
博士論文（要約）

Empirical Orthogonal Decomposition

and Euclidean Embeddings

for Image Feature Extraction

(経験的直交分解とユークリッド埋め込みに基づく
画像特徴抽出)

椋田 悠介



This thesis is dedicated to my beloved family.



Abstract

For the practical use of image recognition technology, it is necessary
that not only the recognition method demonstrates high accuracy but
also the method is efficient and the theoretical property of the method
is well understood.

As a feature that satisfies such property, we propose a novel frame-
work that applies the orthogonal decomposition of the kernel with the
distribution inferred from input data as a feature vector and Euclidean
embedding of bag of local features in low-dimensional euclidean space.
Then we combine our framework with the existing effective approach
that first extracts local features densely, then summarizes the local
features into one global feature considering the feature value and po-
sition in the image, and finally outputs the category of the image from
the global feature. Since we can get the feature vector as an approx-
imation of the kernel function, we can analyze the classification per-
formance with the kernel approximation performance. Also, we can
effectively approximate the kernel function using data information.
Thus we can obtain informative feature even when the dimension is
small. Our euclidean embedding enables us to exploit prior knowledge
in feature extraction and handle the feature vector easily.

In this work, we apply our feature extraction method based on or-
thogonal decomposition to local feature extraction, feature encoding,
and feature pooling and propose a novel method in each module. For
local feature extraction, we apply our method to convolutional kernel
between local image patches that summarizes the nonlinear similarity
between pixels considering the pixel position in the patch and propose
a patch feature that is effective even with the small feature dimension.
For feature encoding, we apply our method for covariance encoding
and propose a feature method with small feature dimension even when
the input feature dimension is large. For feature pooling, we propose
a framework that regards bag of local features from one image as a
function from image plane to feature space and regards feature pool-
ing as an orthogonal projection in function space. With this idea, we



can see bag of local features as a point in function space and thus we
can apply our method to construct a novel feature pooling method.

Experimental results using standard image recognition datasets show
that the proposed method demonstrates compact and effective image
feature. Thus, the proposed method not only has good theoretical
property but also is efficient for practical use.



Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methods for Image Feature Extraction 6
2.1 Manually-Designed Image Features . . . . . . . . . . . . . . . . . 6

2.1.1 Invariant Features . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Feature Encoding . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 9

3 Feature extraction based on empirical orthogonal decomposition 12
3.1 Recognition based on kernel function . . . . . . . . . . . . . . . . 12
3.2 Existing Kernel Approximation Method . . . . . . . . . . . . . . . 12
3.3 Kernel Approximation based on Empirical Orthogonal Decompo-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Analysis of the approximation error . . . . . . . . . . . . . 16
3.3.2 Linear kernel with Gaussian Distribution . . . . . . . . . . 17
3.3.3 Gaussian kernel with Gaussian Distribution . . . . . . . . 18
3.3.4 Gaussian kernel with Gaussian mixture Distribution . . . . 19
3.3.5 Relation to kernel PCA . . . . . . . . . . . . . . . . . . . . 19

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Approximation error of the Gram matrices . . . . . . . . . 20
3.4.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . 23

iv



CONTENTS

3.4.3 Computation Time . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Application to Image Recognition . . . . . . . . . . . . . . . . . . 24

4 Application to Local Feature Extraction 26
4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Application to Feature Encoding 31

6 Application to Feature Pooling 32
6.1 Existing work on feature pooling . . . . . . . . . . . . . . . . . . 33
6.2 Spatial Pooling as a Projection . . . . . . . . . . . . . . . . . . . 35
6.3 Spatial Orthogonal Pooling . . . . . . . . . . . . . . . . . . . . . . 37

6.3.1 Spatial Orthogonal Pooling Using the Standard Inner Product 38
6.3.2 Spatial Orthogonal Pooling Using a Weighted Inner Product 39
6.3.3 Analysis of the Robustness of the Proposed Methods . . . 40

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4.1 Image Recognition . . . . . . . . . . . . . . . . . . . . . . 41
6.4.2 Action Recognition . . . . . . . . . . . . . . . . . . . . . . 43

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Evaluation of the Whole Architecture 48
7.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3 Comparison with existing methods . . . . . . . . . . . . . . . . . 53

8 Conclusion and Future Work 54
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendix A: Fast Random Features for Semigroup Kernels 57
A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3 Alternating Circulant Random Features . . . . . . . . . . . . . . . 62

A.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.4.1 Approximation Error of Gram Matrix . . . . . . . . . . . . 67
A.4.2 Semigroup Kernel on Bag of Visual Words . . . . . . . . . 68
A.4.3 Semigroup Kernel on the CNN feature . . . . . . . . . . . 69
A.4.4 Computation Time . . . . . . . . . . . . . . . . . . . . . . 70

A.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



CONTENTS

References 72

Publications 81

vi



List of Figures

1.1 Overview of the proposed feature extraction system and the con-
struction of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Comparison of the approximation error for the Gram matrix on
synthesized data sampled from (a) Gaussian distribution, (b) Laplace
distribution, and (c) Uniform distribution. . . . . . . . . . . . . . 20

3.2 Comparison of the approximation error for the Gram matrix on
GoogLeNet features extracted from the ILSVRC2015 dataset. . . 21

3.3 Comparison of the mean squared error for the datasets (a) CPUS-
MALL, (b) CADATA, and (c) YEARMSD. . . . . . . . . . . . . . 22

3.4 Comparison of the classification accuracy for the datasets (a) ADULT,
(b) IJCNN1, and (c) COVTYPE. . . . . . . . . . . . . . . . . . . 23

4.1 Covariance of learned feature for (top left) CKN, (top right)
Random, (bottom left) Nyström, and (bottom right) Proposed.
The proposed method shows less non-diagonal covariance than the
other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Accuracy of CKN with fewer feature maps. . . . . . . . . . . . . . 30

6.1 Overview of spatial pyramid matching and the proposed pooling
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Values of Weights for Spatial Pyramid Matching . . . . . . . . . . 37
6.3 Values of ⟨δp, Qa

mn⟩a with small m and n for α = 0.25. . . . . . . . 45
6.4 Comparison of classification performance using SIFT + FV in (a)

CUB-200 dataset, (b) Stanford Dogs dataset, and (c) Caltech256
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Comparison of classification performance using TDD + FV in (a)
HMDB51 dataset and (b) UCF101 dataset. . . . . . . . . . . . . . 46

vii



LIST OF FIGURES

6.6 Comparison of classification performance of each layer using TDD
+ FV in UCF101 dataset. ’Spatial’ indicates the score that we used
the features extracted from RGB image and ’Temporal’ indicates
the score for the features extracted from flow image. The number
in the name indicates the number of the layer. . . . . . . . . . . . 47

7.1 Accuracy using the architecture without non-linear embedding on
global feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Accuracy using the architecture using non-linear embedding with
8,192 dimension on global feature. . . . . . . . . . . . . . . . . . . 50

7.3 Accuracy using the architecture using non-linear embedding with
4,096 dimension on global feature. . . . . . . . . . . . . . . . . . . 51

7.4 Distribution of eigenvalues of covariance of features in each layer. 52

A.1 Comparison of the approximation error for the gram matrix using
VGG-16 last activation. . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Tables

1.1 Comparison of existing feature extraction methods and the pro-
posed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Statistics for the datasets. . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Computation time (second) on synthesized data. . . . . . . . . . . 24

4.1 Classification accuracy for MNIST, CIFAR-10, CIFAR-100, and
SVHN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1 Comparison of accuracy with existing methods. . . . . . . . . . . 53

A.1 Comparison of kernel approximation methods. Here, d and D de-
note the dimensions of the input and output features, respectively,
and m is the number of mixed structured matrices (2 or log2 d in
this study). “Gaussian” and “Semigroup” indicate the method ap-
plicability to Gaussian and semigroup kernels, respectively. Note
that the random circulant features method can be applied to semi-
group kernels if we omit random sign flipping. . . . . . . . . . . . 59

A.2 Comparison of accuracy on image recognition datasets using Bag
of Visual Words. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 Comparison of accuracy on image recognition datasets using VGG-
16 softmax output. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.4 Comparison of accuracy on image recognition datasets using VGG-
16 last activation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.5 Computation time (second) on synthesized data. . . . . . . . . . . 68

ix



Chapter 1

Introduction

1.1 Background

Image recognition is a task to make the computer understand what is drawn in the
image. As the computer resource and data size grow, image recognition becomes
more and more popular, and the task becomes more and more complex such as
outputting the description of the image or detecting the position of the objects
in the image. However, even for such advanced task, the fundamental feature
extraction technique that extracts one global feature vector from the input image
affects most on the recognition performance. Since these problems are solved
as a regression from image to the output labels such as the category of objects,
description, detection window, we can not conduct accurate recognition if we do
not extract enough discriminative information from the input image.

Now we define the condition that feature extraction method should satisfy.
As for recognition accuracy, first is to exploit the prior knowledge about the
input image. Second is to extract the information from training data. The prior
knowledge means the knowledge about what information from the input image is
informative or meaningless for the recognition. This knowledge has been used for
Otsu’s invariant feature extraction theory and hand-crafted local features such as
SIFT, HOG, and GIST. The success of Convolutional Neural Networks (CNN)
arises from the invention of Convolutional layer that exploits the prior knowledge
of local translation invariance. Also, considering the effectiveness of multivariate
analysis methods such as principal component analysis and canonical correlation
analysis and the success of CNN method that learns most of the feature from the
image, it is necessary for the performance improvement to compensate for the
knowledge hard to design in prior with the statistical information obtained from
the training data.

From the viewpoint of application, the first requirement is that the cost for
training the model and calculation of the feature is small. We can not always

1



Method Requirement
Performance Prior Knowledge Unsupervised Analysis

hand-crafted feature × ✓ ✓ ✓
CNN ✓ Translation invariance × Partial

Our method Good with appropriate kernel ✓ ✓ ✓

Table 1.1: Comparison of existing feature extraction methods and the proposed
method.

get large-scale labeled training data for recognition tasks. Since the cost of col-
lecting the image and assigning labels is large, we often learn the classifier from
small-sample or unlabeled training data. Also, when we want to conduct image
recognition with small computation resource such as smart device, we need to
make the training and classify cost small. The second requirement is the easiness
of the analysis of the performance of the recognition method. For the application
that misclassification causes crucial result such as automatic driving and medical
image analysis, the estimation of classification performance for test data is im-
portant. From a machine learning viewpoint, statistical learning theory provides
a method to evaluate the test performance using the performance of training data
and the complexity measure of the space of recognition model to be learned. It
is desirable to obtain the similar estimation of the performance of the model.

When we summarize the existing models from this viewpoint, there are two
major existing models. The first model constructs the global feature using hand-
crafted local features such as SIFT and encoding such as principal component
analysis and Fisher Vector and then train linear classifier. The second is based
on Convolutional Neural Network (CNN). The first model can exploit the prior
knowledge and modify the feature dimension by adjusting the model parameter,
and we can analyze the performance if we try because the parts that learn the
model from the training data is relatively simple. However, the classification
performance is weaker than the CNN that learns most of the parameter from the
training data for large-scale classification. On the other hand, CNN shows good
performance if there are enough labeled training data, but it is hard to analyze the
classification performance and the method for training the model with unlabeled
or small-sample data is not yet well understood. Also, it is difficult to exploit the
prior knowledge without time-consuming data augmentation.

1.2 Objective

In this research we propose a novel feature extraction framework that satisfies
the requirements we stated in the previous section. To this end, we introduce
two functions, Empirical Orthogonal Decomposition of the kernel function and

2



Euclidean Embedding to low-dimensional space.
Since the information of the image is not linear to the pixel value, image

feature extractor is essentially a nonlinear function. Kernel method that uses
nonlinear similarity function between data as a feature is effective in handling
such nonlinearity. Kernel method has several good properties for image recog-
nition. First is that several image feature extraction methods such as fisher
vector are derived from kernel method. Second is that we can incorporate the
prior knowledge about invariance well by using shift-invariant kernel, the func-
tion value of which is calculated only by the difference between two inputs. Third
is that the generalization performance of the kernel function is well understood.
Thus, we use kernel method as a source for nonlinearity. However, since kernel
method requires much computation complexity when the number of samples is
large, we need to approximate the kernel function with the linear inner product of
nonlinear functions. To this end, we propose a novel data-driven approximation
method called Empirical Orthogonal Decomposition with good approximation
performance that can be calculated fastly.

Euclidean space is the most fundamental space for feature space. Most of the
classifier such as linear support vector machine assumes that the input vector
lies in Euclidean space. Also, as we describe in Chapter 3, we fit the Gaussian
Distribution to the input data. Thus, we require that the input data are the
low dimensional Euclidean vectors. However, the input of feature extraction
module is not always the vector, but often it is the bag of local features. To
this end, we construct a Euclidean Embedding from bag of local features to one
low-dimensional vector.

Since local features have information about both the values and the positions
in the image, exploiting both information is necessary for the informative feature
extraction. Our strategy is to apply nonlinear transformation to both value part
and position part, and then use the summation of tensor products of transformed
value vectors and transformed position vectors as embedded features. We use
the summation because it is the most simple statistics that is invariant to the
change of the order of the local features. As a principle for each value and
position embedding, we first construct large-dimensional space with geometry
designed from prior knowledge, and then extract low-dimensional low-frequency
parts with respect to the geometry.

In this framework, we encode the prior knowledge in the kernel design and
construction of Euclidean Embedding, and calculate the feature function with the
distribution from training data. Thus the method satisfies the two condition for
performance. Also, we can modify the dimension of the feature by adjusting the
number of eigenvectors we use. We can evaluate the classification performance
with the performance of the kernel function itself, the approximation performance
of the kernel function, and estimation performance of the distribution. Thus the

3



method also satisfies the two condition for application.
In the previous section, we reviewed that existing approaches are roughly

divided into the method that adopts manually-designed local descriptors from
prior knowledge and trains the classifier from the feature, and the method that
learns the end-to-end model with CNN. These approaches look different at first
glance, but they share the same framework that first extracts the local feature
from image patches and then summarizes the local features into one global feature
and outputs the image category. Thus this framework is considered to be effective
for image recognition and we follow this framework.

Then, we derive the novel method for feature extraction that extracts feature
from the image subregion, feature encoding that encodes the statistics of the
extracted local feature into high-dimensional feature space, and feature pooling
that summarizes the local features in one global feature. We mainly handle image
feature extraction, but we can apply our framework to different modal such as
movie and sound recognition.

In summary, our contributions are as follows:

• We proposed a novel image feature extraction framework based on the or-
thogonal decomposition of the kernel function with distribution estimated
from input data and Euclidean embedding of bag of vectors.

• We derive the main module of image feature extraction from our framework.

• We apply the method derived in our framework to image recognition bench-
mark and showed that our method can show good classification accuracy
with small feature dimension.

1.3 Structure of the Thesis

In this work, we propose a feature extraction framework based on the orthogonal
decomposition of kernel function using data information and euclidean embedding
of bag of vectors. We first describe our proposed framework and its analysis.
Then we propose a novel method for local feature extraction, feature encoding
and feature pooling and experimentally evaluate the performance.

This thesis is organized as follows: we have already described the background
and the objective of this thesis in Chapter 1. In Chapter 2, we describe the
related work of image feature extraction and the analysis. In Chapter 3, we
describe the detail of the proposed framework. This framework enables us to ex-
tracts image feature that satisfies the above 4 conditions. Thereafter, we derive
the feature extraction method that corresponds to each module of image feature
extraction from our framework. In Chapter 4, we apply our framework to local

4



1

local

feature 

extrac!on
encoding

pooling
output

label

classifier

“orange”
= (p) = ( )

=

ℎ( , , … ) = ( )

local featurepixels
encoded

local feature global feature

Input 

image

Empirical Orthogonal 

Decomposi!on

Euclidean Embedding

Figure 1.1: Overview of the proposed feature extraction system and the construc-
tion of the thesis.

feature extraction and combine our method to Convolutional Kernel Networks to
demonstrate that we can extract informative local descriptor. In Chapter 5, we
apply our framework to the covariance encoding and derive a method that sup-
presses the growth of feature dimension. In Chapter 6, we apply our framework
to feature pooling method and derive a smooth and independent feature pooling
weight. In Chapter 7, we combine the method proposed in Chapter 4, 5, 6 and
evaluate the classification performance. Finally, Chapter 8 concludes this thesis
and describes future works. Figure 1.1 shows the overview of our system.

5



Chapter 2

Methods for Image Feature
Extraction

In this section, we describe the existing research about image feature extraction
method for object recognition. We review existing two major approach, manually-
designed image features and CNN. We describe that these approaches share the
idea that first extracts the local feature from image patches and then summarizes
the local features into one global feature and outputs the image category.

2.1 Manually-Designed Image Features

In the early stage, we first manually design local descriptors based on prior knowl-
edge, then encode the local descriptors using the statistical model, and finally
apply linear classifier on the global feature to recognize the image category. We
introduce the research for each module.

2.1.1 Invariant Features

In image recognition, the idea of constructing global image features from in-
variants has mainly been applied to geometric transformations that preserve the
image information, such as rotation, expansion, translation, and photometric in-
variants.

Hand-crafted local descriptors used the information we want to extract from
the image as a prior and are mainly derived from geometric invariance. The
popular local descriptors are SIFT [1], HOG [2], LBP [3], and GIST [4]. The
SIFT feature [1] was constructed as a local feature robust to rotation, scale, and
photometric change, PCA-SIFT [5] uses principal components of the gradient
information histogram, GLOH [6] is a more robust extension of SIFT that consider

6



a log-polar location grid, while ASIFT [7] also considers affine transformation.
There are also works that directly derive global feature from invariance. Hu

[8] used moment invariants as a translation-invariant feature and constructed
more complex invariant features from these. Kondor [9] constructed translation-
and rotation-invariant features by mapping the image onto a sphere and using
harmonic analysis on a three-dimensional special orthogonal group. Mairal et
al. [10] proposed a hierarchical model in which image region similarity is the
sum of the kernel value between features of the subregions times the kernel value
between 2-d positions of the subregions. Its robustness to the local translation
can be adjusted by changing the kernel parameters. Anselmi et al. [11] proposed a
patch feature that uses the mean of a nonlinear function on the image patch under
some group action and constructed a hierarchical convolutional architecture that
is robust to group action. Mallat [12] constructed an operator on image space
that is translation-invariant and robust to diffeomorphisms by using the scattering
operator that repeatedly calculates the absolute values of wavelet coefficients.

