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I 

 

Abstract 

Autonomous driving has become a hot and exciting research field in recent years. 

We can benefit greater road safety, reduced congestion and more productivity from 

these highly automated technologies. There are several on-board sensors on 

autonomous vehicles which can be used for environmental perception. Since tasks like 

navigation, path planning cannot be achieved by only on-board sensors, High 

Definition (HD) Maps, which have high accuracy of object locations and important 

roadway attributes are also significant components for autonomous or assistant driving. 

And semantic information of traffic rules, which are important for motion planning of 

vehicles, should be also contained in HD maps. However, semantic traffic regulations 

are now putted into maps manually, not automatically in industry. Motivated by this, 

this research aims to find an automatic way generating HD map with the semantic 

information. 

In this research, we extract positional and semantic information of traffic facilities 

and road markings in the traffic scene based on camera images and laser scanning point 

cloud data from mobile mapping system. And we integrate the extracted information 

into our high definition map towards the automated construction of high-definition 

maps with semantic traffic regulations. 
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Chapter 1.  

Introduction 

 

 

In this research, we studied how to construct the High Definition Map (HD Map) 

in an automatic way instead of current manual way for self-driving vehicles based on 

sensor fusion. In this chapter, the background, objective and structure of this thesis are 

discussed. 

 

1.1. Background 

As road transportation which unites the world by connecting big and small parts 

with each other, plays an important role in our everyday life and production, 

autonomous driving has become a hot and exciting research field in recent years. We 

can benefit greater road safety, reduced congestion and more productivity from these 

highly automated technologies. 

The main components of the autonomous vehicle can be broadly categorized into 

hardware and software. Hardware splits broadly into sensors, Vehicle-to-Vehicle 

(V2V) and Vehicle-to-Infrastructure (V2I) technology. And software is composed of 

the following functional modules: perception, prediction, planning and control [1]. The 

perception task is to do detection and tracking with the objects of interest (e.g. vehicles) 

in the scene. The prediction module estimates the intentions and trajectories of all actors 

into the future. Planning is responsible for making safe and efficient decisions for the 

autonomous vehicle, while control outputs the commands which are necessary for the 

autonomous vehicle to execute such decision. 

Sensors are indispensable components which allow the autonomous vehicle to get 

raw information about the surroundings. The main sensors in autonomous vehicles 

include camera, Light Detection and Ranging (LiDAR), radar, GPS (Global Positioning 

System) and Inertial Measurement Unit (IMUs). Since each of these sensors have their 

respective advantages and disadvantages, sensor fusion is often applied to reduce the 

uncertainty of data derived from disparate sources. 
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However, environment beyond cannot be apperceived by only on-board sensors. 

And tasks such as navigation, path planning cannot be achieved by only on-board 

sensors. So, in order to make reliable driving decisions, besides on-board sensors, maps, 

which are also essential components of the intelligent transportation systems, would be 

used for providing applications include self-localization, path planning, and perception 

to make the cars safer and more comfortable. 

The definition of a regular map is a visual representation of an entire area or a part 

of an area, typically represented on a flat surface. Regular maps are not sufficient for 

autonomous vehicles. They do not have information about traffic lanes, traffic signs, 

and lights, position, and height of the curbs. Also, they are useless for localization since 

they are designed for humans, not for autonomous vehicles. These maps can have 

location errors up to a few meters. Therefore, maps with high accuracy of object 

locations and important roadway attributes which are necessary for vehicle positioning 

and control need to be made for autonomous or assistant driving. This kind of map is 

what we called High Definition Map (HD Map).  

Moreover, dynamic information such as statues of traffic lights, road condition of 

the path can make vehicles safer and more reliable. The combination of dynamic 

information with our usual static map is called Dynamic Map (DM) [2]. DM which 

manages various data from vehicles and their surroundings distributed widely and 

provides their data for ITS applications, is one of the key technologies towards 

autonomous driving. DM can be used to provide vehicles with information such as 

positions and mobility of cars and pedestrians nearby, statues of traffic lights, and traffic 

jams or accidents on the road, helping not only autonomous driving but also assistance 

driving for self-localization, path planning and decision making. From permanent static 

data to dynamic data, DM consists of four types of data layers, as shown in Figure 1.1. 

