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Abstract

Wave dynamics emerge widely in spatially extended dynamical systems, including biologi-

cal and artificial neural networks. This thesis investigates the wave dynamics in a cellular

chaotic neural network (CNN) under simplified settings, dealing with both characteriza-

tion and control of waves. Specifically, the plane wave dynamics is studied from the point

of view of local bifurcation theory with an emphasis on the Bogdanov–Takens (BT) bifur-

cation; and the control of spiral wave dynamics is considered on the basis of a dynamic

phase space constraint (DPSC) method.

First, to facilitate the BT bifurcation analysis, computation of its parameter-dependent

normal form on the center manifold for n-dimensional, m-parameterized continuous-time

systems is studied using the homological method. In the general case, a revision to the

existent result on the parameter transformation is obtained, which is necessary for deter-

mining the bifurcation diagrams to the second order. In the case of enduring equilibria,

simple formulas are obtained for the transformation of parameters, enabling the formula-

tion of explicit transversality conditions and bifurcation diagrams to at most the second

order. Moreover, in Z2-symmetric systems, the calculation can be further limited within

certain subspaces. These results either revise or simplify existent studies, thereby facilita-

ting quick computation of parametric normal forms for BT bifurcations in applications.

Next, the previously derived formulas are used to analyze the plane wave dynamics in

the neural field model of the cellular CNN, which is a variant reaction-diffusion system

with a singular and nonlinear spatial coupling. The BT bifurcation occurs in the three-

dimensional traveling wave system for all wave speed values, indicating the existence of

periodic waves, fold of periodic waves, and solitary waves with relatively high speeds, and

periodic waves and single fronts/backs with slow speeds. The occurrence of the Bautin

bifurcation reveals the existence of fold of periodic waves with relatively slow speeds as

well. Moreover, the approximate dispersion relation for small-amplitude periodic waves is

obtained, and the stability of these waves is analyzed. All these results are also verified

or supplemented by numerical continuation studies. This part of research describes the

overall plane wave dynamics in oscillatory media (with a Z2 symmetry) in the parameter

space, serving as a supplement to the existent analysis of plane wave dynamics in typical

excitable media.

Finally, the spiral wave dynamics in the simplified cellular CNN is investigated. It is

shown by simulation that random initial conditions lead to stably rotating chaotic spiral
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waves in the network, which demonstrate amplitude reduction near the phase singularity.

A DPSC method is proposed for eliminating the spiral waves, where a control signal is

constructed to indicate the presence of spiral waves and a limiting threshold modulated by

the control signal is imposed on the refractory internal state of the network. Such a control

scheme turns out to be successful in redirecting the network from a spiral wave state into

either a plane wave (PW) state or a synchronized oscillation (SO) state. The pre-, intra-,

and post-control dynamics exhibit different characteristics in the frequency domain; the

PW-inducing and SO-inducing control processes are also distinct. Furthermore, a partial

selectivity of the control results between PW and SO by varying the control parameters is

discovered. This scheme surpasses existent methods of removing spiral wave in the sense

that not only homogeneous states are produced and that the control does not need to be

turned off manually.

The results of this thesis provide fundamentals of the traveling wave dynamics in the

cellular CNN and may help to facilitate the future application of such networks. These

results may also be beneficial to the study of wave dynamics in other spatially extended

dynamical systems.

Keywords Bogdanov–Takens bifurcation, Parameter-dependent normal form,

Chaotic neural network, Variant reaction-diffusion system, Traveling wave,

Spiral wave, Chaos control, Dynamic phase space constraint
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Chapter 1

Introduction

Traveling waves are quite ubiquitous phenomena: water waves, sound waves, and electro-

magnetic waves, etc. Generally, they are the spatial propagation of some abstract local

motions (e.g., oscillations), where the state (e.g., phase) of an oscillator, rather than the

oscillator itself, is transferred to other oscillators in certain directions. Traveling waves fall

into different types in appearance: the most important might be periodic traveling waves

(or called wave-trains), where the periodicity exists in both time and space; we can also

have solitary waves (which are single pulses) and even single wave fronts/backs; with two

and more spatial dimensions, spiral and scroll waves may appear. In the mathematical

aspect, traveling waves play a fundamental role as the solutions to many spatially extend-

ed dynamical systems in both continuous and discrete forms [85], ranging from partial

differential equations [95, 98] to cellular automata [15, 20, 65, 106]. These systems usual-

ly feature oscillatory or excitable local dynamics and diffusion-like spatial coupling, and

they are widely used to model various real-world physical, chemical, neural, and ecological

systems that accommodate traveling waves.

Traveling waves in the cortex

With the flourish of neuroscience, traveling waves in the vertebrate brain are attracting

increasing attention. People have discovered traveling waves with different physiological

origins, such as those with glial [29, 73] or hemodynamic [6] origins; nevertheless, the

most studied species is the traveling waves of subthreshold activity, detected by multi-site

monitoring of voltage-sensitive dyes, the local field potential, or other signals. The strong

local synaptic connection between neurons forms an important physiological basis of the

occurrence of such traveling waves.

The traveling waves of subthreshold activity are observed extensively in the neocor-

tex [19, 71, 78, 79, 90, 99], as well as in the limbic system, such as the olfactory bulb [51]

and the hippocampus [54, 104]. Spontaneous and evoked waves are both observed, which

might play vital functional roles in signal integration over large regions [79] and infor-

mation transmission between distributed brain parts [71]. Furthermore, these waves can
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increase the probability and modulate the timing of single-neuronal firing, so traveling

waves of spiking activity can be present with a similar pattern [79].

A particularly interesting type of traveling wave is the spiral wave, whose wave speed

depends on the curvature of a wavefront, and the wavefronts of all phases intersect at a

phase singularity. Such a topological defect in biological tissues may be pathological: a

famous and well-studied example is that spiral waves underlie cardiac fibrillation [28, 68].

Recently, the involvement of cortical spiral waves in triggered and induced mammalian

epileptic seizures has been demonstrated [89, 94]. Moreover, spiral waves are believed to

be essential for the normal cortical functions by serving as rhythmic organizers of neuronal

populations [100]. They depolarize the area surrounding a phase singularity in a mild and

regular manner, thereby tuning the ongoing activity to higher excitable states to enhance

responses during sensory processing.

Experimental studies have also demonstrated the differences between the cortical spiral

waves in vivo and in vitro, using the technique of voltage-sensitive dye imaging [38, 39].

It is found that the cortical spiral waves in vivo generally have higher drift speeds, large

dimensions of amplitude reduction, and shorter lifespans (before or after they evolve into

or emerge from other states, respectively). These differences are believed to result from

the long-range corticocortical or thalamocortical connections in the intact brain, which

had been removed in a brain slice. In other words, these results indicate the existence of

biological autonomous mechanisms for controlling the genesis, progression and termination

of spiral waves in intact cortices, although the specific control scheme still remains unclear.

Traveling waves in neural networks

Spatially extended dynamical systems can be classified based on the continuousness and

discreteness of their time, space and state variables [41]. For partial differential equation,

all three items are continuous; when the space is discretized into elements, we get coupled

differential equations or continuous-time neural networks; when both space and time are

discretized, we obtain coupled lattice maps or discrete-time neural networks; for cellular

automata, all three items are discrete. Traveling waves can be generated in systems of all

types listed above, including cellular (i.e., locally-connected) neural networks [17].

Neural networks can be constructed using biologically realistic neuron models to devel-

op platforms for the investigation of neurodynamics. Some important neuron models are

the FitzHugh–Nagumo neuron, Hindmarsh–Rose neuron, and Hodgkin–Huxley neuron,

and they are all expressed by ordinary differential equations. In cellular neural networks

that comprise neurons of each of these species, traveling waves have been reported (see [22]

for FitzHugh–Nagumo, [57] for Hindmarsh–Rose, and [102] for Hodgkin–Huxley neural

networks, respectively). In addition, neural networks composed of other elements such as

Chua oscillators [75] are also feasible media for traveling waves.

As for discrete-time neural networks, we pay particular attention to the chaotic neural

network (CNN) proposed by Aihara et al [2]. Composed of chaotic neurons that manifest



3

chaotic dynamics similar to biological neurons, the CNN provides possible properties for

both physiological and practical functionality. Specifically, it has attracted much interest

as a prototype for dynamic associative memory [1, 3, 34, 46, 97]. In contrast to a convergent

Hopfield network, the output of an associative CNN exhibits seemingly random itinerancy

among all the basal patterns. Furthermore, when the weight connections in the associative

CNN are local, traveling waves can be generated. Wave-like pattern formation behavior

was observed in a cellular CNN where several colors are encoded [66]; subsequently, in

large-scale cellular CNNs implementing color image association, multiple types of traveling

waves, including plane waves (PWs), crossing PWs, and spiral waves of activation of stored

patterns, were identified [67]. These results provide a novel mechanism of association as

propagating alterations of local cell assemblies, rather than the conventional association

scheme of global state transitions.

We should note that controlling the dynamics of neural networks as dynamical systems

is also of interest. For example, the method of inducing target waves by periodic injection

to suppress spiral waves was first proposed for excitable media that model CO catalytic

oxidation and cardiac muscle [103]; this method was later applied to eliminate the spiral

waves in the network of Hodgkin–Huxley neurons [59]. On the other hand, although there

have been a series of studies proposing various methods of controlling the chaotic dynamics

in fully-connected associative CNNs to facilitate their application [33, 34, 35, 36, 52],

corresponding control methods for cellular associative CNNs that are able to modulate

their traveling wave behavior, are still absent.

Traveling waves and bifurcations

As mentioned above, traveling waves emerge in both real and artificial neural networks,

which are composed of individual neurons and are hence spatially discrete. If we concen-

trate on the collective wave behavior (e.g., plane waves) on a macroscopic scale rather

than the pattern formation within small neuron assemblies, then a cellular neural network

can be approximated as a continuous medium. Thus, the traveling waves in the original

networks are approximated by the traveling wave solutions to the corresponding neural

field models, expressed in partial differential equations.

The clarification of the behavior of these traveling wave solutions in parameter spaces

can be done using bifurcation theory; such kind of study was initiated by Kopell and

Howard [45]. By considering the Hopf bifurcation in the traveling wave equations obtained

from reaction-diffusion equations, they proved the existence of a one-parameter family of

plane wave solutions, under certain hypotheses for the Jacobian matrix of the equilibrium

and the diffusion matrix. They also investigated the linear stability of the plane waves and

concluded that with a near-identity diffusion matrix, small-amplitude waves are unstable.

The famous λ–ω system, which comprises a circular limit cycle oscillation and a linear

scalar diffusion term, was analyzed to illustrate their major results.
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This research scheme later becomes quite standard and has been used to analyze the

traveling wave solutions of many partial differential equations, ranging from the famous

FitzHugh–Nagumo equation [13, 26, 27] and complex Ginzburg–Landau equation [60, 69,

70] to some less known equations (see [101], [105] and the references therein for examples).

Typically, periodic traveling wave solutions with an infinitesimal amplitude emerge form

Hopf bifurcations; with the changes of parameters, the period of these traveling waves

might approach infinity as a result of homoclinic bifurcations, where they become solitary

wave solutions. Bifurcation analysis also helped people to understand the traveling wave

solutions to the partial differential equations that model many specific real-world systems,

such as calcium in pancreatic acinar cells [88], gas-fluidized beds [21], multimode lasers [11],

and population dynamics [9, 74]. We note that the emergence and annihilation of traveling

waves can be due to other bifurcations as well [44].

The analysis of higher-codimensional bifurcations may provide more information about

the traveling wave solutions [76]. By considering multiple parameters at a time, the bifur-

cation diagram usually contains multiple bifurcation boundaries of lower-codimensional

bifurcations. For example, the generalized Hopf bifurcation of codimension two (Bautin

bifurcation) involves supercritical and subcritical Hopf bifurcations together with a saddle-

node bifurcation of limit cycles; the Bogdanov–Takens (BT) bifurcation of codimension

two involves fold, Hopf, and homoclinic bifurcations, and in some cases, the heteroclinic

bifurcation or saddle-node bifurcation for limit cycles can be involved. In this way, the

analysis of such bifurcations may give further information about the existence of solitary

waves, traveling fronts/backs, (coexisting) multiple periodic traveling waves and the cor-

responding parameter values or regions than the analysis of Hopf bifurcations only. The

higher-codimensional bifurcations in typical excitable media (for example, the FitzHugh–

Nagumo equation) has been investigated in [13, 26, 27]

Objective and content of the present thesis

This thesis sets foot in the investigation of the traveling wave dynamics in cellular chaotic

neural networks under simplified conditions, concerning especially the fundamental char-

acteristics of periodic plane waves and possible control schemes for chaotic spiral waves.

To explore the parameter dependence of the traveling wave behavior, bifurcation analysis

is carried out with an emphasis on the codimension-two BT bifurcation, for which we find

simple formulas for the parametric center manifold reduction. These studies serve as es-

sential preparations for further attempts of applying the cellular chaotic neural networks

in memory retrieval and other information processing tasks as well as finding clues for the

regulation of traveling wave dynamics in real nervous systems.

The content of this thesis is organized as follows:

In Chapter 2, we introduce briefly the fundamental notions of local bifurcation theory,

including the key concepts such as topological equivalence, bifurcation, normal form, center

manifold reduction, and some specific types of local bifurcations. Moreover, the derivation
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of the normal forms for the BT bifurcation in planar systems will be explained in detail,

which will be used directly as fundamentals during the generalization to n-dimensional

systems (n > 2) in the next chapter.

Chapter 3 provides preparation for the following chapter, by considering the deriva-

tion of parameter-dependent normal forms of the BT bifurcation for n-dimensional, m-

parameterized systems. Compared with some existent studies [12, 72], this thesis presents

either revision or simplification, and hence enables quick determination of the parameter

transformation and check of the transversality condition.

Specifically, in the general case where a saddle-node bifurcation is involved, a revision to

the existing result is provided, which is necessary for determining the bifurcation diagrams

up to the second order. More importantly, in the case of an enduring equilibrium where a

transcritical or pitchfork bifurcation is involved, quite simple formulas are obtained for the

transformation of parameters to the second order, leading to the formulation of explicit

transversality conditions and bifurcation diagrams; moreover, in Z2-symmetric systems,

the calculation can be further restricted within certain subspaces. The results facilitate the

derivation of normal forms, check of transversality and depiction of bifurcation diagrams

for the BT bifurcation.

In Chapter 4, a cellular chaotic neural network under simplified conditions is approx-

imated to a neural field model with Liénard-type local dynamics and singular, nonlinear

diffusive spatial coupling, for analyzing the plane wave dynamics in it. The plane waves

in typical excitable media (the FitzHugh–Nagumo system) were analyzed from the angle

of bifurcations in [13, 26, 27]; as a supplement, this thesis considers the plane waves in

typical oscillatory media with symmetric local dynamics, which have different features.

The corresponding three-dimensional traveling wave system (with the two-dimensional

local dynamics as its limit for the wave speed c→ +∞) is analyzed with an emphasis on

the BT bifurcation, using the technique given in the preceding chapter. The Z2-symmetric

traveling wave system exhibits the BT bifurcation for every c > 0, indicating the existence

of periodic waves, fold of periodic waves, and solitary waves with relatively high speed c,

and periodic waves and traveling fronts with relatively low speed c. The Bautin bifurcation

indicates fold of periodic waves for small c values as well. With the method of harmonic

balance, the approximate dispersion relation of small-amplitude periodic plane waves is

obtained. Moreover, a simple stability analysis shows that the periodic waves of sufficiently

small amplitudes are unstable; the stability of periodic waves with larger amplitudes are

investigated numerically.

In Chapter 5, the spiral wave dynamics in the cellular CNN is investigated, and

a dynamic phase space constraint (DPSC) method is proposed to eliminate spiral waves.

Different from previously existent methods [58, 84, 103] where the control must be stopped

“manually” after a homogeneous state is obtained, the DPSC method can lead to not only

homogeneous states (specifically, synchronized oscillation, SO) but also various PW states,

where the control has automatically ceased.
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In this method, a control signal is constructed from the feedback internal states of the

neurons to detect phase singularities, before modulating a threshold value to truncate the

refractory internal states of the neurons and terminate the spirals; then, the network was

directed from a spiral wave state into either a PW state or an SO state. The intra-control

and post-control dynamics were compared with the pre-control spiral wave dynamics, and

the differences between the PW-inducing and SO-inducing control processes were also

found. Furthermore, variations in the control parameter allowed partial selectivity of the

control results, accompanied by modulated control processes. These results broaden the

applicability of DPSC to chaos control, and may also facilitate the utilization of cellular

CNNs in memory retrieval and the exploration of traveling wave dynamics in biological

neural networks.

