio between largest/smallest degree) [85], where ε

represents the accuracy of the obtained solution. The Lagrangian relaxation method can

be used for a graph with non-negative weights, which runs in O(nm(log n)2ε−3) time [86].

In general, when the graph has both positive and negative edge weights, the SDP problem

is commonly solved using the interior point method, which scales as O(n3.5 log(1/ε)) [87].

There are also faster general algorithms if only the matrices are sparse [88, 89]. In our

computational experiments, the COPL SDP, which is implemented with the primal-dual

interior point method [90] was used. The SDP upper bound USDP and the solution CSDP

were obtained using the following parameters: interior point method was used until the

relative gap rgap = 1−Pobj/Dobj reached 10−3, where Pobj andDobj are the objective func-

tions of the primal and dual of the SDP problem, respectively [91]. Random projection

onto the one-dimensional space was executed linearly to the graph order, n times.
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2.3.2 Greedy algorithm of Sahni-Gonzalez (SG) and its Variants

Sahni and Gonzalez constructed a greedy algorithm for MAX-CUT problems, which has

1/2-performance guarantee [92]. In this algorithm, vertices V are divided into two disjoint

subsets {S1, S2} sequentially. A vertex vi is selected randomly and put into the subset

to which less edges are connected from vi. Later, several modifications are proposed and

SG3 is one of them [93]. For each iterative process, the node with the maximum score is

selected, and it is put into either set S1 or S2 so as to earn larger cuts. Here, the score

function is defined as xi = |
∑

j∈S1
wij −

∑
j∈S2

wij | (i = 1, . . . , n). It stops when all the

edges are evaluated to calculate the score function, thus SG3 scales as O(n+m).

2.3.3 Other Approximation Algorithms

Spectral Partitioning

The variant of spectral partitioning achieves the 0.53112 approximation by calculating

the minimum eigen value of the adjacency matrix iteratively [94].

Random Walk

The algorithm based on a number of random walks and aggregation gives (0.5 + δ)-

approximation with a positive constant δ > 0 [95].

2.3.4 Efficiently Solvable Classes

To see the specific subset of graphs which is solvable in polynomial time, we additionally

define several type of graphs.

Definition 2.14 (Bipartite Graph). Let V1, V2 are two disjoint sets of vertices. A graph

G = (V1 ∪V2, E) is bipartite when endpoints of all edges (i, j) ∈ E belong to the different

set i ∈ V1, j ∈ V2.

Definition 2.15 (Planar Graph). A planar graph is a graph which can be embedded in

a plane without any edge intersection.

A graph H is called graph minor of a graph G if it can be constructed by edge deletion,

vertex deletion, and edge contraction from G, or equivalently called, the graph G has its

minor H. For example, the graph planarity can be checked by checking the graph minor:

a graph is planar iff it does not have K3,3,K5-minor [96, 97].

Definition 2.16 (Weakly Bipartite Graph). A signed graph is a pair (G,Σ), where

G = (V,E) is an undirected graph and Σ ⊂ E. A signed graph is called weakly bipartite

if each vertex of the polyhedron in RE determined by we ≥ 0 (e ∈ E), and
∑

e∈C we ≥ 1

(C is an odd circuit) is integer.

The MAX-CUT problem generally belongs to NP-hard, though there exists a special

subset of problems which can be solvable in polynomial time. For example, on the weakly
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Table 2.1. Classical neural-network approaches for combinatoral optimization problems.

Deterministic Stochastic
Binary Derandomized Hopfield network (HN) Simulated annealing (SA)
Analog Hopfield-Tank neural network (HTNN)

bipartite graphs [98] (including the planar graphs [99, 100] and the graphs without K5-

minors [101] studied earlier), the positively weighted graphs without a long odd cycle

Cn (n ∈ 2Z + 1) [102], and the graphs with integer edge weight bounded by n and fixed

genus [103], MAX-CUT problems are reduced to the class P.

2.4 Metaheuristic

For many practical applications, heuristic algorithms are more convenient to use. It is

because the degree of the polynomial in time complexity is concerned in practical. For

example, the GW scales as O(n3.5) in general, requires long computation time despite

its complexity class of P when the number of vertices n increases. As a metaheuristic

algorithm, the CIM can be interpreted as a mathematical model to solve combinatorial

optimization problems using recurrently updated neurons with nonlinear activation func-

tion in each unit (with linear growth and nonlinear saturation of amplitudes [104]). From

this point of view, there have been related and interesting approaches using mathemat-

ical models of the neurons (e.g., [105, 106]) and their networks (e.g., [107]). Hopfield

developed the optimization algorithm by using such neural networks [108]. Then Hopfield

and Tank extended it to the continuous-valued model to improve the performance and

applied it to the combinatorial optimization problems [109, 110]. Simulated annealing

(SA) is proposed in the same period [111].

We describe in this section the classical neural network models to solve the same

combinatorial optimization problems, which are summarized in Table 2.1.

2.4.1 Derandomized Hopfield Network (HN)

J. J. Hopfield implemented a classical neural network model solving combinatorial op-

timization problems in his 1982 paper [108], which is referred to the Hopfield network

(HN). The neuron in this model has the discrete output values xi = ±1 with a simple

majority voting update rule:

xi ← sgn(
n∑

j=1

Jijxj) (2.5)

which will execute asynchronously. The spin index i is selected randomly in the original

paper but we derandomized it to enhance the speed, i.e., the spin indices from i = 1

to i = n are updated sequentially. Simultaneous updates introduce the instability or
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periodic solution into the system. Since the update is local and deterministic, the system

will converge to the nearest local minimum, which is determined by the initial state. Note

that the model is originally proposed with {0, 1}-binary neurons, but for comparison, we

use equivalent {+1,−1}-valued neurons.

2.4.2 Simulated Annealing (SA)

Metropolis et al. introduced a simple algorithm that can be used to provide an efficient

simulation of a collection of atoms in equilibrium at a given temperature [112]. Kirkpatrick

et al. applied the algorithm to optimization problems by replacing the energy of the atomic

system to the cost function of optimization problems and using spin configurations σ,

which is called the simulated annealing algorithm (SA) [111]. While the HN will often

get stuck at poor local minima, it can escape from the local minima by the thermal

fluctuation. The spin index i is selected randomly while temperature T ≥ 0 is gradually

decreased. In each step of this algorithm, a system is given with a random spin flip of xi

and the resulting change

∆Ei = 2xi

n∑

j=1

Jijxj (2.6)

in the energy is computed. If ∆Ei ≤ 0, the spin-flip is accepted, and the configuration

with the flipped spin is used as the starting point of the next step. If ∆Ei > 0, the spin

is treated probabilistically, i.e., the probability that the new configuration is accepted is

P (∆Ei) ..= exp

(
−∆Ei

kBT

)
, (2.7)

with a control parameter of system temperature T and Boltzmann constant kB. This

choice of P (∆Ei) in this Metropolis-Hastings procedure results in the system evolving into

an equilibrium Boltzmann distribution. Repeating this procedure, with the temperature

T gradually lowered to zero for sufficiently long time, leads to convergence to the lowest

energy state. In a practical case, with the finite time, the annealing schedule affects the

quality of output values. Here in our numerical simulations, the temperature was lowered

according to the logarithmic function [113, 114].

Multi-spin coding

When we deal with the complete graph with binary weight, it is faster to push into

multiple spins in a container (variable) and use the bit instruction. It is called multi-spin

coding and then the energy calculation can be reduced to wij ⊕ σj , where ⊕ denote the

bit-wise exclusive or (XOR) followed by the bit population count which can be done by

the SIMD operation in parallel.
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Algorithm 1 Simulated Annealing

1: procedure SA(J) ◃ solve the Ising problem with coupling matrix J
2: T ←∞ ◃ temperature
3: x← random state ◃ initial spin configuration
4: for i = 1, . . . , tstep do
5: x′ ← neighbor of x
6: ∆E ← calculate energy difference between (x, x′)
7: if ∆E ≤ 0 then
8: x← x′ ◃ update
9: else

10: x← x′ in probability P (∆E) ◃ probabilistic update

11: T ← Tnew ◃ cooling T

12: return x ◃ spin configuration

2.4.3 Hopfield-Tank Neural Network (HTNN)

Hopfield and Tank proposed another neural network approach using an analog valued

neuron xi ∈ [−1, 1], which is referred to the Hopfield-Tank neural network (HTNN) [110].

The time evolution of the HTNN is described by ordinary differential equations (ODE):

dxi
dt

= −αxi + β
n∑

j=1

Jijf(xj), (2.8)

where f(x) is a nonlinear sigmoid function. In this study, tanh(x) is used as f(x). The

key observation is that, in the extremely high linear gain limit, i.e., when the slope

of the sigmoid function around 0 is steep, the energy function of the system becomes

proportional to the original objective function of the problem. The parameters in later

section are optimized as the neuron decay rate α = 6 and the synaptic connection strength

β = 0.1 to achieve the best performance for the given MAX-CUT problems. The numerical

integration of eq (2.8) is performed by the Euler method with the discrete time step

∆t = 0.01.

2.4.4 Breakout Local Search (BLS)

The power of breakout local search (BLS) appears in the benchmark result for G-set

graphs [115]. It updated the best solutions ever found in G-set with the specialized

data structure for sorting and dedicated procedure to escape from local minima. The

algorithm is combination of steepest descent and forced spin flipping: after being trapped

by a local minima as a result of steepest descent procedure, three types of forced spin

flipping (single, pair, and random) are probabilistically executed according to the vertex

influence list (i.e., which vertex would increase the number of cut most when it is flipped)

on each subset of partition. Its efficient data structure stores the gain list for each side of

the partition and vertex address list, which enables constant O(1) time spin configuration

update.
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Figure 2.3. The bucket sorting data structure used in BLS on a graph of n = 6.

2.4.5 Other Metaheuristics

Genetic Algorithm

Inspired by the natural evolution, genetic algorithm implements selection, crossover, and

mutation of solutions [116].

Population Annealing

Population annealing is a variant of simulated annealing which uses a population of repli-

cas resampled at each temperature step [117, 118].

2.4.6 Off-the-Shelf Optimizer

It is able to use an off-the-shelf optimizer to solve the problems. For example, it is

known that the IBM CPLEX mixed-integer linear programming (MILP) can solve the

unconstrained binary quadratic programming (UBQP) formulation of MAX-CUT [119,

120]. The CPLEX MILP package uses a branch-and-cut algorithm with LP relaxation.

It is reported that this method performs well in a specific topology of graphs [119, 120].

2.5 Hardness of Approximation

2.5.1 Interactive Proof

The complexity classed defined in Section 1.2.2 will be restated with a prover P and a

verifier V .

Definition 2.17 (NP). The language L is NP if and only if there is a polynomial time

deterministic verifier V and an arbitrary powerful prover P which satisfy:

• ∀x ∈ L, P can write a proof of length poly(|x|) that V accepts.
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• ∀x ̸∈ L, no matter what poly(|x|)-length proof P writes, V rejects.

Definition 2.18 (NP-hard). A problem H is NP-hard if every problem L in NP has a

polynomial-time reduction from L to H.

Definition 2.19 (NP-complete). A decision problem C belongs to NP-complete if

• C is in NP-hard.

• Every problem in NP is reducible to C in polynomial time.

2.5.2 Probabilistically Checkable Proof (PCP) Theorem

Many attempts have been made to approximately solve NP-hard MAX-CUT problems.

There is a known theoretical bound for approximating MAX-CUT.

Definition 2.20 (Probabilistically Checkable Proof (PCP)). A computational complexity

class PCP(r, q) has a proof system with input x ∈ {0, 1}n. A prover P writes a proof of

poly(x) bit, then verifier V selects q bits in the proof and run a polynomial-time test with

random number generator of r-bit, and determine whether to accept or reject the proof,

which should guarantee:

• (Completeness) if x ∈ L then P can construct a proof that V accepts with proba-

bility 1.

• (Soundness) for every x ̸∈ L, no matter what proof P writes, V accepts with

probability at most 1/2.

Theorem 1 (PCP Theorem). NP ⊂ PCP(log n, 1).

A proof of Theorem 1 can be found in Reference [121]. The PCP theorem states

that no polynomial time algorithms can approximate MAX-CUT problems better than

16/17 ≈ 0.94118 if P ̸= NP [122, 123, 124]. The value comes from the gap amplification

which is used in the proof [121, 124].

2.5.3 Unique Games Conjecture (UGC)

The best approximation currently known is the approximation rate of αGW in the algo-

rithm of Goemans and Williamson explained in Section 2.3.1. Unique games conjecture

(UGC) by Khot claims that the αGW is optimal [125], although it is still an open question.

The conjecture is stated as below [125]: For any η, γ > 0 there exists a constant

M = M(η, γ) such that it is NP-hard to distinguish whether the unique label cover

problem with the label set of size M has optimum at least 1− η or at most γ. Please see

Reference [125] for the details.
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Chapter 3

Degenerate OPO

In this chapter, the key physical component for CIM is introduced and formulated mainly

according to References [126, 127].

3.1 Basics of Degenerate Optical Parametric Oscillators

In optical system, nonlinear mediums show passive parametric process such as periodically

poled lithium niobate (PPLN) crystal and optical fiber, which are namely χ(2) (e.g.,

LiNbO3) and χ(3) nonlinear susceptibility. Below the oscillation threshold, a photon is

split into a two entangled photon pair, that is known as spontaneous parametric down

conversion. Optical parametric oscillator (OPO) exploits it to obtain the energy from

the pump. Especially for the χ(2) case, three fields interact – pump, signal, and idler

as in Figure 3.1. Denoting these frequency ωp,ωs,ωi, respectively, the relation becomes

ωp = ωs+ωi (energy conservation), with its wave vectors k⃗p, k⃗s, k⃗i matched as k⃗p = k⃗s+ k⃗i

(phase matching). Practically, it is enabled by the technique called quasi-phase matching

in the periodic structure in the nonlinear medium, then the signal mode gets a large gain

from the pump and enabled to oscillate in a cavity [128].

