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Abstract
The size and complexity of CNN models are increasing and as a result they are requiring more

computational and memory resources to be used effectively. Use of a lower bit width numerical
representation such as binary, ternary or several bit width has been studied extensively so as to
reduce the required resources. However, the representation capability of such extremely low bit
width is not always sufficient and the accuracy obtained for some CNN models and data is low.
There are some prior studies that use moderate lower bit width with well-known numerical
representations such as fixed point or logarithmic representation. It is not apparent, however,
whether those representations are optimal for maintaining high accuracy. In this thesis, I
investigated the numerical quantization from the ground up, and introduced a novel “Variable
Bin-size Quantization (VBQ)” representation in which quantization bin-sizes are optimized to
obtain maximum accuracy for each CNN model. A genetic algorithm was employed to optimize
the bin-sizes of VBQ. Additionally, since the appropriate bit width to obtain sufficient accuracy
cannot be determined in advance, I used the parameters obtained by a training process using
higher precision representation (FP32), and used quantization in inference only. This reduced
the required large computational resource cost for training. During the process of tuning
VBQ bin-sides using a genetic algorithm, I discovered that the optimal distribution of bins
can be approximated by an equation with two parameters. I then used simulated annealing
for finding the optimal parameters of the equation for AlexNet and VGG16. As a result,
AlexNet and VGG16 with 4-bit quantization achieved top-5 accuracy at 74.8% and 86.3%
respectively, which were comparable to 76.3% and 88.1% obtained by FP32. Thus, VBQ
combined with the approximate equation and the simulated annealing scheme can achieve
similar levels of accuracy with less resources and reduced computational cost compared to
other current approaches.
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Chapter 1

Introduction

1.1 Background
Convolutional Neural Network (CNN) is widely used in various tasks such as image

recognition. In order to improve recognition accuracy, it is necessary to use the models
which have many layers. However, the increasing size and complexity of CNN models is
requiring more computational power and memory. Some of the larger models can only be
run on limited high-end servers [4, 5, 6]. For example, ResNet-50 takes 29 hours to train
ImageNet using 8 Tesla P100 [7]. In the latest research, Mikami et al. have conducted the
same training in 224 seconds, but they used up to 2,176 Tesla V100 [6]. However, not all peple
can prepare sufficient environments. Thus, those people often use pri-trained models and run
only inference, but it is still too complex to run on edge devices or small servers. There is
a demand for executing inference on edge devices or small servers because it is sometimes
undesirable to use data centers or supercomputers due to security and response time issues.
Thus, it is necessary to compress the complex model to adapt to those environments.

Compression techniques to reduce the trained model size are extensively studied. Reducing
bit width in quantizing values is one of the promising approaches for the compression. With
the reduced bit width, both computation and memory footprint are expected to be reduced.
It is even possible to save energy for inference, by preparing specially tailored hardware.
There are two different approaches to bit width reduction: one includes training and the other
does not. In the former approach, a quantized model is built from scratch, which is then
trained [8, 9, 10, 11, 12]. With this approach, improved accuracy may be achieved compared
to the corresponding floating point 32bit (FP32) results [11], and the compression rate is
generally high. However, building and tuning the new models require a lot of effort, and
are time consuming. The latter approach aims at reducing the bit width of already-trained
models without affecting their accuracy [13, 14, 15]. Although this approach is difficult because
quantization error can accumulate, existing models with established trained data can be reused
without the costly training process.

This work described in this paper focuses on the second approach. Different from prior
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Figure.1.1: Quantization examples

studies, I made no assumption about the quantization format, such as fixed point, floating
point, or logarithmic representations. Instead, I find an optimal quantization under a given
bit width. The quantization can be defined as mapping a continuous value onto a numerical
representation of finite bit width. In more detail, a continuous value range is divided into
bins (sections) indexed by the given bit width, and any numbers in each bin are replaced by
a representative value assigned to the bin. Quantization schemes are depicted in Figure 1.1
for two widely used representations: the fixed point format and the floating point format.
These schemes are designed to have systematically determined bin sizes and representative
values, and to be easily processed mathematically. However, they are not necessarily optimal
in maximizing the accuracy of CNN under the given bit width. By arranging bin boundaries
and representative values more flexibly, it will be possible to improve the accuracy, or to reduce
the bit width further with keeping the accuracy.

1.2 Contributions
The contributions of this research are as follows:

• I proposed a scheme called variable bin size quantization (VBQ) and applied it to CNN.
• The bin sizes (or the representative values) are optimized by using the genetic algorithm.
• I derived a formula to describe the distribution of the representative values, which

represent continuously both the fixed point-like quantization and the floating point-like
quantization.

• I optimized parameters in the formula using simulated annealing and succeeded in
reducing the representation of the weight of all layers to 4 bits with only a slight
reduction in top-5 accuracy of 1.84% in AlexNet and 1.50% in VGG16 respectively.

• I found that in order to keep the accuracy drop less than 1% compared with FP32, the
activation of input layer requires 4 bits, but the activation of other layers requires 1 bit
at the minimum and 3 bits at the maximum.

– 8/56 –
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1.3 Structure of Thesis
This thesis is organized as follows: In Chapter 2, I present an extensive literature survey

of the related works. In Chapter 3, I develop a CNN framework and investigate weights in
CNN. In Chapter 4, I optimize quantization of weights using a genetic algorithm and then
optimize parameters for quantization using a simulated annealing in Chapter 5. In Chapter
6, I investigate and experiment activation in CNN. It is followed by conclusions in the last
chapter.

– 9/56 –
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Chapter 2

Related Work

2.1 Convolutional Neural Networks
In this thesis, I target on convolutional neural networks(CNN). First, I explain the basic

structure and terms of CNN. A convolutional neural network is a neural network having a
convolutional layer, and is generally used in image recognition. The architecture example
is shown in Figure.2.1. The value propagating through each layer from input to output is
defined as Activation; the value multiplying the activation in the convolutional layer or the
fully connected layer is called Weight. Receiving an image as input, predicting what the subject
is and outputting it as a probability is called inference. The process of comparing inference
results with correct answers, propagating the error from output to input, and updating weights
is called training. Also, the value propagating from the output toward the input is called
Gradient.

MNIST, CIFAR-10, ILSVRC2012 are commonly used data sets for CNN research. MNIST
is a data set of 10 class handwritten numbers from 0 to 9 and the color is gray scale and the
image size is 28 * 28. It is one of the simplest data sets because it has a small number of classes,
only one gradation in color, and small image size. CIFAR-10 is a 10-class data set of vehicles
and animals and the color is three channels of RGB and the image size is 32 * 32. It is a data
set that is more difficult than MNIST because it has three color channels of RGB. ILSVRC

Figure.2.1: Architecture example of CNN [1]
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Figure.2.2: The calculation of convolutional layer. [2]

2012, which is sometimes called just ImageNet, is a data set used in the 2012 challenge of
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) which is an image recognition
competition using ImageNet. ILSVRC 2012 is a data set of 1000 class general object. It has 3
color channels of RGB and the image size is 224 * 224 or 227 * 227. 　 It is the most difficult
data set because the image size and number of classes are large. Also, commonly used network
constructions are named, such as LeNet [1], AlexNet [16], VGG16 [17], GoogLeNet [18] and
ResNet [7]. In this thesis, I call the network construction as Model.