Finally, conclusions and prospects for this thesis are given in Chapter 6.
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Chapter 2

Preliminaries of Local Bifurcation
Theory

This chapter provides a brief introduction to the most fundamental concepts and notions

of the bifurcation theory, with a focus on the local bifurcations that occurs at the equilibria

of continuous-time dynamical systems. As an indispensable part of the qualitative theory

of differential equations, “bifurcation” generally refers to the destruction of the topolog-

ical equivalence relation of a family of systems, under variation of parameters. Different

bifurcations are modeled by their corresponding normal forms; bifurcations occurring in

high-dimensional systems are essentially represented by their restriction to an invariant

center manifold of the lowest possible dimension. According to the minimum number of

parameters needed for revealing their unfoldings, bifurcations are categorized into different

codimensions. After introducing the codimension-one and codimension-two bifurcations,

the codimension-two BT bifurcation is elucidated because of its particular importance in

this thesis.

2.1 Topological equivalence

2.1.1 Topological equivalence relations

The topological equivalence relation of dynamical systems is used to indicate the quali-

tative similarity between the behavior of these systems; the necessary condition for such

a similarity should include the same number, stability, and relative location of limit sets

(equilibria and limit cycles, etc.); more precisely, two systems are pictured as equivalent,

when a continuous function with a continuous inverse (i.e., a homeomorphism) relates

their phase portraits. Hence people have the definition of topological equivalence [25, 47]

as below.

Definition 1. Two dynamical systems in Rn are topologically equivalent if there exists a

homeomorphism h : Rn → Rn that maps the orbits of one system to those of the other

while preserving the direction of time.
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Definition 1 can be applied to both discrete- and continuous-time dynamical systems.

For continuous-time systems, more strict equivalence relations are frequently used and can

be viewed as sufficient conditions for the general topological equivalence in Definition 1.

Considering the system

ẋ = f(x), x ∈ Rn, (2.1)

and the system

ẏ = g(y), y ∈ Rn, (2.2)

where f and g are smooth, we have the following definitions [47].

Definition 2. Systems (2.1) and (2.2) are smoothly equivalent (or diffeomorphic) if there

exists a diffeomorphism y = h(x) such that, for all x ∈ Rn,

∂h(x)

∂x
f(x) = g (h(x)) .

Definition 3. Systems (2.1) and (2.2) are orbitally equivalent if there exists a smooth

positive function r(x) such that, for all x ∈ Rn,

f(x) = r(x) g(x).

Definition 2 describes the situation where systems (2.1) and (2.2) can be transformed

to each other by a smooth, invertible change of variables, y = h(x); hence, the two systems

are equivalent in almost every aspect and obviously satisfy the condition in Definition 1.

Definition 3 describes the situation where the two systems can be obtained from each other

by a time reparametrization (no reversal); thus, the orbits of these systems are identical

everywhere in Rn, only with different velocities of the phase point. In practice, people

often combine smooth invertible changes of variables and time reparametrizations and use

them repeatedly, to transform a system to a desired topologically equivalent form.

The preceding topological, smooth and orbital equivalences defined globally in Rn can

also be defined locally for some region U ⊂ Rn. To consider the topological equivalence of

systems (2.1) and (2.2) near corresponding equilibria, we have the definition below [47].

Definition 4. System (2.1) near an equilibrium x0 and system (2.2) near an equilibrium

y0 are locally topologically equivalent, if there exist a homeomorphism h : Rn → Rn defined

in a neighborhood U of x0 that satisfy the following conditions:

(i) h(x0) = y0;

(ii) h maps the orbits of (2.1) in U to those of (2.2) in V (V = h(U)) while preserving

the direction of time.

In this situation, we may also say for simplicity that the two equilibria, x0 and y0, are

topologically equivalent. To give an example, let us consider the planar systems{
ẋ1 = −x1,

ẋ2 = −x2,
and

{
ẏ1 = −y1 − y2,

ẏ2 = y1 − y2,
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where the origin is a stable node in the former system but a stable focus in the latter.

This is clear as we can check that the homeomorphism y = h (x), with h(0) = 0 and

h(x1, x2) =

[
cos ln

√
x2

1 + x2
2 sin ln

√
x2

1 + x2
2

− sin ln
√
x2

1 + x2
2 cos ln

√
x2

1 + x2
2

] [
x1

x2

]
for (x1, x2) near (0, 0), satisfies the conditions of Definition 4. Such a node–focus equiva-

lence will be further generalized as follows.

2.1.2 Classification of hyperbolic equilibria

We now present some important results on the classification of hyperbolic equilibria, which

directly caters for the condition for the occurrence of local bifurcations of equilibria. First,

we have the following definition for the so-called hyperbolic equilibrium.

Definition 5. Let x0 be an equilibrium of system (2.1) where the Jacobian matrix has

n−, n0, and n+ eigenvalues whose real parts are negative, zero, and positive, respectively

(n− + n0 + n+ = n). Then, x0 is a hyperbolic equilibrium if n0 = 0.

A classification of hyperbolic equilibria can be carried out on the basis of local topolog-

ical equivalence relations, according to two celebrated theorems in the theory of dynamical

systems. One of them is the Hartman–Grobman theorem (or called linearization theorem),

which asserts that the behavior of a nonlinear system in the neighborhood of a hyperbolic

equilibrium is qualitatively the same as that of its linearization.

Theorem 1 ([23, 24, 30, 31]). System (2.1) near its hyperbolic equilibrium x0 is locally

topologically equivalent to the linearized system, ẋ = Jx, with J = ∂f
∂x

∣∣
x=x0

the Jacobian

matrix evaluated at x = x0.

The other theorem is due to Arnold [7], which gives the sufficient and necessary con-

dition for two hyperbolic linear systems to be topological equivalent.

Theorem 2 ([7]). Two linear systems (2.1) and (2.2) with hyperbolic equilibria are topo-

logically equivalent, if and only if the numbers of eigenvalues with positive (or negative)

real parts are equal for these systems.

By Theorem 1, Theorem 2 can be generalized from two linear systems to two arbitrary

systems: a hyperbolic equilibrium x0 of system (2.1) and a hyperbolic equilibrium y0 of

system (2.2) are topologically equivalent, if and only if they have the same numbers n− (or

n+). This fulfills a classification of all hyperbolic equilibria according to the values of n+

and n−. Moreover, the following conclusion is readily drawn: For a hyperbolic equilibrium

of a parameter-dependent system, as all the eigenvalues of its Jacobian matrix keep away

from the imaginary axis, the equilibrium remains locally topologically equivalent under a

sufficiently small smooth parameter perturbation.
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2.2 Bifurcations and normal forms

In real-world applications, all dynamical systems depend on some parameters. Specifically,

people are interested in the behavior of parameter-dependent systems as a consequence of

changed operating conditions or to account for uncertainties. Sometimes, even a slightest

perturbation results in a sudden change and a qualitatively distinct system, as the straw

that breaks the camel’s back: we may say that the system is “structurally unstable”

and undergoes a “bifurcation”. In this section, the definitions of bifurcation, bifurcation

diagram, codimension, and normal form of a bifurcation will be introduced. First, let us

consider an n-dimensional, m-parameterized continuous-time system

ẋ = f(x,α), x ∈ Rn, α ∈ Rm, (2.3)

where f is smooth, and give the following definition.

Definition 6. The parameter-dependent system (2.3) undergoes a bifurcation at a bifur-

cation point α = α∗, if in any neighborhood of α∗ there always exist values of α such that

system (2.3) is not topologically equivalent to ẋ = f(x,α∗).

Simply speaking, bifurcation is the appearance of topological non-equivalence under

variation of parameters; this applies to both continuous- and discrete-time systems. As can

be expected, bifurcations can be local or global. If the variation of parameters only leads

to a locally topologically non-equivalent system near an equilibrium, then the bifurcation

is local. Otherwise, if the resultant topological non-equivalence cannot be detected in a

small neighborhood of an equilibrium, then the bifurcation is said to be global. Following

from the introduction in Sec. 2.1.2, it is clear that local bifurcations of an equilibrium only

occur when the equilibrium is non-hyperbolic. The non-hyperbolicity of an equilibrium,

i.e., existence of eigenvalues with zero real parts, is the (local) bifurcation condition, which

locates a bifurcation point.

The set of parameter values where a bifurcation condition is satisfied (i.e., set of bifur-

cation points) is called a bifurcation boundary. Note that there are bifurcation conditions

for global bifurcations, too, so that when the parameter crosses a bifurcation boundary,

some bifurcation occurs. Then we have the following definition.

Definition 7. A bifurcation diagram is a partition of the parameter space of a parameter-

dependent system by the bifurcation boundaries for one or more bifurcations such that the

system remains topologically equivalent within each region.

Usually, the partition in a bifurcation diagram is accompanied by representative phase

portraits. Besides, we note that the bifurcation boundary in a one-dimensional parameter

space is a bifurcation point, but it can also be a bifurcation curve, a bifurcation surface,

etc., in parameter spaces with sufficiently high dimensions. For instance, the bifurcation

condition of a simple zero eigenvalue λ1 = 0 gives a curve on the plane spanned by two

parameters, while the bifurcation condition of a double-zero eigenvalue λ1,2 = 0 gives a

point. Hence we have the following definition.
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Definition 8. The codimension of a bifurcation is the difference between the dimension

of the phase space and the dimension of its corresponding bifurcation boundary.

With this definition, the bifurcation that corresponds to a simple zero eigenvalue is of

codimension one, and the bifurcation that corresponds to a double-zero eigenvalue is of

codimension two. In other words, the codimension of a bifurcation can be understood as

the minimum number of free parameters that are required to unfold that bifurcation.

By now we have been using the topological equivalence relation between non-parametric

systems, or between parametric systems at different parameter values. The bifurcation-

related concepts defined above may cause us to consider the equivalence of two families of

systems collectively under parameter perturbations, or, the “equivalence relation” between

bifurcation diagrams. This is handled by the definitions given below (according to [47])

for system (2.3) and another n-dimensional, m-parameterized system

ẏ = g(y,β), y ∈ Rn, β ∈ Rm, (2.4)

where g is a smooth function.

Definition 9. Systems (2.3) and (2.4) are topologically equivalent if (i) and (ii) hold :

(i) there exists a homeomorphism T : Rm → Rm of parameter spaces, β = T (α),

(ii) there exists a parametric homeomorphism hα : Rn → Rn of phase spaces y = hα(x)

mapping the orbits of (2.3) at α to those of (2.4) at β = T (α) while preserving the

direction of time.

Definition 10. Systems (2.3) near (x0, α0) and (2.4) near (y0, β0) are locally topologi-

cally equivalent if the following (i) and (ii) hold :

(i) there exists a homeomorphism β = T (α) defined in a neighborhood of α = α0 such

that β0 = T (α0),

(ii) there exists a parametric homeomorphism y = hα(x) defined in a neighborhood Uα

of x = x0 for every α in a neighborhood of α = α0 with hα0(x0) = y0, mapping

the orbits of (2.3)) in Uα to those of (2.4)) in Vβ = hα(Uα) while preserving the

direction of time.

Definitions 9 and 10 generalize the topological equivalence first defined by Definitions 1

and 4 to parameter-dependent systems. In application, we may repeatedly make smooth

invertible changes of state variables and time reparametrizations that preserve the direc-

tion of time, to transform a parameter-dependent system near a bifurcation into some

highly reduced form. The final reduced system is expressed by a polynomial in its state

variables, with least possible terms and hopefully with simplest possible coefficients.

Definition 11. Consider system (2.4), where y = 0 is an equilibrium at β = 0 and β = 0

is a codimension-m bifurcation point. Assume that

(i) g(y,β) is a polynomial in y, with minimum possible terms up to a certain degree ,
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(ii) System (2.4) near (0,0) is locally topologically equivalent to any generic system (2.3)

near (x0,α0) where the same bifurcation conditions are satisfied.

Then the system (2.4) can be called a topological normal form for this bifurcation.

A different concept from the topological normal form is the truncated normal form,

which is obtained by abandoning all terms in y higher than a certain degree in the reduced

system (2.4). Sometimes, the truncated normal form is still a topological normal form. In

some other situations, the behavior of a bifurcation depends on the higher-degree terms,

and the truncated normal form is not a topological normal form. The process of trans-

forming a generic system near a bifurcation to its normal form is called normalization. It

should be noted that the word “generic” here and in Definition 11 has a meaning: cer-

tain genericity conditions should be satisfied. These include non-degeneracy conditions,

requiring some critical coefficients to be nonzero during the normalization, and transvesal-

ity conditions, requiring the invertibility of the parameter transformation α 7→ β.

2.3 Center manifold theorem and reduction principle

Local bifurcations of an equilibrium occur when the equilibrium is non-hyperbolic, where

the behavior of the system becomes more difficult to determine than the hyperbolic cases.

An important simplification of a non-hyperbolic system is to reduce its dimension to n0,

i.e., the number of eigenvalues with zero real parts, with the help of the center manifold

theorem and reduction principle.

Theorem 3 (Center manifold theorem, see [25, 47]). For system (2.1) with a Cr-smooth

function f (r ∈ N+), assume that x0 is a non-hyperbolic equilibrium whose Jacobian ma-

trix has an n0-dimensional (generalized) eigenspace T c associated to the eigenvalues with

zero real parts. Then there exists a locally defined, Cr-smooth, n0-dimensional invariant

manifold M c of (2.1) that is tangent to T c. Moreoever, if an orbit stays within a neighbor-

hood U of x0 for all t > 0 (t < 0), then the orbit converges to an orbit on Mc exponentially

as t→ +∞ (t→ −∞).

The invariant manifold M c is just a so-called center manifold. When all orbits that

stay in U for positive t converge to M c as t→ +∞, M c is said to be attracting; when all

orbits staying in U for negative t converge to M c as t→ −∞, the center manifold is said

to be repelling. Note that the center manifold of an equilibrium is not necessarily unique.

To reduce a non-hyperbolic system to its essential dynamics on the center manifold, we

consider the system (2.1) rewritten in the following form after some affine transformation,{
u̇ = Au+ g(u,v),

v̇ = Bv + h(u,v),
(2.5)

where u ∈ Rn0 , v ∈ Rn++n− , A has all its eigenvalues on the imaginary axis while B

has none, and g and h have vanishing linear parts in u and v. Because of the tangency

between M c and T c, the center manifold M c can be expressed by a function v = M(u) :

Rn0 7→ Rn++n− . Then we have an important theorem as follows.
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Theorem 4 (Reduction principle, see [47]). System (2.5) is locally topologically equivalent

to {
u̇ = Au+ g(u,M(u)),

v̇ = Bv,
(2.6)

near the equilibrium x0. All the systems (2.6) that result from different center manifolds

M(u) are locally smoothly equivalent to one another.

With the reduction principle, the dynamics of the original non-hyperbolic system is

successfully decomposed on and off the center manifold as the dynamics of u and v in (2.6),

respectively. The former, i.e., the first equation in (2.6), is often called the restriction or

restricted dynamics of system (2.5) to its center manifold M . The latter can be replaced

with v̇ = B′v but still keeping the whole system locally topologically equivalent, where

B′ has the same values n+ and n− as B does.

In the parameter-dependent scenario, similar conclusions as above can be obtained.

We consider the parameter-dependent system (2.3) with f sufficiently smooth in (x,α),

and assume that a non-hyperbolic equilibrium x0 exists for α = α0, as in the assumption

of Theorem 3. Then, we apply the center manifold theorem to the extended system{
ẋ = f(x,α),

α̇ = 0,
(2.7)

whose Jacobian matrix at (x0,α0) has exactly n0+m zero or purely imaginary eigenvalues.

Hence there exists an (n0 +m)-dimensional center manifold M ec for the extended system,

and for convenience, we define the (n0-dimensional) parameter-dependent center manifold

M c
α for the original system (2.3) as

M c
α = M ec ∩

{
(x,α′)|α′ = α

}
. (2.8)

In analogy to Eq. (2.5), the original system (2.3) can be rewritten as{
u̇ = A(α)u+ g(u,v,α),

v̇ = B(α)v + h(u,v,α),
(2.9)

where A(α) has all its eigenvalues on the imaginary axis at α = α0 while B(α) has none

in a neighborhood of α = α0. Considering the tangency of M c
α0

and T c, we may express

the parameter-dependent center manifold M c
α near (x0,α0) by a function v = M(u,α) :

Rn0×Rm 7→ Rn++n− . Thus the restriction of Eq. (2.9) to the parameter-dependent center

manifold is given by

u̇ = A(α)u+ g(u,M(u,α),α). (2.10)

The parameter-dependent locally topological equivalence of the original system (2.3) and

the suspension of the restricted dynamics (2.10) by a corresponding saddle was due to

Shoshitaishvili [83]. This result guarantees that a local bifurcation of equilibria in a

high-dimensional system can be essentially captured by the restriction on its parameter-

dependent center manifold, Eq. (2.10). Therefore, such a bifurcation in a high-dimensional

system adds nothing new compared with the bifurcation occurring in a system with a min-

imum required dimension, as will be demonstrated next.
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2.4 Codimension-one bifurcations

According to the previous introduction, it can be obviously expected that the “minimized”

system where codimension-one local bifurcations occur is of dimension one or two, with

only one parameter. These bifurcations are the fold bifurcation and the Hopf bifurcation.