2.1.2 Feature Encoding

Bag of Visual Words [13] is the basis of the statistics-based approach, which
clusters the local descriptor space and codes the number of local descriptors
assigned to each cluster. It is known that a bag-of-words based approach that
discards the position of local descriptors is robust to translation. The FV [14]
models the distribution of the local descriptors of all images as a Gaussian mixture
model (GMM) and uses the difference between the distribution of each image and
the model as the feature and the Fisher kernel as the similarity measure. Let N
be the number of local descriptors, fn be the n-th local descriptor, D be the
dimensionality of the local descriptors, K be the number of clusters, ωk be the
mixture weight of the k-th component, and µd

k, σ
d
k be the mean and standard

deviation, respectively, of the d-th element in the k-th component. The FV is a
2KD-dimensional vector organized as follows for d ∈ 1..D, k ∈ 1..K:

Fkd =


λ
− 1

2

µd
k

N
√
ωk

∑N
n=1 γn(k)

(
fn−µd

k

σd
k

)
λ
− 1

2

σd
k

N
√
2ωk

∑N
n=1 γn(k)

(
(fn−µd

k)
2

(σd
k)

2 − 1
)
 , (2.1)

where γn(k) is the posterior probability of the n-th component, γn(k) =
ωkNk(xn)∑K
j=1 ωjNj(xn)

,

where Nk is the probability density of the k-th Gaussian distribution and λµd
k
, λσd

k

are approximated diagonal elements of the Fisher information matrix set to
Nωk

(σd
k)

2 ,
2Nωk

(σd
k)

2 , respectively.

7



The vector of locally aggregated descriptors (VLAD) [15] was introduced to
simplify the FV and accelerate its computation. The VLAD is a KD-dimensional
vector that uses k-means clustering and consists of the sum of the difference from
each local descriptor to the cluster centroid µk to which it is assigned.

Fk =
∑
fn∈Sk

(fn − µk), (2.2)

where Sk is the set of local descriptors that are assigned to the k-th cluster.
The vector of locally aggregated tensors (VLAT) [16] is an extension of the

VLAD that uses the sum of tensor products of the difference from each local
descriptor to the cluster centroid µk.

Fk = upper

(∑
fn∈Sk

(fn − µk)(fn − µk)
t − Tk

)
, (2.3)

where upper (A) is the vector that stores the upper triangular elements of A and
Tk is the mean of (fn − µk)(fn − µk)

t of all the local descriptors assigned to the
k-th cluster. The VLAT contains information that is similar to the full covariance
of the GMM.

The GLC [17] uses the mean and covariance of the local descriptors as the
feature. The global Gaussian [18] regards the GLC as a sufficient statistic of the
Gaussian distribution and uses an information geometric metric on the statistical
manifold of the Gaussian distribution as the similarity measure. The GLC is
defined as:

F =

(
1
N

∑N
n=1 fn

1
N
upper

(∑N
n=1 fnf

t
n

)) . (2.4)

Moreover, the matrix logarithm for second-order statistics is considered for the
region feature [19, 20]. Serra et al. [21] considered the covariance of pixel features
as well as the covariance of patch features.

The graphical Gaussian vector (GGV) [22] uses local convolutional informa-
tion of adjacent local descriptors in the image by modeling the image as a Gauss-
Markov random field. The GGV combines the GLC and the following:

FEi
=

1

N
vec

 ∑
(j,k)∈Ei

fjf
t
k

 , (2.5)

where vec (A) is the vector that stores the elements of A and Ei is the set of pairs
of local descriptors with some adjacency relation.

8



2.1.3 Classifier

In large-scale image recognition, often the feature dimension and the number of
data become large. Thus in most case, we train linear classifier with optimization
method based on stochastic gradient descent. Linear classifier is a classifier that
given input data x ∈ Rd, outputs the category of the data from the inner metric
to the weight w ∈ Rd written as wtx. The most used method is soft-margin SVM.
Given training data {(xi, yi)}ni=1 where xi ∈ Rd, yi ∈ {−1, 1}, the loss function of
w to be optimized is

∥w∥2

2
+ C

n∑
i=1

max(0, 1− yiwtxi), (2.6)

where C is a hyper parameter.
In this case, the update rule of stochastic gradient descent is

w ← w − η

{
w yiw

txi > 1

w − nCyixi otherwise
. (2.7)

In practice, we use faster optimization method such as stochastic averaged gradi-
ent [23], stochastic variance reduced gradient [24], and stochastic dual coordinate
ascent [25].

There is an analysis of the performance of SVM based on Rademacher Com-
plexity. When we denote the model space of w as ∥w∥ ≤ Λ and assume that the
input data x satisfies ∥x∥ ≤ r, with probability 1− δ, the difference of expected
ρ-margin loss and empirical ρ-margin loss is bounded by

2

√
r2Λ2/ρ2

m
+

√
log 1/δ

2m
. (2.8)

Thus, the difference is small if the model size is small and the number of training
sample is large. There also exists the finer bound using stability analysis and
PAC-Bayes analysis.

In some case, we apply online learning method such as Passive Aggressive
[26] or Confident-Weighted Learning [27] if the training data is not fixed. These
methods are analyzed with regret analysis.

2.2 Convolutional Neural Networks

In the previous section, we described the framework based on the combination of
the hand-crafted image feature and linear classifier. In this section, we introduce
CNN that train such image feature and classifier at once. Since the model to

9



be trained is more complex than the previous approach, we need much training
data. The success of CNN research depends much on the large-scale data such
as MNIST [28], CIFAR-10 [29], and ImageNet [30].

Deep Neural Network is a method that repeatedly applies learned linear trans-
formation and predefined nonlinear transformation to the input and directly out-
puts the category. Convolutional Neural Network is a method that incorporates
convolutional layer into Deep Neural Network. This convolutional layer corre-
sponds to the local feature extraction part and contributes to the robustness to
the local image translation.

Convolutional Neural Networks become popular after the success of AlexNet
[31] in ILSVRC2012. Then the architecture becomes more and more deep such
as VGG-Net [32], GoogLeNet [33] and ResNet [34].

Like the case of manually-designed feature, researchers have constructed a
global feature by encoding the outputs of DNNs as local descriptors. Cimpoi et
al. [35] proposed to use the outputs of the convolutional layers as local descriptors
and apply a Fisher Vector [36] to encode them into a global feature. They showed
that their global feature showed improved performance compared to the outputs
of the fully connected layer in a texture recognition task. Babenko & Lempitsky
showed that simple sum pooling showed good performance in an image-retrieving
task. Lin et al. proposed a coding method based on bilinear CNN for a fine-
grained recognition task. To construct the sentence feature, Klein et al. [37]
proposed to regard the word vector [38] in each word as local descriptors and
use the Laplacian Mixture Model (LMM) instead of the Gaussian Mixture Model
(GMM) for extracting the Fisher Vector. They also proposed the Hybrid Gaus-
sian Laplacian Mixture Model (HGLMM) that mixes GMM and LMM in each
dimension. These methods were shown to outperform RNN-based methods for
image-sentence retrieval tasks. This feature vector is used for more recent work
such as Deep Structure-Preserving Embedding [39]. For coding a movie feature,
Jain et al. [40] applied average pooling to the output of the fully connected layer
per each frame to obtain a global feature. Xu et al. [41] used the output of the
pool5 layer of the VGG Network and applied VLAD [42]. This method is named
the Latent Concept Descriptor (LCD). Wang et al. [43] proposed a method named
the trajectory-pooled deep-convolutional descriptor (TDD) that used the average
of the output of the pool5 layer around each trajectory as a local descriptor. Gao
et al. [44] proposed Compact Bilinear Pooling (CBP) that encodes covariance
information effectively by randomization.

Also, there exists pooling layer that considers spatial information. He et
al. [45] proposed to apply spatial pyramid pooling on the last convolutional layer
to encode spatial information of the output of convolutional layer.

Thus, roughly CNN also follows the framework consisting of local feature
extraction, feature encoding, and feature pooling.

10



There exist works that try to analyze the generalization performance of Deep
Neural Networks. Neyshabur et al. [46] defines a norm based on the model pa-
rameters and proposed amethod to compute a Rademacher Complexity of the
space with the norm. They also propose an optimization method based on the
norm called Path-SGD. Sokolic et al. [47] proposed a method to upper bound the
margin of DNN between the data point and classification margin with the func-
tion of model parameters, and then use the upper bound as a regularizer. Keskar
et al. [48] argue that the trained model is robust to perturbation and show good
generalization performance when the sharpness of the model is small. However,
Zhang et al. [49] argues that existing generalization analysis cannot explain the
performance of DNN because DNN completely overfits the training image with
the random label. Also, there exists adversarial example [50] that are manually
designed to cause misclassification to DNN. Thus, the analysis of DNN is not well
enough for the application.

11



Chapter 3

Feature extraction based on
empirical orthogonal
decomposition

In this section, we describe the detail of the framework.

3.1 Recognition based on kernel function

As a classification method that uses prior knowledge, there exist two approaches.
First is to construct a feature vector directly from the prior knowledge. Second
is to construct a kernel function that represents the similarity of two input data
considering the prior knowledge. These are equivalent from the view of represen-
tation ability, but often the approach that uses kernel method is fundamental for
feature extraction. For example, Murata et al. [51] showed that three-layer neural
network is the approximation of kernel function. Training with Fisher Vector can
be regarded as multiple kernel learning. We can incorporate invariance informa-
tion effectively using characteristic shift-invariant kernel [52]. Thus, we construct
our framework based on kernel method.

3.2 Existing Kernel Approximation Method

However, the complexity of kernel methods grows quadratically or cubically with
the amount of the training data, which makes it difficult to scale directly for
large-scale datasets. A method that approximates the kernel function using the
inner product of the nonlinear feature functions, which map data into a relatively
low-dimensional feature space, is useful because it is compatible with fast linear
classifiers.

12



There are two major methods for approximating the kernel function: the
Nyström method [53, 54] and the random features method [55].

The Nyström method approximates the true Gram matrix using kernel simi-
larity to randomly sample data from training examples. Let {x1, x2, · · · , xD} de-
note the subset of samples and let KD = UΛU t denote the eigen-decomposition of
the Gram matrix generated by the subset of samples, then the Nyström method
maps input x in the following way:

Λ−1/2U t(k(x, x1), k(x, x2), · · · , k(x, xD))t (3.1)

To analyze Nyström methods, the bound of the spectral norm of the approxima-
tion error is usually calculated. In [53], the authors showed that the approxima-
tion error is O(D−1/2). Because Bartlett et al. [56] showed that the generalization
error of the kernel method is O(N−1/2), where N is the size of training data, the
required number of samples D should be O(N) to achieve a small approximation
error. According to the analysis in [57], the number of samples D is reduced to
O(N−1/2) by assuming that there is a large gap between the eigenvalues. Kumar
et al. [58] provided a detailed comparison of various fixed and adaptive sampling
techniques. However, an O(D3) calculation of K−1/2 of the sample Gram ma-
trix is required, and O(D2) post-processing for each datum is required, which is
time-consuming when D is large.

The random features method approximates the kernel function using an inner
product of randomly sampled feature functions.

Definition 3.2.1. For kernel k on domain X, if there are functions ψω parame-
terized by ω and parameter distribution p(ω) that fulfill the equality

k(x, y) = Eω[ψω(x)
∗ψω(y)] =

∫
dωp(ω)ψω(x)

∗ψω(y), (3.2)

then a random feature is a method that samples D ωds i.i.d from p(ω) and maps
x→ 1√

D
(ψω1(x), ..., ψωD

(x)).

If ψω is uniformly bounded, then we can show that we can approximate the
original kernel with high probability using a sufficiently large dimension D by
applying Hoeffding’s inequality.

Rahimi and Recht [55] proposed a random feature using trigonometric func-
tions for a shift-invariant kernel in Euclidean space Rd. A shift-invariant kernel
is a kernel that can be calculated using only the difference of two inputs such as
k(x, y) = ϕ(x− y). Rahimi and Recht [55] constructed a random Fourier feature
using Bochner’s theorem, which connects shift-invariant kernels with probability
distributions in Fourier space.

13



Theorem 3.2.1 (Bochner [59]). For ϕ corresponding to a shift-invariant kernel,
there is a probability p(ω) on Rd that

k(x, y) = ϕ(x− y) =
∫
dωp(ω)eiω(x−y) (3.3)

holds.

According to Bocher’s theorem, the shift-invariant kernel is a Fourier trans-
form of some distribution. By sampling ωd from this distribution p(ω), the map-
ping

x→ 1√
D

(
eiω1x, ..., eiωDx

)
(3.4)

approximates the original kernel．In addition, the method that uniformly samples
bd from [0, 2π] and maps

x→ 1√
D

(√
2cos (ω1x+ b1) , ...,

√
2cos (ωDx+ bD)

)
(3.5)

also becomes a random feature, which is used to make the feature value real. We
use this form for the experiments. This feature function is uniformly bounded,
so it fulfills the condition for Hoeffding’s inequality.

The framework of Equation 3.4 is simple and versatile, but because the fea-
ture is random, the feature tends to be verbose. To solve this problem, Hamid
et al. [60] proposed a method that oversamples ω and projects it in a lower-
dimensional space, where the projection matrix is also randomly sampled. Yang
et al. [61] proposed a method to use quasi-Monte Carlo instead of i.i.d random
variables. To decrease the complexity, Le et al. [62] proposed a method to ap-
proximate a feature function with complexity O(D log d).

As an application for data mining, Lopez-Paz et al. [63] combined a random
feature with PCA and CCA and showed that they approximate kernel PCA and
kernel CCA. Lu et al. [64] reported performance comparable with deep learning
by combining multiple kernel learning and the composition of kernels. Dai et
al. [65] and Xie et al. [66] proposed a method that combined a random feature
with stochastic gradient descent to construct an online learning method.

Yang et al. [67] proposed the random Laplace feature for the kernel k(x, y) =
ϕ(x + y) on a semi-group (Rm > 0,+) and applied it to kernels on histogram
data, such as Bag of Visual Words.

However, Rahimi and Recht [68] reported the generalization performance us-
ing a random feature is O(N−1/2+D−1/2). Thus we need to sample O(N) random
features to gain sufficient generalization performance, so the complexity does not
decrease.

14



In this paper, we propose a method to closely approximate the kernel function
via empirical orthogonal decomposition without post-processing for the features.
In the proposed method, the kernel function is decomposed using the probability
distribution estimated from training data, which enables it to have a high ap-
proximation ability. As the proposed method directly approximates the kernel
function, post-processing for the features becomes unnecessary. We show that the
spectral norm of the approximation error of the Gram matrix is bounded using
eigenvalues and the distance between the true and approximate distributions. We
also present the calculation method of the proposed kernel approximation using
the Gaussian kernel.

3.3 Kernel Approximation based on Empirical

Orthogonal Decomposition

The Nyström method uses information from input data as the feature function
and provides good generalization performance, but requires post-processing of the
feature. The random features method approximates the kernel function and does
not require post-processing of the feature. The information required to obtain the
feature function p(ω), eiωx requires only the kernel function, and hence, it provides
lower generalization performance. In this section, we propose a method that
approximates the kernel function using information from input data to overcome
the limitations of both methods.

First, from Mercer’s theorem [69], we can represent the kernel k on domain
X with finite measure µ as

k(x, y) =
∞∑
i=0

λiψi(x)ψ
∗
i (y), (3.6)

using eigenvalues λi and the normalized eigenfunctions ψi of the positive definite
operator Tk on L2(X) such that

(Tkψ)(·) =
∫
X

k(·, x)ψ(x)dµ(x). (3.7)

We can regard the Nyström method as approximating this distribution µ using the
histogram of randomly sampled input data. Additionally, using a shift-invariant
kernel and a Lebesgue measure, the feature corresponds to a random Fourier
feature. Because the Lebesgue measure is not finite, the decomposition is an
integral instead of a discrete sum; therefore we need to randomly sample the
feature function.

15



In this paper, we propose an intermediate approach that approximates the
input distribution µ using a distribution for which its eigenfunction decomposition
can be solved, and use the eigenfunctions as feature functions. The algorithm is
as follows:

1. Estimate the parameter of some distribution p(x; θ) using training data.

2. Solve the eigenfunction decomposition (Tkψ)(·) =
∫
X
k(·, x)ψ(x)p(x; θ)dx

using the estimated distribution p(x; θ).

3. Use λ
1/2
i ψi corresponding to the D largest eigenvalues as feature functions.

3.3.1 Analysis of the approximation error

In this section, we evaluate the expectation and high-probability bound for the
spectral norm of the approximation error corresponding to the Gram matrix,
which is important for the efficiency of the kernel approximation method. For
example, Cortes et al. [70] proposed a method to bound the estimation error of
test data for kernel ridge regression and kernel support vector machine using the
spectral norm error of Gram matrix.

We denote the Gram matrix using N data {x1, x2, ..., xN} by Ktrue, the Gram
matrix using the proposed approximation method by Kapp, and assume that the
kernel function is upper bounded by some κ such that k(x, x) ≤ κ for ∀x ∈ X.
The following holds when we use the D-dimensional feature:

Theorem 3.3.1. Given the true probability density ptrue(x) and the approximated
density as papp, then

Exi∼ptrue [∥Ktrue −Kapp∥2]

≤ N

(
∞∑

n=D

λn + κ

∫
X

|ptrue(x)− papp(x)|dx

)
, (3.8)

holds. Additionally, for a probability larger than 1− δ,

∥Ktrue −Kapp∥2

≤ N

(
∞∑

n=D

λn + κ

∫
X

|ptrue(x)− papp(x)|dx

)

+

√
Nκ2

2
log

1

δ
, (3.9)

holds.

16



Proof. It holds that Kdiff = Ktrue − Kapp is also a Gram matrix using kernel
k(x, y) =

∑∞
i=D λiψi(x)ψ

∗
i (y), soKdiff is a symmetric positive semidefinite matrix.

Note that this does not hold for a random Fourier feature, which uses an integral
instead of discrete sum and does not use its eigenvalues directly. Hence,

∥Ktrue −Kapp∥2 = λmax(∥Kdiff∥) (3.10)

≤ trace∥Kdiff∥ =
N∑
i=1

kdiff(xi, xi),

holds. Hence, Exi∼ptrue [∥Ktrue −Kapp∥2] ≤ NEx∼ptrue [kdiff(x, x)]. Moreover,

Ex∼ptrue [kdiff(x, x)]

=

∫
X

(ptrue(x)− papp(x))kdiff(x, x)dx

+ Ex∼papp [kdiff(x, x)], (3.11)

The former is bounded by
∫
X
|(ptrue(x)−papp(x))||kdiff(x, x)|dx ≤ κ

∫
X
|(ptrue(x)−

papp(x))|dx, and using the property of eigenfunction decomposition,

Ex∼papp [ψi(x)ψ
∗
i (y)] = 1, (3.12)

the latter becomes
∑∞

n=D λn. Thus, the inequality for the expectation Equa-
tion 3.8 holds.

Because 0 ≤ kdiff(x, x) ≤ κ, applying Hoeffding’s inequality to Equation 3.11,
we obtain

P (
N∑
i=1

kdiff(xi, xi)−NEx∼ptrue [kdiffx]≥Nt)≤exp

(
−2Nt2

κ2

)
. (3.13)

Thus, a high probability bound Equation 3.9 is obtained.

From the discussion in the work by Yang et al. [57], we require that ∥Ktrue −
Kapp∥2 = O(N1/2) holds for good generalization performance; that is, we require∑∞

n=D λn,
∫
X
|ptrue(x)− papp(x)|dx to be O(N−1/2) for sufficient performance.

3.3.2 Linear kernel with Gaussian Distribution

First, we apply our method to the linear kernel using Gaussian distribution. Since
the feature vector corresponding to the linear kernel is already known, we use the
technique in this section for the dimensionality reduction.

