
博士論文

Analyzing Performance Differences of Task Parallel
Runtime Systems based on Scheduling Delays

(スケジューリング遅延に基づいたタスク並列
ランタイムシステムの性能差の解析)

平成 29年 12月 8日提出

指導教員 田浦健次朗 教授

フィンゴクアン(Huynh Ngoc An)

Abstract

The number of processor cores integrated in a computer keeps increasing with multicore and
manycore architectures. Programming these architectures becomes more difficult using traditional
parallel programming models such as MPI and POSIX Threads where programmers need to manually
manage each thread for each processor core. Modern task parallel programming models have
developed to deploy sophisticated runtime systems which can handle those low-level thread-managing
details so that the programmers can focus on higher-level aspects of the software development (e.g.,
algorithms, creativities).

In task parallel programming models, programmers are presented with a unified interface of
tasks: a programmer does not need to be aware of threads, but just needs to extract logical parallelism
in the program by creating tasks as easily as calling a function. These tasks will be mapped
to available threads (processor cores) at runtime so as to turn these logical parallelism to actual
parallelism exploiting hardware parallel resources as much as possible. In order to provide that
unified task interface, a runtime system includes a task scheduler as an essential component which
is responsible for scheduling a large number of logical tasks created in the program onto available
threads dynamically at runtime. The scheduler usually launches a certain number of worker threads
(or workers for short) according to the available processor cores in the underlying hardware system
and assigns tasks to them promptly as the tasks get created.

As the runtime system handles most of the important mechanisms in a parallel execution automat-
ically, the performance of a task parallel program depends greatly on the runtime system that runs it.
The same program run by different runtime systems may expose very different performances. Clari-
fying causes behind these performance differences between systems is important for the development
of the task parallel paradigm.

We have developed an analysis to quantify performance differences of task parallel runtime
systems based on their scheduling delays. The analysis breaks down the cumulative execution time
of a parallel execution of a task parallel program into four components. Cumulative execution
time of a parallel execution is the multiplication of the execution’s elapsed time and the number of
workers participating in the execution (cumul. exe. time = elasped_time×workers). This cumulative
execution time is divided into work, delay, no-work-sched, and no-work-app components. Work is the
time the workers spend on executing the program code. Delay is the time a worker was not executing
the program code, despite there was at least one ready task existing in the system to feed that worker
at the time. Delays happen because the system fails to do its scheduling job fast enough in matching
together the free worker and the ready task. On the other hand, no-work (sum of no-work-sched and
no-work-app) is also the time a worker was not executing the program code, but there was no ready
task existing in the system to feed that worker at the time. No-work seems to be legitimate because
there was no work for the free worker to do; the situation can’t be blamed on the runtime system,
but is caused by the application not creating enough parallelism. However, no-work is not totally
caused by the application’s lack of work; only a part of no-work is caused by the application, and
the other part is actually caused by the runtime system (scheduler). To see this, suppose a program
that has only one parent task that spawns all other child tasks. A delay in advancing that parent task
will not only cause a delay on the worker executing the parent task, but also cause longer no-work
intervals on the other workers trying to steal tasks. Therefore, it is necessary to divide no-work into
two sub-components of no-work-sched, which is caused by the scheduler, and no-work-app, which is
caused by the application.

We have done this no-work sub-division by adopting a heuristic that uses the notion of ready
path. Ready path is one of the critical paths on the task graph of the task parallel program; along the
ready path there is always a task running or ready. The ready path length can be classified into three
parts of work (during which a task was running), scheduler delay (during which a task was ready and

there was at least one free worker), and busy delay (during which a task was ready but there was no
free worker). As all workers were busy during busy delay intervals, the no-work component of the
cumulative execution time happens during either work or scheduler delay intervals of the ready path;
and we consider the part of no-work happening during work intervals as no-work-app and the other
part of no-work happening during scheduler delay intervals as no-work-sched.

These four components of the cumulative execution time breakdown play the role of general
metrics that do not only help give users an overall impression about the performance of the execution,
but also effectively contrast the differences in performance between different executions, and signal
possible causes of performance drawbacks. A large work in a parallel execution (compared with the
work of the serial execution of the same program) indicates the inflation in work (work stretch) due to
more cache misses, longer remote memory accesses, more thread contention, etc. which are routinely
incurred in a parallel execution on a highly parallel architecture. Large delay and no-work-sched
suggest more inefficiencies happening in the runtime scheduler; and large no-work-app suggests there
is a lack of parallelism in the application.

In order to implement this scheduling delay-based analysis, we need to capture a trace, which
records every start and stop time of any task, and dependencies between those tasks, from an execution
of a task parallel program. We model the trace as a directed acyclic graph (computation DAG) with
execution intervals of tasks as nodes, and dependencies between tasks as edges. The tracing part
of our tool (DAG Recorder) instruments time-measuring code around any task parallel primitive
(i.e., task-creating primitives, and tasks-waiting primitives), constructs the DAG in memory as the
execution progresses, and flattens the DAG out to file when the execution ends. Capturing the whole
DAG of a fine-grained task parallel program will result in a huge trace and large overheads. In
order to mitigate this problem, we make the tracer collapse “uninteresting” parts of the DAG into
single nodes, while maintaining aggregate performance information, on the fly during the execution.
“Uninteresting” parts refer to parts (sub-graphs) of the DAG that were executed entirely by only one
worker. By replacing single-worker-executed sub-graphs with single nodes, the size of the trace now
scales with work-stealing operations across workers rather than with the number of task creations.

The trace is then examined by the post-mortem analysis part of our tool (DAGViz) to calculate the
breakdown of work, delay, no-work-sched, and no-work-app. Not only this breakdown, DAGViz is also
a useful and practical visualization tool which visualizes the trace with many kinds of visualizations
to provide users with many persepctives to inspect the performance. DAGViz’s visualizations allow
users to interactively explore the trace, and arbitrarily zoom in any spot in the trace to get to understand
the performance of the execution. DAGViz provides mainly four kinds of visualizations: (1) basic
DAG visualization with nodes having basic shapes (triangles, rectangles, rounds) based on their kinds
(create, wait, collective, end); (2) timing-based DAG visualizations with nodes having lengths based
on the duration of their execution intervals; (3) timelines visualizations in which nodes are rearranged
into rows of workers; and (4) parallelism profiles which depict the running parallelism (number of
running tasks) and ready parallelism (number of ready tasks) of the execution over time.

Because the DAG has a hierarchical structure (there is only a single root node at the highest
level which gets expanded gradually into the full DAG), the visualizations are also implemented in
a hierarchical manner, allowing users to expand and collapse the DAG freely either level-by-level or
node-by-node to view at a high-level angle or a detailed angle. The expansions and collapses of DAG
are performed with animations of gradually expanding/collapsing nodes so that the perception of the
DAG in the user’s mind holds seamlessly during transitions between visualizations of different levels
of details.

Our tool has been implemented with five task parallel programming models (Cilk Plus, Mas-
siveThreads, OpenMP, Qthreads, and TBB). A set of generic task parallel primitives (task creation,
task synchronization) that wrap respective primitives in specific models are used to simplify the writ-
ing effort. The benchmark is written only one time using the generic primitives, then gets compiled
to multiple executables based on different models by switching compilation options that dictate the

2

translation of the generic primitives to spefic ones of the specified model. During this translation,
time-measuring code is also automatically instrumented around a task parallel primitive in order to
capture time points when a worker transits from program code to scheduler code and vice versa.

We have evaluated our proposed analysis and tool with 10 applications in BOTS benchmark suite
and 11 applications in TP-PARSEC benchmark suite. The BOTS benchmarks were originally written
in OpenMP’s task parallel model, so we have just replaced these task parallel primitives with our
generic ones so that our DAG tracer works and allows us to evaluate BOTS with five supported runtime
systems. TP-PARSEC (task parallel PARSEC) benchmark suite is a new benchmark suite made by
us based on the PARSEC benchmark suite. The original PARSEC benchmark suite was written in
three traditional parallel programming models of POSIX Threads, OpenMP’s parallel for loop, and
TBB’s parallel for loop. We have re-implemented PARSEC benchmarks with task parallelism based
on our generic primitives and published it as a new benchmark suite - TP-PARSEC.

By applying our analysis and tool to various runtime systems and benchmarks, we have discovered
many useful and interesting inefficiencies in the implementations of some runtime systems.

3

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Contributions . 11
1.3 Organization of the rest of this thesis . 11

2 Work-Stealing Scheduling Strategy 12
2.1 Brief Description . 12
2.2 Chronological Description . 13

2.2.1 Work diffusion (1981) . 13
2.2.2 Unfair scheduling policy (1984) . 13
2.2.3 Lazy task creation (1990) . 15
2.2.4 Work stealing (1994) . 18
2.2.5 Work-first (1998) . 19

2.3 Theoretical Proof of Efficiency . 19
2.4 Practical Implementation . 20

3 Task Parallel Programming Models and Runtime Systems 23
3.1 Multilisp . 24
3.2 Mul-T . 24
3.3 MIT Cilk . 24
3.4 Intel Cilk Plus . 25
3.5 OpenMP . 25
3.6 Intel Threading Building Blocks (TBB) . 28
3.7 MassiveThreads . 29
3.8 Qthreads . 30

4 Performance Analysis and Visualization Tools 31
4.1 Analyzing Parallel Performance . 31
4.2 Performance Visualizations . 32
4.3 Data Locality . 33

5 Analyzing Performance Differences based on Scheduling Delays 37
5.1 Background . 37
5.2 Breakdown of Cumulative Execution Time based on Scheduling Delays 38

5.2.1 Performance loss in parallel execution . 38
5.2.2 Ready path analysis . 40

5.3 Related Work . 41

1

6 Recording and Visualizing Computation DAG Traces 42
6.1 Background . 42
6.2 tpswitch . 44
6.3 Computation DAG . 45

6.3.1 Computation model . 45
6.3.2 DAG structure . 45

6.4 DAG Recorder . 47
6.5 DAGViz . 47

6.5.1 Hierarchical layout algorithm . 48
6.5.2 Timelines with parallelism profile . 49
6.5.3 Kinds of visualizations . 50
6.5.4 Related work . 50

6.6 Case Studies . 51
6.6.1 Sort . 53
6.6.2 SparseLU . 54

6.7 Delay Spotter . 57
6.8 Big DAG handling mechanisms . 58

6.8.1 DAG-collapsing mechanisms . 58
6.8.2 Big DAG visualizing mechanisms . 58

7 Task-Parallelizing PARSEC Benchmarks 59
7.1 Background . 59

7.1.1 PARSEC . 60
7.1.2 Task parallel programming models . 61

7.2 TP-PARSEC . 61
7.2.1 A unified task parallel API . 62
7.2.2 Task-parallelizing PARSEC . 62
7.2.3 Performance analysis tool . 67
7.2.4 Improved central management script . 67

7.3 Related Work . 68
7.4 Conclusion . 68

8 Evaluation 69
8.1 BOTS . 69

8.1.1 SparseLU . 70
8.1.2 Alignment . 75
8.1.3 FFT . 78
8.1.4 Other benchmarks . 83

8.2 TP-PARSEC . 85
8.2.1 Setting a good grain size with the delay metric (blackscholes) 87
8.2.2 Overlapping I/O and computation easily with tasks (bodytrack) 87
8.2.3 Adjusting actual threads used in dedup & ferret 90
8.2.4 Genuine task parallel schedulers are better than manual task queues (body-

track, facesim, raytrace) . 91
8.2.5 Characterizing performance differences with the scheduling delay-based break-

down . 91

9 Conclusion 93

Appendices 102

CONTENTS 2

A BOTS on Xeon E5-2699 v3 103
A.1 Overview . 103
A.2 Alignment . 104
A.3 FFT . 105
A.4 Fib . 106
A.5 Floorplan . 107
A.6 Health . 108
A.7 NQueens . 109
A.8 Sort . 110
A.9 Sparselu . 111
A.10 Strassen . 112
A.11 UTS . 113

B BOTS on Xeon Phi 7250 (Knights Landing) 114
B.1 Overview . 114
B.2 Alignment . 115
B.3 FFT . 116
B.4 Fib . 117
B.5 Floorplan . 118
B.6 Health . 119
B.7 NQueens . 120
B.8 Sort . 121
B.9 Sparselu . 122
B.10 Strassen . 123
B.11 UTS . 124

C TP-PARSEC on Xeon E5-2699 v3 125
C.1 Overview . 125
C.2 Blackscholes . 126
C.3 Bodytrack . 127
C.4 Canneal . 128
C.5 Dedup . 129
C.6 Facesim . 130
C.7 Ferret . 131
C.8 Fluidanimate . 132
C.9 Freqmine . 133
C.10 Raytrace . 134
C.11 Streamcluster . 135
C.12 Swaptions . 136

D TP-PARSEC on Xeon Phi 7250 (Knights Landing) 137
D.1 Overview . 137
D.2 Blackscholes . 138
D.3 Ferret . 139
D.4 Freqmine . 140
D.5 Swaptions . 141

CONTENTS 3

List of Figures

1.1 Performance differences between different runtime systems running the same program. 10

2.1 The conventional eager task creation creates unnecessarily too many tasks which
are fine-grained, while an ideal task creation which follows the BUSD manner will
create just enough tasks for a 4-processor system by spawning at first 3 occurrences
of future (a, b, and c) and inlining at subsequent occurrences. 16

2.2 An additional lazy task queue structure for storing pointers to lazy tasks (i.e., con-
tinuations of futures) aside the usual stack structure: (a) stack and lazy task queue
grow upward; (b) a future causes a continuation to be queued; (c) the continuation
gets dequeued when the future returns; (d) a continuation at head of the queue gets
stolen [47]. 17

2.3 Two kinds of implementations of the lazy task queue [47]. 18
2.4 Circular array using modulo its size to access its elements 22

3.1 An example Fibonacci program written with Cilk Plus 26
3.2 An example Fibonacci program written with OpenMP Task 28
3.3 TBB layers [46] . 29
3.4 An example Fibonacci program written with TBB 29

4.1 Computation and data placement when optimized for data locality and not optimized
[46] . 34

4.2 Each locality domain per-chip has one shared deque [46] 35
4.3 Speedups of Health and Heat benchmarks with the proposed Qthreads locality-based

scheduler [46] . 35
4.4 Data transferred (GB) over interconnects (QPI) between chips [46] 35

5.1 Parallelism profile and the ready path. Work, delay, and no-work components of the
cumulative execution time are respectively red, blue, and white (empty) area below
the red line of the number of workers. The ready path (one among numerous paths
existing in a DAG) is divided into work, busy delay, and scheduler delay. 39

6.1 tpswitch API . 44
6.2 tpswitch exmples . 44
6.3 An example task parallel program and its DAG. The whole execution is originally

the only task node which is expanded into two sections and one end. The two
sections are further expanded into two similar inner topologies as they are two
iterations of the same for loop. 47

6.4 Sort’s DAG(s) at depth 0 (first), 1 (second) and 2 (later 3). The DAG initially has only
one node (the left most), from left to right it shows the DAG’s hierarchical expansion.
The original node gets expanded into three sections and one end, then the first
section gets expanded, and the second and the third ones. 48

4

6.5 Sort’s DAG expanded to depth 6 with less than 500 nodes but overwhelming already.
While at max depth of 66 it contains up to dozens of thousands of nodes. 49

6.6 Sort’s timelines are the lower part consisting of 32 rows. Sort’s parallelism profile
is the upper part consisting of a red area (actual parallelism) and stacked-up areas of
other colors (different kinds of available parallelisms). 50

6.7 DAG Recorder’s overhead in running programs in BOTS with MassiveThreads on 32
cores . 52

6.8 Utilizations of BOTS run by 5 systems on 32 cores 53
6.9 Strassen DAG’s top node was actually a too-long-running interval demonstrated by

the timeline view. 54
6.10 (Head part of) SparseLU’s DAG by Cilk Plus . 55
6.11 (Head parts of) SparseLU’s DAG(s) by Intel TBB (left) and Cilk Plus (right) 55
6.12 SparseLU’s parallelism profiles by MassiveThreads and Cilk Plus. While Mas-

siveThreads consistently reaches 32 parallelism, Cilk Plus mostly floats around 25. . 56
6.13 Distribution of work stealing time in SparseLU . 56
6.14 Task parallel primitives are automatically instrumented to take timing information

when they are translated to corresponding primitives of a specific system. 57

8.1 SparseLU, Alignment, FFT: performance loss breakdowns of executions on 36 cores
by five systems MassiveThreads, Cilk Plus, TBB, OpenMP, and Qthreads. The serial
work has been subtracted from all bars. The percentage represents the proportion of
the remaining surplus amounts against the serial work. Although the serial version
does not include task management overhead, but it includes the overhead of our
DAG-recording measurement. Serial version’s delay represents this tracing overhead. 70

8.2 Timelines and parallelism profiles of SparseLU benchmark run by 5 systems. In each
figure, the lower half is timelines and the upper half is parallelism profile (running
parallelism in red color, and ready parallelism in other colors). For viewability, only
the first loop and a part of the second loop in the first phase (among 120 phases) are
included in x-axis; and y-axes of TBB, OpenMP, and Qthreads are truncated at top
because their ready parallelisms get too high. 73

8.3 A microbenchmark for testing work-stealing speed of the systems: child is the time
from t0 to tc, parent is the time from t0 to tp. The benchmark is run with only two
workers. Qthreads does not run with this benchmark because it delays the child’s
execution until WaitTasks. 74

8.4 DAG with timing on y-axis of the first loop of SparseLU. TBB and OpenMP implement
the typical principles of work stealing: LIFO (last in first out) local task execution,
and FIFO (first in first out) remote task stealing, a created task is made available for
stealing asap; whereas Qthreads delays children until a later time when it can group
and assign collectively multiple consecutive tasks to each worker. Despite wasteful
delays on free workers, Qthreads tends to have less work stretch owing to possibly
better task localities. 75

8.5 Alignment by OpenMP suffers from an issue caused by OpenMP’s upper-bound task
queue, and Alignment’s unbalanced iterations. 77

8.6 Parallelism profiles of Alignment run by TBB (left) and OpenMP (right): TBB
creates all child tasks at once continuously (up to 5000 tasks at peak), whereas
OpenMP suspends task creations whenever the number of ready tasks floats near 300. 78

8.7 FFT by OpenMP: timelines, parallelism profile, and a zoomed-in spot according to
one of the white space on the timelines. 80

LIST OF FIGURES 5

8.8 Delay examples of FFT by OpenMP: a worker executing a parent task waits idly
(without doing work-stealing) for each of one, two, or three children, which have
been stolen, to be finished before resuming the parent and synchronizing each of
them. These delay patterns occur pervasively on DAG. 81

8.9 FFT by Qthreads: delayed scheduling of ready children has made workers idle
wastefully. The situation has been made worse by FFT’s binary recursive call tree
which serialized the second recursive call instead of creating a task, this has delayed
the worker more until it can reach the synchronization primitive. Figures 8.9b and
8.9c are two example spots. 82

8.10 Fib: performance loss breakdown of 36-core executions run by MassiveThreads, Cilk
Plus, TBB, OpenMP, and Qthreads. 83

8.11 Floorplan: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads. 83

8.12 NQueens: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads. 84

8.13 Sort: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads. 84

8.14 Strassen: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads. 84

8.15 Fib, Floorplan, NQueens, Sort, Strassen: performance loss breakdowns of executions
on 36 cores by MassiveThreads, Cilk Plus, TBB, OpenMP, and Qthreads. 85

8.16 Speedups of all versions of all benchmarks in TP-PARSEC 86
8.17 Blackscholes: task_omp’s breakdowns and speedups with multiple grain sizes 87
8.18 Bodytrack: ver. 2 improves substantially over ver. 1 by overlapping I/O tasks with

computation tasks . 88
8.19 Dedup has a long serial interval at the end of the execution due to file I/O (flushing

memory buffer to file). 89
8.20 Facesim: a tiny head path of its full timelines (1.7% of the full length) 90
8.21 Ferret’s original speedup, before fixing core counts of pthreads version. 91
8.22 Performance variation between task versions in facesim and canneal 92

A.1 utilizations on 36 core(s) . 103
A.2 Elapsed times, speedups, and profiling overheads 104
A.3 Breakdown of cumulative execution times (elapsed time × cores) 104
A.4 Elapsed times, speedups, and profiling overheads 105
A.5 Breakdown of cumulative execution times (elapsed time × cores) 105
A.6 Elapsed times, speedups, and profiling overheads 106
A.7 Breakdown of cumulative execution times (elapsed time × cores) 106
A.8 Elapsed times, speedups, and profiling overheads 107
A.9 Breakdown of cumulative execution times (elapsed time × cores) 107
A.10 Elapsed times, speedups, and profiling overheads 108
A.11 Breakdown of cumulative execution times (elapsed time × cores) 108
A.12 Elapsed times, speedups, and profiling overheads 109
A.13 Breakdown of cumulative execution times (elapsed time × cores) 109
A.14 Elapsed times, speedups, and profiling overheads 110
A.15 Breakdown of cumulative execution times (elapsed time × cores) 110
A.16 Elapsed times, speedups, and profiling overheads 111
A.17 Breakdown of cumulative execution times (elapsed time × cores) 111
A.18 Elapsed times, speedups, and profiling overheads 112
A.19 Breakdown of cumulative execution times (elapsed time × cores) 112
A.20 Elapsed times, speedups, and profiling overheads 113

LIST OF FIGURES 6

A.21 Breakdown of cumulative execution times (elapsed time × cores) 113

B.1 utilizations on 68 core(s) . 114
B.2 Elapsed times, speedups, and profiling overheads 115
B.3 Breakdown of cumulative execution times (elapsed time × cores) 115
B.4 Elapsed times, speedups, and profiling overheads 116
B.5 Breakdown of cumulative execution times (elapsed time × cores) 116
B.6 Elapsed times, speedups, and profiling overheads 117
B.7 Breakdown of cumulative execution times (elapsed time × cores) 117
B.8 Elapsed times, speedups, and profiling overheads 118
B.9 Breakdown of cumulative execution times (elapsed time × cores) 118
B.10 Elapsed times, speedups, and profiling overheads 119
B.11 Breakdown of cumulative execution times (elapsed time × cores) 119
B.12 Elapsed times, speedups, and profiling overheads 120
B.13 Breakdown of cumulative execution times (elapsed time × cores) 120
B.14 Elapsed times, speedups, and profiling overheads 121
B.15 Breakdown of cumulative execution times (elapsed time × cores) 121
B.16 Elapsed times, speedups, and profiling overheads 122
B.17 Breakdown of cumulative execution times (elapsed time × cores) 122
B.18 Elapsed times, speedups, and profiling overheads 123
B.19 Breakdown of cumulative execution times (elapsed time × cores) 123
B.20 Elapsed times, speedups, and profiling overheads 124
B.21 Breakdown of cumulative execution times (elapsed time × cores) 124

C.1 utilizations on 36 core(s) . 125
C.2 Elapsed times, speedups, and profiling overheads 126
C.3 Breakdown of cumulative execution times (elapsed time × cores) 126
C.4 Elapsed times, speedups, and profiling overheads 127
C.5 Breakdown of cumulative execution times (elapsed time × cores) 127
C.6 Elapsed times, speedups, and profiling overheads 128
C.7 Breakdown of cumulative execution times (elapsed time × cores) 128
C.8 Elapsed times, speedups, and profiling overheads 129
C.9 Breakdown of cumulative execution times (elapsed time × cores) 129
C.10 Elapsed times, speedups, and profiling overheads 130
C.11 Breakdown of cumulative execution times (elapsed time × cores) 130
C.12 Elapsed times, speedups, and profiling overheads 131
C.13 Breakdown of cumulative execution times (elapsed time × cores) 131
C.14 Elapsed times, speedups, and profiling overheads 132
C.15 Breakdown of cumulative execution times (elapsed time × cores) 132
C.16 Elapsed times, speedups, and profiling overheads 133
C.17 Breakdown of cumulative execution times (elapsed time × cores) 133
C.18 Elapsed times, speedups, and profiling overheads 134
C.19 Breakdown of cumulative execution times (elapsed time × cores) 134
C.20 Elapsed times, speedups, and profiling overheads 135
C.21 Breakdown of cumulative execution times (elapsed time × cores) 135
C.22 Elapsed times, speedups, and profiling overheads 136
C.23 Breakdown of cumulative execution times (elapsed time × cores) 136

D.1 utilizations on 68 core(s) . 137
D.2 Elapsed times, speedups, and profiling overheads 138
D.3 Breakdown of cumulative execution times (elapsed time × cores) 138

LIST OF FIGURES 7

D.4 Elapsed times, speedups, and profiling overheads 139
D.5 Breakdown of cumulative execution times (elapsed time × cores) 139
D.6 Elapsed times, speedups, and profiling overheads 140
D.7 Breakdown of cumulative execution times (elapsed time × cores) 140
D.8 Elapsed times, speedups, and profiling overheads 141
D.9 Breakdown of cumulative execution times (elapsed time × cores) 141

LIST OF FIGURES 8

List of Tables

3.1 Additional keywords of Cilk Plus . 25
3.2 Syntax of OpenMP pragmas . 27

6.1 Environment . 51
6.2 Summary of benchmarks settings . 52

7.1 Programming models of each version of each benchmark. A blank cell indicates the
version does not exist. 61

7.2 Corresponding task parallel primitives in specific models 62
7.3 Work granularity of each version of each benchmark 63

8.1 BOTS benchmark arguments . 70

9

Chapter 1

Introduction

1.1 Motivation

Modern task parallel programming models are equipped with sophisticated runtime systems which
are responsible of scheduling a large number of tasks onto available hardware resources at runtime.
As the hardware parallelism keeps increasing with more nodes, more cores, more threads, it would be
difficult for programmers to write efficient parallel programs with traditional parallel programming
models like MPI, POSIX Threads. In these traditional parallel programming models, programmers
need to manually manage threads, break down the work accordingly with available threads, and
schedule these work to threads during runtime. These low-level details in managing a parallel
execution are intricate, and practically distract programmers from other higher-level aspects in the
application development.

A runtime system in the middle that abstracts away the underlying threads and processor cores,
while providing a unified interface of logical tasks to upper layers is a common approach. Program-
mers just need to extract logical parallelism from the program’s algorithm by creating tasks. The
runtime system will take care of mapping these tasks to available threads at runtime so that these
logical parallelism becomes actual parallelism as much as possible.

The relief of burdens on programmers are accompanied by a larger reliance on the runtime
systems. As a runtime system takes care of more things in the parallel execution mechanism
(e.g., thread management, scheduling, load balancing), the execution’s performance depends largely
on it. Different runtime systems can perform largely different because of their differences in the
design, scheduling algorithms and implementation quality. Fig. 8.22 show two examples of speedup
differences. In a mild case, five runtime systems (Cilk Plus, MassiveThreads, OpenMP, Qthreads,
TBB) differ only 30% when executing the FFT benchmark (Fig. 1.1a). In a harsh case, their differences
were up to 8x in Health benchmark (Fig. 1.1b).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d

u
p

cores

comet fft speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

30% different

(a) FFT: performance difference’ up to 30%

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

sp
e
e
d

u
p

cores

comet health speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

8x different

(b) Health: performance difference’ up to 8x

Figure 1.1: Performance differences between different runtime systems running the same program.

10

Clarifying causes behind these performance differences is important for improving task parallel
programming models. Almost all systems have adopted the well-known work-stealing scheduling
policy in their schedulers, their differences in the implementations are now presumed to be sources
of performance variation.

Moreover, the runtime systems sometimes perform prominently well in some applications, and
sometimes noticeably poorly in some other applications. It can be said that performance differences
are not the results of the scheduling policy of the runtime system only, but more of the results of the
interplay of the scheduler’s policy and the application’s behaviors. Therefore, analyzing the runtime
systems with a large set of applications is necessary.

1.2 Contributions

We have developed a kind of analysis for contrasting performance between difference runtime systems.
The analysis is based on scheduling delays which are artifacts imposed by the runtime schedulers on
the execution of a task parallel program. We have also implemented a tool to realize that kind of
analysis, and applied it in a large number of benchmark programs (10 benchmarks in BOTS suite,
11 benchmarks in TP-PARSEC suite). The PARSEC benchmark suite is originally written with
traditional parallel programming models like POSIX Threads, OpenMP and TBB’s loop-parallel
primitives. So before we could use them with our task parallelism-based analysis and tool, we had
first translated PARSEC to task parallelism, hence the name TP-PARSEC which is task parallel
PARSEC.

1.3 Organization of the rest of this thesis

In Chapter 2, Chapter 3, and Chapter 4, the background of this work is discussed. Chapter 2 describes
the common scheduling strategy that almost all systems use nowadays - work stealing. Chapter 3
describes the five main task parallel programming models that are studied in this work. Chapter 4
describes common and well-known existing performance analysis and visualization tools. Chapter 5,
Chapter 6, and Chapter 7 are the main meat of this work. Chapter 5 describes our proposed scheduling
delay-based analysis for differentiating performance between different runtime systems. Chapter 6
describes the toolset we have implemented in order to realize the analysis. The toolset includes a
tracer named DAG Recorder and a visualization GUI tool named DAGViz. Chapter 7 describes
how we have translated the original PARSEC benchmarks to task parallelism-based TP-PARSEC
benchmarks. Chapter 8 is the evaluation of the two benchmark suites (BOTS and TP-PARSEC). We
have evaluated both benchmark suites on two machines, one is equipped with 36 Xeon cores (Comet),
and the other is a 68-core Xeon Phi (KNL) machine (Denebola). Chapter 8 only discusses some
selective points in the experimental results of BOTS and TP-PARSEC on a the Xeon machine. A full
set of resulting graphs of BOTS and TP-PARSEC on both Comet and Denebola are included in the
Appendices.

CHAPTER 1. INTRODUCTION 11

Chapter 2

Work-Stealing Scheduling Strategy

Work stealing has been widespread since its debut, and deployed widely in many parallel systems such
as Cilk [13], Cilk++ [42], Cilk Plus [1] [61], Java fork/join framework [39], .NET Task Parallel Library
[41], Qthreads multithreaded library [71], MassiveThreads multithreaded library [52], OpenMP Tasks
[7], Intel TBB [57].