2.2 Acceleration on FPGA
The final objective of this research is to reduce the number of bits of numerical expression

in order to make calculations based on LUT (look up table) of FPGA, and to accelerate the
calculation of deep learning. I investigated the related works about the acceleration method
for deep learning using FPGA.

2.2.1 Loop Optimization

Operations in convolution layers occupy more than 90% of the operations in CNN [19]. It is
very important to shorten the computation time of the convolution layer in order to improve
the efficiency of processing. I showed the calculation of convolutional layer in Figure.2.2 In
Figure.2.2, K is a kernel size, N is the input channel size, M is the output channel size, and
R and C is the number of row and column of output respectively. The operation when this
calculation is performed on the FPGA is as follows.

– 11/56 –
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Figure.2.3: Loop Tiling [2]

1. Load the data necessary for computation from the external memory into the on-chip
memory

2. Do calculation
3. Load again from the external memory if the data necessary for computation is not on

the chip

Since loading data from the external memory to the on-chip memory is very time consuming,
it is important to reduce the number of data loading for efficiency. Loop tiling is the one
of the method for reducing the number of data loading. Loop tiling, it is also called loop
blocking, is a method to make memory access more efficient by dividing the loop into small
blocks. Tiling the loop of convolution layer represented by Figure.2.2 results in Figure.2.3.
Unnecessary memory access such as reloading the same data over and over can be eliminated
by dividing the loop into the sizes which all data required for one calculation falls in the
on-chip memory. As a result, the number of times of loading from the external memory is
reduced, and the calculation can speed up. Since the tile size of loop tiling is related to the
number of computing units to be used and the number of times of access to external memory,
it is an important parameter for efficiency improvement and needs to be carefully decided.

Zhang et al proposed a method of determining the tile size at loop tiling using a roof line
model [2]. The roof line is a model showing the upper limit to the computation performance
of the program depending on the data transfer amount (Figure.2.4).

The left part of the graph of Figure.2.4 means when the ratio of operations to data transfer is
small, the maximum number of computation per unit time is limited by the bandwidth of data
transfer. The flat part of the graph means when the ratio of the data transfer becomes larger

– 12/56 –
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Figure.2.4: Roof Line Model [2]: The y axis represents the ratio of calculation to data transfer and the x axis
represents calculation performance.

Figure.2.5: Convolutional Layer with Tiling, Unrolling and Pipe-lining [2]

than a certain value, the bottleneck of data transfer disappears and the maximum number of
the calculation per unit time becomes the same as the theoretical calculation performance.

Figure.2.5 is an computation example when the tiling size of N,M,R and C is TN ,TM ,TR and
TC respectively. It is also applied loop unrolling and loop pipe-lining. I can compute in parallel
by expanding the loop since there are multiple multipliers/adders in FPGA. By computing
in parallel, it is possible to maximize the use of the resources of FPGA and to improve the
efficiency of processing. Also, the number of operations that can be executed at a time is
limited by the number of resources, but it can be executed at the same time as long as it uses
different resources. It is possible to execute different operations simultaneously by pipe-lining
and maximize the use of all resources. In Figure.2.5, the computational roof, which represents
the theoretical computational upper limit, can be calculated as follows.

– 13/56 –
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Computationroo f

=
totalnumbero f operations
numbero f executioncycles

=
2 × R ×C × M × N × K

⌈ M
TM
⌉ × ⌈ N

TN
⌉ × R

TR
× C

TC
× (TR × TC × K × K + P)

≈ 2 × R ×C × M × N × K
⌈ M

TM
⌉ × ⌈ N

TN
⌉ × R ×C × K × K

where

P = pipelinedepth − 1

(2.1)

Then, Computation to Communication Ratio, which represents the ratio of operations to data
transfer, can be calculated as follows.

ComputationtoCommunicationRatio

=
totalnumbero f operations

totalamounto f externaldataaccess

=
2 × R ×C × M × N × K

αin × Bin + αweight × Bweight + αout × Bout

where

Bin = TN(S TR + K − S )(S TC + K − S )

Bweight = TMTN K2

Bout = TMTRTC

0 < Bin + Bweight + Bout ≤ BRAMcapacity

αin = αweight =
M
TM
× N

TN
× R

TR
× C

TC

αout =
M
TM
× R

TR
× C

TC

(2.2)

M,N,R,C,K, S is defined by a model, so the computation roof and the computation to
communication ratio are changed depending on TR,TC ,TM ,TN . Those parameters are restricted
by following equations.



0 < TM × TN ≤ (# o f PEs)
0 < TM ≤ M
0 < TN ≤ N
0 < TR ≤ R
0 < TC ≤ C

(2.3)

The result of variously changing TR,TC ,TM ,TN while satisfying those equations is shown in
Figure.2.6. Please note that design A in Figure.2.6 can only demonstrate the performance of
A′ due to data transfer time constraints. Therefore, design C and D are more effective than

– 14/56 –
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Figure.2.6: Design Space of All Possible Designs [2]

design A. The design which has the larger ratio of operation to transfer is suitable for FPGA
since the FPGA generally has a narrow bandwidth. Thus, in this case the design C is most
appropriate. As a result of deciding the optimal design with this method, the processing speed
was at least 3.62 times faster than the other FPGA implementation. Moreover, compared with
the implementation on 16 threads CPU, the speed was 4.8 times and the power consumption
was 1/24.6 times.

2.2.2 Fixed-Point Representation

Fixed-point is a represent method with only the mantissa part by fixing the digit to which the
decimal point is placed. Compared with floating-point representation, there is an advantage
that calculation is simple. The disadvantage is that the quantization error is large and it leads
to decrease an accuracy.

Qiu et al proposed to dynamically change the digits where the decimal point is placed for
each layer in order to prevent decreasing accuracy [3]. The fixed-point representation can be
expressed by the following equation.

n =
bw−1∑
i=0

Bi · 2− fl · 2i (2.4)

bw is a bit-width and fl is a digit to which the decimal point is placed. For the value of each
layer, the appropriate fl when given bw are decided depending on the following formula.

fl = argmin
fl

∑
|W f loat −W(bw, fl)| (2.5)

As a result, it is possible to decide the position of the decimal point so that the error becomes
the smallest as compared with the floating point.

– 15/56 –



Master Thesis CHAPTER 2. RELATED WORK

Figure.2.7: Exploration of different data quantization strategies with state-of-the-art CNNs [3].

Figure.2.8: Performance of different platforms with VGG16-SVD network [3].

Figure.2.7 shows the result of comparing the accuracy when changing the expression of
decimal numbers in some CNN models. It is found that accuracy of fixed-point 16bit does
not decrease compared with the accuracy of floating-point 32bit. However, in the case of
fixed-point 8 bits, inference does not work because both the convolutional layer and the fully
connected layer can not be expressed by one type of the position of decimal point(Figure.2.7
Exp7). Inference works by adopting different decimal point positions in the convolutional
layer and the fully connected layer, but the accuracy is lowered by nearly 40% as compared
with the case of floating-point 32bit(Figure.2.7 Exp8). By using the method of Qiu et al., if
the optimal decimal point positions are used for each layer, it is possible to do inference with
fixed-point 8 bits without decreasing accuracy(Figure.2.7 Exp9).

