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Abstract 
Twofold C–H activation/cross-coupling of stoichiometric amounts of organic 

molecules, R1–H and R2–H, to form an R1–R2 product free of homocoupling 

products is a goal in the activation of unreactive C–H bonds, as it will dramatically 
simplify organic synthesis. No reliable strategy to eliminate the homocoupling side 

products effectively without recourse to the use of an excess of one reactant over 

another is known. We report herein that a transient connection of two reactants by 
an anionic group appended to one reactant achieves this goal under mildly oxidative 

iron-catalysed conditions, through the formation of a productive heteroleptic R1–

M–R2 intermediate. We utilized a N-(quinolin-8-yl)amide anion for the temporary 
connection and cross-coupled a stoichiometric mixture of aromatics in high yield 

without any trace of homocoupling products. A short-step synthesis of several 

donor/acceptor thiophene compounds and carbon/sulfur-bridged flat conjugated 
systems illustrates the utility of this method to streamline organic synthesis. 
 

Introduction 
Metal catalysis aiming at C–H activation1,2,3,4,5,6,7,8 for creation of new C–C bonds9 has 

been a subject of intense research for decades with a common goal of cross-coupling 

stoichiometric amounts of two organic molecules, R1–H and R2–H, to form an R1–R2 

product free of homocoupling products (R1–R1 and R2–R2) under mild oxidative 

conditions10,11,12. Such reactions obviate the need for prefunctionalization of reactants and 

thus, simplify the synthetic scheme. To achieve twofold C–H activation/cross-

coupling13 ,14 , 15 , 16 ,17 , 18 ,19  free of homocoupling20 , we need to generate a productive 

heteroleptic R1–M–R2 intermediate with the exclusion of homoleptic species (i.e., R1–M–



R1 or R2–M–R2)12. No reliable strategy is yet known to suppress homocoupling entirely, 

and people have recourse to the use of one reactant in large excess12,16,17. Being aware 

that iron-catalysed C–H activation 21 , 22  involves a Lewis acidic organoiron(III) 

intermediate23 ,24 ,25 , we considered that transient connection of the two reactants via a 

basic group (X in I, Fig. 1) generates an intermediate (III), and exclusively forms a cross-

coupling product V through IV. 

We report here that an iron-catalysed reaction of a stoichiometric mixture of a 

(hetero)arene and a (hetero)arene or an olefin bearing a N-(quinolin-8-yl)amide group26,27 

(e.g., 1) produces at 70 °C a cross-coupling product (2) in high yield without any 

homocoupling products (4 and 5, Fig. 2a). Here, the amide group acts both as a group to 

assist the first C–H cleavage (I)28  and as a connector in III. An organozinc reagent 

(Zn(CH2SiMe3)2) serves as a stoichiometric base (B in Fig. 1) to remove protons, 1,2-

dichloropropane (DCP) as a mild oxidant, and a mixture of Fe(acac)3 in combination with 

a conjugated bisphosphine (dppen) as a catalyst (Fig. 2a). Deuterium labeling 

experiments suggested a fast equilibrium between II and III, from which an irreversible 

deprotonation event slowly occurs to give a diorganoiron(III) intermediate (IV), and a 

cross-coupled intermediate after reductive elimination (V). The reaction is particularly 

effective for coupling one equivalent each of (hetero)arene (or alkene) carboxamides and 

thiophene derivatives20,29,30, with the highest yield exceeding 90%. The multifold C–C 

coupling proceeded also with high efficiency, allowing us to synthesize carbon- and 

sulfur-bridged flat conjugated systems31,32 (e.g., 6 and 8) in a few steps (Fig. 2b), and a 

variety of donor/acceptor thiophene compounds in one step (Fig. 5)33. 

 
Fig. 1 | The mechanistic hypothesis of iron(III)-catalysed twofold C–H 
activation/cross-coupling with temporary connection strategy.  



 
Fig. 2 | Iron-catalysed twofold C–H activation/cross-coupling and its application to 
material synthesis. a, Iron(III)-catalysed stoichiometric C–H/C–H coupling between 3-

methyl-N-(quinolin-8-yl)benzamide and benzo[b]thiophene with exclusive selectivity for 

cross-coupling. n.d. = not detected. b, Transformation of C–H/C–H coupling products to 

carbon- and sulfur-bridged flat conjugated systems. 