2.1 Brief Description

A parallel runtime system typically launches a fixed number of threads at the start of the program’s
execution. Each thread is bound to a separate single processor core, and usually referred to as a
worker thread or simply a worker. The runtime system’s scheduler is responsible for load-balancing
the tasks which are created by the program to these available worker threads.

The primary aspect of this load balancing job is to answer the question how to move jobs from
a busy worker to an idle worker. There were two possible schemes to deal with this problem: work
sharing and work stealing. In work sharing, when a thread has created tasks, it takes initiative and
attempts to migrate some of them to other threads in hopes of distributing the work to underutilized
threads. On the contrary, in work stealing the idle threads, not the busy ones, would take initiative
and go stealing tasks from other threads. By putting the load balancing overhead to idle threads,
work stealing incurs less interruption to the busy threads who are working on the main computation,
resulting in shorter critical path, better performance. Besides, instead of migrating tasks in hopes
of an assumed balanced distribution even at the times when all workers have been fed up and busy
working on their own works, work stealing invokes task migration only when a thread is starving for
work. That is to say work stealing incurs less task migration than work sharing.

The idea of work stealing can date back to 1980s, but it was Blumofe et al. who proved theoretically
the efficiency of the randomized work stealing scheme in their work in 1994 [12]. “Randomized” here
refers to the way how a starving thread chooses a victim thread to steal from, which is at random and
usually with uniform distribution. They have also applied their work stealing technique in practice
with the Cilk language [13] and its runtime system, showing that work stealing is also practically
efficient. Therefore, work stealing has been a load balancing method of choice, and adopted widely
in commercial and open-source implementations of task schedulers.

Generally, in the execution of a task parallel program, each worker thread maintains a work queue
of its own containing tasks that are waiting for execution. When a worker has no more task in its
queue to execute, it goes to another worker randomly to steal a task from that worker’s queue. At
the beginning of a program execution, there is only one task, which is the main program, in the
queue of the master worker thread. When a worker creates a new task, it has two choices to proceed.
One is to pause the current task to switch to executing the new task. The other is the opposite; the
worker pushes the new task into its work queue and continues executing the current one. These
approaches are usually referred to as work-first and help-first respectively [48]. Work-first’s execution

12

order is similar to that of a serial execution, so it tends to maintain the data locality that exists in the
serial execution [3]. help-first tends to expose higher parallelism when many tasks are created by a
serial loop. OpenMP, TBB and Qthreads adopt help-first policy in their schedulers. Cilk Plus and
MassiveThreads adopt work-first.

2.2 Chronological Description

The idea of work stealing can date back to 1980s with Burton et al.’s research in 1981 on an execution
model for parallel functional programs on a connected network of computers (processors) [15], and
Halstead’s implementation of the Multilisp language in 1984 [26] [27]. Burton et al. referred to
the scheduling scheme as work diffusion, and Halstead referred to his scheme as unfair scheduling
policy. And later on, in 1990 Mohr, Kranz, and Halstead improved the scheduling algorithm and
renamed it as lazy task creation [48] [47] (which was first implemented in the Mul-T language [37]).
Then in 1994, Blumofe et al. [12] [14] have provided a theoretical proof of the efficiency of work
stealing, and officially named the scheduling scheme as work stealing which is also the name widely
used nowadays. They also first implemented the scheme in Cilk language [13]. In 1998, Frigo et al.
[24] revised the implementation of runtime scheduling of Cilk system with its 5th version (Cilk-5) by
integrating and immersing deeper the work-first principle.

2.2.1 Work diffusion (1981)

The work of Burton et al. [15] was a part of the ZAPP (Zero Assignment Parallel Processor) project
at the University of East Anglia (England) which aimed to demonstrate the feasibility of achieving
speedup on large numbers of computing elements. The parallel process tree (task graph) virtually
made up at runtime by parallel programs (especially ones with divide-and-conquer style) is distributed
to available processors via immediate neighbours (connected pairs of processors). Topologically
adjacent processors who are underutilized are allowed to steal processes from each other, thus creating
the scheduling basis of work diffusion. Each channel connecting a pair of processors supports two-way
communication, and repeatedly exchanges packets of information of fixed size. These information
packets may include information like available processes, results produced by terminated processes,
requests by one processor for a process on another processor, transfers of requested processes, etc.
so that each processor will have recent information about the state of its neighbouring processors so
that it can perform necessary interactions.

The process tree consists of nodes (processes) which are either active, pending, or blocked. A
processor may have multiple active processes running at a point in time. Pending processes which
are ready but not run yet may be stolen by neighbours who have run out of available processes. A
running process may either terminate (and return result to its parent) or become blocked (to wait for
the result of another running process). A blocked process can only become active again on its current
processor, i.e., a blocked process cannot be stolen. This constraint is to ensure that each process is
always on the same processor of its parent or an adjacent processor (i.e., stolen only once).

For load control, although they acknowledge the general heuristic that encourages a breadth-
first expansion of the process tree when the network is underutilized, and a depth-first expansion at
other times, acquiring or maintaining a global state of all processors on the network is expensive
and unlikely feasible. Therefore, in practice a local basis can be used: if a processor is fully or
overutilized, it can just discourage parallelism. This scheme of allowing neighbours to steal tasks
when underutilized provides a basis for work diffusion with an exponential diffusion rate.

2.2.2 Unfair scheduling policy (1984)

Halstead (MIT, USA) proposed a new language Multilisp based on the Scheme dialect of the Lisp
language families, which natively supports constructs for expressing concurrency [26] [27]. Using

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 13

these constructs, programmers can explicitly specify concurrency which might not be found by auto-
mated analysis at compile time or run time. Multilisp’s implementation techniques (task scheduling
and garbage collection) were first discussed in the conference paper in 1984 [26], then the language’s
design, implementation, and background were discussed in more details in a longer journal paper in
the consecutive year 1985 [27].

Multilisp supports two additional constructs for expressing concurrency: pcall (parallel call),
and future (i.e., a placeholder for a value to be determined in the future). pcall construct allows
concurrency between the evaluations of two or more arguments to a function. For example, the
expression

(pcall + A B)

in which A and B are two operands to the addition operation is equivalent to the sequential expression

(+ A B)

except that the first expression has A and B evaluated concurrently before passing their results to the
addition operation.

future construct enables an additional form of concurrency: the concurrency between the
computation of a value and the use of that value. future allows a computation to proceed past the
calculation of a value without waiting for that calculation to complete, and if the value is never used,
the computation will never pause to wait for the calculation of that value to finish. The future
construct is actually more fundamental, e.g., a pcall can be implemented in terms of future like
following:

(pcall + A B) is equivalent to (+ (future A) (future B))

pcall construct is supported mainly because there may well be situations in which a programmer
feels confident that two expressions A and B can safely be evaluated in parallel with each other, but
feels less sure about the safety of evaluating A concurrently with the arbitrary subsequent computation
of the program. Hence, pcall is a more conservative approach to introducing parallelism compared
with future.

Task creation is made through these pcall and future constructs. For example, the expression
(pcall + A B) will create two tasks evaluating A and B; (futureA) will create one task evaluating
A. Multilisp’s task scheduling policy aims for two primary goals: to preserve the locality and to
avoid creating excessively tasks. Ideally, tasks should be created until the parallel machine is fully
utilized (i.e., saturation) and then the execution within each task should become sequential. An unfair
scheduling policy is used to produce this behavior.

It is normal that a processor has more than one active tasks which share the processing power in
a round-robin manner. But Multilisp tries to avoid increasing the number of simultaneously active
tasks per processor. Two tasks created from the expression (pcall + A B) are treated unfairly, the
processor devotes all its resources to only one task and puts the other to an associated LIFO pending
queue, instead of making them both active. If the system is saturated, a pending task will remain
pending until the processor finishes all preceding tasks and switches to it, as would occur in the
sequential execution. Thus a task will eventually be executed by the same processor that created it
(unless some other processor who runs out of tasks steals it), which helps preserve locality of memory
references. This unfair scheduling mechanism also helps prevent an explosion of parallelism that is
possible if A and B recursively invoke pcall. The same mechanism is applied with future: the
newly created task is placed on the pending queue, while the parent task is kept active.

As discussed, each task has two possible states: active and pending. When finishing all active
tasks, the processor looks at its queue of pending tasks to find one to activate. If the queue is empty,
it looks in the queues of other processors to find a task to steal. When a processor steals a task, it
would take the oldest task which is likely to be the root of a larger tree of computation. Moving large
quanta of computation between processors like this helps enhance the locality.

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 14

2.2.3 Lazy task creation (1990)

Halstead, Kranz, and Mohr have improved the unfair scheduling policy in Multilisp several years
after the Multilisp work, out of their work on another parallel version of Scheme Mul-T. They named
the scheduling algorithm as lazy task creation which is implemented in Mul-T language system. The
design and implementation of the Mul-T language was published in 1989 (Kranz, Halstead, and Mohr
[37]); the lazy task creation scheduling algorithm was published the next year 1990 (Mohr, Kranz,
and Halstead [48]), and republished on a journal in 1991 [47].

Mul-T [37] is also based on the future construct for generating parallel tasks. The expression
(future X) creates a task for evaluating the expression X , and also creates an object known as a future
to eventually hold the value of X . Until X is finished evaluating, the future is considered as unresolved,
or undetermined. By returning the future as a placeholder the program can proceed without waiting
for the evaluation of X to finish, hence a unit of parallelism is forked. With this programming style,
a programmer can add a small number of future constructs to make the program parallel, but there
is an efficiency issue about task granularity. There are usually too many fine-grained tasks created
by future, especially in divide-and-conquer programs (i.e., too much parallelism for a parallel
machine to exploit efficiently). They have dealt with the problem by improving the implementation of
future, instead of relying on a parallelizing compiler to detect it (which is nearly impossible in many
cases) or requiring programmers to manually specify it case by case (which degrades the language’s
programmability).

Mohr et al. [48] [47] improved the implementation of the future construct and the task scheduler
based on an observation that executing the task specified by a future construct in parallel with the
parent is permissible but not required. The expression (future X) does not have to always create
a separate task X , instead it can effectively inline X as a subroutine, eliminating the task creation,
task scheduling, placeholder creation overheads and reducing the number of ready tasks kept on the
queue. With the expression (K (future X)), it is also correct for the parent task to compute X first
(i.e., inlining X), then compute K , ignoring the future.

The ideal task creation is one that expands the task tree breadth-first by creating separate tasks
at every future until all processors are busy, then switches to depth-first expansion by inlining
futures to avoid excessive task creations. This ideal scheduling is referred to as BUSD (breadth-first
until saturation, then depth-first). Fig. 2.1 depicts visually the difference in task granularity of the
conventional eager task creation which spawns task at every futurewith an ideal BUSD task creation
which spawns just enough tasks for the available number of processors in the underlying system (4 in
this case).

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 15

(a) eager task creation [47] (b) BUSD task creation [47]

Figure 2.1: The conventional eager task creation creates unnecessarily too many tasks which are
fine-grained, while an ideal task creation which follows the BUSD manner will create just enough
tasks for a 4-processor system by spawning at first 3 occurrences of future (a, b, and c) and inlining
at subsequent occurrences.

However, the real challenge of realizing the BUSD is how to get to know when tasks are enough to
stop spawning and start inlining. Mohr et al. have raised and compared two scheduling algorithms for
approximating that ideal BUSD behavior: load-based inlining and lazy task creation, and concluded
the superiority of lazy task creation over load-based inlining in their work [48] [47]. Load-based
inlining is a simple strategy that says “if the system is not loaded, make a separate task to evaluate
X ; otherwise inline X, evaluating it in the current task”. A threshold T is predefined for identifying
whether a processor is loaded or not, and a processor will inline all futures encountered when the
number of tasks on the processor’s queue has become greater than the threshold T . For example, if
T = 0, all futures are inlined and no parallel tasks are created; if T = 1, the existence of a single
queued task will be enough to suppress task creation.

Lazy task creation is a strategy to “start evaluating X in the current task, but save enough
information so that its continuation K can be moved to a separate task if another processor becomes
idle”. Lazy future is essentially a revocable inlining mechanism: when a future is encountered,
its task is provisionally inlined, but enough information is retained in order to reverse the inlining
decision at a later time if needed.

Load-based inlining has some obvious disadvantages compared with lazy task creation like:
(1) the programmer must decide the threshold T ; (2) only the local load of the current processor
is considered, ignoring the global situation; (3) inlinings are irrevocable so their purpose fails in
programs with bursty task creation pattern (i.e., opportunities to create tasks are distributed unevenly
across the program).

The authors have described two methods for implementing the lazy task creation: a stack-
based implemenetation on the Encore Multimax multiprocessor machine, and a linked-frame-based
implementation on the ALEWIFE multiprocessor machine. But they both involve a basic operation
of splitting an existing stack, required when stealing a continuation.

Fig. 2.2 depicts the story of a lazy task queue [47]. Besides the normal stack holding function
frames, a task is also associated with a queue storing lazy tasks which are pointers to the continuations
of the future constructs (a). When the task encounters a future, a new continuation frame Kt

representing all remaining computation is appended to the stack; and at the same time a new pointer
to the continuation frame is added to the tail of the lazy task queue (b). In case that no other processor
has stolen the continuation when the task finishes the future, it will return to the continuation frame
and pop it off the stack (c). In case that an idle processor steals a continuation, the thief will steal from
the head of the queue and change the stack to appear as though an eager future had been created at
the time of that continuation (d). A placeholder for the future value is also created to connect the still

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 16

ongoing task with the stolen continuation.

Figure 2.2: An additional lazy task queue structure for storing pointers to lazy tasks (i.e., continuations
of futures) aside the usual stack structure: (a) stack and lazy task queue grow upward; (b) a future
causes a continuation to be queued; (c) the continuation gets dequeued when the future returns; (d)
a continuation at head of the queue gets stolen [47].

An implementation of a lazy task queue must take care of two kinds of race conditions: (1) two
thieves race to steal the same continuation; (2) the victim tries to return to the same continuation that
a thief is trying to steal.

Stack-based implementation

In this implementation, a stack is represented conventionally in a contiguous section of the heap.
The lazy task queue is kept in the top part of the stack and grows downwards, while the stack grows
upwards (Fig. 2.3a). A stealing operation will require copying a part of the stack from its bottom
up to the continuation frame to be stolen. This copying is the most costly part of this stack-based
implementation.

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 17

(a) stack-based (b) linked-frame-based

Figure 2.3: Two kinds of implementations of the lazy task queue [47].

Linked-frame-based implementation

In this implementation, a stack is represented as a doubly linked list of stack frames in order to
minimize copying in the stealing operation (Fig. 2.3b). Each frame has a link to the previous frame
(cont), a link to the next frame (next), and another link to the frame stub structure (lf-frame) which
constitutes the lazy task queue.

2.2.4 Work stealing (1994)

Blumofe et al. [12] [14] has theoretically proven the efficiency of work stealing by using the novel
metrics of work (T1) and critical path length (T∞) (sometimes also called span). Work stealing has two
flavors of “continuation stealing” and “child stealing” which refer to the choice of actions a worker
does at a task creation. In “continuation stealing”, when creating a new task the worker switches to
that task, leaving the current task on its deque so that the continuation of the task may be stolen by
another worker. This stealing style is also referred to as “child-first” or “work-first”, and systems that
employ this style are, for example, Cilk, Intel Cilk Plus, MassiveThreads. On the other hand, in the
“child stealing” strategy, the worker continues executing the current task, leaving the newly created
child task on its deque for stealing. This stylel is also referred to as “parent-first” or “help-first”; it
is easier to implement as a library, without compiler support. Some systems that employ “help-first”
are Intel TBB, .NET Task Parallel Library, OpenMP Tasks, Qthreads.

Randomized work stealing has a pitfall of underming locality of tasks in accessing data, because
tasks are stolen and migrated to random workers, away from their accessed data. Some localized
variants of work stealing, in which a thief attempts to steal back its own work, have been studied in
literature [3] [67].

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 18

2.2.5 Work-first (1998)

In [48], combination of lazy task creation and oldest-first stealing is proposed in order to get good task
granularity at runtime. There are two kinds of locks to guard against two kinds of race conditions:
(1) a lock for each task deque to prevent two thieves or more from racing to steal the same victim; (2)
a lock for each task on a task deque to prevent the race where the local worker tries to get back the
same task that a thief is trying to steal. The thief chooses a victim by a round-robin search of other
workers’ task deque.

In Cilk-5 [24], the principle of work-first has been integrated more completely and deeper into
Cilk. Specifically, the work-first principle is reflected in their proposed two novel strategies: (1)
two-clone compilation, and (2) a Dijkstra-like mutual-exclusion protocol for implementing the ready
deque (THE protocol).

Work-first is the principle of minimizing overheads that contribute to the work, even at the expense
of overheads that contribute to the critical path. Simply speaking, it is to move the overheads out of
work and onto the critical path.

Cilk-5: integrated work-first more completely

• two-clone compilation

• THE protocol for implementing ready deque (Dijkstra-like mutex protocol)

The work-first principle follows three assumptions:

1 work-stealing scheduler according to the theoretical analysis presented in [12] [14]

2 ample parallel slackness exists (i.e., average parallelism exceeds the number of processors by a
sufficient margin)

3 “every Cilk program has a C elision against which its one-processor performance can be
measured”

The work-first principle pervades the Cilk-5 implementation. The work-stealing scheduler guar-
anteed that with high probability, only O(PT∞) steal (migration) attempts occur (i.e., O(T∞) on
average per processor), all costs for which are borne on the critical path.

2.3 Theoretical Proof of Efficiency

theoretical analysis based on an abstract model that ignores real-life details such as memory-hierarchy
effects; two fundamental lower bounds of run time:

• TP ≥ T1/P

• TP ≥ T∞

assuming an ideal parallel computer, Cilk’s randomized work-stealing scheduler executes in
expected time:

• TP = T1/P +O(T∞)

• TP ≤ T1/P + c∞T∞
(the critical path overhead c∞ is the smallest constant that satisfies the inequality)

some definitions:

• average parallelism: P = T1/T∞ (i.e., maximum possible speedup)

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 19

• parallel slackness = P/P

assumption of ample parallel slackness: P/P ≫ c∞ (i.e., the number of processor P is much
smaller than the average parallelism P), hence,

(using align environment)

P/P ≫ c∞
⇔ (T1/T∞)/P ≫ c∞
⇔ T1/P ≫ c∞T∞

(using array environment)
P/P ≫ c∞

⇔ (T1/T∞)/P ≫ c∞
⇔ T1/P ≫ c∞T∞

hence,

T1/P ≤ TP ≤ T1/P + c∞T∞
T1/P ≫ c∞T∞

}
⇒ TP ≈ T1/P

assuming TS is the running time of the C elision of the Cilk program, the work overhead is
defined as c1 = T1/TS , hence TP ≈ T1/P ≈ c1TS/P.

Work-first principle: to minimize c1, even at the expense of a larger c∞, because c1 has a more
direct impact on performance.

2.4 Practical Implementation

Work queue is an essential and critical component of a runtime scheduler. The more it is optimized
the better performance is gained. Specifically, its implementation needs to be lock-free and optimized
to reduce possible concurrent contention scenarios to the minimum. Arora, Blumofe and Plaxton [5]
describes a basic scheme of work queue which is used in original Cilk runtime (ABP work stealing).
The work queue is organized as a double-ended queue (deque) having two ends, top and bottom. The
local worker thread operates only on the bottom end, and other worker threads who come for work
stealing attempts operate only on the top end. A worker thread pushes and pops tasks from its deque
in a LIFO (last in first out) manner, while it operates with a FIFO (first in first out) manner when
interacting with other worker threads’ deques. The deque provides three kinds of operations:

• pushBottom: a local thread appends a task into its deque from the bottom end

• popBottom: a local thread removes the first task from the bottom end of its deque

• popTop: a remote thread removes the first task from the top end of the victim’s deque

This separation between the local thread’s operations and remote threads’ operations to different
ends of the deque minimizes contention in deque accesses. Only local thread can manipulates
the bottom end so it can process fast without so many contentions. The top end can possibly be
manipulated by all other threads, hence it requires a synchronization mechanism to manage their
concurrent accesses. When multiple remote threads come to acquire the top task of a deque at
the same time, their pops need to be synchronized so that they do not accidentially get the same
task. Another contention scenario is the case that there remains only one single task in the deque
and the local thread and some remote thread both attempt to acquire that task at the same time.

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 20

Their pop and stealing attempts need to be synchronized so that they do not both get the same task.
ABP work stealing employs a non-blocking lock-free implementation of deque which uses only two
compare-and-swap (cas) operations, one is in the popTop function and another is in popBottom
function.

The compare-and-swap operationcas(addr,oldval,newval) is atomic and takes three operands:
an address addr pointing to the memory location whose value needs to be replaced, an old value
oldval used to compare the memory location’s current value with, and a new value newval used to
swap with the memory location’s current value. cas first compares the value stored in the memory
location addr with oldval, if they are equal cas swaps the value at addr with newval. Otherwise,
cas only copies the value at addr to newval, leaving the memory location addr untouched. So we
know whether cas succeeds or not after the operation by comparing newval and oldval. If newval
equals oldval, cas did succeed. The important characteristic is that the whole cas operation works
atomically, i.e., without being interrupted in the middle by any other thread. This atomic characteristic
is necessary to be used in updating the value of the deque’s top pointer.

In the pushBottom operation, the worker only needs to append a task to the bottom end of the
deque and increment the deque’s bottom pointer accordingly. In the popTop operation, the thief
worker first checks if there is any task existing in the queue by comparing the deque’s top and bottom
pointers. If there is task(s) in deque, it first gets the (pointer to the) task at top of the deque without
modifying the top pointer and the deque’s content, then it executes a cas operation to decrement the
top pointer. If cas succeeds, it means the thief has stolen successfully and it should continue with
the stolen task. Otherwise, it means that there had been someone (another thief) getting in the middle
and taking that task already, i.e., the thief fails this time, and it should continue with another steal. In
the popBottom operation, the local worker only needs to pay attention when the task it is going to
take is the last task in the deque (top == bottom). Because at that indigent state there is likely some
thief thread trying to take that task at the same time. In order to avoid this race condition, the local
worker uses cas operation to watch out for any change in top pointer when incrementing its bottom
pointer. But this watching out is only needed in cases when there would be no task remaining in the
deque after the pop.

In ABP work stealing, the deque is physically implemented based on fixed-sized array which has
problems of overflow (top or bottom pointer exceeds the array size). This problem is mitigated by a
heuristic named reset-on-empty. This heuristic resets top and bottom to point to the beginning of the
array when the deque becomes empty (after a popBottom operation). This heuristic helps to make
overflow scenarios less frequent but does not eliminate it. Chase and Lev [18] have introduced an
improvement to ABP work stealing’s deque implementation that can eliminate this overflow problem.
The improvement implements work stealing deque using a dynamic-circular-array. This kind of array
has two features of dynamically-changing size and circular index which solve the overflow problem
permanently.

A dynamic-circular-array also has two indexes top and bottom specifying the positions of the
topmost and the bottommost elements of the deque in the physical array. The array is indexed modulo
its size, i.e., indexes giving the same remainder when divided by the array size point to the same
element of the array. This kind of circular access is implemented as shown in simple get() and put()
functions in Fig. 2.4.

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 21

1 Object ∗ get(Object ∗ A, int size, int i) {
2 return A[i % size];
3 }
4 void put(Object ∗ A, int size, int i , Object ∗ o) {
5 A[i % size] = o;
6 }

Figure 2.4: Circular array using modulo its size to access its elements

With this circular access manner, all slots in the array can be used efficiently no matter what the
top’s value is, and more importantly top index’ values would be never decreased. They are initialized
at zero, pushBottom and popBottom affect (increase/decrease) only bottom index, popTop only
increases top index, never decreases it. This new nature of top index makes it easier for cas operation
to compare old values with top index. Because there would never be the same top value stored in
top index, we do not need to do other complicated mechanisms such as a flag index to indicate new
phases of top index as in ABP deque’s implementation.

In pushBottom function, if it detects that the deque gets full it will grow the deque dynamically
by allocating a new array of bigger size and copy old array’s content to the new one. Array size is
increased as double the old size each time (two’s power). All current elements in the old array are
copied to the new array (of course with their circular indexes), and they remain being able to accessed
with the same indexes thanks to the circular indexing. Therefore, high-level deque operations do not
need to be aware about this change in physical base arrays.

CHAPTER 2. WORK-STEALING SCHEDULING STRATEGY 22

Chapter 3

Task Parallel Programming Models and
Runtime Systems

Due to fundamental physical constraints such as power consumption and heat dissipation, the de-
velopment of computer hardware has changed from increasing clock speed of a single-core CPU to
increasing the number of cores integrated in a multicore CPU [20]. There are more and more cores
which are integrated in a computer’s CPU, from several cores in a commodity PC up to dozens or
hundreds of cores in a high performance computing server. Moreover, the emerging Many Integrated
Core (MIC) architecture of Intel, which combines many smaller lower-performance cores on the
same chip area, has promised a highly parallel era of shared memory computer hardware. This highly
parallel hardware would make it harder for programmers to program parallel software using common
parallel programming models such as SPMD and native threading libraries (e.g., POSIX Threads
(pthreads) [25]) which involve programmers in dealing with low-level details of thread management,
task scheduling, load balancing, etc.

Task parallel programming models release programmers from such low-level concerns by shifting
these burdens to the runtime systems so that the programmers can concentrate on higher level aspects of
the programming. It also promises to make parallel programming accessible for those programmers
who are not familiar with low-level system and hardware issues. In task parallel programming,
programmers just need to expose parallelism in their programs by creating tasks. These tasks are
scheduled to execute in parallel dynamically by the runtime system.

With this high-level task parallelism, programmers can express parallelism at arbitrary places in
their program even in recursive functions just by specifying task creation. This kind of programming
model is well suited for the expression of nested parallelism in divide-and-conquer algorithms and
unstructured parallelism in irregular computations. Therefore, it has been well supported gradually
with time since the first language and runtime system dedicated for task parallelism Cilk [13] developed
at Massachusetts Institute of Technology (MIT) was introduced in 1994. E.g., OpenMP Task has
been added to OpenMP from version 3.0 (released in 2008) [19] [6]; Intel Threading Building Blocks
(TBB) [57] which is a C++ template library provides a task parallel scheduler along with higher-
level data structures and algorithm templates based on task parallel execution model for users to
exploit parallelism in their programs easily; MassiveThreads (2012) [52] and Qthreads (2008) [71]
are minimal implementations of the runtime task scheduler for research efforts, they expose a simple
pthreads-like API for users to access their task runtime.

Tasks unlike threads are light-weight threads that do not support expensive features like per-thread
identifiers, per-thread signal vectors, or preemptive multitasking. They can be context-switched in
user space (not require getting into kernel space) without any requirement for signals nor saving a
full set of registers, hence their context switch is less expensive than the original OS-level thread’s
(interrupt-based) context switch. Because of that advantage, runtime scheduler can easily hide
communication latency by switching tasks that stall when waiting for data.

23

Task schedulers usually exploit a load balancing mechanism called work stealing to distribute
tasks among underlying threads at runtime. Work stealing has been proved as an efficient and effective
scheme by theoretical [12] or practical in preliminary Cilk language [13]. In original work stealing,
each thread would maintain its own work queue of ready jobs waiting for execution. When a thread
runs out of jobs in its queue, it will go stealing job from a randomly chosen victim thread’s queue.
This “randomly chosen” manner is good at balancing work among all threads globally and flatly.
However, nowadays computer architecture is highly hierarchical with cores distributed on multiple
sockets (chips) which are connected to each other by some kind of high-performance links and possess
their own memory banks. Significantly different access latencies to data on local memory and remote
memory has made computation-data placement matter. Therefore, many recent works have focused on
techniques for improving data locality of task parallelism and work stealing by exploiting information
about underlying memory and cache systems. Mirroring the hierarchical nature of the hardware in
the runtime scheduler can be an good approach, e.g., one work queue is shared by all threads on the
same sockets, and many other various approaches.

3.1 Multilisp

Multilisp [27] is an extension of the Scheme dialect of the Lisp programming language family. Lisp,
whose name is derived from “LISt Processor”, is a fully parenthesized prefix notation with a long
history. Its best known dialects which are still in use today are Common Lisp, Scheme, Emacs Lisp,
etc.

Multilisp introduces two constructs for expressing parallelism: pcall and future. pcall
allows concurrency between the evaluation of two or more expressions that are arguments to a
function. future enables the concurrency between the computation of a value and the use of that
value. future is a more fundamental construct than pcall, i.e., pcall can be implemented in terms
of futures. With these constructs, the programmer can explicitly specify concurrency that might
not be found by automated analysis at compile time or run time.

3.2 Mul-T

In Mul-T “the programmer takes on the burden of identifying what can be computed safely in parallel,
leaving the decision of exactly how the division will take place to the runtime system”. Specifically, a
programmer’s job is to expose parallelism by annotating the program with futures without worrying
about the task granularity, while the system’s job is to limit parallelism by deciding when to spawn
or inline tasks.

3.3 MIT Cilk

Cilk [13] is an extension of C language that supports task parallelism. Cilk++ [42] developed by
Cilk Arts which was a company spinned off from MIT Cilk project in 2006, then acquired by Intel in
2009. Intel has renamed the language to Cilk Plus [1] [61] since 2009.

Frigo et al. [24] improved the Cilk language design and implementation with its 5th version
(Cilk-5). Cilk-5 supports two keywords for specifying parallelism and synchronization: spawn and
sync, two keywords for specifying nondeterminism: inlet and abort. The cilk keyword precedes
a function definition to indicate that function as a Cilk procedure, which will be compiled with the
two-clone strategy.

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 24

3.4 Intel Cilk Plus

Cilk Plus [32] [42] is a simple language extension to the C and C++ languages for expressing task
parallelism (and data parallelism). Only three keywords are added and users are able to specify task
parallelism in C/C++ languages. Cilk Plus is famous for its easy-to-learn, intuitive, yet powerful way
of making parallel programs on shared memory systems.