Figure.2.8 shows the result of comparing FPGA implementation when optimizing memory
access by rearranging data in the order of access in addition to optimizing the position of
the decimal point with implementations of Intel Xeon E5-2690 CPU@2.90GHz, Nvidia K40
GPU (2880 CUDA cores with 12GB GDDR5 284-bit memory) and Nvidia TK1 Mobile GPU
development kit (192 CUDA cores).

As a result, the computing performance of convolutional layers is 1.4 times and 2.0 times
better compared with CPU ·mGPU, respectively. Compared with GPU, GPU has 13.0
times higher computing performance, but GPU consumed 26.0 times power. As for the fully
connected layers, the performance of CPU was 17.17GOP/s and the performance of GPU was
40.98GOP/s, whereas in the case of FPGA, it was 1.20GOP/s. This is because the ratio of
data transfer is large in the fully connected layers, and the calculation performance is restricted
by the bandwidth. It is considered that the performance of mGPU is low for the same reason.

– 16/56 –
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Although it still has some difficulties, especially for fully connected layers, reducing the bit
width using the fixed point is effective in increasing the efficiency of the calculation.

So far I have introduced research to accelerate the computation of machine learning using
FPGAs. In order to efficiently machine learning on the FPGA, I found that it is important
to reduce the amount of data transfer by loop tiling or reducing bit width. Reducing bit
width not only reduces the amount of data transfer but also has a possibility of simplifying
the calculation. So, I state researches of compressing CNN models including reduction of bit
width.

2.3 Model Compression
2.3.1 Quantized Convolutional Neural Networks

There are several studies to reduce the bit width of the weight during training [20, 21,
22]. These studies use MNIST as data sets, and a multilayer perceptron consisting only of
fully connected layers. The techniques of reducing the bit width of CNN weights for tasks
of 10 class classifications such as MNIST and CIFAR-10 are also studied [9, 23, 8]. These
techniques succeeded in binarizing weights and activation without degrading the inference
accuracy. Several researches showed studies reducing the bit width of the weight and activation
in CNN for large-scale data sets such as ImageNet [24, 10, 13]. One key difference with these
studies and our current study is that they needed to train models with binarized weights and
activation.

On the other hands, [14, 13, 15] are aim to reduce bit width for already-trained models
similar to our study. Lin et al compress the model by optimizing the bit width of each
layer so as to minimize the fixed point quantization error [14]. Their approach only applies
to the convolution layer, so it cannot compress well an ImageNet model, which the fully
connected layers dominate the model size, whereas it can compress a CIFAR-10 model, which
the convolutional layers dominate, by > 20%. Kamiya et al decomposed real-valued vector
of weights to binary basis vectors and quantized activation [15]. As the result, real-valued
inner-product computation is replaced with binary inner-product computation and they
succeeded to accelerate the computation of inference and decrease model size. Miyashita
et al showed that it is possible to reduce the weight of the fully connected layers to 4 bits and
the weight of the convolutional layers to 5 bits without the large decreasing of accuracy, by
expressing the values using logarithms based on 2 or

√
2[13].

2.3.2 Adaptive Quantization

We introduce Variable Bin-size Quantization (VBQ), which is a quantization using different
bin sizes for each quantization bin. VBQ is a type of adaptive quantization. In signal
compression, adaptive quantization schemes is widely used, in which an appropriate bin size
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are chosen for each sample to be quantized. This idea was applied to CNN in [25, 26, 27],
though the numerical expression was adapted within the fixed point scheme and bin sizes were
not variable.

2.3.3 Other Approaches

Other approaches to handle the complexity of large CNN models include (a)training a
small model with the output of a large and high accuracy model [28, 29] (b)sharing weights
using feature hash [30] (c)combining pruning and quantization during training [31]. These
approaches are complementary to our proposed approach and it could be possible to compress
the model more by using those together.
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Chapter 3

Investigation of Weights in CNN

3.1 Framework For Our Experimen
We first investigated the properties of the trained weights before studying the method of

quantizing the trained weights. I have two purposes for this investigation. The first is to
confirm whether FP32 which is generally used is really sufficient as a baseline. The second is
to understand the distribution of the trained weights to be used for reference when considering
the quantization method. For this investigation, I need a framework that can easily change
the numerical expression in CNN calculation.

3.1.1 Detail of Implementation

I implemented a framework that allows CNN computation with various numerical
expressions in C++. The calculation of CNN and other neural networks is primarily a
matrix operation. In general, matrices are implemented using multidimensional arrays. In
the calculation of CNN, fixed length array is appropriate because the number of elements
of each matrix never change in the middle. On the other hand, in the calculation process
of CNN, there are many situations in which similar calculations are performed for arrays of
various sizes. For this reason, it is necessary to implement each function so that it does not
depend on the array size. So, I implemented it using “template” as shown in Fig3.1. Dim-n
represent the size of the n dimension. Only 4-dimensional matrix at most appears in the
calculation of CNN. So I implemented it to handle up to 5 dimensions with enough margin. I
also implemented each function using “template” in the same way so that any type of matrix
can be handled uniformly.

3.1.2 Unit Testing

It is important to make sure that the created program is working properly. It is called unit
testing to divide a program by element and test whether each element is working correctly.
I conducted a unit testing to verify that the CNN framework I created works properly. In
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Figure.3.1: Tensor class

order to do unit testing, it is necessary to prepare correct answers. For this time, I used the
calculation results of each function of existing Python implementations*1*2 as correct answers.

3.1.3 Numerical Expression

Various numerical expressions can be handled in my framework. Even if it is not a type
supported by C ++ such as int or float, it can be run by defining the following.

• comparison operator (==, >, <, >=, <=)
• assignment operator (=)
• arithmetic operator (+, *, -, /)
• cast operator to/from float

Since it is difficult to define random function and exponential function to own type, I
implemented it by using those function for costing from float.

3.2 Experimental results and Analysis
I trained CNN using various numerical expressions. I investigated the distribution of weights

and inference accuracy when training converged. In order to see only the influence due to the
difference in numerical expression, I used the same seed for pseudo random function. I used
SimpleConvNet in Figure.3.2, which is composed a convolutional layer and two fully connected
layers and floating point 16bit(FP16), 32bit(FP32), 64(FP64) as numerical expressions.

*1 https://github.com/oreilly-japan/deep-learning-from-scratch
*2 http://www.numpy.org/
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Figure.3.2: SimpleConvNet

Table.3.1: Accuracy of Each Numerical Expression

FP16 FP32 FP64
0.9347 0.9782 0.9784

3.2.1 Accuracy

The accuracy was almost the same for FP32 and FP64, about 97.8%, and in FP16 it was
93.5 % which is 4% lower than those of FP32 and FP64 in Table.3.1.