The lowest layer is common map with permanent static data. The second layer adds 

transient static information (road markings, roadside infrastructures etc.) based on the 

first layer. Transient dynamic information like traffic congestion, signal phase and 

slippery road are included in the third layer. And the top layer, which includes highly 

dynamic data (information of vehicles and pedestrians), is the final goal towards DM. 
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Figure 1.1. Hierarchy of Dynamic Map [2]. 

 

HD map is corresponding to the second layer of the DM. Since the construction of 

DM needs the highly developed Internet of Things (IoT) technologies. Current 

researches focus on construction of HD maps. HD maps enable vehicles to see beyond 

the driver’s field of view, providing an accurate representation of the road ahead and 

information on the surrounding environment. And as an integral part of the system, 

High Definition (HD) Maps bring functions such as high-precision localization, 

environment perception, planning and decision making, and real-time navigation cloud 

services to autonomous vehicles. Typically, there are several roadway components can 

be included in the HD map. Lane lines can be included in the map as they allow for 

precise positioning of vehicle and other detected objects; 3D surrounding geometry can 

be included in the map for it delivering realistic modelling of surroundings and driving 

scenarios, and enabling slope and curvature values to be derived for Advanced Driver 

Assistance Systems (ADAS) applications; Including lane markings in the map would 

help ensure the vehicle adheres to the traffic rules and assist path planning; Adding 

traffic signs and traffic lights would provide semantic information of traffic rules for 

the vehicle; And Road borders and guardrails can be contained in the map to help find 

drivable areas of the road and deliver improved driving scenarios. Table 1.1 lists 

components usually contained in HD maps. 
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Table 1.1. Components and their Usage in HD Map 

 

Components Usage 

3D Surrounding Geometry Deliver realistic modelling of surroundings and 

driving scenarios, and enabling slope and curvature 

values to be derived for ADAS applications 

Lane Lines Allow for precise positioning of vehicle and other 

detected objects 

Lane Markings Help ensure the vehicle adheres to the traffic rules 

and assist path planning 

Road Borders and Guardrails Help find drivable areas of the road and deliver 

improved driving scenarios 

Traffic Signs and Lights Provide semantic information of traffic rules for the 

vehicle 

 

Many self-driving car companies like Waymo and companies specialize in 

providing mapping services (e.g. HERE, TomTom, DeepMap, lvl5 etc.) create their 

own HD maps recently. Here, we will take HERE and TomTom’s HD maps as examples 

to make an introduction of recent HD maps in industry. 

The “HERE HD Live Map” [3] of the map company HERE, demonstrated in 

Figure 1.2, contains information of objects, lanes, signs, road geometry to help precise 

localization for vehicles. Besides, in order to deal with the dynamic and unpredictable 

thing of the roadway, HERE’s map utilizes data from the cloud to compare current and 

historical map data. Map errors can be noticed if the vehicles use the map to report any 

disagreements between their perception and the map back to the mapping service.  

When a vehicle detects a difference in the road and the map, algorithms are set into 

motion to evaluate changing road conditions, and distribute those changes in near-real 

time to other cars on the road. This information may be not precise and trustworthy 

enough to update the map, but at least it can inform quality metadata and guide the 

mapping company to collect updated information in that location. 
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Figure 1.2. HERE HD Live Map [3]. 
 

The HD Map made by TomTom [4] takes all the important roadway attributes 

necessary for vehicle positioning and control. The content that TomTom provides helps 

enable Open Street Map (OSM) to accurately determine the current and upcoming 

precise location of the vehicle. TomTom’s new concept “RoadDNA” allows for precise 

lateral and longitudinal positioning in a storage and processing friendly format while 

still using the power of a detailed LIDAR point cloud data, which assists with providing 

necessary content and libraries to work with in-vehicle hardware to efficiently 

determine a vehicles position. Figure 1.3 shows an example of detailed intersection data 

in TomTom’s HD Map. 