The original Cilk language and runtime [13] [24] developed at MIT in the group of Charles
E. Leiserson first appeared in 1994. Cilk’s targeting market was restricted to high performance
computing until 2006 at which it is commercialized by a spinoff company of MIT, Cilk Art, to
leverage the emergence of multicore processors in mainstream computing. Cilk Art shipped its first
commercial version of Cilk with the name Cilk++ 1.0 in 2008. One year later, Cilk Art was acquired
by Intel and it has become a part of Intel until now.

Cilk Plus provides three keywords for users to express task parallelism at arbitrary points in the
program. They are cilk_spawn, cilk_sync and cilk_for (Table 3.1). cilk_spawn specifies
that a function (which becomes a task) can execute in parallel with the remainder of the calling
function. cilk_sync specifies that all spawned calls (tasks) in the current function must complete
before execution continues. cilk_for transforms iterations of a for loop to a set of tasks which can
be executed in parallel. The two keywords cilk_spawn and cilk_for just express oppurtunities for
parallelism, the actual parallelism that those tasks are actually executed in parallel is not guaranteed
and only decided at runtime by the Cilk Plus runtime system which implements a work stealing
scheduler. Beside tasking feature allowing users to exploit thread parallelism, Cilk Plus also provides
array notations and #pragma simd directive for users to make use of vector processing capability
inside processors. Within the scope of this survey, I am not going to focus on these vectorization
features.

Create task cilk_spawn

Synchronize tasks cilk_sync

Parallel for loop cilk_for

Table 3.1: Additional keywords of Cilk Plus

An example Fibonacci program written in Cilk Plus is shown in Fig. 3.1. Users do not need to
declare a thread team creation at the beginning of the program like in OpenMP because Cilk Plus
is built directly upon task notion, hiding all underlying threads which are managed automatically
by Cilk Plus runtime. In the fib(n) function, the current task creates a new task executing fib(n-1)
function call and it executes the fib(n-2) function call by itself, then it waits for the spawned task to
finish before summing and returning result.

Cilk Plus needs support from compilers which can regconize its keywords. Following is compiling
examples of Cilk Plus by ICC and GCC compilers. Although ICC automatically links to Cilk Plus
runtime library at compile time, GCC needs to be specified explicitly linking options to Cilk Plus
runtime.
ICC: $ icc cilkprogram.cpp −o cilkprogram
GCC: $ g++ cilkprogram.cpp −o cilkprogram −lcilkrts −ldl

3.5 OpenMP

OpenMP (Open Multi-Processing) [19] is an application programming interface (API) for C/C++
and Fortran languages, which is used to program multithreaded applications for shared memory
multiprocessor systems. OpenMP is standardized by a joint committee of various computer hardware
and software vendors so it is well accepted and portable. OpenMP consists of three components:

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 25

1 #include <stdio.h>
2 #include <cilk/cilk.h>
3
4 int fib(int n) {
5 if (n < 2) return n;
6 int x, y;
7 x = cilk_spawn fib(n−1);
8 y = fib(n−2);
9 cilk_sync;

10 return x + y;
11 }
12
13 int main() {
14 printf ("fib(10)␣=␣%d\n", fib(10));
15 return 0;
16 }

Figure 3.1: An example Fibonacci program written with Cilk Plus

compiler directives, runtime library routines and environment variables. The compiler directives
(starting with “#pragma omp”) are for specifying parallelism in the application’s code. Runtime
library routines and environment variables are used to control the behavior of OpenMP’s runtime
system at execution time, e.g., to get or set number of threads running, to get current thread’s number,
etc.

From its first release in 1997 until before the release of version 3.0 in 2008, OpenMP was all
built around threads and structured workloads (e.g., focused on processing large array), lacking the
capability to express irregular un-structured parallelism [7]. Two major features of OpenMP, parallel
loops and parallel sections, both deal with workloads that are able to be divided equally into sub-
workloads. The parallel loop (#pragma omp for) bears one constraint which is that the number of
iterations of the loop to be parallelized needs to be determined at the entry of the loop’s execution and
this iteration count cannot be changed during the execution. At runtime, these iterations are divided
appropriately (usually in an equal and round-robin manner) among available threads. Besides,
OpenMP’s parallel sections feature (#pragma omp sections) requires users to divide work into
consecutive blocks statically at programming time.

Realizing the need for expressing irregular un-structured programs (e.g., nested parallelism) which
is a commonly encountered problem, the committee of OpenMP specification has added feature of
task parallelism into OpenMP from version 3.0. A task is an independent unit of work whose execution
can be deferred to later time and can take place on an arbitrary available thread. The task notion is
standardized in OpenMP with three design goals of “simplicity of use, simplicity of specification and
consistency with the rest of OpenMP” in mind [7]. Basically, this tasking feature is based on two
new directives of #pragma omp task and #pragma omp taskwait. The first directive is to create
a task, the second one is to synchronize created child tasks. Major compiler directives of OpenMP
are summarized briefly in Table 3.2.

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 26

parallel region #pragma omp parallel
{. . . }

single region #pragma omp single
{. . . }

parallel for loop #pragma omp for
for (. . . ; . . . ; . . .) {. . . }

parallel sections #pragma omp sections
{ (section regions) }

section region #pragma omp section
{. . . }

create task #pragma omp task
{. . . }

synchronize tasks #pragma omp taskwait

Table 3.2: Syntax of OpenMP pragmas

An example Fibonacci program written with OpenMP Task is shown in Fig. 3.2. This program
uses four kinds of OpenMP directives: parallel region, single region, task creation and task synchro-
nization. When the program starts, at first there is only one master thread executing. This master
thread encounters parallel directive which demands creating a set of threads corresponding to the
number of underlying cores (N). Hence, an additional number of N − 1 worker threads (excluding
the master thread) get created. These master and worker threads all then continue executing the code
block following the parallel directive. The single directive that follows is used to suppress these
threads so that only one thread is allowed to enter the block and execute printf, calling fib(10). Other
threads would stay idle, waiting for work. Inside fib(10) routine, the proceeding thread creates a task
executing fib(9) routine and executes fib(8) itself before synchronizing the fib(9) task then returning
result. The fib(9) task would be stolen and executed by one of the idle threads. Inside fib(9) and
fib(8) tasks, smaller tasks are continued to be created and stolen by free, waiting-for-jobs threads so
that the work are balanced among available threads.

OpenMP needs to be supported by compilers so that its preprocessing directives can be recognized
and processed. Most major compilers have already supported OpenMP such as GNU C compiler
(GCC), Intel Fortran and C/C++ compiler (ICC). An example compiling command of OpenMP with
GCC is shown below, a flag of -fopenmp is inserted to tell GCC to process OpenMP directives.

$ gcc −fopenmp ompprogram.c −o ompprogram

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 27

1 #include <stdio.h>
2 #include <omp.h>
3
4 int fib(int n) {
5 if (n < 2) return n;
6 int x, y;
7 #pragma omp task
8 { x = fib(n−1); }
9 y = fib(n−2);

10 #pragma omp taskwait
11 return x + y;
12 }
13
14 int main() {
15 #pragma omp parallel
16 #pragma omp single
17 printf ("fib(10)␣=␣%d\n", fib(10));
18 return 0;
19 }

Figure 3.2: An example Fibonacci program written with OpenMP Task

3.6 Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) [57] [34] is a C++ template library for writing parallel
program on multicore processors. TBB is developed by Intel and was first released in 2006. Its latest
version at the time of this writing is 4.3 update 4 released in March 2015. As being implemented as
a library, TBB has an advantage over OpenMP and Cilk Plus that it does not require special supports
from languages and compilers, hence it is more portable. Although, TBB can be used with C++
language only.

TBB consists of a large set of high-level data structures and algorithms for concurrent processing
that allow programmers to exploit parallelism of various forms quickly and efficiently. Underlying
below these high-level templates is the task scheduler that drives the design and implementation of
them (Fig. 3.3). In order to access this task scheduler directly, beside a low-level task interface, TBB
provides users with a much easier-to-use high-level interface of task group. The use of task group is
generally similar to that of OpenMP Task and Cilk Plus with one interface to create tasks and another
interface to synchronize tasks.

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 28

Figure 3.3: TBB layers [46]

An example Fibonacci program written with TBB’s task_group is shown in Fig. 3.4. In order
to use TBB’s task group, first an object of task_group class need to be declared (line 7). A task is
then created by passing its correspondent function (or lambda expression) to the method run() of
the task_group object. All tasks created with the same task_group object get synchronized by a
call to its task_group.wait() method. While we can only synchronize all child tasks at once in
OpenMP and Cilk Plus, we can synchronize an arbitrary subset of child tasks in TBB by creating
tasks that we want to synchronize at the same time with the same task_group object. TBB supports
a more flexible tasking model, and fully-nested parallelism compared to OpenMP and Cilk Plus.

1 #include <stdio.h>
2 #include <tbb/task_group.h>
3
4 int fib(int n) {
5 if (n < 2) return n;
6 int x, y;
7 tbb::task_group tg;
8 tg.run([&]{ x = fib(n−1); });
9 y = fib(n−2);

10 tg.wait();
11 return x + y;
12 }
13
14 int main() {
15 printf ("fib(10)␣=␣%d\n", fib(10));
16 return 0;
17 }

Figure 3.4: An example Fibonacci program written with TBB

3.7 MassiveThreads

MassiveThreads [52] [51] is a light-weight tasking library encompassing a pthread-like API and an
efficient work-stealing-based task scheduler which runs at runtime and load-balances tasks among
available hardware processor cores. MassiveThreads developed by Taura group at the University of
Tokyo with the purpose of researching task parallel scheduling algorithms.

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 29

3.8 Qthreads

Qthreads [71] is another research-based light-weight thread library developed by Sandia National Lab-
oratories. Qthreads exposes a similar API as MassiveThreads’, although its scheduler implementation
has some differences in details.

CHAPTER 3. TASK PARALLEL PROGRAMMING MODELS AND RUNTIME SYSTEMS 30

Chapter 4

Performance Analysis and Visualization
Tools

4.1 Analyzing Parallel Performance

Tallent et al. [68] categorized parallel execution time of a multithreaded program into 3 kinds of
work, parallel idleness and parallel overhead, in which the overhead is time that workers spend
on executing runtime system code and idleness is time that workers spend doing nothing. They
use a sampling method that interrupts workers regularly after a fixed period of time to record a
sample of where workers are working on. They proposed techniques to measure and attribute parallel
idleness and parallel overhead back to application-level code based on an additional binary analysis
process of the executable to re-construct the program’s user-level call path. Their approach has been
implemented in the HPCToolkit [4] performance tool of the Rice University. They claim that these
two parallel idleness and parallel overhead metrics can help to pinpoints areas in a program’s code
where concurrency should be increased (to reduce idleness), or decreased (to reduce overhead).

Olivier et al. [54] had taken a step further than Tallent et al. [68] by identifying that the inflation
in work is in some cases more critical than parallel idleness or parallel overhead factors in task
parallelism. They systemize the contributions of the 3 factors of work inflation, idlness and overhead
in the performance loss of applications in Barcelona OpenMP Task Suite (BOTS). Because work
inflation occurs due to the increased overhead in getting data from remote modules in NUMA
architecture, they developed a locality-aware scheduler which placed tasks near their data, and
succeeded in mitigating work inflation in two benchmarks health and heat.

There have been many tools for analyzing parallel performance. The TAU performance system
[63] is an open source system that has a powerful automatic instrumentation toolset. Intel VTune
Amplifier software [33] uses sampling method and does not need to instrument the executable. These
tools focus on the analysis of only one single execution of the application. They can pinpoint the
most costly code blocks in the application-level code which consume most of the execution time. To
analyze the work inflation factor we need to compare a pair of executions on fewer and more numbers
of cores, which these tools do not support.

Liu et al. [43] has built a NUMA profiler for multithreaded programs. It can assess the severity of
remote access bottleneck and provide optimization guidance for redistributing data based on memory
access patterns of threads. For task parallel programs where tasks are distributed dynamically,
however, the solution needs to take into account the structure of the DAG.

The Cilkview Scalability Analyzer [28] describes Cilkview tool which monitors logical paral-
lelism during an instrumented execution of the Cilk++ application on a single processor core, then
analyzes logical dependencies between tasks to predict the application’s performance on a machine
with more cores.

Many other analysis tools focus on only one programming model. Cilkview [28] traces the logical

31

tasks and their dependencies in the serial run of a Cilk++ program and predicts its performance on
higher core counts. It can detect problems like insufficient parallelism caused by coarse-grained tasks
and show responsible tasks. Cilkprof [62] can measure work and span of specific call sites of choice
rather than the whole program like Cilkview. Grain graphs [49] capture and visualize tasks from
inside OpenMP scheduler. Their grain visualizations can also highlight problems like work stretch,
and low-parallelism intervals. Flow Graph Designer [70] is a tracing and analysis tool specialized for
the flow graph interface of TBB. Our Delay Spotter is applicable to many systems from the beginning
and easy to be extended with a new one thanks to its simple and portable instrumentation scheme.
Delay Spotter is able to compare and contrast differences between systems. We have not seen this
ability of highlighting advantages and disadvantages of one system compared with others in previous
approaches to the best of our knowledge. We realize this ability by focusing our analysis on the
scheduling delays which are artifacts imposed by the systems on the parallel executions.

4.2 Performance Visualizations

Visualization is an highly useful tool in doing analysis. Visual elements can convey structure of the
problem at a glance, and they may ignite insights to the solution that numbers and tables merely can
hardly reveal. By sticking to the analysis mindset of “overview first, zoom and filter, the details on
demand” [64], a visualization tool can support effectively the analysis of complex hierarchical large
datasets.

Visualization has been used as an effective tool to deal with various specific performance problems.
Knowing that communication cost in massively parallel applications on large distributed systems
impacts heavily their performance, the authors in [38] have combined 2D and 3D views to visualize
network traffic in order to explain and then optimize the performance of large-scale applications on
a supercomputer. CommGram [73] invented a new kind of visualization to display network traffic
data. It enhances bipartite graph style by replacing thin straight arrows by fat colorful brushy curves
to represent data flow between communication nodes vividly.

Vampir Vampir [50] translates a trace file of an MPI program into a variety of graphical visualiza-
tions. Its main visualization is a timeline view (Gantt chart) of the execution of the parallel program.
It simultaneously provides a statistical view that displays aggregate information of a chosen time
interval. It can also provide system activities at a particular point of time. Iwainsky et al. [35] have
used Vampir to visulize remote socket traffic on the Intel Nehalem-EX.

Jumpshot Jumpshot [74] is a scalable tool to visualize timelines. Task intervals of all workers
written in file in sslog log file format can be converted into slog2 format which can be read and
visualized by Jumpshot. Jumpshot is really a scalable tool that can zoom into tiny intervals but it is
not that easy and quick for users to perform zooming-in, zooming-out operations. One restriction of
Jumpshot is that it can only display up to 10 different categories which have different colors. It means
that, for example, the visualization can distinguish up to only 10 different task levels.

Paje Paje [36] provides timeline style visualization of parallel programs executing on multiple nodes
each of which contains dynamically running multiple threads. Paje supports click-back, click-forward
interaction semantics which mean that clicking visualization to show source code and clicking source
code to show visualization. Paje has several filtering and zooming functionalities to help programmers
to cope with large amount of trace information. These filterings give users simplified abstract view
of the data (statistical graphs showing aggregate information of a chosen time slice). Users of Paje
can also modify mapping between trace information entities and visual elements (arrows, boxes,
triangles) which makes the visualization flexible.

CHAPTER 4. PERFORMANCE ANALYSIS AND VISUALIZATION TOOLS 32

Jedule Jedule [29] is a tool to visualize schedules of parallel applications in timeline style. It is built
on Java. Users can adjust color style of Jedule’s visualization, can zoom in by selecting a rectangular
box, can export current view to images. Authors in [54] have used Jedule to visualize a timeline view
for analyzing the locality of a scheduling policy.

ThreadScope Wheeler and Thain [72] in their work have demonstrated that visualizing a graph
of dependent execution blocks and memory objects can enable identification of synchronization and
structural problems. They use existing tracing tools to instrument multithreaded applications, then
transform result traces to dot-attributed graphs which are rendered by GraphViz [11]. GraphViz tool
is scalable up to only hundreds of nodes and very slow with large graphs of more than a thousand
nodes because its algorithm [66] focuses on the aesthetic aspect of graphs rather than rendering speed.
And most of all, GraphViz is not interactive.

Aftermath Aftermath [21] is a graphical tool that visualize traces of an OpenStream [58] parallel
programs in timeline style. OpenStream is a dataflow, stream programming extension of OpenMP.
Although Aftermath is applied in a narrow context of OpenStream (subset of OpenMP), it instead
provides an extensive functionalities for filtering displayed data, zooming into details and various
interaction features with users. Aftermath is built upon the GTK+ GUI toolkit [60] and Cairo graphics
rendering library [59].

Many existing performance visualization tools such as Intel VTune Amplifier [33], Vampir [50],
Jumpshot [74], Jedule [29], Aftermath [21] [58], Extrae-Paraver [44], etc. support the timelines
view showing CPU-related events during the duration of the execution. Our tool can show timelines
visualization together with the profile of running and ready parallelism, which is more useful for
task parallel programs. One can grasp a general view of the parallel execution with this parallelism
profile, and quickly identify tasks on timelines who are responsible in intervals with low running
parallelism. Moreover, our task-centric DAG visualizations also allow one to zoom into any specific
spot on the DAG and relate it back to timelines and parallelism profile. Without them we could not
have identified the problems as in our case studies, like OpenMP could not resume the parent task
because the task is tied to a busy worker in Alignment, or OpenMP restrains workers to steal work
at deep recursions, Qthreads delays the scheduling of recursively created tasks while the worker gets
into the last leaf child task in FFT. The timelines views alone would not be enough in these cases.

4.3 Data Locality

Work-first’s execution order which is similar to that of a serial execution is said to be able to maintain
the data locality that exists in the serial execution [3]. Besides, with local LIFO access manner and
remote FIFO access manner of work stealing deque it ensures that the older tasks are stolen first, the
newer tasks are prioritized to be executed locally without being migrated. This scheme leverages the
data locality inherent in divide-and-conquer algorithms where a task tends to operate on the same
data as its parent and sibling tasks. Newer tasks whose data is still hot in local cache are the first to
be scheduled locally and the last in line to be stolen.

That is the data locality favor of a single deque’s operations. But it becomes anti-data locality
in work stealing’s current organization of each deque per-worker thread and randomized victim
selection. Existing work stealing approaches seem to be developed based on the assumption of an
underlying flat system model in which every processor core has the same computation and memory
access capabilities. This assumption might be appropriate at the old time when there were still few
cores residing in a node and they are fit onto a single chip. That symmetric multiprocessing (SMP)
model was really actually symmetric. However, things have changed with time, there are more and
more cores integrated in a single machine now (it can be up to hundreds with Xeon Phi architecture),
and they are no longer fit on a single chip, but they are usually spread out on multiple chips each of

CHAPTER 4. PERFORMANCE ANALYSIS AND VISUALIZATION TOOLS 33

which contains several cores. These chips are connected by some special high speed interconnect
channel, and arranged based on some best-effort-based optimized layout. The memory and cache
systems has become more hierarchical and (implicitly) distributed too. Each chip is usually equipped
with a shared last level cache for its cores, and is attached with a memory bank. This kind of system
is usually referred to as NUMA (non-uniform memory architecture).

The system is still symmetric from the view of software, all inter-chip communication and accesses
to remote memory banks are transparent to users. They still acknowledge as if there is only one unified
memory in the system. However, there is still a fact that the accesses to remote memory banks are
much slower than to local memory bank. For example, on an Intel Nehalem machine, local accesses
to last level cache (L3) and memory (DRAM) take 38 and 190 cycles, whereas remote accesses take
186 and 310 cycles. They slow down with factors of 4.9x and 1.6x respectively [46].

(a) optimized (b) not optimized

Figure 4.1: Computation and data placement when optimized for data locality and not optimized [46]

Because of this large gap in latency and also bandwidth, it cannot be avoided to admit that executing
tasks on cores of the chip that holds their data in local memory will result in a considerable performance
gain (Fig. 4.1a, Fig. 4.1b). Therefore, researches about NUMA-aware work stealing schemes have
emerged and become more critical to performance on nowadays hierarchical “assymmetric” computer
architecture.

In current work stealing, a victim worker is chosen uniformly at random without considering
about its chip and NUMA domain. Olivier et al. [55] have proposed a shared deque for each chip,
local threads still operate in LIFO manner and remote threads still operate in FIFO manner when
stealing (Fig. 4.2). When a thread goes stealing, it will steal a bunch of jobs on behalf of the threads
on the chip, and it restricts that there is only one thread goes stealing at a time. Although its current
implementation still uses lock to synchronize accesses to the shared deque, its scalability result is
encouraging that several benchmarks reach speedup of 90x-150x on 196 cores. On data-intensive
sort and health benchmarks they have observed a sharp increase in computation time due to increased
load latencies compared to sequential execution.

CHAPTER 4. PERFORMANCE ANALYSIS AND VISUALIZATION TOOLS 34

Figure 4.2: Each locality domain per-chip has one shared deque [46]

Olivier et al. in [54] applied the similar locality framework as above to benchmarks of Health
and Heat. simulations and they yielded promising results with great increase in speedup (Fig. 4.3a,
Fig. 4.3b). Another interesting metric is QPI (Quick Path Interconnect - Intel’s interconnect technique
between sockets) traffic, i.e, the amount of data transferred between sockets during execution. Fig. 4.4
shows the measured amounts of data in gigabytes.

(a) Health benchmark (b) Health benchmark

Figure 4.3: Speedups of Health and Heat benchmarks with the proposed Qthreads locality-based
scheduler [46]

Figure 4.4: Data transferred (GB) over interconnects (QPI) between chips [46]

Majo et al. [46] proposed an programming library TBB-NUMA based on Intel TBB which
enables portable and composable NUMA-aware programming. TBB-NUMA provides a unified
interface to the runtime system and allows programmers to define thread affinity, and do explicit

CHAPTER 4. PERFORMANCE ANALYSIS AND VISUALIZATION TOOLS 35

memory system-aware resource management.

CHAPTER 4. PERFORMANCE ANALYSIS AND VISUALIZATION TOOLS 36

Chapter 5

Analyzing Performance Differences
based on Scheduling Delays

Modern task parallel programming models provide sophisticated runtime task schedulers for handling
the scheduling of logical tasks on a large and varying number of hardware parallel resources at runtime.
The performance of these programming models increasingly rely on how fast their runtime schedulers
do their job. The more delay a scheduler incurs in matching a ready task to a free processor core at
any point in time, the more impact it causes to the program’s parallel execution. We have developed
a tool that is able to detect these delayed intervals caused by the scheduler in a parallel execution, and
spot them specifically on two kinds of visualizations: the logical task graph captured at runtime (DAG
visualization) and time-series visualizations of threads (timelines). By further analyzing positions
of these delays on those visualizations the tool could identify possible scheduling issues in the
scheduler that causes these delays, yielding improvement insights for the development of task parallel
programming models. From an application programmer’s perspective, our tool is useful by being
able to contrast differences of various task parallel models executing the same program, helping users
choose the right model for their application. We demonstrate that usefulness by using the tool to
analyze 10 applications in BOTS benchmark suite in our case studies.

5.1 Background

Computer systems have become increasingly parallel with more nodes, more cores, and more threads.
This has made writing parallel applications for those systems more difficult based on traditional
SPMD programming models such as MPI and POSIX Threads. In these models, programmers
have to schedule work and balance load manually on a large number of processor cores, which
is a tedious job for programmers. Modern parallel programming models have been developed to
shift these burdens onto the runtime systems, freeing programmers from them. Programmers can
be unaware of underlying hardware resources such as how many cores or nodes available, and can
concentrate better on algorithmic and creative aspects in their application developments. Task parallel
programming models, which are provided by various languages and libraries such as OpenMP Tasks
[56], MIT Cilk [24], Intel Cilk Plus [61], Intel Threading Building Blocks (TBB) [57], Qthreads
[71], and MassiveThreads [51] [52], are examples of this approach. In these models, programmers
are encouraged to provide ample logical parallelism by creating a large number of tasks which are
independent work units that can be executed in parallel. The runtime systems are responsible for
mapping these logical tasks to available hardware resources dynamically and automatically at runtime.

As the hardware parallelism grows in scale and hierarchy, it is more challenging for runtime
schedulers to keep task scheduling efficient. A larger hardware parallelism tends to impose more
delays in their scheduling. A ready task needs to wait longer before being assigned to a free worker,
not only because the thief needs more time to find a worker holding a task to steal, but also because

37

a scheduler may be employing sophisticated scheduling policies which may prolong execution in the
scheduler’s code. In general, a sophisticated scheduler may incur larger delays, but as a trade-off it
is more likely to achieve better task executions (shorter runtimes) through other aspects like better
memory subsystem usages and better data localities. In contrast, a greedy scheduler which is swift in
matching a ready task with a free worker may miss or overlook those opportunities. There are various
choices in scheduling parallel tasks, and each system has made its own choices in its design and
implementation. Analyzing specific causes of scheduler-caused delay, and precisely quantifying their
impacts on the parallel execution are crucial for improving performance of task parallel programming
models.

At any point in the execution of a parallel program, a worker is either working on the application
code or not working on the application code. An interval during which a worker is working on the
application code is referred to as a work. An interval during which a worker is not working on the
application code, but rather the system code like scheduling, or just waiting in idle due to lack of
work, can be further classified into two categories of either delay or no-work. The two categories are
distinguished based on the ready tasks available at the time; if the number of ready tasks was enough
to feed the worker, but it has not successfully acquired any task to work on yet, the interval is a delay.
On the other hand, if there was no task available during the interval, or the number of available tasks
were not enough to feed the worker, the interval is a no-work. Regarding all executing workers, the
cumulative execution time of the execution (= elapsed time × workers) can be divided into three
components of work, delay, and no-work (cumul. exe. time = work + delay + no-work) which are
the sums of all intervals of the corresponding types across all workers.

Work is the useful computation, whereas delay and no-work are inefficiencies contributing to
the scalability loss of the parallel execution. A delay can always be blamed on the system for not
doing its job well enough, whereas a no-work can be blamed both on either the scheduler or the
application. We use the ready path analysis in order to separate the part of no-work that is caused by
the scheduler (no-work-sched) and the other part caused by the insufficient parallelism issue in the
application (no-work-app). Now we can refer to the sum of delay and no-work-sched to quantify the
impact of the scheduler on a parallel execution.

5.2 Breakdown of Cumulative Execution Time based on Scheduling De-
lays

5.2.1 Performance loss in parallel execution

Consider a short time interval of length ∆t during an execution. We assume it is so short that p,
q, as well as the number of tasks are constant within the interval. Let p be the number of workers
executing application code and q the number of remaining workers. We count the time spent by those
p workers as work. That is, work during this interval is p∆t. We count the time spent by the other q
workers as either delay or no-work, depending on the number of ready tasks (tasks ready to execute
but not being executed) in this interval. Specifically, of the q workers not executing the application
code, up to the number of ready tasks (r) is counted as delaying the execution of application, as they
could have executed those ready tasks. That is, min(q, r)∆t is counted as delay and the remaining
max(0, q − r)∆t counted as no-work.

Accumulating them over time, we can define work, delay, and no-work components of the entire
cumulative execution time across all workers in an obvious manner (Fig. 5.1). Both delay and no-work
represent wasted time (time not spent on application code), but the distinction is important; the former
represents the time the scheduler could have reduced by dispatching ready tasks to available workers
more quickly, whereas the latter is the time wasted due to lack of tasks. The sum of work, delay, and
no-work is always the elapsed time × the number of workers.

In order to calculate these three components, we need the time-series information of running

CHAPTER 5. ANALYZING PERFORMANCE DIFFERENCES BASED ON SCHEDULING
DELAYS

38

work on ready path

delay on ready path

Ready path

Parallelism profile

number of workers

busy delayscheduler delay

running parallelism

ready parallelism

no-work-sched

no-work-app

Figure 5.1: Parallelism profile and the ready path. Work, delay, and no-work components of the
cumulative execution time are respectively red, blue, and white (empty) area below the red line of the
number of workers. The ready path (one among numerous paths existing in a DAG) is divided into
work, busy delay, and scheduler delay.

and ready parallelism during the program execution. Running parallelism at a point in time is the
number of workers executing the application code at that point; ready parallelism is the number of
ready tasks. A time series of running and ready parallelism, with the latter stacked on the former, is
called parallelism profile (Fig. 5.1). In Fig. 5.1, red part represents running parallelism and blue part
represents ready parallelism. The flat red line above the red area denotes the number of participating
workers, which is also the maximum possible running parallelism. From Fig. 5.1, it can be simply
understood that the work component of the cumulative execution time is the red area, delay is the
blue area below the red line, and no-work is the white (empty) area below the red line. Hence, the
cumulative execution time which is the sum of work, delay, and no-work, is the area of the rectangle
confined by the x-axis (y = 0), the y-axis (x = 0), the red line (y = #workers), and the vertical line
at the end time point of the execution (x = elapsed_time).

An application has a perfect (linear) speedup when parallel executions with different numbers
of workers have the same work, zero delay, zero no-work. However, in reality a parallel execution
on higher core counts tends to incur non-zero delay, no-work; and even increasing work. The
amount of delay and no-work is determined by many factors such as the scheduling overhead inside
the runtime system, the amount of serial and low-parallelism sections remaining in the parallel
application. Work on higher core counts tends to increase due to such causes as more contentions
among workers accessing the shared variables, more remote memory accesses, or less effective use of
cache and memory subsystem. We use the work in a serial execution, which is usually the smallest, as
the baseline performance. Compared with that serial work, the surplus amount of a parallel work is
referred to as work stretch. Therefore, the performance loss (or scalability loss) of a parallel execution
(perf. loss = cumul. exe. time−workserial) includes work stretch (= workparallel−workserial), and
delay and no-work components of that parallel execution. Although all three performance loss factors

CHAPTER 5. ANALYZING PERFORMANCE DIFFERENCES BASED ON SCHEDULING
DELAYS

39

(work stretch, delay, no-work) are no doubt important, within the scope of this paper (Delay Spotter)
we focus our analysis on delay and no-work. As work stretch is caused mainly by the bottlenecks
in the memory hierarchy, it is necessary to take into account memory-related metrics (e.g., cache
misses, remote accesses) to analyze it.