3.2.2 Histograms

I created and compared histogram for each weights. The case of W1 is shown in Figure.3.3.
The upper left is the initial value of W 1, the upper right is W 1 trained by FP 16, the lower left
is W 1 trained with FP 32, and the lower right is W 1 histogram trained with FP 64. I found
the histograms are very similar between FP32 and FP64. On the other hand, when comparing
them with FP16, it can be seen that around 0 has large population in FP16. Also, the range
of values   is approximately [−0.75, 0.75] for FP32 and FP64, while it is narrow for FP16 as
being approximately [−0.25, 0.25]. Since the range of the initial value is also approximately
[−0.25, 0.25] as in FP16, the range expanded as training progressed in FP32 and FP64, but it
did not spread in FP16. A similar tendency was also observed for parameters other than W1.
The features found from the histogram are summarized as follows.

• Distributions of FP32 and FP64 are very similar
• In FP16, there are more values   of 0 than FP32 and FP64
• In FP32 and FP64, the range widened to about three times the range of the initial value
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Figure.3.3: Histogram of W1

Table.3.2: Cross Correlation

FP16 - FP64 FP32 - FP64 FP64 - FP16
W1 0.655 0.963 0.661
W2 0.515 0.994 0.516
W3 0.490 0.966 0.500

• The range of FP16 does not differ from the range of the initial value

Moreover, in order to quantitatively evaluate how similar the value of the parameter is in each
numerical expression, I showed the cross correlation coefficient of each. The results are shown
in Table.3.2. This result also shows that there is a strong correlation between the parameters
trained in FP32 and FP64.

3.2.3 Relationship between Numerical Expression and Accuracy

As shown in Table.3.1, it was found that the accuracy of FP16 is 4% lower than that of
FP32 and FP64. There are two possible reasons for this. The first is that FP16 is not enough
for training. The second is that FP16 is not enough for inference. In order to ascertain
which is the cause, I compared parameters trained in FP64 and cast to FP16 with parameters
trained in FP16. Also for FP32, I compered parameters trained in FP64 and cast to FP32
with parameters trained in FP32. I showed the result in Table.3.3. It was found that the
almost same accuracy as FP64 can be obtained even if the inference is performed in FP16

– 22/56 –



Master Thesis CHAPTER 3. INVESTIGATION OF WEIGHTS IN CNN

Table.3.3: Comparison of Accuracy of FP64 Training with FP16/FP32 Training

Train FP64 original
FP16 0.9782 0.93347
FP32 0.9784 0.9782

Figure.3.4: Histogram of W1 (σ = 0.3)

and FP32 using the parameters trained in FP64. Even if casting the parameter trained in
FP64 to FP16, the accuracy did not decrease much. It is possible to express parameters that
can obtain accuracy that is almost the same as 64 bits by at least 16 bits. In addition, it has
become clear that the reason why the accuracy decreases when training is performed in FP16
is that the parameters are not sufficiently optimized as compared with FP64.

3.2.4 Relationship between Value Range and Accuracy

As shown in Figure.3.3, it was found that when training is performed with FP 16, the range
of the parameter hardly spreads out from the range of the initial value. In the experiment of
Figure.3.3, I used the normal distribution with average 0 and standard deviation 0.1 as the
initial value. The range of parameter in FP16 was about [−0.25, 0.25]. On the other hand,
the range of parameter trained in FP32 and FP64, which gave 4% or more accuracy than
that trained in FP 16, was [−0.75, 0.75]. I considered the range of parameter in FP16 was
supposed to widen [−0.75, 0.75] by using initial value of the normal distribution with average
0 and standard deviation 0.3. I also expected to improve the accuracy by doing so. I showed
the result in Figure.3.4 When tripling the standard deviation of the distribution of the initial

– 23/56 –



Master Thesis CHAPTER 3. INVESTIGATION OF WEIGHTS IN CNN

values, the range of parameters trained in FP16 also triples. The range of parameters was
almost the same as the value range of parameters trained in FP64 which gave about 98%
accuracy. However, the accuracy was 93.1 %, which was1% lower than before expanding the
range. It is found that the range of parameters has no relation to the decrease in the accuracy
and there are other reasons of decreasing accuracy when training is conducted in FP16.
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Chapter 4

Optimizing Quantization

4.1 Variable Bin-size Quantization
When converting a continuous value to a digital value, quantization is used. Quantization

is an operation that converts a range of values to a representative value. I denote the range
by bin, the width of the range by bin size, and the boundary of the range by bin boundary.
The number of bins corresponds to 2n, where n is the bit width of the numerical expression
used in the quantization.

In order to optimize the quantization bins more freely, I propose “Variable Bin-size
Quantization (VBQ)” as shown in Figure 4.1. VBQ is a type of adaptive quantization where
representative values can be changed independently, so as to optimize bin locations and bin
sizes. Here, the bin boundary is taken at the middle of two adjacent representative values.

4.2 Genetic Algorithm
A genetic algorithm is used to optimize representative values vi of VBQ by taking the

accuracy of CNN to be the fitness score. Genetic algorithms are heuristic algorithms that
search for an optimal solution by repeating operations such as reproduction, crossover, and
mutation on multiple individuals with various genomes. In this study, each “genome” is a set
of representative values {vi}, and is a candidate of an optimized numerical representation for
CNN. In the following, procedures of the employed algorithm are outlined.

Figure.4.1: Variable Bin-size Quantization example
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Figure.4.2: Diagram illustrating the modified crossover method implemented in the genetic algorithm.

4.2.1 Reproduction

Reproduction is an operation to succeeds superior genomes to the next generation. In the
present algorithm, I combine the elite selection and the roulette selection as follows. First, I
select an individual with the highest fitness, and reproduce it in the next generation. From the
rest of individuals, Rr% are selected according to the probability proportional to the fitness.

4.2.2 Crossover

Crossover (also known as recombination) is an operation that combines information from
two individuals to generate offspring by mating. There are various methods for the crossover
operation, but the two-point crossover is widely used, where two crossover points are randomly
chosen and a section of genomes between them are exchanged. In the present algorithm, I
choose two sets of Rc% of individuals randomly, and apply a variation of the two-point crossover
operation on each pair of them as follows.

In an ordinary two-point crossover, indexes of the genetic sequence are taken as the crossover
points. However, in the VBQ optimization, where the genetic sequence is an array of
representative values, the range between two crossover indexes [vi, v j] may not overlap at
all between two individuals. Therefore, instead of specifying two crossover indexes, I specify
a center of the range and the number of representative values to be exchanged around the
center. In this manner, genetically comparable information can be exchanged as shown in
Figure 4.2.

4.2.3 Mutation

Mutation is an operation to randomly change a part of a gene and serves to promote genetic
diversity. This then avoids local optimal solutions by preventing the genes from becoming too
similar. I implemented mutation by randomly moving the position of the randomly selected
representative values. The amount of the movement is regulated such that the value does not
exceed the representative values on both sides. I choose Rm% of individuals randomly, and
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Figure.4.3: Diagram showing the overall steps in the experimental system.

apply the mutation above.

4.3 Outline of Experiments
4.3.1 Outline

The outline of the system used in this experiment is shown in Figure 4.3. The system
consists of three parts: GA, Quantizer, and CNN. The flow of the experiment is as follows.