 

 

Figure 1.3. Detailed intersection data in TomTom’s HD Map [4]. 
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However, to the best of our knowledge, there are very little work on methods for 

constructing HD Maps automatically. Attempts to automatically generate lane-level 

precision maps for vehicles have been made in some researches. [5] presents a method 

that combines coarse, inaccurate prior maps from OSM with local sensor information 

from 3D laser scanner and a positioning system. They formulate a probabilistic model 

of lane structure using information from prior maps, and develop a number of tractable 

inference algorithms to leverage the coarse and structural information present in OSM, 

and integrates it with the highly accurate local sensor measurements. [6] solves the 

problem of inferring the position and relevant properties of lanes of urban roads with 

poor or absent horizontal signalization by deep neural networks (DNN) based 

segmentation approach. laser remission grid maps are segmented into road grid maps 

which contain all information about the road-lanes required for the operation of their 

autonomous car. However, information of semantic traffic regulations derived from 

traffic facilities (traffic lights, traffic signs) and road markings are not in their lane-level 

precision maps. As for industrial HD Maps, semantic traffic regulations are putted into 

maps manually, not automatically. Motivated by this, this research aims to find an 

automatic way generating HD map with the semantic information. 

 

 

1.2. Objective 

In this research, we propose a system towards the automated construction of high-

definition maps with semantic traffic regulations. Figure 1.4 demonstrates the flowchart 

of proposed system. There are mainly three works be done in this thesis. 

1. Firstly, we utilize point cloud data derived by mobile mapping system to 

extract road facility poles and road markings, from which we can know the 

accurate position of them in the map. 

2. Since images can provide semantic meanings of these traffic facilities, we 

apply LaneNet to segment road lines and YOLOv3 to detect traffic lights, 

traffic signs and other road markings from images. 

3. Finally, we apply coordinate transforming to integrate the information from 

both point cloud and images into our high definition map. 
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Figure 1.4. Flowchart of proposed system. 

 

1.3. Thesis Structure 

The Structure of this paper listed as follows: 

In Chapter 2, the basic knowledge in the mapping process and the application of 

maps will be given. 

In Chapter 3, we will make an introduction of Convolutional Neural Network.  

In Chapter 4, we will discuss methods of road facilities extraction from laser 

scanning data 

In Chapter 5, the way to understand semantic information of road facilities by 

image will be presented. 

In Chapter 6, we will give the integration of information from laser scanners and 

images, and demonstrate the result of our map. 

In Chapter 7, we will draw the conclusion of this thesis and talk about future work. 
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Chapter 2.  

Foundation and Application of Mapping 

 

 

From the previous chapter we know that regular maps are not sufficient for 

autonomous vehicles. In this chapter, we will introduce the foundation and application 

of mapping for autonomous vehicles. Components of the mapping system and detailed 

principles about the core component of the mapping system are introduced firstly. Then, 

we discuss the process of constructing 3D maps. Finally, applications of these created 

maps are described. 

 

2.1. Foundation of Mobile Mapping System 

In this section, we will give an introduction of the foundation of Mobile Mapping 

System (MMS). We will introduce the components of MMS firstly. As the positioning 

system and laser scanners are the core part of MMS in mapping, their principles of 

working will be described in detail. 