5.2.2 Ready path analysis

While the work as defined above represents a useful computation which executes application code,
delay and no-work represent inefficiencies imposed by the runtime system, the application, or other
factors of the execution environment. A large delay is likely to be an artifact of an implementation
of the runtime system; as there are free workers that should be able to pick up ready tasks of that
point, a better runtime system could have matched them up sooner. In contrast, no-work represents a
lack of tasks (parallelism), which can generally be attributable to the application. It must be noted,
however, that no-work can as well be a consequence of a delay caused by the runtime system. To see
this, suppose a program that has only one parent task that spawns all other child tasks. A delay in
advancing that parent task will not only cause a delay on the worker executing the parent task, but
also cause longer no-work intervals on the other workers trying to steal tasks. These no-works should
blame the scheduler, for delaying the crucial master task whose progress would have made more tasks
available for execution.

It is thus important to quantify how much of the observed no-work is caused by the scheduler
and how much is caused by the application. To this end, we divide the no-work component into
no-work-sched and no-work-app by looking into the structure of the task graph of the execution,
which is a graph representing tasks and their dependencies. A critical path on the task graph is a
serial chain of dependent tasks from the start of the entire computation to the end. Of many such
critical paths, our analysis is focusing on the particular path along which there is always a task
running or ready. We call it the ready path. It is easy to see that there is always such a path; from
the end of the computation, we trace the task graph backwards, choosing the last finished one when a
node has multiple predecessors. Our tool analyzes how the computation progressed along this path,
and classifies the entire execution time into the following three parts: work, during which a task on
the ready path was running; busy delay, during which no task on the ready path was running but all
workers were busy working on other tasks (not on the path); and scheduler delay, during which no
task on the ready path was running and there is at least one free worker. An example of ready path
is shown at the bottom in Fig. 5.1. Work on the ready path is a part of the work component of the
cumulative execution time and scheduler delay is a part of the delay component, but busy delay is
not a part of any component; it simply represents an interval in which there is no progress along the
ready path, simply because all the workers are busy on other tasks. In the parallelism profile, you
can consider it being in the ready parallelism (blue area) above the red line denoting the number of
workers. A large busy delay does not indicate an issue of the runtime system but just an ample logical
parallelism in the application.

No-work that happened in a scheduler delay interval is, at least partially, the runtime system’s
fault. Had the runtime system shorten the interval, the no-work would have been smaller. We therefore
count them as no-work-sched, indicating it may indicate a runtime system’s problem. The other part
of no-work (i.e., no-work that happened when a task was running on the ready path) is counted as
no-work-app, indicating an insufficient parallelism issue caused by the application (Fig. 5.1). Based
on our empirical experience, no-work-app is usually an inherent metric of an application; it remains
more or less identical across different executions of the same application by different systems.

CHAPTER 5. ANALYZING PERFORMANCE DIFFERENCES BASED ON SCHEDULING
DELAYS

40

5.3 Related Work

In contrast to Tallent et al. [68] [4], we classify no-work time of workers into delay and no-work
based on the availability of logical ready tasks, so as to judge if an idleness is mainly caused by the
scheduler or the application. Our classification is useful for task parallel programming models in
which not all idleness are attributable to the lack of parallelism in the application. We are able to do
this thanks to computation DAG traces.

CHAPTER 5. ANALYZING PERFORMANCE DIFFERENCES BASED ON SCHEDULING
DELAYS

41

Chapter 6

Recording and Visualizing Computation
DAG Traces

In task-based parallel programming, programmers can expose logical parallelism of their programs
by creating fine-grained tasks at arbitrary places in their code. All other burdens in the parallel
execution of these tasks such as thread management, task scheduling, and load balancing are handled
automatically by runtime systems. This kind of parallel programming model has been conceived as
a promising paradigm that brings intricate parallel programming techniques to a larger audience of
programmers because of its high programmability. There have been many languages (e.g., OpenMP,
Cilk Plus) and libraries (e.g, Intel TBB, Qthreads, MassiveThreads) supporting task parallelism.
However, the nondeterministic nature of task parallel execution which hides runtime scheduling
mechanisms from programmers has made it difficult for programmers to understand the cause of
suboptimal performance of their programs. As an effort to tackle this problem, and also to clarify
differences between task parallel runtime systems, we have developed a toolset that captures and
visualizes the trace of an execution of a task parallel program in the form of a directed acyclic
graph (DAG). A computation DAG of a task parallel program’s run is extracted automatically by
our lightweight portable wrapper around all five systems which incurs no intervention into the target
systems’ code. The DAG is stored in a file and then visualized to analyze performance. We leverage
the hierarchical structure of the DAG to enhance the DAG file format and DAG visualization, and make
them manageable even with a huge DAG of arbitrarily large numbers of nodes. This DAG visualization
provides a task-centric view of the program, which is different from other popular visualizations such
as thread-centric timeline visualization and code-centric hotspots analysis. Besides, DAGViz also
provides an additional timeline visualization which is constructed by individual nodes of the DAG,
and is useful in coordinating user attention to low-parallelism areas on the DAG. We demonstrate
usefulness of our DAG visualizations in some case studies. We expect to build other kinds of effective
visualizations based on this computation DAG in future work, and make DAGViz an effective tool
supporting the process of analyzing task parallel performance and developing scheduling algorithms
for task parallel runtime schedulers.

6.1 Background

Due to fundamental physical constraints such as power consumption and heat dissipation, the de-
velopment of computer hardware has changed from increasing clock speed of a single-core CPU to
integrating increasingly more cores in a multi-core CPU [20]. Recently emerging architectures, such
as Intel’s Many Integrated Core (MIC) which combines many smaller lower-performance cores on the
same chip area, may potentially lead to a highly parallel era of shared-memory computer hardware.
This highly parallel hardware will make it harder for programmers to program parallel software using
common parallel programming models such as SPMD (e.g., MPI) and native threading libraries

42

(e.g., POSIX Threads [25]) which involve programmers in dealing with low-level details of thread
management, task scheduling, load balancing, etc.

Task parallel programming models release programmers from such low-level concerns by shifting
these burdens to the runtime systems. In task parallel programming, programmers just need to expose
logical parallelism in their programs by creating fine-grained tasks, each of which is a work unit
that can be executed in parallel with the rest, at arbitrary places in their code (including recursion).
These tasks are scheduled to execute in parallel dynamically by the runtime system. As a result,
programmers can concentrate better on the algorithmic aspect of the programming. However, this
automation and nondeterminism of task parallel models also removes a great deal of performance out
of the programmers’ control. The same task parallel program executed by different runtime systems
could possibly present significantly different performance. And programmers often lack clues to
understand why their programs perform badly.

Common analysis methods such as hotspots analysis and timeline visualization are not sufficient
for task parallel programs. Hotspots analysis which shows functions that consume the most CPU time
is useful in analyzing sequential execution but fails to pinpoint concurrency bottlenecks in parallel
execution. Timeline visualization (a.k.a. Gantt chart) which displays thread activities in the course
of the execution is thread-centric and not sufficient for task parallel programs which have dynamic
scheduling characteristics and nondeterminism in where tasks are executed. Comparing runs of the
same task parallel program is more consistent when we compare them based on their common logical
task structure. For that reason, our approach is to measure and extract the computation directed
acyclic graph (computation DAG) from a task parallel execution, which records relevant runtime
behaviors based on the program’s logical task structure (DAG), and visualize it for the performance
analysis purpose. In our toolset, the measurement part (DAG Recorder) extracts the DAG during
the execution and stores it in a file, while the visualization part (DAGViz) visualizes the DAG and
provides visual supports for analyzing performance.

We define a generic task parallel computation model that DAG Recorder can extract a DAG
from. This model basically includes only two task parallel primitives of task creation and task
synchronization. We build a simple macro wrapper that translates these generic primitives to their
equivalents in five separate systems that are currently supported: OpenMP [19], Cilk Plus [61], Intel
TBB [57], Qthreads [71], and MassiveThreads [52] [51]. The details of this generic model will be
discussed in Section 2. Programmers write task parallelism using our generic model and their code
can get translated automatically to these five systems. We extract the DAG by instrumenting this
wrapper to invoke DAG Recorder’s measure code at appropriate positions These instrumentations
are done automatically in the wrapper, requiring neither more work from users nor any intervention
into supported parallel runtimes. Hence, although our profiling method requires users to rewrite their
code using our generic primitives and re-compile it with our wrapper and DAG-recording libraries,
the rewriting work is kept to a minimum that is just replacing primitives and what the users gain is
that their code can run with five (and more) different systems that our wrapper library supports, and
their code can also be profiled/traced seamlessly by our tools.

In the DAG, nodes represent sequential computations and edges represent dependencies between
nodes. Nodes are grouped hierarchically such that a collective node contains in it a subgraph of other
collective nodes and leaf nodes which contain no subgraph. Thus, the initially only collective node
representing the whole application can get expanded step by step into subgraphs of increasing depths
and finally become the full graph of only leaf nodes. Higher-level collective nodes hold aggregate
performance information of their inner subgraphs while leaf nodes hold the performance information
of their corresponding sequential code segments. We leverage this hierarchical structure of DAG in its
storage file format and visualization techniques to make our tools manageable even with a huge DAG
of arbitrarily large numbers of nodes (Section 3). By loading and displaying DAG with on-demand
levels of details, we can avoid loading the whole big DAG file into memory at once, but need to load
only a fraction of DAG file corresponding to the visible part of the DAG on screen.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 43

With DAG visualization we are able to make all nodes of a DAG visual and interactive on the
screen. While important, this by itself is not enough since a DAG with up to thousands of nodes is
already too large for users to comprehend. Therefore, supportive statistical analyses and other kinds
of general visualizations are needed to direct users to trouble areas in a huge DAG. Our tool currently
provides an additional timeline visualization which is constructed by individual nodes of the DAG,
and is useful in coordinating user attention to low-parallelism areas on the DAG (Section 4). We
demonstrate usefulness of these visualizations in two case studies of Sort and SparseLU programs
(Section 5). We are working on other kinds of useful visualizations based on computation DAG,
among other things, with the prospect of making our toolset an effective platform supporting the
process of analyzing task parallel performance and developing scheduling algorithms for task parallel
runtime schedulers.

6.2 tpswitch

create_task

tbb, mth, qth omp clk

call_task

create_task_and_wait

create

call

create create

call→wait

create→wait

create→waitcreate→wait

cilk_begin

cilk_return

spawn clk:
(5) use mit_spawn keyword in create_task_and_wait & call_task,
 e.g., create_task_and_wait(mit_spawn f()); call_task(mit_spawn f());
(6) insert cilk/cilk_begin/cilk_return in functions that are spawned and
 functions that spawn
(7) always spawn or invoke a cilk function by call_task instead of
 directly calling it, e.g., f(); → call_task(mit_spawn f());
(8) detach the lambda closure from leaf function of pfor and make it a
 normal function prefixed with the cilk keyword

ØØ spawn

clkp

create

call→wait

cilk_spawn

pragma_omp_parallel_single ØØ Øomp parallel single

Ø

Ø

Ø

Ø

wait_tasks wait wait waitwait

mk_task_group Ø n_children = 0 Ømtbb::task_group

cilk cilkØ Ø Ø

clkp:
(3) use spawn keyword in create_task, e.g., create_task(spawn f());
(4) insert cilk_begin/cilk_return in functions that are spawned

call

mit_spawn ØØ spawnØ

call

dr_start_cilk_proc()

dr_end_task()→return

dr_start_cilk_proc()

dr_end_task()→return

omp:
(1) wrap root task with pragma_omp_parallel_single in order
 for omp to initialize the worker thread team
(2) invoke the last task spawn before synchronization with
 create_task_and_wait instead of directly calling it,
 e.g., {f(); wait_tasks;} → create_task_and_wait(f());

(*1) include header: #include <tpswitch/tpswitch.h>
(*2) initialize runtimes: tp_init();

Figure 6.1: tpswitch API

#include <tpswitch/tpswitch.h>

void f() {

 mk_task_group;
 create_task(f());
 create_task_and_wait(f());

}

void g() {

 pfor(first, last, step, grainsize,
 [&] (int from, int to) {

 for (int i = from; i < to; i += step) {
 /* some computation */
 }

 });

}

int main_task() {

 mk_task_group;
 create_task(f());
 create_task(g());
 wait_tasks;
 return 1;
}

int main() {
 tp_init();
 pragma_omp_parallel_single(nowait, {
 main_task();
 });
 return 1;
}

#include <tpswitch/tpswitch.h>

void f() {

 mk_task_group;
 create_task(f());
 f();
 wait_tasks;

}

void g() {

 pfor(first, last, step, grainsize,
 [&] (int from, int to) {

 for (int i = from; i < to; i += step) {
 /* some computation */
 }

 });

}

int main_task() {

 mk_task_group;
 create_task(f());
 g();
 wait_tasks;
 return 1;
}

int main() {
 tp_init();

 main_task();

 return 1;
}

#include <tpswitch/tpswitch.h>

void f() {
 cilk_begin;
 mk_task_group;
 create_task(spawn f());
 create_task_and_wait(f());

 cilk_void_return;
}

void g() {
 cilk_begin;
 pfor(first, last, step, grainsize,
 [&] (int from, int to) {
 cilk_begin;
 for (int i = from; i < to; i += step) {
 /* some computation */
 }
 cilk_void_return;
 });
 cilk_void_return;
}

int main_task() {

 mk_task_group;
 create_task(spawn f());
 create_task(spawn g());
 wait_tasks;
 return 1;
}

int main() {
 tp_init();
 pragma_omp_parallel_single(nowait, {
 main_task();
 });
 return 1;
}

#include <tpswitch/tpswitch.h>

cilk void f() {
 cilk_begin;
 mk_task_group;
 create_task(spawn f());
 create_task_and_wait(mit_spawn f());

 cilk_void_return;
}

cilk void g() {
 cilk_begin;
 call_task(mit_spawn pfor(first, last, step, grainsize,
 pfor_leaf_func));

 cilk_void_return;
}

cilk int main_task() {
 cilk_begin;
 mk_task_group;
 create_task(spawn f());
 create_task(spawn g());
 wait_tasks;
 cilk_return(1);
}

cilk int main() {
 tp_init();
 pragma_omp_parallel_single(nowait, {
 call_task(mit_spawn main_task());
 });
 return 1;
}

void f() {

 f();
 f();

}

void g() {

 for (int i = first; i < last; i += step) {
 /* some computation */
 }

}

int main_task() {

 f();
 g();

 return 1;
}

int main() {

 main_task();

 return 1;
}

tbb, mth, qth tbb, mth, qth, omp tbb, mth, qth, omp, clkp tbb, mth, qth, omp, clkp, clk

cilk void pfor_leaf_func(int from, int to) {
 cilk_begin;
 for (int i = from; i < to; i += step) {
 /* some computation */
 }
 cilk_void_return;
}

serial

Figure 6.2: tpswitch exmples

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 44

6.3 Computation DAG

6.3.1 Computation model

In this section, we describe the generic task parallel model that our toolset can extract a computation
DAG from, and how other models get translated into our generic one. In our generic model, a program
starts as a single task performing its main function. A task can execute ordinary user computation,
which does not change the program’s parallelism, and additionally other task parallel primitives,
which can change the program’s parallelism. These primitives are following three semantics:
CreateTask : The current task creates a new child task.
WaitTasks : The current task waits for all tasks in current section, explained below, to finish. This
primitive also terminates the current section.
MakeSection : This primitive is used to mark the creation of a section inside a task or another
section. A section is defined as a synchronization scope which is ended by a WaitTasks primitive
and all tasks created inside it get synchronized all together by that WaitTasks. The purpose of
section notion is to support a task that waits for a subset of its children. Our generic model supports
sections that are either nested or disjoint, but must not intersect.

Task parallel primitives of OpenMP and Cilk Plus models can be translated to our model straight-
forwardly. The task and taskwait pragmas in OpenMP are replaced by CreateTask and WaitTasks
respectively. The cilk_spawn and cilk_sync in Cilk Plus are also replaced by CreateTask and
WaitTasks respectively. In addition, however, a task pragma and a spawn operation perform an
additional MakeSection operation if the current task has no open section.

Intel TBB model is more flexible than our generic one. The section notion is represented by
task_group class in Intel TBB. A task is created by calling run method of a task_group object, and
a call to a task_group object’s wait method would synchronize all tasks created by that object’s
run method. One can choose an arbitrary subset of children of a task to synchronize in Intel TBB
by creating these children with the same task_group object, whereas our generic model does not
allow intersected task subsets, and a new section is opened only when the previous section has
been closed. Except this restriction, Intel TBB code can be translated into our model by replac-
ing task_group.run with CreateTask, task_group.wait with WaitTasks, and task_group object’s
declaration with MakeSection.

Qthreads and MassiveThreads are both lightweight thread libraries that expose a POSIX Threads-
like interface: one function call to create a task and one function call to synchronize a task of choice.
They are as flexible as Intel TBB and translating them to our generic model is imposed with the same
restriction.

We have built a lightweight macro wrapper that translates code written with our generic model to
these five systems automatically. Hence, by writing code once users can get five separate executables
for five systems. Beside these five systems, our toolset can be extended easily to support any other
task parallel system that can conform to our generic model.

6.3.2 DAG structure

We instrument measure code in the macro wrapper implicitly (requiring no work from users) so
that DAG Recorder can get invoked at appropriate positions to record the DAG. Specifically, we
instrument at following six positions: the beginning and the end of CreateTask, the beginning and
the end of WaitTasks, right before and right after invoking the child task in CreateTask. These
instrumentations are put as near the program code as possible with the purpose of capturing the
transitions out of the program code and back into the program code. As a consequence, work of the
program (i.e., total execution time on all workers of the program code) is broken down into sequential
intervals each of which corresponds to a seamless code segment containing no task parallel primitive
in the program code and executes uninterruptedly on one worker (core). Although such a sequential

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 45

interval always happens entirely on a single worker, two consecutive ones separated by a task parallel
primitive may take place on two different workers. This is because the execution control is always
given back to the runtime system at task parallel primitives where a task migration, among other
runtime mechanisms, may happen and change the worker that executes the next interval.

An execution interval is modeled as a node in the execution’s computation DAG. A node (interval)
starts either by the first instruction of a task or the instruction immediately following CreateTask or
WaitTasks, and it ends either by the last instruction of a task or an instruction immediately before
CreateTask or WaitTasks. We classify nodes into three kinds by the ways how they end. A node
ends by calling CreateTask primitive is of create kind, ends by calling WaitTasks primitive is of
wait kind, and ends by the last instruction of a task is of end kind.

An edge in the DAG represents the dependency between two nodes that it connects. In other
words, an edge is one reflection of a task parallel primitive in the program’s execution. There are three
kinds of dependencies that an edge can represent: creation, continuation, and synchronization. A
node ended by a CreateTask primitive has a creation dependency with the first node of the new task.
Two nodes of two contiguous code segments in the program separated by a task parallel primitive
have continuation dependency. This continuation dependency can be divided further into create cont.
and wait cont. based on the task parallel primitive intermediating the two code segments. The last
node of a task has synchronization dependency with the node of the code segment following the
WaitTasks primitive that synchronizes that task.

The recursive task creation and nested synchronization scope in the program code are reflected on
the DAG by collective nodes of two kinds: task and section which contain in them subgraphs of
leaf nodes (create, wait, end) and other nested collective nodes. A node of kind task corresponds
to a task in the program code, it can contain zero, one or more section nodes before ending by
an end node. The section node kind corresponds to the section notion in our generic model. A
section node contains one or more create nodes along with task nodes that these create nodes
spawn, and zero or more nested section nodes, before ending by a wait node. All those child task
nodes of the section are synchronized by its end wait node and are connected to the successor
node of the section on the DAG by synchronization edges. The section’s end wait node is also
connected to the successor node but by a wait cont. edge. Fig. 6.3 shows an example task parallel
program and an illustration of its corresponding DAG.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 46

E
C

create

wait

end

B

E
CB

D()

A() {
 for(i=0;i<2;i++) {
 CreateTask(B);
 CreateTask(C);
 D();
 WaitTasks();
 }
}
D() {
 CreateTask(E);
 WaitTasks();
}

D()
create create cont.

end wait cont.

Node kinds Edge kinds

Figure 6.3: An example task parallel program and its DAG. The whole execution is originally the
only task node which is expanded into two sections and one end. The two sections are further
expanded into two similar inner topologies as they are two iterations of the same for loop.

At measurement points, beside code position (file name, line number) DAG Recorder also records
time and current worker (core) so that we can know when and where a node starts and ends. Each
node v in the DAG is augmented with information such as start time (v.start), end time (v.end), the
worker (v.worker) on which the node was executed, the start and end locations of the corresponding
code segment. In case of collective nodes, DAG Recorder additionally stores aggregate information
about their inner subgraphs. Two important items of aggregate information are the total work,

total_work (u) =
∑
v∈u

(v.end − v.start)

and the critical path length of the subgraph. For any subgraph that was executed wholly on a single
worker (i.e., there is no work stealing or task migration inside it), DAG Recorder can abolish the
subgraph, retain only the collective node (without its inner topology) and its aggregate information.
This automatic collapsing technique is optionally conducted on-the-fly during the measurement, and
significantly useful in making DAG Recorder scalable because the size of the computation DAG now
does not scale with the number of task creations anymore but with the number of task migrations
(i.e., work stealing).

6.4 DAG Recorder

6.5 DAGViz

Different from code-centric hotspots analysis and thread-centric timeline visualization, DAG visu-
alization provides a task-centric view of the execution which is the logical task structure of the
program. This logical task structure is more familiar from the programmer’s perspective, and con-
sistent regardless of runtime schedulers, hence it is fit for the need to compare executions based on
different runtimes to clarify the subtle differences between them and between scheduling policies for
the purpose of developing scheduling algorithms.

DAG Recorder flattens the computation DAG to a file as a sequence of nodes when the execution
ends. In the sequence, a create node holds an offset pointing to the child task node that it spawns.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 47

A task or a section node will hold an offset pointing to the subsequence of nodes of its inner
subgraph. DAGViz memory-maps the file, which lazily loads only the accessed parts of the file into
memory rather than the whole file at once. The visualization is also organized hierarchically with
on-demand expansion/contraction. This hierarchical approach helps reducing stress on the memory
even with huge DAG(s). DAGViz is built with GUI based on GTK+ widget library [60], and canvas
rendering based on Cairo vector graphics library [59].

6.5.1 Hierarchical layout algorithm

DAGViz traverses the DAG recursively from its root task node to a user-adjusted on-demand depth
limit. At each traversal step, DAGViz proceeds next to these three directions in turn: the inner
subgraph of current node (inward), the leftward subgraph following the creation edge (if the current
node is a create), and the rightward subgraph following the continuation edge. In order to assign
absolute (x, y) coordinates to every node, DAGViz needs to make two passes over the graph. At the
first pass, it calculates in a bottom-up fashion the bounding boxes of three subgraphs (inner, leftward,
and rightward) around every node. At the second pass, DAGViz assigns absolute coordinates to all
nodes in a top-down fashion. At each traversal step from the root node down to leaf nodes, it assigns
coordinates to the current node first before aligning three subgraphs (and all nodes inside) around it
to their absolute coordiates based on their calculated bounding boxes. The root task node is first
assigned with (0, 0) coordinates.

Fig. 6.4 shows visualizations of the DAG extracted from an execution of Sort program. Node
color represents the worker that has executed the node. The mixed color (of orange, yellow, and cyan)
indicates that the node’s subgraph was executed collectively by multiple workers rather than a single
one. Fig. 6.5 shows the same DAG that has been expanded to depth 6 while the full DAG has max
depth of 66 and contains dozens of thousands of nodes.

Figure 6.4: Sort’s DAG(s) at depth 0 (first), 1 (second) and 2 (later 3). The DAG initially has only
one node (the left most), from left to right it shows the DAG’s hierarchical expansion. The original
node gets expanded into three sections and one end, then the first section gets expanded, and the
second and the third ones.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 48

Figure 6.5: Sort’s DAG expanded to depth 6 with less than 500 nodes but overwhelming already.
While at max depth of 66 it contains up to dozens of thousands of nodes.

On DAGViz’s GUI, users can interact freely with the DAG by panning it around to any part and
zooming in or out at any part to enlarge or reduce that part of the graph infinitely (this is achieved
largely by vector graphics feature of Cairo). Moreover, the DAG is not a static picture on screen but it
can be expanded at once to any depth level of choice, or users can choose to expand it partly into any
direction by clicking on any node to make it expanded. The expansion and contraction are enhanced
with animation by gradual transitions between a collective node and its inner subgraph’s topology so
that these graph transformations look beautiful and importantly natural to the user perception.

6.5.2 Timelines with parallelism profile

The layout algorithm of the DAG can be modified a little to produce a timeline view of the execution.
In timeline view the x-axis is the time flow and y-axis consists of a number of rows each of which
corresponds to one worker thread. The rows contain boxes representing work that workers were doing
at specific points in time during the program’s execution. Each node of the DAG becomes a box
in the timeline, so its y coordinate is fixed based on its worker number. The node’s x coordinate is
calculated based on its start time, and its length is based on its work (= v.end − v.start). Besides,
DAGViz also draws a parallelism profile along with and placed right above the timeline. In Fig. 6.6,
the lower part consisting of 32 rows is the timeline, the upper part (from red area upward) is the
parallelism profile of the execution which is the time series of actual and available parallelisms of the
execution:

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 49

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Figure 6.6: Sort’s timelines are the lower part consisting of 32 rows. Sort’s parallelism profile is the
upper part consisting of a red area (actual parallelism) and stacked-up areas of other colors (different
kinds of available parallelisms).

Time series of actual parallelism (red part): is the number of tasks actually running at every point
in time. Actual parallelism at time t, denoted by Pactual(t), can be obtained by:

Pactual(t) =
∑
v∈V

running(v, t)

where V is the set of all nodes in DAG, running(v, t) is 1 if v is running at time t and 0 otherwise.
Formally,

running(v, t) =
{

1 if v.start ≤ t ≤ v.end
0 otherwise

Time series of available parallelism (upper parts of other colors): is the number of tasks ready to
run but not actually running at every point in time. Available parallelism at time t, Pavail(t), can be
obtained by:

Pavail(t) =
∑
v∈V

ready(v, t)

where ready(v, t) is 1 if all of v’s predecessors have been finished at time t but v has not been started;
and 0 otherwise. Formally,

ready(v, t) =


1 if u.end < t < v.start for all
u → v

0 otherwise

6.5.3 Kinds of visualizations

6.5.4 Related work

HPCToolkit [68] and Intel VTune Amplifier [33] both use sampling method and does not need to
instrument the executable. These tools focus on hotspots analysis and timeline-based analysis.

Vampir [50] visualizes traces of an MPI program. Its main visualization is a timeline view with
edges pointing from boxes to boxes to represent communication among processes. It simultaneously

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 50

shows a statistical view that displays aggregate information of a chosen time interval in the timeline.
Jumpshot [74] is a more general timeline visualizer. It visualizes data from text files of its own format.
Jumpshot is not very flexible. It can only display up to 10 different categories which have 10 different
colors. Jedule [29] is a tool to visualize schedules of parallel applications in timeline style. Olivier et
al. [54] has used Jedule to visualize a timeline view for analyzing the locality of a scheduling policy.
Aftermath [21] is a graphical tool that visualizes traces of an OpenStream [58] parallel program
in timeline style. OpenStream is a dataflow, stream programming extension of OpenMP. Although
Aftermath is applied in a narrow context of OpenStream (a subset of OpenMP), it provides extensive
functionalities for filtering displayed data, zooming into details and various interaction features with
users.

Wheeler and Thain [72] in their work of ThreadScope have demonstrated that visualizing a graph
of dependent execution blocks and memory objects can enable identification of synchronization and
structural problems. They convert traces of multithreaded programs to dot-attributed graphs which
are rendered by GraphViz [11]. GraphViz is scalable (i.e., sufficiently fast for making animation
possible) up to only hundreds of nodes, and quite slow with larger graphs because its algorithm
[66] needs to care much about the aesthetic aspects of the graph such as node layering, edge crossing
minimization. On the other hand, we leverage intrinsic characteristics of the computation DAG such as
layered nodes (directed acyclic aspect), non-crossing edges to simplify the layout algorithm. DAGViz
visualizes the DAG interactively with on-demand hierarchical expansion & contraction rather than a
static whole-graph picture provided by GraphViz.

6.6 Case Studies

We have measured DAG(s) of all ten programs in the Barcelona OpenMP Task Suite (BOTS) [22] with
five task parallel runtime systems DAG Recorder currently supports: OpenMP, Cilk Plus, Intel TBB,
Qthreads and MassiveThreads. The experimental environment is shown in Table 6.1, and parameters
for each benchmark described in Table 6.2. The overhead of DAG Recorder with MassiveThreads
library is shown in Fig. 6.7. Except for particular cases of Health and UTS programs which create
too many fine-grained tasks, DAG Recorder is feasible for all other programs with overhead within
10% of the original program’s runtimes.