In this section, we introduce these bifurcations using their normal forms with a minimum

possible dimension.

We also provide the formulas by Kuznetsov [47] for computing the critical coefficients

of the restriction of a generic n-dimensional system at these bifurcations to the center man-

ifold. For this we assume without loss of generality that the equilibrium at the bifurcation

point is x = 0, and write the n-dimensional system (2.1) in the form

ẋ = f(x) = f1(x) + f2(x,x) + f3(x,x,x) + . . . , (2.11)

where f1(x) is the linearization Jx (J being the critical Jacobian matrix), and f2, f3 are

the critical multilinear functions defined as

f2(x,y) =
1

2

n∑
i,j=1

∂2f(θ)

∂θi∂θj

∣∣∣∣
θ=0

xiyj , f3(x,y, z) =
1

6

n∑
i,j,l=1

∂3f(θ)

∂θi∂θj∂θl

∣∣∣∣
θ=0

xiyjzl.

Obviously, when all the arguments are the same, the multilinear functions simply return

the corresponding terms in the Taylor series expansion of the function f .

Fold bifurcation

The bifurcation that corresponds to exactly one zero eigenvalue of the linearization of

some continuous-time system is called a fold bifurcation. It is also referred to as a limiting

point or turning point; it includes some subtypes as well, such as saddle-node, transcritical

and pitchfork bifurcations. A normal form of the saddle-node bifurcation is

ẋ = β + x2 +O(x3), (2.12)

where the O(x3) terms can be abandoned and the truncated normal form remains locally

topologically equivalent. The bifurcation occurs at β = 0, where x = 0 is an equilibrium;

for β > 0, no equilibrium exists locally; for β < 0, there are a pair of equilibria x = x±

locally, with x+ > 0 unstable and x− < 0 stable. A bifurcation diagram showing this is

given in Fig. 2.1(a).

A normal form of the transcritical bifurcation is

ẋ = βx+ x2 +O(x3), (2.13)

where the O(x3) terms can be abandoned and the truncated normal form remains locally

topologically equivalent. The bifurcation occurs at β = 0, where x = 0 is an equilibrium;

for β > 0, there are a pair of equilibria, x = 0 unstable and x = x− < 0 stable; for β < 0,
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there are a pair of equilibria as well, x = 0 stable and x = x+ > 0 unstable. A bifurcation

diagram showing this is in Fig. 2.1(b).

The normal form of a pitchfork bifurcation is

ẋ = βx± x3 +O(x4), (2.14)

where the O(x4) terms can be abandoned and the truncated normal form remains locally

topologically equivalent. The bifurcation occurs at β = 0, and can be categorized as two

subtypes. When the term x3 has coefficient −1, the system has a stable equilibrium x = 0

for β 6 0, which becomes unstable with a pair of stable equilibria x = x± appearing on

both sides of x = 0 for β > 0; this is called a supercritical pitchfork bifurcation. When

the term x3 has coefficient +1, the equilibrium x = 0 is unstable for β > 0, and becomes

stable with a pair of unstable equilibria x = x± on both sides of x = 0 for β < 0; this is

called a subcritical pitchfork bifurcation. The bifurcation diagrams for them are given in

Figs. 2.1(c) and (d).

Figure 2.1: Bifurcation diagrams for the fold bifurcation, with blue and red curves indicat-
ing stable and unstable equilibria, respectively. (a) saddle-node bifurcation; (b) transcriti-
cal bifurcation; (c) supercritical pitchfork bifurcation; (d) subcritical pitchfork bifurcation.

For the n-dimensional system (2.11) at the fold bifurcation (hence J has a simple zero

eigenvalue), we can find the eigenvectors e1, e2 ∈ Rn for J and J> such that

Je1 = 0, J>e2 = 0, and 〈e1, e2〉 = 1,

where 〈·, ·〉 denotes inner product in Rn. Then, in the restriction of the system (2.11) to

the center manifold, u̇ = bu2 + cu3 +O(u4), the coefficients b and c are then given by [47]

b = 〈e2,f2(e1, e1)〉,

c = 〈e2,f3(e1, e1, e1)〉 − 4〈e2,f2(e1,f2(e1,θ))〉,
(2.15)



16 Chapter 2 Preliminaries of Local Bifurcation Theory

where θ is determined by the bordered system[
J e1

e2 0

] [
θ
φ

]
=

[
f2(e1, e1)− 〈e2,f2(e1, e1)〉e1

0

]
.

Hopf bifurcation

The bifurcation corresponding to exactly one pair of purely imaginary eigenvalues λ1,2 =

±iω0 (ω0 > 0) of the linearization of a continuous-time system is called a Hopf bifurcation,

or Andronov–Hopf bifurcation. The normal form of the Hopf bifurcation is given by[
ẋ1

ẋ2

]
=

[
β −1
1 β

] [
x1

x2

]
± (x2

1 + x2
2)

[
x1

x2

]
+O(‖x‖4), (2.16)

where the O(‖x‖4) terms can be abandoned and the truncated normal form remains locally

topologically equivalent. Alternatively, letting z = x1 + ix2 (i =
√
−1), the normal form

above is expressed in a complex-valued form as

ż = (β + i)z ± z|z|2 +O(|z|4), (2.17)

where z ∈ C, | · | denotes the modulus, and abandoning the O(|z|4) terms does not ruin

the locally topological equivalence. The bifurcation occurs at β = 0, when eigenvalues

β ± i of the linearization about the origin become purely imaginary; the sign of the term

z|z|2 determines the subtype. When it is negative, the origin is a stable equilibrium for

β 6 0, and it becomes unstable with a stable limit cycle bifurcating from it for β > 0;

this is called a supercritical Hopf bifurcation. On the contrary, when the sign is positive,

the origin is unstable for β > 0, and it becomes stable but with an unstable limit cycle

bifurcating from it, for β < 0; this is called a subcritical Hopf bifurcation. Note that at

β = 0, the origin is nonlinearly stable or unstable, meaning that the convergence to it or

divergence from it is slower than the linearly stable or unstable situation. The scenario of

the supercritical Hopf bifurcation of Eq. (2.16) or (2.17) is illustrated in Fig. 2.2.

Figure 2.2: Schematic showing the supercritical Hopf bifurcation of system (2.16). Blue
and red dots denote stable and unstable equilibria; the stable limit cycle is also in blue.
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For the n-dimensional system (2.11) at the Hopf bifurcation (hence J has eigenvalues

±iω0), we can find the eigenvectors e1, e2 ∈ Cn for J and J> such that

Je1 = +iω0e1, J>e2 = −iω0e2, and 〈e1, e2〉 = 1.

The restricted critical system on the center manifold can have the complex-valued form

u̇ = l1(0)u|u|2 +O(|u|4),

where l1(0) is called the (critical) first Lyapunov coefficient, whose sign accords with

the sign of the degree-three terms in Eqs. (2.16) and (2.17). We can compute it by the

formula [47]

l1(0) =
1

2ω0
Re
{

6〈e2,f3(e1, e1, e1)〉 − 8〈e2,f2

(
e1,J

−1f2(e1, e1)
)
〉

+4〈e2,f2

(
e1, (2iω0I− J(S0))−1f2(e1, e1)

)
〉
}
,

(2.18)

where · denotes complex conjugate. The Hopf bifurcation is supercritical if l1(0) < 0, and

it is subcritical if l1(0) > 0.

Finally, let us consider the case of m parameters instead of only one. In the (n+m)-

dimensional state-parameter space, the locus of a fold or Hopf bifurcation is determined

by an equilibrium condition (which is an n-dimensional vector equation) and a bifurca-

tion condition (a scalar equation describing the zero eigenvalue or the zero real parts of

eigenvalues). Thus the bifurcation locus (boundary) in the parameter space is generally

(m− 1)-dimensional, that is, curves on a plane, curved surfaces in a parameter space R3,

and the like. Hence, these are the only two types of codimension-one local bifurcations of

equilibria.

2.5 Codimension-two bifurcations

When tracking codimension-one bifurcations, two kinds of singularity events may happen:

the real parts of additional eigenvalues vanish, or some critical coefficients of the restriction

vanish. Both can indicate some unexpected topological behavior for people to “unfold”.

Since such an event adds one more condition in the state-parameter space, the resultant

bifurcation boundary is generally (m− 2)-dimensional (that is, points on a plane and the

like), and we need at least two parameters to unfold it. In this section, we briefly introduce

such codimension-two bifurcations; we may realize that there are five kinds of them.

Cusp bifurcation

The cusp bifurcation occurs when the quadratic term coefficient vanishes in a fold bifurca-

tion; in another word, it arises as a consequence of unfolding a degenerate fold bifurcation.

The cusp bifurcation occurs in a minimum setting of one-dimensional, two-parameterized

systems, and its normal form is given by

ẋ = β1 + β2x+ σx3 +O(x4), (2.19)
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where σ = ±1, and the truncated normal form (after abandoning the O(x4) terms) is

a topological normal form. When σ = −1, the bifurcation diagram for the truncated

normal form in the β1β2-plane comprises the origin as the cusp bifurcation point, and two

branches of semi-cubic parabola

SN =
{

(β1, β2)
∣∣β2

1 = 4
27β

3
2 , β2 > 0

}
,

as shown in Fig. 2.3. Here, SN stands for the curve of the saddle-node bifurcation. In

the region between the two SN branches, there are three equilibria, x = 0 being unstable,

and x = x± on both sides being stable; in the other regions (excluding the curve SN and

cusp point), x = 0 is the unique equilibrium and is stable. These two portraits transform

to each other via a saddle-node bifurcation across the curve SN , or via a supercritical

pitchfork bifurcation through the cusp point. As the normal form (2.19) remains invariant

under (t, β1, β2) → (−t,−β1,−β2), the bifurcation diagram for σ = +1 and the current

one for σ = −1 are symmetric about the origin, with the stability of all equilibria and the

type of the pitchfork bifurcation changed. For a generic n-dimensional system (2.11) at

the cusp bifurcation, the subtype is determined by the sign of the cubic term coefficient c

in its restriction, which can be computed according to Eq. (2.15).

Figure 2.3: Bifurcation diagram for the cusp bifurcation when σ = −1, with blue and red
dots indicating stable and unstable equilibria, respectively.

Bautin bifurcation

The Bautin bifurcation occurs when the first Lyapunov coefficient l1(0) vanishes in a Hopf

bifurcation; in another word, it is a result of unfolding a degenerate Hopf bifurcation. The

Bautin bifurcation occurs in a minimum setting of two-dimensional, two-parameterized

systems, and its normal form in a complex form is given by

ż = (β1 + i)z + β2z|z|2 + σz|z|4 +O(|z|6), (2.20)
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where σ = ±1, and the truncated normal form after abandoning the O(|z|6) terms is a

topological normal form. When σ = −1, the bifurcation diagram for the truncated normal

form in the β1β2-plane is composed of the origin as the Bautin bifurcation point and the

following bifurcation curves:

(a) H− = {(β1, β2) |β1 = 0, β2 < 0};

(b) H+ = {(β1, β2) |β1 = 0, β2 > 0};

(c) SNL = {(β1, β2) |β1 = −1
4β

2
2 , β2 > 0},

where H− and H+ denote supercritical and subcritical Hopf bifurcations, respectively,

and SNL stands for the saddle-node bifurcation of limit cycles. As shown in Fig. 2.4, the

three curves divide the plane into three regions. Going across the curve H− from region ¬

to ­, the stable equilibrium becomes unstable and a stable limit cycle emerges; entering

the region ® across the curve H+, the equilibrium changes stability again and an unstable

limit cycle bifurcates; the two limit cycles with opposite stability collide and annihilate via

a saddle-node bifurcation (of limit cycles) on the curve SNL. As the normal form (2.20)

remains invariant under (z, β1, β2, t) → (z,−β1,−β2,−t), the bifurcation diagram in the

case of σ = +1 is the reflection of the current one about the origin, with the stability of

all limit sets and the types of the Hopf bifurcations changed accordingly.

Figure 2.4: Bifurcation diagram for the Bautin bifurcation when σ = −1, with blue and
red indicating stable and unstable equilibria (and limit cycles), respectively. This diagram
is a simplified one of Fig. 8.7 in [47] after omitting the phase portraits on the bifurcation
boundaries since they can be easily inferred.

Fold–Hopf bifurcation

As its name implies, the fold–Hopf bifurcation of an equilibrium occurs when the lineariza-

tion has exactly one zero eigenvalue and one pair of non-zero imaginary eigenvalues; in

another word, it is a result of the interaction of the fold (say, the saddle-node) and Hopf

bifurcations. This type of bifurcation occurs in a minimum setting of three-dimensional,
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two-parameterized systems, and its normal form is given in real cylindrical coordinates

(ρ, ϕ, z) by
ż = β1 + z2 + σρ2 +O

(
(z2 + ρ2)2

)
,

ρ̇ = ρ
[
β2 + θ1(β1, β2)z + z2

]
+O

(
(z2 + ρ2)2

)
,

ϕ̇ = ω + θ2(β1, β2)z +O
(
z2 + ρ2

)
,

(2.21)

where σ = ±1. The O(·) terms do affect the phase portrait, and the complete bifurcation

scenario is unclear yet. The simplified issue of the behavior of the truncated normal form

locally for small |z| is expressed by the truncated amplitude system

ż = β1 + z2 + σρ2,

ρ̇ = ρ
[
β2 + θ1(β1, β2)z + z2

]
.

(2.22)

The analysis of the system (2.22) provided that θ1(0, 0) 6= 0 yields four subcases. When

σ = +1 and θ1(0, 0) > 0, the codimension-two bifurcation involves the saddle-node and

subcritical Hopf bifurcations; when σ = −1 and θ1(0, 0) < 0, it involves the saddle-node

and supercritical Hopf bifurcations. When σθ1(0, 0) < 0, both sub- and supercritical Hopf

bifurcations are involved, as well as a Neimark–Sacker bifurcation of limit cycles (or called

secondary Hopf bifurcation) that gives birth to a two-dimensional invariant torus. This

torus vanishes via some rotating heteroclinic orbit when σ = +1, θ1(0, 0) < 0, or vanishes

via some “blow-up” when σ = −1, θ1(0, 0) > 0.

Hopf–Hopf bifurcation

The Hopf–Hopf bifurcation occurs when the linearization about an equilibrium has exactly

two pairs of imaginary eigenvalues with different norms, indicating the interaction of two

Hopf bifurcations. It occurs in a minimum setting of four-dimensional, two-parameterized

systems, and its normal form is given in double polar coordinates (ρ1, ϕ1, ρ2, ϕ2) by

ρ̇1 = ρ1

[
β1 + a11(β)ρ2

1 + a12(β)ρ2
2 + b1(β)ρ4

2

]
+O

(
(ρ2

1 + ρ2
2)3
)
,

ρ̇2 = ρ2

[
β2 + a21(β)ρ2

1 + a22(β)ρ2
2 + b2(β)ρ4

1

]
+O

(
(ρ2

1 + ρ2
2)3
)
,

ϕ̇1 = ω1(β) + o (1) ,

ϕ̇2 = ω2(β) + o (1) ,

(2.23)

where β = [β1 β2]> ∈ R2. Again, the O(·) terms do affect the phase portrait, and the

complete bifurcation scenario is unclear yet. Nevertheless, the essential behavior of the

full system (2.23) may be approximated by the truncated normal form, which is further

described near β = 0 by the truncated amplitude system

ṙ1 = 2r1

[
β1 + a11(β)r1 + a12(β)r2 + b1(β)r2

2

]
,

ṙ2 = 2r2

[
β2 + a21(β)r1 + a22(β)r2 + b2(β)r2

1

]
,

(2.24)

where r1 = ρ2
1 and r2 = ρ2

2. The analysis of the system (2.24) indicates two large groups

of behavior. The case a11(0)a22(0) > 0 involves Hopf bifurcations (yielding limit cycles)
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and the Neimark–Sacker bifurcation (yielding a two-dimensional invariant torus); the case

a11(0)a22(0) < 0 involves the bifurcation of a three-dimensional invariant torus out of

a two-dimensional one, as well as the blow-up and heteroclinic destruction of the three-

dimensional torus. Each case contains a number of subcases, which we do not elucidate

here.

Bogdanov–Takens (BT) bifurcation

The Bogdanov–Takens bifurcation (also called double-zero bifurcation), occurs when the

linearization about an equilibrium has a non-semisimple double-zero eigenvalue. It occurs

in a minimum setting of two-dimensional, two-parameterized systems, and it is the bifur-

cation that we will mainly deal with later in this thesis. Here, we only give its definition;

a detailed introduction of the derivation of its normal form in two-dimensional systems

is provided separately in the next section, which will be further used and generalized in

Chapter 3.