 

2.1.1. Components of Mobile Mapping System 

The MMS is usually mounted on a car, van or other vehicles that can move with 

traffic speed over roads and highways for the measurement of 3D coordinate data and 

the acquisition of sequence of images of the road and its surroundings. An MMS usually 

consists of a positioning and orientation system (POS), an Inertial Measurement Unit 

(IMU), an odometer system, one or more laser scanners, one or more digital cameras 

and a control unit. The part of the MMS without cameras is called Mobile Laser 

Scanning (MLS) system. The POS continuously acquires data for calculating the 

exterior orientation parameters (three coordinates and three attitude angles) using a 

Global Navigation Satellite System (GNSS) receiver and the IMU, often complemented 

with a wheel rotation counter. The odometer system captures even the minutest vehicle 

movement. In locations which Global Positioning System (GPS) measurements may be 

blocked, such as in tunnels, this equipment ensures that measurement accuracy is 
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maintained. Each laser scanner emits pulses, presently up to one million pulses per 

second, to capture road surfaces and objects above and alongside the road. Images 

acquired from cameras enables efficient mapping by compensating for the visual 

shortcomings of laser point clouds when the angle of the laser scanner and camera is 

adjusted by rigorous calibration, and calculation is conducted by precisely overlapping 

laser point clouds with images. And the control unit to which all devices are connected 

and from which they are steered eases life for the operator during data capture. 

Figure 2.1 [7] shows the Mitsubishi Electric’s MMS. We can see this system 

includes a unit with three GPS antennas, an IMU, cameras and laser scanners are 

mounted on the roof, and the odometer system is mounted in the wheel. 

 

 

Figure 2.1. Mobile Mapping System developed by Mitsubishi Electric [7]. 
 

2.1.2. GPS Positioning 

GPS is originally designed to provide position, speed and time information since 

it was initially developed by America in 1973. Nowadays there has been totally 31 GPS 

satellites launched into the space and they have almost covered the whole planet as 

shown in Figure 2.2 [8]. 
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Figure 2.2. The constellation of GPS satellites [8]. 
 

Thanks to the high reliability and global coverage, GPS has been opened to public 

and now GPS is the mainly source for position information worldwide and basically 

every airplane, vehicle and mobile device has a GPS receiver built inside to provide 

customers with position information. Various kinds of researches have been done in this 

field as well. 

Beside American GPS, other countries also launched their own satellites 

navigation system and all of these satellites has formed the modern GNSS. For example, 

Russia has GLONESS, Europe has Galileo, China has BeiDou and Japan has QZSS. 

Before the year of 2020, all the navigation satellite systems will be fully developed and 

the overall satellites in the orbit will be around 80, which means the position 

information will be much easier to get and more accurate in the future. Most of these 

satellite systems have the same fundamental positioning algorithm and we will mainly 

introduce the fundamental algorithm of GPS in this section. 

GPS is composed of the space segments include satellites and satellite launchers, 

the control segments include several monitor stations around the world and user 

segments. To positioning the users, GPS fallow the law of trilateration [9] as shown in 

Figure 2.3. 
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Figure 2.3. GPS trilateration positioning [9]. 
 

When a GPS receiver can receive the signals from three GPS satellites, if we can 

know the coordinates of these satellites, and the distances form each satellite to the 

receiver, then we can draw three spheres as shown in Figure 2.3. The intersection of 

sphere 1 and sphere 2 can be found as a circle as shown in the gray. And there will be 

two intersects from sphere 3 and this intersection circle as shown in the 2 red points. 

Usually, one of the red points should be near the ground and another is in the space. So 

only one of them is reasonable and the position of the user can be determined.  

Therefore, in the ideal case, a reliable positioning result can be provided by using 

three GPS satellites. However, in the real world, at least four satellites are needed to 

calculate the user positioning result. The distances from the satellites to the user are 

defined as "pseudo range" and is computed by using the propagation time calculated 

based on the time the signal is sent and the time the signal is received. In order to get 

the time, clocks are built inside of the receiver. Because the clock in the GPS is not 

synchronized with the clock in the receiver, there will be a time shift and it will bring 

errors to the measured distance. Therefore, beside the altitude, longitude and latitude of 

the user, the clock bias becomes the fourth unknown parameter, and at least four 

equations are needed to solve four identically unknown parameters. This is why at least 

four satellites are required to calculate the user positioning result. 
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2.1.3. Laser Scanning and Prior Maps 

Lidar (Light Detection And Ranging) is a form of laser scanning. It’s similar to 

radar (Radio Detection And Ranging) but uses light instead of radio waves to detect 

objects and their distances. Figure 2.4 displays the HDL-64E Lidar made by Velodyne. 

the Lidar sensors measure precisely the road and its surroundings, including curbs, 

drainage channels, even potholes — to within millimeters. 