Compiler Intel Compiler 14.0.2
OS CentOS 6.4 (Linux 2.6.32-x86_64)

CPU AMD Opteron 6380 2.5GHz
16 cores (8 modules) per socket

Sockets 4 sockets (64 cores or 32 modules in total)
Runtimes OpenMP, Cilk Plus,

Intel TBB, MassiveThreads, Qthreads

Table 6.1: Environment

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 51

App stack cut off other args
Alignment 220 - -f prot.100.aa
FFT 215 - -n 224

Fib 215 manual -n 47 -x 19
Floorplan 217 manual -f input.20 -x 7
Health 214 manual -f medium.input -x 3
Nqueens 214 manual -n 14 -x 7
Sort 215 manual -n 227 -a 512 -y 512
Sparse LU 214 - -n 120 -m 40
Strassen 214 manual -n 4096 -x 7 -y 32
UTS 214 - -f tiny.input

Table 6.2: Summary of benchmarks settings

 0

 0.5

 1

 1.5

 2

 2.5

alignm
ent

fft fib floorplan

health

nqueens

sort
sparselu

strassen

uts

ti
m

e
 (

se
c)

w/o DAG Recorder w/ DAG Recorder

Figure 6.7: DAG Recorder’s overhead in running programs in BOTS with MassiveThreads on 32
cores

We show a summary of the utilizations (= speedup/cores) on 32 cores of the benchmarks with five
systems in Fig. 6.8. Each dot represents the utilization of an execution of a program by a system; the
higher it is, the better. Among many cases of our interest, we look into two of them here. First, Sort’s
speedup is poor in all systems, which suggests that the program’s code is the cause of performance
bottleneck. The other case is SparseLU, as it is a peculiar case in which Cilk Plus’s scalability is
poorer than other systems, while Cilk Plus performs well in most other benchmarks.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

u
ti

liz
a
ti

o
n

utilization with 32 cores

cilkplus
mth

omp
qth

tbb

Figure 6.8: Utilizations of BOTS run by 5 systems on 32 cores

6.6.1 Sort

Sort program sorts a random permutation of n 32-bit numbers with a parallel variation of mergesort
[22]. The input array is divided into smaller parts which are sorted recursively before being merged,
also recursively, to become the sorted result array. In the algorithm, the recursive parallel merge
is turned to simple sequential memory copy whenever the smaller array in the two arrays of the
merge is empty. This condition (the smaller array is empty) does not always guarantee that the larger
array is sufficiently small; but contrarily, the larger array might be very large, making the sequential
memory copy operation costly. This trivial condition itself causes the lack of available parallelism
accompanied with many long-running tasks at the stage near the end of the execution in Fig. 6.6. By
replacing this sequential memory copy with a version of parallel memory copy, the lack of parallelism
in merging phase was fixed.

Similar to Sort, Strassen is another example where performance suffers from the lack of paral-
lelism. The timeline of Strassen program in Fig. 6.9 shows that the program’s parallelism is very low
near the start. By zooming in and relating the long running box with DAG structure, we identified
the code segment which enforced this low parallelism situation.

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 53

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Figure 6.9: Strassen DAG’s top node was actually a too-long-running interval demonstrated by the
timeline view.

6.6.2 SparseLU

SparseLU program computes an LU matrix factorization over sparse matrices [22]. DAG visualization
of SparseLU (Fig. 6.10) and its source code both show that it has a serial loop creating very many tasks,
none of which recursively creates further tasks. Therefore, the program’s parallelism increments one
only after each iteration of the loop. The comparison of DAG(s) from Cilk Plus and Intel TBB
in Fig. 6.11 expresses a noticeable difference between two systems. All nodes along the spine in
Intel TBB’s DAG (left one) are executed together by the same worker (of orange color), whereas
in Cilk Plus’s DAG (right one) these spinal nodes are executed separately by different workers (of
different colors). This is because in Intel TBB when a worker creates a new task it pushes the new
task into its work queue and continues executing the current one (help-first), whereas in Cilk Plus
the worker would pause the current task to switch to executing the new task (work-first). Therefore,
every parallelism increment requires a work stealing operation in Cilk Plus’s execution, hence it is
understandable that systems with help-first policy (OpenMP, Intel TBB, Qthreads) would execute
SparseLU better than systems with work-first policy (Cilk Plus, MassiveThreads).

However, MassiveThreads still has significantly better utilization than Cilk Plus. We can observe
it from Fig. 6.12 which shows parallelism profiles of MassiveThreads and Cilk Plus on 32 cores.
It is noticeable that Cilk Plus exposes a low parallelism (around 25, as opposed to nearly 32 of
MassiveThreads). The reason why MassiveThreads performs better than Cilk Plus can be explained
by Cilk Plus’s expensive work stealing operation. Fig. 6.13 compares the distribution of time gaps
between two consecutive nodes on the spine. Cilk Plus takes much longer to advance a computation
along it, implying that it takes longer to steal a task. Additionally, in our previous microbenchmark we
have confirmed that work stealing operation in MassiveThreads is more than an order of magnitude
faster than in Cilk Plus [69].

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 54

Figure 6.10: (Head part of) SparseLU’s DAG by Cilk Plus

Figure 6.11: (Head parts of) SparseLU’s DAG(s) by Intel TBB (left) and Cilk Plus (right)

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 55

 0

 5

 10

 15

 20

 25

 30

 35

 0 1x109 2x109 3x109 4x109 5x109 6x109

running
end

create
create cont

wait cont
other cont

(a) MassiveThreads

 0

 5

 10

 15

 20

 25

 30

 35

 0 1x109 2x109 3x109 4x109 5x109 6x109 7x109 8x109

running
end

create
create cont

wait cont
other cont

(b) Cilk Plus

Figure 6.12: SparseLU’s parallelism profiles by MassiveThreads and Cilk Plus. While Mas-
siveThreads consistently reaches 32 parallelism, Cilk Plus mostly floats around 25.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10000 20000 30000 40000 50000 60000 70000

co
un

t

clocks

MassiveThreads
Cilk Plus

TBB

Figure 6.13: Distribution of work stealing time in SparseLU

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 56

6.7 Delay Spotter

...
T0;
cilk_spawn{T1;B;T2;}
T3;
...

T0
T1 T3

T2
B

(a) CreateTask translated to cilk_spawn with instrumentations

...
T0;
cilk_sync;
T1;
...

T0

T1

(b) WaitTasks translated to cilk_sync with instrumentations

Figure 6.14: Task parallel primitives are automatically instrumented to take timing information when
they are translated to corresponding primitives of a specific system.

Delay Spotter is built upon our previous work on a performance visualization tool - DAGViz [31]
- which provides interactive and scalable directed acyclic graph (DAG) visualizations and timelines
(time-series of CPUs) visualizations based on the computation DAG traces. A computation DAG
records the task graph from an execution of a task parallel program. It separates the execution of
the application code into serial intervals which do not contain any task parallel primitives. Those
serial intervals are denoted by nodes on the DAG; their dependencies are denoted by edges between
nodes (Fig. 6.3). A task in the application may be divided into multiple nodes on the DAG based on
multiple serial code segments interleaved by task parallel primitives in its code. A node is named
after the primitive that ends it; a create node is ended by the task creation primitive (CreateTask),
a wait node is ended by the task synchronization primitive (WaitTasks). Additionally, a node ended
by the end of a task is named end. Edges are realizations of these task parallel primitives on the DAG.
A CreateTask makes up two edges which both originate from the same create node representing
the code segment ended by that CreateTask, but one connects to the child task (create edge), and
the other connects to the continuation of the parent task following that CreateTask (create cont.
edge). A task synchronization primitive first makes a wait cont. edge connecting from the wait node
ended by that primitive to the continuation of the parent task following that primitive. Besides, the
primitive also makes one or more end edges connecting from any child tasks that it synchronizes to
the node that follows it. The delay component may be further divided into four subcategories based
on these four kinds of edges on which a delay happens. There are also collective node kinds such as
task, which represents a whole task and contains the sub-DAG of the task inside.

We define a generic set of API for basic task parallel primitives such as task-spawningCreateTask
and tasks-synchronizing WaitTasks. Our thin layer based on preprocessing macros (tpswitch [31])
automatically translates these generic primitives into corresponding ones in specific target systems.
Besides, along the translation, our tracing tool (DAG Recorder [31]) also automatically instruments
necessary time measurement codes around the task parallel primitives in order to collect timing
information. An example with Cilk Plus as the translation target is shown in Fig. 6.14. Our
instrumentation method does not need to peek into the runtime’s code, so it is more portable, easily
to be adapted to a new system as long as the system supports a task-spawning primitive and a tasks-

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 57

synchronizing primitive. With these instrumentations we can capture every time point when a task
starts, stops, resumes, or ends; hence, work intervals can easily be separated apart from delay and
no-work intervals. Beside start time and end time, a node on the DAG also has a ready time indicating
the time point from which it becomes ready. The ready time of a node is calculated by tracing back
all predecessors of the node and taking end time of the last finished one as the node’s ready time. The
interval from ready time to start time of a node is a delay of that node.

DAG has been used broadly in the literature to model a static parallel program. We leverage it to
model a dynamic parallel execution. Our instrumentation-based measurement might seem to have a
large overhead, especially when a large number of tasks are created in the application. But we have
implemented a mechanism to collapse uninteresting (executed entirely by one worker) sub-DAGs
dynamically on-the-fly in order to keep both time overhead and memory overhead under reasonable
limit. Now the measurement overhead scales with the number of work-stealing across workers rather
than the number of task creations. In actual experiments with BOTS, our tool’s overhead was less
than 10%.

DAGViz [31] visualizes the computation DAG traces captured by DAG Recorder in multiple
kinds of visualizations. It provides a basic DAG visualization with node shapes similar to what
are shown in Fig. 6.3, and an extended one with timing represented on y-axis. It also provides
timelines visualization, which is made up by rearranging nodes into timelines of workers, along
with a parallelism profile on top. In order to construct parallelism profile, each node on the DAG
is traversed to compute its contributions to running and ready parallelism; one node adds one unit
to ready parallelism from its ready time to its start time, and adds one unit to running parallelism
from its start time to its end time. DAGViz allows us to zoom into any particular spot of the DAG on
DAG visualizations, timelines, or parallelism profile; furthermore we can relate the structures of the
same spot on multiple kinds of visualizations side by side, and compare them, get to understand the
scheduling mechanisms.

6.8 Big DAG handling mechanisms

6.8.1 DAG-collapsing mechanisms

6.8.2 Big DAG visualizing mechanisms

CHAPTER 6. RECORDING AND VISUALIZING COMPUTATION DAG TRACES 58

Chapter 7

Task-Parallelizing PARSEC Benchmarks

The original PARSEC benchmark suite consists of a diverse and representative set of benchmark
applications which are useful in evaluating multicore architectures for modern workloads. However,
it supports only three programming models: Pthreads (SPMD), OpenMP (parallel for), TBB (parallel
for, pipeline), lacking supports for emerging and widespread shared-memory task parallel program-
ming models. In this work, we present a task-parallelized PARSEC (TP-PARSEC) in which we have
added translations for five different task parallel programming models (Cilk Plus, MassiveThreads,
OpenMP Tasks, Qthreads, TBB). Task parallelism enables a more intuitive description of parallel
algorithms compared with the direct threading SPMD approach; besides, it also helps get rid of
synchronizations (e.g., thead barriers) and ensures a better load balance among a large number of
processor cores based on the proven work stealing technique. TP-PARSEC is not only useful for
task parallel programming model developers to analyze their runtime systems with a wide range of
workloads from diverse areas, but also enables them to compare performance between task parallel
runtime systems. TP-PARSEC is integrated with a task-centric performance analysis and visualiza-
tion tool which effectively helps users understand the performance, pinpoint performance bottlenecks,
and especially analyze performance differences between systems.

7.1 Background

Multicore processors and shared-memory systems have been widespread, with increasingly many
cores integrated on a processor chip. These higher core counts have put a pressure on the software
layer; programmers need to be more careful in order to keep their parallel programs run efficiently,
because more threads mean more contentions, more synchronizations, and longer remote memory
accesses. Task parallel programming models are a popular approach in shared-memory programming.
With task parallelism, programmers do not need to be aware of low-level details in the systems, like
how many threads there are, then manually crafting the program’s workload to the number of threads
and scheduling it on these threads. A specialized runtime task scheduler in a task parallel programming
model handles those things for users. The users are presented with a unified interface of tasks, they
just need to focus on the program’s logics to extract logical parallelism and denote them as tasks. Task
parallel runtime systems will map these logical tasks onto available processing units automatically
and dynamically at runtime. This dynamic scheduling is the basis for hiding latencies and tolerating
noises.

Task parallel programming models are promising to be able to deliver both programmability
and performance to a wider audience. However, there are still a lot of work to do to improve their
performance. They need good benchmarks in order to be developed in the proper directions. A
popular benchmark for task parallelism is the Barcelona OpenMP Tasks Suite (BOTS) [23], but it
includes only basic divide-and-conquer computations such as fibonacci, nqueens, merge sort, matrix
multiplication. Recursive algorithms are important, and task parallelism is well suitable for expressing

59

recursions. However, evaluating task parallel programming models with mainstream workloads is
also important to demonstrate their applicability in real-world applications.

The Princeton Application Repository for Shared-Memory Computers (PARSEC) [10] is a popular
benchmark suite that contains representative workloads from a wide range of areas such as image
recognition, financial analytics, physics simulation, data mining. It has been extensively used in
research of multicore shared-memory systems. PARSEC is shipped with supports for POSIX Threads
(Pthreads), OpenMP, and Intel Threading Building Blocks (TBB); benchmarks in PARSEC are mainly
programmed with SPMD (single program multiple data) model based on Pthreads and parallel for loop
models based on OpenMP, TBB. They lack the supports for task parallel programming models. That
is why we have task-parallelized PARSEC, and presented a new benchmark suite TP-PARSEC (Task
Parallel PARSEC) which adds supports for not one, but up to five different task parallel programming
models (Cilk Plus, MassiveThreads, OpenMP Tasks, Qthreads, TBB). On one hand, TP-PARSEC
extends the original PARSEC with emerging parallel programming models. On the other hand,
TP-PARSEC brings a new set of state-of-the-art realistic workloads to system developers for them to
evaluate the implementations of different task parallel programming models.

The performance of a task parallel programming model depends substantially on its runtime
system (esp. runtime task scheduler) which automatically handles almost all details in the parallel
execution. Different task parallel programming models may expose largely varying performance
even when executing the same program because of their differences in, e.g., scheduling policies,
load balancing algorithms. For example, in facesim benchmark, MassiveThreads has exposed up to
63% better speedup over Cilk Plus; or in canneal benchmark, Qthreads performs slightly (∼22%)
better than TBB does until 24 cores, but from 28 cores Qthreads suddenly degrades, resulting in
∼42% lower performance than TBB’s. By supporting multiple systems, TP-PARSEC becomes a
useful benchmark suite that enables system developers to compare their system with others, analyze
performance differences, and work on improvements of their system implementation.

In order to support users effectively in analyzing these performance differences, we have integrated
into TP-PARSEC a task-centric performance analysis and visualization tool: Delay Spotter [30]
(and DAGViz [31]) which can contrast differences between systems with a scheduling delay-based
novel statistical metric and spot their specific causes on multiple kinds of visualizations (e.g., DAG,
timelines, parallelism profile). These visualizations are also useful in helping users easily understand
the performance and interactively explore the execution traces.

7.1.1 PARSEC

The original PARSEC benchmark suite developed by Princeton University [10] is a large bench-
mark suite consisting of 13 parallel applications and kernels. These applications and kernels are
representative workloads in various areas: computer vision (bodytrack), animation physics (facesim,
fluidanimate, raytrace), computational finance (blackscholes, swaptions), chip engineering (canneal),
storage systems (dedup), search engines (ferret), data mining (freqmine, streamcluster), and media
processing (vips, x264). They contain state-of-the-art algorithms for solving their specific problems
in the fields.

These benchmarks are provided with three parallel implementations based on three multithreading
libraries: Pthreads [53], OpenMP [19], and TBB [57]. All benchmarks have Pthreads versions, except
for freqmine which has only one OpenMP version. Most of Pthreads versions of these benchmarks
are implemented with SPMD model in which the data space (e.g., loop iterations) are divided
equally among available threads; besides, dedup and ferret use manual pipeline models which are
implemented manually upon threads, facesim and raytrace use manual task queues implemented
upon threads. Some benchmarks additionally have OpenMP versions (blackscholes, bodytrack,
freqmine) and TBB versions (blackscholes, bodytrack, ferret, fluidanimate, streamcluster, swaptions).
The OpenMP versions use OpenMP’s parallel loop model (omp parallel for directive). The TBB
versions use either TBB’s parallel loop model (tbb::parallel_for template) (blackscholes, bodytrack,

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 60

Table 7.1: Programming models of each version of each benchmark. A blank cell indicates the
version does not exist.

App Computation Pthreads model OpenMP model TBB model Task models

blackscholes for (100 runs)
{ 1 for loop } SPMD omp parallel for tbb::parallel_for pfor

bodytrack for (261 steps)
{ 5 for loops } manual task queue omp parallel for tbb::pipeline

tbb::parallel_for
pipeline tasks

pfor

canneal for (6000 steps)
{ 1 for loop } SPMD leaf tasks

dedup for (streaming)
{ pipeline } manual pipeline pipeline tasks

facesim for (100 steps)
{21 for loops} (SPMD) manual task queue (SPMD) leaf tasks

ferret for (3500 queries)
{ pipeline } manual pipeline tbb::pipeline pfor

fluidanimate for (500 steps)
{ 1 for loop } SPMD tbb::task pfor

freqmine 7 for loops omp parallel for pfor

raytrace for (200 steps)
{ recursive rendering } manual task queue recursive tasks

streamcluster for (streaming)
{ 9 for loops } SPMD tbb::parallel_for

tbb::task
pfor

(SPMD) leaf tasks
swaptions 1 for loop SPMD tbb::parallel_for pfor

streamcluster, swaptions), pipeline model (tbb::pipeline) (bodytrack, ferret), or low-level tasking
interface (tbb::task) (streamcluster, fluidanimate). A summary of programming models in use is
shown in Table 7.1.

7.1.2 Task parallel programming models

In task parallel programming models, a task is a logical unit of concurrency which can be created
arbitrarily at any point in the program. These logical tasks are automatically mapped on available
processor cores at runtime by the runtime system (with a task scheduler as an essential component).
Because tasks can be created at arbitrary points, many typical parallel programming patterns such
as for loops and recursions can be built on top of tasks. With these automatic load balancing and
dynamic scheduling of tasks, programmers are relieved from many burdens, load imbalances and
runtime noises can be effectively handled. Thus, task parallel programming models are promising in
delivering both high performance and high productivity.

Many task parallel programming models exist. They have different concepts for scheduling,
load balancing; and they differ substantially in their designs and implementations. Therefore, it is
important to support multiple models in a benchmark suite intended for task parallelism. Our TP-
PARSEC currently supports five different task parallel programming models: (1) Cilk Plus [61] which
is a language extension of C/C++, providing two simple keywords for expressing task parallelism
(cilk_spawn and cilk_sync); (2) MassiveThreads [52] [51] which is a lightweight thread library,
and like Cilk Plus, uses work-first scheduling policy and random work stealing technique in its
task scheduler; (3) OpenMP [19] which is a widely-used framework for shared-memory parallel
programming (we use OpenMP Tasks which has been introduced from OpenMP 3.0); (4) Qthreads
[71] which is also a lightweight thread library, with a locality-aware scheduler; (5) TBB [57] which
is a commercial-level threading library equipped with a wide range of parallel programming patterns
and algorithms.

7.2 TP-PARSEC

Our TP-PARSEC is based on PARSEC 3.0, the latest version (as of October 2017). It is equivalent to
the PARSEC’s core package, excluding input datasets which can be downloaded separately from the

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 61

Table 7.2: Corresponding task parallel primitives in specific models

Cilk Plus OpenMP MassiveThreads Qthreads TBB
create_task cilk_spawn #pragma omp task myth_create() qthread_fork() tbb::task_group::run()
wait_tasks cilk_sync #pragma omp taskwait myth_join() qthread_readFF() tbb::task_group::wait()

PARSEC website.

7.2.1 A unified task parallel API

By defining a thin generic macro-based wrapper covering all five underlying models, we could simplify
our conversion. We just need to write the code once using the generic task parallel primitives, then the
program can be preprocessed automatically into supported underlying systems. The generic wrapper
is called “‘tpswitch“‘, and it is published in our MassiveThreads [2] repository (massivethreads/sr-
c/tpswitch/tpswitch.h). The wrapper includes two basic primitives: create_task for creating a task,
and wait_tasks for synchronizing tasks (of the innermost scope). These primitives are translated
to corresponding API of specific models (Table 7.2) during the preprocessing stage of the compila-
tion. create_task is translated to Cilk Plus’ cilk_spawn statement, MassiveThreads’ myth_create()
function, OpenMP’s “#pragma omp task” directive, Qthreads’ qthread_fork() function, and TBB’s
tbb::task_group::run() method. wait_tasks is translated to cilk_sync, myth_join(), “#pragma omp
taskwait”, qthread_readFF(), and tbb::task_group::wait() respectively.

Besides, we also introduce pfor (parallel for) primitive which divides the for loop’s iterations
recursively into two halves and creates two tasks executing them at each recursive level. pfor uses
the above create_task and wait_tasks primitives to spawn tasks. It also accepts an input grain
size value which indicates at what point the recursive division should stop and the leaf computation
should be executed on the current set of iterations. This grain size notion is similar to the chunk
size option in the “schedule” clause of OpenMP’s parallel for directive and the grain size parameter
in TBB’s tbb::parallel_for template. Additionally we have implemented pfor_reduce which is
similar to pfor but with an additional feature of reducing private values across all iterations. Its
notion is identical to that of OpenMP’s “reduction” clause and TBB’s tbb::parallel_reduce template.
In TP-PARSEC, only streamcluster benchmark uses this pfor_reduce primitive.

7.2.2 Task-parallelizing PARSEC

In this section, we describe the computation model of each benchmark, how it is implemented in
the original Pthreads, OpenMP, TBB versions, and how we translated it into task versions. We have
translated 11 out of 13 benchmarks excluding vips and x264 which have large code base because of
limited time. We assume the native input set (the largest one), when talking about specific numbers
of, e.g., elements, loop iterations, input images. We use N to denote the problem size, P to denote
the number of threads. The grain size (work granularity) of the SPMD model is N/P because SPMD
model divides data space into P equal parts for P threads to execute, each part contains N/P data
elements. A summary of programming models used in each benchmark is shown in Table 7.1. A
summary of the grain size set for each benchmark is shown in Table 7.3.

(1) Blackscholes

Blackscholes is a workload in computational finance, it calculates the prices of a portfolio with the
Black-Scholes partial differential equation. This benchmark has a simple programming model: there
is only one flat for loop iterating over ten million (107) options (which is repeated for 100 times).
Because loop iterations are independent from each other and load-balanced, blackscholes can easily
be loop-parallelized and it has actually been loop-parallelized with OpenMP’s parallel for directive

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 62

Table 7.3: Work granularity of each version of each benchmark

App Pthreads OpenMP TBB Task
blackscholes N/P def. def. 10000
bodytrack 4 − 32 1 − 32 def. 16
canneal N/P 100
dedup ø ø

facesim N/P N/P
ferret ø ø 1

fluidanimate N/P N/(P × 8) 1
freqmine def., 1 1
raytrace 32 8

streamcluster N/P N/P 50, N/P
swaptions N/P 1 1
(N/P: coarse-grained like SPMD; def.: default; ø: none)

and TBB’s parallel for template in its OpenMP and TBB versions. In Pthreads version, the loop
iterations are divided and distributed equally among participating threads (SPMD model). In task
versions, we do similarly by simply applying pfor in place of the parallel for primitives of OpenMP
or TBB, and the loop is hierarchically divided into fine-grained tasks, with grain size 10000. How
this grain size was chosen is discussed in Chapter 8.

(2) Bodytrack

Bodytrack is a computer vision workload which recognizes a human body and tracks its movement
through a sequence of images input from observation cameras. At each frame, multiple images from
multiple cameras capture a scene of a person from different angles, and the person moves from frame
to frame. Bodytrack regconizes poses of the human body in the input images, marks these poses and
returns annotated images. This benchmark represents the significance of computer vision algorithms
popularly used in areas like video surveillance, character animation, computer interfaces, etc.

At a time step (frame), the benchmark processes 4 input images through three stages: read images
in, process images, and write the processed images out. In the parallel implementations (Pthreads,
OpenMP, TBB), five for loops in the second stage are parallelized, other than that the program executes
sequentially stage after stage (read → process → write), and frame after frame. Pthreads version
employs a manual thread pool imlementation (WorkerGroup) which creates P worker threads and
makes them wait on a condition variable until there are jobs. The iterations of a parallel for loop are
not divided into exactly P parts for P threads, but into many more parts with finer-grained sizes: 8, 8,
8, 32, and 4 for each loop respectively. The worker threads compete with each other through a mutex
lock to acquire the next part to execute until all iterations are processed. Besides P threads created for
executing the loop, Pthreads version also deploys an additional separate thread specialized in doing
read stages. OpenMP and TBB versions use their parallel for primitives for all five loops. OpenMP
version does nothing more than that. But TBB version additionally employs a pipeline model on the
program’s three stages; the pipeline is created with two stages: the first one contains the program’s
read stage and two first loops of process stage, the second one contains the latter three loops and the
program’s write stage.

In our first implementation of task versions, we only parallelized the five for loops (with pfor) just
like the OpenMP version, without any pipeline. However, we then realized, by our performance tool,
that read and write stages are considerably long, and run sequentially in long serial intervals, making
other threads wait wastefully, hindering the scalability of the whole computation. Therefore, in order
to improve the performance we have changed the parallelization model a little bit by overlapping

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 63

computation (process stages) and communication (read and write stages) across three consecutive
frames (to retain stage dependencies). Although three stages in a frame are serially dependent, and
process stage is exclusive between frames, write stage of the current frame is independent from
process stage of the next frame, and two of them are independent from read stage of the next next
frame. Hence, it is possible to overlap process stage of frame t with write stage of frame t − 1 and
read stage of frame t + 1. In order to realize that we have made each stage a separate task and run the
three tasks process(t), write(t-1), and read(t+1) in parallel. By making this change we could reduce
serial intervals considerably. The performance improvement is discussed in the Chapter 8. Task
parallelism has enabled this computation-communication overlapping to be done easily.

(3) Canneal

Canneal is a kernel that optimizes the routing cost of a chip design. It uses a simulated annealing
algorithm. During execution it goes through 6000 temperature steps. At each temperature step, 15000
moves are made and tested. Each move picks a random element, exchanges its position, and evaluates
whether it is beneficial for the optimization goal. After all moves at a step are completed, the global
temperature for the simulated annealing is adjusted. The temperature steps need to be processed one
by one in order to incrementally adjust the global temperature. There is only Pthreads version for
canneal in PARSEC, no OpenMP and TBB implementations provided. Ptheads version divides 15000
moves equally for participating threads, whereas task versions divide them into fine-grained tasks,
each of which processes 100 moves. Since an element could potentially be modified by multiple tasks
at the same time, protection is necessary. A library that provides lock-free access is used. It uses data
race recovery instead of avoidance. This is kept the same in task versions.

(4) Dedup

Dedup is a kernel that compresses an input data stream. Pthreads version uses a manual pipeline
model implemented on top of threads in which each input data chunk is processed sequentially through
five stages:
fragment→ refine→ deduplication→ compress→ reorder
Different numbers of threads are deployed for each stage: 1 thread for fragment, n threads for refine,
n threads for deduplication, n threads for compress, and 1 thread for reorder (1→ n→ n→ n→ 1) (n
is the number of threads specified via the management script’s “-n” option). Fragment stages reading
data in and reorder stages writing data out are serially dependent. In task versions, we make each
chunk with its middle three stages as a task; the root task executes fragment stages serially: reads data
in and creates a task for each chunk to execute refine, deduplication, compress of that chunk; after
every 27 chunks, the root task synchronizes these 27 child tasks, then creates a task for executing
serially 27 reorder stages of these 27 chunks which have just been processed. This reorder child task
is run in parallel with the next 27 compute child tasks. The number 27 was chosen empirically based
on our experiments, it provides a good enough granularity for reorder tasks to be run in parallel with
other compute tasks.

(5) Facesim

Facesim computes a realistic animation of a human face by simulating a time sequence of muscle
activation. The important data structure is a statically partitioned mesh. Multiple processes are
applied to this mesh in every frame that is simulated: (1) applying Newton-Raphson method to solve
a nonlinear system of equations, (2) iterating over all tetrahedra of the mesh to calculate the force
contribution of each node (3) using the conjugate gradient algorithm to solve a linear equation system.

Pthreads version parallelized totally 21 loops in the program code; in the native input run, with
100 frames (time steps), these loops were invoked totally 61601 times. These loops generally applies

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 64

some kinds of operations on the whole mesh data structure, e.g., clearing array, copying array, array
addition. The mesh has been organized at the program’s beginning so that it is readily broken into
a fixed number of sub-meshes equal to the number of threads. That is why facesim can only run
with a power-of-2 number of threads. Pthreads version uses a manually implemented task queue
(TaskQ) in order to schedule work (tasks) onto threads. When one of the processing operations is
to be applied on the mesh, tasks are created to operate on every sub-mesh. The number of tasks
equals the number of sub-meshes and the number of threads. TaskQ’s scheduler simply assigns newly
created tasks to threads in a round-robin fashion which is less efficient than the work stealing method
usually deployed in a genuine task parallel programming model. TaskQ provides two main functions:
TaskQ.Add_Task() for adding a task to the queue, and TaskQ.Wait_For_Completion() for
synchronizing created tasks. We have translated facesim to task parallelism simply by replacing the
calls to TaskQ.Add_Task()with create_task, and the calls to TaskQ.Wait_For_Completion()
with wait_tasks. Tasks of the program are then scheduled by a genuine work stealing scheduler of
the supported models instead of TaskQ.

(6) Ferret

Ferret is a content-based similarity search tool of feature-rich data such as audios, videos, images; in
this benchmark it is configured as an image similarity search workload. It inputs 3500 query images
for each of which it finds (up to 50) similar images from an image database containing vectorized
data of 59695 images. Ferret is originally provided with two versions Pthreads and TBB. In these
versions, the benchmark is organized as a pipeline programming model processing 3500 input images
one by one. The pipeline consists of 6 stages:
load→ segment→ extract→ index→ rank→ output
Each image goes through these stages one by one. There is a difference in the number of threads used
in Pthreads and TBB versions. Pthreads version, like in dedup, deploys different numbers of threads
for stages: 1 for the first and last stages, n for other stages in the middle of the pipeline (1→ n→ n→
n→ n→ 1); whereas TBB version deploys exact n threads which are shared among all stages during
the program execution.

Task versions also deploy exact n threads. In task versions, we remove the pipeline and exploit
the data parallelism among a specific number (100) of input images. For every 100 input images, we
apply pfor to recursively create tasks processing them. In order to make images able to be processed
in parallel, it is necessary to resolve the exclusiveness of the output stage which modifies the global
data structure. We have detached it out of the tasks processing images, we do output stages of all
processed images serially at the end of the program. These outputs just write a small amount of texts
to file, so they actually run quickly and do not leave any noticeably long serial interval at the end of
the execution.

