
論 文 の 内 容 の 要 旨

論文題目 Design and Implementation of Hardware Accelerators with Multi-Level

Parallelization and Application-Oriented Data Layout

（マルチレベル並列化とアプリケーション指向データレイアウトを用いるハードウェ

アアクセラレータの設計と実装）

 氏 名 小泉 賢一

In this thesis, we describe the design and implementation of high-performance hardware

accelerators and propose a design methodology. In software programming, architecture of

the processor, functions of operating system, and optimization of compiler support

acceleration. However, in hardware design, there is no support as there is in software

programming; thus, hardware engineers must optimize designs on their own. Engineers have

greater flexibility when designing hardware; however, a design methodology for

high-performance accelerators has not been established. We have established a design

methodology through the design and implementation of accelerators using

field-programmable gate arrays (FPGAs). To explain the proposed methodology, we select

three accelerators and describe three targeted studies.

The first application is improving the throughput performance of TCP communication in

long-distance fat-pipe networks (LFNs). It is known that TCP communication on LFNs is

difficult, and obtaining good performance in parallel TCP communication is more difficult

than with single TCP. To address this problem, we propose a hardware solution that balances

streams. We implement the merging stream harmonizer (MSH) on MaSTER-1, our programmable

network testbed. We can utilize 99.6% of 10-Gbps LAN PHY bandwidth in pseudo LFNs and 87.0%

of 9.2-Gbps WAN PHY bandwidth in real LFNs. Note that different sections of LFNs have

various bandwidths, and packet loss often occurs when the total input bandwidth is greater

than that of the output. Using MaSTER-1, we analyzed the buffer effects of such switches

and the relationship between round-trip time (RTT) and buffer size.

The second study involved the computer Go game. A Monte Carlo tree search method that

involves Monte Carlo simulations has been developed to find the best next move in the Go

game. The method increases the strength of the Computer-Go program. The effectiveness of

this method depends on the number of simulations. Unfortunately, FPGA-based acceleration

was difficult because, in this context, resource consumption tends to be high. FPGA-based

acceleration was feasible for a 9 x 9 grid board; however, it was not feasible for a 19

x 19 grid board. We propose a triple line-based playout for Go (TLPG) hardware algorithm.

By reproducing global information redundantly, the TLPG algorithm generates simulations

using only local operations, which helps in realizing compact hardware logic

implementations. We implemented TLPG in MaSTER-1. The results indicate that the TLPG

algorithm can perform 40,649 playouts per second for a 9 x 9 grid board and 4,668 playouts

per second for a 19 x 19 grid board.

The third study involved skyline computation, which is a method to extract interesting

entries from a large population with multiple attributes. When the population changes

dynamically, calculating a sequence of skyline sets is referred to as continuous skyline

computation. Previous methods that employ divide and conquer and geometric algorithms are

not robust in higher dimensional space. We propose the balanced jointed rooted tree

(BJR-tree), which can represent a dominance relation as an arc. In addition, tree traversal

at a deep position can be delayed to reduce unnecessary calculations. We also propose the

low-latency skyline computation accelerator (LSCA) as a hardware algorithm. The LSCA

parallelizes dominance relation calculations and evaluates postponed calculations during

idle states. We implemented the LSCA on an FPGA and evaluated our software and hardware

implementations. BJR-tree is approximately up to 70 times faster than LookOut on synthetic

datasets. In addition, the LSCA is approximately 2.5 to 4.4 and 1.7 to 35 times faster

than an Intel CPU running software implementations on synthetic and real-world datasets,

respectively.

The proposed methodology, established through our studies including the above three,

indicates the design flow for multi-level parallelization and application-oriented data

layout. Note that our perspective relative to hardware design is not considered in current

behavioral synthesis technology. In another three calculations, we compared the

performance of a circuit generated automatically using a behavioral synthesis tool and

a circuit designed based on the proposed methodology. The results show that the design

based on the proposed methodology is more efficient than the behavior-based design. We

expect that the proposed design methodology will provide a guideline for hardware designers

and will be incorporated into behavioral synthesis in the future. Thus, the proposed design

methodology is expected to contribute to an effective and efficient accelerator design.