In the special case of OPO frequency at degeneracy, i.e., ωs = ωi hence ωp = 2ωs, it

is called degenerate OPO (DOPO). In this case, maximum signal gain is attained at the

phase relation

φp = 2φs + π/2 + 2mπ (m ∈ Z), (3.1)

where φp and φs denote the pump and signal phase, respectively. The coherence between

pump and signal is established (self-phase-locking) and the signal phase state is stable

either in φs ∈ {0,π}.
In the context of quantum optics, OPO shows various quantum phenomena including

squeezing, macroscopic superposition [129] and entanglement [130, 131]. The OPO can

also be used as a physical random number generator [132]. In this chapter, the formula-

tion of DOPO is described in terms of the phase space method especially for positive P

representation and truncated Wigner representation.
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Figure 3.1. A schematic picture of an optical parametric oscillator cavity. A pump pho-
ton is divided into 2 photons; signal and idler, which are indistinguishable
under the degeneracy condition.

3.2 System Hamiltonian

An open quantum system can be described by a Hamiltonian Ĥ including the reservoir

(or bath) interaction term ĤSR, here hat (̂·) is set to emphasize the operator. In this way,

the total Hamiltonian of a single DOPO is described as follows [133]:

Ĥ = Ĥfree + Ĥparam + Ĥpump+ ĤSR, (3.2)

where

Ĥfree = "ωsâ
†
s âs + "ωpâ

†
pâp, (3.3a)

Ĥparam = i"κ
2
(â†2s âp − â†pâ

2
s ), (3.3b)

Ĥpump = i"(εâ†p − ε∗âp), (3.3c)

ĤSR = "(âsΓ̂†
Rs + Γ̂Rsâ

†
s + âpΓ̂

†
Rp + Γ̂Rpâ

†
p). (3.3d)

First, (3.3a) is the free field Hamiltonian for signal and pump fields, whose photon cre-

ation/annihilation operators are denoted by â†s , âs and â†p, âp, respectively, with com-

mutation relations [âk, â
†
k]

..= âkâ
†
k − â†kâk = 1 (k ∈ {s, p}). With the Planck constant

" (= h/2π), the single photon energy "ωk is multiplied by the photon number â†kâk. Next,

the parametric interaction of two fields is expressed in (3.3b) with the parametric cou-

pling constant κ. Here, â†2s âp describes the parametric gain, where a single pump photon

is absorbed and then two signal photons are created, while â†pâ2s is its reverse process.

DOPOs are pumped by an external laser exactly at the cavity resonance frequency (i.e.,

with no detuning), whose field is ε = Fpe−iωpt in (3.3c). Finally, the system-reservoir

coupling is taken into (3.3d), where Γ̂Rk (k ∈ {s, p}) are the reservoir field operators.

3.3 Master Equation

The master equation formulates all of the density matrix elements including the off-

diagonal parts, analogous to the classical master equations which only have the diagonal

elements. The quantum state is represented by state vectors |ψs⟩ (s ∈ Λ) in a complex

Hilbert space1 and its statistical mixture, density operator ρ̂ =
∑

s∈Λ ps |ψs⟩ ⟨ψs|, where
1Hilbert space is a vector space which is complete with respect to the norm induced by the inner

product defined on it.
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each state |ψs⟩ among the index set s ∈ Λ ⊂ N is weighted by a probability 0 ≤ ps ≤ 1 and

we use bra-ket notation ⟨ψs| = |ψs⟩† where dagger (·†) denotes Hermitian conjugate. The

equation of motion of the density matrix ρ̂ follows from the time-dependent Schrödinger

equation:

i" ∂
∂t

|ψs⟩ = Ĥ |ψs⟩ (3.4)

which leads to

i"∂ρ̂
∂t

= [Ĥ, ρ̂]. (3.5)

This is called the Liouville von-Neumann equation

i"∂ρ̂
∂t

= [Ĥparam, ρ̂] + [Ĥpump, ρ̂] + [ĤSR, ρ̂] (3.6)

in the interaction picture.

The quantum master equation for the DOPO is obtained by applying Born-Markov

approximation to tracing out the reservoir field with assuming " = 1 [126]

∂ρ̂

∂t
= −iωs[â

†
s âs, ρ̂]− iωp[â

†
pâp, ρ̂]

+ i
κ

2
[â†2s âp − â†pâ

2
s , ρ̂]− i[εâ†p + ε∗âp, ρ̂]

+
γs
2
(2âsρ̂â

†
s − â†s âsρ̂− ρ̂â†s âs) +

γp
2
(2âpρ̂â

†
p − â†pâpρ̂− ρ̂â†pâp)

+ γsn̄s(âsρ̂â
†
s + â†s ρ̂âs − â†s âsρ̂− ρ̂âsâ†s)

+ γpnp(âpρ̂â
†
p + â†pρ̂âp − â†pâpρ̂− ρ̂âpâ†p),

(3.7)

where γs and γp are the decay rate of signal and pump field, respectively. n̄s is the mean

signal photon number. When the pump decay rate is much higher than signal, which is

called a singly-resonant OPO, the adiabatic elimination is applied to reduce the term for

pump field [127]:

∂ρ̂

∂t
= −iωs[â

†
s âs, ρ̂] + i

κ

2
[â†2s âp − â†pâ

2
s , ρ̂]

+
γs
2
(2âsρ̂â

†
s − â†s âsρ̂− ρ̂â†s âs) + γsn̄s(âsρ̂â

†
s + â†s ρ̂âs − â†s âsρ̂− ρ̂âsâ†s).

(3.8)

3.4 Fokker-Planck Equation

Since it is computationally hard to directly simulate the quantum master equation, the

density matrix will be expanded into a phase space via one of the following (quasi-)probability

distributions. Especially, positive P or truncated Wigner representations are used when

we treat non-classical DOPOs. After reviewing each representation, we see how to obtain

Fokker-Planck equations from (3.8).
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3.4.1 Phase-Space Methods

In the quantum mechanics, that concerns the operator order, the classical correspondence

is derived by determining which default operator order to use:

• Normal Order: The creation operator â† should placed in the left, and annihilation

â in right, e.g., â†â.

• Symmetric Order: The sum of symmetrical order of both operators is used, e.g.,

â†â+ ââ†

This is expressed by characteristic functions.

Glauber-Sudarshan P Representation

In Glauber-Sudarshan P representation (or simply P representation), the normal ordered

operator is adopted, whose characteristic function can be defined as

χN (z, w) ..= tr(ρeiwâ†eizâ) (z, w ∈ C). (3.9)

From this notation, the normal-orderd operator averages are calculated by the derivatives

⟨â†pâq⟩ = tr(ρ̂â†p̂âq)

=
∂p+q

∂(iw)p∂(iz)q
χN (z, w)

∣∣∣∣
z=w=0

(p, q ∈ Z), (3.10)

which is a holomorphic function. Now the P representation is the Fourier transform of

(3.10). The density matrix is expanded as

ρ̂ =

∫
d2α |α⟩⟨α|P (α), (3.11)

where |α⟩ is a coherent state, i.e., the right eigen state of the annihilation operator â as

â |α⟩ = α |α⟩ (Figure 3.2). The integral is taken over the complex plane, i.e.,
∫
d2α ..=∫

C dz =
∫
R
∫
R dx dy with α = x + iy. Coherent states are not orthogonal but complete

(the state is normalized): ∫
dα2|α⟩⟨α| = 1. (3.12)

Here, ρ̂ can be expressed as a diagonal sum of coherent states since the coherent states

form the overcomplete basis in the phase space.

But this formulation breaks down in the DOPO case. To see this, in brief, let us con-

sider stochastic differential equations formally derived from the Fokker-Planck equation

(the detail will be explained later with the other representation):

dx = −γs(1− p)x dt+
γs
2
√
γp dWx, (3.13a)

dy = −γs(1 + p)y dt+ i
γs
2
√
γp dWy, (3.13b)

where p > 0 is injected pump rate. Now, the fluctuation term in the second equation is

pure imaginary while the y is a real number. Although there is a contradiction, the for-

malism is valid for the quantum averages. So we will modify it by introducing redundant

complex variables with keeping average values the same.
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Figure 3.2. Schematic picture of a coherent state |α⟩ of the amplitude |α| in a phase
space (x, y).

Positive P Representation

The positive P representation is the generalization of the Glauber-Sudarshan P repre-

sentation by Drummond and Gardiner [134]. It enabled to deal with the phase-space

method even when the case of the diffusion matrix is not positive semidefinite such as

DOPO [135]. In this formulation, the density operator is expanded as

ρ̂ =

∫∫
d2α d2β P (α,β)

|α⟩⟨β∗|
⟨β∗|α⟩ . (3.14)

The distribution function P becomes always positive. In the quantum optics, a state

which cannot be represented by a sum of coherent states is called non-classical. Hence,

the positive P representation can express non-classical states of light such as squeezed

states.

The idea comes from the modification of (3.13a) and (3.13b) using complex conjugate

variables z = x+ iy, z∗ = x− iy, then

dz = −γs(z − pz∗) dt+ γs

√
(1/2γp)λ dWz, (3.15a)

dz∗ = −γs(z∗ + pz) dt+ γs

√
(1/2γp)λ dWz∗ (3.15b)

with new independent Wiener increments

dWz =
1√
2
(dWx − dWy), dWz∗ =

1√
2
(dWx + dWy). (3.16)

At this point, there is still an inconsistency because two Wiener increments should be

independent (dWz∗ ̸= (dWz)∗). Hence in the Positive P representation we introduce two

independent complex variables α and β, which replace z and z∗, respectively, with keeping

the mean becomes complex conjugate, i.e., ⟨α⟩ = ⟨β⟩∗, or it originates from ⟨â⟩ = ⟨α⟩
and

〈
â†
〉
= ⟨β⟩.
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Wigner Representation

While the P and positive P representations use the normal order of operators, Wigner

representation comes from the symmetric order, whose characteristic function is

χS(z, z
∗) = tr(ρeiz

∗â†+izâ). (3.17)

The expansion of the exponential in (3.17) will be

eiz
∗â†+izâ =

∞∑

m=0

1

m!
(iz∗â† + izâ)m

=
∞∑

n=0

∞∑

m=0

(iz∗)n(iz)m

n!m!
(â†nâm)S ,

(3.18)

where (a†nam)S denotes the average of operator product in symmetric order, e.g.,

(â†â)S =
1

2
(â†â+ ââ†), (3.19a)

(â†2â)S =
1

3
(â†2â+ â†ââ† + ââ†2), (3.19b)

...

Then the symmetric order operator average will be

⟨(â†nâm)S⟩ = tr(ρ̂(â†nâm)S)

=
∂p+q

∂(iz∗)p∂(iz)q
χS(z

∗, z)

∣∣∣∣
z=z∗=0

.
(3.20)

The Wigner quasi-distribution W (α,α∗) is the Fourier transform of χ(z, z∗):

W (α,α∗) =
1

π2

∫
d2z χS(z, z

∗)e−iz∗α∗
e−izα, (3.21)

χS(z, z
∗) =

∫
d2αW (α,α∗)eiz

∗α∗
eizα, (3.22)

which is normalized as
∫
d2αW (α,α∗) = 1. Substituting (3.22) gives

⟨(â†nâm)S⟩ =
∫

d2αW (α,α∗)α∗pαq. (3.23)

In the Wigner case, ρ̂ is expanded by the Wigner function W (α):

ρ̂ =

∫
dλ eλ

∗â−λâ†
{∫

dαeλâ
∗−λ∗âW (α)

}
. (3.24)

This representation can treat non-classical states as well as the positive P . Note

that the relation between the two characteristic functions is given by the Baker-Hausdorff

theorem as

χS(z, z
∗) = e−

1
2 |z|

2
χN (z, z∗). (3.25)

Theorem 2 (Baker-Hausdorff). If Ô1 and Ô2 are two non-commuting operators that

both commute with their commutator, then

eÔ1+Ô2 = eÔ1eÔ2e−
1
2 [Ô1,Ô2] = eÔ2eÔ1e

1
2 [Ô1,Ô2]. (3.26)
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3.4.2 In the P Representation

The master equation for the DOPO signal (3.8) can be also described by Lindblad form

˙̂ρ = −iωs[â
†
s âs, ρ̂] + κ(2âsρ̂â

†
s − â†s âsρ̂− ρ̂â†s âs) + 2κn̄s(âsρ̂â

†
s + â†s ρ̂âs − â†s âsρ̂− ρ̂âsâ†s).

(3.27)

Substituting (3.11) into the above equation, we get the equation of motion for the time

dependent P distribution
∫

d2α |α⟩⟨α| ∂
∂t

P (α, t)

=

∫
d2αP (α, t)[(â†s âs|α⟩⟨α|− |α⟩⟨α|â†s âs)

+ κ(2âs|α⟩⟨α|â†s − â†s âs|α⟩⟨α|− |α⟩⟨α|â†s âs)

+ 2κn̄s(âs|α⟩⟨α|â†s + â†s |α⟩⟨α|âs − â†s âs|α⟩⟨α|− |α⟩⟨α|âsâ†s)].