(7) Fluidanimate

Fluidanimate is a stencil computation which operates on a 3-dimension grid (mesh) through 500 steps,
the grid at each step is computed based on its state at the previous step. Pthreads version divides the
grid into a number of identical blocks which is equal to the number of threads, by splitting uniformly
along x-axis and z-axis (keeping y dimension the same). TBB version further divides a block into 8
sub-blocks by splitting further along the z-axis, and uses tbb::task interface to create tasks each of
which works on one sub-block. TBB version creates 8 times as many tasks as Pthreads version does.
In task versions, we still divide the grid into identical blocks along x-axis and z-axis like in Pthreads
version, but these blocks are now more fine-grained (grain size 1). One task works on one block. We
use pfor to create these tasks hierarchically rather than using a flat loop creating all tasks at once.
The benefit of this hierarchical division is that it enables closer tasks to be more likely executed by
the same thread, hence exploiting better locality.

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 65

(8) Freqmine

Freqmine is a program that detects frequent patterns in a transaction database and uses association
rule mining which is very common in data mining applications. Freqmine uses an array-based
version of the Frequent Pattern-growth method. In the original PARSEC, only OpenMP version is
provided, containing 7 parallel for loops. The algorithm in general consists of three steps. The first
one is to build the FP-tree header. In this step, the database is scanned and a table with frequency
information is built. It is implemented with 1 parallel loop. The second step performs another scan
of the database; it consists of 4 parallel loops. The third step is the actual data mining. Multiple
FP-trees are constructed from the existing tree using 2 parallel loops. In task versions, we just replace
OpenMP’s parallel for directives with pfor primitives. We set the grain size at 1 for all 7 pfor(s),
though in OpenMP version some loops were set with 1 and some were not set (the default is OpenMP
implementation-dependent, and usually the coarse-grained one: N/P).

(9) Raytrace

Raytrace is a well-known rendering algorithm, it synthesizes an image by simulating the camera, light
sources, objects, and tracing all light rays from every pixels in the image to determine if it can reach
back to any of the light sources. In this benchmark, 200 continuous frames are rendered, each has a
resolution of 1920 × 1080 pixels. Pthreads version exploits a manual task queue just like in facesim.
But it is another task queue implementation (MultiThreadedTaskQueue). Each task handles an area
of 32 × 32 pixels (or smaller) of the full image, so there are totally around 60 × 34 = 2040 tasks
created. Although the task queue implementation is quite complicated, participating threads basically
compete with each other through a mutex lock to acquire each avaialable task to execute. The threads
acquire lowest tasks to execute first, then proceed to higher tasks along x-axis, then y-axis.

In task versions, we create more finer-grained tasks. Each task now handles a smaller area of 8×8
pixels, hence there are 16 times as many as tasks created (around 240 × 135 = 32400 tasks) than it
is in Pthreads version. These leaf tasks are not created all at once, but recursively. At each recursive
stage, the 2-dimension frame (1920 × 1080) is split along the longer dimension until it reaches the
size of 8 × 8 pixels. Similarly to fluidanimate, it is more likely to achieve a better locality with this
recursive division.

In this benchmark, 200 frames were identical, but in real applications these frames can be
continuous pictures of the objects, camera, or light sources that move. Therefore, these frames are
serially dependent, and need to be processed sequentially, not in parallel.

(10) Streamcluster

Streamcluster is a kernel solving the clustering problem commonly seen in data mining workloads.
In this benchmark, there are totally 106 input points which are divided into 5 blocks, each of which
contains 2 × 105 points and is input to the program as simulated streaming data. A small subset of
points are selected as local centers for each block and these subsets are cumulated (up to 500 points)
after each block is processed. After finishing all blocks, these selected local centers are clustered again
in order to select a predefined smaller number of final centers (10−20 points). There are 9 parallel for
loops which operate on the array of 2× 105 points of a block. Pthreads version applies SPMD model,
dividing loop iterations into equal parts for available threads (each has N/P = 2 × 105 ÷ 36 ≈ 5556
iterations). TBB version applies tbb::parallel_for (and tbb::parallel_reduce) pattern to 4 loops (with
grain size N/P), and applies tbb::task interface to the other 5 loops. It creates exactly P tbb::task(s)
for P threads (so grain size N/P). Therefore, TBB version is basically using the SPMD model. In task
versions, we follow TBB version’s model, and apply pfor in place of tbb::parallel_for (pfor_reduce
in place of tbb::parallel_reduce), create_task in place of tbb::task. However, we set the grain size
for pfor(s) at a low value 50, in order to make fine-grained tasks.

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 66

(11) Swaptions

Swaptions computes the prices of a portfolio of swaptions using Monte Carlo (MC) simulation. Its
parallelization model is as simple as that of blackscholes, there is only one parallel for loop. Swaptions
is provided with Pthreads and TBB versions. Pthreads version applies SPMD model, dividing the
loop into equal parts for available threads (grain size N/P). TBB version applies its parallel for
pattern with grain size 1. In task versions, we applies pfor with also grain size 1. One note is that
swaptions code is currently not auto-vectorized by both gcc and icc, whereas blackscholes code is
auto-vectorized by icc (not gcc). There are three main reasons: (1) swaptions’ compute functions are
scattered in multiple source files, (2) the for loop has multiple exits, (3) its data arrays are not aligned
yet.

7.2.3 Performance analysis tool

TP-PARSEC is integrated with our performance analysis and visualization tool [30] [31] which is
specialized for task parallelism. The tool has two parts: a tracer and a visualizer. The tracer (DAG
Recorder) captures a directed acyclic graph (DAG) of tasks from an execution (of a task version), and
the visualizer (DAGViz) visualizes the trace to help users understand the performance and pinpoint
the bottlenecks. DAGViz enables users to explore the trace through multiple kinds of interactive
visualizations such as a network graph (DAG) which represents the logical task structure of the
program, timelines of threads, or a parallelism profile which is a time series of runnable and running
parallelism during the execution. Timelines and parallelism profile visualizations we show in this
paper are provided by DAGViz [31]. Parallelism profile allows users to get an overall understanding
of the performance, then DAG and timelines visualizations enable users to zoom into any spot of the
whole DAG of the execution and inspect in detail any task that caused the problem.

Moreover, the tool provides a novel task-centric statistical metric which helps users quickly acquire
a first impression on how well the program scales: the breakdown of the cumulative execution
time into four categories of work, delay, no-work-sched, and no-work-app (cumul. exe. time =
elapsed time × threads = work + delay + no-work-sched + no-work-app) based on scheduling delay,
which is described in our previous work [30]. Work is the total time that all threads spend executing
the program code. Delay is the time during which a thread is not executing the program code and
there is at least a ready task in the system that is waiting to be executed, a delay is caused by the
runtime scheduler for not matching up the free thread and the ready task fast enough. No-work
(= no-work-sched+ no-work-app) is also the time during which a thread is not executing the program
code, but there is no ready task in the system at that time to feed that thread. No-work is actually not
caused solely by the program’s algorithm for not creating enough parallelism, but sometimes caused
by the scheduler for, e.g., not resuming a critical parent task (that can spawn more parallelism for
idle threads) fast enough. So no-work-sched is that part of no-work caused by the scheduler, and
no-work-app is the other part caused by the insufficient parallelism in the program’s algorithm. Delay
can be considered as a measurement of scheduling overhead (e.g., task creation, synchronization,
work stealing). No-work-app can be considered as a measurement for the impact of serial regions
remaining in the parallel program’s code.

7.2.4 Improved central management script

The original PARSEC is equipped with a handy central management script (parsec/bin/parsecmgmt)
which allows users to do all things through it: from compiling, cleaning, to running the benchmarks
with different configurations, different inputs, different numbers of threads. We have extended
the script to parsecmgmt2 which does not only maintain all things that parsecmgmt can do, but
also supports new configurations for the newly added task parallel versions. The names of new
configurations follow existing PARSEC naming pattern: {compiler}-{type}-{extension}; compiler

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 67

can be “gcc” or “icc”, same as before; type is not only “pthreads”, “openmp”, “tbb”, same as before,
but also “task_cilkplus”, “task_mth”, “task_omp”, “task_qth”, “task_tbb” which are task versions
based on Cilk Plus, OpenMP, MassiveThreads, Qthreads, and TBB respectively; extension can be
none or “hooks”, same as before, and now additionally “dr” which indicates to compile and run with
DAG Recorder tracer. For example, re-compiling and running two benchmarks blackscholes and
bodytrack with icc, MassiveThreads, DAG Recorder, native input, and 36 threads can now be done
with only one command below:

1 tp−parsec/bin $./parsecmgmt2 −a uninstall build run
2 −p blackscholes bodytrack −c icc−task_mth−dr
3 −i native −n 36

7.3 Related Work

Barcelona OpenMP Tasks Suite (BOTS) [23] is a popular task parallel benchmark suite which consists
of 10 applications. Most of the applications are simple divide-and-conquer algorithms parallelized
only by OpenMP Tasks. They are not representative of realistic applications and do not supoprt other
task parallel programming models.

PARSECSs [17] ports 10 PARSEC benchmarks to the OmpSs model and its runtime system
(based on OpenMP 4.0 Tasks). PARSECSs achieved equivalent scalability improvements by using
OpenMP’s tasks and dataflow model. The implementation is limited to only one runtime system,
and the support for original versions has been removed from the suite (to attain reduction in lines
of code) which makes it less than a complete benchmark suite. This work is mainly a showcase to
demonstrate the advantages of task parallelism over SPMD, manual pipeline, or manual task queue;
it is not intended as a benchmark suite for general usage.

In [40] three of the PARSEC applications are ported to a pipeline task parallel model. They use
a novel extension of the Cilk language to express pipeline parallelism.

Various papers characterize PARSEC benchmarks and introduce optimizations over them. Opti-
mizations regarding NUMA and prefetching for three of the PARSEC benchmarks are introduced in
[45]. A scalability analysis considering input sizes of PARSEC benchmarks is given in [65]. Data
sharing patterns are examined in [8]. In [9] the benchmarks are evaluated using hardware perfor-
mance counters. A vectorized version of PARSEC is introduced in [16] and characterized using
hardware performance counters. The PARSEC paper [10] includes a hardware-centric analysis of the
benchmarks such as working set size, cache miss rates, shared data, cache traffic, and off-chip traffic,
but it is based on simulations, not real machines. We analyzed TP-PARSEC on a large multicore
machine with a built-in DAG-based performance tool which puts the focus on tasks and performance
differences between systems.

7.4 Conclusion

We have presented TP-PARSEC - a benchmark suite extended from PARSEC with supports for
multiple task parallel programming models and integrated with a powerful task-centric performance
analysis and visualization tool. TP-PARSEC maintains all good aspects of PARSEC: a large set
of emerging workloads in diverse areas, state-of-the-art techniques and algorithms in those areas,
good support for research with a central management script. TP-PARSEC is intended to be a useful
benchmark suite for task parallel programming model developers to study task parallel applications
and analyze performance differences between runtime task schedulers. TP-PARSEC is also useful for
system architects to study their systems with widespread task parallel programming models together
with emerging application workloads.

CHAPTER 7. TASK-PARALLELIZING PARSEC BENCHMARKS 68

Chapter 8

Evaluation

• C: GTK+ – Cairo – Gnuplot

• C++: Qt – QPainter – Qt Charts (QCustomPlot)

• Python: PyQt – Matplotlib

While GIMP and Inkscape are still based on GTK+, Wireshark has been ported away from GTK+
to Qt. VLC is another best example of using Qt. GTK+ was originally developed because Qt was a
close-source project at that time. GTK+ is too focused on GNOME desktop systems with little care
for other systems.

Qt has some advantages over GTK+ like:

• Qt is more cross-platform. Beside Windows, macOS, and Linux/Unix, Qt also supports
Android, iOS, Ubuntu Phone, WebOS, Symbian, Windows CE.

• GTK+ does not give native look-and-feel on macOS and Windows, while Qt tries to use native
OS API where possible.

• Qt has powerful supports for plotting (with native Qt Charts, QGraphicsView, or add-ons like
Qwt, QCustomPlot) and vector drawing (with native paint system of QPainter→QPaintEngine
→ QPaintDevice), while GTK+ does not have a good native plotting support (although GTK+
has good vector drawing based on the cairo library).

FLow Graph Designer [70].

8.1 BOTS

We have evaluated our tool with 10 benchmarks from Barcelona OpenMP Tasks Suite (BOTS) [22]
and 5 different task parallel runtime systems: Cilk Plus, MassiveThreads (0.97), OpenMP, Qthreads
(1.10), and TBB (2017 Update 1). MassiveThreads, Qthreads, and TBB were compiled from source
with Intel C++ Compiler (icc) 14; Cilk Plus and OpenMP were the implementations distributed with
the icc 14 package. The measurement overhead is feasible for 8 benchmarks (except Health and
UTS) in which execution times increase less than 10% with the measurement tool. Health and UTS
algorithms create too many fine-grained tasks, making the DAG huge, causing execution times to
increase up to 2-3x. The arguments passed to each benchmark are summarized in Table 8.1: task
stack size (for MassiveThreads and Qthreads), manual cut-off threshold (“-x”), input file (“-f”), and
problem size (“-n”). The experiment machine was a 2.30 GHz Xeon E5-2699 v3 (Haswell) server
with 36 cores (two 18-core sockets). We analyze the executions of each benchmark run by each
system using 36 workers (threads) on full 36 cores. Besides, each benchmark has one baseline

69

Table 8.1: BOTS benchmark arguments

App task stack cutoff other args
Alignment 220 - -f prot.100.aa
FFT 215 128 -n 224

Fib 215 manual -n 47 -x 19
Floorplan 217 manual -f input.20 -x 7
Health 214 manual -f medium.input -x 3
NQueens 214 manual -n 14 -x 7
Sort 215 manual -n 227 -a 512 -y 512
SparseLU 214 - -n 120 -m 40
Strassen 214 manual -n 4096 -x 7 -y 32
UTS 214 - -f tiny.input

version, which elides all task creations and synchronizations and runs serially on one thread. Note
that this is different from running a parallelized program on a single core, which still incurs some
task management overheads; our baseline is a serial program that has no such overhead.

work stretch
delay

no-work-sched
no-work-app

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

serial mth cilkplus tbb omp qth

p
e
rc

e
n
t

0.4%

13.6%

36.9%

40.5%

19.1%

33.5%

(a) SparseLU

 0

 2

 4

 6

 8

 10

 12

 14

serial mth cilkplus tbb omp qth

p
e
rc

e
n
t

0.0%

1.5%

5.8%

13.7%

6.2%

3.9%

(b) Alignment

 0

 20

 40

 60

 80

 100

 120

 140

 160

serial mth cilkplus tbb omp qth

p
e
rc

e
n
t

15.6%

91.1% 91.2%

116.1% 115.7%

140.2%

(c) FFT

Figure 8.1: SparseLU, Alignment, FFT: performance loss breakdowns of executions on 36 cores by
five systems MassiveThreads, Cilk Plus, TBB, OpenMP, and Qthreads. The serial work has been
subtracted from all bars. The percentage represents the proportion of the remaining surplus amounts
against the serial work. Although the serial version does not include task management overhead, but
it includes the overhead of our DAG-recording measurement. Serial version’s delay represents this
tracing overhead.

8.1.1 SparseLU

SparseLU performs the LU decomposition of a sparse matrix. With problem size of n = 120
which our experiment used, the benchmark consists of 120 phases each of which includes two
consecutive for loops. The loops are written such that each iteration creates a task. The first loop
can create up to 2 ∗ (n − 1) = 238 tasks (iterations), the second loop can create a large number of
(up to (n − 1)2 = 14161) tasks (iterations). Each task performs a leaf computation which does not
recursively spawn any further children. Hence, only the parent task can spawn more parallelism; the
computation’s available parallelism depends totally on the progress of the parent task’s loops.

Work-first schedulers like MassiveThreads and Cilk Plus which immediately switch to the new
child upon a task creation, leaving current parent back to ready queue, are disadvantageous in this kind
of parallelization patterns. At every loop iteration, the parent task is left back to queue to be stolen.

CHAPTER 8. EVALUATION 70

There is only one ready parallelism at a time which is the waiting parent task (the thin magenta line
above the red areas of Cilk Plus and MassiveThreads in Fig. 8.2). A free worker doing work-stealing
needs to pick the right victim among a large number of workers available in order to successfully
acquire the parent task, to resume the loop and spawn more parallelism. In parent-first schedulers
like TBB, OpenMP, and Qthreads, the parent task (and its loop) is kept executing continuously on
one worker without interruption; so ready parallelism increases fast and abundantly (blue areas of
OpenMP, Qthreads, and TBB in Fig. 8.2, truncated in the figure as it does not fit otherwise). However,
these ready tasks are residing solely on one worker (the one that is executing the parent task). A free
worker doing work-stealing still needs to pick the right victim among others in order to get a task to
execute.

Regardless of work-first or parent-first, after finishing a task, a worker performing a work-stealing
operation needs to find the sole worker who holds the ready parallelism(s) (i.e., either the single
parent task or all the spawned children) in order to get a new task. Unlike a recursive algorithm
in which ready tasks are scattered among multiple workers, in SparseLU, only one worker holds all
available ready tasks, and a free worker needs to pick the right one among many possible victims
to steal work successfully. The intervals of a worker doing work-stealing are represented by white
spaces between task boxes on the timeline of that worker in Fig. 8.2. Dense timelines with small white
spaces imply fast work-stealing speed, while sparse timelines with many large white spaces imply
slow work-stealing speed. Looking at Fig. 8.2, we can understand that Cilk Plus and TBB have slow
work-stealing performance, resulting in sparse timelines. MassiveThreads, which implements work-
first policy, nevertheless has dense timelines due to its fast work-stealing implementation. OpenMP
also has impressively dense timelines, implying its fast work-stealing.

Those white-space delays incurred when workers switch from a task to another are accounted
into the delay and no-work-sched components in the performance loss breakdown (Fig. 8.1a). Larger
sums of delay and no-work-sched of Cilk Plus and TBB compared with MassiveThreads and OpenMP
represent their slower task stealing speed. Cilk Plus has large no-work-sched because during white
intervals there is only one ready parallelism which is the parent task, causing no-works on many free
workers. TBB has a large delay because an abundant number of ready tasks have been created on a
worker, waiting for being stolen and executed. The difference between MassiveThreads’ delay and
Cilk Plus’ delay represents how much longer delays Cilk Plus scheduler imposes between iterations
of the loops compared with MassiveThreads. We have made a microbenchmark for comparing work-
stealing speeds of the systems (Fig. 8.3). The benchmark was run with only two workers, the parent
was executed on one worker, and the only created child was stolen and executed on the other worker.
The benchmark measures times from the task creation to the child’s start and to the parent’s resume.
The result shows that Cilk Plus has significantly large work-stealing overhead (more than double other
systems). Although this microbenchmark shows that TBB has equivalent work-stealing speed with
MassiveThreads and OpenMP, in the real execution environment TBB may suffer from other factors
such as larger numbers of available workers, more contentions on the worker holding tasks.

Qthreads has one special characteristic in its scheduling policies. It does not make child tasks
available for other workers to steal immediately when they are spawned, but deliberately delays them
until a later time, e.g., when the current worker enters a synchronization primitive. In the case
of SparseLU’s loop parallelism, it is until a task-generating loop finishes and the worker enters a
WaitTasks following the loop. This policy has caused an outstandingly large delay component in the
performance loss breakdown (Fig. 8.1a), and a noticeably large white space in timelines (Fig. 8.2).
For a task-generating loop like this, Qthreads accumulates tasks and schedules them collectively at
once; it tends to assign tasks from consecutive iterations to one worker. This behavior is shown
clearly by DAG visualizations in Fig. 8.4 (colors denote workers; only the first loops are shown;
loop iterations are tiny, nearly invisible, nodes on the spine). While TBB and OpenMP migrate
children one by one to random workers (indicated by random colors along the horizontal axis) due
to the random work-stealing, Qthreads have children from consecutive iterations executed by the

CHAPTER 8. EVALUATION 71

same worker (indicated by boxes of the same color next to each other). Maybe because of this task
grouping, Qthreads could achieve a very good locality; it executed work quickly and kept work stretch
prominently low compared with other systems (short task nodes in Fig. 8.4c and low red part in
Fig. 8.1a), well compensating for its large deliberate delay.

CHAPTER 8. EVALUATION 72

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

Cilk Plus

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

MassiveThreads

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

OpenMP

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

Qthreads

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

TBB

Figure 8.2: Timelines and parallelism profiles of SparseLU benchmark run by 5 systems. In each
figure, the lower half is timelines and the upper half is parallelism profile (running parallelism in
red color, and ready parallelism in other colors). For viewability, only the first loop and a part of
the second loop in the first phase (among 120 phases) are included in x-axis; and y-axes of TBB,
OpenMP, and Qthreads are truncated at top because their ready parallelisms get too high.CHAPTER 8. EVALUATION 73

� �
1 volatile int parent_to_child;
2 volatile int child_to_parent;
3

4 void child() {
5 tc :
6 child_to_parent = 1;
7 while (parent_to_child == -1) {}
8 }
9

10 void parent() {
11 parent_to_child = -1;
12 child_to_parent = -1;
13 t0 :
14 CreateTask(child());
15 tp :
16 parent_to_child = 1;
17 while (child_to_parent == -1) {}
18 WaitTasks;
19 }
20

21 void main() {
22 for (i = 0; i < 100000; i++)
23 parent();
24 }� �

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

cilkplus mth omp tbb

cl
o
ck

s

child
parent

Figure 8.3: A microbenchmark for testing work-stealing speed of the systems: child is the time from
t0 to tc, parent is the time from t0 to tp. The benchmark is run with only two workers. Qthreads does
not run with this benchmark because it delays the child’s execution until WaitTasks.

CHAPTER 8. EVALUATION 74

(a) TBB: slower progress than OpenMP, many tasks get long.

(b) OpenMP: faster progress than TBB, task sizes are more uniform.

(c) Qthreads: all children are delayed, then assigned in groups of consecutive tasks to other workers.

Figure 8.4: DAG with timing on y-axis of the first loop of SparseLU. TBB and OpenMP implement
the typical principles of work stealing: LIFO (last in first out) local task execution, and FIFO (first
in first out) remote task stealing, a created task is made available for stealing asap; whereas Qthreads
delays children until a later time when it can group and assign collectively multiple consecutive tasks
to each worker. Despite wasteful delays on free workers, Qthreads tends to have less work stretch
owing to possibly better task localities.

8.1.2 Alignment

Alignment benchmark aligns n = 100 protein sequences against each other. Every alignment of a
pair of sequences is scored and the scores of all n × (n − 1) ÷ 2 = 4950 alignments are returned. The
benchmark’s parallelization model is simple; it consists of only one for loop of 4950 iterations each
of which creates a serial child which computes an alignment and does not spawn any more child.
There is a degree of load imbalance in the children: some are short, but some are very long. However,
because the number of tasks is abundant, there should not be any issue of insufficient parallelism in
the program.

Alignment has the same parallelization model as SparseLU does: loops create one task in each
iteration. But because Alignment has only one loop (compared with SparseLU’s 2 × n = 240),
and many children are long (i.e., less frequent task switches), the inefficiencies which happened in
SparseLU such as slow work-stealing (Cilk Plus and TBB), large initial delay (Qthreads) have been
compensated, and become insignificant in Alignment. Performance loss breakdowns in Fig. 8.1b
show that delay and no-work-sched are small for MassiveThreads, Cilk Plus, TBB, and Qthreads.

However, OpenMP does have a significantly large no-work-sched. Timelines visualization in

CHAPTER 8. EVALUATION 75

Fig. 8.5a has revealed that there was a noticeable period of white area in the middle of the timelines.
A closer zoom into this spot on the DAG visualization is shown in Fig. 8.5b, in which the y-axis
denotes the exact timings of nodes based on their start and end times. All tiny nodes on the spine of
the DAG are loop iterations each of which spawns a child task to the left edge, and continues to the
next iteration to the right edge. The orange worker to which the parent task is tied executes all these
iteration nodes. However, unlike TBB and Qthreads, the worker does not keep executing the whole
loop continuously until it finishes, but usually suspends the parent task in the middle, to switch to the
immediately created child, after which it gets back to the parent task. This behavior is represented by
some orange nodes occasionally scattered closely to the spine. The reason of this situation is because
OpenMP limits the number of ready tasks in the queue. When the limit is reached, OpenMP tends
to suspend current task, pick and execute a child from the queue, and get back to the suspended task
after finishing the child.

The problem here is that the tied orange worker happened to execute a long child in the middle
of the computation (long orange node at center of the graph in Fig. 8.5b, and dimmed long node in
the middle of the timelines in Fig. 8.5a). While the worker was busy running that long task, other
workers finished their work and waited in idle because there was no more available tasks to steal.
The parent task which was the only one who could spawn more parallelisms to feed free workers was
unfortunately tied to the busy worker, unable to be stolen and migrated to another worker.

The problem was caused by an intricated combination of the following four factors; two residing
in OpenMP: (1) tasks are tied, (2) a task queue has an upper bound in size; and two in the Alignment:
(3) loop parallelism, (4) unbalanced load among iterations. TBB also has the condition (1) of tied
tasks, but it does not have the condition (2), so it did not suffer from this problem. Parallelism profiles
of TBB and OpenMP are placed side by side in Fig. 8.6 and zoomed out to cover all the height of
ready parallelism of TBB so that we can see that TBB’s ready parallelism reaches its peak at around
5000 soon after the execution started, whereas OpenMP’s ready parallelism always stops increasing
and drops when it approaches near 300. SparseLU also has condition (3) of loop parallelism, but
it does not have the condition (4); children in SparseLU are quite balanced. Therefore, OpenMP
running SparseLU did not encounter this problem.

One more noticeable point from the performance loss breakdowns in Fig. 8.1b is that the no-
work-app of Qthreads was large, larger than that of other systems. A closer look into the end of
the timelines and parallelism profiles of Qthreads has revealed the reason. It was simply because
Qthreads happened to execute long children late near the end of the computation when there was
almost no work left, causing many no-works on many workers (large white-space area across multiple
timelines), which were accounted into its no-work-app.

CHAPTER 8. EVALUATION 76

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

(a) Timelines and parallelism profile: a large significant white space happens at the middle of the computation.

(b) DAG: a long child happens to be executed by the worker to which the master task is tied. That long work prevents the
worker from resuming the master task, so no more parallelism is created while other workers are starving for work.

Figure 8.5: Alignment by OpenMP suffers from an issue caused by OpenMP’s upper-bound task
queue, and Alignment’s unbalanced iterations.

CHAPTER 8. EVALUATION 77

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

OpenMP time

∼300

Worker 0Worker 1Worker 2Worker 3Worker 4Worker 5Worker 6Worker 7Worker 8Worker 9Worker 10Worker 11Worker 12Worker 13Worker 14Worker 15Worker 16Worker 17Worker 18Worker 19Worker 20Worker 21Worker 22Worker 23Worker 24Worker 25Worker 26Worker 27Worker 28Worker 29Worker 30Worker 31Worker 32Worker 33Worker 34Worker 35

TBB time

∼5000

Figure 8.6: Parallelism profiles of Alignment run by TBB (left) and OpenMP (right): TBB creates all
child tasks at once continuously (up to 5000 tasks at peak), whereas OpenMP suspends task creations
whenever the number of ready tasks floats near 300.

8.1.3 FFT

FFT benchmark computes the one-dimensional Fast Fourier Transform of a vector of n = 224 complex
values in a divide-and-conquer fashion. FFT creates recursively fine-grained tasks to divide the input
n = 224 elements into leaf tasks handling n < 128 elements each. Fig. 8.1c shows that OpenMP
and Qthreads have significantly larger delays compared with other systems. A closer look into
their timelines, parallelism profiles, and DAG visualizations have revealed that these inefficiencies
originated from different, unique characteristics in their scheduling policies.

OpenMP’s timelines (Fig. 8.7a) become sparser by many scattered white spaces at the end of a
recursive phase. By zooming into some spots of the DAG according to those white spaces, we have
observed an interesting inefficiency of OpenMP scheduler. One of the spot is shown in Fig. 8.7b in
which the left and the right subfigures show the same spot just with different scales, power scale on
the left for better viewability of the task structure, and linear scale on the right for displaying exact
timing of task execution order. The sub-graph in Fig. 8.7b was started and also finished by the blue
worker which did not execute any other sub-graph during the span of this one. After finishing the
task 3, the blue worker quickly stole and executed the task 4 from the tan worker. However, the blue
worker stayed idle after finishing that task 4 for a long time without stealing any work to do, just
waiting in idle for the tan worker to finish the long task 1. After the tan worker finished it, the blue
worker almost immediately resumed the parent task. Moreover, after finishing this sub-graph, the

CHAPTER 8. EVALUATION 78

blue worker immediately stole and executed a task from another part of the DAG. This is to say that
OpenMP deliberately restrains workers from stealing work and makes them wait in idle until they can
resume and finish their current tied tasks.

Our inspection revealed a similar pattern arises in many places of the OpenMP’s DAG. We
presume the factor causing this issue is OpenMP’s stack-overflow prevention. In order to avoid
stack-overflow, OpenMP prevents workers from stealing a new task on a distant sub-graph from an
arbitrary worker; it only allows a worker to steal tasks from the sub-graph that has originated from
the worker itself, like the case of task 4, which was spawned from a sub-graph originating from the
blue worker and now stolen and migrated back to the blue worker. After finishing this sub-graph, the
stack of the blue worker was released a certain amount of space, allowing it to steal a new distinct
task on an arbitrary sub-graph from any worker. Fig. 8.8 shows three more spots which represent the
same pattern pervasively happening on the DAG of OpenMP. These sparse areas only appeared near
the end of a recursive phase when the stacks had grown full. At the beginning of a recursive phase,
timelines were always dense.