2.6 Bogdanov–Takens bifurcations

In this section we present relatively detailed fundamentals on codimension-two BT bifur-

cations. We elucidate the derivation of their normal forms and demonstrate corresponding

bifurcation diagrams, with minimum dimensions n = 2 and m = 2. These results will be

necessary in the process of generalizing them to n-dimensional systems in Chapter 3. We

consider the following nonlinear planar system:

ẋ = f(x,α), x ∈ R2, α ∈ R2, (2.25)

where f is sufficiently smooth in (x,α). For the equilibrium and bifurcation conditions, we

assume that system (2.25) has an equilibrium (x0,α0), f(x0,α0) = 0, where the Jacobian

matrix ∂f
∂x

∣∣
(x0,α0)

has a non-semisimple double-zero eigenvalue. Actually, the equilibrium

and bifurcation point (x0,α0) can be shifted to (0,0); then, a linear (similarity) transfor-

mation that transforms the critical Jacobian matrix to a 2× 2 Jordan block brings (2.25)

to the following system:
ẏ1 = y2 +

∑
06i+j6ds

aij(α)yi1y
j
2 +O(‖y‖ds+1),

ẏ2 =
∑

06i+j6ds

bij(α)yi1y
j
2 +O(‖y‖ds+1),

(2.26)

where aij(α), bij(α) : R2 → R are smooth functions satisfying a00(0) = a10(0) = a01(0) =

b00(0) = b10(0) = b01(0) = 0, and ds is a sufficiently high degree for the state variables with

ds > 2. We continue to use locally smooth invertible transformations, to transform (2.26)

into certain topological normal forms. Three cases will be presented.
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2.6.1 Saddle-node case

We now introduce variables w1 and w2 to denote y1 and ẏ1 in (2.26), respectively, i.e., the

parameter-dependent transformation
w1 = y1,

w2 = y2 +
∑

06i+j6ds

aij(α)yi1y
j
2 +O(‖y‖ds+1), (2.27)

where the O(‖y‖ds+1) term is the same as that of the first equation in (2.26). The

transformation (2.27) is near-identical and smooth in (y,α) in a neighborhood of (0,0);

moreover, it is invertible in a neighborhood of (0,0) by the inverse function theorem, as

its Jacobian determinant at y = 0 equals 1 + a01(α). The system (2.26) is then changed

to 
ẇ1 = w2,

ẇ2 =
∑

06i+j62

hij(α)wi1w
j
2 +O(‖w‖3), (2.28)

where hij(α) : R2 → R are smooth functions. After tedious calculations, we can find that

h00(α) = b00(α) +O(‖α‖2),

h10(α) = b10(α) + a11(α)b00(α)− b11(α)a00(α) +O(‖α‖2),

h01(α) = b01(α) + a10(α) + 2a02(α)b00(α)− [2b02(α) + a11(α)]a00(α) +O(‖α‖2),
h20(α) = b20(α)− a20(α)b01(α) + a11(α)b10(α)− 2a20(α)a02(α)b00(α) +O(‖α‖),
h11(α) = b11(α) + 2a20(α) + 2a02(α)b10(α)− 2a11(α)a02(α)b00(α) +O(‖α‖),
h02(α) = b02(α) + a11(α) + a02(α)b01(α)− 2a02(α)2b00(α) +O(‖α‖),

(2.29)

where the O(‖α‖) and O(‖α‖2) terms in (2.29) that are not explicitly given all contain a

factor a00(α), a10(α), or a01(α); we write Eq. (2.29) in its present form for the evaluation

of hij(0) (i+ j = 2) and h′ij(0) (i+ j 6 1 and the prime denotes partial derivatives with

respect to α1 and α2), as well as for a secondary transformation to be carried out later.

It is clear that h00(0) = h10(0) = h01(0) = 0, h20(0) = b20(0), h11(0) = b11(0) + 2a20(0),

and h02(0) = b02(0) + a11(0).

We then eliminate one of the linear terms in the equation for ẇ2 in Eq. (2.28) for all

parameter values. This can be done for the w1 term or w2 term, by shifting the coordinate

w1, if h20(0) 6= 0 or h11(0) 6= 0, respectively; here, we make the latter choice. We let{
v1 = w1 − δ(α),

v2 = w2,
(2.30)

which changes the system (2.28) into

v̇1 = v2,

v̇2 =
{
h00 + h10δ + h20δ

2 +O(δ2)
}

+
{
h10 + 2h20δ +O(δ2)

}
v1 +

{
h01 + h11δ +O(δ2)

}
v2

+ {h20 +O(δ)} v2
1 + {h11 +O(δ)} v1v2 + {h02 +O(δ)} v2

2 +O(‖v‖3).

(2.31)
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If h11(0) 6= 0, then the implicit function theorem indicates the existence of some smooth

δ(α) in a neighborhood of α = 0 such that h01 + h11δ +O(δ2) ≡ 0; in this case, we have

δ(α) = − 1

h11(0)
h01(α) +O(‖α‖2).

Accordingly, the system (2.31) is specified as{
v̇1 = v2,

v̇2 = g00(α) + g10(α)v1 + g20(α)v2
1 + g11(α)v1v2 + g02(α)v2

2 +O(‖v‖3),
(2.32)

where gij(α) : R2 → R are smooth functions satisfying

g00(α) = h00(α)− 1

h11(0)
h10(α)h01(α) +

h20(0)

h11(0)2
h01(α)2 +O(‖α‖3),

g10(α) = h10(α)− 2h20(0)

h11(0)
h01(α) +O(‖α‖2),

(2.33)

and g20(α) = h20(α)+O(‖α‖), g11(α) = h11(α)+O(‖α‖), and g02(α) = h02(α)+O(‖α‖).
It is clear that g00(0) = g10(0) = 0, g20(0) = h20(0), g11(0) = h11(0), and g02(0) = h02(0).

We then introduce a new time variable by the time reparametrization

d told = [1 + θ(α)v1] d tnew, (2.34)

which is time-direction-preserving near v = 0, with the smooth function θ(α) to be found.

Now the overdot denotes derivative with respect to the new time and we have the following

locally orbitally equivalent system:
v̇1 = v2 + θ(α)v1v2,

v̇2 = g00(α) + [g10(α) + g00(α)θ(α)] v1

+ [g20(α) + g10(α)θ(α)] v2
1 + g11(α)v1v2 + g02(α)v2

2 +O(‖v‖3).

(2.35)

A secondary transformation by which (2.26) is transformed to (2.28) brings (2.35) to{
u̇1 = u2,

u̇2 = f00(α) + f10(α)u1 + f20(α)u2
1 + f11(α)u1u2 + f02(α)u2

2 +O(‖u‖3),
(2.36)

where we can use Eq. (2.29) to obtain

f00(α) = g00(α),
f10(α) = g10(α) + 2g00(α)θ(α),
f20(α) = g20(α) + 2g10(α)θ(α) + g00(α)θ(α)2,
f11(α) = g11(α),
f02(α) = g02(α) + θ(α).

(2.37)

Hence, by taking θ(α) = −g02(α), the u2
2 term is eliminated, yielding the following system:{

u̇1 = u2,

u̇2 = µ1(α) + µ2(α)u1 + a2(α)u2
1 + b2(α)u1u2 +O(‖u‖3),

(2.38)
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where a2 = h20(0) +O(‖α‖), b2 = h11(0) +O(‖α‖), and µ = (µ1, µ2) with

µ1 = h00 −
1

h11(0)
h10h01 +

h20(0)

h11(0)2
h2

01 +O(‖α‖3), (2.39a)

µ2 = h10 −
2h20(0)

h11(0)
h01 − 2h02(0)h00 +O(‖α‖2). (2.39b)

Finally, if a2(0)b2(0) 6= 0, introducing again a new time variable and new state variables

z1, z2 by the scaling

tnew =

∣∣∣∣a2

b2

∣∣∣∣ told, z1 =
b22
a2
u1, z2 = sgn (a2b2)

b32
a2

2

u2, (2.40)

we obtain the normal form below,{
ż1 = z2,

ż2 = β1 + β2z1 + z2
1 + σz1z2 +O(‖z‖3).

(2.41)

Here, the sign σ = sgn (a2(0)b2(0)) defines the subtype of the bifurcation, and the unfold-

ing parameters β are related to the original parameters α by

β1(α) =
b2(α)4

a2(α)3
µ1(α),

β2(α) =
b2(α)2

a2(α)2
µ2(α).

(2.42)

It can be proved that the truncated normal form after abandoning the O(‖z‖3) terms

is a topological normal form. When σ = −1, the bifurcation diagram for (2.41) in the

(β1, β2)-plane consists of the origin and the following bifurcation curves:

(a) H−0 = {(β1, β2) |β1 = 0, β2 < 0};

(b) SN	 = {(β1, β2) |β1 = 1
4β

2
2 +O(β3

2), β2 < 0};

(c) SN⊕ = {(β1, β2) |β1 = 1
4β

2
2 +O(β3

2), β2 > 0};

(d) HO = {(β1, β2) |β1 = − 6
25β

2
2 + o(β2

2), β2 < 0},

where SN	 and SN⊕ are the two branches of the curve for saddle-node bifurcations on

attracting and repelling center manifolds, respectively, H−0 denotes a supercritical Hopf

bifurcation of the zero equilibrium (origin), and HO stands for the homoclinic bifurcation.

As illustrated in Fig. 2.5, these four curves divide the β1β2-plane into four regions: there

are no equilibria in region ¬ and a pair of saddle and stable node appear after entering

region ­; via the Hopf bifurcation on H−0 , the stable equilibrium becomes unstable and a

stable limit cycle emerges in region ®; then, the limit cycle grows and touches the saddle

at the homoclinic bifurcation and disappears after entering ¯. As Eq. (2.41) is invariant

under (τ, u2, σ) → (−τ,−u2,−σ), the bifurcation diagram for σ = +1 remains the same,

except for different types of bifurcation curves owing to the changes in the stability of

the related limit sets. All the fundamentals introduced above follow from [47] with a few

corrections.
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Figure 2.5: Bifurcation diagram for the BT bifurcation of the system (2.41) (the saddle-
node case) for σ = −1. This diagram is a simplified one of that in [47].

2.6.2 Transcritical case

We now present a different unfolding of the BT bifurcation, which, if transformed to the

form of (2.41), will not be able to satisfy the transversality condition. In addition to the

general hypotheses, we further assume that after appropriate shifts, the origin x = 0 is

an enduring equilibrium under any parameter perturbation around α = 0. Accordingly,

a00(α) ≡ 0 and b00(α) ≡ 0 in the system (2.26), and the system near y = 0 is locally

topologically equivalent to
ẇ1 = w2,

ẇ2 =
∑

16i+j62

hij(α)wi1w
j
2 +O(‖w‖3), (2.43)

where hij(α) : R2 → R are smooth functions given by

h10(α) = b10(α) + a01(α)b10(α)− b01(α)a10(α),
h01(α) = b01(α) + a10(α),
h20(α) = b20(α)− a20(α)b01(α) + a11(α)b10(α) +O(‖α‖),
h11(α) = b11(α) + 2a20(α) + 2a02(α)b10(α) +O(‖α‖),
h02(α) = b02(α) + a11(α) + a02(α)b01(α) +O(‖α‖).

(2.44)

Here, the O(‖α‖) terms in (2.44) that are not explicitly given all contain a factor a10(α)

or a01(α). Clearly, h10(0) = h01(0) = 0, and h20(0) = b20(0), h11(0) = b11(0) + 2a20(0),

and h02(0) = b02(0) + a11(0) as in Sec. 2.6.1.

Next, we carry out the time reparametrization as in Eq. (2.34), with which the system

is transformed to

v̇1 = v2 + θ(α)v1v2,

v̇2 = h10(α)v1 + h01(α)v2

+ [h20(α) + h10(α)θ(α)] v2
1 + [h11(α) + h01(α)θ(α)] v1v2 + g02(α)v2

2

+O(‖v‖3).

(2.45)
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A secondary transformation by which (2.26) is transformed to (2.43) brings (2.45) to{
u̇1 = u2,

u̇2 = f10(α)u1 + f01(α)u2 + f20(α)u2
1 + f11(α)u1u2 + f02(α)u2

2 +O(‖u‖3),
(2.46)

where we can use Eq. (2.44) to obtain

f10(α) = h10(α), f01(α) = h01(α),
f20(α) = h20(α) + 2h10(α)θ(α),
f11(α) = h11(α) + h01(α)θ(α),
f02(α) = h02(α) + θ(α).

(2.47)

Hence, by taking θ(α) = −h02(α), the u2
2 term is eliminated, yielding the following system:{

u̇1 = u2,

u̇2 = µ1(α)u1 + µ2(α)u2 + a2(α)u2
1 + b2(α)u1u2 +O(‖u‖3),

(2.48)

where a2 = h20(0) +O(‖α‖), b2 = h11(0) +O(‖α‖), and µ = (µ1, µ2) = (h10, h01).

Finally, if a2(0)b2(0) 6= 0, the same scaling as in Eq. (2.40) brings Eq. (2.48) to the

normal form, {
ż1 = z2,

ż2 = β1z1 + β2z2 + z2
1 + σz1z2 +O(‖z‖3).

(2.49)

Here, the sign σ = sgn (a2(0)b2(0)) defines the subtype of the bifurcation, and the unfold-

ing parameters β are related to α by

β1(α) =
b2(α)2

a2(α)2
h10(α),

β2(α) =

∣∣∣∣ b2(α)

a2(α)

∣∣∣∣h01(α).

(2.50)

Such an unfolding was investigated in [37]; it can also be analyzed by shifting the coordi-

nate z1 to obtain the normal form in the general case (with a constant but no z2 term)

and then comparing the parameters. Besides, it can be proved that the truncated normal

form after abandoning the O(‖z‖3) terms is a topological normal form. When σ = +1, the

bifurcation diagram for (2.49) in the (β1, β2)-plane consists of the origin and the following

bifurcation curves:

(a) T	 = {(β1, β2) |β1 = 0, β2 < 0};

(b) T⊕ = {(β1, β2) |β1 = 0, β2 > 0};

(c) H+
0 = {(β1, β2) |β2 = 0, β1 < 0};

(d) HO0 = {(β1, β2) |β2 = 1
7β1 + o(β1), β1 < 0};

(e) H+
6=0 = {(β1, β2) |β2 = β1 +O(β2

1), β1 > 0};

(f) HO 6=0 = {(β1, β2) |β2 = 6
7β1 + o(β1), β1 > 0},
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where T	 and T⊕ are the two branches of the curve for transcritical bifurcations occurring

on attracting and repelling center manifolds; H0 and H6=0 denote the Hopf bifurcation

of the origin and the nontrivial equilibrium, respectively; HO0 and HO 6=0 are the curves

for homoclinic bifurcations occurring in the limit cycles that arise from H+
0 and H+

6=0,

respectively. As Eq. (2.49) is invariant under (τ, u2, β2, σ) → (−τ,−u2,−β2,−σ), the

bifurcation diagram for σ = −1 is the reflection of that for σ = +1 about the β1-axis, with

different types of bifurcation curves owing to the changes in the stability of the related

limit sets.

2.6.3 Pitchfork case

Many systems in real-world applications have a Z2 symmetry and hence an enduring

equilibrium, and the BT bifurcation in this case is presented in this subsection. In addition

to the general hypotheses, we assume that after appropriate shifts, f(−x,α) ≡ −f(x,α)

for all (x,α) a neighborhood of (0,0). Accordingly, aij(α) ≡ 0 and bij(α) ≡ 0 for all i, j

with i+j an even number in Eq. (2.26), and the system near y = 0 is locally topologically

equivalent to 
ẇ1 = w2,

ẇ2 =
∑

i+j=1,3

hij(α)wi1w
j
2 +O(‖w‖5), (2.51)

where hij(α) : R2 → R are smooth functions given by

h10(α) = b10(α) + a01(α)b10(α)− b01(α)a10(α),
h01(α) = b01(α) + a10(α),
h30(α) = b30(α) + a21(α)b10(α) +O(‖α‖),
h21(α) = b21(α) + 3a30(α) + 2a12(α)b10(α) +O(‖α‖),
h12(α) = b12(α) + 2a21(α) + a12(α)b01(α) +O(‖α‖),
h03(α) = b03(α) + a12(α) +O(‖α‖).

(2.52)

Here the O(‖α‖) terms that are not explicit given represent all terms (i) containing a10(α)

or a01(α), or (ii) containing a product of a30(α) or a03(α) with b10(α) or b01(α). These

terms are are irrelevant to the evaluation of hij(0) and unnecessary in a later situation

where a10(α) ≡ a01(α) ≡ a30(α) ≡ a03(α) ≡ 0. Clearly, h10(0) = h01(0) = 0.