1. CNN: Train with FP32, and create trained weights.
2. GA: Give genomes to Quantizer to evaluate genomes fitness.
3. Quantizer: Quantize the trained weight of CNN with the received genomes as the bin

boundary.
4. CNN: Inference using quantized weights, and pass the obtained the Top-1 accuracy to

GA.
5. GA: Use the Top-1 accuracy as the fitness of that genomes.
6. GA: Execute the reproduction, crossover and mutation described in Section 4.2 to create

the next generation genomes.
7. Repeat 1 ∼ 6

We experimented with VGG16, which is composed 13 convolutional layers and 3 fully
connected layers as shown in Table.4.1, using the ILSVRC2012 validation dataset. Initial
genomes were randomly generated, and the number of genomes was 50. The probability of
reproduction (Rr), crossover (2Rc), and mutation (Rm) were 30%, 50%, and 20%.
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Layer# Layer Param #

Layer1 Conv2D 3 × 3 × 64
Layer2 Conv2D 3 × 3 × 64

MaxPooling
Layer3 Conv2D 3 × 3 × 128
Layer4 Conv2D 3 × 3 × 128

MaxPooling
Layer5 Conv2D 3 × 3 × 256
Layer6 Conv2D 3 × 3 × 256
Layer7 Conv2D 3 × 3 × 256

MaxPooling
Layer8 Conv2D 3 × 3 × 512
Layer9 Conv2D 3 × 3 × 512
Layer10 Conv2D 3 × 3 × 512

MaxPooling
Layer11 Conv2D 3 × 3 × 512
Layer12 Conv2D 3 × 3 × 512
Layer13 Conv2D 3 × 3 × 512

MaxPooling

Layer14 FC 25088 × 4096
Layer15 FC 4096 × 4096
Layer16 FC 4096 × 1000

Table.4.1: VGG16

4.3.2 System Implementation

The GA was implemented in C++, and the Quantizer and CNN were implemented in
Python. I used Keras*1 and Tensorflow*2 for CNN implementation. Separating the system
to three parts: GA, Quantizer, CNN allows us to change the optimization method to other
than GA or to fiddle with the CNN model without effect to other parts. Thanks to that,
it is easy to update or maintain the program. At first, the GA part and the Quantizer and
CNN part were each one process. However, there was a problem that calculation became very
time consuming when the model of CNN became large. The reason is because for calculating
one generation of GA, the calculation of Quantizer and CNN are repeated the same times

*1 https://keras.io/
*2 https://www.tensorflow.org/
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Figure.4.4: The result of execution time of GA with 50 genomes.

as the number of genes. Also, since Reedbush and ABCI, which I used, have more than one
GPU on one node, performing CNN in one process can only use one GPU and it is inefficient.
Therefore, I improved the system so that Quantizer and CNN parts can be performed on
multiple processes for the one GA process.

Originally I used gRPC*3 to communicate between the GA part and the Quantizer
and CNN part. gRPC communicates using Protocol Buffers*4, which is a binary format
containing type information. gRPC can communicate without any problems between different
programming languages since Protocol Buffers does not depend on programming languages.
It is theoretically possible to perform multi-node communication using gRPC on a spar
computer, but it is a little troublesome, because some settings, like the path of the file of
the IP address or host name that can be used, the usable port etc..., are different depending
on the supercomputer.

MPI is generally used for inter-node communication of supercomputers. MPI makes
inter-process communication easy. Also, the one program can be executed without
being conscious of the difference for each supercomputer because MPI is set up for each
supercomputer in advance. However, communication between programs written in different
programming languages is not assumed. Because my system is written in a different language
in GA part and Quantizer and CNN part, it is difficult to communicate with MPI.

For the reasons, I used gRPC and MPI together. I implemented a part called
”Communicator” that relays MPI and gRPC in C ++. By multi-processing including
Communicator, I can use MPI for inter-process communication and gRPC for conversion
from C ++ to Python.

The problem of communication has been solved so far. Next, I solved a problem of collision of

*3 https://grpc.io/
*4 https://developers.google.com/protocol-buffers/
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Layer# Layer Param #

Layer1 Conv2D 3 × 3 × 64
Layer2 Conv2D 3 × 3 × 64

MaxPooling
Layer3 Conv2D 3 × 3 × 128
Layer4 Conv2D 3 × 3 × 128

MaxPooling
Layer5 Conv2D 3 × 3 × 256
Layer6 Conv2D 3 × 3 × 256
Layer7 Conv2D 3 × 3 × 256

MaxPooling

Layer8 FC 200704 × 1024
Layer9 FC 1024 × 512
Layer10 FC 512 × 10

Table.4.2: VGG-like model

resources when running multiple processes in one node. I implemented CNN using tensorflow,
but tensorflow reserves all GPU’s memory. For example, when there are 4 GPUs in one node,
if you launch multiple CNN processes on one node, the first process reserves all memory of
the 4 GPUs even though only 1 GPU is used for calculation. Other processes abend due to
insufficient memory. For resolving it, I implemented to specified the GPU to use by rewriting
the environment variable when launching the CNN process, and make the other GPUs invisible.

The results of GA with 50 genomes are shown in Figure.4.4. The x axis represents the
number of processes and the y axis represents the ratio with the execution time in the case
of one process. The reason that the graph is in a staircase is because the execution time of
a process with a large number of calculations becomes a bottleneck. Figure.4.4 shows that
multiple processing and parallelization are done correctly.

4.4 Preliminary experiment
I carried out a preliminary experiment using a small VGG-like model with CIFAR-10

dataset, shown in Table4.2, before starting full-scale experiment. The purpose of this
experiment is the following two.
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Figure.4.5: Relationship between the number of bin boundaries and Top-1 Accuracy in some quantization
methods.

• To make sure that my system is working properly
• To ascertain whether using optimized quantization is really more suitable for reducing

bit width in CNN than using artificial quantization like equidistance or logarithmic
spacing

I have optimized VBQ by varying the quantizing methods and the number of bin boundaries
from 4 to 31. The resulting best Top-1 accuracy is plotted in Figure. 4.5. It was confirmed that
the system is working correctly from the fact that comparable accuracy can be obtained before
quantization. Three artificial bin boundary distributions are investigated. In “Equal-size”
distribution, bins are arranged such that each bin contains the same number of trained weights.
In “Linear” distribution, bin sizes are taken to be the same. And in “Log” distribution, bin
sizes are increased exponentially as the bin location departs from zero. Roughly speaking, the
Linear and Log distributions correspond to the fixed point and the floating point numerical
expressions, respectively. For these distribution, I took 3σ range to be the full dynamic range,
where σ is the standard deviation of the trained weights. The Top-1 accuracy obtained from
them are plotted in Figure. 4.5. It was found that the accuracy when using the optimized
bin boundary becomes higher than the other bin boundaries despite the number of bins. I
demonstrated that the system is working correctly and the effectiveness of optimization. So,
I start full-scale experiment in the next section.

4.5 Experimental Results and Discussion
We experimented in the cases where the representative value was positive/negative

symmetric and asymmetric with VGG 16. I used the trained weights available from Keras
library. I obtained 67.38 % accuracy with FP32 in the validation data set of ILSVRC2012.
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Figure.4.6: Changes in the accuracy for each generation

Figure.4.7: The accuracy of quantizing and optimizing only one layer with other layer using FP32

The number of representative values to be optimized was 16. Changes in the accuracy for
each generation with the same quantization applied to all layers are shown in Figure.4.6.