(3.28)

We can find the replacing rule of the operators

â|α⟩⟨α|â† = α|α⟩⟨α|α∗ = |α|2|α⟩⟨α|, (3.29a)

â†â|α⟩⟨α| = â†α|α⟩⟨α| = αâ†|α⟩⟨α| = α

(
∂

∂α
+ α∗

)
|α⟩⟨α|, (3.29b)

|α⟩⟨α|â†â = |α⟩⟨α|α∗â = α∗|α⟩⟨α|â = α∗
(

∂

∂α∗ + α

)
|α⟩⟨α|, (3.29c)

|α⟩⟨α|ââ† =
(

∂

∂α∗ + α

)
|α⟩⟨α|â† =

(
∂

∂α∗ + α

)
α∗|α⟩⟨α|, (3.29d)

â†|α⟩⟨α|â =

(
∂

∂α
+ α∗

)
|α⟩⟨α|â =

(
∂

∂α
+ α∗

)(
∂

∂α∗ + α

)
|α⟩⟨α|. (3.29e)

Then the operator equation (3.8) can be represented in terms of complex numbers
∫

d2α |α⟩⟨α| ∂
∂t

P (α, t)

=

∫
d2αP (α, t)

[
−
(γ
2
+ iωs

)
α
∂

∂α
−
(γ
2
− iωs

)
α∗ ∂

∂α∗ + γn̄
∂2

∂α∂α∗

]
|α⟩⟨α|

=

∫
d2α |α⟩⟨α|

[(γ
2
+ iωs

) ∂

∂α
α+

(γ
2
− iωs

) ∂

∂α∗α
∗ + γn̄

∂2

∂α∂α∗

]
P (α, t),

(3.30)

where the mean signal photon number is represented as n̄. The integration (3.12) gives

∂P

∂t
=

[(γ
2
+ iωs

) ∂

∂α
α+

(γ
2
− iωs

) ∂

∂α∗α
∗ + γn̄

∂2

∂α∂α∗

]
P. (3.31)

3.4.3 In the Positive P Representation

We can derive the Fokker-Planck equations for positive P by replacing the operators with

the derivatives in (3.7). The derivatives operators from the left in (3.8)

∂

∂âs
→ iαs,

∂

∂b̂s
→ −iβs,

∂

∂âp
→ −iαp,

∂

∂b̂p
→ −iβp, (3.32)
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and variables

âs → −i
∂

∂αs
, b̂s → −i

∂

∂βs
, âp → −i

∂

∂αp
, b̂p → −i

∂

∂βp
. (3.33)

It leads to
∂

∂t
P (αs,βs,αp,βp) = LP (αs,βs,αp,βp), (3.34)

where the operator to the pump and signal fields is

L =
∂

∂αs

(γs
2
αs − καpβs

)
+

∂

∂βs

(γs
2
βs − κβpαs

)

+
∂

∂αp

(γp
2
αp − Fp +

κ

2
α2
s

)
+

∂

∂βp

(γp
2
βp − Fp +

κ

2
β2s

)

+
1

2

(
∂2

∂α2
s
(καp) +

∂2

∂2β2s
(κβp) + 2γsn̄s

∂2

∂αs∂βs
+ 2γpn̄p

∂2

∂αp∂βp

)
,

(3.35)

where αs,βs and αp,βp denote the independent coherent eigenstates corresponding to the

signal and pump field operators, respectively.

When the signal is singly resonant, namely γp ≫ γs, the system is dominated by the

signal field dynamics. This approximation is called adiabatic elimination, that makes the

Fokker-Planck equation rather simple:

∂

∂t
P (αs,βs) = LP (αs,βs), (3.36)

where the operator to the signal field contains

L =
∂

∂αs
[αs − (p− α2

s )βs] +
∂

∂βs
[βs − (p− β2s )αs]

+
1

2As

[
∂2

∂α2
s
(p− α2

s ) +
∂2

∂β2s
(p− β2s )

]
.

(3.37)

Here we normalized both sides by the saturation parameter for signal amplitude As =
√
γpγs/2κ2 (the steady state amplitude at the pump rate p = 2 to the threshold Fth =

γsγp/4κ) and time unit of signal decay rate γsτ/2 (twice the cavity photon lifetime) is

used.

3.4.4 In the Truncated Wigner Representation

The Fokker-Planck equation in the Wigner representation is derived from (3.31) in the

P representation with regard to the relation between the different orders of operator

characteristic functions (3.25)

∂W

∂t
= { ∂

∂α
[(
γs
2

+ iωs)− κα∗β] +
∂

∂α
[(
γs
2
− iωs)α

∗ − καβ∗]

+ γs(n̄+
1

2
)

∂2

∂α∂α∗ +
1

4

κ

2
(

∂3

∂α2∂β∗
+

∂3

∂α∗2β
)}W.

(3.38)

In the truncated Wigner representation, the derivatives are truncated at the second order.
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Now the photon number and the half n̄+ 1
2 appears while n̄ appeared in the Fokker-

Planck equation in the P representation, where the factor of 1/2 is due to the damped

coherent state. The Wigner distribution for a damped coherent state is given by

W (α,α∗, t)ρ(0)=|α0⟩⟨α0| =
1

π[12 + n̄(1− e−γt)]
exp

[
− |α− α0e−(γ/2)te−iωt|2

1
2 + n̄(1− e−γt)

]
, (3.39)

with the initial coherent state W (α,α∗, 0)ρ(0)=|α0⟩⟨α0|. The factor of 1/2 is from the boson

commutation relation by normal order ââ† = 1
2(â

†â+ ââ†) = 2
πe

−2|α−α0|2 .

Note that the truncation in the Wigner representation is valid in the small quantum

noise limit, it gives a good approximation so it can produce the same variance as the

positive P representation only with statistical error originated from the finite number

of samples [136]. The treatment of the third-order derivatives can also be found in the

Reference [137].

3.5 Langevin Equation

The stochastic differential equations are derived from the Fokker-Planck equations for

simulating sampling paths. Einstein’s observation of Brownian motion is formulated by

Langevin, et al., which has the form

dXt = a(t,Xt)dt+ b(t,Xt)ξtdt (3.40)

with the deterministic drift term a and a noisy diffusive term bξt, where the ξt is the

standard Gaussian random variables for each t and b. This can be interpreted as the

integral form

Xt(ω) = Xt0(ω) +

∫ t

t0

a(s,Xs(ω))ds+

∫ t

t0

b(s,Xs(ω))ξs(ω)ds (3.41)

for each sample path. The two-time covariance c(t) = E(ξsξs+t) has a constant spectral

density, which means that all time frequencies are equally weighted in any Fourier trans-

form of c(t), that is the Gaussian white noise. When a = 0, b = 1, the process ξt should

be pure Brownian motion, thus we can rewrite as

Xt(ω) = Xt0(ω) +

∫ t

t0

a(s,Xs(ω))ds+

∫ t

t0

b(s,Xs(ω))dWs(ω). (3.42)

Here, the Wiener process Wt is not differentiable, so the Ito integral is introduced as:

Xt(ω) =

∫ t

t0

f(s,ω)dWs(ω), (3.43)

which is At measurable (we denote the {At, t ≤ 0} is an increasing family of σ-additive

class) and zero mean mean-square integrable and

E(X2
t ) =

∫ t

t0

E(f, (s, ·)2)ds. (3.44)
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Ito formula has the form

dYt =

{
∂U

∂t
+ e

∂U

∂x
+

1

2
f2∂

2U

∂x2
dt+ f

∂U

∂x
dWt

}
(3.45)

with the partial derivatives of U evaluated at (t,Xt). When U is linear in x, ∂2U
∂x2 = 0 is

satisfied, hence the equation becomes

dYt =
∂U

∂t
(t, Ut)dt+

∂U

∂x
(t,Xt)dXt. (3.46)

In general, a Fokker-Planck equation with the drift f(x) and diffusion D(x) terms

∂

∂t
P (x, t) =

[
∂

∂x
f(x) +

∂2

∂2
D(x)

]
P (x, t) (3.47)

can be expressed as the corresponding Langevin equation

dx = −df(x)

dx
dt+

√
2D(x)dW. (3.48)

The Langevin equation of a single DOPO is derived from the Fokker-Planck equations

in the positive P (3.36) and Wigner representations (3.38). Note that the P representation

(3.31) is not valid due to the diffusion matrix. Former is found at the beginning of

the previous section (Section 3.4.1). The Langevin equation for the truncated Wigner

representation becomes:

dc = (−1 + p− c2 − s2)c dt+
1

As

√
c2+s2+

1

2
dWc, (3.50)

ds = (−1− p− c2 − s2)s dt+
1

As

√
c2+s2+

1

2
dWs, (3.51)

where c and s are in-phase and quadrature phase amplitudes, p is normalized pump

rate, As is the steady state amplitude at p = 2 and dWc, dWs are independent Wiener

processes. We basically use the above set of functions in the following analysis because it

is simple and easy to treat. In the next chapter, the coupled and discretized formulation

will be presented to fit the real experimental syste. We can go back to the Fokker-Planck

equations or the formulation in the other representations anytime we need the further

analysis of the system. Note that the Langevin dynamics based on the above equation

can converge to its global optimal states [138].

3.6 Typical Properties of DOPO

3.6.1 Pump-Signal Relation

The relation between the input pump rate and the signal photon number in the steady

state is shown in Figure 3.3. When the DOPO is pumped below the threshold, the cavity

has only a few (less than 1) photon. Then the number of photons dramatically increases

at the threshold and the gap of this jump depends on the design of the cavity.
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Figure 3.3. The number of signal photons as the function of the pump rate. It jumps
around the threshold p = pth, where the gap between the before and after
the jump is determined by the saturation parameter A2

s = γpγs/2κ2.

3.6.2 Pitchfork Bifurcation

Without the noise term, steady statess in (3.50) and (3.51) can be obtained with setting

dc/dt = ds/dt = 0. Here, the pump rate p works as a bifurcation parameter. When

0 ≤ p ≤ 1, the system has a steady state around (c, s) = (0.0). As the parameter increased

to p > 1, the origin becomes unstable and two stable points appear (c, s) = (±
√
p− 1, 0).

The equation is a typical case to show such (supercritical) pitchfork bifurcation.

3.6.3 Analytical Solution without Noise

If we ignore the noise terms in (4.19a1,2), we can find a sigmoid type function of gain I/O

profile

g(c) =
c√

1 + c2
, (3.52)

where c is the input amplitude. The time evolution is

c(t) = sgn(c0)

√
c20

c20 + (1− c20)e
−2t

, (3.53)

where c0 is the initial amplitude. Here, both equations are normalized with p = 2 (see

Figure 3.4).

3.6.4 Steady State Distribution

The probability density function of the in-phase component x is obtained from the Fokker-

Planck equation of positive P representation,

Pb(x) = tr(|x⟩⟨x| ρ) =
√

2

π

∫∫
d2αd2β exp

[
2

(
x− α+ β

2

)]
P (α,β), (3.54)
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Figure 3.4. (a) Input-output relation in the DOPO gain process in (3.52) and the time
evolution (3.53) when the pump rate p = 2 and the initial value c0 = 1/702.

Figure 3.5. The signal field when the amplitudes are α = 0, 1 described in the analytical
form of (3.55a) and (3.55b). Note this parameter region is assumed to be
the very low loss (high Q) cavity, so that the entanglement is observed as
the interference in the quadrature amplitude direction p.

which can also be expanded as

Pα(x) =

√
2

π

1

1± exp−2α2

[
±e−2(x2+α2) +

1

2
e−2(x+α)2 +

1

2
e−2(x−α)2

]
, (3.55a)

Pα(y) =

√
2

π

1

1± exp−2α2
exp−2y2 [1± cos(4yα)], (3.55b)

as shown in Figure 3.5. If we ignore the multiplicative noise, the steady state will be

the Boltzmann distribution [139]. In the very simple form, it only contains the in-phase

component x with pump rate p normalized by the steady state amplitude As:

P (x, p) = exp

[
1

2A2
s
(p− 1)x2 − 1

4A2
s
x4

]
. (3.56)

3.7 DOPO in the Optical Fiber

The DOPO in our current system is generated in an optical fiber ring. Signal DOPOs

are synchronously pumped by a pulsed laser which induces the χ(2) parametric process in

a nonlinear PPLN crystal [140]. Thanks to the low loss fiber (around the wavelength of
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1.55 µm [140]) and phase stability by cavity control, recently a large number of optical

pulses (more than 10000 pulses) can simultaneously oscillate in a long fiber [72]. This is

a key for scaling up the optical part.





37

Chapter 4

Coherent Ising Machine

In this chapter, coherent Ising machine, a physical system which exploits collective behav-

ior of optical oscillators, is described. After basic description based on previous research,

the scalable implementation for CIM with measurement feedback will be introduced,

which is first proposed in

[73] Y. Haribara, S. Utsunomiya, and Y. Yamamoto. Computational principle and per-

formance evaluation of coherent Ising machine based on degenerate optical para-

metric oscillator network. Entropy, 18(4):151, 2016.

The effect of using optical fiber instead of a free-space cavity is discussed in Appendix B.

4.1 Overview

We intend to solve combinatorial optimization problems by mapping the cost function eq

(2.1) to the energy of an Ising spin system. CIM is initially proposed as an injection-locked

laser system [68], followed by the proposal using a degenerate optical parametric oscillator

(DOPO) system [69]. So far, several experimental machines are demonstrated with n =

4, 16, 100, 2048-pulse systems [70, 71, 76, 77]. Since the original MAX-CUT has binary

variables, we use a bistable optical device, DOPO at the output stage of computation,

while an analog optical device, degenerate optical parametric amplifier (DOPA), at the

solution search stage of computation.

Figure 4.1 depicts the schematic of the measurement feedback based CIM [76, 77],

which is initially proposed in Reference [73]. Here we describe the typical experimental

configurations in [77]. The DOPO part consists of a 1 km optical fiber (round trip time of

5 µs) with an externally pumped periodically poled lithium niobate (PPLN) waveguide.

The pulsed pump laser, at the 1 GHz repetition rate of 5000 times as the cavity circulation

frequency, generates 5000 individual DOPO pulses in a single fiber ring cavity. A segment

of them (2000 pulses) is used as the signal pulses for computation and the remaining

portion (3000 pulses) is used for the cavity stabilization.

The feedback circuit stores the interaction strength for each pair of DOPO pulses. A

portion of the optical pulse is picked-off by a beamsplitter (numbered as 1 in Figure 4.1)
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Figure 4.1. Experimental schematic of a measurement-feedback coherent Ising machine
(MF-CIM) implemented on a fiber DOPO with an FPGA measurement
feedback circuit. Small portion of each signal pulse is out-coupled through
the beam splitter 1, and its in-phase component is measured by optical
balanced homodyne detector, where LO pulse is directly obtained from the
pump laser. Two detector outputs are converted to digital signals and input
into an electronic digital circuit, where a feedback signal for i-th signal pulse
is computed. Independently obtained feedback pulse from the master laser
is modulated in its intensity and phase to achieve

∑
j ξij c̃j and coupled

into i-th signal pulse by directional coupler 2. Flows of optical fields and
electrical signals are shown as solid and dashed lines, respectively.
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and measured by balanced homodyne detectors. The measured values of DOPO pulse

amplitudes are fed into an analog-digital converter (ADC), followed by FPGAs. Here,

1 GHz repetition rate of signal pulses is downclocked to 125 MHz (8 parallel) and the

measured amplitudes c̃i are sliced into the digital signals of 5 bits. Then 2 FPGAs sum

up the coupling effect from the other vertices (in the given topology)
∑

j Jij c̃j for the

ith pulse. The feedback pulse train is modulated in intensity and phase by this output

electrical signal after a digital-analog converter (DAC). The feedback pulse is injected to

the signal DOPO pulse running through the main fiber ring cavity via a beamsplitter #2.