17



When we assume the d-dimensional space and distribution p = N(0,Σ), the
equation of the eigenfunction will be

λψ(y) =

∫
Rd

ytxψ(x)p(x)dx (3.14)

When Σ is diagonalized by Σ = U tSU , we denote v = Uy, w = Ux, g = ψ · U t,
this can be written as

λg(v) =

∫
Rd

vtwg(w)
d∏

j=1

1√
2sj

e
−w2

j
2sj dx. (3.15)

Since E[wiwj] = δi,jsj, g(x) = xj/
√
sj and λ = sj satisfies the equation. Thus,

the derived the feature is top k eigenvector of covariance, which is principal
component analysis. Thus, we can derive principal component analysis in our
framework.

3.3.3 Gaussian kernel with Gaussian Distribution

As an example of more complex analytic solution for eigenfunction decomposition,
we consider the Gaussian kernel and a Gaussian distribution as an approximate
distribution. If the dimension d = 1, setting k(x, y) = exp(−b(x − y)2), p(x) =
N(0, 1

4a
), and using c =

√
a2 + 2ab, A = a+ b+ c, and B = b/A, the eigensystem

is as presented by Zhu et al. [71]:

λn =

√
2a

A
Bn (3.16)

ψn(x) = exp(−(c− a)x2)Hn(
√
2cx), (3.17)

where Hn denotes a Hermite polynomial of integer order n and is defined as
Hn(x) = (−1)n exp(x2) dn

dxn exp(−x2). The feature function is localized and better
reflects the properties of the Gaussian kernel, for which the similarity diminishes
if the data are distant, than a random Fourier feature, which does not attenuate.
Additionally, as n increases higher resolution information can be obtained. There
are studies that use this solution for kernel learning [71, 72], but to the best of
our knowledge, the present research is the first to learn the distribution from data
and apply it to unsupervised feature learning.

When the input dimension d is larger than 1 and the covariance matrix is
diagonal, the eigensystem is a product of the above Hermite solution. Even if the
covariance is non-diagonal, the solution reduces to the case in which covariance
is diagonal by rotating the axis. To evaluate the approximation error, we denote
the feature dimension by D and simplify the calculation by assuming a is the

18



same for each dimension. This bounds the general case. Thus,
∑∞

n=D λn =

(2a
A
)d/2(( 1

1−B
)d − (1−BD/d

1−B
)d) ≃ (2a

A
)d/2( 1

1−B
)ddBD/d = dBD/d and we can see that

the error decreases exponentially with D.

3.3.4 Gaussian kernel with Gaussian mixture Distribution

To approximate a more complex distribution, we consider a Gaussian mixture.
The analytic solution using this Gaussian mixture is not known, so we consider
approximating it using the result for a Gaussian distribution. We denote the
number of components by K and set p(x) =

∑K
k=1 γkN(µk,Σk). Let (λkn, ψ

k
n) be

the eigensystem for N(µk,Σk). Because the kernel can be decomposed as

k(x, y) =
K∑
k=1

ωkk(x, y) =
K∑
k=1

∞∑
n=0

ωkλ
k
nψ

k
n(x)ψ

k∗
n (y), (3.18)

we consider using (ωkλ
k
n)

1/2ψk
n(x) for larger ωkλ

k
n as feature functions.

Next, we analyze the performance of this method. As the feature function
is not the true eigenfunction, the above discussion does not hold in its current
form. However, we can see that Kdiff is a symmetric positive semidefinite matrix,
and we have only to bound Ex∼p[kdiff(x, x)]. To simplify this, we assume that
ωk =

1
K

and a, b are the same for each distribution and dimension, and each µk is

well separated such that Ex∼N(µk,Σk)[ψ
k′(x)ψk∗(y)] < R for some R. In this case,

using the result from the previous section, Ex∼p[kdiff(x, x)] < (1+(k−1)R)dB D
dk is

obtained. Thus, we infer that this method has an exponential gain in performance
with D.

3.3.5 Relation to kernel PCA

When we apply kernel methods, we often use PCA in the projected high-dimensional
space to obtain uncorrelated useful features. The proposed methods, which use
eigenfunctions, are automatically projected in the feature spaces, so correlations
between features are small. Thus, it is expected that our methods demonstrate
a similar effect to PCA.

When we use the proposed method with the Gaussian distribution, we ro-
tate the input space so that each input element is uncorrelated. Then, the axis
with a large variance has large B, so even high-order eigenfunctions with a high
resolution are used. Conversely, the axis with a small variance makes a small
contribution to the feature vector. In particular, the axis on which only the 0-th
order eigenfunction is used only contributes to the norm of the feature. Thus
we can ignore it when, for example, the features are normalized. Therefore, we

19



40 160 640 2560

10
−4

10
−2

10
0

feature dimension

ap
pr

ox
im

at
io

n 
er

ro
r

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16
Proposed64

(a) Gaussian

40 160 640 2560
10

−4

10
−2

10
0

feature dimension
ap

pr
ox

im
at

io
n 

er
ro

r
 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16
Proposed64

(b) Laplace

40 160 640 2560

10
−5

10
0

feature dimension

ap
pr

ox
im

at
io

n 
er

ro
r

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16
Proposed64

(c) Uniform

Figure 3.1: Comparison of the approximation error for the Gram matrix on syn-
thesized data sampled from (a) Gaussian distribution, (b) Laplace distribution,
and (c) Uniform distribution.

can say that the proposed method also applies dimensionality reduction in the
input space. When the input space is d dimensional, the number of substantial
dimensions is d′, and we extract the D dimensional feature, the complexity of the
proposed method is O(dd′) for rotation plus an O(d′D) calculation of Hermite
polynomials. We replace d′ with d when we use the full input vector. In all cases,
it is much smaller than the Nyström method, which requires an O(D) calculation
of kernel values between d dimension vectors plus an O(D2) whitening step when
D is large.

3.4 Experiment

To test the efficiency of our methods, we compared the approximation error of
the Gram matrices, the classification accuracy, and performance for unsupervised
feature learning.

3.4.1 Approximation error of the Gram matrices

First, we evaluated the approximation performance using synthesized data. We
set the dimensionality of the input data to d = 10, number of samples to
N = 5000, and kernel parameter to b = 1

2d
, and compared the Nyström method

(Nyström), random Fourier feature (Random), and proposed methods (Proposed)
using data sampled from the Gaussian distribution with mean equal to 0 and a
covariance identity matrix, from the Laplace distribution with location parame-
ter equal to 0 and scale parameter equal to 1 as a super-Gaussian distribution,

20



40 160 640 2560 10240
feature dimension

10 -3

10 -2

10 -1

10 0

ap
pr

ox
im

at
io

n 
er

ro
r

Random
Nystrom
Proposed1

Figure 3.2: Comparison of the approximation error for the Gram matrix on
GoogLeNet features extracted from the ILSVRC2015 dataset.

TASK DATA # TRAIN # TEST # Attr.
Reg. CPUSMALL 7392 800 12
Reg. CADATA 18640 2000 8
Reg. YEARMSD 463715 51630 90
Class. ADULT 32561 16281 123
Class. IJCNN1 49990 91701 22
Class. COVTYPE 522910 58102 54

Table 3.1: Statistics for the datasets.

and from a uniform distribution from [-1,1] as a sub-Gaussian distribution. For
each method, we evaluated the normalized spectral norm of the error matrix
∥Ktrue−Kapp∥2

∥Ktrue∥2 . We set the feature dimension D = 40, 160, 640, 2560, and the num-
ber of mixture components to 1, 4, 16, 64. Note that if the number of mixture
components is 1, the situation is equivalent to the Gaussian case. To estimate
the parameter of the data distribution, we used another set of N data sampled
from the same distribution. For preprocessing, we rotated the data so that the
estimated covariance was diagonal and used the diagonal Gaussian mixture. This
rotation did not change the kernel value. We performed the experiment 10 times
for each setting and calculated the mean value.

Figure 3.1 shows the results. The number in the “Proposed” label indicates
the number of mixture components. The figure shows that for each distribution,
the proposed method that assumed a Gaussian distribution yielded the best ap-
proximation performance if the dimension was low. Even if the dimension was
high, the proposed method yielded a performance comparable with the Nyström
method. Better performance for low feature dimensions occurred because the

21



40 160 640 2560
0

20

40

60

80

100

feature dimension

m
ea

n 
sq

ua
re

d 
er

ro
r

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16

(a) CPUSMALL

40 160 640 2560
3.5

4

4.5

5

5.5x 10
9

feature dimension

m
ea

n 
sq

ua
re

d 
er

ro
r

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16

(b) CADATA

40 160 640
84

86

88

90

92

94

96

98

feature dimension

m
ea

n 
sq

ua
re

d 
er

ro
r

 

 

Random
Nystrom
Proposed1

(c) YEARMSD

Figure 3.3: Comparison of the mean squared error for the datasets (a) CPUS-
MALL, (b) CADATA, and (c) YEARMSD.

rough estimation of the proposed method approximated the true distribution
better than the estimation using a small sample histogram from the Nyström
method. The random Fourier feature demonstrated similar performance for each
distribution, which agrees with the fact that random features method does not use
distribution information. By contrast, when we assumed a Gaussian mixture, the
performance was lower and the performance gain was also smaller than the case
that assumed a Gaussian distribution in each case. The uncertainty associated
with the parameter estimation and the decrease of decay speed of eigenvalues
influenced the performance more than the approximation accuracy of the true
distribution.

We then compared the performance of the proposed kernel approximation
method assuming Gaussian distribution using the ILSVRC2015 classification dataset.
The dataset contained approximately 1,200,000 images and we used the output
of the global average pooling layer of GoogLeNet as input features, which are
1,024 dimensional per image. We used 100,000 samples for model inference and
evaluated the normalized spectral norm of the error matrix ∥Ktrue−Kapp∥2

∥Ktrue∥2 using
5,000 randomly chosen samples. We plotted the mean of five trials. We set the
feature dimension D = 40, 160, 640, 2560, 10240

Figure 3.2 shows that the proposed approximation method demonstrates bet-
ter performance even for a real image dataset.

22



40 160 640 2560
83

83.5

84

84.5

85

85.5

feature dimension

ac
cu

ra
cy

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16

(a) ADULT

40 160 640 2560
90

91

92

93

94

95

96

97

feature dimension

ac
cu

ra
cy

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16

(b) IJCNN1

40 160 640
62

64

66

68

70

72

74

feature dimension

ac
cu

ra
cy

 

 

Random
Nystrom
Proposed1
Proposed4
Proposed16

(c) COVTYPE

Figure 3.4: Comparison of the classification accuracy for the datasets (a) ADULT,
(b) IJCNN1, and (c) COVTYPE.

3.4.2 Classification Accuracy

We compared regression performance and classification accuracy using real data.
We used the data from the LIBSVM site 1. We scaled each element of the input
data to [0,1] for the classification task and [-1,1] for the regression task. Table 3.1
shows the statistics for the datasets. We set the kernel parameter b = 1

2d
and used

LIBLINEAR2 with C = 100 to compare the classification accuracy of the test data
for classification tasks and ridge regression minw ∥Ψtw − t∥22 + λ∥w∥22 with λ =
0.01 to compare the mean squared error of the test data 1

n

∑n
i=1 ∥ti − wtψ(xi)∥22

for regression tasks. We set the feature dimension D = 40, 160, 640, 2560 for
CPUSMALL, CADATA, ADULT and IJCNN1, and 40, 160, 640 for the larger
datasets YEARMSD and COVTYPE. We set the number of mixture components
to 1, 4, 16. For parameter estimation, we sampled 1000 data for CPUSMALL,
CADATA, and 10000 data for ADULT, IJCNN1, YEARMSD and COVTYPE.
For each setting, we conducted 10 experiments and calculated the mean.

Figure 3.3 and Figure 3.4 show the results. The result for Nyström is over-
lapped by that for Proposed1 in CPUSMALL. We omitted the results for Pro-
posed4 and Proposed16 in YEARMSD because, in some cases, they had a mean
squared error that was too large. The figures show that the proposed method
assuming a Gaussian distribution demonstrated better performance than the ran-
dom Fourier feature, especially when the dimension was small. Additionally, they
demonstrated comparable performance with the Nyström method for each dimen-
sion. Because the Nyström method requires O(D2) post-processing for each fea-
ture, our method is more efficient considering the computation complexity. Gen-

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://www.csie.ntu.edu.tw/ cjlin/liblinear/

23



Method 1,024 2,048 4,096 8,192 16,384

Random 4.1e-2 8.0e-2 2.8e-1 1.07 4.36
Nyström 3.8e-2 1.0e-1 3.9e-1 2.52 4.9e1
Proposed 3.9e-2 9.0e-2 2.3e-1 1.2e-1 5.6

Table 3.2: Computation time (second) on synthesized data.

erally, the proposed method assuming a Gaussian mixture demonstrated poorer
performance than the other methods. However, the differences between each per-
formance were small when the dimension was high, and Proposed16 demonstrated
the best performance in ADULT. The proposed methods assuming the mixture
model work well if the feature dimension is not small and the model fits the data
distribution. Generally, when assuming a Gaussian distribution, the data distri-
bution was sufficiently approximated and our method demonstrated comparable
performance with the Nystöm method.

3.4.3 Computation Time

We also compared the computation time using synthesized data used in Sec-
tion 3.4.1. We varied the output feature dimension D to 40, 160, 640, 2560 and
10240. We compared the computation time required to encode 5,000 input vector
using an Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz. We implemented each
method using Matlab with the “-singleCompThread” option. Table 3.2 shows
that our method shows performance similar to Random, while Nyströ method
requires large computation time as D grows. Thus, our method is as efficient as
random features method while as effective as Nyström method.

3.5 Application to Image Recognition

In this chapter, we propose an overview of the method to apply our framework
to the image recognition.

As for local feature extraction, it is important to represent the relationships
between the positions of pixels in the image patches. Also, since the informa-
tion of local region is not linear to the values of pixels, we need to express this
nonlinear similarity between pixels. To this end, we apply our method to the
convolutional kernel between image patches proposed in Convolutional Kernel
Networks [10] in Chapter 4. In Convolutional Kernel Networks, we transform
both feature values of the pixels and feature positions so that they approximate
the Gaussian kernel between feature values and between feature positions respec-

24



tively. Then, we use the summation of tensor products of transformed feature
values and transformed feature positions as a feature of the patch of the next
layer. We apply the proposed approximation method to construct the transfor-
mation of the feature values. Also, we can apply our non-linear embedding to the
global feature after feature pooling.

The same strategy works well for constructing one global feature from the
bag of local features by associating the feature values with pixel values and fea-
ture positions in the image with pixel positions in the patch. The difference
is that we need to extract lower-order information from feature values because
the dimension of the input feature is large and the interpretability of the encod-
ing method is important. Conversely, as for transforming the feature position, we
need to extract more complex position information effectively because the change
of position is larger in the image than in the patch.

As a principle for constructing each transformation, we first construct large-
dimensional space that perserve information of input vectors, and then extract
low-dimensional low-frequency parts with respect to the geometry using the prior
knowledge.

For feature encoding that transforms the value of the feature, we first map
second order information into large-dimensional covariance space and then reduce
the dimension using the prior knowledge of low-rankness and the idea of matrix
manifold in Chapter 5.

For feature pooling that transform the position part of local features, we first
map the feature positions into the large-dimensional function space from image
space to feature space and then apply the linear dimensionality reduction using
the prior knowledge that the background function is not too complex in Chapter 6.

25



Chapter 4

Application to Local Feature
Extraction

Kernel approximations are used to construct a hierarchical nonlinear local feature
by iteratively building kernels between image patches [10, 73, 74, 75, 76]. Thus,
we can apply the framework proposed in the previous chapter to construct the
local image feature.

We now combine our approximation method with convolutional kernel net-
works (CKN) architecture [10] and propose a novel method for unsupervised fea-
ture learning. The CKN hierarchically defines the kernel between image patches
as the summation of kernels between 2-d positions of points in the patches mul-
tiplied by the kernels between feature vectors of points to both consider the non-
linear relationships of pixel values and the position information of pixels in the
patches. The kernel value between patches Ω,Ω′ can be represented as follows:

K(Ω,Ω′) =
∑
p∈Ω

∑
p′∈Ω′

∥ϕ(p)∥∥ϕ′(p′)∥e−
1

2β2
∥δp∥2

e−
1

2σ2 ∥δϕ∥2 , (4.1)

where p and p′ are positions of the points, ϕ(p) and ϕ′(p′) denote feature vectors
of the points. We use RGB value or the gradient of RGB that means edge infor-
mation as the input of the first layer. δp and δϕ denote p−p′ and ϕ(p)−ϕ′(p′) re-
spectively. When we approximate the kernel between positions as ξpos(p)

T ξpos(p
′)

and the kernel between feature vectors as ξfeat(ϕ(p)
T ξfeat(ϕ

′(p′)), the convolutional
kernel is approximated as the linear inner product of∑

p∈Ω

∥ϕ(p)∥ξpos(p)⊗ ξfeat(ϕ(p)), (4.2)

where⊗ denotes the Kronecker product. CKN hierarchically applies this mapping
and uses the feature vector of the final layer for recognition.

26



The original CKN uses the approximated feature for the kernel between po-

sitions as ξpos(p) = e
1
β2

∥p∥2
, and uses the approximated feature for the kernel

between features in the form of η
1/2
d e

1
σ2 ∥ϕ(p)−wd∥2 , and then learns ηd, wd so that

the reconstruction error of kernel values

n∑
i=1

(
e−

1
2σ2 ∥δϕ∥2−

D∑
d=1

ηde
1
σ2 ∥ϕ(pi)−wd∥2e

1
σ2 ∥ϕ(p′i)−wd∥2

)2

, (4.3)

is minimized, where (pi, p
′
i)
n
i=1 are patch pairs sampled from training data and D

is the dimension of the feature.
Instead of learning feature with a gradient descent, we can use other ker-

nel approximation methods. We propose using eigenfunctions with distribution
learned from pi, p

′
i as an approximation function. The proposed method does not

experience a long optimization time and local minima.

4.1 Experiments

Next, we used the random features method, Nyström method, and proposed
method with the Gaussian distribution, which demonstrated good performance
in previous experiments as kernel approximation methods for CKN architecture,
and compared the accuracy with the original CKN.

We used MNIST [28], CIFAR-10 [29], CIFAR-100 [29], and SVHN [77] as
datasets and adopted similar network architectures to those of Mairal et al. [10].
We used 300,000 patch pairs for feature learning, LIBLINIEAR as a linear clas-
sifier and determined the regularization parameter using 5-fold cross validation
from 2i,i = −15, ..., 15.

We show the results in Table 4.1. In most cases, the proposed method demon-
strated better performance than the original CKN. This is because the proposed
method did not experience local minima of the optimization and could use the
input information more efficiently. The proposed method did not require a time-
consuming optimization phase. Thus, it was a good choice to adopt the proposed
kernel approximation method for CKN architecture. Additionally, the proposed
method demonstrated better performance than the random features method and
comparable or better performance than the Nyström method in most settings,
which demonstrated a similar tendency to that of previous experiments. This
indicates the effectiveness of hierarchically approximating the kernel, and the
proposed method is reasonable and effective.