From timelines of Qthreads (Fig. 8.9a), we can see that there were many intervals during which
very few tasks were running and many workers were idle, despite the abundance of ready tasks
(the high blue area). These low running parallelism intervals have made up large delay and large
no-work-sched components for Qthreads. Fig. 8.9b and Fig. 8.9c zoom into two spots of the DAG
visualization according to two of the suspicious white-space intervals on the timelines. The problem
here is the same as what happened with the SparseLU benchmark: scheduling of children is delayed
until their parent task enters a synchronization primitive. In FFT’s binary recursive call tree, the
second recursive call was serialized as a normal function call instead of spawning a task. This made
the worker who was executing the parent function call get into the execution of the second recursive
call before it could reach the synchronization primitive, causing the scheduling of previously spawned
children to be delayed longer, and other workers to wait longer (while there were definitely ready
tasks).

CHAPTER 8. EVALUATION 79

running

end
create

create cont.
wait cont.

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

(a) Timelines (lower half) and parallelism profile (upper half): task density tends to become sparser at the end of a recursive
computation phase.

blue worker

tan worker

1
2

3

4
5

(b) A spot on the DAG (power scale on the left for better viewability, and linear scale on the right with y-axis denoting
exact timing) which corresponds to one white space on the timeline of the blue worker. The blue worker stalled, avoided
work-stealing, and just waited in idle for the tan worker to finish a long task; then after tan worker finished, it immediately
resumed its current tied parent task.

Figure 8.7: FFT by OpenMP: timelines, parallelism profile, and a zoomed-in spot according to one
of the white space on the timelines.

CHAPTER 8. EVALUATION 80

(a) One child stolen (power scale on the left for better viewability, and linear scale on the right with exact
timing on y-axis)

(b) Two children stolen (power scale on the left for better viewability, and linear scale on the right with exact timing on
y-axis)

(c) Three children stolen (power scale on the left for better viewability, and linear scale on the right with exact timing on
y-axis)

Figure 8.8: Delay examples of FFT by OpenMP: a worker executing a parent task waits idly (without
doing work-stealing) for each of one, two, or three children, which have been stolen, to be finished
before resuming the parent and synchronizing each of them. These delay patterns occur pervasively
on DAG.

CHAPTER 8. EVALUATION 81

running

end
create

create cont.
wait cont.

(a) Timelines (lower half) and parallelism profile (upper half): there are awkward intervals of few running workers (low
red area) despite many available ready tasks (high blue area).

(b) Four recursive tasks are delayed while the worker gets into the execution of the last leaf one (power scale on the left,
and linear scale on the right)

(c) Twelve recursive tasks are delayed while the worker gets into the execution of the last leaf one (power scale on the left,
and linear scale on the right)

Figure 8.9: FFT by Qthreads: delayed scheduling of ready children has made workers idle wastefully.
The situation has been made worse by FFT’s binary recursive call tree which serialized the second
recursive call instead of creating a task, this has delayed the worker more until it can reach the
synchronization primitive. Figures 8.9b and 8.9c are two example spots.

CHAPTER 8. EVALUATION 82

8.1.4 Other benchmarks

In other benchmarks (Fibonacci, Floorplan, NQueens, Sort, and Strassen in Fig. 8.15), OpenMP has
large delays in Fibonacci, Floorplan, and Sort, which are recursive algorithms with fine-grained grain
sizes, due to the same reason as in FFT. OpenMP has workers avoid performing work-stealing at
deep recursions in order to prevent stack-overflow, hence causing larger delays than other systems.
Floorplan, Sort, and Strassen incur almost equivalent no-work-app across all systems, indicating
an insufficient parallelism issue inside the applications. The visualizations revealed that Floorplan
has long serial sections at the end of the computation, Sort lacks parallelism in its later half of the
computation, Strassen has long serial sections at both the start and the end of its computation.

work
delay

no-work-sched
no-work-app

work stretch
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of mth (i, tbbmalloc)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

serial 1 8 16 24 28 32 36

p
e
rc

e
n
t

cores

comet fib no_work loss breakdown of mth (i, tbbmalloc)

Figure 8.10: Fib: performance loss breakdown of 36-core executions run by MassiveThreads, Cilk
Plus, TBB, OpenMP, and Qthreads.

work
delay

no-work-sched
no-work-app

work stretch
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of mth (i, tbbmalloc)

-1

 0

 1

 2

 3

 4

 5

 6

 7

serial 1 8 16 24 28 32 36

p
e
rc

e
n
t

cores

comet floorplan no_work loss breakdown of mth (i, tbbmalloc)

Figure 8.11: Floorplan: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads.

CHAPTER 8. EVALUATION 83

work
delay

no-work-sched
no-work-app

work stretch
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of mth (i, tbbmalloc)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

serial 1 8 16 24 28 32 36

p
e
rc

e
n
t

cores

comet nqueens no_work loss breakdown of mth (i, tbbmalloc)

Figure 8.12: NQueens: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads.

work
delay

no-work-sched
no-work-app

work stretch
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of mth (i, tbbmalloc)

 0

 100

 200

 300

 400

 500

 600

serial 1 8 16 24 28 32 36

p
e
rc

e
n
t

cores

comet sort no_work loss breakdown of mth (i, tbbmalloc)

Figure 8.13: Sort: performance loss breakdown of 36-core executions run by MassiveThreads, Cilk
Plus, TBB, OpenMP, and Qthreads.

work
delay

no-work-sched
no-work-app

work stretch
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of mth (i, tbbmalloc)

 0

 10

 20

 30

 40

 50

 60

serial 1 8 16 24 28 32 36

p
e
rc

e
n
t

cores

comet strassen no_work loss breakdown of mth (i, tbbmalloc)

Figure 8.14: Strassen: performance loss breakdown of 36-core executions run by MassiveThreads,
Cilk Plus, TBB, OpenMP, and Qthreads.

CHAPTER 8. EVALUATION 84

work stretch
delay

no-work-sched
no-work-app

-10

 0

 10

 20

 30

 40

 50

 60

serial mth clkp tbb omp qth serial mth clkp tbb omp qth serial mth clkp tbb omp qth

p
e
rc

e
n
t

2.6%
-0.6%

47.8%

7.9%

50.4%

7.3%

0.5%

6.4%
10.7%

34.4%

15.1%
19.0%

0.1%
3.4%

6.4%

18.8%

-0.1%
3.6%

NQueensFloorplanFib

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

serial mth clkp tbb omp qth serial mth clkp tbb omp qth

p
e
rc

e
n
t

35.5%

333.9%
344.0%

376.1%
362.5%

417.7%

0.6%

55.4%

79.1%
101.5%

62.0% 60.5%

StrassenSort

Figure 8.15: Fib, Floorplan, NQueens, Sort, Strassen: performance loss breakdowns of executions
on 36 cores by MassiveThreads, Cilk Plus, TBB, OpenMP, and Qthreads.

8.2 TP-PARSEC

We have evaluated TP-PARSEC on a 36-core dual-socket Haswell system equipped with two Intel
Xeon E5-2699 v3 2.30 GHz. It has 768 GB of memory and runs Ubuntu 16.04.2 with kernel version
4.40-64. We use Intel C++ Compiler (icc) 17.0.1, MassiveThreads 0.97, Qthreads 1.11, TBB (2017
Update 1) in this evaluation. We measure times of only the region of interest (ROI) in each benchmark,
excluding the uninteresting initialization and finalization at the beginning and the end of each one.
These regions of interest which are the actual parallelized parts of each benchmark are predefined in
PARSEC. All benchmarks are executed using the largest input set (native), partly in order to avoid
chances of bottlenecks caused by the lack of work which usually happen when running on a large
number of cores. The speedup results of 11 benchmarks with all original versions and task versions
are shown in Fig. 8.16. In general, the task versions perform equivalently and sometimes better than
the original versions.

We have adjusted actual threads used in dedup and ferret. With the input number of threads n,

CHAPTER 8. EVALUATION 85

dedup and ferret actually deploy n threads for each of their pipeline stages (except first and last ones,
dedup: 1→ n→ n→ n→ 1, ferret: 1→ n→ n→ n→ n→ 1). In their speedup figures (Fig. 8.16d,
Fig. 8.16f), we have adjusted their thread counts to the actual number of threads created, i.e., 3× n+2
for dedup, and 4 × n + 2 for ferret. Following we discuss some of the performance details we have
observed in the benchmarks.

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet blackscholes speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(a) blackscholes

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36
sp

e
e
d
u
p

cores

comet bodytrack speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(b) bodytrack

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet canneal speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(c) canneal

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 5 8 14 16 20 24 26 28 32 3536

sp
e
e
d
u
p

cores

comet dedup speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(d) dedup

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 32 64

sp
e
e
d
u
p

cores

comet facesim speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(e) facesim

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 6 8 14 16 22 24 28 30 32 34 36

sp
e
e
d
u
p

cores

comet ferret speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(f) ferret

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet fluidanimate speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(g) fluidanimate

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet freqmine speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
openmp

(h) freqmine

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet raytrace speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(i) raytrace

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet streamcluster speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(j) streamcluster

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet swaptions speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(k) swaptions

Figure 8.16: Speedups of all versions of all benchmarks in TP-PARSEC

CHAPTER 8. EVALUATION 86

8.2.1 Setting a good grain size with the delay metric (blackscholes)

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_omp (icc, input=native)

work
delay

no-work-sched
no-work-app

(a) grain size = 40

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_omp (icc, input=native)

work
delay

no-work-sched
no-work-app

(b) grain size = 10000

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_omp (icc, input=native)

work
delay

no-work-sched
no-work-app

(c) grain size = 277778

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet blackscholes speedup (icc, input=native)

task_omp 40
task_omp 277,778

task_omp 10,000

pthreads
openmp

tbb

(d) with multiple grain sizes

Figure 8.17: Blackscholes: task_omp’s breakdowns and speedups with multiple grain sizes

One pitfall of task parallel programming models is that creating too many fine-grained tasks will incur
a very large overhead. When first translating blackscholes, we were not very aware of the number
of iterations of the loop and workload of each iteration, we set the grain size of pfor at a random
value 40. It turned out 40 was too tiny for blackscholes, causing the benchmark to perform poorly.
At first we had no clue to explain this bad speedup, then the cumulative execution time breakdown
produced by the performance tool (Fig. 8.17a) revealed the reason: a huge delay incurred in task
versions (we show the results of task_omp because it has the largest delay, other systems incur around
a half of it). We right away noticed about the grain size and tried to adjust it to a better value. We
first changed it to the same value as in Pthreads version’s SPMD model: 277778 (= ⌈107

36 ⌉) which was
iterations divided by the number of threads (N/P). Fig. 8.17c shows the breakdown with this grain
size; delay has reduced considerably; however, no-work-app has instead increased. Anticipating this
no-work-app increase is the result of coarse-grained tasks, we have decreased the grain size. After
trying with many values, we got the best at around 10000, whose breakdown was shown in Fig. 8.17b:
minimal delay, minimal no-work-app. Fig. 8.17d shows the speedups of original versions together
with task_omp version at three different grain sizes. This is a demonstration for the intense affect that
task granularity may have on the performance, and our performance tool, specifically the scheduling
delay metrics, helps effectively in signaling it.

8.2.2 Overlapping I/O and computation easily with tasks (bodytrack)

We first implemented task versions similarly to OpenMP version: no parallelism other than the five
parallel loops (ver. 1). The speedup results were similar to that of the original versions, at around
8x (Fig. 8.18c); the execution time breakdown had large no-work-app (Fig. 8.18a) due to long serial
execution intervals which can be observed in the timelines and parallelism profile visualizations in
Fig. 8.18d. Realizing the critical impact of serial read and write stages, we have tried to overlap
them with the computation (process stages), as described in the previous section (ver. 2). After
overlapping, the results are fantastic; speedups increase 2.5 times up to around 20x (Fig. 8.16b);
no-work-app reduces considerably (Fig. 8.18b); the overlapped read and write stages can even be seen
visibly in the timelines visualization (Fig. 8.18e).

CHAPTER 8. EVALUATION 87

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet bodytrack breakdown on 36 core(s) (icc, input=native)

work
delay

no-work-sched
no-work-app

(a) bodytrack ver. 1

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet bodytrack breakdown on 36 core(s) (icc, input=native)

work
delay

no-work-sched
no-work-app

(b) bodytrack ver. 2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet bodytrack speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(c) speedup of ver. 1 (∼8x) as opposed
to ver. 2 (∼20x) in Fig. 8.16b

running

end
create

create cont.
wait cont.

frame 1
load write

frame 2
load

frame 3
write load

time

timelines

parallelism
profile

(d) ver. 1: only more than 2 frames processed after the same interval

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6

load write

time

timelines

parallelism
profile

(e) ver. 2: more than 5 frames processed after the same interval

Figure 8.18: Bodytrack: ver. 2 improves substantially over ver. 1 by overlapping I/O tasks with
computation tasks

Dedup suffers from the same problem with large no-work-app (Fig. 8.19a), it does not scale above

CHAPTER 8. EVALUATION 88

5.5x even when executed on full 36 cores (Fig. 8.16d). Its timelines visualization in Fig. 8.19b shows
a very long serial interval at the end of its execution. An inspection into the code region according to
the task in that serial interval has revealed the responsible instruction: file-closing function close().
When a file descriptor is closed, its buffer in memory gets actually flushed to disk. Dedup modified a
very large buffer, so the flush takes long time. In this situation it can be said that dedup’s performance
is bound by disk’s bandwidth.

work
delay

no-work-sched
no-work-app

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_mth (icc, input=native)

(a) large no-work-app sabotages speedup

running

end
create

create cont.
wait cont.

the only task running

the only running parallelism

time

timelines

parallelism
profile

(b) a long task is noticeable on dedup’s timelines

Figure 8.19: Dedup has a long serial interval at the end of the execution due to file I/O (flushing
memory buffer to file).

Facesim is also having the same issue. Its timelines visualization in Fig. 8.20b shows a lot of
serial not-parallelized intervals remaining in its code. These serial codes are reason for facesim’s
poor speedup across all versions.

CHAPTER 8. EVALUATION 89

work
delay

no-work-sched
no-work-app

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 32

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_cilkplus (icc, input=native)

(a) large no-work-app sabotages speedup

running

end
create

create cont.
wait cont.

time

timelines

parallelism
profile

(b) many long serial intervals interleaving parallel sections in timeines of facesim

Figure 8.20: Facesim: a tiny head path of its full timelines (1.7% of the full length)

8.2.3 Adjusting actual threads used in dedup & ferret

With the input number of threads n, dedup and ferret actually deploy n threads for each of its pipeline
stages (except first and last ones); dedup: 1→ n→ n→ n→ 1; ferret: 1→ n→ n→ n→ n→ 1. In
their speedup figures (Fig. 8.16d, 8.16f), we have adjusted their thread counts to the actual number
of threads created, i.e., 3 × n + 2 for dedup, and 4 × n + 2 for ferret. The earlier (before adjustment)
speedup graphs are shown in Fig. 8.21.

CHAPTER 8. EVALUATION 90

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 4 6 8 1011 16 24 28 32 36

sp
e
e
d
u
p

cores

comet dedup speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(a) dedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 10 12 14 1617 24 28 32 36 44 52 60 68 72

sp
e
e
d
u
p

cores

comet ferret speedup (icc, input=native)

pthreads
task_mth

task_tbb
task_qth

task_omp
task_cilkplus

(b) ferret

Figure 8.21: Ferret’s original speedup, before fixing core counts of pthreads version.

8.2.4 Genuine task parallel schedulers are better than manual task queues (body-
track, facesim, raytrace)

Pthreads versions of bodytrack, facesim, and raytrace bundle manually implemented task queues
which basically pool a number of worker threads and assign any computation work dispatched from
the main thread to them. These manual task queues simply (1) make worker threads compete via a
mutex lock to get an available work (bodytrack’s WorkerGroup, raytrace’s MultiThreadedTaskQueue),
(2) or assign work to worker threads through a basic round-robin manner (facesim’s TaskQ). In task
versions, we have replaced these manual task queues with the specialized task schedulers in the
proper task parallel programming models. Therefore, these three benchmarks are direct showcases
for demonstrating the efficiency of task parallel programming models; in bodytrack, Qthreads and
MassiveThreads-based task versions perform better than the original versions (Fig. 8.18c); in facesim,
all task versions perform better than the original version (Fig. 8.16e); in raytrace, all task versions
except OpenMP perform better than the original version (Fig. 8.16i). A genuine task parallel runtime
system usually uses work stealing technique to balance work among workers. Each worker stores
ready tasks in a double-ended queue (deque) of which the local worker pushes and pops from one
end, and the remote workers try stealing from the other end, hence reducing thread contentions that
interfere computation progress. Recursive task creation in these task versions may also contribute
partly to the efficiency thanks to its possibly better locality.

8.2.5 Characterizing performance differences with the scheduling delay-based break-
down

In some benchmarks, task versions perform similarly, speedup differences are just around 10-20%
(e.g., dedup, bodytrack, fluidanimate). However, in some other benchmarks, task versions perform
very differently, e.g., 42% difference in raytrace, 56% difference in blackscholes, or up to 63%
difference in facesim. Especially in canneal, Qthreads performs (∼22%) better than TBB does until
24 cores, but from 28 cores, its speedup suddenly degrades, falling to ∼42% slower than TBB’s
(Fig. 8.16). Fig. 8.22 contrasts the differences between MassiveThreads vs. Cilk Plus in facesim,
and TBB vs. Qthreads in canneal. Cilk Plus incurs larger no-work-sched and no-work-app compared
with MassiveThreads most likely because of its slow work stealing speed which was pointed out in
SparseLU benchmark in [30]. Qthreads incurs much larger work (work stretch) compared with TBB,
which indicates a worsen locality of the computation execution. It is possibly because the locality-
aware Qthreads scheduler has misinterpreted something when executing on larger core counts in this
canneal benchmark.

CHAPTER 8. EVALUATION 91

work
delay

no-work-sched
no-work-app

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 32

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_mth (icc, input=native)

(a) facesim’s task_mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 32

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_cilkplus (icc, input=native)

(b) facesim’s task_cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_tbb (icc, input=native)

(c) canneal’s task_tbb

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_qth (icc, input=native)

(d) canneal’s task_qth

Figure 8.22: Performance variation between task versions in facesim and canneal

CHAPTER 8. EVALUATION 92

Chapter 9

Conclusion

We introduced a useful decomposition method with ready path analysis for dividing the cumulative
execution time into four components of work, delay, no-work-sched, and no-work-app. Work is
the useful computation executing the application code. Delay and no-work-sched are caused by the
scheduler, and no-work-app is caused by the application. Our implemented tool Delay Spotter helps
users zoom into any spots of interest which cause a component to be significant so that they can
pinpoint their root causes in the scheduling policy. We have successfully understood some interesting
inefficiencies caused by different scheduling policies of the runtime systems in BOTS benchmarks.

Cilk Plus and TBB suffer from slow work-stealing when there is only one worker holding all the
ready task(s), e.g., a parallel for loop which creates a task for each iteration.

Qthreads sometimes suffers from its delayed task scheduling approach which deliberately delays
the start of children until the parent synchronizes. This scheduling policy suffers in two situations: (1)
the parent is a long for loop creating a large number of children, all these children cannot start until
the parent finishes the task-generating loop (SparseLU); (2) binary recursions that, rightly, spawn
only the first recursive call as a task (FFT).

Carefully designed, OpenMP scheduler turned out to have performance ramifications in our
experiments. It imposes an upper bound for the ready task queue of a worker; a worker is discouraged
to create too many tasks ready on the queue. This approach hurts when there is only one parent
creating all available children, and the worker to which the parent is tied switches to a long child,
making the parent unable to be resumed. This is what was happening in the Alignment. Another
characteristic of OpenMP is the stack-overflow prevention. In order to avoid stack-overflow, at deep
recursions a worker restrains from stealing tasks from sub-graphs not originating from itself; instead it
tends to prioritize executing current tied sub-graph and stealing only from workers who are executing
a part of the same sub-graph. This is what we have observed in FFT.

93

Acknowledgement

本研究の一部は、文部科学省博士課程教育リーディングプログラム「東京大学ソーシャル ICT
グローバル・クリエイティブリーダー育成プログラム」の支援により行われました。

94

Publications

International:

• (under review) A. Huynh, C. Helm, S. Iwasaki, W. Endo, B. Namsraijav, K. Taura, “TP-
PARSEC: A Task Parallel PARSEC Benchmark Suite”, IEEE International Parallel and
Distributed Processing Symposium (IPDPS’ 18)

• A. Huynh, K. Taura, “Delay Spotter: A Tool for Spotting Scheduler-Caused Delays in
Task Parallel Runtime Systems”, IEEE International Conference on Cluster Computing
(CLUSTER’17)

• (poster) A. Huynh, K. Taura, “Critical Path Analysis for Characterizing Parallel Run-
time Systems”, ACM International Symposium on High-Performance Parallel and Distributed
Computing (HPDC’16)

• A. Huynh, D. Thain, M. Pericas, K. Taura, “DAGViz: A DAG Visualization Tool for Analyz-
ing Task-Parallel Program Traces”, International Workshop on Visual Performance Analysis,
held in conjunction with SC15 (VPA’15)

Domestic:

• (unrefereed) A. Huynh, K. Taura, “Critical Path Analysis for Characterizing Parallel Runtime
Systems”, Summer United Workshops on Parallel, Distributed and Cooperative Processing
(SWoPP’16)

• (unrefereed) A. Huynh, D. Thain, M. Pericas, K. Taura, “Analyzing Task Parallel Program
Traces based on DAG Visualization”, Summer United Workshops on Parallel, Distributed and
Cooperative Processing (SWoPP’15)

• (unrefereed) A. Huynh, J. Nakashima, K. Taura, “A Performance Analyzer for Task Parallel
Applications based on Execution Time Stretches”, Summer United Workshops on Parallel,
Distributed and Cooperative Processing (SWoPP’13)

• (poster) A. Huynh, J. Nakashima, K. Taura, “A Performance Analyzer for Task Parallel Ap-
plications based on Execution Time Stretches”, Symposium on Advanced Computing Systems
and Infrastructures (SACSIS’13)

95

Bibliography

[1] Intel cilk plus. https://www.cilkplus.org/.

[2] Massivethreads. https://github.com/massivethreads/massivethreads.

[3] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In
Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’00, pages 1–12. ACM, 2000.

[4] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tallent.
Hpctoolkit: Tools for performance analysis of optimized parallel programs http://hpctoolkit.org.
Concurr. Comput. : Pract. Exper., 22(6):685–701, April 2010.

[5] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’98, pages 119–129, New York, NY, USA, 1998. ACM.

[6] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Massaioli,
Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of openmp tasks. Parallel
and Distributed Systems, IEEE Transactions on, 20(3):404–418, 2009.

[7] Eduard Ayguade and et al. A proposal for task parallelism in openmp. In Barbara Chapman and
et al., editors, A Practical Programming Model for the Multi-Core Era, volume 4935 of Lecture
Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2008.

[8] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A communication characterisation
of splash-2 and parsec. In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 86–97. IEEE, 2009.

[9] Major Bhadauria, Vincent M Weaver, and Sally A McKee. Understanding parsec performance
on contemporary cmps. In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 98–107. IEEE, 2009.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: characterization and architectural implications. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, pages 72–81. ACM, 2008.

[11] Arif Bilgin. Graphviz - graph visualization software, 1988.

[12] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 356–368,
Nov 1994.

[13] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP
’95, pages 207–216, New York, NY, USA, 1995. ACM.

96

https://www.cilkplus.org/
https://github.com/massivethreads/massivethreads

[14] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720–748, September 1999.

[15] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a virtual tree of
processors. In Proceedings of the 1981 Conference on Functional Programming Languages and
Computer Architecture, FPCA ’81, pages 187–194, New York, NY, USA, 1981. ACM.

[16] Juan M Cebrian, Magnus Jahre, and Lasse Natvig. Parvec: vectorizing the parsec benchmark
suite. Computing, 97(11):1077–1100, 2015.

[17] Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús Labarta,
and Mateo Valero. Parsecss: Evaluating the impact of task parallelism in the parsec benchmark
suite. ACM Transactions on Architecture and Code Optimization (TACO), 12(4):41, 2016.

[18] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’05, pages 21–28, New York, NY, USA, 2005. ACM.

[19] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering, 5(1):46–55, 1998.

[20] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz. Cpu db:
Recording microprocessor history. Commun. ACM, 55(4):55–63, April 2012.

[21] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach-Temam.
Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-
parallel programs and run-time systems. In Proceedings of 7th Workshop on Programmability
Issues for Heterogeneous Multicores, MULTIPROG ’14, 2014.

[22] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.
Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task
Parallelism in OpenMP. In 2009 International Conference on Parallel Processing, pages 124–
131. IEEE, September 2009.

[23] Alejandro Duran González, Xavier Teruel, Roger Ferrer, Xavier Martorell Bofill, and Eduard
Ayguadé Parra. Barcelona openmp tasks suite: A set of benchmarks targeting the exploitation
of task parallelism in openmp. In 38th International Conference on Parallel Processing, pages
124–131, 2009.

[24] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation, PLDI ’98, pages 212–223, New York, NY, USA,
1998. ACM.

[25] Felix Garcia and Javier Fernandez. Posix thread libraries. Linux J., 2000(70es), February 2000.

[26] Robert H. Halstead, Jr. Implementation of multilisp: Lisp on a multiprocessor. In Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming, LFP ’84, pages 9–17, New
York, NY, USA, 1984. ACM.

[27] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, October 1985.

[28] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The cilkview scalability analyzer.
In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’10, pages 145–156, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 97

[29] S. Hunold, R. Hoffmann, and F. Suter. Jedule: A tool for visualizing schedules of parallel
applications. In Parallel Processing Workshops (ICPPW), 2010 39th International Conference
on, pages 169–178, Sept 2010.

[30] A. Huynh and K. Taura. Delay spotter: A tool for spotting scheduler-caused delays in task parallel
runtime systems. In 2017 IEEE International Conference on Cluster Computing (CLUSTER),
pages 114–125, Sept 2017.

[31] An Huynh, Douglas Thain, Miquel Pericàs, and Kenjiro Taura. DAGViz: A dag visualization
tool for analyzing task-parallel program traces. In Proceedings of the 2nd Workshop on Visual
Performance Analysis, VPA ’15, pages 3:1–3:8. ACM, 2015.

[32] Intel. Intel cilk plus homepage.

[33] Intel. Intel vtune amplifier, 2015. [Online; last accessed July 5, 2015].

[34] Intel. Intel(r) threading building blocks reference manual, 2015.

[35] Christian Iwainsky, Thomas Reichstein, Christopher Dahnken, Dieteran Mey, Christian Ter-
boven, Andrey Semin, and Christian Bischof. An approach to visualize remote socket traffic
on the intel nehalem-ex. In Euro-Par 2010 Parallel Processing Workshops, volume 6586 of
Lecture Notes in Computer Science, pages 523–530. Springer Berlin Heidelberg, 2011.

[36] Jacques Chassin De Kergommeaux, Benhur De Oliveira Stein, and Montbonnot Saint Martin.
Paje: An extensible environment for visualizing multi-threaded program executions. In Proc.
Euro-Par 2000, Springer-Verlag, LNCS, pages 133–144, 1900.

[37] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-t: A high-performance parallel lisp. In
Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and
Implementation, PLDI ’89, pages 81–90, New York, NY, USA, 1989. ACM.

[38] A.G. Landge, J.A. Levine, A. Bhatele, K.E. Isaacs, T. Gamblin, M. Schulz, S.H. Langer,
P.-T. Bremer, and V. Pascucci. Visualizing network traffic to understand the performance of
massively parallel simulations. Visualization and Computer Graphics, IEEE Transactions on,
18(12):2467–2476, Dec 2012.

[39] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Conference on Java
Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000. ACM.

[40] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha.
On-the-fly pipeline parallelism. ACM Trans. Parallel Comput., 2(3):17:1–17:42, September
2015.

[41] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel library. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 227–242, New York, NY, USA, 2009. ACM.

[42] Charles E. Leiserson. The Cilk++ concurrency platform. In Proceedings of the 46th Annual
Design Automation Conference DAC ’09. ACM Press, July 2009.

[43] Xu Liu and John Mellor-Crummey. A tool to analyze the performance of multithreaded programs
on numa architectures. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 259–272. ACM, 2014.

BIBLIOGRAPHY 98

[44] Germán Llort, Harald Servat, Juan González, Judit Giménez, and Jesús Labarta. On the useful-
ness of object tracking techniques in performance analysis. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pages
29:1–29:11, New York, NY, USA, 2013. ACM.

[45] Zoltan Majo and Thomas R Gross. (mis) understanding the numa memory system performance
of multithreaded workloads. In Workload Characterization (IISWC), 2013 IEEE International
Symposium on, pages 11–22. IEEE, 2013.

[46] Zoltan Majo and Thomas R. Gross. A library for portable and composable data locality
optimizations for numa systems. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, pages 227–238. ACM, 2015.

[47] E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy task creation: a technique for increasing
the granularity of parallel programs. IEEE Transactions on Parallel and Distributed Systems,
2(3):264–280, Jul 1991.

[48] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A technique for
increasing the granularity of parallel programs. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, LFP ’90, pages 185–197, New York, NY, USA, 1990.
ACM.

[49] Ananya Muddukrishna, Peter A. Jonsson, Artur Podobas, and Mats Brorsson. Grain graphs:
Openmp performance analysis made easy. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’16, pages 28:1–28:13. ACM, 2016.

[50] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach. Vampir: Visualization
and analysis of mpi resources. Supercomputer, 12:69–80, 1996.

[51] Jun Nakashima, Sho Nakatani, and Kenjiro Taura. Design and implementation of a customizable
work stealing scheduler. In Proceedings of the 3rd International Workshop on Runtime and
Operating Systems for Supercomputers - ROSS ’13. ACM Press, June 2013.

[52] Jun Nakashima and Kenjiro Taura. Massivethreads: A thread library for high productivity
languages. In Gul Agha, Atsushi Igarashi, Naoki Kobayashi, Hidehiko Masuhara, Satoshi
Matsuoka, Etsuya Shibayama, and Kenjiro Taura, editors, Concurrent Objects and Beyond:
Papers dedicated to Akinori Yonezawa on the Occasion of His 65th Birthday, pages 222–238,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[53] Bradford Nichols, Dick Buttlar, and Jacqueline Farrell. Pthreads programming: A POSIX
standard for better multiprocessing. " O’Reilly Media, Inc.", 1996.