The DOPO is operated near the oscillation threshold by crossing the pump rate from

below to above the threshold in the case of [77]. In the beginning, the DOPO is biased at

below the threshold in which all phase configuration is established so as a superposition

state and the quantum parallel search is implemented [136]. Then, the external pump

rate (or the feedback) strength is gradually increased, and once the whole system reaches

the oscillation threshold, it selects a particular phase configuration which corresponds to

the near-optimal solution of the original optimization problem.

The dynamics of the CIM can be simulated by the quantum master equation. Instead

of numerically integrating the master equation for the DOPO density operator, we can

expand the density operator by the quasi-probability function in the phase space. One

quasi-probability function fits for this purpose is the positive P (α,β) representation in

terms of the off-diagonal coherent state expansion, |α⟩ ⟨β|. The Fokker-Planck equation for

P (α,β) is derived from the master equation and then the c-number stochastic differential

equations for α and β are obtained using the Ito calculus (see [141] for detail). Another

quasi-probability function used for this purpose is the truncated Wigner representation

W (α). The corresponding c-number stochastic differential equations are derived in [136].

We will use the latter approach in this thesis to evaluate the performance of the CIM.

4.2 Quantum Formulation of CIM

Extending (3.2), The total Hamiltonian of the coherent Ising machine (Figure 4.1) is

described by multiple DOPO Hamiltonians with mutual coupling:

Ĥ = Ĥfree+ Ĥparam+ Ĥpump+ Ĥcouple+ ĤSR (4.1)
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Ĥfree = "ωs

n∑

j=1

â†sj âsj + "ωp

n∑

j=1

â†pj âpj + "ωs

n∑

j=1

∑

k ̸=j

â†cjkâcjk, (4.2a)

Ĥparam =
i"κ
2

n∑

j=1

(â†2sj âpj − â†pj â
2
sj), (4.2b)

Ĥpump = i"
n∑

j=1

(εâ†pj − εâpj), (4.2c)

Ĥcouple = i"ζ
∑

j=1

∑

k ̸=j

(âcjkâ
†
sj − â†cjkâsj + âskâ

†
cjke

−ikcz − â†skâcjke
ikcz), (4.2d)

ĤSR = "
n∑

j=1

(âsjΓ̂
†
Rsj + Γ̂Rsj â

†
sj + âpjΓ̂

†
Rpj + Γ̂Rpj â

†
pj) + "

n∑

j=1

∑

k ̸=j

(âcjkΓ̂
†
Rc + â†cjkΓ̂Rc),

(4.2e)

where Ĥfree is the free field Hamiltonian for the signal, pump, and coupling fields, Ĥparam

is the parametric interaction Hamiltonian, Ĥpump is the external pumping Hamiltonian

where ε is the real-number pump field amplitude, Ĥcouple is the coupling Hamiltonian

among n DOPOs, ĤSR is the system-reservoir interaction Hamiltonian which describes

any spurious dissipation processes for the signal, pump, and coupling fields. In (4.2d), the

phase factors of the coupling field represent the in-phase or out-of-phase coupling from the

j-th DOPO pulse to the k-th DOPO pulse. The ferromagnetic and anti-ferromagnetic

couplings are realized when eikcz = e−ikcz = 1 and eikcz = e−ikcz = −1, respectively.

The two dominating terms in the Hamiltonian are the parametric coupling term Hparam

and the mutual coupling term between different pulses Hcouple. The former term creates

the squeezed vacuum state in each DOPO pulse, while the latter term modulates the

effective loss according to the given problem so that the Ising Hamiltonian is mapped to

the network loss.

4.2.1 Positive P representation

We can derive the master equation for the total field density operator ρ̂ using Equations

(4.1) - (4.2e) and expand it in terms of the positive P representation in the same way [135]:

ρ̂ =

∫∫
d2α d2β P (α,β)

|α⟩⟨β∗|
⟨β∗|α⟩ , (4.3)

where

α ..= (αs1, . . . ,αsn,αp1, . . . ,αpn,αc12, . . . ,αcnn−1)
⊤

and

β ..= (βs1, . . . ,βsn,βp1, . . . ,βpn,βc12, . . . ,βcnn−1)
⊤

are the vectors with complex eigenvalues,

|α⟩ = |αs1⟩ · · · |αsn⟩ |αp1⟩ · · · |αpn⟩ |αc12⟩ · · · |αcnn−1⟩
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and

|β⟩ = |βs1⟩ · · · |βsn⟩ |βp1⟩ · · · |βpn⟩ |βc12⟩ · · · |βcnn−1⟩

are the multimode coherent states. Here αX and βX are statistically independent, but

their ensemble averaged values must satisfy ⟨αX⟩ = ⟨βX⟩∗. This off-diagonal |α⟩ ⟨β| posi-
tive P (α,β) representation of the field density operator ρ̂ allows to describe an arbitrary

non-classical field, while the diagonal |α⟩ ⟨α| Glauber-Sudarshan P (α) representation [142]

can describe only classical fields or statistical mixture of coherent states. We substitute

(4.3) into the master equation to obtain the Fokker-Planck equation for P (α,β) [134].

Then we can derive the c-number SDE (CSDE) using the Ito rule [127]:

dαsk = (−γsαsk + καpkβsk +
∑

j ̸=k

ζjkαcjk)dt+
√
καpkdwαsk(t), (4.4a)

dβsk = (−γsβsk + κβpkαsk +
∑

j ̸=k

ζjkβcjk)dt+
√
καpkdwβsk(t), (4.4b)

dαpk = (−γpαpk −
κ

2
α2
sk + ε)dt, (4.4c)

dβpk = (−γpβpk −
κ

2
β2sk + ε)dt, (4.4d)

dαcjk = (−γcαcjk − ζjkαsj + ζjke
iθαsk)dt, (4.4e)

dβcjk = (−γcβcjk − ζjkβsj + ζjke
−iθβsk)dt. (4.4f)

The positive P representation can be obtained by ensemble averaging over many tra-

jectories generated by Monte Carlo numerical integration of (4.4a - 4.4f). Typically, we

need 105 - 106 trajectories for obtaining reasonable convergence around the oscillation

threshold. In Reference [141], quantum entanglement and quantum discord in gradually

pumped two coupled DOPOs are studied in the positive P representation.

4.2.2 Truncated Wigner Representation

It is well-known that even though the popsitive-P representation method is rigorous and

can treat arbitrary non-classical states, the convergence requires a huge computation

time. If the quantum state of light in a given physical system is only slightly deviated

from the Gaussian states, the truncated Wigner representation is an alternative approach

with reasonable accuracy [126]. In this case, the field density operator is expanded by the

Wigner function W (α):

ρ̂ =

∫
dλ eλ

∗â−λâ†
{∫

dαeλâ
∗−λ∗âW (α)

}
, (4.5)

where

â = (âs1, . . . , âsn, âp1, . . . , âpn, âc12, . . . , âcnn−1)
⊤

and

λ = (λs1, . . . ,λsn,λp1, . . . ,λpn,λc12, . . . ,λcnn−1)
⊤.
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Here, χ(λ) =
∫
dα eλâ

∗−λ∗âW (α) is the symmetric correlation function, where W (α) and

χ(λ) form a pair of Fourier transform. The Fokker-Planck equation for W (α) can be

derived by truncating the third and higher-order derivatives, which gives another set of

CSDEs:

dαsk = (−γsαsk + καpkα
∗
sk +

∑

j ̸=k

ζjkαcjk)dt+
√
γsdWsk(t), (4.6a)

dαpk = (−γpαpk −
κ

2
α2
sk + ε)dt+

√
γpdWpk(t), (4.6b)

dαcjk = (−γcαcjk − ζjkαsj + ζjke
iθαsk)dt+

√
γcdWck(t). (4.6c)

Here, dWX(t) is the complex valued Wiener process and corresponds to the quantum

fluctuation injected into the system from coupled external reservoirs. In Reference [136],

the degree of quantum entanglement is checked against the positive P representation. It

partly confirmed that the truncation in the equation is valid within the statistical error

introduced by the finite number of numerically generated trajectories in the small case of

n = 2 and n = 16.

Now we ignore the equation of pump by adiabatic elimination and obtain the CSDE:

dci =

⎡

⎣(−1 + p− c2i − s2i )ci +
n∑

j=1

ξijcj

⎤

⎦ dt+
1

As

√
c2i +s2i +

1

2
dWci , (4.8)

dsi =

⎡

⎣(−1− p− c2i − s2i )si +
n∑

j=1

ξijsj

⎤

⎦ dt+
1

As

√
c2i +s2i +

1

2
dWsi , (4.9)

where c and s are in-phase and quadrature phase amplitudes, p is normalized pump

rate, As is the steady state amplitude at p = 2 and dW1, dW2 are independent Wiener

processes.

4.2.3 Measurement Effect in Measurement Feedback CIM

If we take the measurement effect explicitly, the quantum master equations should be

modified as explained in References [143, 144]. While the comparison on the computa-

tional performance will be a future work and not fully considered in this thesis, the model

overview is according to Reference [143].

The nonunitary reduction of a wave function by the homodyne measurement of x is

described by Wiseman and Milburn [145]

d

dt
ρ̂mes =

n∑

i=1

[
γmes

2
(2âsiρ̂â

†
si − â†siâsiρ̂− ρ̂â

†
siâsi) +

√
γmes

dWi

dt
(âsiρ̂+ ρ̂â†si − ⟨ci⟩ρ̂)

]
,

(4.10)

where ⟨ci⟩ = ⟨â†si + âsi⟩ is the expectation value of the in-phase amplitude of the signal

field and dWi is the Wiener increment, which satisfies

dWi(t) ∼ N (0, dt), ⟨dWi(t)dWj(t
′)⟩ = 2πδijδ(t− t′). (4.11)
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This model assumes the measured value has the stochasticity as

c̃idt = ⟨â†si + âsi⟩dt+
dWi√
γmes

. (4.12)

Then the total master equation is the sum of (3.7) and (4.10).

Following the derived master equation, the corresponding partial differential equation

in positive P representation becomes as

∂P (α,β)

∂t
=

[
√
γmes(αsi + βsi − ⟨αsi + βsi⟩)

dW

dt

− ∂

∂αsi
(−(γs + γmes)αsi + κβsiαpi + εsi)

− ∂

∂βsi
(−(γs + γmes)βsi + καpiβpi + εsi)

− ∂

∂αpi
(−γpαpi +

κ

2
α2
si + εpi)−

∂

∂βpi
(−γpβpi +

κ

2
β2si + εpi)

+
∂2

∂α2
si

καpi +
∂2

∂β2si
κβpi

]
P (α,β),

(4.13)

where

⟨αsi⟩ =
∫∫

d2α d2β αsiP (α,β), (4.14a)

⟨βsi⟩ =
∫∫

d2α d2β βsiP (α,β). (4.14b)

The (4.13) is similar to the Fokker-Planck equation except for the first term in the

right hand side. After the adiabatic elimination, the corresponding SDE becomes [143]:

dai = [−(1 + γ′)ai + bi(p− a2i ) + fi]dt+
1

As

√
p− a2i dWai , (4.15)

dbi = [−(1 + γ′)bi + ai(p− b2i ) + fi]dt+
1

As

√
p− b2i dWbi , (4.16)

where normalized amplitudes ai = αsi/As, bi = βsi/As, normalized time dt = γsdt′, nor-

malized pump rate p = κεi/γsγp and effective loss γ′ = γmes/γs.

As a feature of this formulation, the first term in (4.13) is expressed as the replicator

equation by extending the branching Brownian motion [146]. In this model, the change

in P (α,β) is governed by
∂P (α)

∂t
= λ(α,β)P (α,β), (4.17)

where the λ(α,β) = c̃i − ⟨ci⟩ determines the replication or deletion probability of the

Brownian particle at (α,β), in the case of λ > 0 or λ < 0, respectively.

In this model, the back action of the measurement produces non-Gaussian states. It

will be interesting to compare the performance on large-sized graph instances.
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4.2.4 Computational Principle

The computational process of CIM is described. There are still some arguments and

the unified view is absent. Note that, there is no evidence yet that the quantum effects

intrinsically contribute to the computational process, which will be discussed in Section

8.4.1.

In the collective dynamics of quantum mechanical harmonic oscillators, the whole

coupled DOPO system has the total loss function [69]

Γ = n−
n∑

i=1,i ̸=j

ξijcicj +O(
ϵn4

(p− 1)3
), (4.18)

where ϵ = max1≤i,j≤n |ξij | appears from perturbation theory. The second term is an Ising

Hamlotonian (1.2). Hence, (4.18) achieves the minimum loss when the system has the

ground state configuration, assuming the pump rate is high enough p≫ 1 and all DOPOs

have the unique amplitude.

Generally, the amplitude homogeneity breaks down in computational process. Though,

CIM can find low energy solutions as the results in the following chapters show. Since

the CIM embed binary spin values to continuous valued DOPO amplitudes, it can be in-

terpreted as low-rank relaxation heuristic, followed by soft binalization by nonlinear gain

saturation. While the dimension is not high enough as the SDP convex relaxation, a low

dimensional relaxation is reported to show a good performance as a MAX-CUT heuristic

[147].