We then introduce a new time variable by the time reparametrization

d told =
[
1 + θ1(α)v2

1 + θ2(α)v1v2

]
d tnew, (2.53)

which preserves the direction of time near v = 0 and the Z2 symmetry, but with the

smooth functions θ1(α) and θ2(α) to be determined. Now the overdot denotes derivative

with respect to the new time and we have the following locally orbitally equivalent system:

v̇1 = v2 + θ1(α)v2
1v2 + θ2(α)v1v

2
2,

v̇2 = h10(α)v1 + h01(α)v2

+ {h30(α) + h10(α)θ1(α)} v3
1 + {h21(α) + h01(α)θ1(α) + h10(α)θ2(α)} v2

1v2

+ {h12(α) + h01(α)θ2(α)} v1v
2
2 + h03(α)v3

2 +O(‖v‖5).
(2.54)
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A secondary transformation by which (2.26) is transformed to (2.51) brings (2.54) to{
u̇1 = u2,

u̇2 = f10(α)u1 + f01(α)u2 + f30(α)u3
1 + f21(α)u2

1u2 +O(‖u‖5),
(2.55)

where we can use Eq. (2.52) to obtain

f10(α) = h10(α), f01(α) = h01(α),
f30(α) = h30(α) + 2θ1(α)h10(α),
f21(α) = h21(α) + θ1(α)h01(α) + 3θ2(α)h10(α),
f12(α) = h12(α) + 2θ1(α) + 2θ2(α)h01(α),
f03(α) = h03(α) + θ2(α).

(2.56)

Hence, by taking

θ1(α) = − 1

2
h12(α) + h01(α)h03(α),

θ2(α) = −h03(α),

we obliterate the u1u
2
2 and u3

2 terms, and obtain the following final form of Eq. (2.54):{
u̇1 = u2,

u̇2 = µ1(α)u1 + µ2(α)u2 + a3(α)u3
1 + b3(α)u2

1u2 +O(‖u‖5),
(2.57)

where a3 = h30(0) +O(‖α‖), b3 = h21(0) +O(‖α‖), and µ = (µ1, µ2) = (h10, h01).

Finally, if a3(0)b3(0) 6= 0, introducing a new time variable and new state variables

z1, z2 by the scaling

tnew =

∣∣∣∣a3(α)

b3(α)

∣∣∣∣ told, z1 =
|b3(α)|√
|a3(α)|

u1, z2 =
b3(α)2

|a3(α)|3/2
u2, (2.58)

we obtain the normal form below,{
ż1 = z2,

ż2 = β1z1 + β2z2 + σ1z
3
1 + σ2z

2
1z2 +O(‖z‖5).

(2.59)

The two signs σ1 = sgn a3(0) and σ2 = sgn b3(0) determine the subtype of this bifurcation,

and the unfolding parameters β = (β1, β2) are given by

β1(α) =
b3(α)2

a3(α)2
h10(α),

β2(α) =

∣∣∣∣ b3(α)

a3(α)

∣∣∣∣h01(α).

(2.60)

Again, it can be proved that the truncated normal form after abandoning the O(‖z‖5)

terms is a topological normal form. When σ1 = −1, σ2 = −1, the bifurcation diagram of

the system (2.59) in the (β1, β2)-plane consists of the origin and the following bifurcation

curves:

(a) P−	 = {(β1, β2) |β1 = 0, β2 < 0};

(b) P+
⊕ = {(β1, β2) |β1 = 0, β2 > 0};
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(c) H−0 = {(β1, β2) |β2 = 0, β1 < 0};

(d) H+
6=0 = {(β1, β2) |β2 = β1 +O(β2

1), β1 > 0};

(e) HO = {(β1, β2) |β2 = 4
5β1 +O(β

3/2
1 ), β1 > 0};

(f) SNL = {(β1, β2) |β2 = κ∗β1 +O(β
3/2
1 ), β1 > 0}, where κ∗ ≈ 0.752.

When σ1 = +1, σ2 = −1, the bifurcation diagram is simpler, comprising the origin and

(a) P+
	 = {(β1, β2) |β1 = 0, β2 < 0};

(b) P−⊕ = {(β1, β2) |β1 = 0, β2 > 0};

(c) H−0 = {(β1, β2) |β2 = 0, β1 < 0};

(d) HE = {(β1, β2) |β2 = −1
5β1 +O(β

3/2
1 ), β1 < 0}.

Here, P	 and P⊕ denote pitchfork bifurcations occurring on attracting and repelling center

manifolds, respectively, and HE stands for the heteroclinic bifurcation. Moreover, we

use superscripts for pitchfork bifurcations as for Hopf bifurcations (tagged as P−, H−

when supercritical, or P+, H+ when subcritical). As Eq. (2.59) remains invariant under

(τ, u2, β2, σ2)→ (−τ,−u2,−β2,−σ2), the bifurcation diagrams for σ2 = +1 are simply the

reflections of those for σ2 = −1 about the β1-axis, with the types of the bifurcation curves

changed according to the changes in the stability of the related limit sets.

The bifurcation diagrams of the normal form Eq. (2.59) for σ1 = −1, σ2 = −1 and for

σ1 = +1, σ2 = −1 are depicted in Figs. 2.6 and 2.7, respectively. In Fig. 2.6, the β1β2-

plane is divided into six regions: a stable equilibrium in region ¬, an unstable equilibrium

and a stable limit cycle in region ­; crossing P+ produces a pair of nontrivial equilibria, of

which the subcritical Hopf bifurcation creates a pair of unstable limit cycles, in region ¯;

the two limit cycles merge into a larger unstable one in region ° through the homoclinic

bifurcation; finally, the unstable limit cycle annihilates with the stable one after crossing

the curve SNL and entering ±. In Fig. 2.7, the β1β2-plane is divided into four regions:

the origin is a saddle in region ¬, and becomes stable with a pair of saddles appearing

in region ­; the supercritical Hopf bifurcation of the origin yields a stable limit cycle in

region ®, which becomes a pair of heteroclinic orbits on the curve HE and disappears

after entering region ¯. Such bifurcation scenarios will appear again when we analyze the

plane wave dynamics of the chaotic neural field model in Chapter 4.
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Figure 2.6: Bifurcation diagram for the BT bifurcation of the system (2.59) (the pitchfork
case) for σ1 = σ2 = −1 (i.e., the homoclinic subtype). This diagram is a simplified one
of Fig. 9.10 in [47], where the system (2.57) is treated as the normal form flow for 1:2
resonance.

Figure 2.7: Bifurcation diagram for the BT bifurcation of the system (2.59) (the pitchfork
case) for σ1 = +1 and σ2 = −1 (the heteroclinic subtype). This diagram is a simplified
one of Fig. 9.9 in [47].
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Chapter 3

Normal Form Derivation for BT
Bifurcations

The BT bifurcation is quite ubiquitous in various systems that arise from the modeling

of mechanical, physical, biological, geographical, and engineering problems. For a laser

with an injected signal, the BT bifurcation occurs in the parameter space spanned by the

amplitude and frequency detuning of the injection [108]; for the traveling wave solutions in

pipe flow, the BT bifurcation occurs in the parameter space spanned by the Reynolds and

wave numbers [62]; BT bifurcations also emerge in the Chua circuit [4], coupled homopolar

dynamos [64], and even in a box model for the thermohaline circulation of the Atlantic,

with the non-thermohaline freshwater fluxes as parameters [91]. Other situations for the

occurrence of BT bifurcations include nonlinear oscillators, neuronal/neural systems, and

population dynamics (see [40, 92, 107] for examples).

The analysis of a real-world system for BT and other bifurcations is often performed

by reducing it to a proper parameter-dependent normal form. Nevertheless, the compu-

tation of the normal form of a system can be laborious in practice, particularly when it

involves the restriction from higher dimensions to a lower-dimensional center manifold.

To calculate the normal forms of general n-dimensional systems efficiently, Kuznetsov

established a homological method that combines the procedures of restriction and nor-

malization on the center manifold [50], and obtained explicit formulas for the coefficients

of the smooth normal form at the BT bifurcation point up to the fourth order [48]. This

homological method is also applicable in the parameter-dependent scenario [10]. Specif-

ically, Kuznetsov considered the computation of parameter-dependent normal forms for

the BT bifurcation with this method and used it in an improved homoclinic predictor [49].

The corresponding computation has also been carried out in a Z2-symmetric system [72].

However, the parameter transformation and transversality conditions therein are not pro-

vided in a sufficiently explicit and essential form, and are thus not readily applicable.

To be specific, let us consider the transformation between the parameters (α1, α2) ∈ R2

of an n-dimensional, Z2-symmetric system around its BT bifurcation point α = 0 and the
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parameters (h10, h01) ∈ R2 in the corresponding system (2.51) (which can be seen as the

normal form only up to a scaling). The previous study [72] found that if we let[
α1

α2

]
=

[
α11 α12

α21 α22

] [
h10

h01

]
+ . . . ,

then the coefficients αij (i, j = 1, 2) can be obtained by solving the linear system[
〈ε2,f

1
1 (e1, ·)〉

〈ε1,f
1
1 (e1, ·) + 〈ε2,f

1
1 (e2, ·)〉

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
.

where e1, e2, ε1, ε2 ∈ Rn are generalized eigenvectors and f1
1 : Rn × R2 → Rn is one of

the multilinear function given by the system equation (both to be explained later). The

invertibility of the left-most matrix can be a transversality condition, whose satisfaction

guarantees the solvability of the above equation and leads to

∂(h10, h01)

∂(α1, α2)
=

[
α11 α12

α21 α22

]−1

=

[
〈ε2,f

1
1 (e1, ·)〉

〈ε1,f
1
1 (e1, ·) + 〈ε2,f

1
1 (e2, ·)〉

]
. (3.1)

This is a good result, but some subtle problems remain. First, here the formula (3.1) is

only proved with a prerequisite transversality, and the extension to an m-parameterized

case requires the transversality for any two parameters. In fact, Eq. (3.1) holds for an

arbitrary number of parameters no matter the transversality condition is satisfied or not,

as will be seen later. Second, this formula does not reveal the essential feature of the

parameter transformation that (h10, h01) is related with the eigenvalues. Furthermore,

there are six more coefficients to be found from a linear system of six equations, for us to

know the second-order terms of the parameter transformation.

In this chapter, the homological computation of the universal unfoldings for the BT

bifurcation in n-dimensional systems is re-investigated. It is shown that with a reversed

expansion of parameters (compared with past studies) the parameter transformation (at

least the linear part) can be expressed in quite explicit forms for any dimensionality m of

the original parameters. Specifically, the following improvements are made:

(i) Simple formulas are made available for the linear part of the parameter transforma-

tion using either the characteristic polynomial or the (generalized) eigenvectors of

the Jacobian matrix, in the case of an equilibrium that endures after any parameter

perturbation (including but not limited to the Z2-symmetric case);

(ii) The condition of Z2-symmetric systems has been generalized compared with that

considered in [72] as long as the equilibrium is enduring, and the above-mentioned

formulas can be applied within certain subspaces;

(iii) In the general case, the result in [12] is re-derived in a slightly different form and

then revised to determine the bifurcation diagram to the second order.

These results accelerate the transversality check and depiction of the bifurcation diagrams,

which can be demonstrated by some examples provided in Appendix A.
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Chapter 4

Plane Waves in Chaotic Neural
Field Model

The spatiotemporal evolution of neurodynamics is often studied on a macroscopic scale

using neural field models, i.e., the continuum limits of neural networks, because of the

immense number of neurons and synapses in actual situations. One important early work

is due to Amari [5], who studied the pattern formation in a neural field that corresponds

to a “Mexican hat” synaptic connection. Typical neural field models are of the form

τd
∂u(x, t)

∂t
= −u(x, t) +

∫
W (x,y) f(u(y, t− |x− y|/vc)) dy,

where u(x, t) is the local activity being studied, W (x,y) is the synaptic connection from

the cite y to x, f is the output function, and τd and vc here are constants characterizing

the decay time and conduction speed, respectively. Different connection schemes, output

functions, single-neuron dynamics, and even inhomogeneity have been considered to model

various neural phenomena. Specifically of interest is the pattern formation in such models,

such as localized bumps or breathers, and traveling waves [14, 17].

The famous model for excitable media, FitzHugh–Nagumo equation, can be deemed

as some kind of neural field that corresponds to a network of FitzHugh–Nagumo neurons.

The plane wave dynamics of the FitzHugh–Nagumo equation has been investigated in [13,

26, 27] from the perspective of bifurcations in the parameter space (including the wave

speed as a parameter). A C-shaped homoclinic bifurcation curve and a U-shaped Hopf

bifurcation curve were identified, and the interaction of these bifurcations in such a C–U

structure were analyzed in detail.

Neural network models with a potential in solving practical problems can also be plat-

forms for pattern formation. Specifically, the chaotic neuron model [2] uses two variables

to describe the neuronal activity with refractoriness, and Hopfield-like neural networks

constructed with such chaotic neurons have been used frequently for dynamic associative

memory [1, 34, 46, 97]. By restricting the connection to a small local region in a large-scale

network, a novel association scheme is realized: stored 2D images appear in fragments and
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their boundaries evolve with time, exhibiting moving clusters, traveling plane waves and

spiral waves [67].

As the starting step of promoting the application of such an associative cellular CNN,

we attempt to analyze its plane wave dynamics under highly simplified conditions. Then,

we will approximate the network to a corresponding neural field model, to which we apply

bifurcation analysis to study the plane wave dynamics in the parameter space. It will turn

out that the analysis of BT bifurcation using the method given in the preceding chapter

produces useful information quickly. Some other issues, such as the dispersion relation

for small amplitudes and the stability, are also considered. These results demonstrate the

representative plane wave dynamics in the parameter space for similar oscillatory media

with a Z2 symmetry and may serve as supplements to the previous analysis of plane wave

dynamics in typical excitable media without the Z2 symmetry.

4.1 Field model for a cellular chaotic neural network (CNN)

The CNN model with a simplified parameter setting and local connection scheme is given

in this section. Furthermore, this neural network model is continuized both in space and in

time and is thus turned into a neural field model, which facilitates approximate analysis.

4.1.1 Simplified associative cellular CNN

The CNN is a single-layered discrete-time recurrent neural network, composed of chaotic

neurons characterized by a refractoriness term and a continuous output function [2]. Each

neuron receives feedback inputs from certain neurons in the network and external inputs

from outside, where the refractoriness counteracts these inputs. If the total external input

to a neuron is temporally constant, it is usually incorporated into another component to

obtain a concise expression. Thus, a neuron’s state is determined by two state variables

and the CNN’s dynamics can be described by the following difference equations [1]:

ζ(t) = krζ(t− 1)− αx(t− 1) + a, (4.1a)

η(t) = kfη(t− 1) + Wx(t− 1), (4.1b)

x(t) = s (ζ(t) + η(t)) , (4.1c)

where ζ = [ζ1 ζ2 · · · ζn]>, η = [η1 η2 · · · ηn]>, and x = [x1 x2 · · · xn]> are time-dependent

vectors that represent each neuron’s refractory internal state, feedback internal state, and

output, respectively, and n is the number of neurons in the network. a = [a1 a2 ... an]>

is also an n-dimensional vector, which denotes the external inputs with the corresponding

activation threshold values deducted. kr, kf ∈ [0, 1) are the decay parameters for the two

internal states and α > 0 regulates the strength of refractoriness. To make a network,

the n × n matrix W = (wij) defines the synaptic weight from the jth neuron to the ith

neuron with its entry wij . Finally, the mapping s applies a sigmoidal activation function
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to every component of its vectorial argument, i.e., s(y) = [s(y1) s(y2) · · · s(yn)]>, where

s(y) = (1+exp(−y/ε))−1 and ε is a steepness parameter. The dynamics of the CNN model

given by Eq. (4.1) is illustrated graphically in Fig. 4.1.

Figure 4.1: Block diagram of the CNN model. Here, Z−1 represents backward shift by one
time step and it is sometimes combined with constant scaling (by kr or kf ) for simplicity;
the output function f can be the sigmoid function as in Eq. (4.1).

To perform auto-associative memory, several binary images with pixel values mapped

from {0, 1} to {−1, 1} can be stored in the CNN by using an autocorrelation weight matrix

as in a Hopfield network. Many CNN-based association models employ this conventional

encoding regime, and they either exhibit indeterminate wandering among basal patterns

or exclusive visits to only specific patterns ([1, 34, 35, 36, 52, 97]). In addition, grayscale

and color images can be memorized in a similar manner except that one pixel corresponds

to more than one neuron, e.g., 24 neurons for 24-bit RGB images [66]. In fact, this is

the original reported situation where traveling waves emerge in associative CNNs, which

carry pieces of different basal patterns and produce mixed outputs. However, we do not

consider the image format or the pattern switch/immobilization process, but we focus on

the following simplified conditions in our investigation of traveling waves.

(i) The net external input is spatially uniform and all components are α/2, i.e., a =

α1/2 where 1 is the all-ones vector.

(ii) A single checkerboard pattern expressed by e ∈ {0, 1}n after a row-wise scan is

memorized in an m×m neuronal lattice, where m is even and m2 = n.