We can get to a better solution quickly when the representative values are positive/negative
symmetric. Also, I showed the result of quantizing and optimizing only one layer with other
layer using FP32 in figure 4.7. I found quantization which can exceed the base accuracy with
FP32 in all layers regardless of symmetry.

Next, I conducted nonlinear regression analysis in order to investigate the distribution of
the optimized representative values. I heuristically deduced Eq.4.1 as the regression equation.

V(x) = sign(x − d) × b × (a|x−d| − 1) + c (4.1)

In Eq.4.1, a is an exponential index, b is a scaling factor, c is a shift in the y-direction, and d

is a bias in the x-direction. Eq.4.1 is a exponential function when a is a large value and it can
be approximated as a linear function when a is small. Now V(x) is the bin boundary place and
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(a) Asymmetry (Layer1) (b) Symmetry (Layer1)

(c) Asymmetry (Layer10) (d) Symmetry (Layer10)

Figure.4.8: Distributions of representative values and the regression results

Figure.4.9: The accuracy of quantizing each layer using regression results

x is the index of the representative values, normalized with [−0.5, 0.5]. The regression results
for the first and tenth layers are shown in Figure. 4.8 for the case of symmetry and the case
of asymmetry.

In both symmetry and asymmetry cases, the first layer is nearly linearly distributed and the
tenth layer is close to the exponential distribution, and I could fit successfully in both cases.
The accuracy when choosing a representative value along the fitting function for each layer is
shown in Figure.4.9. In the case of symmetry, there is no layer much lower than the accuracy
of FP32. In the case of asymmetry, on the other hand, the accuracy remarkably decreased at
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the 14th layer. Considering that the R2 score of the 14th layer is lower than that of the other
layers, the reason is that regression didn’t work well. For the other layers also the symmetric
case has a higher R2 score than asymmetry case. I found that the regression goes well in the
symmetry case. In addition, when the representative value is taken symmetrically, since c, d

in Eq.4.1 is theoretically 0, Eq.4.1 becomes Eq.4.2, which has an advantage of being simple.

F(x) = sign(x) × b × (a|x| − 1) (4.2)

Therefore, I decided to experiment only in the case of placing representative values in
positive/negative symmetry hereafter.

In the case of optimizing the representative values itself, the accuracy exceeds that of FP32
int all layers. On the other hand, in the case of taking the representative values among the
regression function, the accuracy has fallen below that of FP32 in some layers. However, in
the case of symmetry, the decrease is only about 1.2%. Besides, when represent values are
placed along Eq.4.2, It is enough to optimize two values(a, b) for each layer, regardless of the
number of representative values. So, the number of parameters to optimize can be greatly
reduced especially when the number of representative values is large. Therefore, instead of
optimizing the representative values itself, it is useful to optimize a, b and take representative
values along the Eq.4.2. In the next chapter, I will consider how to optimize a, b directly
without regression.
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Chapter 5

Optimizing Fitting Parameters

5.1 Grid Search
First, I draw heatmaps of the Top-1 accuracy against parameters (a, b), to catch what the

search space looks like. For better survey, I employ ã = a1/N instead of a in constructing the
uniform grid, where N is the number of bins. Logarithmic grid is also employed for b. The
results are summarized in Fig. 5.1. The accuracy at FP32 is taken as the baseline, and those
points deviated more than 1 % from the baseline are omitted from the plots. The red and
blue regions in the plots correspond above and below the baseline, respectively.

As shown in the figure, the shape of the heatmap is similar among layers, though the the
size of the high accuracy region differ. Especially, the high accuracy regions are wide for
the fully connected layers (Layer 13–15), indicating that the accuracy is insensitive to the
quantization parameters. For these layers, it may be possible to reduce the quantization bit
width further. On the contrary, the convolutional layers are sensitive to the quantization
parameters, especially for the Layer 1. It is probably because the weights are heavily reused
in the convolutional layer, which causes a slight quantization error to accumulate. These
results indicate that the bit width should also be optimized from layer to layer, though it is
beyond the scope of this paper.

As a result of heatmap, it was found that the accuracy changed smoothly with respect to a
and b. Therefore, it is possible to get the optimum solution of a and b by updating a and b in
the direction that the accuracy becomes high. Meanwhile, I also found that there are multiple
spots where the accuracy is higher than that around them. Therefore, updating a and b only
in a direction in which accuracy gets higher may possibly lead to a local maximum. From the
above, I decided to optimize a and b by Simulated Annealing.

5.2 Simulated Annealing
In the heatmap drawn in the previous section, I notice a lot of local maximums. To optimize

the parameters a and b avoiding those local maximums, I employ the simulated annealing (SA)
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(a) Layer1 (b) Layer2 (c) Layer3 (d) Layer4

(e) Layer5 (f) Layer6 (g) Layer7 (h) Layer8

(i) Layer9 (j) Layer10 (k) layer11 (l) Layer12

(m) Layer13 (n) Layer14 (o) Layer15 (p) Layer16

Figure.5.1: Heatmap of a, b in 8 represent values(3 bit)

algorithm.
SA is an optimization algorithm that simulates annealing in metal engineering [32, 33].

SA utilizes an artificial thermal fluctuation to prevent from sticking at the local optimum
solutions. Setup of the SA simulation is simple: just replace the GA portion in Fig.4.3 by SA.
One iteration of our algorithm goes as follows.

1. SA: selects neighborhood a�, b� of a, b

2. SA: generates a genome with vi = V(xi|a�, b�) and sends it to Quantizer
3. Quantizer and CNN: perform inference to obtain the Top-1 accuracy e�
4. SA: updates a, b by a�, b� with the probability P(e, e�,T )
5. Repeat 1 ∼ 6 for each layer
6. SA: lowers the tempreture T

In step 1, I prepare ∆a and ∆b randomly in the range of [− 1
2aT, 12aT ] and [− 1

2bT, 12bT ],
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Figure.5.2: Changes in the accuracy for the
number of representative values

Figure.5.3: The number of images for
Optimization (16 representative values)

respectively, and generate three neighborhoods, (a+∆a, b), (a, b+∆b), and (a+∆a, b+∆b).
In step4, probability P(e, e�,T ) is defined as

P(e, e′,T ) =
1 (e′ ≥ e)
exp (

(e′−e)×100
T ) (e′ < e)

(5.1)

where e and e� are the Top-1 accuracies calculated with (a, b) and (a�, b�), respectively. The
initial values of (a, b) are taken to be (1.25, 0.05) for all layers, based on the heatmap, and
the initial temperature is taken at T = 1 with the temperature reduction rate of 0.95. The
simulation is stopped when (a, b) of all layers are not updated for consecutive 30 iterations.The
SA simulations are performed by varying the number of bins N, which is taken to be the same
among layers. The obtained Top-1 accuracy are plotted as a function of N in Fig.5.2.

The accuracy improves as N increases, and becomes comparable to the FP32 result at N = 16

(4 bits). Comparing with the result shown in Fig. 4.6, where the same VBQ is applied on all
layers, the layer-wise optimization is shown to be important to reproduce the FP32 accuracy;
this can only be achieved by combining Eq. 4.2 and SA.

In the experiments so far, I used the same set of 5000 images for the SA optimization and
the final evaluation. It is more practical, however, to use a different set of images for the final
evaluation. Minimum number of images required for the optimization is also concern, because
it is directly proportional to the optimization cost.