4.3 Discrete Feedback Simulation with Ring Cavity

The above natural formulation assumes that the all physical process, e.g., OPA gain,

fiber and beam splitter (BS) loss, feedback, occurs simultaneously. In the more realistic

situation with time time-division multiplexing (TDM) scheme where the optical pulses

are circulating in the main cavity, the BS loss and feedback should be occurred at the

specific point namely BS 1 and BS 2, respectively, in the ring cavity. In our simulation,

the OPO gain in the PPLN waveguide, out-coupling loss in the fiber BS for measurement

circuit, and injection after the feedback calculation are taken in separately as

dci = [(p− c2i − s2i )ci] dt+
1

As

√
c2i + s2i +

1

2
dWci , (4.19a1)

dsi = [(−p− c2i − s2i )si] dt+
1

As

√
c2i + s2i +

1

2
dWsi , (4.19a2)

ci(t+∆t) 5→
√
1− Tmesci(t) +

√
Tmes

fi
As

, (4.19b1)

si(t+∆t) 5→
√

1− Tmessi(t) +
√
Tmes

fi
As

, (4.19b2)

ci(t+∆t) 5→
√
1− Tinjci(t) +

√
Tinjξ

n∑

j=1

Jij c̃j , (4.19c1)

si(t+∆t) 5→
√

1− Tinjsi(t), (4.19c2)
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Figure 4.2. A coherent Ising machine implemented on the time-division multiplexed
DOPO with mutual coupling implemented by optical delay lines (ODL-
CIM). A part of each pulse is picked off from the main cavity by the output
coupler followed by an optical phase sensitive amplifier (PSA) which am-
plifies the in-phase amplitude c̃i of each DOPO pulse. The feedback pulses,
which are produced by combining the outputs from n−1 intensity and phase
modulators, are injected back to the main cavity by the injection coupler.

where

c̃i =
couti√
Tmes

= ci

√
1− Tmes

Tmes

fi
As

includes the noise invaded from the beam splitter 1. Here, (4.19a1,2) is the gain part,

(4.19b1,2) is the loss in BS1 of transmittance Tmes, where fj is a vacuum noise invaded

from the open port of the beamsplitter and (4.19c1,2) is the injection part with BS2 of

the transmittance Tinj after feedback pulse amplitudes (
∑

i Jij c̃i) are calculated in the

FPGA.

This formulation is the same in the optical delay line coupled CIM (ODL-CIM) as

depicted in Figure 4.2. As far as the current experimental region of parameters, these

approximation and simplification are valid to predict the performance evaluation described

in later chapters.

4.4 FPGA Design for Feedback Circuit

A field-programmable gate array (FPGA) is a configurable circuit which can be designed

(“programmed”) by a software. It has hundreds of thousands of programmable blocks
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Figure 4.3. The FPGA design environment in GUI by BEEcube platform studio on
Simulink and Xilinx ISE. The example circuit design show the part of the
n = 4 feedback circuit.

called “logic cells”, which can perform the logical or arithmetical operation. To achieve

the high throughput of the feedback calculation in CIM, we adopted feedback circuit

design using FPGA. The fully managed clock was also the advantage to synchronize

with the optical cavity, which cannot be done with GPU. It can be programmed with

hardware description languages such as VHDL or Verilog, and there are several graphical

user interface (GUI) programming environments as shown in Figure 4.3.

The main functionality of the FPGA in the system is to calculate the feedback part,

i.e.,
n∑

j=1

Jij c̃j , (4.19e)

where J is the given coefficient matrix, c̃ is the measured value of in-phase component.

The sign and absolute value of the summation modulate the phase and intensity of the

feedback pulse, respectively. The input stream is the measured value from the homodyne

detection, whose sampling rate is equal to the pulse repetition frequency of the main

ring cavity. The clock frequency of FPGA (few hundreds of MHz) is much slower than

the pulse repetition rate in the current experimental setup (∼ 1 GHz) so that the input
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Figure 4.4. The example of the bit-slicing implementation in the feedback circuit.
The input/output bit length of the FPGA is dependent on the spec of
ADC/DAC. An FMC101 card is attached to the miniBEE configuration.
The increase in the bit-length in the summation part is upper bounded
by log2(k), where k < n = |V | is the vertex degree when we are solving
unweighted graphs.

pulse stream should be downclocked. In our system, the input signals are 4-way or 8-way

parallelized, i.e., ADC clock is downclocked to 1/4 or 1/8 and used as FPGA clock. In

order to stabilize the system, the clock fed into the ADC (hence into the FPGA) and the

pump pulse should be the same source.

In the FPGA circuit, the input amplitudes are sliced to low bits and the matrix-vector

product is implemented in parallel. Of course, the feedback only calculated from a very

low number of bits ends in the wrong results. On the other hand, the full precision

detected in the detector is not practically suitable. The bit precision and circuit scale in

the trade-off, which is discussed in the Appendix F. Then the sliced input amplitudes are

used for the calculation. The example is presented in Figure 4.4.

After the summation, the bit-length of the feedback values is increased ⌈log2(n) +
log2(w− 1)⌉ from the input sliced bits. In the case of the complete graph of n = 100 and

if the weight is 1 bit wij = ±1, the output bit length from sliced input 6 bit amplitudes

swells up to 6 + ⌈log(99) + log(1)⌉ = 6 + ⌈6.6⌉ = 13. Finally, this again sliced into the

DAC bit length.
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Chapter 5

Numerical Simulation

It is difficult to predict the performance of CIM analytically. Hence, numerical simulations

are performed on the stochastic differential equation appeared in the previous chapter.

The computational performance in terms of the MAX-CUT solver is evaluated

[75] Y. Haribara, S. Utsunomiya, K. Kawarabayashi, and Y. Yamamoto. Quantum com-

puting with non-classical light: A coherent ising machine for maximum-cut prob-

lems. In J. C. Lindon, G. E. Tranter, and D. W. Koppenaal, editors, Encyclopedia

of Spectroscopy and Spectrometry (Third Edition), pages 824–831. Academic Press,

Oxford, 2017,

which led to the experimental success in the next two chapters.

5.1 Implementation of Numerical Analysis

Based on the formulation in Section 4.3, numerical simulations are performed. From the

simulation, DOPO in-phase component Equations (4.19a1), (4.19b1) and (4.19c1) are

plotted since the quadrature components si (i ∈ {1, . . . , n}) are considerably small. For

the numerical integration, Euler-Maruyama method was used to simulate the SDEs. The

codes are implemented with C++11 compiled by GCC4.9. Most of the computation in

this section is done with Linux server which has two 6-core Intel Xeon X5650 processors

@ 2.67 GHz Westmere architecture, 94 GB DDR3 RAM and Ubuntu14.04 is installed.

Typical simulation parameters are summarized in Table 5.1. Most of them are fixed

and automatically determined when the physical configuration is set, but two of them are

tunable, namely, pump rate p and coupling constant ξ.

5.1.1 Parameter Optimization

To run a CIM with the best performance, the experimental parameters, especially for the

pump rate p and the coupling constant ξ should be optimized. Note that, empirically,

for the random graph whose degree distribution is a binomial distribution, the coupling

constant is optimal around ξij = ξwij/
√
⟨k⟩. For the complete graph, the coupling

constant is ξij = ξwij/n (it is natural in statistical mechanics since the energy diverges

when n→∞).



50 Chapter 5 Numerical Simulation

Table 5.1. Parameter settings for numerical simulations. Basically, tunable parameters
at the computation are the pump rate p and coupling strength ξ.

Parameter Value (default)
Pump rate p > 0 (1.1)
Coupling strength ξ < 0 (−0.1)
Signal amplitude As = 70, 400, 107(70)
Signal photon loss γs = 1
Pump photon loss γp = 100
Parametric coupling constant κ = 0.1
Number of cavity round trips nRT > 0 (200)
Readout coupler transmittance Tmes = 0.1
Injection coupler transmittance Tmes = 0.01
Time step size dt = 0.01
Single round trip time steps tRT = 10
Precision 64-bit double

5.2 Single Run

Time Evolution

Figure 5.1 shows the simulation result for a single run. The CIM solves the MAX-CUT

problem on the K4 graph (in the Figure 2.1) and found the ground state (2-by-2 subsets

of vertices of CUT = 4). In the magnified plot of Figure 5.1, we can see the change of

the amplitudes in a single unit of time (circulation of a cavity). In the simulation for

the single short window of time, A, B, C correspond to gain, loss, coupling expressed in

Equations (4.19a1), (4.19b1) and (4.19c1), respectively.

Frustration

Figure 5.2 shows the frustrating case, where the initial spin configuration is wrong but

finally converges to the ground state. In Figure 5.2, there is a turning point around

t = 140 where three DOPOs i = 1, 2, 3 go to the final decision of the spin directions. The

situation is clearer when we plot the DOPO amplitudes onto the graph as in Figure 5.2

(c-f). The notable point is that the right cluster of i ∈ {1, 2, 3} is optimized in the latter

half in the simulation. It is contributed by the nonlinear saturation in (4.19a1).

Relatively Large Instances

Larger instances are simulated. Figures 5.3 and 5.4 are the simulation results for MAX-

CUT benchmark instances on sparse graphs (G-set) [148]. When the graph becomes

larger, the injection coupling from the other OPOs conceal the binalized amplitudes.

These figures show that MF-CIM can perform Ising energy minimization even for larger

graphs as n ≤ 100.
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Figure 5.1. The time evolution of the signal DOPO in-phase amplitude ci when solving
the complete graph of order n = 4 presented in the Figure 2.1. In the
magnified figure, A, B, and C indicate nonlinear saturable gain, out-coupler
loss, and feedback injection, respectively.
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Figure 5.2. A cubic graph of order n = 8. (a) Time evolution of the DOPO in-phase am-
plitudes as a function of the number of cavity round trips. Bottom 4 figures
show the amplitude (vertex size) and the sign of +/− (as color red/blue) for
each DOPO. (b) Initially the left larger bipartite cluster (indices 4 ≤ i ≤ 8)
grows. (c) The smaller cluster begins to grow. At this point, the spin states
are ambiguously but moderately shifting to positive pushed by the adjacent
vertices in the left cluster. (d) The vertex i = 1 went to negative to reflect
the consistency in the right cluster. (e) CIM converged to the ground state.
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Figure 5.3. Simulation result for a sparse random graph g22 (n = 2000,m = 19990
and 1% density). The pump rate is gradually increased from p = 0.9 to
1.3 linearly, with the fixed coupling constant of ξ = −0.02/

√
⟨k⟩ = 0.004.

The CUT results are 13081 (best), 12997.99 (mean) and 12909 (worst) in
100 trials. Note that 12993 (GW) ≤ 13351 (SA) ≤ 13359 (BLS) ≤ OPT ≤
14136 (SDP-UB).
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Figure 5.4. Simulation result for a ±1-weighted scale-free graph g38 (n = 2000,m =
11779 and 0.59% density). Several DOPOs have larger amplitudes than
others since the corresponding vertices have large degree (hub). The gradual
pumping with p : 0.9 5→ 1.3 and ξ = −0.05/

√
⟨k⟩ = 0.0042. The results are

2273 (best), 2228.69 (mean) in 100 trials, which is . Note that 2200 (GW)
≤ 2379 (SA) ≤ 2408 (BLS) ≤ OPT ≤ 2877 (SDP-UB).



54 Chapter 5 Numerical Simulation

(a) (b)

0.2 0.4 0.6 0.8 1.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Pump rate p

C
ou
pl
in
g
co
ns
ta
nt

ξ

2850

2870

2890

2910

0.2 0.4 0.6 0.8 1.0
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Pump rate p

C
ou
pl
in
g
co
ns
ta
nt

ξ

2890

2910

2930

2950

Figure 5.5. Parameter sweep in (p, ξ) space with G-set instance g14 (scale-free, n =
800,m = 4694). Brighter color is better with larger cut values. (a) Best
case in 100 trials. (b) Mean in 100 trials.

5.3 Performances on Benchmark Instances

5.3.1 Parameter Sweep

When we solve larger problems, the choice of parameters (p, ξ) makes a significant effect

in output values. While it is basically problem dependent, here we show a case study on

a benchmark instance. Figures 5.6 and 5.5 show the lower pump rate is better, while the

coupling constant should be large in sparse instances and small in dense complete graph

instances.

5.3.2 Performance on G-set

The performance of a CIM with DOPO network was tested against the NP-hard MAX-

CUT problems on sparse graphs (G-set) [148]. These test instances were randomly con-

structed using a machine-independent random graph generator written by G. Rinaldi,

with the number of vertices ranging from 800 to 20000, edge density from 0.02% to 6%,

and topology from random, scale-free, to toroidal.

The output cut values of running the CIM, SA, and GW for some of the G-set graphs

are summarized in Table 5.2. The results for CIM are obtained in 50 ms, which correspond

to the performance of an experimental system after 5000 DOPO cavity round trips. The

best result and ensemble average value for 100 trials are shown. Here, the parameters are

set to be p = 1.6, ξ = −0.06, and the coupling constant ξij = ξwij/
√
⟨k⟩ is normalized by

the square root of the average degree ⟨k⟩. The hysteretic optimization method, in which

the swinging and decaying Zeeman term that flips the signal amplitude (spin) back and

forth, is implemented four times after 10 ms initial free evolution [149] hence the larger

pump rate is used for the system stability (see Reference [150] for further analysis). Each
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(a) (b)

Figure 5.6. Parameter sweep in (p, ξ) space with dense instance K100. (a) Best case in
100 trials. (b) Mean in 100 trials.

hysteretic optimization takes 10 ms so that the total search takes 50 ms. The result of SA

is also obtained in 50 ms for each graph. For GW, the computation time ranged between

2.3 s and 1.1 × 105 s, depending on n. The best outputs of the CIM were 1.62 ± 0.58%

better than GW but 0.38 ± 0.40% worse than SA, and CIM found better cut against

GW except for a toroidal graph (g50) and a disconnected random graph (g70). Table 5.3

summarizes the above results and performance of other solvers with respect to each graph

topology.

Scaling on G-set

Computation time for the random graphs in G-set instances is also studied. Here the

subset of graphs in which MAX-CUT problems can be solved in polynomial time (i.e.,

planar graphs [99, 100], weakly bipartite graphs [98], positive weighted graphs without

a long odd cycle [102], and graphs with integer edge weight bounded by n and fixed

genus [103]) are excluded (see Section 2.3.4). The execution time of CIM is evaluated

under the machine spec described in Section 5.1 with p = 0.2, ξ = −0.06, and ξij =

ξwij/
√
⟨k⟩. Again, the computation time of SA and CIM is the actual time (without

graph file I/O) to obtain the same accuracy of solution as GW. Figure 5.7 shows the

computation time as functions of the problem size n. The computational cost of interior

point method dominates the GW algorithm. (Note that G-set contains graphs with both

positive and negative edge weights so that we must use the slowest interior point method.)