Additionally, we showed the covariance of the rescaled first 400-dimensional
feature in the final layer learned from CIFAR-10 with setting 1 in Figure 4.1. The
figure shows that while CKN had relatively large non-diagonal covariance, the

27



Setting CKN Random Nyström Proposed
MNIST

1 99.34 99.49 99.38 99.36
2 99.28 99.46 99.48 99.43
3 99.42 99.45 99.47 99.51

CIFAR-10
1 74.59 75.93 75.72 76.00
2 79.19 80.73 81.52 81.27
3 77.41 77.68 78.57 78.29

CIFAR-100
1 43.25 43.64 43.36 43.66
2 53.37 55.20 54.44 55.01
3 50.41 51.02 50.53 51.04

SVHN
1 91.80 91.54 91.96 91.98
2 90.79 90.75 91.18 91.36
3 85.52 85.60 85.88 86.05

Table 4.1: Classification accuracy for MNIST, CIFAR-10, CIFAR-100, and
SVHN.

proposed method demonstrated uniformly small non-diagonal covariance, which
agrees with the argument that the proposed method demonstrated a similar effect
to PCA.

Additionally, we varied the number of feature maps in the final layer to
200, 400, 600, 800 and evaluated the performance using CIFAR-10 with setting
1. We show the result in Figure 4.2. As the dimension decreased, the method us-
ing random features demonstrated poorer performance than the proposed method
and Nyström method, which illustrates the importance of using input informa-
tion for approximation. Conversely, these three methods demonstrated similar
performance when the dimension was 200. This suggests that when the dimen-
sion was very small, the input information was not sufficient and we needed to
include discriminative information in learning. In any case, the proposed method
demonstrated much better performance than the original CKN.

28



Figure 4.1: Covariance of learned feature for (top left) CKN, (top right) Ran-
dom, (bottom left) Nyström, and (bottom right) Proposed. The proposed
method shows less non-diagonal covariance than the other methods.

29



200 400 600 800
71

72

73

74

75

76

77

number of feature maps

ac
cu

ra
cy

 

 

CKN
Random
Nystrom
Proposed

Figure 4.2: Accuracy of CKN with fewer feature maps.

30



Chapter 5

Application to Feature Encoding

The relevant content in this chapter is scheduled to be published within 5 years.

31



Chapter 6

Application to Feature Pooling

In this chapter, we apply our method to feature pooling, which summarizes local
features in one image into one global feature. To this end, we first introduce a
function representation for the local features in one image. Then we apply our
kernel approximation method in this function space.

When designing feature pooling, it is important for the global feature to con-
tain rich information and be robust to small image translations. Spatial pyramid
matching is the feature-pooling method that is most commonly used. It divides
an image into subregions according to various resolutions and uses statistics of
local features in each subregion, e.g., the mean and maximum values, as global
features. However, there is no theoretical guideline for determining the pooling
region. In addition, the global feature value changes discontinuously when the
local feature strides over the edge of subregions. Also, the spatial pyramid match-
ing representation is verbose because the different spatial pooling regions overlap.
Moreover, we cannot obtain useful features when the resolution is too high be-
cause robustness to small translations is lost. Thus, we need a large pyramid size
to extract spatial information.

To overcome these problems, we propose a novel feature-pooling method that
uses the weighted averages of local features based on the position of the local
features in an image. To determine the weights, we propose a novel viewpoint
that regards local features in one image as a function. Local features have their
own feature values associated with positions in the image. Thus, we can see a
set of local features as a function from the image space to the local feature space
whose output is the value of the local feature at the input position. With this
interpretation, we can regard spatial pyramid matching as a projection into the
space of piecewise constant functions based on the standard inner product.

From this viewpoint, we first consider linear kernel with prior isometric Gaus-
sian distribution to derive novel pooling weights as orthogonal projections of this
function form into the spaces of low-degree polynomials with certain inner prod-

32



ucts. We obtain this pooling weight by first calculating orthonormal basis of the
spaces of low-degree polynomials with the inner products and then calculating
the inner product of the delta functions with the basis. Since the pooling weights
are polynomials of the position and thus smooth, the proposed global feature
is robust to small image translations. Also, since spatial pooling weights are
orthogonal with respect to the given metric, it is expected that we can extract
spatial information effectively. The feature dimension and the amount of spatial
information can be controlled by the degree of the polynomial space. Then we
consider Gaussian kernel with Gaussian distribution learned from training data
to get more complex spatial statistics.

As a metric of the polynomial space, we first derive the spatial pooling weights
of the spaces of low-degree polynomials with the standard inner product, which
consist of the products of Legendre polynomials. To derive the pooling weights
more robust to local translations than Legendre polynomials, we then propose a
weighted pooling method that considers the function space with weighted inner
products, which are more robust to local translations than the standard inner
product.

6.1 Existing work on feature pooling

Feature pooling is a method that combines local descriptors in an image into one
global feature. The simplest strategy is average pooling, which uses the means of
local descriptors as a global feature. Max pooling [78] is a method that is inspired
by the human visual cortex and is used for coding methods using histograms
such as Bag of Visual Words [13] and Locality-constrained Linear Coding [79].
Max pooling uses element-wise maximum values instead of the average of local
descriptors as a global feature and has been shown to be more robust to noise. A
theoretical analysis of these pooling methods was conducted in [80]. In [80], the
method that uses the Lp norm of each dimension is proposed as a method that
bridges between average pooling and max pooling. These pooling methods are
compared exhaustively via experiments in [81].

Lazebnik et al. [82] highlighted the importance of using spatial information
of local features in image recognition. As an approximation for the pyramid
match kernel, Lazebnik et al. proposed spatial pyramid matching, which divides
the input image into subregions with various resolutions and concatenates Bag of
Visual Words [13] in each subregion to obtain the global feature. Spatial pyra-
mid matching is also applied to global features with richer information, such as
the Fisher vector (FV) [14], the vector of locally aggregated descriptors (VLAD)
[42]. Though other methods can be combined with spatial pyramid matching,
spatial pyramid matching using average pooling is standard in feature pooling.

33



Thus, we consider average pooling in the next section. In addition, spatial pyra-
mid matching is combined with convolutional neural networks (CNNs) [31] and
demonstrates good performance [45].

As extensions of original spatial pyramid matching, Perronnin et al. [36] pro-
posed the non-regular spatial pyramid matching that uses different spatial resolu-
tions for x-axis and y-axis. Shahiduzzoman et al. [83] proposed to apply Gaussian
blur to the input image before extracting local features. Koniusz & Mikolajczyk
[84], Sanchez et al. [85] proposed a method that simply concatenates the nor-
malized two-dimensional (2D) position of local features to the feature value and
then applies feature coding methods to obtain accuracy comparable to spatial
pyramid matching with a smaller global feature dimension. Boureau et al. [86]
apply pooling based on both image space and local feature space. Krapac et
al. [87] derived a global feature that models both the local descriptor space and
image space using the Gaussian mixture model. Similarly, Cinbis et al. [88] as-
sumed a hierarchical probabilistic model that includes the feature position and
uses the differential of log-probability with respect to hyper-parameters as the
global feature.

Some researchers have considered pooling methods that use the weighted av-
erage. In [89], a weight based on saliency is proposed. Generalized Max Pooling
[90] calculates the weight using the feature value to suppress the effect of frequent
but meaningless local features. Some works [10, 73] adopted Gaussian Weighted
average instead of original average pooling. We can regard our method as some
extensions of these works because the proposed methods can derive similar weight
as the pooling weight that corresponds to 0-th degree polynomial, and also derive
the weight with higher order information as higher degree polynomials. Geomet-
ric Lp norm Feature Pooling (GLFP) [91] also considers the weighted average with
respect to the local feature position. However, while we can apply our method
even when the image sizes differ because our method considers the normalized
position of the local features, we cannot apply GLFP directly for this situation
because GLFP considers the adjacent relation between local descriptors. Also,
our method is faster than GLFP because GLFP requires the calculation of cu-
bic order of the number of local descriptors to calculate the weight, while our
methods require linear order.

Though our method computes the weight in an unsupervised manner, we can
calculate the discriminative weight by combining our method with the methods
that learn the weight of spatial pyramid discriminatively [92, 93].

In this paper, we focus on an extension of spatial pyramid matching with
average pooling because this method is general and can be easily combined with
coding methods.

34



Figure 6.1: Overview of spatial pyramid matching and the proposed pooling
method.

6.2 Spatial Pooling as a Projection

In Section 6.2 and 6.3, we propose an interpretation that regards local descriptors
in one image as a function and pooling as a projection in the function space.
Figure 6.1 shows an overview.

We assume that local features {(fk, pk)}Nk=1 in one image are densely extracted,
where N denotes the number of local features from an image, fk ∈ Rd denotes
the local features of each point after feature coding, such as the FV, and pk =
(xk, yk) ∈ (−1, 1)2 is the normalized 2D position of each local feature with the
image center (0, 0). The goal of feature pooling is to construct one global feature
F ∈ RD from {(fk, pk)}Nk=1. Since feature pooling is applied element-wise, we also
assume that d = 1 for simplicity. In the general case, we concatenate the output
of feature pooling for each dimension to obtain the global feature.

Average pooling is a method that simply ignores the feature position and uses
the mean as the global feature as follows:

F =
1

N

N∑
k=1

fk. (6.1)

Notice from this equation that average pooling completely disregards spatial in-
formation, which significantly affects recognition performance.

To include spatial information, spatial pyramid matching divides the image

35



space using various resolutions and uses the feature mean in each subregion Al
mn

as the global feature as follows:

F l
mn =

1

N l
mn

∑
pk∈Al

mn

fk, (6.2)

where N l
mn is the number of local features in Al

mn. We select the image subregion
Al

mn such as
(
m−1
l
, m

l

)
×
(
n−1
l
, n
l

)
, (−l < m, n ≦, l) , where l corresponds to the

resolution.
In the following, we propose the interpretation of feature pooling as a projec-

tion in the function space to analyze the property of spatial pyramid matching
and the proposed spatial weighted pyramid uniformly using the property of the
projected function space. Thus, we provide a function representation for both
the input local features and the output of feature pooling.

First, as a function representation of local features that includes both feature
values and spatial information, we consider a hyper-function in the image space
that connects the feature position to the feature value as follows:

f̃ =
N∑
k=1

fkδpk , (6.3)

where δp denotes the delta function that satisfies

⟨δp, g⟩ ≡
∫ 1

−1

∫ 1

−1

dxdyδp(x, y)g(x, y) = g(p), (6.4)

for a function g that is smooth and bounded near p.
Next, we consider a function space that consists of functions that are constant

in each Al
mn: F

l
const = {f |f =

∑
m,n c

l
mn1Al

mn
, clmn ∈ R}, where 1Al

mn
is a function

that outputs 1 in Al
mn and 0 otherwise and clmn is a coefficient. When l is fixed,

the set {1Al
mn
}mn is a base for this space; hence, the orthogonal projection is

f̃ →
∑
m,n

⟨f̃ , 1Al
mn
⟩1Al

mn
, (6.5)

where each coefficient ⟨f̃ , 1Al
mn
⟩ = F l

mnN
l
mn. When we sample local features

densely, we assume that N l
mn is approximately equal for each m and n. This

implies that the coefficients have almost equal information to F l
mn. Thus, spatial

pyramid matching is an orthogonal projection of the function representation of
local features f̃ into a space of piecewise constant functions Fconst.

36



-1 0 1

-1

-0.5

0

0.5

1 0

0.5

1

(a) m = 0, n = 0

-1 0 1

-1

-0.5

0

0.5

1 0

0.5

1

(b) m = 0, n = 1

-1 0 1

-1

-0.5

0

0.5

1 0

0.5

1

(c) m = 1, n = 0

-1 0 1

-1

-0.5

0

0.5

1 0

0.5

1

(d) m = 0, n = 2

Figure 6.2: Values of Weights for Spatial Pyramid Matching

6.3 Spatial Orthogonal Pooling

In the previous section, we showed that spatial pyramid matching can be re-
garded as an orthogonal projection into a space of piecewise constant functions.
The limitations of spatial pyramid matching that we stated in the introduction
originate from the properties of the projected function space. Thus, we attempt
to consider a different function space with better properties. To decide the func-
tion space we use, we need to decide the function space itself and the metric in
the space that calculates the similarity between two functions.

Among all, metric is more important than the function space as long as the
function space is large enough because metric directly encodes the value of posi-
tion relation.

The requirement for the metric is that first it is easy to compute the metric
and second is that we can encode the prior knowledge that the metric is robust

37



to the local translation. The candidates are standard inner product

⟨g, h⟩ =
∫ 1

−1

∫ 1

−1

dxdyg(x, y)h(x, y), (6.6)

and weighted inner product

⟨g, h⟩ =
∫
(−1,1)4

dp1dp2g(p1)h(p2)w(p1, p2), (6.7)

where w is the weight of the position p1 and p2. From the second requirement,
the weighted inner product is preferred because standard inner product does not
consider the product between the function value of different position. Also, from
the requirement of easiness of computation of metric, we set that the Gaussain

weight w(p1, p2) = e−
∥p1−p2∥

2

2a where a decides the bandwidth. As a function space,
we require that there are nested function spaces that converges to L2 space with
respect to the metric to ensure that we can make the function space enough large
as the dimension grows and we can choose the dimension of the space according to
the computation resources. Also, the function space should be consists of smooth
functions so that the pooling weight is robust to the local translation. Finally,
we require that it is easy to figure out the meaning of the function space. Now,
we consider the space of o-degree polynomials Fo

poly. The space converges to L2

when o→∞ and polynomials are small. We can regard the meaning of the basis
as the orthogonal polynomial with respect to the metric. We call the proposed
method spatial orthogonal pooling (SOP).

We calculate the weight of the case using standard inner product as a baseline
in Section 6.3.1 and the case using weighted inner product in Section 6.3.2.

6.3.1 Spatial Orthogonal Pooling Using the Standard In-
ner Product

First, we consider the standard inner product of L2(−1, 1)2,

⟨g, h⟩ =
∫ 1

−1

∫ 1

−1

dxdyg(x, y)h(x, y). (6.8)

The orthogonal polynomials for this inner product are the products of the or-
thogonal polynomials for the one-dimensional (1D) inner product∫ 1

−1

dxg(x)h(x), (6.9)

38



for each element x and y, which is the definition of Legendre polynomials. m-th
Legendre polynomial Pm, which can be written as

Pm(x) =

√
m+ 1

2

1

2mm!

dm

dxm
[(x2 − 1)m], (6.10)

is a m-degree polynomial and satisfies the following property:∫ 1

−1

dxPm(x)Pn(x) = δm,n. (6.11)

Thus, Pms for 0 ≤ m ≤ o compose a basis of Fo
poly.

Thus, when we denote Qmn(x, y) as Pm(x)Pn(y), then the proposed method
concatenates the weighted average

Fmn = ⟨f̃ , Qmn⟩ (6.12)

=
N∑
k=1

fkPm(xk)Pn(yk), (6.13)

for 0 ≤ m,n and m + n ≤ o to obtain the global feature. The pyramid size
is (o+1)(o+2)

2
. Note that the computational cost of calculating these weights is

negligible compared to the computational cost of calculating the feature value.

6.3.2 Spatial Orthogonal Pooling Using a Weighted Inner
Product

Next, we consider the inner product

⟨g, h⟩a =
∫
(−1,1)4

dp1dp2g(p1)h(p2)e
− ∥p1−p2∥

2

2a . (6.14)

This inner product also summarizes the product of function values for a different

position with the Gaussian weight e−
∥p1−p2∥

2

2a and is thus more robust to image
translations than the standard inner product. We can balance the robustness
and spatial information by adjusting a. When a → +0, this method converges
to average pooling. When a→∞, this method converges to the pooling method
proposed in Section 6.3.1. Note that we do not use Gaussian as a pooling weight
directly. Instead, we calculate smooth weight function including both 0-th order
information similar to Gaussian and high frequency information so as to approx-
imate the Gaussian-weighted inner product.

39



Similar to the previous subsection, orthogonal polynomials for this inner prod-
uct are products of orthogonal polynomials in the 1D case P a

n . Let Qa
mn(x, y) =

P a
m(x)P

a
n (y). We concatenate the weighted average

F a
mn = ⟨f̃ , Qa

mn⟩a (6.15)

=
N∑
k=1

fk⟨δpk , Qa
mn⟩a (6.16)

for 0 ≤ m,n and m + n ≤ o as a global feature. The pyramid size is (o+1)(o+2)
2

.

When the Gaussian weight e−
∥p1−p2∥

2

2a is used, we can calculate inner products
⟨xd1 , xd2⟩a analytically using the error function by applying a variable transfor-
mation. Thus, P a

n can be calculated using Gram-Schmidt orthonormalization.
Furthermore, the inner products of orthogonal polynomials and delta functions

⟨δp, Qa
mn⟩a =

∫
(−1,1)2

dp1Q
a
mn(p1)e

− ∥p−p1∥
2

2a (6.17)

can be written as functions of p and a. Thus, the complexity of calculating
the weight is approximately the same as when the standard inner product is
used and can be ignored. Figure 6.3 shows an example of the weights used in
the experiment. This figure shows that the weights have similar information to
those of original spatial pyramid matching. For example, Figure 6.3 (a) is a
smoother version of the weight of layer 0 of spatial pyramid matching. Figure 6.3
(b), (c), and (d) construct the weights of layer 1. Since the weight is smooth,
the proposed weights are both robust to local translation and have the spatial
information comparable to spatial pyramid matching.

6.3.3 Analysis of the Robustness of the Proposed Meth-
ods

In this subsection, we analyze how the global feature changes when the positions of
local features are slightly changed. We denote the position change as τ = (τx, τy)
and assume that f̃ has a nonzero value only in (−1+∥τ∥, 1−∥τ∥)2 for simplicity.
In this case, the change of the global feature F a

mn, δF
a
mn, can be bounded by

|δF a
mn| =|

N∑
k=1

fk (⟨δp, Qmn⟩ − ⟨δp+τ , Qmn⟩) | (6.18)

≤
N∑
k=1

|fk|max
k
|⟨δpk ,Qmn⟩−⟨δpk+τ ,Qmn⟩|. (6.19)

40



Thus, we evaluate the bound for

|⟨δp, Qmn⟩ − ⟨δp+τ , Qmn⟩|. (6.20)

When the standard inner product is used, by applying the mean value theo-
rem, this value can be written as

|Qmn(p)−Qmn(p+ τ)| (6.21)

= |τxP ′
m(x+θτx)Pn(y +θτy)+τyPm(x+θτx)P

′
n(y+θτy)|,

for some 0 < θ < 1. Because Pm are polynomials, the P ′P terms on the right-
hand side are bounded. Thus, for some constant c, the right-hand side is bounded
by c∥τ∥. Finally, the change of the global feature |δF a

mn| can be bounded using∑N
k=1 |fk|, τ .
Similarly, by applying the mean value theorem to e−

∥p−p1∥
2

2a in Eq. (13), a
bound can be derived for the case when the weighted inner product is used.
This analysis is based on the smoothness of the basis function, so robustness
is not necessarily ensured for spatial pyramid matching, which uses non-smooth
piecewise constant functions as a basis.