 

Results  
Reaction conditions and the outcome. The reaction is illustrated for coupling of 

benzo[b]thiophene with 3-methyl-N-(quinolin-8-yl)benzamide (1, Fig. 2a). For twofold 

C–H activation and N–H deprotonation, the reaction requires three equivalents of a base, 

for which we found Zn(CH2SiMe3)2 is the most suitable (see Supplementary Figure 1 for 

details). Here the only detectable side product was 2-(trimethylsilyl)methylated product 

(3, 7% yield) probably formed by reductive elimination of II. The use of methyl or phenyl 

reagent instead of the CH2SiMe3 group resulted in nearly exclusive ortho-methylation or 

ortho-phenylation of the carboxamide. Thus, we surmise that steric bulk of the SiMe3 

group suppressed this side reaction. A typical example is described first: a THF solution 

of (trimethylsilyl)methylmagnesium chloride (5.4 equiv) was added to a THF solution of 

1 (0.20 mmol, 1.0 equiv) and zinc chloride (0.44 mmol, 2.2 equiv) to deprotonate the N–

H proton and to generate 2.2 equiv of a diorganozinc base. Benzo[b]thiophene (0.20 

mmol, 1.0 equiv), DCP (2.0 equiv), and a THF solution of Fe(acac)3 (20 mol%) and cis-



1,2-bis(diphenylphosphino)ethene (dppen, 20 mol%) were sequentially added. The 

reaction mixture was stirred at 70 °C for 18 h because the reaction occurs very slowly; it 

is only half complete even after 9 h (Fig. 6b, c). After aqueous workup, the cross-coupled 

product 2 was obtained in 86% yield with no trace of homocoupling byproducts 4 and 5, 

as analyzed by GC-MS and NMR (Fig. 2a). Homocoupling 34  of 

((trimethylsilyl)methyl)magnesium chloride was not observed. The reaction exclusively 

took place at the C2 position on the thiophene ring35. Benzo[b]thiophene was recovered 

in 15% yield. The use of 10 mol% excess of 1 increased the yield of 2 to 90%, and 25 

mol% excess of 1 increased the yield of 2 based on benzo[b]thiophene to 97% (see 

Supplementary Figure 3 for details). While we have so far not been able to reduce the 

catalyst loading beyond 20–25 mol% probably because of product inhibition, the dppen 

ligand was recovered in 89% yield with retention of the Z-geometry after aqueous workup 

due to its weak coordination to Lewis acidic Fe(III) species. Recoverability of phosphine 

ligand is a merit of using Lewis acidic iron over soft transition metals such as palladium, 

which often tend to bind strongly to the ligand, making recovery difficult. In the following 

experiments, we routinely used a 1:1 mixture of the two reactants (Fig. 3), while we used 

1.25–1.33 equiv excess of carboxamides for each C–C bond formation in multifold C–C 

cross-coupling reactions shown in Fig. 5. 

Scope of the reaction. Fig. 3 provides examples of single C–C bond-forming reactions 

under 1:1 stoichiometry, except for several examples (marked a, b, and c). In all cases, 

the formation of 2-(trimethylsilyl)methylated amide side products36 (cf. 3) accounted for 

the rest of the cross-coupling product to consume the amide starting material. Being prone 

to double arylation at the C2 and C5 positions (cf. 7), thiophene gave monoarylated 

products 9 and 27 in good yields of 68% and 70%, respectively, when thiophene was used 

in fivefold excess to the amide partner (2-(trimethylsilyl)methylated amide accounted for 

the rest of the consumption of the amide starting material). Double arylation of the 

benzamide partner did not take place because arylation at the C2 position prevents the 

second arylation at the C6 position. Electron-rich and -deficient, C2-substituted 

thiophenes (10, 11, 12) reacted well, and 16 having a C3 phenyl substituent reacted 

exclusively at the C5 position, probably because of steric hindrance. Benzo[b]thiophenes 

also took part in the reaction well (2 and 13–15 etc.). As for the carboxamide part, arene 