Then the computation time is almost constant for both SA and CIM. The computation

time of SA with constant Monte Carlo sweep is expected to scale O(n⟨k⟩) ∼ O(1) (here

for the random graphs in G-set, ⟨k⟩ ∼ O(n−1.09)). The computation time of CIM here is

governed by a turn-on delay time of the DOPO network to reach a steady state oscillation

condition, which is constant for varying values of n as mentioned above [151].
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Table 5.2. Performance of the coherent Ising machine, simulated annealing and
Goemans-Williamson SDP algorithm in solving the MAX-CUT problems on
sparse graphs (G-set). USDP is the optimal solution to the semidefinite relax-
ation of the MAX-CUT problem, and CGW is the best solution obtained by
n projections after SDP. Cbest is the best known solutions already published.
CSA and ⟨CSA⟩ are the best and average values obtained by SA in 100 trials
of 50 ms. CCIM and ⟨CCIM⟩ are the best and average values in CIM in 100
runs of 50 ms (= 5000 DOPO cavity round trips), respectively. To make
comparisons with each other, every cut value C generated from the CIM ,
SA, or GW algorithm is normalized according to (C +Eneg)/(USDP +Eneg),
where Eneg ≥ 0 is the number of negative edges. In the bottom of this table,
the average values of all 71 G-set graphs are shown.

Instance |V | |E| USDP Cbest CGW CSA ⟨CSA⟩ CCIM ⟨CCIM⟩
g1 800 19176 12083 0.9620 0.9457 0.9620 0.9597 0.9614 0.9570
g2 800 19176 12089 0.9612 0.9437 0.9605 0.9588 0.9602 0.9562
g3 800 19176 12084 0.9618 0.9451 0.9618 0.9598 0.9609 0.9570
g4 800 19176 12111 0.9616 0.9451 0.9614 0.9600 0.9614 0.9568
g5 800 19176 12099 0.9613 0.9458 0.9612 0.9596 0.9601 0.9570
g6 800 19176 2656 0.9607 0.9448 0.9606 0.9592 0.9601 0.9559
g7 800 19176 2489 0.9603 0.9446 0.9599 0.9582 0.9587 0.9556
g8 800 19176 2506 0.9589 0.9443 0.9587 0.9569 0.9579 0.9547
g9 800 19176 2528 0.9610 0.9452 0.9607 0.9589 0.9598 0.9564
g10 800 19176 2485 0.9601 0.9444 0.9599 0.9580 0.9591 0.9554
g11 800 1600 629 0.9540 0.9327 0.9526 0.9478 0.9455 0.9370
g12 800 1600 623 0.9530 0.9333 0.9502 0.9465 0.9460 0.9370
g13 800 1600 647 0.9546 0.9336 0.9518 0.9464 0.9462 0.9393
g14 800 4694 3191 0.9602 0.9336 0.9580 0.9544 0.9514 0.9472
g15 800 4661 3171 0.9618 0.9398 0.9609 0.9549 0.9540 0.9481
g16 800 4672 3175 0.9613 0.9364 0.9587 0.9548 0.9528 0.9477
g17 800 4667 3171 0.9609 0.9376 0.9584 0.9546 0.9530 0.9468
g18 800 4694 1166 0.9500 0.9282 0.9492 0.9439 0.9434 0.9372
g19 800 4661 1082 0.9493 0.9279 0.9478 0.9430 0.9424 0.9362
g20 800 4672 1111 0.9510 0.9354 0.9510 0.9444 0.9461 0.9379
g21 800 4667 1104 0.9502 0.9286 0.9502 0.9436 0.9473 0.9362
g22 2000 19990 14136 0.9450 0.9191 0.9445 0.9409 0.9405 0.9361
g23 2000 19990 14145 0.9441 0.9188 0.9426 0.9402 0.9392 0.9358
g24 2000 19990 14140 0.9432 0.9186 0.9422 0.9399 0.9398 0.9357
g25 2000 19990 14144 0.9432 0.9183 0.9422 0.9397 0.9401 0.9357
g26 2000 19990 14132 0.9431 0.9174 0.9422 0.9399 0.9391 0.9356
g27 2000 19990 4141 0.9435 0.9174 0.9422 0.9400 0.9390 0.9356
g28 2000 19990 4100 0.9433 0.9182 0.9425 0.9401 0.9399 0.9356
g29 2000 19990 4208 0.9433 0.9167 0.9415 0.9394 0.9385 0.9353
g30 2000 19990 4215 0.9433 0.9189 0.9425 0.9402 0.9396 0.9354
g31 2000 19990 4116 0.9430 0.9181 0.9424 0.9398 0.9392 0.9355
g32 2000 4000 1567 0.9559 0.9272 0.9508 0.9478 0.9424 0.9384
g33 2000 4000 1544 0.9545 0.9275 0.9500 0.9469 0.9438 0.9384
g34 2000 4000 1546 0.9546 0.9277 0.9507 0.9474 0.9440 0.9386
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Instance |V | |E| USDP Cbest CGW CSA ⟨CSA⟩ CCIM ⟨CCIM⟩
g35 2000 11778 8014 0.9588 0.9292 0.9551 0.9523 0.9471 0.9438
g36 2000 11766 8005 0.9592 0.9282 0.9557 0.9525 0.9475 0.9441
g37 2000 11785 8018 0.9590 0.9310 0.9555 0.9522 0.9482 0.9434
g38 2000 11779 8014 0.9592 0.9291 0.9550 0.9524 0.9471 0.9440
g39 2000 11778 2877 0.9464 0.9226 0.9431 0.9399 0.9364 0.9318
g40 2000 11766 2864 0.9473 0.9225 0.9442 0.9399 0.9380 0.9317
g41 2000 11785 2867 0.9473 0.9230 0.9440 0.9397 0.9372 0.9311
g42 2000 11779 2946 0.9470 0.9230 0.9448 0.9402 0.9365 0.9314
g43 1000 9990 7032 0.9471 0.9292 0.9471 0.9439 0.9458 0.9396
g44 1000 9990 7027 0.9464 0.9251 0.9462 0.9438 0.9444 0.9393
g45 1000 9990 7024 0.9473 0.9245 0.9468 0.9446 0.9448 0.9396
g46 1000 9990 7029 0.9459 0.9223 0.9455 0.9429 0.9424 0.9390
g47 1000 9990 7036 0.9461 0.9261 0.9460 0.9432 0.9423 0.9386
g48 3000 6000 6000 1.0000 1.0000 1.0000 0.9919 1.0000 0.9747
g49 3000 6000 6000 1.0000 1.0000 1.0000 0.9861 1.0000 0.9791
g50 3000 6000 5988 0.9820 0.9820 0.9760 0.9707 0.9770 0.9686
g51 1000 5909 4006 0.9606 0.9333 0.9583 0.9544 0.9506 0.9468
g52 1000 5916 4009 0.9606 0.9327 0.9576 0.9546 0.9519 0.9471
g53 1000 5914 4009 0.9603 0.9346 0.9574 0.9545 0.9524 0.9469
g54 1000 5916 4006 0.9616 0.9381 0.9578 0.9547 0.9511 0.9466
g55 5000 12498 11039 0.9325 0.9006 0.9264 0.9215 0.9193 0.9160
g56 5000 12498 4760 0.9322 0.9008 0.9245 0.9213 0.9204 0.9155
g57 5000 10000 3885 0.9561 0.9237 0.9496 0.9473 0.9419 0.9384
g58 5000 29570 20136 0.9566 0.9239 0.9475 0.9448 0.9434 0.9411
g59 5000 29570 7312 0.9440 0.9148 0.9376 0.9356 0.9308 0.9288
g60 7000 17148 15222 0.9313 0.8989 0.9231 0.9201 0.9191 0.9152
g61 7000 17148 6828 0.9317 0.8991 0.9227 0.9201 0.9185 0.9149
g62 7000 14000 5431 0.9552 0.9228 0.9481 0.9463 0.9412 0.9381
g63 7000 41459 28244 0.9559 0.9230 0.9413 0.9381 0.9428 0.9407
g64 7000 41459 10466 0.9440 0.9143 0.9347 0.9324 0.9320 0.9299
g65 8000 16000 6206 0.9548 0.9217 0.9472 0.9456 0.9401 0.9374
g66 9000 18000 7077 0.9555 0.9220 0.9472 0.9455 0.9401 0.9374
g67 10000 20000 7744 0.9554 0.9215 0.9480 0.9459 0.9411 0.9388
g70 10000 9999 9863 0.9674 0.9633 0.9523 0.9479 0.9515 0.9482
g72 10000 20000 7809 0.9550 0.9215 0.9466 0.9448 0.9395 0.9376
g77 14000 28000 11046 0.9557 0.9205 0.9449 0.9419 0.9407 0.9382
g81 20000 40000 15656 0.9551 0.9195 0.9187 0.9125 0.9393 0.9376
Mean 0.9540 0.9303 0.9502 0.9469 0.9464 0.9415
Worst 0.9313 0.8989 0.9187 0.9125 0.9185 0.9149
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Table 5.3. The performance is summarized according to the topology. SDP is the GW
algorithm solving SDP until primal-dual relative gap of 10−3, followed by
n rounding. MIQP is obtained by the IBM CPLEX MIQP solver, which
uses the branch-and-bound method with QP relaxation. CIM and SA (with
hysteretic optimization) show the best cut in 100 trials (same as Table 5.2).
BLS is from Reference [115].

SDP MIQP CIM SA BLS
Time (s) 2 - 105 12 - 105 0.05 0.05 1 - 104

Random 0.9273 0.9116 0.9448 0.9471 0.9491
Scale-free 0.9288 0.9269 0.9451 0.9510 0.9547
Toroidal 0.9375 0.9618 0.9511 0.9548 0.9616
All 0.9303 0.9349 0.9464 0.9502 0.9540

!
!

! ! !

!"
"

" " "

"

# #

#

#
#

#

CIM

SA

GW

800 2000 5000 7000 10000
0.001

0.1

10

1000

105

Problem size N

C
om
pu
ta
tio
n
tim
e
!s"

Figure 5.7. The computation time scaling on the G-set instances. The codes are not
optimized so the performance is focused on the relative scaling. It does
not indicate the relative speedup on CIM compared from SA as far as
the instance is sparse. Note that the edge density is decreasing as the
n increases.
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5.3.3 Computation Time Scaling on Complete Graph

Computational experiments were conducted against fully connected complete graphs with

the number of vertices ranging from 40 to 20000 and the edges are randomly weighted

±1. Since there is no guarantee that the CIM or SA can efficiently find the ground states

(optimal solution) for MAX-CUT problems, the GW solution was used as the mark of

sufficient accuracy (note that the actual ground states are generally not known for these

problem sizes). The CIM and SA then competed for the computation time to reach

that accuracy. The definition of computation time of CIM and SA is the same as the

previous subsection. The time and temperature scheduling parameters of the SA were set

as follows: Inverse temperature increased with the logarithmic function. The number of

spin flipping was optimized to be 10l times for some l ∈ N, which requires the minimum

computation time to achieve the same accuracy as with the GW.

Figure 5.8 (a) shows the computation time versus problem size (number of vertices).

The computation time is defined as the actual time to solve a given MAX-CUT problem

in complete graph for GW; as the CPU time to reach the same accuracy achieved by

GW for SA, SG3, and BLS; and as the time estimated by the (number of round trips) ×
(cavity round trip time) to obtain the same accuracy as GW for CIM. The preparation

time needed to input Jij into the computing system, i.e., the graph I/O time, is not

included. The three types of time complexity are shown. The time complexity O(n3.5)

for the GW is dominated by the interior-point method in the general Goemans-Williamson

algorithm. The SA scales as O(m) = O(n2), which indicates that it requires the number

of spin flips to be proportional to n to achieve optimal performance. Each spin flip costs

a computation time proportional to the degree ki, where ki is equal to n− 1 for all i ∈ V

in the case of complete graphs. Thus, the computation time scales as O(n⟨k⟩) = O(n2)

for the SA in the complete graphs1. SG3 scales as O(m) = O(n2) in Figure 5.8, but the

values for n = 40, 160, 800 are not shown because it did not reach the accuracy reached

by the GW solution. BLS exhibits competitive performance against SA and also scales

as O(n2). The CIM exhibits a problem-size independent computation time of less than

10−3 s in the case of n ≤ 20000. The computation time of CIM is determined by the

turn-on delay time of the DOPO network oscillation, which in turn depends on the round

trip time and the pump rate [151].

5.4 Summary

In this chapter, the computational performance of CIM was estimated by numerical sim-

ulations. The relative performance is studied in both sparse (Section 5.3.2) and dense

(Section 5.3.3) graph instances. Results imply that the application for dense graph is

necessary to see a visible performance gain.

1Note that there exists order-n Monte Carlo which scales linear to n on arbitrary topology. But
practically, it requires a concealed factor and no speedup can be observed, which is discussed in the
Appendix D.
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Chapter 6

Experimental Results and
Validation

In this chapter, results from a real experimental implementation is presented to validate

the mathematical model and simulation results

[76] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate,

T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H.

Mabuchi, and Y. Yamamoto. A fully programmable 100-spin coherent ising machine

with all-to-all connections. Science, 354(6312):614–617, 2016.

6.1 Setup: Machine with n = 100

In this section, the results from experimental MF-CIM in Stanford University are pre-

sented. The comparison with one in NTT, which will be appeared in the next Chapter 7

is summarized in Table 6.1. Basically the system is used with below threshold constant

pump rate between 0.7 ≤ p ≤ 0.9, which will go above threshold effectively with mutual

injection. Here we show more detailed simulation assuming the specific experimental pa-

rameters: pump rate of p = 0.88 and the coupling coefficient of ξ(t) = −0.001t to predict

the performance correctly (we chose the best coefficient for the coupling, with optimizing

the slope).

Table 6.1. Experimental configurations of two MF-CIMs.