6.4 Experiments

We tested our pooling methods on standard object recognition datasets and an
action recognition dataset. In Section 6.4.1, we applied our methods on the
image recognition datasets. In Section 6.4.2, we applied our methods on the
action recognition dataset.

6.4.1 Image Recognition

First, we evaluated our methods with SIFT + FV on the image recognition
datasets. We tested our methods on three object recognition datasets, including
fine-grained datasets (Caltech UCSD Birds 200 (CUB-200), Stanford Dogs, and
Caltech256 dataset (Caltech256)).

CUB-200 [94] is a standard fine-grained object recognition dataset that con-
sists of 200 bird species with 60 images per class. The Stanford Dogs dataset
[95] consists of approximately 20,000 images of 120 dog classes. The Caltech256
dataset [96] consists of approximately 30,600 images of 256 object classes. We
used given train/test split for the CUB-200 dataset and Stanford Dogs dataset
and evaluated the accuracy. For the Caltech256 dataset, we randomly sampled
25 images per class as training data and 30 images per class as test data 10 times
and evaluated the average of the accuracy.

41



For all datasets, we extracted 128-dimensional SIFT features densely with
a step size of two and scales 4, 6, 8, and 10. We used ’vl phow’ implemented
in VLFeat [97] for extraction. We used PCA to reduce the dimensionality of
the features to 80. Then, each local descriptor was encoded using the FV with
128 clusters. We used 250,000 local features to learn the codebooks. For each
dataset, we applied spatial pyramid matching with scales [1 × 1], [1 × 1, 2 × 2],
[1×1, 2×2, 1×3], [1×1, 2×2, 3×3], [1×1, 2×2, 4×4], which had pyramid sizes
of 1, 5, 8, 14, and 21, respectively. We also compared the method that applied
gaussian weight on the local feature according to the position in each pyramid as
a baseline. We evaluated the proposed weighted average pooling using Legendre
polynomials of degree 0, 1, 2, 3, 4, and 5 had pyramid sizes of 1, 3, 6, 10, 15, and
21, respectively and the proposed weighted average pooling using a weighted in-
ner product with kernel parameter a = 0.25, 0.5, 1.0 and degree 0, 1, 2, 3, 4, 5 and
had pyramid sizes that were the same as those using Legendre polynomials. We
did not compare max pooling because this pooling does not work well on Fisher
Vector. For post-processing, we applied power normalization plus L2 normaliza-
tion on each pyramid for spatial pyramid matching and power normalization plus
L2 normalization on the entire vector for the proposed methods.

For the linear classifier, we used a one-vs-rest SVM. We used the SVM imple-
mented in LIBLINEAR [98] with C = 100 for training and plotted the accuracy.

Figure 6.4 shows the results for the original methods, where SOP indicates
the results for Spatial Orthogonal Pooling using standard inner product, SOP
with numbers indicate the results for Spatial Orthogonal Pooling using weighted
inner product with the number meaning kernel parameter. The figures show
that the performance is ranked as follows: spatial orthogonal pooling with the
standard inner product < spatial pyramid matching < gaussian-weighted spatial
pyramid matching < spatial orthogonal pooling with an appropriately weighted
inner product. The poor performance of the standard inner product may be
because Legendre polynomials are not sufficiently robust to small translations.
The appropriate choice of the kernel parameter contributes to the performance.
In each dataset, the case for the kernel parameter a = 0.25, 0.5 demonstrates good
performance. This is close to 1/3, which is the variance of the uniform distribution
in (−1, 1). In addition, the performance of spatial pyramid matching saturates
around [1× 1, 2× 2, 1× 3], but the performance of the proposed methods rapidly
improves until the degree is two, and the performance gradually increases until
the degree is five. Thus, the proposed methods demonstrate good performance,
even when the pyramid size is small; moreover, better accuracy can be achieved
using higher degree polynomials.

42



6.4.2 Action Recognition

Next, we applied our method to the action recognition task on two movie datasets,
HMDB51 dataset [99] that consists of about 7,000 movie clips with 51 action
categories, and UCF101 dataset [100] that consists of 13,320 movie clips with 101
action categories.

As a local descriptor, we extracted TDD features [43] that are the mean of
output of convolutional layer around each improved dense trajectory [101]. As a
CNN, we used VGG16 [32] network pretrained with spatial (RGB) and temporal
(opticalflow) images and extracted the output of conv3, 4, and 5 layer as local
features. Then we coded TDD feature using FV with dimension of the local
descriptor reduced to 64 and the number of clusters 256 and then applied the
linear SVM with C = 100.

In this case, since the feature dimension is larger than that used in the image
recognition dataset and time-axis is finer compared to image-space with respect
to the position of TDD features, we only consider spatal pyramid with respect to
time-axis.

For each dataset, we compared spatial pyramid matching with scales [1× 1×
1], [1× 1× 1, 1× 1× 2], [1× 1× 1; 1× 1× 2; 1× 1× 4], which had pyramid sizes
of 1, 5, and 7, respectively and proposed methods with degree 0, 1, 2, 3, and 4
with pyramid sizes 1, 2, 3, 4 and 5 respectively. Each dataset gives 3 train/test
splits and we evaluated the average accuracy using these 3 splits.

Figure 6.5 shows the results. The proposed methods show much better accu-
racy than spatial pyramid matching on HMDB51 dataset even when the pyramid
size is small. Also, the proposed methods with weighted inner products show
comparable performance on UCF101 dataset.

Next, we plotted the score of each layer in UCF101 dataset in Figure 6.6
to evaluate the effect of spatial pooling in detail. We can gain performance by
considering spatial information on RGB input, while spatial information does not
work well on flow image. This is because while we can decide the time position of
each RGB image exactly, flow image used the optical flow information of 10 frames
around the time. Since each movie clip has the time of the order of seconds, this
time width of the frame is not negligible and time information is much noisy. In
such situation, though the proposed method with standard inner product shows
poor performance, the proposed method with weighted inner product is as much
robust as spatial pyramid matching and show a little better score. Considering
that our methods show better performance on RGB input image, the proposed
methods are effective for both spatial and temporal input. These results showed
that our methods can extract time-domain information much better than spatial
pyramid matching. Thus our methods are also effective for movie recognition.

43



6.5 Discussion

In this chapter, we provided an interpretation of spatial pyramid matching as
an orthogonal projection into the function space by considering local features
in an image as a function on the image space. We also proposed a novel fea-
ture pooling methods called Spatial Orthogonal Pooling that used the weighted
average as orthogonal projections into a space of low-degree polynomials and
evaluated robustness to image translations of the proposed methods. Experimen-
tal evaluations using image recognition datasets and action recognition datasets
demonstrated that the proposed pooling methods resulted in higher accuracy than
spatial pyramid matching in both cases in which the pyramid size was small and
large. These results showed that proposed methods exploit spatial information
more effectively.

44



-1 0 1

-1

-0.5

0

0.5

1

0.3

0.4

0.5

0.6

0.7

(a) m = 0, n = 0

-1 0 1

-1

-0.5

0

0.5

1
-0.5

0

0.5

(b) m = 0, n = 1

-1 0 1

-1

-0.5

0

0.5

1
-0.5

0

0.5

(c) m = 1, n = 0

-1 0 1

-1

-0.5

0

0.5

1
-0.4

-0.2

0

0.2

0.4

(d) m = 0, n = 2

-1 0 1

-1

-0.5

0

0.5

1

-0.4

-0.2

0

0.2

0.4

(e) m = 1, n = 1

-1 0 1

-1

-0.5

0

0.5

1
-0.4

-0.2

0

0.2

0.4

(f) m = 2, n = 0

Figure 6.3: Values of ⟨δp, Qa
mn⟩a with small m and n for α = 0.25.

45



1 3 56 8 10 15 21

Pyramid size

12

14

16

18

20

22

A
cc

u
ra

cy

SOP (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(a) CUB-200

1 3 56 8 10 15 21

Pyramid size

24

26

28

30

32

34

A
cc

u
ra

cy

SOP (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(b) Stanford Dogs

1 3 56 8 10 15 21

Pyramid size

34

36

38

40

42

44

46

A
cc

u
ra

cy

SOP (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(c) Caltech256

Figure 6.4: Comparison of classification performance using SIFT + FV in (a)
CUB-200 dataset, (b) Stanford Dogs dataset, and (c) Caltech256 dataset.

1 2 3 4 5 6 7

Pyramid size

60

62

64

66

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(a) HMDB51

1 2 3 4 5 6 7

Pyramid size

90

90.5

91

91.5

92

92.5

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(b) UCF101

Figure 6.5: Comparison of classification performance using TDD + FV in (a)
HMDB51 dataset and (b) UCF101 dataset.

46



1 2 3 4 5 6 7

Pyramid size

70

71

72

73

74

75

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(a) Spatial3

1 2 3 4 5 6 7

Pyramid size

75

76

77

78

79
A

cc
u

ra
cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(b) Spatial4

1 2 3 4 5 6 7

Pyramid size

72

73

74

75

76

77

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(c) Spatial5

1 2 3 4 5 6 7

Pyramid size

72

74

76

78

80

82

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(d) Temporal3

1 2 3 4 5 6 7

Pyramid size

78

80

82

84

86

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(e) Temporal4

1 2 3 4 5 6 7

Pyramid size

83

84

85

86

87

A
cc

u
ra

cy

SOP standard (ours)

SOP 0.25 (ours)

SOP 0.5 (ours)

SOP 1.0 (ours)

SPM

Gauss

(f) Temporal5

Figure 6.6: Comparison of classification performance of each layer using TDD +
FV in UCF101 dataset. ’Spatial’ indicates the score that we used the features
extracted from RGB image and ’Temporal’ indicates the score for the features
extracted from flow image. The number in the name indicates the number of the
layer.

47



Chapter 7

Evaluation of the Whole
Architecture

Since we have proposed a method for feature extraction, feature encoding, and
feature pooling, we can now combine these three modules and extract one global
feature from the raw image.

Our final framework is that first extracts raw patch feature based on the
convolutional kernel network architecture combined with proposed empirical or-
thogonal decomposition method that is described in Chapter 4. Then apply each
local patch feature the low-rank covariance encoding based on matrix manifold
that we described in Chapter 5. Then we summarize each encoded local patch
feature associated with the position of the feature in the image into one global
feature that we explained in Chapter 6. Finally, we apply non-linear embedding
using kernel approximation method that is explained in Chapter 3 and finally
applies linear SVM to output the category of the image.

7.1 Experimental Setting

We now evaluate the performance of the whole framework. To evaluate the
accuracy in several domain, we tested our method using two standard object
recognition datasets (Caltech256 dataset [96], and ilsvrc subset [30]), two fine-
grained image recognition datasets (CUB-200 [94], Stanford Dogs dataset [95]),
and one texture recognition dataset (KTH-TIPS-2b [102, 103]). We omitted
MNIST [28], CIFAR-10 [29], CIFAR-100 [29], and SVHN [77] because they are
very easy and the size is too small to extract position information.

The Caltech256 dataset consists of approximately 30,600 images of 256 object
classes. We randomly selected images with 500 classes and 60 images per class.
CUB-200 is a standard fine-grained object recognition dataset that consists of

48



8 16 32 64

rank

20

21

22

23

24

25

26

27

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(a) Caltech256

8 16 32 64

rank

7

7.5

8

8.5

9

9.5

10

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(b) ILSVRC subset

8 16 32 64

rank

10

11

12

13

14

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(c) Caltech Birds

8 16 32 64

rank

12

13

14

15

16

17

18

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(d) StanfordDogs

8 16 32 64

rank

52

54

56

58

60

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(e) KTH

Figure 7.1: Accuracy using the architecture without non-linear embedding on
global feature

200 bird species with 60 images per class. The Stanford Dogs dataset consists
of approximately 20,000 images of 120 dog classes. KTH-TIPS-2b contains 11
material categories with 4,752 images. For the Caltech256 dataset, we randomly
sampled 25 images per class as training data and 30 images per class as test data
5 times and evaluated the average of the accuracy. We randomly sampled 30
images per class as training and the rest as test data 5 times and evaluate the
average of the accuracy. We used given train/test split for the CUB-200 dataset
and Stanford Dogs dataset and evaluated the accuracy. We used the average of
4 kinds of given train/test split for KTH dataset.

As a network architecture, we modified the architecture proposed by Alex
Krizhevsky [31] that consists of 11× 11 convolution layer with filter size 96 and
stride 4, 3× 3 max pooling with stride 2, 5× 5 convolution layer with filter size
256 and pad 2, 3 × 3 max pooling with stride 2, two 3 × 3 convolution layers
with filter size 384 with pad 1, 3 × 3 convolution layer with filter size 256 with
pad 1, and three fully-connected layer with number of hidden states 4,096 with

49



8 16 32 64

rank

21

22

23

24

25

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(a) Caltech256

8 16 32 64

rank

7

7.5

8

8.5

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(b) ILSVRC subset

8 16 32 64

rank

10

10.5

11

11.5

12

12.5

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(c) Caltech Birds

8 16 32 64

rank

12

13

14

15

16

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(d) StanfordDogs

8 16 32 64

rank

54

56

58

60

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(e) KTH

Figure 7.2: Accuracy using the architecture using non-linear embedding with
8,192 dimension on global feature.

relu activation function. As for our method, we replace convolutional layer + relu
with our proposed learned feature function based on empirical orthogonal decom-
position and max pooling with average pooling. We also replace fully-connected
layers with our low-rank covariance encoding, proposed spatial orthogonal pool-
ing, empirical orthogonal decomposition, and linear SVM.

We varied the rank of low-rank covariance encoding as 8, 16, 32, and 64.
We used the pooling method as average pooling and proposed spatial orthogonal
pooling using gaussian weight with band width 0.25 and degree of polynomials as
0, 1, and 2. As a final embedding, we used the linear embedding and orthogonal
embedding with final dimension 4,096, 8,192. Since the dimension of local feature
is 256, the dimension of the global feature is 256 times the rank of covariance
encoding times the pyramid size when we use the linear embedding and the
chosen dimension of global feature when orthogonal embedding is used.

50



8 16 32 64

rank

21

22

23

24

25

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(a) Caltech256

8 16 32 64

rank

7

7.5

8

8.5

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(b) ILSVRC subset

8 16 32 64

rank

10

10.5

11

11.5

12

12.5

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(c) Caltech Birds

8 16 32 64

rank

12

13

14

15

16

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(d) StanfordDogs

8 16 32 64

rank

54

56

58

60

A
cc
u
ra
cy

avg

kweight0

kweight1

kweight2

(e) KTH

Figure 7.3: Accuracy using the architecture using non-linear embedding with
4,096 dimension on global feature.

7.2 Result

Figure 7.1 shows the results that we use linear embedding for global feature. As
for pooling weight, we can gain performance by using our pooling method and
increasing the pyramid size except for KTH dataset. This is consistent to fact
that KTH is a texture dataset and spatial information does not contribute to
classification but spatial information is useful in object recognition. Also, the
accuracy increases as the rank of fixed-rank PSD increases. Our encoding using
fixed-rank PSD works well till 64 rank. As the pyramid size grows, the perfor-
mance gain is larger when the rank is smaller. Since the statistics correspond
to higher-degree polynomials are noisier than that correspond to smaller-degree
polynomials and the statistics correspond to subspace with smaller eigenvalues
are noisier than that of larger eigenvalues. Thus, the statistics correspond to
higher-degree polynomials and subspace with smaller eigenvalues are very noisy
and have smaller impact on the performance. Thus, when the pyramid size is

51



10
0

10
1

10
2

index

0

0.05

0.1

0.15

0.2

V
ar
ia
n
ce

caltech256

ilsvrc

cub

stanforddogs

kth

(a) Layer 1

10
0

10
1

10
2

index

0

0.01

0.02

0.03

0.04

0.05

0.06

V
ar
ia
n
ce

caltech256

ilsvrc

cub

stanforddogs

kth

(b) Layer 2

10
0

10
1

10
2

index

0

0.01

0.02

0.03

0.04

0.05

0.06

V
ar
ia
n
ce

caltech256

ilsvrc

cub

stanforddogs

kth

(c) Layer 3

10
0

10
1

10
2

index

0

0.01

0.02

0.03

0.04

0.05

0.06

V
ar
ia
n
ce

caltech256

ilsvrc

cub

stanforddogs

kth

(d) Layer 4

10
0

10
1

10
2

index

0

0.01

0.02

0.03

0.04

0.05

0.06

V
ar
ia
n
ce

caltech256

ilsvrc

cub

stanforddogs

kth

(e) Layer 5

Figure 7.4: Distribution of eigenvalues of covariance of features in each layer.

large, we can gain performance even when the rank is small.
Figures 7.2 and 7.3 show the result when we use non-linear embedding on

the global feature to 4,096 and 8,192 dimension respectively and apply linear
SVM. These figures show that we can gain performance for KTH, but the linear
method works better for the rest. KTH has the small number of categories and
has relatively large number of images per each category. Thus, non-linear method
works well. However, for the rest dataset, the original global feature is already
highly non-linear and adding further nonlinearity does not work well. Also, the
case for 4,096 dimensions and 8,192 dimensions show similar performance. Thus,
4,096 dimensional embedding is enough in our case.

Figure 7.4 shows the top-100 eigenvalues of covariance of input vectors in
each layer. KTH shows relatively large eigenvalues even when the index is large.
This indicates the variety of local patch patterns of texture datasets. Object
recognition datasets including fine-grained datasets show similar tendency. Fine-
grained StanfordDogs show a little larger decay of eigenvalues and Caltech256
dataset show a little smaller decay of eigenvalues especially in Layer 2. We
can assume that the patches are similar for fine-grained datasets and thus the

52



Methods Caltech256 ILSVRC subset Caltech Birds StanfordDogs KTH

Fisher Vector 15.7 8.15 7.51 12.6 49.4
Auto Encoder 10.0 4.0 4.8 6.1 37.3

Ours (Linear) 26.4 9.5 13.7 16.7 58.1
Ours (Nonlinear 4,096) 23.7 8.45 11.8 14.5 60.0
Ours (Nonlinear 8,192) 23.8 8.45 11.5 14.9 60.6

Table 7.1: Comparison of accuracy with existing methods.

variance decays quickly. However, by applying non-linear embedding repeatedly,
this difference becomes smaller as it becomes a higher layer.

7.3 Comparison with existing methods

Also, we compare the result with two existing unsupervised feature extraction
methods, Fisher Vector and Auto Encoder. As for Fisher Vector, we extract RGB
patch with size 25× 25 with step size 16 from the image resized to 227× 227 to
match the number of local feature to that of our method. Then we encode the
raw RGB vector using Fisher Vector with local feature dimension reduced to 80
and the number of components 128. Thus the dimension of the global feature is
2×80×128. As for Auto Encoder, the architecture of autoencoder is the same as
the first 7 layer of AlexNet and the decoder consists of two fully-connected layers
and four deconvolution layers. We learn the model using l2 loss and apply linear
SVM to the 4,096-dimensional encoded feature. As for our method, we used the
score when we select the rank of the matrix manifold and pooling method using
cross validation per each embedding method of global feature.