 

 

Figure 2.4. HDL-64E Lidar made by Velodyne [10]. 
 

Lidar emits light in the form of a pulsed laser to measure the reflected pulses with a 

sensor. Differences in laser return times and wavelengths can then be used to generate 

precise 3-D representations of the target. It primarily measures: (1) range, which means 

distance from the sensor to the first surface hit by the laser pulse (2) scan angle and (3) 

intensity, which is the reflective luminance of each point, represented as a digital 

number in the range from 0 to 255. Combining these measurements with those from a 

GNSS receiver, IMU and wheel counter provides 3D coordinates of millions or even 

billions of points in a local or national reference system. Usually the sensors are 

integrated on one rigid platform of which the mutual offsets have to be calibrated [11]. 

This is usually done by the manufacturer. Vibrations during the survey, shocks due to 

holes in the pavement and sudden slowdowns will cause mutual displacements of the 

sensors and other disturbances. To warrant high-precision surveys all the time regular 

recalibration is required. 

In addition to the 3D coordinates, one or more attributes may be assigned to each 

point. The attributes may be directly measured by the sensor, this relates particularly to 

the intensity of the return, computed from a neighborhood of points or obtained from 
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other sources. RGB values, which may act as features for automatic object recognition. 

may be assigned to laser points using the simultaneously recorded digital images or 

image sources having other time stamps. Attributes of collected points create point 

clouds data, which is assembled into “prior maps”. A prior map is a rich, 3-D map of 

the road which can be used to help autonomous vehicles know precisely where it is at 

any time. An example of raw data collected by HDL-64E Lidar is shown in Figure 2.5. 

 

 

Figure 2.5. Example of raw data collected by HDL-64E Lidar [10]. 
 

For area within the measurement range of the scanner, collected point cloud data 

can be used as the raw map directly. However, if the working area is larger than the 

scanner’s measurement range, multiple stations are required, from where the separate 

point clouds are collected, then these clouds have to be unified. This can be solved by 

three kinds of methods [11]: manually select natural points being identifiable in 

multiple point clouds; using artificial markers (e.g. spheres) during scanning, and 

applying automatic or manual marker selection; or computationally intensive 

technologies for automatic point cloud matching. 
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2.2. 3D Map Construction by MMS 

The main process of construction of 3D maps for autonomous vehicles is shown 

in Figure 2.6. In the pipeline, Ground Control Points (GCPs), which are acquired by 

actual measurement, are marked points on the ground used for the adjustment of MMS 

measurement data. 

 

 

Figure 2.6. Pipeline of 3D map construction. 
 

We can see there are ten steps in total. We will make a brief introduction of these 

steps. The first step is the MMS measurement which we have discussed in the previous 

section. The second step is to analysis the position and orientation of the vehicle by 
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obtained MMS data. And according to the calibrated vehicle’s position and orientation, 

position and orientation of laser scanners and cameras can be calculated. The third and 

fourth step do evaluation of obtained data based on GCPs within limits of accuracy. 

When significant deviation occurs comparing to the GCPs data, step five needs to be 

done to improve the accuracy based on the GCPs data. In the sixth step, if there are 

GCPs that were not used for landmark processing, then using these GCPs to verify the 

accuracy. Based on the verified data, points, lines, and planes of prescribed objects or 

structures should be obtained in step seven. Relationships among the obtained shapes 

should be given in the eighth step. In the ninth step, we annotate attributes of the 

prescribed objects or structures using information derived from on-board camera and 

field survey. And the output map data with high accuracy of object locations and 

important roadway attributes, in prescribed format for autonomous vehicles, can be 

acquired finally. 