carboxamides bearing electron-donating substituents reacted smoothly (14, 15), while 

arene carboxamides containing strong electron-withdrawing substituents (–F, –CF3, ester) 



were unsuccessful (see Supplementary Figure 4 for details). Indole-2-carboxamide (17) 

and thiophene-2-carboxamides (18–21) were coupled with thiophene derivatives to 

deliver bis-heteroarene compounds. Cyclic alkenamide (22) and acyclic ones (23, 24) 

reacted stereospecifically to give the Z-isomer as the only product. The example of 23 

illustrates a gram-scale synthesis performed in 76% yield. This catalytic cycle tolerates 

functional groups such as ether (11), ketone (12), tertiary amine (14), and aryl silane (20, 

21). The reaction took place on benzofuran (28), but not on indole derivatives (see 

Supplementary Figure 4 for details). 1-Methyl-1H-pyrazole regioselectively reacted at 

the C4 position in 29% yield with 1:1 stoichiometry (29), and in 49% yield with fivefold 

excess of the pyrazole substrate. The regioselectivity for 1-methyl-1H-pyrazole may be 

ascribed to the acidity of the C–H bond and/or steric effects caused by metal coordination 

on nitrogen atoms. 

 
Fig. 3 | Reaction scope of iron-catalysed twofold C–H activation/cross-coupling of 



heteroarenes with (hetero)aryl and alkenyl carboxamides. Reactions were performed 

using 1.0 equiv of heteroarene (0.30 mmol), x equiv of carboxamide, 20 mol% of 

Fe(acac)3, 20 mol% of dppen, 2.2x equiv of ZnCl2, 5.4x equiv of Me3SiCH2MgCl, and 

2.0x equiv of DCP in THF at 70 °C for 18 h, where x = 1.0 unless otherwise noted below. 

The yield refers to the isolated, pure product. a 5.0 equiv of heteroarene was used. b x = 

1.25, c x = 1.5, d 2-(Trimethylsilyl)methylated amide side product was obtained in 13% 

yield. e 24 h. f The yield was determined by 1H NMR using 1,1,2,2-tetrachloroethane as 

an internal standard. 

 

 Benzene and halobenzene derivatives also took part in the reaction, albeit in low 

yield. Benzene reacted in 12% yield when used as a solvent mixed with THF (Fig. 4, 30). 

The low reaction efficiency may be ascribed to the weak coordination ability of benzene 

to iron(III) catalyst and the low acidity of its C–H bond37. Halobenzenes, but not electron-

rich benzene derivatives (e.g., anisole), also afforded the desired cross-coupling products 

in 42–72% yields. The reaction with a 1:5 ratio of the amide 1/1,2,3-trichlorobenzene 

produced a small amount of the cross-coupled product with no trace of the dimers of the 

amide nor the arene, giving back the amide and producing the side product 3. The 

observed reactivity speaks against a Friedel–Crafts-type mechanism38 and suggests that 

the success of the reaction depends on the acidity of the C–H bond to be cleaved (cf. 

thiophene vs furan and benzene)37. 

 
Fig. 4 | Reaction scope of iron-catalysed twofold C–H activation/cross-coupling of 
carboxamides with arenes. Reactions were performed using 1.0 equiv of carboxamide 

(0.30 mmol), 200 equiv of arene, 20 mol% of Fe(acac)3, 20 mol% of dppen, 2.2 equiv of 

ZnCl2, 5.4 equiv of Me3SiCH2MgCl, and 2.0 equiv of DCP in THF at 70 °C for 24 h. 

Unless otherwise noted, the yield refers to the isolated, pure product. a The yield was 

determined by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard. 



 

The efficiency of the temporary connection strategy led us to explore a short-step 

synthesis of multithiophene compounds of material interest, where we used 1.25–1.33 

equiv of amide reagent for each C–C bond formation. Fig. 2b has already illustrated the 

utility of the products. Thiophene and two molecules of an arene carboxamide reacted 

smoothly to give 2,5-diarylated thiophene 7 in 92% yield; 7 was converted to a 

carbon/sulfur-bridged flat conjugated system in 49% yield in four steps from thiophene 

(Fig. 2b). 2,2′-Bithiophene was diarylated at the 5- and 5′-positions in 90% yield (34). 