Table 7.1 shows the accuracy of Fisher Vector and Auto Encoder and our
method, where Ours (Linear), Ours (Nonlinear 4,096), and Ours (Nonlinear
8,192) denote the score of the method that uses the linear embedding and orthog-
onal embedding with final dimension 4,096, 8,192 respectively. Our method shows
better performance than both methods. Compared to Auto Encoder, while Auto
Encoder is trained to model the generation of image itself, our method models
the relationships between images, thus we can model more complex information
and that contributes to the classification accuracy. Compared to Fisher Vector,
our method has larger layers and learn the feature more than Fisher Vector.
Thus, our method can extract more complex feature that reflect the information
of training data. This property contributes to the performance of the proposed
method.

These results show that the proposed framework can extract discriminative
information well.

53



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this research, we propose a novel image feature extraction method that can
be learned without label and can be analyzed easily by proposing a novel frame-
work that regards the image feature extraction modules uniformly as Euclidean
Embeddings from the bag of local features to the low-dimensional vector, and by
combining our image feature extraction framework with novel data-driven ker-
nel approximation method. We analyzed the performance of our approximation
method and proposed a method to apply our method to each module used in
image feature extraction. Our framework is the generalization of the framework
based on the hand-crafted features that exploits data information more frequently
and our framework is also an extension of auto encoder that models the relation-
ship between images instead of image itself and that uses additional encoding
and pooling layers that exploit the prior knowledge. To the best of our knowl-
edge, this paper is the first work that found out the common structure between
local feature extraction and global feature extraction and proposed the feature
extraction method that exploits this structure.

In Chapter 3, we proposed a kernel approximation method based on the or-
thogonal decomposition with distribution estimated from training data. We cal-
culated the bound for the kernel approximation performance and experimentally
demonstrated that our method can better approximate the kernel than existing
methods.

In Chapter 4, we apply our framework to local feature extraction by com-
bining our method to Convolutional Kernel Networks architecture. From the
experiment, we observed that we can fastly calculate the effective local feature
and our feature is more uncorrelated than existing features.

In Chapter 5, we apply our framework to the covariance encoding by assuming
the distribution of the tangent space of matrix manifold of fixed-rank PSD. We

54



observed that our new feature demonstrates good performance for several input
with small feature dimension.

In Chapter 6, we apply our framework to feature pooling method by intro-
ducing the function representation for the bag of local features in one image and
considering the kernel and distribution in function space. From our method, we
can derive a smooth and independent feature pooling weight and correlation be-
tween pooled value, resulting in good recognition performance with respect to
the feature dimension.

In Chapter 7, we combine the methods proposed in Chapter 3, 4 and 6 into
the end-to-end unsupervised image feature extractor. We applied our proposed
method to standard object recognition datasets and texture recognition dataset
and demonstrated that our method shows better accuracy than Fisher Vector
and Auto Encoder.

Finally, we summarize the relationship between our proposed Euclidean Em-
bedding from the bag of local features {(fi, pi)}Ki=1 to the global feature F written
as

F =
K∑
i=1

ξpos(pi)⊗ ξfeat(fi), (8.1)

and the proposed feature extraction methods in each chapter. In Chapter 4,
we apply the embedding to the bag of pixel values in the local image patch to
construct the local patch feature by learning ξfeat unsupervisedly as an approxi-
mation of the Gaussian kernel calculated as Equation 3.17 in Chapter 3 and by
using gaussian weight for ξpos. In Chapter 5 and 6, we apply the embedding to
the bag of local features in the whole image to construct the global feature by ap-
plying fixed-rank covariance encoding calculated in Chapter 5 where n(fif

t
i −µµt)

is substituted to Σn as ξfeat and by using spatial orthogonal pooling written as
Equation 6.17 in Chapter 6 as ξpos.

In summary, our findings in our research are as follows:

• We can approximate the nonlinear Gaussian kernel efficiently by estimating
Gaussian distribution from training data.

• We can calculate the efficient patch feature by approximating convolutional
kernel by our method.

• We can extract low-dimensional covariance feature by assuming the tangent
space of matrix manifold.

• We can derive various pooling methods by regarding bag of local features
as a function from image space to feature space.

55



• Our feature extraction framework show better accuracy than existing un-
supervised feature learning methods.

8.2 Future Works

In this research, we proposed a method to derive the image feature extraction
method based on kernel approximation and Euclidean embeddings. As a future
work, first is to encode more general prior knowledge. We have applied our
method to simple Gaussian kernel with Gaussian Distribution, but we will need
to handle various kernels with respect the prior knowledge. To come down to
our method, we need to apply variable transformation based on the invariance
property of the kernel. This derivation is in our future work. Second is the
application to the different modal. We handle image feature extraction in our
study, but our framework is general and we can apply our method to the modal
such as sound and video recognition. The evaluation of the performance on such
modal is in our future work.

56



Appendix A: Fast Random
Features for Semigroup Kernels

In this chapter, we describe the method for approximating semigroup kernels. The
method is not included in our framework, but contributes to fast approximation
of kernel function.

The random features method is an approximation method that first represents
the given kernel function by the expectation of the product of the parameterized
function values of two inputs and then approximates the kernel with the in-
ner product of vectors composed of the values of randomly sampled functions.
Various random features techniques have been proposed, with their construc-
tion depending on the structure of the given input feature and kernel function
[55, 67, 104, 105].

When we apply the random features method on large-scale data, we need to
consider the cost involved in calculating the approximate feature vectors. Naive
approximation methods often require O(Dd) computation, where d and D denote
input and output dimensions, respectively. This is not negligible when d is large
because in most cases, D ≥ d. Thus, recent work has proposed methods to
calculate the features with O(D log d). Most existing work approximates the
Gaussian kernel [62, 106, 107] or polynomial kernels [108]. In this work, we
propose a fast method that approximates semigroup kernels that is effective for
positive vectors but where we cannot apply existing fast methods directly.

A wide range of features, including histograms, discrete probabilistic distri-
butions, and activations of convolutional neural networks (CNNs), are associated
with the space of positive vectors Rd

+. The semigroup kernel is a kernel that
exploits such positive definiteness. For two inputs x, y ∈ Rd

+, the kernel value of
the semigroup kernel depends only on the summation of the two inputs x+ y. In
such a case, Berg et al. [109] have proven that there exists a distribution p(w) on
Rd

+ such that

k(x+ y) =

∫
e−wt(x+y)p(w)dw. (A.2)

Based on (A.2), Yang et al. [67] proposed random Laplace features, which use

57



{
√

1
D
e−wjx}Dj=1 with {wj}Dj=1 sampled from p(w) as a D-dimensional feature vec-

tor. Random Laplace features exhibit superior performance to existing commonly
used kernels such as the Gaussian and χ2 kernels with regard to the classification
of histogram data. The computational complexity is O(Dd). As the dimension
of the input feature grows, this linear dependency on d becomes non-negligible.

In this paper, we propose a method to calculate the feature vector with
O(D log d) complexity by exploiting structured matrices to approximate the semi-
group kernel quickly. Structured matrices are matrices with special structures
that enable us to calculate the matrix-vector products recursively with O(d log d)
time complexity and O(d) memory at the expense of independence between dif-
ferent feature elements. Existing fast Gaussian kernel approximation methods
[62, 106, 107] combine structured matrices with random sign flipping to reduce
the correlation between different feature elements. For random Fourier features
on a shift-invariant kernel such as Gaussian kernel, the sample distribution is sym-
metric. Thus, sign flipping does not change the output distribution. However,
for random Laplace features, the support of the weight distribution p(w) and the
input x are positive. Thus, sign flipping changes the output distribution. Instead,
we propose a novel method called “alternating circulant random features” that
utilizes weights randomly sampled from multiple independent structured matrices
to calculate the features. Because the proposed method uses structured matri-
ces, the computation complexity depends on the log of the input dimension d.
Further, the proposed method preserves the weight distribution by replacing ran-
dom sign flipping with random choice from the variables sampled from the same
distribution. Thus, this technique can be applied to semigroup kernels.

In addition, we demonstrate that the covariance for random circulant features
without random sign flipping is as large as autocovariance, while the covariance
for the proposed method becomes small with respect to the autocovariance as
d increases. Thus, the proposed features exhibit comparable performance to
random Laplace features.

We compare the performance of the proposed method to that of an approxi-
mate semigroup kernel for application to Bag of Visual Words features that can
be regarded as a histogram, and to the CNN features. We demonstrate that the
proposed method exhibits comparable classification performance to the random
Laplace features method with a significantly shorter computation time.

In summary, the contributions of this paper are as follows:

• We propose novel fast random features called “alternating circulant ran-
dom features”; the proposed method can compute random features with
computation complexity O(D log d) and O(D) memory requirement.

• We theoretically evaluate that the approximation error of the proposed

58



Method Memory Time Gaussian Semigroup

Random Fourier / Laplace Features O(Dd) O(Dd) Yes Yes
FastFood O(D) O(D log d) Yes No
Circulant O(D) O(D log d) Yes Partially Yes
Structured Orthogonal Random Features O(D) O(D log d) Yes No
Alternating Circulant Random Features (ours) O(mD) O(mD log d) Yes Yes

Table A.1: Comparison of kernel approximation methods. Here, d and D de-
note the dimensions of the input and output features, respectively, and m is the
number of mixed structured matrices (2 or log2 d in this study). “Gaussian” and
“Semigroup” indicate the method applicability to Gaussian and semigroup ker-
nels, respectively. Note that the random circulant features method can be applied
to semigroup kernels if we omit random sign flipping.

method is comparable to that of the random Laplace features method as
the input dimension d grows.

• Experimental results using Bag of Visual Words features and CNN features
show that the proposed method achieves similar accuracy to the random
Laplace features method and requires less computation time.

A.1 Background

For a given kernel function k(·, ·) : Rd × Rd → R expressed as the expectation of
the product of the parameterized function ψw(·) : Rd → R with respect to the pa-

rameter w, denoted as Ew∼p(w)[ψw(·)ψw(·)], random features use {
√

1
D
ψwj

(·)}Dj=1

with {wj}Dj=1 randomly sampled from p as a feature function to approximate the
kernel value.

Semigroup kernels are the kernels whose values depend only on the summa-
tion x + y of the two inputs x, y ∈ Rd

+. For the semigroup kernel, there exists
a distribution p(w) on Rd

+ that satisfies (A.2). Random Laplace features use

{
√

1
D
e−wix}Di=1 with {wi}Di=1 sampled from p(w) as a feature. In this study, in

addition to the assumption of semigroup kernel, we also assume that the ker-
nel can be decomposed as the product of the kernels of each dimension k1,
as k(x + y) =

∏d
j=1 k1(xj + yj). Note that the exponential-semigroup kernel

e−β
∑d

j=1

√
xj+yj and reciprocal-semigroup kernel

∏d
j=1

λ
xj+yj+λ

, to which Yang et

al. applied random Laplace features, satisfy this assumption. When we denote

the matrixW = [w1, w2, · · ·wD]
t ∈ RD×d, the features are expressed as

√
1
D
e−Wx.

59



We call the kernel function defined by two inputs x, y ∈ Rd a “shift-invariant
kernel,” if the kernel value depends on the difference in the input x − y only.
Bochner [59] has shown that the shift-invariant kernel k can be expressed with
the measure p(w) on Rd as

k(x− y) =
∫
eiw

t(x−y)p(w)dw. (A.3)

Random Fourier features methods [55] randomly sample {wj}Dj=1 from p(w) in

(A.3) and use
√

1
D
eiWx or

√
2
D
cos(Wx + b), with b uniformly sampled from

[0, 2π], as features.
Recently, fast computation methods have been proposed for the Gaussian

kernel, which is one of the shift-invariant kernels. These approaches use structured
matrices where the matrix-vector product can be calculated with O(d log d) and
random diagonal matrices where the matrix-vector product can be calculated
with O(d) [62, 106, 107]. These studies have allowed calculation of d-dimensional
random features with O(d log d) time complexity and we achieve D-dimensional
features with O(D log d) complexity by independently sampling the features D/d
times. Such fast random features exhibit comparable or superior approximation
performance to the original random Fourier features.

A.2 Related Work

Various approximation techniques have been proposed depending on the kernel
structures [55, 67, 104, 108]. In this section, we focus on fast random Fourier
features using structured matrices. The properties of the existing fast approxi-
mation methods and the proposed method are summarized in Table A.1. In the
discussion that follows, we assume that d is a power of 2. In the general case, we
pad 0’s to set the dimension to a power of 2.

FastFood FastFood [62] exploits the property for which the Hadamard matrix
combined with diagonal Gaussian matrices exhibits similar behavior to a Gaussian

matrix. For the Gaussian kernel e−
∥x−y∥2

2σ2 , FastFood uses

√
2 cos

(
1

σ
√
d
SHGΠHBx+ b

)
(A.4)

as a global feature, where H is the Hadamard matrix whose elements are -1 or
1.This matrix is a constant multiple of orthogonal matrices, and the matrix-
vector product can be calculated recursively with O(d log d) time complexity.

60



Here, S,G, and B are diagonal matrices representing random scaling, a random
Gaussian variable, and random sign flipping, respectively. Further, Π is a random
permutation. Thus, the complexity needed to calculate a d-dimensional random
feature is O(d log d). We independently sample this feature D/d times to obtain
the D-dimensional output feature.

Random Circulant Features Yu et al. [107] have proposed a random Fourier
features that uses the circulant matrix instead of the Hadamard matrix. For the
vector r ∈ Rd, the circulant matrix circ(r) ∈ Rd×d is defined as

circ(r) =


r1 rd · · · r2
r2 r1 · · · r3
... r2

. . .
...

rd rd−1 · · · r1

 . (A.5)

We can calculate the matrix-vector product using the fast Fourier transform as
circ(r)x = F−1(F (r) ◦ F (x)) with O(d log d) complexity, where ◦ denotes the
element-wise product.

With randomly sampled w, the random circulant features approach yields

√
2 cos (circ(w)Bx+ b) (A.6)

as a global feature. Although Yu et al. did not analyze the performance of this
method, in experiments, the random circulant features method exhibits equivalent
performance to the random Fourier features method.

Choromanski & Sindhwani [110] generalized the fast Fourier features method
to construct low-variance features via graph-theoretic concept.

Structured Orthogonal Random Features Felix et al. [106] have proposed
the use of randomly sampled orthogonal matrices as theW for a Gaussian kernel,
and have also proposed structured orthogonal random features that compute ma-
trices similar to orthogonal matrices with O(d log d) time complexity. Although
structured orthogonal random features are not an unbiased estimator of the Gaus-
sian kernel, the approximation error converges to 0 with increasing d. Further,
the correlation between features is small because orthogonal matrices are used.
Structured orthogonal random features are calculated as

√
2 cos

(√
d

σ
HB1HB2HB3 + b

)
, (A.7)

where the Bi terms correspond to independent random sign flipping.

61



A.3 Alternating Circulant Random Features

As discussed in the previous section, existing fast random features methods using
structured matrices depend on sign flipping to reduce the covariance between the
obtained features. Thus, we cannot apply these methods to the case of random
Laplace features for which the weights are sampled from Rd

+. The random circu-
lant features approach does not use Hadamard matrices; thus, random circulant
features can be applied if random sign flipping is omitted. However, as shown in
the next section, the covariance of the features becomes very large. To overcome
this problem, we propose the alternating circulant random features method, in
which random sign flipping is replaced with random mixture, and we analyze the
approximation performance.

A.3.1 Method

In the proposed method, we employ a random column mixture of m indepen-

dent circulant matrices. We sample {w(l)
j }

j=d,l=m
j=1,l=1 in advance and use

√
1
D
e−Wx

or
√

2
D
cos(Wx+ b), with each column of W uniformly sampled from circ(w(l)):,j

with l ranging from 1 to m. As each column in circ(w) is composed of all the ele-
ments of w, only changing the column reduces the correlation of feature elements
drastically. Thus, we can rapidly calculate the proposed features, as in the case
of random circulant features. We denote s(l) ∈ Rd as a vector, where s

(l)
j = 1 if

and only if the j-th column is sampled from circ(w(l)) and is 0 otherwise. Then,
Wx can be calculated as

m∑
l=1

F−1
(
F
(
w(l)
)
◦ F

(
s(l) ◦ x

))
. (A.8)

The computational complexity of (A.8) is O(mD log d) and the required memory
is O(mD). In the experiments discussed below, we considered the case in which
m = 2 and m = log2 d. When m = 2, the computational complexity is identical
to that for existing fast random Fourier features methods. Further, the proposed
method is an unbiased estimator of the original kernel because for each selected
row, each column element is independent and identically distributed (i.i.d.) from
the original distribution.

A.3.2 Analysis

In this section, we evaluate the variance of the kernel functions approximated with
random Laplace features. We first evaluate the original method, which randomly

62



samples all the weights i.i.d. from p1; then, we evaluate the case of random
circulant features without random sign flipping. Finally, we calculate the variance
for the proposed features. For two inputs x and y, we define z = x+ y ∈ Rd. We
assume that k(z) =

∏d
j=1 k1(zj). In this case, the corresponding distribution p

can be decomposed as p(w) =
∏d

j=1 p1(wj).
First, we evaluate the autocovariance of the approximate kernel value e−wz

for the original method.

Theorem A.3.1. Varw∼p(w)[e
−ztw] = k(2z)− k(z)2.

Proof. It holds that

Ew∼p(w)

[(
e−ztw

)2]
= Ew∼p(w)[e

−(2z)tw] = k(2z). (A.9)

Thus,

Varw∼p(w)[e
−ztw] (A.10)

= Ew∼p(w)

[(
e−ztw

)2]
−
(
Ew∼p(w)[e

−ztw]
)2

(A.11)

= k(2z)− k(z)2. (A.12)

As there is no covariance between elements with different dimensions, the

variance of the approximated kernel with output dimension D is k(2z)−k(z)2

D
.

Next, we calculate the covariance for random circulant features without ran-
dom sign flipping. For the vector v = [v1, v2, · · · , vd]t, we denote

↑nv = [vn+1, vn+2, · · · , vd, v1, · · · , vn]t (A.13)
↓nv = ↑−nv (A.14)

rev(v) = [vd, vd−1, · · · , v2, v1]t. (A.15)

The autocovariance is identical to that for the original method. In this case,
the elements for the different dimensions have non-zero covariance because the
weights are shared in the different rows.

Theorem A.3.2.

Ew∼p(w)[e
−(Wz)j1e−(Wz)j2 ] = k(z + ↑(j1−j2)z), (A.16)

for 1 ≤ j1, j2 ≤ d.

63



Proof.

Ew∼p(w)

[
e−(Wz)j1e−(Wz)j2

]
(A.17)

= Ew∼p(w)

[
e−

↑j1 (rev(w))tze−
↑j2 (rev(w))tz

]
(A.18)

= Ew∼p(w)

[
e−wtrev(↓j1z)e−wtrev(↓j2z)

]
(A.19)

= Ew∼p(w)

[
e−wt(rev(↓j1z)+rev(↓j2z))

]
(A.20)

= k(rev(↓j1z) + rev(↓j2z)) (A.21)

= k(↓j1z + ↓j2z) = k(z + ↑(j1−j2)z). (A.22)

Thus, the random circulant features without random sign flipping have k(z+
↑(j1−j2)z) − k(z)2 covariance. For example, when each element in z is identical,
this value is the same as the autocovariance. Thus, the variance is significant.