[54] Stephen L. Olivier, Bronis R. de Supinski, Martin Schulz, and Jan F. Prins. Characterizing and
mitigating work time inflation in task parallel programs. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages
65:1–65:12. IEEE Computer Society Press, 2012.

[55] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F Prins.
Openmp task scheduling strategies for multicore numa systems. Int. J. High Perform. Comput.
Appl., 26(2):110–124, May 2012.

[56] OpenMP Architecture Review Board. OpenMP application program interface version 4.0, 2013.

[57] Chuck Pheatt. Intel(R) Threading Building Blocks. J. Comput. Sci. Coll., 23(4):298–298, April
2008.

BIBLIOGRAPHY 99

[58] Antoniu Pop and Albert Cohen. Openstream: Expressiveness and data-flow compilation of
openmp streaming programs. ACM Trans. Archit. Code Optim., 9(4):53:1–53:25, January 2013.

[59] Cairo Graphics Project. Cairo. http://cairographics.org/, 2016. [Online; last accessed
June 7, 2016].

[60] The GTK+ Project. Gtk+ 3. http://www.gtk.org/, 2016. [Online; last accessed June 7,
2016].

[61] Arch D. Robison. Composable parallel patterns with intel cilk plus. Computing in Science and
Engineering, 15(2):66–71, 2013.

[62] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiserson, and
Charles E. Leiserson. The cilkprof scalability profiler. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’15, pages 89–100, New
York, NY, USA, 2015. ACM.

[63] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J. High
Perform. Comput. Appl., 20(2):287–311, May 2006.

[64] B. Shneiderman. The eyes have it: a task by data type taxonomy for information visualizations.
In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages 336–343, Sep 1996.

[65] Gabriel Southern and Jose Renau. Analysis of parsec workload scalability. In Performance
Analysis of Systems and Software (ISPASS), 2016 IEEE International Symposium on, pages
133–142. IEEE, 2016.

[66] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hi-
erarchical system structures. Systems, Man and Cybernetics, IEEE Transactions on, 11(2):109–
125, 1981.

[67] Warut Suksompong, Charles E. Leiserson, and Tao B. Schardl. On the efficiency of localized
work stealing. Information Processing Letters, 116(2):100 – 106, 2016.

[68] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance measurement and
analysis of multithreaded applications. In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’09, pages 229–240. ACM, 2009.

[69] Kenjiro Taura and Jun Nakashima. A Comparative Study of Six Task Parallel Programming
Systems (in Japanese). In IPSJ SIG Technical Report HPC, volume 140(16), pages 1–10. IPSJ,
2013.

[70] Vasanth Tovinkere and Michael Voss. Flow graph designer: A tool for designing and analyzing
intel®threading building blocks flow graphs. In Proceedings of the 2014 43rd International
Conference on Parallel Processing Workshops, ICPPW ’14, pages 149–158, Washington, DC,
USA, 2014. IEEE Computer Society.

[71] Kyle B. Wheeler, Richard C. Murphy, and Douglas Thain. Qthreads: An API for programming
with millions of lightweight threads. In 2008 IEEE IPDPS, pages 1–8. IEEE, April 2008.

[72] Kyle B. Wheeler and Douglas Thain. Visualizing massively multithreaded applications with
ThreadScope. Concurrency and Computation: Practice and Experience, 22(1):45–67, January
2010.

[73] Jieting Wu, Jianping Zeng, Hongfeng Yu, and Joseph P. Kenny. Commgram: A new visual
analytics tool for large communication trace data. In Proceedings of the First Workshop on
Visual Performance Analysis, VPA ’14, pages 28–35, Piscataway, NJ, USA, 2014. IEEE Press.

BIBLIOGRAPHY 100

http://cairographics.org/
http://www.gtk.org/

[74] Omer Zaki, Ewing Lusk, and Deborah Swider. Toward scalable performance visualization with
jumpshot. High Performance Computing Applications, 13:277–288, 1999.

BIBLIOGRAPHY 101

Appendices

102

Appendix A

BOTS on Xeon E5-2699 v3

A.1 Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

alignment

fft fib floorplan
health

nqueens
sort sparselu

strassen
uts

u
ti

liz
a
ti

o
n

comet i utilizations at 36 core(s) (dr=0, tbbmalloc)

cilkplus
mth

omp
qth

tbb

(a) with DR=0

 0

 0.2

 0.4

 0.6

 0.8

 1

alignment

fft fib floorplan
health

nqueens
sort sparselu

strassen
uts

u
ti

liz
a
ti

o
n

comet i utilizations at 36 core(s) (dr=1, tbbmalloc)

cilkplus
mth

omp
qth

tbb

(b) with DR=1

Figure A.1: utilizations on 36 core(s)

103

A.2 Alignment

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet alignment speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet alignment: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.2: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet alignment no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet alignment no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet alignment no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet alignment no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet alignment no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet alignment no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet alignment no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet alignment no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.3: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 104

A.3 FFT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet fft speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fft: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.4: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fft no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fft no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 2e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fft no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fft no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fft no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fft no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 2e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fft no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fft no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.5: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 105

A.4 Fib

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet fib speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fib: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.6: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fib no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fib no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet fib no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fib no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.7: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 106

A.5 Floorplan

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet floorplan speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet floorplan: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.8: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet floorplan no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet floorplan no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet floorplan no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet floorplan no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.9: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 107

A.6 Health

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet health speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet health: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.10: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet health no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet health no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet health no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet health no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet health no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet health no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet health no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet health no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.11: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 108

A.7 NQueens

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet nqueens speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet nqueens: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.12: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet nqueens no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet nqueens no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet nqueens no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet nqueens no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.13: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 109

A.8 Sort

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 1

 2

 3

 4

 5

 6

 7

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet sort speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 1

 2

 3

 4

 5

 6

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 1

 2

 3

 4

 5

 6

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 1

 2

 3

 4

 5

 6

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 1

 2

 3

 4

 5

 6

 7

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sort: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.14: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sort no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sort no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sort no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sort no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.15: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 110

A.9 Sparselu

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet sparselu speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet sparselu: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.16: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sparselu no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sparselu no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet sparselu no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sparselu no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sparselu no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sparselu no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sparselu no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet sparselu no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.17: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 111

A.10 Strassen

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen elapsed times (i, tbbmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet strassen speedup (i, tbbmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen: DAG Recorder's overhead (i, cilkplus, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet strassen: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.18: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet strassen no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet strassen no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet strassen no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet strassen no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.19: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 112

A.11 UTS

 0

 2

 4

 6

 8

 10

 12

 14

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts elapsed times (i, tbbmalloc, dr=0)

serial mth omp qth tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet uts speedup (i, tbbmalloc, dr=0)

mth omp qth tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts: DAG Recorder's overhead (i, mth, tbbmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts: DAG Recorder's overhead (i, omp, tbbmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts: DAG Recorder's overhead (i, qth, tbbmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet uts: DAG Recorder's overhead (i, tbb, tbbmalloc)

dr=0 dr=1

(g) tbb

Figure A.20: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet uts no-work breakdown on 16 core(s) (i, tbbmalloc)

(a) on 16 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet uts no-work breakdown on 24 core(s) (i, tbbmalloc)

(b) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

serial mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

comet uts no-work breakdown on 36 core(s) (i, tbbmalloc)

(c) on 36 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

comet uts no-work breakdown of cilkplus (i, tbbmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet uts no-work breakdown of mth (i, tbbmalloc)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet uts no-work breakdown of omp (i, tbbmalloc)

(f) omp

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet uts no-work breakdown of qth (i, tbbmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet uts no-work breakdown of tbb (i, tbbmalloc)

(h) tbb

Figure A.21: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX A. BOTS ON XEON E5-2699 V3 113

Appendix B

BOTS on Xeon Phi 7250 (Knights
Landing)

B.1 Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

alignment

fft fib floorplan
health

nqueens
sort sparselu

strassen
uts

u
ti

liz
a
ti

o
n

denebola i utilizations at 68 core(s) (dr=0, (stdmalloc)

cilkplus
mth

omp
qth

tbb

(a) with DR=0

 0

 0.2

 0.4

 0.6

 0.8

 1

alignment

fft fib floorplan
nqueens

sort sparselu
strassen

strassen

u
ti

liz
a
ti

o
n

denebola i utilizations at 68 core(s) (dr=1, (stdmalloc)

cilkplus
mth

omp
qth

tbb

(b) with DR=1

Figure B.1: utilizations on 68 core(s)

114

B.2 Alignment

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola alignment speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola alignment: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.2: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola alignment no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola alignment no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola alignment no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola alignment no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola alignment no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola alignment no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola alignment no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola alignment no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.3: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 115

B.3 FFT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola fft speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fft: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.4: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fft no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fft no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fft no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fft no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fft no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fft no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fft no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fft no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.5: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 116

B.4 Fib

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola fib speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola fib: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.6: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fib no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fib no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola fib no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fib no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fib no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fib no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fib no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola fib no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.7: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 117

B.5 Floorplan

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola floorplan speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola floorplan: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.8: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola floorplan no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola floorplan no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola floorplan no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola floorplan no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola floorplan no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola floorplan no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola floorplan no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola floorplan no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.9: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 118

B.6 Health

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola health speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0

(f) qth

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola health: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.10: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial cilkplus mth omp tbb

cu
m

u
l.
 c

lo
ck

s

denebola health no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

-5e+10

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial cilkplus mth omp tbb

cu
m

u
l.
 c

lo
ck

s

denebola health no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

serial cilkplus mth omp

cu
m

u
l.
 c

lo
ck

s

denebola health no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

-5e+10

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola health no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola health no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola health no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola health no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola health no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.11: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 119

B.7 NQueens

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola nqueens speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola nqueens: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.12: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola nqueens no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola nqueens no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola nqueens no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola nqueens no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola nqueens no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola nqueens no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola nqueens no-work breakdown of qth (i, stdmalloc)

(g) qth

-2e+10

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola nqueens no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.13: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 120

B.8 Sort

 0

 2

 4

 6

 8

 10

 12

 14

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola sort speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sort: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.14: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sort no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sort no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sort no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sort no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sort no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sort no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sort no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sort no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.15: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 121

B.9 Sparselu

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola sparselu speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola sparselu: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.16: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sparselu no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sparselu no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola sparselu no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sparselu no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sparselu no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sparselu no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sparselu no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola sparselu no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.17: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 122

B.10 Strassen

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen elapsed times (i, stdmalloc, dr=0)

serial
cilkplus

mth
omp

qth
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola strassen speedup (i, stdmalloc, dr=0)

cilkplus
mth

omp
qth

tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0 dr=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0 dr=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 10

 20

 30

 40

 50

 60

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0 dr=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola strassen: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0 dr=1

(g) tbb

Figure B.18: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola strassen no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola strassen no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

serial cilkplus mth omp qth tbb

cu
m

u
l.
 c

lo
ck

s

denebola strassen no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola strassen no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola strassen no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola strassen no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola strassen no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial 1 8 16 20 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola strassen no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.19: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 123

B.11 UTS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts elapsed times (i, stdmalloc, dr=0)

serial mth omp qth tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 32 40 48 56 60 64 68

sp
e
e
d
u
p

cores

denebola uts speedup (i, stdmalloc, dr=0)

mth omp qth tbb

(b) speedups

 0

 0.2

 0.4

 0.6

 0.8

 1

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts: DAG Recorder's overhead (i, cilkplus, stdmalloc)

dr=0

(c) cilkplus

 0

 5

 10

 15

 20

 25

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts: DAG Recorder's overhead (i, mth, stdmalloc)

dr=0

(d) mth

 0

 10

 20

 30

 40

 50

 60

 70

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts: DAG Recorder's overhead (i, omp, stdmalloc)

dr=0 dr=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts: DAG Recorder's overhead (i, qth, stdmalloc)

dr=0

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 32 40 48 56 60 64 68

se
co

n
d
s

cores

denebola uts: DAG Recorder's overhead (i, tbb, stdmalloc)

dr=0

(g) tbb

Figure B.20: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial

cu
m

u
l.
 c

lo
ck

s

denebola uts no-work breakdown on 24 core(s) (i, stdmalloc)

(a) on 24 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial

cu
m

u
l.
 c

lo
ck

s

denebola uts no-work breakdown on 48 core(s) (i, stdmalloc)

(b) on 48 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial

cu
m

u
l.
 c

lo
ck

s

denebola uts no-work breakdown on 68 core(s) (i, stdmalloc)

(c) on 68 cores

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola uts no-work breakdown of cilkplus (i, stdmalloc)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola uts no-work breakdown of mth (i, stdmalloc)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

serial 1 8 16

cu
m

u
l.
 c

lo
ck

s

cores

denebola uts no-work breakdown of omp (i, stdmalloc)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola uts no-work breakdown of qth (i, stdmalloc)

(g) qth

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola uts no-work breakdown of tbb (i, stdmalloc)

(h) tbb

Figure B.21: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX B. BOTS ON XEON PHI 7250 (KNIGHTS LANDING) 124

Appendix C

TP-PARSEC on Xeon E5-2699 v3

C.1 Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
dedup

ferret
fluidanimate

freqmine
raytrace

streamcluster

swaptions

u
ti

liz
a
ti

o
n

comet icc utilizations at 36 core(s) (input=native, hooks, dr=0)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb

(a) compiled without DR

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
dedup

ferret
fluidanimate

freqmine
raytrace

streamcluster

swaptions

u
ti

liz
a
ti

o
n

comet icc utilizations at 36 core(s) (input=native, dr, dr=0)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb

(b) DR off at runtime (DR=0)

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
dedup

ferret
fluidanimate

freqmine
raytrace

streamcluster

swaptions

u
ti

liz
a
ti

o
n

comet icc utilizations at 36 core(s) (input=native, dr, dr=1)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb

(c) DR on at runtime (DR=1)

Figure C.1: utilizations on 36 core(s)

125

C.2 Blackscholes

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes elapsed times (icc, input=native)

serial
task_serial

task_cilkplus
task_mth

task_omp
task_qth
task_tbb
pthreads

openmp
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet blackscholes speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet blackscholes: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.2: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet blackscholes breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet blackscholes breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet blackscholes breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_mth (icc, input=native)

(e) mth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_omp (icc, input=native)

(f) omp

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_qth (icc, input=native)

(g) qth

 0

 2e+10

 4e+10

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet blackscholes breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.3: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 126

C.3 Bodytrack

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack elapsed times (icc, input=native)

serial
task_serial

task_cilkplus
task_mth

task_omp
task_qth
task_tbb
pthreads

openmp
tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet bodytrack speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(b) speedups

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet bodytrack: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.4: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet bodytrack breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet bodytrack breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet bodytrack breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet bodytrack breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet bodytrack breakdown of task_mth (icc, input=native)

(e) mth

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet bodytrack breakdown of task_omp (icc, input=native)

(f) omp

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet bodytrack breakdown of task_qth (icc, input=native)

(g) qth

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet bodytrack breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.5: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 127

C.4 Canneal

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet canneal speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(b) speedups

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0

(e) omp

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet canneal: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.6: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

task_serial
task_cilkplus

task_mth
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

comet canneal breakdown on 24 core(s) (icc, input=native)

(a) on 24 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

task_serial
task_cilkplus

task_mth
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

comet canneal breakdown on 28 core(s) (icc, input=native)

(b) on 28 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

task_serial
task_cilkplus

task_mth
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

comet canneal breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_omp (icc, input=native)

(f) omp

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_qth (icc, input=native)

(g) qth

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet canneal breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.7: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 128

C.5 Dedup

 5

 10

 15

 20

 25

 30

 35

 40

1 4 6 8 1011 16 24 28 32 36

se
co

n
d
s

cores

comet dedup elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

(a) elapsed times

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 4 6 8 1011 16 24 28 32 36

sp
e
e
d
u
p

cores

comet dedup speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(b) speedups

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet dedup: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet dedup: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet dedup: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet dedup: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet dedup: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.8: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet dedup breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet dedup breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet dedup breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_mth (icc, input=native)

(e) mth

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_omp (icc, input=native)

(f) omp

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_qth (icc, input=native)

(g) qth

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet dedup breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.9: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 129

C.6 Facesim

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 8 16 32 64

sp
e
e
d
u
p

cores

comet facesim speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(b) speedups

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 8 16 32 64

se
co

n
d
s

cores

comet facesim: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.10: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet facesim breakdown on 8 core(s) (icc, input=native)

(a) on 8 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet facesim breakdown on 16 core(s) (icc, input=native)

(b) on 16 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet facesim breakdown on 32 core(s) (icc, input=native)

(c) on 32 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 24 28

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

serial 1 8 16 24 28

cu
m

u
l.
 c

lo
ck

s

cores

comet facesim breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.11: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 130

C.7 Ferret

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 3 5 7 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 3 5 7 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet ferret speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet ferret: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.12: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet ferret breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet ferret breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet ferret breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet ferret breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet ferret breakdown of task_mth (icc, input=native)

(e) mth

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet ferret breakdown of task_omp (icc, input=native)

(f) omp

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet ferret breakdown of task_qth (icc, input=native)

(g) qth

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet ferret breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.13: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 131

C.8 Fluidanimate

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet fluidanimate speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 100

 200

 300

 400

 500

 600

 700

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 100

 200

 300

 400

 500

 600

 700

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 100

 200

 300

 400

 500

 600

 700

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 100

 200

 300

 400

 500

 600

 700

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet fluidanimate: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.14: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet fluidanimate breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet fluidanimate breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet fluidanimate breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fluidanimate breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fluidanimate breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fluidanimate breakdown of task_omp (icc, input=native)

(f) omp

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fluidanimate breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet fluidanimate breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.15: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 132

C.9 Freqmine

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
openmp

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet freqmine speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
openmp

(b) speedups

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 100

 200

 300

 400

 500

 600

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet freqmine: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.16: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet freqmine breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet freqmine breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet freqmine breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet freqmine breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet freqmine breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet freqmine breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet freqmine breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet freqmine breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.17: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 133

C.10 Raytrace

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet raytrace speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
pthreads

(b) speedups

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 20

 40

 60

 80

 100

 120

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet raytrace: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.18: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet raytrace breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet raytrace breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet raytrace breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet raytrace breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet raytrace breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet raytrace breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet raytrace breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet raytrace breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.19: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 134

C.11 Streamcluster

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet streamcluster speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 50

 100

 150

 200

 250

 300

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet streamcluster: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.20: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet streamcluster breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet streamcluster breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet streamcluster breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet streamcluster breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet streamcluster breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet streamcluster breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet streamcluster breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet streamcluster breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.21: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 135

C.12 Swaptions

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

1 8 16 24 28 32 36

sp
e
e
d
u
p

cores

comet swaptions speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0 dr DR=1

(c) cilkplus

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 50

 100

 150

 200

 250

1 8 16 24 28 32 36

se
co

n
d
s

cores

comet swaptions: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure C.22: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet swaptions breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

-1e+11

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet swaptions breakdown on 24 core(s) (icc, input=native)

(b) on 24 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

task_serial
task_cilkplus

task_mth
task_omp

task_qth
task_tbb

cu
m

u
l.
 c

lo
ck

s

comet swaptions breakdown on 36 core(s) (icc, input=native)

(c) on 36 cores

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet swaptions breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet swaptions breakdown of task_mth (icc, input=native)

(e) mth

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet swaptions breakdown of task_omp (icc, input=native)

(f) omp

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet swaptions breakdown of task_qth (icc, input=native)

(g) qth

-1e+11

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

comet swaptions breakdown of task_tbb (icc, input=native)

(h) tbb

Figure C.23: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX C. TP-PARSEC ON XEON E5-2699 V3 136

Appendix D

TP-PARSEC on Xeon Phi 7250 (Knights
Landing)

D.1 Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
ferret

fluidanimate

freqmine
streamcluster

swaptions

u
ti

liz
a
ti

o
n

denebola icc utilizations at 68 core(s) (input=native, hooks, dr=0)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb

(a) compiled without DR

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
ferret

fluidanimate

freqmine
streamcluster

swaptions

u
ti

liz
a
ti

o
n

denebola icc utilizations at 68 core(s) (input=native, dr, dr=0)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb

(b) DR off at runtime (DR=0)

 0

 0.2

 0.4

 0.6

 0.8

 1

blackscholes

bodytrack

canneal
ferret

fluidanimate

freqmine
streamcluster

swaptions

u
ti

liz
a
ti

o
n

denebola icc utilizations at 68 core(s) (input=native, dr, dr=1)

task_mth task_omp task_qth task_tbb

(c) DR on at runtime (DR=1)

Figure D.1: utilizations on 68 core(s)

137

D.2 Blackscholes

 0

 2

 4

 6

 8

 10

 12

 14

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes elapsed times (icc, input=native)

serial
task_serial

task_cilkplus
task_mth

task_omp
task_qth
task_tbb
pthreads

openmp
tbb

(a) elapsed times

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 16 32 48 56 64 68

sp
e
e
d
u
p

cores

denebola blackscholes speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

openmp
tbb

(b) speedups

 0

 2

 4

 6

 8

 10

 12

 14

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0 dr DR=0

(c) cilkplus

 0

 2

 4

 6

 8

 10

 12

 14

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 2

 4

 6

 8

 10

 12

 14

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 2

 4

 6

 8

 10

 12

 14

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola blackscholes: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure D.2: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola blackscholes breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola blackscholes breakdown on 48 core(s) (icc, input=native)

(b) on 48 cores

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola blackscholes breakdown on 68 core(s) (icc, input=native)

(c) on 68 cores

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 1.8e+10

 2e+10

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola blackscholes breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola blackscholes breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola blackscholes breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola blackscholes breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola blackscholes breakdown of task_tbb (icc, input=native)

(h) tbb

Figure D.3: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX D. TP-PARSEC ON XEON PHI 7250 (KNIGHTS LANDING) 138

D.3 Ferret

 0

 200

 400

 600

 800

 1000

 1200

1 4 7 10121416 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

1 4 7 10121416 32 48 56 64 68

sp
e
e
d
u
p

cores

denebola ferret speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 200

 400

 600

 800

 1000

 1200

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0

(c) cilkplus

 0

 200

 400

 600

 800

 1000

 1200

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 200

 400

 600

 800

 1000

 1200

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 200

 400

 600

 800

 1000

 1200

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 200

 400

 600

 800

 1000

 1200

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola ferret: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure D.4: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola ferret breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola ferret breakdown on 48 core(s) (icc, input=native)

(b) on 48 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola ferret breakdown on 68 core(s) (icc, input=native)

(c) on 68 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola ferret breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola ferret breakdown of task_mth (icc, input=native)

(e) mth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola ferret breakdown of task_omp (icc, input=native)

(f) omp

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola ferret breakdown of task_qth (icc, input=native)

(g) qth

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola ferret breakdown of task_tbb (icc, input=native)

(h) tbb

Figure D.5: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX D. TP-PARSEC ON XEON PHI 7250 (KNIGHTS LANDING) 139

D.4 Freqmine

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
openmp

(a) elapsed times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 16 32 48 56 64 68

sp
e
e
d
u
p

cores

denebola freqmine speedup (icc, input=native)

task_cilkplus
task_mth

task_omp
task_qth

task_tbb
openmp

(b) speedups

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0

(c) cilkplus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola freqmine: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure D.6: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

 4e+12

 4.5e+12

 5e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola freqmine breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola freqmine breakdown on 48 core(s) (icc, input=native)

(b) on 48 cores

 0

 2e+12

 4e+12

 6e+12

 8e+12

 1e+13

 1.2e+13

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola freqmine breakdown on 68 core(s) (icc, input=native)

(c) on 68 cores

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola freqmine breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

 8e+12

 9e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola freqmine breakdown of task_mth (icc, input=native)

(e) mth

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

 8e+12

 9e+12

 1e+13

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola freqmine breakdown of task_omp (icc, input=native)

(f) omp

 0

 2e+12

 4e+12

 6e+12

 8e+12

 1e+13

 1.2e+13

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola freqmine breakdown of task_qth (icc, input=native)

(g) qth

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

 8e+12

 9e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola freqmine breakdown of task_tbb (icc, input=native)

(h) tbb

Figure D.7: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX D. TP-PARSEC ON XEON PHI 7250 (KNIGHTS LANDING) 140

D.5 Swaptions

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions elapsed times (icc, input=native)

serial
task_serial

task_cilkplus

task_mth
task_omp
task_qth

task_tbb
pthreads

tbb

(a) elapsed times

 0

 10

 20

 30

 40

 50

 60

1 16 32 48 56 64 68

sp
e
e
d
u
p

cores

denebola swaptions speedup (icc, input=native)

task_cilkplus
task_mth
task_omp

task_qth
task_tbb
pthreads

tbb

(b) speedups

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions: DAG Recorder's overhead (icc-task_cilkplus, input=native)

hooks DR=0

(c) cilkplus

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions: DAG Recorder's overhead (icc-task_mth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(d) mth

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions: DAG Recorder's overhead (icc-task_omp, input=native)

hooks DR=0 dr DR=0 dr DR=1

(e) omp

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions: DAG Recorder's overhead (icc-task_qth, input=native)

hooks DR=0 dr DR=0 dr DR=1

(f) qth

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 16 32 48 56 64 68

se
co

n
d
s

cores

denebola swaptions: DAG Recorder's overhead (icc-task_tbb, input=native)

hooks DR=0 dr DR=0 dr DR=1

(g) tbb

Figure D.8: Elapsed times, speedups, and profiling overheads

work
delay

no-work-sched
no-work-app

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola swaptions breakdown on 16 core(s) (icc, input=native)

(a) on 16 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola swaptions breakdown on 48 core(s) (icc, input=native)

(b) on 48 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

task_serial
task_mth

task_omp
task_qth

task_tbb

cu
m

u
l.
 c

lo
ck

s

denebola swaptions breakdown on 68 core(s) (icc, input=native)

(c) on 68 cores

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

serial 1

cu
m

u
l.
 c

lo
ck

s

cores

denebola swaptions breakdown of task_cilkplus (icc, input=native)

(d) cilkplus

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola swaptions breakdown of task_mth (icc, input=native)

(e) mth

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

 2e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola swaptions breakdown of task_omp (icc, input=native)

(f) omp

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola swaptions breakdown of task_qth (icc, input=native)

(g) qth

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 1.4e+12

 1.6e+12

 1.8e+12

serial 1 8 16 24 28 32 36

cu
m

u
l.
 c

lo
ck

s

cores

denebola swaptions breakdown of task_tbb (icc, input=native)

(h) tbb

Figure D.9: Breakdown of cumulative execution times (elapsed time × cores)

APPENDIX D. TP-PARSEC ON XEON PHI 7250 (KNIGHTS LANDING) 141

	Introduction
	Motivation
	Contributions
	Organization of the rest of this thesis

	Work-Stealing Scheduling Strategy
	Brief Description
	Chronological Description
	Work diffusion (1981)
	Unfair scheduling policy (1984)
	Lazy task creation (1990)
	Work stealing (1994)
	Work-first (1998)

	Theoretical Proof of Efficiency
	Practical Implementation

	Task Parallel Programming Models and Runtime Systems
	Multilisp
	Mul-T
	MIT Cilk
	Intel Cilk Plus
	OpenMP
	Intel Threading Building Blocks (TBB)
	MassiveThreads
	Qthreads

	Performance Analysis and Visualization Tools
	Analyzing Parallel Performance
	Performance Visualizations
	Data Locality

	Analyzing Performance Differences based on Scheduling Delays
	Background
	Breakdown of Cumulative Execution Time based on Scheduling Delays
	Performance loss in parallel execution
	Ready path analysis

	Related Work

	Recording and Visualizing Computation DAG Traces
	Background
	tpswitch
	Computation DAG
	Computation model
	DAG structure

	DAG Recorder
	DAGViz
	Hierarchical layout algorithm
	Timelines with parallelism profile
	Kinds of visualizations
	Related work

	Case Studies
	Sort
	SparseLU

	Delay Spotter
	Big DAG handling mechanisms
	DAG-collapsing mechanisms
	Big DAG visualizing mechanisms

	Task-Parallelizing PARSEC Benchmarks
	Background
	PARSEC
	Task parallel programming models

	TP-PARSEC
	A unified task parallel API
	Task-parallelizing PARSEC
	Performance analysis tool
	Improved central management script

	Related Work
	Conclusion

	Evaluation
	BOTS
	SparseLU
	Alignment
	FFT
	Other benchmarks

	TP-PARSEC
	Setting a good grain size with the delay metric (blackscholes)
	Overlapping I/O and computation easily with tasks (bodytrack)
	Adjusting actual threads used in dedup & ferret
	Genuine task parallel schedulers are better than manual task queues (bodytrack, facesim, raytrace)
	Characterizing performance differences with the scheduling delay-based breakdown

	Conclusion
	Appendices
	BOTS on Xeon E5-2699 v3
	Overview
	Alignment
	FFT
	Fib
	Floorplan
	Health
	NQueens
	Sort
	Sparselu
	Strassen
	UTS

	BOTS on Xeon Phi 7250 (Knights Landing)
	Overview
	Alignment
	FFT
	Fib
	Floorplan
	Health
	NQueens
	Sort
	Sparselu
	Strassen
	UTS

	TP-PARSEC on Xeon E5-2699 v3
	Overview
	Blackscholes
	Bodytrack
	Canneal
	Dedup
	Facesim
	Ferret
	Fluidanimate
	Freqmine
	Raytrace
	Streamcluster
	Swaptions

	TP-PARSEC on Xeon Phi 7250 (Knights Landing)
	Overview
	Blackscholes
	Ferret
	Freqmine
	Swaptions