In Fig. 5.3, the achieved Top-1 accuracy are plotted as a function of the number of images
used for the SA optimization. The Top-1 accuracy are evaluated by using a different set of
5000 images, and the number of bins is taken to be N = 16. The figure indicates that the
optimization can be performed with as small as 200 images, and no further improvement is
expected after 1000 images.
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Figure.5.4: Top-1 accuracy of AlexNet using
various number of representative values

Figure.5.5: Top-1 accuracy of VGG16 using
various number of representative values

Table.5.1: Inference Accuracy(Top-1/Top-5) of AlexNet and VGG16 on ImageNet using various model
quantization methods

Model
Decrease of Accuracy Bit widths Bit widths Acceleration

(Top-1 / Top-5) Weights Activation

Miyashita et al [13]
AlexNet

- / 6.2% Conv 5bit(Log2 Format) + FC 4bit 4bit -
- / 1.7% Conv 5bit(Log

√
2 Format) + FC 4bit 4bit -

VGG16
- / 6.1% Conv 5bit(Log2 Format) + FC 4bit 4bit -
- / 0.5% Conv 5bit(Log

√
2 Format) + FC 4bit 4bit -

Kamiya et al [15]
AlexNet 1.7% / 1.2% 6bit 6bit 1.79
VGG16 - / 2.16% 6bit 6bit 2.07

Proposed
AlexNet

0.34% / 0.54% 5bit - (32bit) 1.0
2.88% / 1.84% 4bit - (32bit) 1.0

VGG16
1.36% / 1.26% 5bit - (32bit) 1.0
2.54% / 1.50% 4bit - (32bit) 1.0

5.3 Evaluation
To check the generality of the proposed approach, I have applied our method to AlexNet [34].

AlexNet consists of five convolutional layers and three fully connected layers. It is used for
evaluation in many previous studies [13, 15]. I refer [35] for the implementation and the
trained data. The Top-1 accuracy at FP32 is 0.5244 in our environment.

The experiments are performed by varying the number of bins N. The SA optimization are
performed for VGG16 and AlexNet by using 1000 images, which are evaluated with a different
set of 5000 images. The results are shown in Figs. 5.4 and 5.5. AlexNet and VGG 16 show
the similar tendency: accuracy becomes significantly worse as N dropped below 16 (4 bits),
while it reaches FP32-equivalent.

We compared the inference accuracy of proposed method with other two methods for
compressing already-trained models [13, 15]. Different from our work, these prior works
reduced bit widths of activation as well as those of weights.
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Miyashita et al reduced the weight of the convolutional layer to 5 bits, the weights of the
fully connected layer to 4 bits, and the activation to 4 bits. The drop of the top-5 accuracy
was 1.7% in AlexNet and 0.5% in VGG16. I succeeded in reducing the weight of all layers
to 4 bits with decreasing top-5 accuracy by 1.84% in AlexNet and 1.5% in VGG16 although
I still used FP32 for the activation. Kamiya et al reduced the bit width to 6 bits for both
weight and activation, and they succeed in accelerating the calculation 1.79 times in AlexNet
and 2.07 times in VGG16. In our work, the required amount of computation has not been
changed because calculations are performed in FP32. Calculation with the reduced bit width
in a dedicated hardware is our future work.
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Chapter 6

Quantizing Activation

6.1 Histograms of Activation
In previous chapters, I have studied a method to quantize weights. In this chapter, I study

the method of quantizing activation.First, I investigated the distributions of activation. I
used Figure.6.1 from ILSVRC2012 validation dataset and showed the histograms in Figure.6.2
and Figure.6.3. Figure.6.2 shows the histograms of input and the activation of convolutional
layers and Figure.6.3 shows the histograms of the activation of fully connected layers. “Input”
(Fig6.2(a)) is s matrix subtracted [103.939, 116.779, 123.68], which is the average value of RGB
of the data set of the ILSVRC2012, from the input image (Figure.6.1) as pre-process. The y
axis of all histograms is log scale. Please note that the scale is different for each layer.

As can be seen from the figure, all activation values are greater than or equal to 0 in all
layers since VGG 16 uses ReLU function as an activation function. It is found that the
distribution of activation at the middle layer does not different in each image although the
distribution of the input varies. I compared the range of distribution of each layers except
final layer. The reason why I excepted final layer was because the distribution is always [0, 1]
since the softmax function is used as the activation function in the final layer. I found that
the distribution ranges significantly varies from 101 to 104 depending on layer. In the case of
weight, even if the same quantization is used for all layers, the answer did not so decrease,

Figure.6.1: Sample Images (ILSVRC2012)
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(a) Input (b) Layer1

(c) Layer2 (d) Layer3

(e) Layer4 (f) Layer5

(g) Layer6 (h) Layer7

(i) Layer8 (j) Layer9

(k) Layer10 (l) Layer11

(m) Layer12 (n) Layer13

Figure.6.2: Histograms of input images and activation of convolution layers
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(a) layer14 (b) layer15

(c) layer16

Figure.6.3: Histograms of activation of fully connected layers

Figure.6.4: Top-1 accuracy of quantizing each
layers with various bit width.

Figure.6.5: The detail of top-1 accuracy of
quantizing each layers with various bit width.

but in the case of activation, using same quantization will lead to markedly decrease since the
range of values is too different for each layer. For the initial values   when optimizing as well,
in the case of weighting, the same values are used in each layer, but in the case of activation,
it is necessary to use appropriate values for each layer.

6.2 Optimizing Quantization
I optimized the position of represent values. First, the relationship between bit width and

accuracy is shown in Figure.6.4. Also, the graph which the range of accuracy is only from 0.6
to 0.7 is shown in Figure.6.5. Those figures show that trends differ between input and other
layers. It was found that in order to reduce the accuracy drop to 1% or less from FP32, the
input layer requires 4 bits, but the other layer requires 1 bit at the minimum and 3 bits at the
maximum.

Next, I showed the distribution in case that the number of representative values is 8 in
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(a) Input (b) Layer1 (c) Layer2 (d) Layer3

(e) Layer4 (f) Layer5 (g) Layer6 (h) Layer7

(i) Layer8 (j) Layer9 (k) Layer10 (l) Layer11

(m) Layer12 (n) Layer13 (o) Layer14 (p) Layer15

Figure.6.6: GA result in 8 represent values(3 bit)

Figure.7.2. I restricted the representative value to a value of 0 or more because the layer other
than the input layer takes a value of 0 or more in terms of the structure. On the other hand, I
optimized the input layer without any restrictions. I could not find a simple formula regressed
distribution of the representative value at the activation.

As shown in Figure.6.6(b)∼6.6(p), it can be seen that the 0th representative value is close
to 0 in all layers 1 to 15 . Therefore, I guessed that the 0th representative value can be fixed
to 0.

A comparison of the accuracy is shown in Figure.6.7 between when the 0th representative
value is fixed to 0 and when it is not. There are some layers in which the accuracy is lower than
the case where 0 is not fixed, but as a whole, the accuracy improved or almost did not change.
Therefore, it was found that there is no problem if the 0th representative value is fixed to 0.
By fixing the 0th value to 0, parameters to be optimized are reduced. Based on the results
in the figure, the bit width required for the layers excluding input is 1 ∼ 3 bits. Therefore, it
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Figure.6.7: The Top-1 Accuracy when 0th representative value is fixed to 0 and when it is not.