Next, we analyze the variance for the proposed method. We need to sum over
all the random sampling of circ(w(l)):,j, l = 1–m; which makes this problem more
complex than the previous cases. We first calculate the covariance between the
first and d-th elements. In this case, we can calculate the exact solution.

Theorem A.3.3.

Ew(l)∼p(w),lj∼unif{1,2,...,m}
[
e−(Wz)1e−(Wz)d

]
(A.23)

=

(
d∏

j=1

(k1(zj + zj+1) + (m− 1)k1(zj)k1(zj+1)) (A.24)

+(m−1)
d∏

j=1

(k1(zj+zj+1)−k1(zj)k1(zj+1))

)
/md, (A.25)

where we write zd+1 = z1.

The ratio of the covariance to the autocovariance is roughly (k1(2z)+(m−1)k1(z)2

mk1(2z)
)d,

which exponentially converges toward 0 as d increases. The convergence speed is
high if m is large. In fact, we vary k1 as d increases; thus, the convergence speed
does not exactly follow this order. However, this value is considerably smaller
than that for random circulant features.

64



(a) CUB (b) StanfordDogs (c) Caltech256

Figure A.1: Comparison of the approximation error for the gram matrix using
VGG-16 last activation.

Proof. When we denote u(l) = rev(w(l)), it holds that

Ew∼p(w),lj∼unif{1,...,m}
[
e−(Wz)1e−(Wz)d

]
(A.26)

=Ew∼p(w),lj∼unif{1,...,m}

[
e−

∑d
j=1v

(lj)

j zje−
∑d

j=1
↓1v

(lj)

j zj

]
(A.27)

=Ew∼p(w),lj∼unif{1,...,m}

[
e
−

∑d
j=1

(
v
(lj)

j zj+v
(↑1lj)
j

↑1zj

)]
(A.28)

=Elj∼unif{1,...,m}

[
d∏

j=1

Ew∼p(w)

[
e
−
(
v
(lj)

j zj+v
(lj+1)

j zj+1

)]]
. (A.29)

The last equality follows from the fact that v
(l)
j corresponding to different j are

independent regardless of the values of lj. We define the matrices Cj ∈ Rm×m such

that Cj
o,p = Ew(l)∼p(w)

[
e
−
(
v
(o)
j zj+v

(p)
j zj+1

)]
. In other words, the Cj are matrices

with diagonal and non-diagonal elements are k1(zj + zj+1) and k1(zj)k1(zj+1),
respectively. With the Cj terms, (A.29) can be expressed as

Elj∼unif{1,...,m}

[
d∏

j=1

Ew∼p(w)

[
e
−
(
v
(lj)

j zj+v
(lj+1)

j zj+1

)]]
(A.30)

=Elj∼unif{1,...,m}

[
d∏

j=1

Cj
lj ,lj+1

]
(A.31)

=
trace(

∏d
j=1C

j)

md
, (A.32)

65



Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 11.20 ± 0.12 12.70 ± 0.11 14.06 ± 0.08 14.81 ± 0.05 15.12 ± 0.05
circ 9.37 ± 0.90 12.15 ± 0.55 13.77 ± 0.35 14.57 ± 0.19 15.36 ± 0.08
altcirc (ours) (m = 2) 10.95 ± 0.39 12.59 ± 0.14 14.03 ± 0.19 14.73 ± 0.11 15.27 ± 0.09
altcirc (ours) (m = log2 d) 11.26 ± 0.21 12.77 ± 0.11 14.09 ± 0.13 14.71 ± 0.09 15.23 ± 0.07

Stanford random 16.65 ± 0.10 19.23 ± 0.12 21.02 ± 0.05 22.23 ± 0.08 23.06 ± 0.08
Dogs circ 12.50 ± 2.10 18.73 ± 0.89 21.49 ± 0.28 22.49 ± 0.26 23.37 ± 0.13

altcirc (ours) (m = 2) 16.68 ± 0.79 19.51 ± 0.29 21.30 ± 0.22 22.18 ± 0.21 23.22 ± 0.15
altcirc (ours) (m = log2 d) 16.83 ± 0.20 18.91 ± 0.21 21.22 ± 0.15 22.38 ± 0.10 23.03 ± 0.09

Caltech random 30.12 ± 0.15 32.72 ± 0.09 34.50 ± 0.08 35.55 ± 0.08 36.06 ± 0.10
256 circ 25.82 ± 1.88 31.42 ± 0.93 34.23 ± 0.35 35.56 ± 0.23 36.23 ± 0.12

altcirc (ours) (m = 2) 29.28 ± 0.81 32.46 ± 0.23 34.51 ± 0.24 35.45 ± 0.23 36.30 ± 0.16
altcirc (ours) (m = log2 d) 30.06 ± 0.27 32.55 ± 0.31 34.60 ± 0.17 35.56 ± 0.16 36.09 ± 0.16

Table A.2: Comparison of accuracy on image recognition datasets using Bag of
Visual Words.

and the equation is derived.

We continue to the general case. The point of the previous proof is that when
we calculate the correlation by first obtaining the expectation with respect to w
and then calculating the average of each lj ranging from 1 to m, the correlation is
represented as the trace of the product of d matrices that can be simultaneously
diagonalized. This is because when the difference of the dimension is 1, when
we bridge the dimensions that share the same w(l), the graph is a cyclic such as
1 → 2 → · · · → d → 1. When the greatest common factor between δj = j1 − j2
and d is 2g, the graph becomes an independent 2g cyclic graph of length d/(2g)
such as 1 → 1 + δj → 1 + 2δj → · · · → 1. The calculation for one loop is
the same as the previous proof. Thus, the ratio of one loop is roughly of the

order (k1(2z)+(m−1)k1(z)2

mk1(2z)
)d/2

g
. When the 2g products are calculated, the order is

(k1(2z)+(m−1)k1(z)2

mk1(2z)
)d. Thus, the order is roughly the same in the general case.

Therefore, the covariance is small if d is sufficiently large.

A.4 Experiments

In this section, we experimentally evaluate the accuracy and computation time
of the proposed method. In Section A.4.1, we evaluate the approximation error
of the gram matrix. In Section A.4.2 and A.4.3, we evaluate the classification
accuracy on image recognition datasets. In Section A.4.4, the computation time
for feature encoding using synthesized data is compared.

66



Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 36.07 ± 0.30 39.48 ± 0.11 40.91 ± 0.12 42.03 ± 0.08 42.55 ± 0.07
circ 33.29 ± 2.55 35.26 ± 2.18 37.88 ± 2.03 40.35 ± 1.14 41.20 ± 0.92
altcirc (ours) (m = 2) 33.76 ± 2.08 36.95 ± 1.95 39.11 ± 1.09 40.77 ± 0.89 42.10 ± 0.63
altcirc (ours) (m = log2 d) 36.05 ± 0.68 37.50 ± 1.09 40.91 ± 0.43 41.86 ± 0.21 42.46 ± 0.20
gauss 23.07 ± 0.06 23.34 ± 0.05 23.38 ± 0.06 23.39 ± 0.03 23.44 ± 0.04
linear 22.83

Stanford random 78.81 ± 0.04 79.13 ± 0.02 79.22 ± 0.04 79.28 ± 0.04 79.29 ± 0.04
Dogs circ 78.50 ± 0.30 78.93 ± 0.13 79.02 ± 0.11 79.31 ± 0.04 79.33 ± 0.03

altcirc (ours) (m = 2) 78.75 ± 0.19 79.00 ± 0.12 79.21 ± 0.07 79.29 ± 0.02 79.35 ± 0.03
altcirc (ours) (m = log2 d) 78.86 ± 0.08 79.08 ± 0.06 79.18 ± 0.05 79.34 ± 0.04 79.34 ± 0.02
gauss 78.07 ± 0.03 78.03 ± 0.04 78.02 ± 0.02 78.00 ± 0.03 78.03 ± 0.01
linear 78.12

Caltech random 70.04 ± 0.21 71.52 ± 0.18 72.25 ± 0.21 72.57 ± 0.15 72.74 ± 0.14
256 circ 67.35 ± 1.19 69.20 ± 1.02 70.47 ± 0.96 71.84 ± 0.51 72.32 ± 0.36

altcirc (ours) (m = 2) 68.54 ± 0.95 69.94 ± 0.93 71.45 ± 0.51 72.10 ± 0.36 72.69 ± 0.20
altcirc (ours) (m = log2 d) 69.78 ± 0.35 70.73 ± 0.32 72.01 ± 0.21 72.53 ± 0.16 72.71 ± 0.18
gauss 58.48 ± 0.20 58.72 ± 0.22 58.65 ± 0.23 58.65 ± 0.24 58.69 ± 0.24
linear 57.90

Table A.3: Comparison of accuracy on image recognition datasets using VGG-16
softmax output.

A.4.1 Approximation Error of Gram Matrix

We first applied the proposed method to CNN features and evaluated the approx-
imation error of kernel values. The method was tested on three object recognition
datasets (CUB-200, Stanford Dogs, and Caltech256). CUB-200 [94] is a standard
fine-grained object recognition dataset that consists of 200 bird species with 60
images per class. Stanford Dogs [95] consists of approximately 20,000 images of
120 dog classes, and Caltech256 [96] consists of approximately 30,600 images of
256 object classes.

For the CNN model, we used the VGG-16 [32] network pretrained with Im-
ageNet. We employed the l1-normalized activation of the last fully connected
layer with a dimension of 4,096. The activation was positive definite because we
applied the ReLU function.

As a kernel function, we used an exponential-semigroup kernel that was re-
ported to exhibit good performance in [67], using the kernel parameter β = 0.1.

The kernel function had the form e−β
∑d

j=1

√
xj+yj and the corresponding weight

distribution was a Lévy distribution p(w) = β
2
√
π
w−3/2e

−β2

4w .

We compared random Laplace features (random), random circulant features
excluding random sign flipping (circ), and the proposed method (altcirc) with
m = 2 and log2 d. Then, we varied the output feature dimension to 4, 096 ×
{1, 2, 4, 8, 16, 32}.

We randomly sampled 2,000 data from each dataset and computed the mean
and standard error of ∥Ktrue−Kapprox∥F

∥Ktrue∥F
, where Ktrue is the true gram matrix, and

67



Dataset Method D = d D = 2d D = 4d D = 8d D = 16d

CUB random 55.00 ± 0.16 56.89 ± 0.12 57.94 ± 0.07 58.43 ± 0.09 58.74 ± 0.04
circ 54.14 ± 0.94 56.80 ± 0.36 57.68 ± 0.19 58.45 ± 0.08 58.72 ± 0.06
altcirc (ours) (m = 2) 54.85 ± 0.34 56.63 ± 0.22 57.75 ± 0.16 58.57 ± 0.07 58.94 ± 0.05
altcirc (ours) (m = log2 d) 54.92 ± 0.14 56.75 ± 0.12 57.81 ± 0.06 58.39 ± 0.09 58.68 ± 0.05
gauss 56.88 ± 0.11 57.60 ± 0.08 57.75 ± 0.06 57.84 ± 0.03 57.87 ± 0.05
linear 56.47

Stanford random 75.45 ± 0.06 76.59 ± 0.09 77.20 ± 0.05 77.52 ± 0.06 77.73 ± 0.03
Dogs circ 75.75 ± 0.27 76.90 ± 0.08 77.44 ± 0.07 77.65 ± 0.06 77.72 ± 0.04

altcirc (ours) (m = 2) 75.70 ± 0.13 76.75 ± 0.07 77.24 ± 0.07 77.47 ± 0.05 77.71 ± 0.05
altcirc (ours) (m = log2 d) 75.45 ± 0.11 76.48 ± 0.07 77.20 ± 0.07 77.53 ± 0.04 77.64 ± 0.03
gauss 76.02 ± 0.05 76.23 ± 0.06 76.37 ± 0.05 76.39 ± 0.03 76.44 ± 0.04
linear 77.73

Caltech random 75.42 ± 0.17 76.48 ± 0.16 77.15 ± 0.15 77.54 ± 0.15 77.65 ± 0.16
256 circ 73.07 ± 1.64 76.03 ± 0.57 76.81 ± 0.40 77.45 ± 0.17 77.60 ± 0.14

altcirc (ours) (m = 2) 75.01 ± 0.48 76.25 ± 0.28 77.16 ± 0.14 77.44 ± 0.16 77.66 ± 0.16
altcirc (ours) (m = log2 d) 75.33 ± 0.18 76.53 ± 0.15 77.11 ± 0.13 77.44 ± 0.18 77.70 ± 0.16
gauss 76.32 ± 0.20 76.60 ± 0.21 76.78 ± 0.19 76.83 ± 0.18 76.85 ± 0.19
linear 75.50

Table A.4: Comparison of accuracy on image recognition datasets using VGG-16
last activation.

Table A.5: Computation time (second) on synthesized data.

Method 1,024 2,048 4,096 8,192 16,384

random 3.4e-3 1.5e-2 6.2e-2 2.5e-1 1.0
altcirc (ours) (m = 2) 3.6e-4 3.7e-4 4.8e-4 9.6e-4 1.7e-3
altcirc (ours) (m = log2 d) 6.3e-4 8.5e-4 1.8e-3 4.0e-3 8.6e-3

Kapprox denotes gram matrices calculated from random features for 10 trials.
Figure A.1 shows the results. The approximation error is roughly ’random’

< ’altcirc (m = log2 d)’ < ’altcirc (m = 2) < ’circ’. Random circulant features
have a much larger error and the performance is unstable. Though the error
of “random” is smaller than the error of “altcirc (m = log2 d),” “altcirc (m =
log2 d)” has a small error, and its performance increases in stable fashion as D
increases.

A.4.2 Semigroup Kernel on Bag of Visual Words

Next, we applied the proposed method to Bag of Visual Words features and
evaluated its accuracy on image recognition datasets. As in Section A.4.1, the
method was tested on CUB-200, Stanford Dogs, and Caltech256.

We used the default train/test splits for the CUB-200 and Stanford Dogs
datasets. For the Caltech256 dataset, we randomly sampled 25 images per class

68



as training data and 30 images per class as test data.
For all datasets, we extracted dense 128-dimensional scale-invariant feature

transform (SIFT) features with a step size of 2 and scales of 4, 6, 8, and 10.
We used “vl phow” implemented in VLFeat [97] for extraction and then encoded
the extracted SIFT to 4,096-dimensional Bag of Visual Words features. We used
250,000 local features to learn the codebooks.

As a kernel function, we used an exponential-semigroup kernel like Section A.4.1
with the kernel parameter β = 0.01. We compared random Laplace features (ran-
dom), random circulant features excluding random sign flipping (circ), and the
proposed method (altcirc) with m = 2 and log2 d. Then, we varied the output
feature dimension to 4, 096×{1, 2, 4, 8, 16}. We applied linear SVM implemented
in LIBLINEAR [98] with C = 100 and evaluated the mean and standard error of
the accuracy over 10 trials.

The results are listed in Table A.2 and indicate that random circulant features
without random sign flipping exhibited poor performance with a large standard
error. Thus, the random circulant features are unstable. On the other hand,
the proposed method with m = 2 exhibited a very similar performance to the
random Laplace features. Further, the proposed method exhibited comparable
performance to the random Laplace features method for m = log2 d, although the
standard error was slightly larger for the former. Thus, the proposed method is
a good choice for histogram feature.

A.4.3 Semigroup Kernel on the CNN feature

Next, we applied the proposed method to features calculated from the CNNs. We
used the VGG-16 [32] network pretrained with ImageNet. We employed the l1-
normalized activation of the last fully connected layer with a dimension of 4,096
and a 1,000-dimensional output for the softmax layer, which was embedded into
a 1,024-dimensional vector with the additional dimensions filled with 0’s. The
activation was positive. The softmax layer output was also positive. Thus, both
features satisfied the requirement for positive definiteness.

We compared the random Laplace features, random circulant features, and the
proposed method with m = 2 and m = log2 d, corresponding to the exponential-
semigroup kernel. We also evaluated the results obtained using the methods for
original features (linear) and by applying random Fourier features corresponding
to a Gaussian kernel (gauss) so as to verify the performance of the exponential-
semigroup kernel on CNN features. As kernel parameters, we used β = 0.1 and
0.01 for the outputs of the last fully-connected and softmax layers, respectively.
We used the mean of the 50-th l2 nearest-neighbor distances of 1,000 data sampled
from the training data for the Gaussian kernel, following [107]. In addition,
we employed the same dataset, evaluation metric, and classifier setting used in

69



Section A.4.2.
Tables A.3 and A.4 show the results. Table A.3 indicates that, while the Gaus-

sian kernel did not work well for the softmax output, the exponential-semigroup
kernel contributed significantly to a performance improvement. The results indi-
cate that the semigroup kernel was effective not only for histogram data but also
for probability score of the softmax output. Furthermore, the proposed method
with m = log2 d worked as well as the random Laplace features approach. In
Table A.4, when the output feature dimension was small, the linear method and
the Gaussian kernel worked well. However, as the dimension grew, the approx-
imation method for the semigroup kernel exhibited better performance. Thus,
we can state that the semigroup kernel is superior to the Gaussian kernel for en-
coding the activation output of the CNNs when the approximation is sufficiently
accurate.

These results demonstrate that the proposed method is effective for encoding
CNN features.

A.4.4 Computation Time

Finally, we compared the feature-encoding computation time using synthesized
data, with each element sampled from a uniform distribution ranging from 0 to 1.
We varied the dimension of the input feature d to 1,024, 2,048, 4,096, 8,192 and
16,384, and set the dimension of the output feature D = d. We compared the
computation time required to encode one input vector using an Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60GHz. We implemented each method using Matlab with
the “-singleCompThread” option.

Table A.5 shows that the overall performance roughly follows the order given
in Table A.1. The proposed method requires significantly less computation time
than the random Laplace features method. Although the proposed method with
m = log2 d is slower than the proposed method withm = 2, even withm = log2 d,
it is approximately 100 times as fast as the random Laplace features method when
the dimension is 16,384. Thus, the proposed method is efficient.

A.5 Discussion

In this chapter, we proposed alternating circulant random features for application
to semigroup kernels. The proposed method randomly mixes the circulant ran-
dom features. We analyzed the covariance of the proposed features and showed
that this value is small when the dimension of the global feature is large. From
experiments on image recognition datasets using histogram and CNN features,
we demonstrated that the semigroup kernel is effective on a wide range of positive

70



definite features, and that the proposed method exhibits comparable performance
to, with much lower computation time than, the original random Laplace features.
The proposed method enabled us to apply the corresponding semigroup kernels
very efficiently.

We have applied our method to semigroup kernels. However, the concept of
mixing random features can be applied to a wider domain. Thus, we will extend
this concept to a broader range of kernels in future work.