Electron-rich 3,4-ethylenedioxythiophene (EDOT), used as a monomer unit in conductive 

polymers39 and hole-transporting materials40, was 2,5-diarylated in 99% yield (35). Thus, 

EDOT, which is sensitive to oxidation41, survived perfectly under the present reaction 

conditions, attesting to the mildness of the oxidant (DCP) and the iron-catalytic cycle. 

(E)-1,2-Di(thiophen-2-yl)ethene was diarylated without affecting the double bond (36). 

4,7-Di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole, found often in organic photovoltaic 

materials 42 , was derivatized in 93% yield (37). -Extended benzo[1,2-b:4,5-
b']dithiophene regioselectively coupled with two benzamide units smoothly in 92% yield 

(38). Double C–H activation of furan on the C2- and C5-positions was achieved in 77% 

yield (39). Threefold chain extension from a central benzene ring via a thiophene linkage 

was achieved in high yield, as illustrated for 1,3,5-tri(thiophen-2-yl)benzene and 

benzo[1,2-b:3,4-b':5,6-b'']trithiophene (40, 41). Dppen ligand was recovered in 89% with 

retention of Z-geometry after aqueous workup in the synthesis of 41. 



 

Fig 5| Iron-catalysed twofold C–H activation/cross-coupling using heteroarenes of 
interest in materials science. Reactions were performed using 1.0 equiv of heteroarene, 

x equiv of carboxamide (0.30 mmol), 20x mol% of Fe(acac)3, 20x mol% of dppen, 2.2x 

equiv of ZnCl2, 5.4x equiv of Me3SiCH2MgCl, and 2.0x equiv of DCP in THF at 70 °C 

for 18 h. The yield refers to the isolated, pure product. 



 

Mechanistic investigation. Deuterium labeling experiments (Fig. 6a–c) provided 

experimental support for the equilibrium between II and the connected intermediate III 

in Fig. 1. Fig. 6d illustrates a plausible mechanism of the C–H activation (B and C, 

stereochemistry is tentative). The mechanism of the first C–H activation converting an 

amide anion A to an aza-metallacycle B has already been proposed21,28,43. In the absence 

of the benzamide reactant, protio benzo[b]thiophene was not deuterated under the same 

reaction conditions (Fig. 6a), and we suggest that aza-metallacycle B deprotonates the 

benzo[b]thiophene, as illustrated by C in Fig. 6d. The B-to-C conversion is supported by 

the reaction between benzo[b]thiophene-2-d and N-(quinolin-8-yl)benzamide (Fig. 6b) 

that resulted in partial deuteration of the product (29%-d) and the recovered benzamide 

(38%-d) upon ca. 50% conversion. Label-scrambling took place also between protio 

benzo[b]thiophene and N-(quinolin-8-yl)benzamide-2,3,4,5,6-d5 (Fig. 6c), indicating the 

occurrence of a reverse reaction, C-to-B (Fig. 6d in the box). For C to go into a product-

forming path via D, C needs to undergo a conformational change allowing the –

CH2SiMe3 group to irreversibly deprotonate the amide C–H group via C′. Given the very 

slow rate of the reaction, this latter step after the B-to-C equilibrium may be a slow step 

in the catalytic cycle. It should be noted the formation of thiophene-coordinated 

ferracycle intermediate (B) is probably inhibited by product, because product may 

coordinate to ferracycle competitively preventing formation of intermediate (B). This 

may be one of the reasons for high catalyst loading. 



 

Fig. 6 | Mechanistic investigation. a–c, Deuterium labeling experiments reveal a “proton 

shuttle” effect of quinolinyl carboxamide substrates. a Yields were determined by GC 

using tridecane as an internal standard. b The amount of deuterium incorporation was 

determined by 1H NMR. c Yields were determined by 1H NMR using 1,1,2,2-

tetrachloroethane as an internal standard. d, Mechanistic illustration with orbital analysis 

focusing on twofold C–H activation on the iron(III) centre. 