 

2.3. Applications of 3D Maps 

Various applications can be done based on the created 3D maps. In this section, 

we will make a brief introduction of some examples about applications made by the 

constructed 3D maps. 

Vehicle self-localization is one of the significant applications. The main vehicle-

based positioning technologies, such as GNSS, 3D Lidar, and vision-based systems, 

can be assisted by access to a prior map. A 3D building map helps GNSS address the 

signal blockage and reflection problems caused by tall buildings in urban areas [12]. 

Another well studied positioning technique for urban area is map matching, which can 

be done based on Lidar [13] or vision sensors [14]. [13] proposed a localization method 

based on self-adaptive multi-layered scan matching and road line segment matching to 

adapt the situation changes among different heights. This paper effectively matches the 

features observed from different heights and improves the results by applying the line 

segment matching in certain scenes. [14] used image data and HD map data to mitigate 

the lateral error for lane level localization. In this paper, the image content of a camera 

mounted on the platform is utilized to detect the road boundaries in the image. They 

apply color masks to detect the road marks, do the Hough transform to fit lines to the 

left and right road boundaries, find the corresponding road segment in the database, 

estimate the homography transformation between the global and image coordinates of 
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the road boundaries, and obtain the camera pose with respect to the global coordinate 

system. 

There are many other applications based on constructed 3D maps. 3D city 

modeling is one of the applications. [15] investigated methods for 3D building 

modelling in complex urban scenarios with the support of oblique. The terrestrial map 

data collected by MMS is used to complement building models generated by airborne 

data. Other applications include lane-level integrity provision for navigation and map 

matching with GNSS, dead reckoning, and enhanced maps [16], 3D city visualizations 

and metrology [17], road asset inventories [18], urban forest inventories [19], and lane 

departure warnings [20] for vehicles. It would take too much space for us to present a 

comprehensive discussion. If you are interested in these topics, please refer to the 

original paper. We will talk more about pole-like objects detection and classification  

based on point cloud map in Chapter 4. 
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Chapter 3.  

Foundation of Convolutional Neural 

Network 

 

 

In this chapter, we will explain the foundation of Convolutional Neural Network 

(CNN). We will make a brief introduction of CNN in Section 3.1. In Section 3.2, we 

will discuss several basic components of CNN including 4 kinds of layers and the non-

linear activation function. Then, training methods of CNN will be talked about in 

Section 3.3. Finally, in Section 3.4, we will introduce several most famous and 

important architectures which are LeNet, AlexNet, VGGNet, GoogleNet, ResNet, and 

DenseNet in chronological order. 

 

3.1. Origin of Convolutional Neural Network 

It is estimated that the average human brain contains 86 billion neurons [21]. 

Together they form a huge network. Inspired by biological nervous systems, neural 

network is a mathematical algorithm that simulates the behavioral characteristics of 

human brain neural network and performs distributed parallel information processing. 

Even though we have not been able to replicate the brain so far, the field of artificial 

intelligence offers very effective solutions to many problems by simulating the 

observations of biological research of various nervous systems. 

Generally, neural network consists of a set of artificial neurons. Formally, an 

artificial neural has 𝑛 inputs represented as a vector 𝑥⃗ ∈ 𝑅𝑛. Inputs in an artificial 

neuron correspond to the dendrites in a biological neuron, while a single output of an 

artificial neuron corresponds to the axon in a biological neuron, which is depicted in 

Figure 3.1. Each input 𝑖 , 1 ≤  𝑖 ≤  𝑛 , has an assigned weight 𝑤1 , 𝑤2 , … , 𝑤𝑛 , and 

bias 𝑏1 , 𝑏2 , … , 𝑏𝑛 . Weighted input values are combined and followed by a non-linear 

activation, as shown in Figure 3.2. 