Figure.6.8: The Top-1 Accuracy of Symmetry and
Asymmetry Representative Values

Figure.6.9: Distributions of representative values
of input and the regression results by y = ax

is enough to optimize 1 ∼ 7 parameters for finding optimum quantization for these layers by
fixing the 0th value to 0. This is a sufficiently small number that can simultaneously optimize
all the layers.

I focused on the input layer after that. As shown in Figure.6.6(a), the representative values
have a linear distribution with almost positive and negative symmetry. Therefore, I optimized
representative values for the input layer again by constraining them to be symmetrical relative
to origin.

As shown in Figure.6.8, I found that optimization works better when it is constrained so as
to be origin symmetrical than when it is not. Moreover, by making origin symmetrical, it is
expected that the distribution of representative values of input can be successfully fitted by a
straight line passing through the origin. I showed the result of regression by y = ax. As the
result, I obtained a = 229.6 and R2score = 0.998. I found that it can be successfully fitted
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by y = ax even when the representative value is 16 or 32. Therefore, regarding Input, it is
optimal to take a representative value based on y = ax and only one parameter a needs to be
optimized regardless of the number of representative values.

I reduced the number of parameters to be optimized and now it is possible to do optimization
at the same time for all layers. Optimizing those parameters simultaneously is one of my future
works.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
The size and complexity of CNN models are increasing and as a result they are requiring more

computational and memory resources to be used effectively. Use of a lower bit width numerical
representation such as binary, ternary or several bit width has been studied extensively so as
to reduce the required resources and calculation costs. However, the representation capability
of such extremely low bit width is not always sufficient and the accuracy obtained for some
CNN models and data is low. There are some prior studies that use moderate lower bit width
with well-known numerical representations such as fixed point or logarithmic representation.
It is not apparent, however, whether those representations are optimal for maintaining high
accuracy.

In this thesis, I studied about the optimal quantization for reducing the bit width in CNN.
First, I implemented a framework that allows CNN computation with various numerical
expressions in C++ and investigated the distribution of weights in CNN using the framework.

Next, I introduced VBQ for optimizing the quantization method in the weights during CNN
inference. I used a genetic algorithm for the optimization method and demonstrated the
feasibility of this approach. I discovered that the optimal quantization is different for each
network and layer and deduced a heuristic formula for the distribution of the representative
values, with which the effort required to optimize VBQ was greatly reduced: I optimized the
parameters of the formula using a simulated annealing and showed that higher accuracy can
be obtained than in the previous researches.

Lastly, I focused on activation. First, I investigated the distribution of activation and
recognized the features. Then, I optimized the quantization using a genetic algorithm and
found that in order to reduce the accuracy drop to 1% or less from FP32, the input layer
requires 4 bits, but the other layer requires 1 bit at the minimum and 3 bits at the maximum.
In terms of the distribution, It is found that as opposed to the distribution of the representative
value at the weight, distribution of the representative value at the activation can not be
regressed with one simple function for all layers. It was also found that the 0th representative
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values of layers other than input can be fixed to 0 and the representative values of input layer
can be successfully fitted by y = ax. By using these two tricks, it is possible to suppressed the
number of parameters to the extent that all layers can be optimized simultaneously.

7.2 Future Work
In this thesis, experiments on activation remain at an elementary stage of optimizing

quantization for each layer. From the results in this experiment, it was found that the number
of parameters can be suppressed to the extent that all layers can be optimized simultaneously.
Therefore, optimizing all layers simultaneously is a next step of this studies. And then,
based on the result, an experiment that optimize the quantization of both the weight and the
activation simultaneously should be conducted.

In this experiment, bit width was given as hyper-parameter. However, as I mentioned many
times in this paper, it is considered that the required bit width is different for each layer. It
is necessary to consider a method that can optimize the quantization and the bit width at the
same time.

It is also important to consider an efficient calculation method. Since the optimal numerical
expression obtained as a result of my research is different from existing formats such as
floating-point and fixed-point, using LUT or designing a dedicated circuit on FPGA will
help speed up the calculation.

In this paper, I conducted experiments on two kinds of CNN models, VGG16 and AlexNet,
but it is not enough to see if the findings obtained in this study apply to CNN in general.
Therefore, experiments with other CNN models is useful for obtaining more general knowledge.

Furthermore, the method proposed in this thesis can be applied not only to CNN but also
to any machine learning model. Therefore, we can obtain result by applying the proposed
method to time-series models such as RNN [36] and LSTM [37] and generative models such
as GAN [38] and investigating whether optimal quantization is different depending on kinds
of the model.
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Appendix

(a) Layer1 (b) Layer2 (c) Layer3 (d) Layer4

(e) Layer5 (f) Layer6 (g) Layer7 (h) Layer8

(i) Layer9 (j) Layer10 (k) Layer11 (l) Layer12

(m) Layer13 (n) Layer14 (o) Layer15 (p) Layer16

A.7.1: Distributions of representative values and the regression results in the case of asymmetry
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Layer a b c d R2 score

1 1.010 7.128 -0.350 -5.826 0.990
2 1.222 0.075 -0.007 -1.012 0.988
3 1.424 0.025 0.036 1.207 0.983
4 1.109 0.128 0.009 -0.336 0.989
5 1.311 0.027 0.005 -0.550 0.977
6 1.395 0.017 -0.007 -1.441 0.972
7 1.242 0.028 0.002 -1.432 0.975
8 1.246 0.031 0.010 -0.076 0.952
9 1.193 0.070 0.000 -0.554 0.961
10 1.266 0.037 0.002 -0.583 0.978
11 1.497 0.004 0.008 0.617 0.985
12 1.254 0.027 -0.003 -0.584 0.964
13 1.125 0.044 0.024 3.273 0.969
14 1.355 0.013 0.007 0.077 0.968
15 1.401 0.014 -0.037 -3.964 0.913
16 1.240 0.032 0.052 4.388 0.941

A.7.3: Fitting Parameters in the case
of 16 asymmetry representative values

in VGG16.

Layer a b R2 score

1 0.313 -1.101 0.987
2 9.001 0.127 0.986
3 37.474 0.049 0.989
4 42.199 0.022 0.993
5 113.925 0.022 0.980
6 39.003 0.068 0.989
7 7.204 0.063 0.994
8 230.705 0.020 0.988
9 15.023 0.041 0.988
10 347.815 0.010 0.968
11 384.525 0.009 0.995
12 41.141 0.020 0.984
13 4.461 0.046 0.992
14 840.920 0.008 0.980
15 43.932 0.061 0.970
16 1.394 0.912 0.972

A.7.4: Fitting Parameters in the case
of 16 symmetry representative values

in VGG16.
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(a) Layer1 (b) Layer2 (c) Layer3 (d) Layer4

(e) Layer5 (f) Layer6 (g) Layer7 (h) Layer8

(i) Layer9 (j) Layer10 (k) Layer11 (l) Layer12

(m) Layer13 (n) Layer14 (o) Layer15 (p) Layer16

A.7.2: Distributions of representative values and the regression results in the case of symmetry
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