 

Conclusions 
In summary, we have developed a strategy using iron catalysis to carry out homocoupling-



free twofold C–H activation/cross-couplings of aromatics via transient connection of 

reactants. The excellent cross-coupling selectivity, using a stoichiometric amount of 

reactants, allowed us to synthesize thiophene derivatives of interest in materials science 

via multifold C–H activation/C–C cross-couplings. Other aromatics, including furan, 

pyrazole, and benzene derivatives also participated in the reaction. The reaction proceeds 

through sequential C–H activation steps via formation of a ferracycle followed by 

reversible C–H deprotonation of heteroarene by ferracycle to generate a transient species 

(III or C), where two reactants are connected by the coordination of the amide anion with 

iron. This equilibrating intermediate was experimentally verified by deuterium labeling 

experiments. We are further exploring the temporary connection strategy for selective 

twofold C–H activation/cross-coupling reactions using iron catalysis. 

 

Methods 
Full experimental details and characterization of the compounds are given in the Supplementary 

Methods. 

General procedure illustrated for the synthesis of 2-(benzo[b]thiophen-2-yl)-5-methyl-N-

(quinolin-8-yl)benzamide (2): In an oven-dried Schlenk tube was added 3-methyl-N-(quinolin-

8-yl)benzamide (79 mg, 0.30 mmol) and a THF solution of ZnCl2 (0.66 mL, 1.0 mol/L, 2.2 equiv). 

Then a THF solution of Me3SiCH2MgCl (1.53 mL, 1.06 mol/L, 5.4 equiv) was added dropwise 

at room temperature. After stirring for 10 minutes, benzo[b]thiophene (40 mg, 0.30 mmol) and 

1,2-dichloropropane (58 L, 0.60 mmol) were added, and then a solution of Fe(acac)3 (21 mg, 

0.060 mmol) and cis-1,2-bis(diphenylphosphino)ethene (dppen, 24 mg, 0.060 mmol) in THF 

(0.60 mL) was added dropwise, after which the colour of the reaction mixture became dark blue. 

The reaction mixture was stirred at 70 °C for 18 h and quenched by the addition of a saturated 

aqueous solution of potassium sodium tartrate (3 mL) and a saturated aqueous solution of NH4Cl 

(3 mL). After stirring vigorously, the aqueous layer was extracted with EtOAc (3 mL x 3). The 

combined organic layer was passed through a pad of Florisil, concentrated in vacuo, and purified 

by silica gel chromatography (hexane: ethylacetate = 10: 1) to afford the product as white solid 

(101 mg, 85%). 

Gram scale synthesis of (E)-2-methyl-N-(quinolin-8-yl)but-2-enamide  

In an oven-dried Schlenk tube was added (E)-2-methyl-N-(quinolin-8-yl)but-2-enamide (1.13 g, 

5.0 mmol) and a THF solution of ZnCl2 (11.0 mL, 1.0 mol/L, 2.2 equiv). Then a THF solution of 



Me3SiCH2MgCl (26.0 mL, 1.04 mol/L, 5.4 equiv) was added dropwise at r.t. After stirring for 10 

minutes, benzo[b]thiophene (0.67 g, 5.0 mmol) and 1,2-dichloropropane (0.97 mL, 10 mmol) 

were added, and then a solution of Fe(acac)3 (353 mg, 1.0 mmol) and cis-1,2-

bis(diphenylphosphino)ethene (dppen, 396 mg, 1.0 mmol) in THF (10 mL) was added dropwise, 

after which the colour of the reaction mixture became dark purple. The reaction mixture was 

stirred at 70 °C for 18 h and quenched by the addition of a saturated aqueous solution of potassium 

sodium tartrate (50 mL) and a saturated aqueous solution of NH4Cl (50 mL). After stirring 

vigorously, the aqueous layer was extracted with EtOAc (50 mL x 3). The combined organic layer 

was washed with brine, dried with Na2SO4, concentrated in vacuo, and purified by silica gel 

chromatography (hexane: ethylacetate = 7: 1 to 4: 1) to afford the product as white solid (1.37 g, 

76 %) and 2-trimethylsilylmethylated alkenamide as colorless oil (0.20 g, 13%). 

 

Data availability. All data supporting the findings of this study, including experimental 

procedures and compound characterization, are available within the paper and its Supplementary 

Information, or from the authors upon reasonable request.  
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