Stanford [76] NTT [77]
Number of pulses n 100 2048
Round trip time 1.6 µs 5 µs
Pulse repetition frequency 100 MHz 1 GHz
Model of FPGA Xilinx Virtex-6 2 × Xilinx Virtex-7
ADC/DAC resolution 12/12 bit 12/14 bit
Operational scheme Gradual coupling Gradual pumping



62 Chapter 6 Experimental Results and Validation

(a)

Figure S2: Detailed experimental setup schematic.
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Figure S1: For each pulse i in the cavity, an N -dimensional vector-vector dot-productPN=100
j=1 Jijcj is computed using the in-phase component cj of every pulse from the previous

roundtrip. This result is used to create the optical feedback signal.
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Figure 6.1. Experimental setup of machine 1. (a) The main fiber ring cavity (in the right
upper part of Figure) contains n = 160 DOPO pulses, where 100 of them will
be used as the signal DOPO. (b) The FPGA calculates the coupling term
from the n× n matrix J and the measured in-phase signal c̃ ∈ R100. From
[P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S.
Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M.
M. Fejer, H. Mabuchi, and Y. Yamamoto. A fully programmable 100-spin
coherent ising machine with all-to-all connections. Science, 354(6312):614–
617, 2016.]. Reprinted with permission from AAAS.
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The experimental system accommodates 160 pulses in a 330 m length ring cavity, 100

of which is used as the computation (signal pulses) and the rest is used to match the

measurement-feedback circuit waiting time. Since the pulse repetition frequency is 100

MHz (interval of 10 ns), the cavity round trip time is 160× 10 ns = 1.6 µs. The coupling

term is calculated on a Xilinx Virtex-6 SX475T FPGA. The FPGA clock is set to 200

MHz with an FMC 101 board containing 12-bit ADC and 12-bit DAC both clocked at

800 MHz.

6.2 Results

In this section, experimental results are shown. Here, the optimal solutions shown here

are obtained BiqMac solver [152].

6.2.1 Single Run

Möbius ladder graph M16

First, we checked with the simple cubic graph instance of n = 16 which has the frustration,

namely Möbius ladder graph M16 defined in Def. 2.7. The results of both simulation

and experiment are shown in Figure 6.2. The middle figures (b,c) show the DOPO

signal amplitudes measured by the photodetector. It captured that the time scale of the

simulation and experiment matches well, where both results start to bifurcate around

60-70 round trips. Figures 6.2 (d,e) shows the system could find the optimal value (CUT

= 22) in less than 100 round trips in both cases. Note that the Mn has the frustration

when n ∈ 4Z, because of the cycle and diagonal connections conflict, resulting the ground

states have two 2 spins clusters which are depicted in Figure 6.2 (a).

Erdös-Rényi random graph of order 100

Next, we checked the performance on a larger instance with the random connection,

namely Erdös-Rényi random graph of order n = 100 and the connecting probability

p = 0.1 (m = 495) plotted in Figure 6.3 (a). Again, the middle Figures (b,c) show the

measured signals from simulation and experiment, which show the simulation-experiment

correspondence. The bottom Figures (b,c) show the system could find the optimal CUT

value in both cases. Note that the signal amplitudes are not uniform due to injection,

which is remarkable in such a large graph.

6.2.2 Energy Distribution

The energy distribution in statistical trials are investigated. Figure 6.4 shows the results

for 3 cubic graphs of order n = 16. Among three instances, the Möbius ladder (Figure

6.4 (a)) was the highest success, where all trials were successful in 100 runs. Even in the

trials when CIM could not find the ground state, right two figures show that it could find

near-optimal states, namely first or second excited states in these instances.
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Figure 6.2. The simulation and experimental results when solving the Möbius ladder
graphM16. (a) The ground state configuration of theM16. (b,c) The DOPO
amplitude as a function of the number of cavity round trip time obtained
from the simulation and experiment, respectively. (d,e) The corresponding
cut values as a function of the number of cavity round trip time obtained
from the simulation and experiment, respectively. From [P. L. McMahon, A.
Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H.
Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi,
and Y. Yamamoto. A fully programmable 100-spin coherent ising machine
with all-to-all connections. Science, 354(6312):614–617, 2016.]. Reprinted
with permission from AAAS.
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Figure 6.3. The simulation and experimental results when solving the Erdös-Rényi ran-
dom graph of order 100. (a) Graph plot. (b,c) The DOPO amplitude as a
function of the number of cavity round trip time obtained from the simu-
lation and experiment, respectively. (d,e) The corresponding cut values as
a function of the number of cavity round trip time obtained from the sim-
ulation and experiment, respectively. From [P. L. McMahon, A. Marandi,
Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue,
S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y.
Yamamoto. A fully programmable 100-spin coherent ising machine with
all-to-all connections. Science, 354(6312):614–617, 2016.]. Reprinted with
permission from AAAS.
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Figure 6.4. Energy distribution when solving the cubic graphs of order n = 16. Red
bars indicate the ground states with success probability shown above. (a)
CIM found the optimal CUT on the M16 100 times in 100 trials. (b,c)
The success probability of finding the ground state is not 1 but CIM found
low-energy states in rest of the trials. From [P. L. McMahon, A. Marandi,
Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue,
S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y.
Yamamoto. A fully programmable 100-spin coherent ising machine with
all-to-all connections. Science, 354(6312):614–617, 2016.]. Reprinted with
permission from AAAS.

Remember the single DOPO steady-state distribution becomes Bolzmann distribution

under several assumptions in Section 3.6.4. There are several studies which state the

steady state of CIM become a Boltzmann distribution in simple cases [18, 153].

6.2.3 Statistics with Cubic Graph

The results from a several instances is insufficient. Next we investigated the performance

of MF-CIM as the success rate statistics for many trials of many problem instances.

Möbius ladder

We performed simulation and experiments with the Möbius ladder graph of 4 ≤ n ≤ 100

(see Figure 6.5). As explained above and in Figure 6.2 (e), the graphs have two types of

ground state configurations, depending on its number of vertices is multiples of 4 (n ∈ 4Z)
or not (n ∈ 4Z+2). Somehow the bipartite graphs without frustration (n ∈ 4Z+2) is more

difficult for CIM. The consistency can be checked to see the 100% success for the small-

sized instances and the 80% success around n = 32 especially for the n ∈ 4Z instances.

All Cubic Graphs of n = 16

To see the performance in a batch of instances, we created all the cubic graphs of the

order n = 16. In conformity with the experiment, DOPO amplitudes in the simulation

are initialized by biased Zeeman term in 30 round trips and then gradual coupling with
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Figure 6.5. Success probability scaling to find the optimal CUT in Möbius ladder graphs
Mn of 8 ≤ n ≤ 100. (a) simulation and (b) experimental results for n ∈ 4Z
case. Error bar is standard deviation of multiple sessions of 100 trials.
(c-e) Experimental energy distributions in 100 trials are shown for each
graph. From [P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly,
C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Ai-
hara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto. A fully
programmable 100-spin coherent ising machine with all-to-all connections.
Science, 354(6312):614–617, 2016.]. Reprinted with permission from AAAS.
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dξ/dt = −0.001 is operated in 300 round trips under the fixed pump rate of p = 0.88.

Results are summarized in Figure 6.6. As seen in Figure 6.6 (a), so far the success rate is

better in the simulation than the experiment, especially for the easy (success rate is around

1) instances. The correlation between the simulation and experiment on each instance is

described in Figure 6.6 (b), which should be compared with the self-correlation between

the different sessions of trials in Figure 6.6 (c). The correlation coefficient is ρ = 0.80.

The simulation model in the Section 4.3 well describes the experimental situation.

The reason of the worse performance can be inferred to be due to the experimental

instability, which is partly shown in Figure 6.7. The moderately slow wave in Figure

means the possibility of the system performance depending on the time. Note that the

multimode simulation discussed in the Appendix B can improve the success rate but it can

only be applied to the free-space system not in the current fiber-based implementation.

6.2.4 Finite Size Scaling with Random Graph

To Graph order n

In Figure 6.8, the two aspects of scaling are shown. Here, 10 random cubic graphs

are generated for each n. Figures 6.8 (a) and (b) show the success probability and

computation time to find α times the ground state, where α is swept from 0.9 to 1.0.

Computation time is defined as Tcomp × ⌈log(1 − 0.99)/ log(1 − psuccess)⌉, which is the

argmin
k

[(1− psuccess)k < (1− 0.99)].

For the ground states, the success probability decays and computation time scales

exponentially as n increase. It is MAX-CUT is NP-hard and no exponential speed-up is

observed. It improves as the solution accuracy becomes slack. Around α = 0.94, it almost

become flat in both Figures 6.8 (a) and (b).

To Edge density

Above results are obtained from sparse, mostly cubic, graphs. Since measurement-

feedback CIM is designed to implement arbitrary graph topology thanks to FPGA, we

checked the performance with variable density of graphs. Results are shown in Figure 6.9.

The experimental success probability drops in the complete graphs. This is due to the

insufficient pump power, due to the high sensitivity to the coupling constant. Current ex-

perimental setup is operated with gradual coupling under fixed (p = 0.88) pump rate. So

the performance improvement with higher pump rate is studied in the simulation, which

is shown in the bottom. It demonstrates the high pump rate will improve the performance

and as far as we need CUT better than 0.99 of the ground states, the success probability

can be 1.
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Figure 6.6. The comparison between the experiment and simulation on all the cubic
graph instances of order n = 16. (a,b) Histogram and correlation histogram
of the success probability, respectively. In conformity with the experiment,
DOPO amplitudes in the simulation are initialized by biased Zeeman term
and then gradual coupling with dξ/dt = −0.001 is operated in 300 round
trips under the fixed pump rate of p = 0.88. The histogram shows the sim-
ulation result is better around the successful region (nearly 100% success
instances). The Pearson correlation coefficient for these data is ρ = 0.80
(c) Correlations between two independent sets of 100 trials with the dif-
ferent parameters dξ/dt ∈ {−0.001,−0.00133}. From [P. L. McMahon, A.
Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H.
Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi,
and Y. Yamamoto. A fully programmable 100-spin coherent ising machine
with all-to-all connections. Science, 354(6312):614–617, 2016.]. Reprinted
with permission from AAAS.
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Figure 6.8. (a) Success probability and (b) computation time scaling evaluated on the
random cubic graphs. Each line of color means the performance is measured
for different residuals for the ground state, e.g., blue is the performance for
ground state and red is to the 94% of the ground state. Error bars indi-
cate the standard deviation, which is affected by the differences in problem
difficulty. From [P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly,
C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Ai-
hara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto. A fully
programmable 100-spin coherent ising machine with all-to-all connections.
Science, 354(6312):614–617, 2016.]. Reprinted with permission from AAAS.
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(a) Experiment (p = 0.88)
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Figure 6.9. The scaling of the success probability to find the ground state for fixed
order (n = 100) random graphs in (a) .experiment and (b-i) simulations.
It is well corresponding with the experimental parameter (p = 0.88) and
simulation (around 0.8 ≤ p ≤ 0.9) especially for the success rate in the dense
case. As the pump rate increases in the simulation, success rate around the
dense region dramatically increase, while the sparse instances drop. From
[P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S.
Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M.
M. Fejer, H. Mabuchi, and Y. Yamamoto. A fully programmable 100-spin
coherent ising machine with all-to-all connections. Science, 354(6312):614–
617, 2016.]. Reprinted with permission from AAAS.
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6.3 Summary

In this chapter, we checked the correspondence between the theoretical model presented

in Chapter 4 and the experimental data in relatively small-sized instances (n ≤ 100).

Results are consistent with three points of view.

• The order of the time constant and amplitude evolution are confirmed with several

single trials (Section 6.2.1).

• Computational performance in terms of scaling property and CUT histogram (Sec-

tion 6.2.3).

• Parameter dependence (Section 6.2.4).

In the next chapter, the experimental model will be compared with existing algorithms.
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Chapter 7

Performance Evaluation with
Larger Problems

Chapter 5 implied CIM performs relatively better on larger problems. In this chapter,

the computational performance is evaluated on n ≥ 2000 MAX-CUT benchmark in-

stances against two methods: approximation algorithm of GW by SDP relaxation and

metaheuristic of SA

[77] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi,

P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara,

K. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue. A coherent ising

machine for 2000-node optimization problems. Science, 354(6312):603–606, 2016.

The experimental results again evaluated with various implementations of neural network

based heuristics

[78] Y. Haribara, H. Ishikawa, S. Utsunomiya, K. Aihara, and Y. Yamamoto. Per-

formance evaluation of coherent Ising machines against classical neural networks.

Quantum Science and Technology, 2(4):044002, 2017.

7.1 Setup: Machine with n = 2048

The experimental configuration is slightly different from the previous Chapter 6 and one

in this Chapter can handle larger problems [77]. The DOPO part consists of a 1 km optical

fiber (round trip time of 5 µs) with an externally pumped PPLN waveguide. The pulsed

pump laser, at the 1 GHz repetition rate of 5000 times as the cavity circulation frequency,

generates 5000 individual DOPO pulses in a single fiber ring cavity. A segment of them

(2000 pulses) is used as the signal pulses for computation and the remaining portion (3000

pulses) is used for the cavity stabilization.

The feedback circuit stores the interaction strength for each pair of DOPO pulses. A

portion of the optical pulse is picked-off by a beamsplitter and measured by balanced a

balanced homodyne detector. The measured values of DOPO pulse amplitudes (c̃i)1≤i≤n
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are fed into an analog-digital converter (ADC), followed by two FPGAs of Xilinx Virtex-

7 VX690T (693,120 logic cells, 3,600 DSP slices, a 52,920-Kb memory). Here, 1 GHz

repetition rate of signal pulses is downclocked to 125 MHz (8 parallel) and the measured

amplitudes c̃i are sliced into the digital signals of 5 bits. Then 2 FPGAs sum up the

coupling effect from the other vertices (in the given topology)
∑

j Jij c̃j for the ith pulse.

The feedback pulse train is modulated in intensity and phase by this output electrical

signal after a digital-analog converter (DAC). The feedback pulse is injected to the signal

DOPO pulse running through the main fiber ring cavity via the coupler 2.

The DOPO is operated near the oscillation threshold by crossing the pump rate from

below to above the threshold in the case of gradual pumping [77]. In the beginning, the

DOPO is biased at below the threshold in which all phase configuration is established so

as a superposition state and the quantum parallel search is implemented [136]. Then, the

external pump rate (or the feedback) strength is gradually increased, and once the whole

system reaches the oscillation threshold, it selects a particular phase configuration which

corresponds to the near-optimal solution of the original optimization problem.