(iii) Synaptic connections to the ith neuron are only allowed from a square neighborhood

centering around the neuron, which covers (2d+1)2 neurons, and the indices of these

neurons are grouped in a set Si, i.e., Si = {j | dT (i, j), dL(i, j) 6 d}, where dT (i, j)

and dL(i, j) denote the transverse and longitudinal distances between the ith and

jth neurons, respectively, for i, j = 1, 2, ..., n.
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(iv) Periodic boundary conditions are imposed in both directions such that dT (i, j) =

m/2−|m/2− (|i− j|mod m)| and dL(i, j) = m/2−|m/2− |di/me − dj/me||, where

d · e signifies the ceiling function and mod denotes the modulo operation that takes

the smallest non-negative remainder. In this manner, the weight matrix W = (wij)

is given by

wij =

{
β(2ei − 1)(2ej − 1) = (−1)i+j+d

i
me+d jme for j ∈ Si (i ∈ Sj),

0 otherwise.
(4.2)

Condition (i) makes the oscillation range of the refractory states ζi symmetric about ζ = 0

between ±α/2 · (1−kr)−1, while Condition (ii) leads to an identical synaptic environment

for every neuron as well as a symmetric oscillation range about η = 0 for the feedback

states ηi. Their combination ensures the invariance of the system under the transform

(ζ,η)→ (−ζ,−η) (x→ 1−x), and this invariance can be preserved approximately even

if the network only has local connections, as assumed in Conditions (iii) and (iv).

In Fig. 4.2, we show the stored pattern e and its reversal e for a CNN that comprises

n = 2500 neurons, where each pixel is filled with a block �, denoting 1, or a dot · ,
denoting 0. The CNN’s output x can be illustrated in a similar manner by distinguishing

between a firing neuron (xi > 0.5, denoted as 1) and a resting one (xi 6 0.5, denoted as 0).

To allow a clearer visualization, we display a converted output x∗ ∈ {0, 1}n instead of the

original digitized x by using a pixel-wise XOR operation with e, i.e., x∗i = ei ⊕ dxi − 0.5e
for i = 1, 2, ..., n. This treatment transforms e and e to e∗ = 0 and e∗ = 1, thereby

facilitating the observation of the output patterns as the wave in the network transmits

the collective activation of e or e, and the spatiotemporal output is a mixture of both.
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Stored Reversal An output

Figure 4.2: The original digitized patterns shown in the top row and their converted
versions in the lower row. The stored pattern e, its reversal e, and an example output
x are shown from left to right. The differentiation between the stored pattern and its
reversal is relative, but we specify it here only for certainty. The necessity of the XOR
operation is obvious from this figure and this treatment is used throughout this study
when displaying output sequences.
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← ←
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Chapter 5

Spiral Waves in the Cellular
Chaotic Neural Network

In two-dimensional spatially extended dynamical systems, other traveling waves than plane

waves, for example, spiral waves, may emerge. Spiral waves are quite general phenomena in

excitable and oscillatory media and their mathematical models. The celebrated example,

spiral wave in the Belousov–Zhabotinsky reaction, has been extensively studied [43, 55,

80, 87, 93]. These constitute a large family of researches about waves and patterns in

chemical and biochemical reactions [42]. In recent years, spiral waves have been frequently

discovered in the cortex [8, 38, 39, 53, 89, 94], due to the advances in signal detection and

imaging technology, and are attracting increasing interest.

For spiral waves (and the chaotic spiral states after breakups), a particular research

theme is their control. Several schemes were proposed to eliminate the spiral waves in

excitable and oscillatory media. A mesh control scheme for a modified FitzHugh–Nagumo

system (also referred to as Barkley model) was proposed in [84], where applying a shock on

the mesh lines absorbs the spirals formed inside each block. Another method is to apply

an external, periodic input to induce target waves, which can replace the spiral waves and

spatiotemporal chaos in the Barkley model and a model for cardiac muscle [103], as well

as in networks of Hodgkin–Huxley neurons [59]. In addition, a phase space constraint

method was used to remove spiral waves in modified FitzHugh–Nagumo systems [58] and

in coupled Chua circuits [96]. For spiral waves in the cortex, despite the belief that their

genesis, evolution, and termination are controlled via long-range synaptic connections, the

specific control scheme is not clear.

The existent researches above may have some limitations under certain circumstances.

These researches usually focus on changing the spiral wave state into a homogeneous state

(of the excitable medium), and the possibility of getting other non-spiral wave states

was not considered. Another potential limitation is that the control usually needs to be

stopped manually after spiral wave elimination, rather than terminated automatically in a

self-adaptive manner: this is definitely not biologically realistic as observed in experiments.

As a system with variant reaction-diffusion characteristics, it is definitely possible for

the cellular CNN to demonstrate various behavior beyond the Turing stability, including



90 Chapter 5 Spiral Waves in the Cellular Chaotic Neural Network

spiral waves. Further application of the cellular CNN as platforms for associative memory

may require schemes for manipulating the traveling wave dynamics, e.g., transforming the

spiral wave states to other states. In this chapter, we investigate the spiral wave dynamics

in the cellular CNN under the simplified settings, with an emphasis on proposing a dy-

namic phase space constraint (DPSC) method to eliminate the spiral waves. Compared

with the past studies of spiral wave elimination, the following improvements are achieved:

(i) After spiral wave elimination, the control mechanism spontaneously stops, and the

network naturally converges to its intrinsic non-spiral states;

(ii) The network can be controlled to not only synchronized states but also various plane

wave states; the proportion of synchronized states as the control outcome in all trials,

and the proportion of long-period states in both control outcomes are tuned by the

control parameter.

5.1 Uncontrolled spiral wave dynamics

In this section, we present the spiral wave dynamics of the simplified cellular CNN under

free conditions, i.e., without control. We start with the output sequence of the network in a

specific case, demonstrate the amplitude reduction phenomenon near the phase singularity,

and then carry out a statistical investigation. The amplitude reduction phenomenon is

shown to be an indicator of the existence of spiral waves and will play a role in the flexible

control scheme of spiral waves later.

5.1.1 Output sequence of a specific spiral state

We stick to the highly simplified and symmetric setting of parameters and weights in the

CNN as described in Sec. 4.1.1. Relevant parameters for the network are set as follows:

kr = 0.95, kf = 0.15, α = 4.0, ε = 0.02, and the half connection length d = 2. Chaotic

spiral wave states can be easily generated by assigning random initial values to the internal

states of all neurons. Specifically, we randomly selected ζi(0) ∈
[
− α

2(1−kr) ,+
α

2(1−kr)

]
and

ηi(0) ∈
[
− (2d+1)2

2(1−kf ) ,+
(2d+1)2

2(1−kf )

]
, for all neurons in a 50×50 neuronal lattice (i = 1, 2, ..., 2500),

in all our simulations in this chapter.

A typical output sequence of the free cellular CNN, which starts from random internal

states, is illustrated in Fig. 5.1. In the early stage of the evolution, a clustering process

occurs as a consequence of local connection, where every neuron tends to conform its

output to either the stored pattern e (meaning x∗i = 0) or its reversal e (x∗i = 1) by

following the current status of the majority of its neighboring neurons. This process

differs from pattern completion by a Hopfield-type network because the convergence to

e or e operates locally, thereby producing a mixture of both, and the relatively large

refractoriness cancels the fixed points, which gives the clusters ever-changing boundaries.

Subsequently, these volatile clusters settle into spiral waves, some of which are less robust
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and they may disappear in tens of steps, whereas the remainders are quite stable and they

keep rotating for an extremely long period of time. As shown in Fig. 5.1, four spirals are

maintained in the upper field of view (FOV) and they rotate once in about 18 time steps.

These are the spiral waves that we need to detect and eliminate in later sections.

5.1.2 Amplitude reduction phenomenon

An arising problem is how to determine whether spiral waves exist and where they are in

the network. This problem may be solved by checking for the two hallmarks of spiral waves:

phase singularity and amplitude reduction. The former is the intersection of all phases,

and the latter refers to a phenomenon where the oscillation amplitude is reduced near the

phase singularity. To decompose complex oscillatory motion and find the instantaneous

phase and amplitude, a powerful tool is the Hilbert transform, which has been applied

frequently in experimental signal processing for neural oscillations and brain waves [18,

39, 90, 104]. However, the Hilbert transform might be unsuitable if we need a real-time

indicator of spiral waves, since the Hilbert transform requires evaluation of an improper

integral. Fortunately, compared with the phase, which is less convenient to calculate, the

amplitude reduction is much easier to quantify. Therefore, we utilize this phenomenon

and define a local index hi for the ith neuron,

hi(t) = khhi(t− 1) + log10 (1 + |ηi(t− 1)|) , (5.1)

which measures the amplitude of its feedback state ηi (kh is a decay parameter). With a

proper value of kh, we note that hi has relatively low values when the neuron is near a

phase singularity, and vice versa.

The amplitude reduction in the feedback internal state η is related to the working

mechanism of the weight matrix W given by Eq. (4.2). The left-multiplication of W on

an output x yields a vector in which the ith component is

(Wx)i =

n∑
j=1

wijxj = (2ei − 1)
∑
j∈Si

(2ej − 1)xj

= (2ei − 1)
∑
j∈Si

(ej − |ej − xj |) = [Fi −Hi(x)] (2ei − 1) ,

(5.2)

where Fi =
∑

j∈Si ej is the local firing number (the number of “1”’s) for the stored pattern

e within the region connected to the ith neuron, andHi(x) =
∑

j∈Si |ej−xj | is a generalized

local Hamming distance between x and e. The usual Hamming distance counts the number

of pixels that differ in two binary strings, whereas Hi(x) narrows down the count to the ith

neuron’s neighborhood Si, takes continuous arguments in [ 0, 1 ]n instead of digitized ones,

and still returns an approximate value, Hi(x) ≈
∑

j∈Si |ej−dxj − 0.5e| =
∑

j∈Si x
∗
j . In the

proposed model, we have Fi = (|Si| ± 1) /2, where |Si| = (2d+ 1)2 is the size of the local

connection region. The phase singularity is revolved around constantly by two intertwining



92 Chapter 5 Spiral Waves in the Cellular Chaotic Neural Network
abc

F
igu

re
5
.1

:
O

u
tp

u
t

seq
u

en
ce

segm
en

ts
fro

m
th

e
n

etw
ork

b
efore

con
trol,

w
h

ere
on

e
ou

t
of

every
th

ree
tim

e
step

s
is

su
ccessiv

ely
d

isp
layed

d
u

e
to

sp
ace

lim
ita

tio
n

s.
(a)

C
lu

sterin
g

o
ccu

rs
in

a
d

ozen
step

s
at

fi
rst,

b
efore

th
ree

p
airs

of
sp

irals
em

erge
in

th
e

u
p

p
er

left,
u

p
p

er
righ

t,
a
n

d
low

er
rig

h
t

p
a
rts

in
th

e
fi

eld
o
f

v
iew

.
(b

)
T

h
e

low
er

righ
t

p
air

is
u

n
stab

le
an

d
it

an
n

ih
ilates

at
arou

n
d
t≈

130.
(c)

A
sp

iral
w

ave
state

is
fo

rm
ed

b
y

th
e

fou
r

rem
ain

in
g

sp
irals,

w
ith

an
ap

p
rox

im
ate

p
erio

d
of

18
step

s.



5.1 Uncontrolled spiral wave dynamics 93

output pieces of e and e, which spiral into it, so the value of Hi(x) at this point remains

at about |Si|/2, and this greatly attenuates the magnitude of (Wx)i as well as that of

ηi because Wx is the dominant part of η. By contrast, when the entire local output is

taken over by e and e alternately, the feedback state ηi of a neuron away from the phase

singularity may oscillate in a wider range, which is roughly between ±|Si|/2 · (1− kf )−1.

Finally, the influence of the changing phase is filtered out by the exponential moving

average in Eq. (5.1), and sustained low and high values of the local index hi(t) can be

expected for neurons near and far from the phase singularity, respectively.

We now demonstrate the performance of the designed local index hi for the detection

of spiral waves. The value of the parameter kh is chosen as kh = 0.95. The initial values

were set as hi(0) = 0 for all neurons in the network, and these values actually would have

little influence on the later values of hi after a period of time. The location of the spiral

wave based on amplitude reduction near phase singularities through the local index hi is

illustrated in Fig. 5.2. We selected two representative neurons, i.e., one (the 1020th) near

a phase singularity and the other (the 2270th) in an ordinary position, and we show their

motion (t = 201 ∼ 300) in the ζ–η phase plane in Fig. 5.2(a). Compared with the latter

neuron, which circles the origin with a longer distance, the excursion of the former appears

to be more uniformly distributed and bound up in a closer region to the origin, where it

exhibits apparent amplitude reduction. Accordingly, in the spatial local index profile of

Fig. 5.2(b), four deep pits emerge and they clearly mark the sites of phase singularities;

the value of hi there decreases dramatically to less than 10 from about 20, which is the

level in most of the area that contains no singularity. Moreover, although Fig. 5.2(b) is

a snapshot at t = 300, this profile is preserved well in a short period and it only changes

slowly with time. These verify the validity of using hi to find the location of spiral waves.
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Figure 5.2: Phase singularity detection based on amplitude reduction. (a) The excursions
of neurons 1020 and 2270 in the ζ-η plane during t = 201 ∼ 300. Neuron 1020 is in row
21, column 20, near a phase singularity, and neuron 2270 is 25 rows below neuron 1020 in
the FOV. (b) The spatial profile of hi at t = 300. The locations of the four spiral pivots
are clearly marked and one of them coincides with neuron 1020.
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5.1.3 Statistical investigation of spiral dynamics

We now consider the following issues: the number of spirals that can coexist in the neuronal

lattice and whether they have a characteristic rotation frequency. Hence, we performed

statistical investigations based on 5000 trials where the CNN started from random initial

states, and summarized the simulation results for the network’s dynamics in Fig. 5.3.

Figures 5.3(a)∼(c) present the local index profiles with various numbers of spirals and

Fig. 5.3(d) gives the frequency distribution of the spiral count. At t = 104, in 4991 trials,

the CNN had 14 non-periodic spiral waves at most, but it evolved spontaneously into a

non-spiral periodic state in only 9 trials. We also found that the number of stably existing

spirals was always even, as reported in [66], and that spirals could be annihilated in pairs

during the CNN’s long-term evolution. Thus, the frequency of smaller numbers of spirals

(6 8) increased slightly at t = 104 compared with that at t = 300, and the average number

of spirals decreased slightly from 7.01 to 6.90 over the same period. These results suggest

that chaotic spiral waves could be generated easily and maintained robustly in the locally

connected CNN.
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Figure 5.3: Simulation results obtained for uncontrolled networks. (a)∼(c) Spatial profiles

of the normalized local index hi−h
σh

(h denotes the mean and σh is the SD of all hi in
the network at a specific time step) in our simulations, showing 2, 14, and 8 spirals,
respectively. (d) The normalized frequency of the number of spirals at t = 3 × 102 and
t = 1 × 104. (e) The grand mean power spectrum for yi in all 4991 trials. In this case,
the SD only considers the difference among trials to demonstrate the consistency of the
average power spectra in various spiral wave states, with a maximum of only 2.35 dB.
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In addition, in every trial where the spiral waves remained, we calculated the average

power spectrum for yi(t) = ηi(t) + ζi(t) over all neurons as a normalized characteristic of

the overall network dynamics, and the grand mean and SD obtained over all 4991 trials

are shown in Fig. 5.3(e). The relatively sharp peaks indicate nearly periodic motion and

the dominant frequency fd = 0.0569 corresponds to an approximate period of Ta = 17.6,

thereby agreeing with the observations based on the specific case in Section 5.1.1. The

limited peak width and SD value also reflect the high consistency of the power spectra

for diverse spiral wave states, which implies that the dominant frequency fd is probably

common and that it depends only on the model parameters used in the cellular CNN.

To summarize, the spiral wave states in the network appear to be chaotic, in the sense

that neither temporal nor spatial periodicity is found in a long run of the network. At the

same time, these spiral wave states have an approximate period: once every this period,

the network outputs close spiral patterns that never exactly repeat. These chaotic spiral

waves are also “stable”, in the sense that after a short transient phase after their births,

they can be maintained for a long time with only occasional annihilation; when a small

shock perturbation of all the state variables is applied to the network, the sensitivity to

initial conditions indicates that it cannot return to the original orbit; nevertheless, the

new orbit is still a spiral wave state with the same number of spiral waves as before

at least temporarily. In other words, the spiral waves are robust to global small shock

perturbation, and we need to use other methods to eliminate them.

5.2 Dynamic phase space constraint (DPSC)

We next turn to the control of the spiral wave dynamics and propose the control method

for eliminating spiral waves. We first briefly introduce the historical aspect and basic idea

of DPSC, and then describe the specific design for our present task.