71



References

[1] David G Lowe. Distinctive image features from scale-invariant keypoints.
ICJV, 60:91–110, 2004. 6

[2] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005. 6

[3] Zhenhua Guo, Lei Zhang, and David Zhang. A completed modeling of local
binary pattern operator for texture classification. IEEE Transactions on
Image Processing, 19(6):1657–1663, 2010. 6

[4] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. IJCV, 42(3):145–175, 2001.
6

[5] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation
for local image descriptors. In CVPR, 2004. 6

[6] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of
local descriptors. PAMI, 27(10):1615–1630, 2005. 6

[7] Jean-Michel Morel and Guoshen Yu. Asift: A new framework for fully affine
invariant image comparison. SIIMS, 2:438–469, 2009. 7

[8] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE
Trans Inf Theory, 8(2):179–187, 1962. 7

[9] Risi Kondor. A novel set of rotationally and translationally invariant fea-
tures for images based on the non-commutative bispectrum. arXiv preprint
cs/0701127, 2007. 7

[10] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Con-
volutional kernel networks. In NIPS, 2014. 7, 24, 26, 27, 34

72



REFERENCES

[11] Fabio Anselmi, Joel Z Leibo, Lorenzo Rosasco, Jim Mutch, Andrea Tac-
chetti, and Tomaso Poggio. Unsupervised learning of invariant representa-
tions in hierarchical architectures. arXiv preprint arXiv:1311.4158, 2013.
7

[12] Stéphane Mallat. Group invariant scattering. Comm Pure Appl Math,
65(10):1331–1398, 2012. 7

[13] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and
Cédric Bray. Visual categorization with bags of keypoints. In ECCV Work-
shop on SLCV, 2004. 7, 33

[14] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek.
Image classification with the fisher vector: Theory and practice. IJCV,
105:222–245, 2013. 7, 33

[15] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggre-
gating local descriptors into a compact image representation. In CVPR,
2010. 8

[16] David Picard and Philippe-Henri Gosselin. Efficient image signatures and
similarities using tensor products of local descriptors. CVIU, 117:680–687,
2013. 8

[17] Hideki Nakayama, Tatsuya Harada, and Yasuo Kuniyoshi. Dense sampling
low-level statistics of local features. IEICE TRANSACTIONS on Informa-
tion and Systems, 93:1727–1736, 2010. 8

[18] Hideki Nakayama, Tatsuya Harada, and Yasuo Kuniyoshi. Global gaussian
approach for scene categorization using information geometry. In CVPR,
2010. 8

[19] Sadeep Jayasumana, Richard Hartley, Mathieu Salzmann, Hongdong Li,
and Mehrtash Harandi. Kernel methods on the riemannian manifold of
symmetric positive definite matrices. In CVPR, 2013. 8

[20] Peihua Li and Qilong Wang. Local log-euclidean covariance matrix (l2ecm)
for image representation and its applications. In ECCV, 2012. 8

[21] Giuseppe Serra, Costantino Grana, Marco Manfredi, and Rita Cucchiara.
Covariance of covariance features for image classification. In ICMR, 2014.
8

[22] Tatsuya Harada and Yasuo Kuniyoshi. Graphical gaussian vector for image
categorization. In NIPS, 2012. 8

73



REFERENCES

[23] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums
with the stochastic average gradient. Mathematical Programming, 162(1-
2):83–112, 2017. 9

[24] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In NIPS, 2013. 9

[25] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent
methods for regularized loss minimization. JMLR, 14(Feb):567–599, 2013.
9

[26] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and
Yoram Singer. Online passive-aggressive algorithms. JMLR, 7(Mar):551–
585, 2006. 9

[27] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted
linear classification. In ICML, 2008. 9

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. IEEE, 86(11):2278–2324,
1998. 10, 27, 48

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images, 2009. 10, 27, 48

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR, 2009. 10,
48

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In NIPS, 2012. 10, 34,
49

[32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In ICLR, 2014. 10, 43, 67, 69

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In CVPR, 2015. 10

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016. 10

[35] Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep filter banks
for texture recognition and segmentation. In CVPR, 2015. 10

74



REFERENCES

[36] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the
fisher kernel for large-scale image classification. In ECCV. 2010. 10, 34

[37] Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. Associating neural
word embeddings with deep image representations using fisher vectors. In
CVPR, 2015. 10

[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In NIPS, 2013. 10

[39] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-
preserving image-text embeddings. CVPR, 2016. 10

[40] Mihir Jain, J Gemert, Cees GM Snoek, et al. University of amsterdam at
thumos challenge 2014. 2014. 10

[41] Zhongwen Xu, Yi Yang, and Alex G Hauptmann. A discriminative cnn
video representation for event detection. In CVPR, 2015. 10

[42] Hervé Jégou, Florent Perronnin, Matthijs Douze, Cordelia Schmid, et al.
Aggregating local image descriptors into compact codes. PAMI, 34:1704–
1716, 2012. 10, 33

[43] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In CVPR, 2015. 10, 43

[44] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact
bilinear pooling. In CVPR, 2016. 10

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. In ECCV,
2014. 10, 34

[46] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based ca-
pacity control in neural networks. In COLT, 2015. 11

[47] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues.
Robust large margin deep neural networks. IEEE Transactions on Signal
Processing, 2017. 11

[48] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail
Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep
learning: Generalization gap and sharp minima. In ICLR, 2017. 11

75



REFERENCES

[49] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization.
In ICLR, 2017. 11

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In CVPR, 2014. 11

[51] Noboru Murata. An integral representation of functions using three-layered
networks and their approximation bounds. Neural Networks, 9(6):947–956,
1996. 12

[52] Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Bharath K
Sriperumbudur. Characteristic kernels on groups and semigroups. In NIPS,
2009. 12

[53] Petros Drineas and Michael W Mahoney. On the nyström method for ap-
proximating a gram matrix for improved kernel-based learning. JMLR,
6(Dec):2153–2175, 2005. 13

[54] Christopher Williams and Matthias Seeger. Using the nyström method to
speed up kernel machines. In NIPS, 2001. 13

[55] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In NIPS, 2007. 13, 57, 60

[56] Peter L Bartlett, Olivier Bousquet, and Shahar Mendelson. Local
rademacher complexities. Annals of Statistics, 33(4):1497–1537, 2005. 13

[57] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua
Zhou. Nyström method vs random fourier features: A theoretical and
empirical comparison. In NIPS, 2012. 13, 17

[58] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods
for the nyström method. JMLR, 13(Apr):981–1006, 2012. 13

[59] Walter Rudin. Fourier analysis on groups. John Wiley & Sons, 2011. 14,
60

[60] Raffay Hamid, Ying Xiao, Alex Gittens, and Dennis DeCoste. Compact
random feature maps. In ICML, 2014. 14

[61] Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael Mahoney. Quasi-
monte carlo feature maps for shift-invariant kernels. In ICML, 2014. 14

76



REFERENCES

[62] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood–approximating kernel
expansions in loglinear time. In ICML, 2013. 14, 57, 58, 60

[63] David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bern-
hard Schölkopf. Randomized nonlinear component analysis. In ICML, 2014.
14

[64] Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani, Dong Guo,
Aurélien Bellet, Linxi Fan, Michael Collins, Brian Kingsbury, Michael
Picheny, et al. How to scale up kernel methods to be as good as deep
neural nets. arXiv preprint arXiv:1411.4000, 2014. 14

[65] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Bal-
can, and Le Song. Scalable kernel methods via doubly stochastic gradients.
In NIPS, 2014. 14

[66] Bo Xie, Yingyu Liang, and Le Song. Scale up nonlinear component analysis
with doubly stochastic gradients. arXiv preprint arXiv:1504.03655, 2015.
14

[67] Jiyan Yang, Vikas Sindhwani, Quanfu Fan, Haim Avron, and Michael W
Mahoney. Random laplace feature maps for semigroup kernels on his-
tograms. In CVPR, 2014. 14, 57, 60, 67

[68] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks:
Replacing minimization with randomization in learning. In NIPS, 2009. 14

[69] James Mercer. Functions of positive and negative type, and their connec-
tion with the theory of integral equations. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 209(441-458):415–446, 1909. 15

[70] Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of
kernel approximation on learning accuracy. In AISTATS, 2010. 16

[71] Huaiyu Zhu, Christopher KI Williams, Richard Rohwer, and Michal
Morciniec. Gaussian regression and optimal finite dimensional linear mod-
els. 1997. 18

[72] Christopher Williams and Matthias Seeger. The effect of the input density
distribution on kernel-based classifiers. In ICML, 2000. 18

[73] Liefeng Bo, Kevin Lai, Xiaofeng Ren, and Dieter Fox. Object recognition
with hierarchical kernel descriptors. In CVPR, 2011. 26, 34

77



REFERENCES

[74] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Kernel descriptors for visual
recognition. In NIPS, 2010. 26

[75] Jake Bouvrie, Lorenzo Rosasco, and Tomaso Poggio. On invariance in
hierarchical models. In NIPS, 2009. 26

[76] Youngmin Cho and Lawrence K Saul. Large-margin classification in infinite
neural networks. Neural computation, 22(10):2678–2697, 2010. 26

[77] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning and unsupervised feature
learning, 2011. 27, 48

[78] Marc Ranzato, Y lan Boureau, and Yann L. Cun. Sparse feature learning
for deep belief networks. In NIPS, 2007. 33

[79] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and
Yihong Gong. Locality-constrained linear coding for image classification.
In CVPR, 2010. 33

[80] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of
feature pooling in visual recognition. In ICML, 2010. 33

[81] Piotr Koniusz, Fei Yan, and Krystian Mikolajczyk. Comparison of mid-
level feature coding approaches and pooling strategies in visual concept
detection. CVIU, 117(5):479–492, 2013. 33

[82] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural scene categories.
In CVPR, 2006. 33

[83] Mohammad Shahiduzzaman, Dengsheng Zhang, and Guojun Lu. Improved
spatial pyramid matching for image classification. In ACCV, 2010. 34

[84] Piotr Koniusz and Krystian Mikolajczyk. Spatial coordinate coding to re-
duce histogram representations, dominant angle and colour pyramid match.
In ICIP, 2011. 34

[85] Jorge Sánchez, Florent Perronnin, and TeóFilo De Campos. Modeling the
spatial layout of images beyond spatial pyramids. Pattern Recognition Let-
ters, 33(16):2216–2223, 2012. 34

78



REFERENCES

[86] Y-Lan Boureau, Nicolas Le Roux, Francis Bach, Jean Ponce, and Yann
LeCun. Ask the locals: multi-way local pooling for image recognition. In
ICCV, 2011. 34

[87] Josip Krapac, Jakob Verbeek, and Frédéric Jurie. Modeling spatial layout
with fisher vectors for image categorization. In ICCV, 2011. 34

[88] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Image
categorization using fisher kernels of non-iid image models. In CVPR, 2012.
34

[89] Teofilo De Campos, Gabriela Csurka, and Florent Perronnin. Images as
sets of locally weighted features. CVIU, 116(1):68–85, 2012. 34

[90] Naila Murray and Florent Perronnin. Generalized max pooling. In CVPR,
2014. 34

[91] Jiashi Feng, Bingbing Ni, Qi Tian, and Shuicheng Yan. Geometric lp-norm
feature pooling for image classification. In CVPR, 2011. 34

[92] Tatsuya Harada, Yoshitaka Ushiku, Yuya Yamashita, and Yasuo Kuniyoshi.
Discriminative spatial pyramid. In CVPR, 2011. 34

[93] Gaurav Sharma and Frederic Jurie. Learning discriminative spatial repre-
sentation for image classification. In BMVC, 2011. 34

[94] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian
Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200. Tech-
nical Report CNS-TR-201, Caltech, 2010. 41, 48, 67

[95] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-
Fei. Novel dataset for fine-grained image categorization. In CVPR workshop
on FGVC, 2011. 41, 48, 67

[96] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object cate-
gory dataset. 2007. 41, 48, 67

[97] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008. 42, 69

[98] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-
Jen Lin. Liblinear: A library for large linear classification. Journal of
machine learning research, 9(Aug):1871–1874, 2008. 42, 69

79

http://www.vlfeat.org/


REFERENCES

[99] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In ICCV, 2011. 43

[100] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A
dataset of 101 human actions classes from videos in the wild. Technical
report, CRCV-TR-12-01, 2012. 43

[101] Heng Wang and Cordelia Schmid. Action recognition with improved tra-
jectories. In ICCV, 2013. 43

[102] Barbara Caputo, Eric Hayman, and P Mallikarjuna. Class-specific material
categorisation. In ICCV, 2005. 48

[103] Eric Hayman, Barbara Caputo, Mario Fritz, and Jan-Olof Eklundh. On the
significance of real-world conditions for material classification. In ECCV,
2004. 48

[104] Jeffrey Pennington, X Yu Felix, and Sanjiv Kumar. Spherical random fea-
tures for polynomial kernels. In NIPS, 2015. 57, 60

[105] Purushottam Kar and Harish Karnick. Random feature maps for dot prod-
uct kernels. In AISTATS, 2012. 57

[106] X Yu Felix, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N
Holtmann-Rice, and Sanjiv Kumar. Orthogonal random features. In NIPS,
2016. 57, 58, 60, 61

[107] Felix X Yu, Sanjiv Kumar, Henry Rowley, and Shih-Fu Chang. Compact
nonlinear maps and circulant extensions. arXiv preprint arXiv:1503.03893,
2015. 57, 58, 60, 61, 69

[108] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via
explicit feature maps. In KDD, 2013. 57, 60

[109] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic
analysis on semigroups. 1984. 57

[110] Krzysztof Choromanski and Vikas Sindhwani. Recycling randomness with
structure for sublinear time kernel expansions. In ICML, 2016. 61

80



Publications

Reviewed Conference

1. Yusuke Mukuta, Tatsuya Harada. Probabilistic Partial Canonical Corre-
lation Analysis. In Proceedings of the 31st International Conference on
Machine Learning (ICML 2014), pp.1449-1457, 2014.

2. Asako Kanezaki, Yusuke Mukuta, Tatsuya Harada. Mirror Reflection In-
variant HOG descriptors for Object Detection. In IEEE International Con-
ference on Image Processing (ICIP 2014), pp.1594-1598, 2014.

3. Yoshitaka Ushiku, Masataka Yamaguchi, Yusuke Mukuta, Tatsuya Harada.
Common Subspace for Model and Similarity: Phrase Learning for Caption
Generation from Images. In the 14th International Conference on Computer
Vision (ICCV 2015), pp.2668-2676, December, 2015.

4. Yusuke Mukuta, Tatsuya Harada. Kernel Approximation via Empirical
Orthogonal Decomposition for Unsupervised Feature Learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2016),
pp.5222-5230, June, 2016.

5. Kuniaki Saito, Yusuke Mukuta, Yoshitaka Ushiku, Tatsuya Harada. Deep
Modality Invariant Adversarial Network for Shared Representation Learn-
ing. In the 16th International Conference on Computer Vision Workshop on
Transferring and Adapting Source Knowledge in Computer Vision (ICCV
2017 TASK-CV), pp.2623-2629, October, 2017.

6. Yusuke Mukuta, Yoshitaka Ushiku, Tatsuya Harada. Spatial-Temporal
Weighted Pyramid using Spatial Orthogonal Pooling. In the 16th Inter-
national Conference on Computer Vision Workshop on Compact and Effi-
cient Feature Representation and Learning in Computer Vision (ICCV 2017
CEFRL), pp.1041-1049, October, 2017.

81



REFERENCES

7. Yusuke Mukuta, Akisato Kimura, David Adrian, Zoubin Gharamani. Weakly
Supervised Collective Feature Learning from Curated Media. In the 32nd
AAAI Conference on Artificial Intelligence (AAAI 2018), accepted, Febrary,
2018.

8. Yusuke Mukuta, Yoshitaka Ushiku, Tatsuya Harada. Alternating Circulant
Random Features for Semigroup Kernels. In the 32nd AAAI Conference on
Artificial Intelligence (AAAI 2018), accepted, Febrary, 2018.

Un-reviewed Conference

1. Atsushi Kanehira, Masatoshi Hidaka, Yusuke Mukuta, Yuichiro Tsuchiya,
Tetsuaki Mano, Tatsuya Harada. MIL at ImageCLEF 2014: Scalable Sys-
tem for Image Annotation. CLEF Evaluation Labs and Workshop, Online
Working Notes (CLEF 2014), September, 2014.

Un-reviewed Domestic Conference

1. 椋田悠介, 原田達也. 確率的偏正準相関分析. 信学技報, vol. 113, no. 286,
IBISML2013-58, pp.169-176, 2013年 11月.

2. 椋田悠介, 牛久祥孝, 原田達也. 交代巡回ランダム特徴によるセミグループ
カーネルの高速な近似. 信学技報, vol. 117, no. 211, IBISML2017-14, pp.
27-34, 2017年 9月.

Others

1. (Invited talk) Yusuke Mukuta and Tatsuya Harada. Probabilistic Partial
Canonical Correlation Analysis. the 18th Meeting on Image Recognition
and Understanding (MIRU 2015), August, 2015.

2. (Competition)Masataka Yamaguchi, Qishen Ha, Katsunori Ohnishi, Masa-
taka Yamaguchi, Yusuke Mukuta, Tatsuya Harada. Got the 3rd place, Im-
ageNet Large Scale Visual Recognition Challenge 2015 (in conjunction with
ICCV 2015), December, 2015.

82


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Objective
	1.3 Structure of the Thesis

	2 Methods for Image Feature Extraction
	2.1 Manually-Designed Image Features
	2.1.1 Invariant Features
	2.1.2 Feature Encoding
	2.1.3 Classifier

	2.2 Convolutional Neural Networks

	3 Feature extraction based on empirical orthogonal decomposition
	3.1 Recognition based on kernel function
	3.2 Existing Kernel Approximation Method
	3.3 Kernel Approximation based on Empirical Orthogonal Decomposition
	3.3.1 Analysis of the approximation error
	3.3.2 Linear kernel with Gaussian Distribution
	3.3.3 Gaussian kernel with Gaussian Distribution
	3.3.4 Gaussian kernel with Gaussian mixture Distribution
	3.3.5 Relation to kernel PCA

	3.4 Experiment
	3.4.1 Approximation error of the Gram matrices
	3.4.2 Classification Accuracy
	3.4.3 Computation Time

	3.5 Application to Image Recognition

	4 Application to Local Feature Extraction
	4.1 Experiments

	5 Application to Feature Encoding
	6 Application to Feature Pooling
	6.1 Existing work on feature pooling
	6.2 Spatial Pooling as a Projection
	6.3 Spatial Orthogonal Pooling
	6.3.1 Spatial Orthogonal Pooling Using the Standard Inner Product
	6.3.2 Spatial Orthogonal Pooling Using a Weighted Inner Product
	6.3.3 Analysis of the Robustness of the Proposed Methods

	6.4 Experiments
	6.4.1 Image Recognition
	6.4.2 Action Recognition

	6.5 Discussion

	7 Evaluation of the Whole Architecture
	7.1 Experimental Setting
	7.2 Result
	7.3 Comparison with existing methods

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Works

	Appendix A: Fast Random Features for Semigroup Kernels
	A.1 Background
	A.2 Related Work
	A.3 Alternating Circulant Random Features
	A.3.1 Method
	A.3.2 Analysis

	A.4 Experiments
	A.4.1 Approximation Error of Gram Matrix
	A.4.2 Semigroup Kernel on Bag of Visual Words
	A.4.3 Semigroup Kernel on the CNN feature
	A.4.4 Computation Time

	A.5 Discussion

	References
	Publications