7.2 Benchmark results against SA

7.2.1 CUT Histogram

We investigated the performance of CIM with relatively larger problems of order n = 2000.

Instances are chosen from typical graph topologies: random, scale-free and complete.

Former two graphs are in G-set and the last one is a complete graph, whose random

weight is generated from uniform distribution of {−1, 1}. The instance property and the

results are summarized in Table 7.1. Figure 7.1 shows the solution distribution. In both

cases, the computation time is fixed to be 5 ms for CIM and 50 ms (in case of future

speed-up) for SA.

7.3 Hardware Configurations for Comparison

Here classical neural network based optimization algorithms are chosen which are de-

scribed in Section 2.4. They are implemented different hardware configurations, which

will be used in the benchmark section. Note that all codes are implemented with C++ 1.

7.3.1 CPU (for SA and HN)

SA and HN are iterative updating algorithms for discrete spins. We can achieve CPU

implementation efficiently by SIMD bitwise operations in parallel2. In this paper, we

mainly used Intel Xeon E3-1225 v3 @ 3.2 GHz (Haswell architecture shipped in 2013).

Note that the performance of SA is slightly improved from the previous paper, in which

1We used Ubuntu 16.04.4 with GCC 5.4.0 (CPU) and CentOS 7.1.1503 with GCC 4.8.3 (PEZY-SC)
2The code is available here. https://github.com/haribara/SA-complete-graph
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Table 7.1. Output CUT values. The computation time of CIM and SA are set to be 5
ms and 50 ms, respectively. Then the best (maximum) and mean CUT after
100 trials are listed. The corresponding histograms are shown in Figure 7.1.

G22 G39 K2000

topology Random Scale-free Complete
n 2000 2000 2000
m 19990 11778 1999000
w {0, 1} {−1, 0, 1} {−1, 1}
Best known 13359 2408 –
SA best 13336 2384 32781
SA mean 13298 2359 32314
CIM best 13313 2361 33191
CIM mean 13248 2328 32457
GW-SDP 12992 2200 29619

(a) Random G22 (b) Scale-free G39 (c) Complete K2000
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Figure 7.1. The cut statistics in 100 trials for typical topologies of graphs, random,
scale-free, and complete in Table 7.1. The computation time of CIM and SA
are set to be 5 ms and 50 ms, respectively. From [T. Inagaki, Y. Haribara,
K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMa-
hon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K.
Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue. A coherent ising
machine for 2000-node optimization problems. Science, 354(6312):603–606,
2016.]. Reprinted with permission from AAAS.
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Figure 7.2. (A) The hierarchical architecture of a PEZY-SC many core processor. There
are 1024 processing elements (PE) packed in a single chip. (B) Each PE
core handles 8 threads independently.

SA is run on an older processor (Intel Xeon X5650 @ 2.67 GHz Westmere architecture

shipped in 2010) [77]. We did not use any accelerators for HN and SA in this study

since it is already parallelized by SIMD operations in CPU and the cache hit rate is high

enough as 98.8%.

7.3.2 MIMD Many-Core Processor (for HTNN)

Since HTNN is based on ordinary differential equations (a continuous-valued continuous-

time system) and requires floating-point arithmetic, it is better to parallelize by acceler-

ators. We used a MIMD many core processor PEZY-SC @ 733 MHz with 1024 cores and

8192 threads on a chip (the architecture is shown in Figure 7.2), which is set in Shoubu

or Satsuki supercomputers at Riken (Japan). The peak performance of the processor is 3

TFlops. We parallelized matrix-vector multiplication and neuron updates in 8192-thread

parallel. The coupling matrix is efficiently stored as a 1-bit matrix (since Jij = ±1 has

no empty entry) and neuronal states as floating points (32-bit float). Note that it was 1.4

times faster than storing matrix values in 32 bits. The benchmark of the hardware itself

is shown in the Appendix C.
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7.4 Time To Target against Neural Network Based Heuris-
tics

We compared the performance of HN, SA, HTNN, and CIM by solving the MAX-CUT

problems on a dense graph. The particular problem instance is a complete graph, in

which all pair of vertices are connected and edges are weighted by {+1,−1} in uniform

distribution. We used the identical instance for n = 2000 as in Reference [77] and gen-

erated a larger instance of n = 20000 in the same manner using rudy [154]. Figure 7.3

shows the performance on the complete graph, while the detailed computation time to

target and the hardware configurations are summarized in Table 7.2.

We ran 100 different trials for the same problem instance (except for CIM experiment,

which consists of 26 trials). Each solid line in Figure 7.3 indicates the ensemble average

of all trials, while the lower and upper shaded lines indicate the best and worst case

envelopes, respectively. Here, parameters for SA and HTNN are optimized to achieve

the shortest computation time to the target which is obtained by the SDP relaxation

algorithm [84]. The computation time to the SDP-produced target is shorter in the order

of CIM, HN, SA, HTNN on the instance. The data from CIM in Figure 7.3 (a) are

noisy due to experimental noise, but it can find better solutions than the target in all

26 trials. HN is faster than SA since HN can be regarded as a derandomized version of

SA. Note that in the worst case, HN cannot reach the target (it fails 3 times in 100 trials

as it can be seen partly in the worst case in Figure 7.3 (a)). It can be understood that

HTNN performs much slower than HN/SA since it solves ODEs which deals with the

analog variables. Note that HTNN achieves lower energy than SA in Figure 7.3 but the

performance of SA heavily depends on temperature scheduling. We optimized to reach

the target shorter but slower scheduling ends up lower energy generally.

The computation time to the SDP target is in the same sequence when the number of

vertices increases to n = 20000. Here the cavity round trip time of CIM is assumed to be

10 µs. Then the relative speed-up of CIM is raised to 2-3 orders of magnitude compared

to other implementations.

7.5 Summary

In this chapter, the CIM performance was evaluated on relatively large instances.

• Time constant and parameter setting agrees with the numerical simulation.

• Experimental machine could achieve predicted performance in terms of computation

time and solution quality.

• Also compared to SIMD and multi-thread operations on a CPU and many-core

processor. CIM still show the relative speed-up.

Note that, the computational performance depends on experimental stability, which

requires precise temperature control. When the system is unstable, we need to wait
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Figure 7.3. Energy descent when solving {+1,−1}-weighted (a) n = 2000 and (b) n =
20000 complete graphs. Each thick line is the ensemble average of 100 trials
(except for CIM experiment, which consists of 26 trials), while the lower
and upper shaded error bars show the best and worst envelopes for each
computational model. The gray dotted line is the target values −60278/n
and −1841216/n for n = 2000 and 20000, respectively, which are obtained
by the SDP relaxation algorithm [84]. In the CIM simulation of n = 20000,
the cavity round trip time is assumed to be 10 µs.

the stabilization of cavity for DOPO oscillation. And also, in the results shown in this

dissertation, input and output time of the problem is not included for both CIM and

other implementations. There can be a communication bottleneck if we treat huge size

of matrix.
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Table 7.2. Time to target and hardware configurations. The best (shortest) time to
reach the target value and the time to cross the ensemble averaged line are
listed in the upper table. Note that the target value is obtained by the
SDP relaxation algorithm which has performance guaranty to the 87% of
the optimal value.

n = 2000 n = 20000
Best (ms) Avg. (ms) Best (ms) Avg. (ms) Hardware

CIM 0.071 0.264 0.14 0.15 fiber DOPO+2FPGAs (n = 2000)
HN 0.924 1.84 23 26 CPU
SA 2.10 3.20 60 65 CPU
HTNN 7.04 9.67 500 540 PEZY-SC

Hardware Model Clock and Architecture Release
FPGA Xilinx Virtex-7 VX690T 125 MHz 693k logic cells 2010
CPU Intel Xeon E3-1225 v3 3.2 GHz, Haswell 2013
MIMD many core PEZY-SC 733 MHz, 1024 core 2014
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Chapter 8

Conclusion

8.1 Experimental Validity and Computational Performance

In this dissertation, the measurement-feedback CIM with DOPO and FPGA is proposed

in the Chapter 4. The working equation is formulated by the CSDE via truncated Wigner

representation. The numerical simulations predicted the performance of CIM in Chapter

5. It can deal with the MAX-CUT on graphs of order few to several tens of thousands.

It converges with several hundreds of round trips and can find the ground states in small

problems and good approximate solutions in larger benchmark instances. Scaling up the

problem, It showed the relative speedup on dense graphs against existing heuristics. In

next Chapter 6, the numerical simulations are compared to the results from a real exper-

imental machine. It confirmed that the CIM will find the ground states with instances

up to n = 100 experimentally. Then, the computational performance is checked against

variety of hardware implementations of metaheuristic algorithms in the Chapter 7. The

final results indicate, the CIM was 6.9697 and 12.1212 times faster than HN and SA,

respectively, in terms of the average computation time to the target solution given by

GW-SDP on the randomly weighted complete graph of n = 2000. Many other results

suggest the more experimental stability will contribute to the performance improvement

and relative speedup will be possible when the size of the problem grows.

8.2 Possibility of Other Implementations

Our experimental success stimulated several groups and several similar implementations

are reported. A group in Hewlett Packard Labs reported an all-optical system, where the

coupling strength is controlled by heat oven on a chip [155]. They succeeded to implement

small (n = 4) system on a chip. Technische Universität Dresden (TU Dresden) is working

on an on-chip optical-electronic hybrid system [156]. Its experimental implementation is

under examination, it is interesting to see if the optical-electrical synchronization can be

seamlessly realized. A groups in MIT, Oxford, and UC Berkley are also investigating the

simplified model with Gaussian approximation [157].
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8.3 Practical Issues

As described in Introduction, the saturation of a single processor performance made a

shift to alternative architectures. A problem-oriented Ising computer is one of the choices

and the promising performance is implied. Note that the graph I/O time is excluded in

the benchmark sections. Practically, the data transfer time is will be not negligible and

roughly 37 µs when the PCI-Express Gen3 (x8) is assumed.

The initial motivation to restrict the target to the Ising/MAX-CUT problems was

because there exist polynomial time reduction from NP problems to them since they are

NP-hard. But practically, this polynomial mapping cost can be critical when we search the

approximate solutions to many other combinatorial optimization problems. This could

be an overlooked disadvantage compared to the computational complexity theory and

software implementation flexibility. For example, to represent n-city TSP in Ising model,

we need n2 spins to store a permutation as an n×n city-order matrix with two constraint

terms: one-city-at-once and never-visit-again constraints [110]. A difficulty comes from

the constraint must be satisfy to obtain feasible solutions, it originates from the new

degree of freedom in parameter for redundant expression of the permutation. It means

more highly application-specific hardware design is necessary, not just for Ising/MAX-

CUT problems.

8.4 Discussion

8.4.1 Related Quantum Nature

The quantum nature of CIM is discussed from four points of view, while its contribution

to the computational speedup is not known.

1. Quantum correlation (including entanglement) under the threshold [141].

2. Entanglement between inside/outside cavity by squeezing [144].

3. Skewed distribution by back action of measurement [143].

The first point, a quantum entanglement is numerically observed assuming optical

coupled high Q (i.e., very low loss) cavity in Reference [141], though the contribution to

the computational ability is not yet known. In the measurement-feedback system, the

inter-pulse coupling is local operations and classical communication (LOCC), hence no

entanglement exists among the different DOPO pulses in theory.

Regarding the second point, it is shown that the squeezing is essential to make the

correlation in between the pulse in the main cavity and its counter part in the picked-off

measurement path in Reference [144].

It is an open question whether the last point works as a computational resource.

Since the computational effort of simulating the measurement-feedback model in positive

P represented presented in Reference [143] (see Section 4.2.3) is expensive, the simulator

is ported to GPUs and will be studied.
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8.4.2 Further Discussion

We designed an optical-pulse-based scalable computer and studied the performance on

NP-hard combinatorial optimization problems. Though the target is interesting in theo-

retical points of view, the real-world application is not directly solved by this. To extend

applications go beyond the Ising/MAX-CUT, we present some of the examples in Ap-

pendix A.

It is still an open question: how quantum nature affects the computational perfor-

mance, even if the exponential speedup is not expected. It should be studied with large

problem instances compared to positive P , which is enabled by massive parallel imple-

mentation of simulation. We should care, as the multimode DOPO case in Appendix B

tells, it does not necessarily mean that the physical computational error in small-sized

system n = 2, 4, 16 directly improves the performance in larger instances. It is because

the problem difficulty comes from the combinatorial structure.

It is becoming more important to focus on the application-/service-specific design of

the hardware. Note that the benchmarks are done on the current generation of computer

architecture, and the performance depends on the generation (see Appendix C). It is

difficult to predict the future, but we are optimistic since the improvement in FPGA

would be larger than that on CPU in coming few decades.

Not only the hardware for comparison, the possibility for improvement on algorithms

or theory exist while we extensively studied the existing methods. A different types of

Monte Carlo are considered in Appendix D, while it does not change the conclusion.

On the other hand, there is a possibility to gain the CIM performance by modifying the

implementation. Appendix E sketches an idea to implement weighted graphs efficiently.

The reduced bit implementation is similar to recent architecture in neural network

accelerators. In such system, the depth of bit slicing is critical. Several examples are

shown in Appendix F.

8.5 Perspectives and Concluding Remarks

The evaluation of the computational performance cannot be done in a single point of view.

It is difficult to determine how much abstraction level of problems we should consider.

In this dissertation, we treated one of the most abstract model of optimization, Ising or

MAX-CUT problems. Although, as mentioned above, more problem specific approach is

necessary to achieve the performance gain.

In this dissertation, the benchmark was studied against approximation algorithms and

heuristics on general-purpose processors such as CPU, GPU, and many-core processors.

While it will be beyond the scope of this dissertation since there are many implementa-

tions, the relative performance against special-purpose processors such as Ising machines

on FPGA or ASIC should be studied.
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There is still a possibility of variants to match a good machine-problem fit, hopefully,

the novel architecture would truly show the overwhelming performance. We hope this

study on CIM can contribute to the enhancement of modern computer architectures.
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