5.2.1 Static and dynamic phase space constraint

The idea of using (static) phase space constraint was initially proposed for terminating

the chaos (and superchaos) in several systems including the Lorenz system, the Rössler

system, and the Hénon map [56]. As indicated by its name, this method used constant

threshold values as the boundaries of the allowed range of the state variables, which leads

to periodic orbits in place of chaos. Such a control scheme is simple to implement; however,

it actually changes the dynamics of the system, and the resultant periodic orbits are no

longer those of the original systems.

The phase space constraint method was later applied to control the spatiotemporal

chaos in some spatially extended dynamical systems. The spiral waves in several typical

models of excitable media (the Barkley model, cardiac muscle model mentioned previously

and the model for BZ reaction) can be eliminated and the excitable media finally go to the

homogeneous state, after imposing the constraint to the activator variable of the systems
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in a certain spatial region [58]. Similar results were obtained for locally-coupled networks

composed of Hodgkin–Huxley neurons [59] as well as Chua oscillators [96].

The application of phase space constraint to auto-associative CNNs was also proposed.

The dynamic memory retrieval of the associative CNN is seemingly random: it chaotically

jumps from one of the stored patterns to another, and this process will never stop. Hence

the problem of controlling this chaotic retrieval for information processing emerges. A

natural idea is to impose phase space constraint to the refractory internal states η of

the neurons, which are responsible for the occurrence of chaotic dynamics in the CNN.

This was attempted first in [32], where the output of the network converged to only one

of the stored patterns, under static constraints. In spite of the successful termination of

chaos, the dynamics of the network under such static constraints is almost degenerate into

that of the Hopfield neural network. Thus, more flexible constraint schemes, where the

limiting threshold values are no longer simply constant, were proposed [36, 52]. Then the

associative CNN would be controlled to a periodic orbit, where the only visited stored

pattern is the one that is most similar to the initial pattern of the network.

The basic idea of DPSC is to construct a control signal u from the feedback internal

states η, which contain information about the retrieval of the network, and then constrain

ζ within an allowable range modulated by u, as shown schematically in Fig. 5.4. In [52],

the control signal u(t) was chosen as the average of the instant values of |ηi(t)| over all

neurons, which has a larger value if the network has a closer output to one of its stored

patterns. Then the refractory states ζi were truncated by a limiting threshold ζ∗(t) that

increases with the control signal, so that the network was set free when it retrieved some

stored pattern and was constrained when it was about to jump out of this pattern. With

a proper setting, the network was finally trapped to a periodic motion around this stored

pattern. For a different purpose (e.g., eliminating spiral waves), the specific design of the

control signal formation and control exertion procedures of DPSC may vary accordingly,

but follow a similar fashion.

5.2.2 DPSC for eliminating spiral waves in cellular CNN

We first demonstrate in a half-quantitative manner the effectiveness of eliminating spiral

waves in the cellular CNN using a static phase space constraint. We believe that, if there

are spiral waves rotating periodically in the network, such states cannot be maintained

under a sufficiently small upper limit ζ∗ for the absolute value of the refractory states ζi.

Let us imagine that a wavefront dividing e and e sweeps over a neuron, whose rep-

resenting point in the ζ-η phase plane, (ζ0
i , η

0
i ) at time t0 satisfying −η0

i < ζ0
i < 0 or

−η0
i > ζ0

i > 0, moves across the line ζ + η = 0 to (ζ1
i , η

1
i ) at t = t0 + 1. We can expect

that this transition would happen at a similar level of |ζi| for different neurons regardless

of their distances from the phase singularity; this is a natural consequence of the fact that

these neurons must share a common period in the spiral, and the neurons of the same phase

almost share a common motion in ζi(t) according to Eq. (4.1); the scaled output 2s(y)− 1
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Figure 5.4: Block schematic of the CNN model under DPSC (parallel to Fig. 4.1), where
CSF is short for control signal formation, and LMT is an amplitude limiter.

here with a small ε is approximately deemed to be the sign function sgn y. On the other

hand, this single neuron’s output transition occurs if and only if (ζ0
i + η0

i )(ζ
1
i + η1

i ) < 0,

which in a free network amounts to(
ζ0
i + η0

i

) [
krζ

0
i + kfη

0
i −

1

2
α sgn(ζ0

i + η0
i ) +

(
Wx0

)
i

]
< 0, (5.3)

where x0 is the output of the network at t = t0. Then using Eq. (5.2), we obtain a rough

necessary condition for the transition above as either of the following formulas:

Hi(x
0) < Fi +

1

2
α+ (kr − kf )ζ ′, (5.4a)

Hi(x
0) > Fi −

1

2
α− (kr − kf )ζ ′, (5.4b)

where (5.4a) applies to the wavefront of partial e propagating into e while (5.4b) applies

the other way around, with ζ ′ (> 0) signifying the approximate level of |ζ0
i |. By contrast,

when a threshold value ζ∗ is imposed on ζi so that ζ1 and ζ0 are fixed at ζ1 = ζ0 = ±ζ∗,
the relation (ζ0

i + η0
i )(ζ

1
i + η1

i ) < 0 becomes(
ζ0
i + η0

i

) [
ζ0
i + kfη

0
i +

(
Wx0

)
i

]
< 0, (5.5)

and it then gives a necessary condition for the output transition as either of the following

formulas:

Hi(x
0) < Fi + (1− kf )ζ∗, (5.6a)

Hi(x
0) > Fi − (1− kf )ζ∗, (5.6b)

which are the counterparts of (5.4a) and (5.4b), respectively. With the spiral wavefront

propagating toward its convex side, a neuron is able to conform its output to the minority
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of neurons in its neighborhood, i.e., the neurons on the concave side of the wavefront whose

number is less than 1
2 |Si|. Nevertheless, Eqs. (5.4) and (5.6) indicate that there still exists

a minimum requirement for the number of the minority neurons. In particular, Eq. (5.6b)

requires a partial pattern e (or e) containing a minimum of approximately 1
2 |Si|−(1−kf )ζ∗

neurons in Si for the activation of e (or e) to propagate and replace e (or e) at the ith

neuron’s site, and the value of the threshold, ζ∗, determines this requirement. With a

sufficiently small ζ∗, the critical value for Hi(x
0) gets close to 1

2 |Si| (as required in the

Hopfield network) so that the wave propagation cannot continue in the spiral, especially

near the phase singularity where the wavefront has a larger curvature and Eq. (5.6) is more

difficult to satisfy. In this way, the constraint of ζi has an effect of smoothing those curved

wavefronts and the spiral waves can thus be eliminated. A schematic for this explanation

is given in Fig. 5.5.

Figure 5.5: Schematics explaining the mechanism of a static PSC for eliminating spiral
waves. (a) The excursions of neurons in the ζ–η phase space without and with the limiting
threshold ζ∗, where the scatter plots are not real trajectories but only demonstrate the
effect of a PSC schematically. (b) A spiral wave rotating anti-clockwise, where the local
connection region surrounding a neuron near the wavefront is boxed. The “black” neurons
are less than a half of the neurons in this region and the spiral wave may still propagate;
however, when ζ∗ becomes small enough, the minimum required number of these neurons
increases and this propagation cannot be maintained.

The preceding argument reveals that a static phase space constraint as in [32] is already

able to eliminate spiral waves; in this study, we hope further to guide the system into

a spiral-free state of its original dynamics (4.1) using a DPSC that allows for a quit

mechanism for the control. For our purpose, the control signal must be based on detection

of the existence and non-existence of spiral waves, which may be achieved by checking for

the amplitude reduction. Hence we choose

u(t) = minhi(t), (5.7)

where min takes the minimum of all hi over the whole network (i = 1, 2, ..., n); a small

control signal u denotes the existence of spiral waves and a large u indicates the opposite.
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Under the current parameter setting, Fig. 5.2 implies that a u value as low as 10 might

accompany spiral waves and it might increase to roughly 20 when the spirals are gone.

The next key is to establish negative feedback between the exerted constraint and the

network’s output, i.e., the constraint should be strengthened with the presence of spiral

waves and fade with their extinction, requiring that ζ∗(u) should be an increasing function

of the control signal u. In this study, we truncate the refractory state ζ such that

ζ∗(t) = c0 + exp (c1 + c2u (t)), (5.8a)

ζi(t)→ ±ζ∗(t), if |ζi(t)| > ζ∗(t), (5.8b)

where c0, c1 and c2 are control parameters, and this is the same form of control exertion

as what was used in [52]. By assigning appropriate parameter values, ζ∗(u) will increase

beyond the typical range of the uncontrolled ζi after all of the spiral waves disappear

and the CNN may converge to an intrinsic non-spiral state while its evolving rule is

unaltered. Here we select the control parameters in Eq. (5.8) as c0 = 4.0, c1 = −10.0,

and c2 = 0.60 in all subsequent simulations, unless stated otherwise. Another parameter

involved in the DPSC module is the decay parameter kh in Eq. (5.1), which will still be

fixed at kh = 0.95. We next demonstrate the performance of the entire control scheme

and analyze the network’s intra- and post-control dynamics.

5.3 Controlled dynamics under DPSC

In this section, we apply the DPSC scheme designed in the preceding section to the cellular

CNN in spiral wave states. We will illustrate the process of directing the network from

a spiral wave into a plane wave state by a case study, demonstrate the effectiveness of

DPSC and the features of the controlled dynamics from a statistical point of view, and

then investigate the parameter dependence of control results and control processes.

5.3.1 Specific control case

Here we work on the specific example described in Sec. 5.1.1 to show how the spiral waves

are eliminated by the DPSC. To provide a complete overview, Fig. 5.6 shows the control

process as the time series for the control signal u(t) compared with the case using no

control. We discarded the data before t = 200 to avoid considering the transient stage

when hi(t), u(t) and the output x had yet to settle. Subsequently, u(t) became steady

and remained at around 10 for hundreds of steps, but it also never exceeded 12 for at

least 104 steps in the uncontrolled case (see Fig. 5.6(a) and the insets), thereby indicating

persistent spiral wave activity. By contrast, Fig. 5.6(b) shows that u(t) tended to increase

after the control was initiated at t = 301, before declining prior to t = 400, and reaching a

high value of approximately 21.8. In addition, the proportion of neurons affected directly

by the time-varying limit ζ∗ (t) in the network was 80 ∼ 90% after the start of control,
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but it declined sharply after t = 400, and finally fixed at zero after several weak bounces.

According to these results, we can infer that the spiral waves were removed successfully

and that the network was converted into an intrinsic non-spiral state, which was actually

a PW state as we will show later. The duration of control was 170 steps and its last effect

was observed at t = 470, where the average proportion of neurons affected during this

period was 0.596 with a standard deviation (SD) of 0.377.
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Figure 5.6: The specific control process is illustrated based on the evolution of the control
signal compared with the uncontrolled case. (a) u(t) in the uncontrolled CNN. The long-
term evolution over 104 time steps and the corresponding histogram for u(t) are shown in
the insets. (b) The evolution of u(t) with control initiated at t = 301. The proportion of
constrained neurons is also plotted to show the automatic ending of the DPSC.

As the most straightforward way of understanding the control process, the output

sequences extracted at different stages are shown in Fig. 5.6. When the control started,

the spirals stopped rotating and they underwent gradual deformation as an apparent

extension of the previous clustering process, before yielding a propagating cluster. Next,

this cluster continued to move downward where its two ends reached out and started to

curl, which is a well accepted mechanism for generating spiral waves in an excitatory

medium. However, these processes were obstructed by DPSC and recorded only as the

setback in Fig. 5.6(b), before the two ends of the cluster collided to yield an antecedent of

the PW. As time passed, the undulating shape of the wavefronts flattened progressively

and the CNN finally converged to an ideal PW state with equal numbers of neurons to

output x∗i = 1 and x∗i = 0. The wave speed was two pixels per step and examinations of

all the internal state variables confirmed that the system had an exact period of 25 steps

after control.
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The image sequence described above emphasizes the digitized spatial patterns due

to saturated outputs, but we now consider the internal oscillation of certain individual

neurons. Figure 5.8 shows the time series of yi(t) = ζi(t) + ηi(t) for the 1020th neuron

and 2270th neuron, which were located near and away from a singularity, respectively.

Before control, y1020(t) exhibited amplitude reduction compared with y2270(t), whereas

during control, y1020(t) and y2270(t) adjusted themselves with hampered and slowed os-

cillations, occasionally with almost identical or opposite values when both were subject

to the threshold ζ∗(t). After the end of control, y1020(t) and y2270(t) finally achieved a

period-25 oscillation with a common phase and amplitude. Given that these two neurons

represented different binary values in the basal pattern, then y1020(t) and y2270(t) actually

had opposite phases in the wave of activated memory, which agrees with the fact that

these two neurons were spatially separated by half a wavelength in the direction of wave

propagation.
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Figure 5.8: Oscillation of the total internal state before, during, and after control for two
representative neurons.

5.3.2 Statistical investigation of controlled dynamics

After capturing some basic features of our controlled model in the case study described

above, we considered the following issues: the success rate of spiral wave elimination using

DPSC and the control results that can be obtained; and, if various control results can be

obtained, whether the corresponding control processes have distinct properties.

A subsequent simulation of the system in the 4991 cases mentioned in Sec. 5.1.3 with

DPSC initiated at t = 301 demonstrated the high success rate of spiral wave elimination

and multiple possible control results. In all 4991 cases with persistent spiral waves, the

CNN was directed to one of its intrinsic non-spiral periodic states in less than 104 steps,

where the DPSC terminated automatically. These states could be classified into two

categories, each with three different observed periods, and their frequencies are listed in

Table 5.1. In 77.8% of the trials, the CNN was controlled to an SO with a period of 63,
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126, or 188, whereas in the other trials, the network fell into an orbit of PW, with a period

of 25, 49, or 98. Within each category, we also observed an approximate multiple-aliquot

relationship among the period lengths where the states of the shortest period appeared

most frequently.

Table 5.1: Frequencies of different types of control results.

Type Period Count (Rate) Total

T = 63 3586 (71.8%)
SO T = 126 100 (2.00%) 3883 (77.8%)

T = 188 197 (3.95%)

T = 25 993 (19.9%)
PW T = 49 101 (2.02%) 1108 (22.2%)

T = 98 14 (0.281%)

Further information about the control-induced states is summarized briefly in Fig. 5.9

in terms of the schematic output sequences and grand mean power spectra of the total

internal state yi(t). The spatiotemporal output of the period-25 PW states shifted down-

ward (equivalently, upward, leftward, or rightward) and the relevant power spectra were

isolated lines at multiples of the dominant frequency fd = 0.0400. For the PW states of

period 49 and 98, the wave propagated at an oblique angle of 45◦, while the dominant

frequency was kept at fd = 0.0408 (Ta = 24.5), so a neuron circled two or four times in the

ζ–η plane during an exact period of the network. In addition, the SO states exhibited few

wave characteristics other than synchronization of all the neurons and oscillation of the

entire network between complete e and e in its spatiotemporal output. The basic cycle of

the oscillation was Ta = 31.5 or 31.3 steps (fd = 0.0317 or 0.0319), and the period-63, 126,

and 188 orbits comprised two, four, and six cycles, respectively. Moreover, states in the

same period were not necessarily equivalent, e.g., period-25 PW states were identified

with 24 or 26 rows of neurons to output x∗i = 1, in addition to those with 25 rows. These

analyses of the pre- and post-control dynamics demonstrated the signature frequencies of

different types of states, i.e., fd ≈ 0.057 for a spiral wave, 0.040 for PW, and 0.032 for SO,

which are reminiscent of the frequency modulation in the rodent visual cortex [39].

In the rest of this subsection, we concentrate on the control process, especially the

statistical differences between the processes leading to PW and those leading to SO. In

the time domain, we consider quantities including the duration of control, the mean and

SD of the affected neuron proportion during control, and the product of the first two as

a measure of the total amount of control. The results of our trials in the plane spanned

by the average affected proportion and the duration of control on a logarithmic scale are

plotted in Fig. 5.10(a), together with a mean–SD plot of the affected proportion in the

inset. Clearly, the PW-inducing control processes were more spread and they generally

had longer durations (several hundred steps) than the SO-inducing control processes (a
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Figure 5.9: Dynamics of the post-control periodic states. Schematic output sequences are
shown for the basic cycles of (a) the SO states and (b) the PW states of period-49 and
98, as well as the grand mean power spectra of yi(t) for (c) the SO states and (d) the PW
states. In (c) and (d), the spectral density values are specified according to a frequency
interval of 10−4, where the error bars indicate the SD among trials with the same type of
control result.

few dozen), and this situation was similar to the amount of control. However, according

to the data points distributed to the left of those for SO, the PW-inducing processes had

smaller mean proportions of affected neurons, where a smaller mean also corresponded to

a larger SD. The bounces in the control before its disappearance, as shown in Fig. 5.6,

were responsible for the small mean and large SD of the affected proportion of neurons.

In the frequency domain, the grand mean power spectra of yi(t) differed during the

PW- and SO-inducing control processes from those before or after control as well as from

each other, as shown in Fig. 5.10(b). Compared with the pre- and post-control dynamics,

the range of lower frequencies made the main contribution to the intra-control dynamics,

which supports the evidence for gradual adjustment during control obtained from the

case study described in Section 5.3.1. In addition, when the spectral density of the SO-

inducing processes decayed monotonically with an increasing frequency, its counterpart for

PW exhibited several peaks, which may also have originated from the almost controlled

oscillation during the late stage of control when the bounces occurred.
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Figure 5.10: Statistical analysis of the intra-control dynamics. (a) Plots of the duration
of control and the SD of the affected proportion versus the average affected proportion.
Isolines of the total control amount are drawn in the former plot, where their iso-values are
readable from the right edge. For clarity, 200 data points are shown for SO and for PW
in both plots. (b) The grand mean power spectra for yi(t) during SO- and PW-inducing
control processes. The error bars represent the SD among the mean power spectra of the
same type, which were interpolated to obtain their values at a common frequency.

5.3.3 Control parameter dependence

The performance of the proposed DPSC method was also examined with other control

parameter values and this subsection provides a brief description of the dependence of the

control results and processes on the parameter c2. We found that spiral waves were almost

always eliminated for the investigated values of c2, but the control results varied greatly,

as illustrated in Fig. 5.11. We categorized the control result according to the following

features: (i) whether it was free, i.e., whether the constraint vanished; (ii) whether it

was SO or propagation, where the latter was not only PW because we could not exclude

the possibility of propagating clusters or other patterns without plane edges, especially

when the network was not free; (iii) whether it had the shortest exact period, i.e., 63

for SO or 25 for propagation. For 0.550 . c2 . 0.565, most of the control trials ended

with free SO states and only the remaining 3% led to non-free propagation. For even

smaller c2 values, non-free SO states could also appear. By contrast, when c2 & 0.570, the

propagation states were free PW states after control, where the percentage increased with

c2 and reached 32.9% when c2 = 0.630. In addition, a larger c2 value, which indicated a

weaker overall constraint, made it more likely for the post-control network to have longer

periods. Thus, for SO, the period-126 and period-188 states continued to approach the

share of the period-63 states, and for PW, states emerged with various long periods, some

of which reached up to several thousand steps, or with no period found within 104 steps

and they became increasingly frequent, especially when c2 > 0.610.

In addition to the partial selectivity of the control results, the variations in the pa-

rameter c2 also modulated the control processes. Figure 5.12 plots the results of control
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Figure 5.11: Proportions of different types of control results as functions of the control
parameter c2.

processes conducted at different values of c2, which are characterized as the average af-

fected proportion on the horizontal axis, the duration of control on the vertical axis, and

their product, i.e., the cumulative affected proportion, on the isolines. Increases in c2 only

caused a slight displacement of the ensemble of SO-inducing processes in the plot, thereby

suggesting that there were small decreases in all three quantities, whereas they caused

fairly dramatic changes in the scatter of the PW-inducing processes. When c2 = 0.570,

most of the PW-inducing processes lasted longer but much lower average proportions were

affected, and thus the cumulative affected proportions were almost equal compared with

the SO-inducing processes. When c2 = 0.580, another cluster emerged in the region that

represented higher cumulative affected proportions, which was roughly divided from the

existing one by the isoline at a value of 1× 102. Further increases in c2 caused continuous

shifts in most of the PW-inducing processes toward a larger total amount of control, and

when c2 = 0.620, there was a distinct distribution from the beginning, which was relative-

ly concentrated in terms of the average affected proportion but dispersed in terms of the

control duration.

5.4 Discussion

Our method for removing spiral waves from a locally connected CNN using a DPSC has

extended the possible applications of this method, which was originally implemented in

a fully connected associative CNN to trap its memory retrieval in a periodic orbit [52].

Analogies and differences can be observed by comparing the previous study with the

present one. When designing the control signal as a task-specific indicator of the network’s

state, the magnitude |ηi| always has a core role and it is exploited well due to the effect

of the weight matrix W on the output x and the dominance of Wx in the feedback

internal state η. In the previous study, the CNN’s departure from or its approach to the
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Figure 5.12: Modulation of the control processes by varying the control parameter c2.
For both SO and PW, 200 data points are presented in each plot for clarity.

basal patterns at step t − 1 were reflected by its small or large control signal at step t,

followed by tighter or looser control at step t + 1, respectively. However, in the current

study, the amplitude reduction had to be detected by a temporal moving average, so

the control signal and dynamic constraint increased and decreased at a far slower rate

in response to the extinction and emergence of spiral waves. Therefore, the intra-control

dynamics of the network during spiral wave elimination had a quite different low-frequency

feature compared with the previous study. To exert control, limiting the refractory states

prevented certain neurons from crossing the line ζ+η = 0 in the ζ–η plane, which hindered

the CNN’s itinerancy or evolution where such crossings were indispensable. In the previous

study, the transition to other basal patterns was stopped and the CNN was kept in situ,

whereas in the present study, spiral rotations were terminated and clustering progressed

instead. Importantly, the CNN in [52] could not settle in a stored pattern, so the dynamic

constraint never ceased and it became an integrated part of the variant associative CNN

model. By contrast, free SO and PW were permitted states in the locally connected CNN,

so the DPSC disappeared automatically without altering the network model when these

states were reached.

A partially or locally connected CNN could encode the same patterns (or other infor-

mation) as a fully connected CNN but it would use significantly fewer synapses, which

is advantageous for its hardware implementation and numerical simulation. This is even

clearer when we consider large-scale networks, e.g., the CNN described in [66] stored color

images with more than 106 neurons and each neuron received inputs from just a few hun-

dred. In addition, the full auto-associative weight matrix sometimes tends to reduce the
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dimension of the feedback internal state, so a partially connected CNN may actually have

a higher dimension and richer dynamics. Traveling waves of patterned activity arise from

local connections and they provide a novel mechanism of association as propagating alter-

ations of cell assemblies, rather than the conventional global state transition. To facilitate

the use of these networks in associative memory and other areas, the DPSC and other

appropriate control methods are needed to regulate the network’s complex behavior. In

this study, we focused on a highly simplified, symmetric case with a single checkerboard

memory, which formed an associative CNN, but mathematically it amounts to a nonlinear

oscillator network with local excitatory connections. Generalizing the proposed DPSC

method to multiple stored patterns and the corresponding associative dynamics should be

considered in future research.

As previously mentioned, spiral waves are modeled by diverse spatially extended dy-

namical systems that are categorized according to their discreteness or continuity in time,

space and state variables, which include cellular automata, discrete-time and continuous-

time neural networks, and partial differential equations. In the present study, the DPSC

control of spiral waves is implemented in a discrete-time CNN, but it can also be realized

in a continuous-time neural network, where the smoothing effect discussed in Section 5.2.2

works in a sense of time integration; that is, the limiting threshold prevents the neurons

from receiving adequate input during a certain time interval to change its state in the

wavefront of large curvatures, so the wave near the singularity is slowed down and the

spiral is hence smoothed. Besides, the cyclic motion of the neurons in the CNN in wave

propagation consists of alternating slow and fast processes, and their dynamics can be

demonstrated to be similar to coupled van der Pol oscillators or FitzHugh–Nagumo neu-

rons. This implies the possibility of applying the DPSC scheme to more general oscillatory

and excitable media expressed by neural networks and even by partial differential equa-

tions, since a certain difference stencil for the Laplace operator in the numerical solution of

reaction-diffusion equations is just equivalent to some local connection scheme in the neural

network model. Such a generality is partially verified by the spiral wave suppression using

phase space constraint in coupled Chua circuits [96] and modified FitzHugh–Nagumo sys-

tems [58], except for the use of fixed threshold values rather than dynamic ones. Although

the constraint therein was intermittent and concurrent with the threshold exceeding at

some sampled site, no exact feedback mechanism existed between the evolution of spirals

and the progression of control, and the system was controlled only to a homogeneous state.

On the contrary, with a well devised control signal, our proposed DPSC scheme might help

to find additional propagation modes and accomplish more flexible control results after

eliminating spiral waves in other spatially extended dynamical systems.

Despite some simplification in the details, the simulation of the cellular CNN repro-

duced certain aspects of the spiral wave dynamics found in the mammalian neocortex [39].

The experimental study showed that the spiral waves generally corresponded to a higher

oscillation frequency than PWs or other patterns in the same cortical region, which is
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called the frequency modulation effect. In the present model, the characteristic frequen-

cies of spiral wave, PW, and SO states had a similar relationship, probably because of

shortcut excursions in the phase plane when the neurons are organized by spiral waves.

Moreover, the pairing of spiral waves with opposite rotating directions was observed fre-

quently during experimental sleep-like states [39], where the delta-dominant state is more

favorable for the occurrence of spirals than the theta-dominant state because the former is

influenced less by subcortical rhythms. In our simulation, these pairings were almost cer-

tain when the spiral waves were sustained stably without control because the equiphase

curve for a phase value starting from a phase singularity had to end at another. It is

considered that the in vivo control of spiral waves in the cortex is due to long-range and

nonlocal connections, such as thalamocortical and corticocortical connections, and thus

clarifying these control mechanisms and using appropriate neuron models would produce

more biologically realistic simulations. In addition, there have been many reports and

analyses of traveling waves in the nervous system, but their functional roles are not well

understood. The possible functions of traveling wave dynamics could also be explored in

the future using cellular CNNs and relevant control methods as a platform.

In this chapter, the spiral wave dynamics in the cellular CNN have been investigated

with an emphasis on its control. The amplitude reduction phenomenon is demonstrated

as a hallmark of spiral waves, and the amplitude-reduced feedback internal states are used

to construct a control signal; the control signal then modulates a limiting threshold to

constrain the refractory internal states. Such a DPSC scheme successfully eliminates the

chaotic spiral waves and redirects the network into its intrinsic PW or SO states. The pre-,

intra-, and post-control dynamics are compared, which feature different characteristics in

the frequency domain. The PW-inducing and SO-inducing control processes are distinct,

where the former generally had longer durations but smaller average proportions of affected

neurons in the network. The study of parameter dependence indicates a partial selectivity

between controlling to PW and SO, where the control processes are modulated as well. The

simulation phenomenologically reproduces a few aspects of the experimentally observed

spiral wave dynamics in the mammalian cortex such as the frequency modulation. This

study also expands the applicability of DPSC in controlling CNNs, facilitating the future

application of cellular CNNs in associative memory.
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Chapter 6

Epilogue: Conclusions and
Prospects

The idea of using the evolution of dynamical systems to solve problems naturally has been

of interest to people and implemented in various ways in recent years. A fresh, interesting

and yet important example is the solution of Sudokus as boolean satisfiability problems us-

ing the transient chaos of designed dynamical systems [16]. Looking back to the history, we

may find that the idea of using dynamics for problem-solving can date back at least to the

invention of the Hopfield neural network: it evolves to an attractor that corresponds to the

local minimum of an energy function, and is thus used for associative memory or classifi-

cation into memory patterns that have been stored as attractors.

The introduction of chaotic dynamics into Hopfield-like neural networks, as with the

associative CNNs, has reshaped their associative dynamics [1]. The memory retrieval is no

longer a converging process but an ever-changing, non-stop one, where the output jumps

from one stored pattern to another in a seemingly random way: This is just the traditional

regime, global transition, for chaotic memory retrieval. Several CNN-based models have

been developed [34, 35, 52], which obtained controlled periodic associative dynamics that

share some similarity with the chaotic–periodic transition in rabbit’s olfactory system [86].

In recent research, restriction of the synaptic weights to a local region of each neuron

has provided a new perspective for the chaotic memory retrieval [66, 67]. The transition

among stored patterns is no longer a global transition, but a sequential local one that

has a spatial phase structure. Such a wave-like new regime of memory retrieval is advan-

tageous for its implementation on large-scale networks with a highly reduced number of

connections, and it also reflects the feature of strong local synaptic connections in a real

brain. People may be interested in how the propagating waves of patterns can be utilized

for applications and how this may help in understanding the information processing in the

brain, where traveling waves are also increasingly observed and studied [39, 90, 104].

Further development of the existent model sometimes requires knowledge of the fun-

damental properties including those of the wave dynamics. We may expect to develop an

associative network model where a local input can be classified and the information can
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then be transmitted to another specific site by inducing a directional traveling wave; this

actually requires a fairly high extent of free manipulation of the wave dynamics. In this

case, if we hope to control the dynamics of the network (for example, spiral wave) to some

plane wave state via a certain method (for example, parameter modulation), we should

at least know with what parameters the expected plane wave dynamics can exist. This

triggers the investigation of the wave dynamics of a cellular CNN, especially the dynamics

in the parameter space. On the other hand, the construction of feasible control scheme

for the wave dynamics is also needed in creating such models; the existent studies on

the control of the spatiotemporal pattern formation (including chaos) naturally reminded

people of the possibility of generalizing them for the current scenario.

Hence this thesis attempts to cast some light upon the wave dynamics in the cellular

CNN under the background of the wave-like association regime as well as the traveling

brain waves. The wave dynamics is a big topic that is related to almost every aspect of

the theory and application of dynamical systems. Accordingly, this thesis not only deals

with the wave dynamics itself but also involves the study of bifurcation and chaos control.

Summarizing the results that we acquired, the following conclusions can be drawn.

• The neural field model corresponding to the cellular CNN accommodates abundant

traveling wave dynamics. Although it can be deemed simply as a variant reaction-

diffusion system with singular spatial coupling, various traveling waves are possible

even in only one spatial dimension. Periodic waves exist for all speeds, and fold of

periodic waves appears frequently. Periodic waves may have symmetric shapes, or

only oscillate around a nontrivial equilibria. The periodic waves can end with pulses

(solitary waves) or end with single fronts/backs.

• Bifurcations of higher codimensions turn out to be useful in the analysis of the plane

waves. The network or field model itself depends on parameters, and the traveling

wave coordinate introduces an additional parameter, the wave speed. The analysis

of high-codimensional bifurcations clearly reveals the existence and fate of the wave

solutions in the parameter space. In this study, the analytical computation of the

parameter-dependent normal form of the BT bifurcation produces a bifurcation dia-

gram as a function of the wave speed, providing important information on the wave

solutions in a condensed way.

• Despite its simplification, the cellular CNN produces spiral wave dynamics that is

to some extent similar to the observed cortical spiral waves. Some natural examples

include the pairing of two spirals rotating in opposite directions and the amplitude

reduction near the phase singularity. The spiral wave has a higher frequency than

the plane wave in the same environment in the cortex, which is called “frequency

modulation”; this effect is also reproduced. There is a more subtle similarity in the

enhanced drift and termination of spiral waves with the presence of control. These
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may imply the universality of the observed cortical spiral dynamics in oscillatory

media and the possibility of using simple models to realize their functionality (if we

know it).

• The applicability of DPSC as a control method is expanded. The DPSC proposed

here not only synchronizes the network but also transforms spiral wave states into

plane wave states; the DPSC here works with negative feedback and ceases automat-

ically, leaving the CNN unaltered. These are different features that separate it from

other existing methods for eliminating spirals. On the other hand, as the DPSC has

been applied to fully connected associative CNNs, we believe that the DPSC family

is advantageous in realizing the manipulation of the associative dynamics of CNNs.

After the summary above, some prospective advances of the current study are discussed

at the end of the thesis.

• The bifurcation analysis of the traveling wave system is not completed yet. The two

singularities on the BT bifurcation curve indicate codimension-three bifurcations,

where additional bifurcation curves may emanate and partition the parameter space;

another codimension-two bifurcation in the system, the zero–Hopf bifurcation, is not

clarified, which may involve tori and other complex wave behavior. Further analysis

of these bifurcations would yield more specific and comprehensive conclusions about

the wave dynamics.

• The cellular CNN considered in this thesis is highly simplified and symmetric. The

bias of the neurons in the CNN may be deviated from the present setting, so that

the network dynamics cannot be reduced to be homogeneous; there may be multiple

stored patterns, so that the spatial coupling may have more complicated forms; the

synaptic footprint may have a distinct profile, so that the corresponding neural field

model is also different. In that case, the present result and method should be revised

or generalized, and resultant new characteristics remain to be discovered.

• The control of the traveling wave dynamics in the cellular CNN needs to be further

developed. The present DPSC control realizes the conversion of spiral wave states

to non-spiral states; however, the conversion the other way around is not considered.

The present DPSC demonstrates a dependence of the control results on the control

parameter in a statistical sense, but the control target cannot be designated during a

certain run. In addition, as scroll waves may appear in a three-dimensional medium,

we are interested in whether and how the DPSC can be used to control scroll waves.

Moreover, the generalization of the current scheme to associative memory of multiple

patterns remains to be considered.

There is still a long way to go, before we can freely manipulate the various wave dynamics

in the network and use it for real-world applications. This is not the end but the beginning.
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