 



１８ 

 

 

Figure 3.1. Model of biological neuron [21]. 

 

 

Figure 3.2. Model of an artificial neuron. 
 

In 1959 Hubel & Wiesel [22] inserted a thin metal electrode into the cat's visual 

cortex to see how a single neuron in the cat's brain responded to the image on the screen. 

They found that neurons in the frontal area of the visual system reacted strongly to 

specific light signals, but did not respond to any other pattern at all. This part of visual 

system was called the Primary Visual Cortex (V1). Figure 3.3 [23] explains the 

cognitive process of the human visual system. Information flows from the retina to V1 

and then to the Secondary Visual Cortex (V2), next is V4 and last is IT (Inferior 

Temporal Gyrus). The visual system is hierarchical and progressive, with each layer 

handling a higher level of information than the previous layer. 
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Figure 3.3. A brief illustration of ventral stream of the visual cortex in human vision 

system [23]. 

 

The characteristics of V1 layer has inspired the structure of Convolutional Neural 

Network (CNN). Since V1 layer has a function that it is able to transform 3D 

information coming from outside into 2D information, the layers in a CNN are based 

on a two-dimensional spatial structure. There are many simple cells in V1 layer with 

local receptive field to detect low-level features, which inspired the design of 

convolution kernels (filters) in CNN. There are also many complex cells in V1 layer 

that are used to respond to the low-level feature detection of simple cells, which inspired 

the design of a pooling layer in a CNN. The visual layers behind V1 have the same 

principle as V1. By stacking these layers, features detection and pooling strategy 

repeatedly executed. Finally, a human visual system formed. Similarly, the architecture 

of CNN is also a repetitive overlay of convolutional and pooling layers, forming a deep 

hierarchy and extracting high-level features. 

 

3.2. Basic Components of Convolutional Neural Network 

Even though there are many different architectures for CNN in the literature, the 

majority of them can be built by stacking four main type of layers in different 

combinations. Namely, the fully connected layer, the convolutional layer, pooling layer 

and batch normalization layer. And the activation function, which is the non-linear 
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factor, enables CNN to approximate any function. In this section, we will explain these 

components. 

 

3.2.1. Convolutional Layer 

Convolution layers are an important layer in CNN. The purpose of convolutional 

layers is to detect the features in the presented images. It consists of multiple feature 

maps, each recognizing certain specific feature. The feature recognition can be thought 

of as running the sub-image through a filter. The filtering is essentially done through 

weight adjustments. Regular Neural Networks, only made of linear and activation 

layers, do not scale well to full images. For instance, images of size 3 × 224 × 224 (3 

color channels, 224 width, 224 height) would necessitate a first linear layer having 3 × 

224 × 224 + 1 = 150 parameters for a single neuron (e.g. output). However, convolution 

layers take advantage of the fact that their input (e.g. images or feature maps) exhibits 

many spatial relationships. In fact, neighboring pixels should not be affected by their 

location within the image. Thus, a convolutional layer learns a set of 𝑁𝑘 filters 𝐹 =

 𝑓1 , 𝑓2 , . . . , 𝑓𝑁𝑘
 , which are convolved spatially with input image 𝑥 , to produce a set 

of 𝑁𝑘 2D features maps 𝑧: 

𝑧𝑘  =  𝑓𝑘 ⊗ 𝑥 (3.1) 

where ⊗ is the convolution operator. When the filter correlates well with a region 

of the input image, the response in the corresponding feature map location is strong. 

Unlike conventional linear layer, weights are shared over the entire image reducing the 

number of parameters per response and equivariance is learned (i.e. an object shifted in 

the input image will simply shift the corresponding responses in a similar way). Figure 

3.4 shows how a convolution operation works. 
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Figure 3.4. The work flow of a convolution operation. 

 

3.2.2. Pooling Layer 

Convolution layer can extract the features of images. If these features are directly 

using for image classification, GPU will face a huge challenge due to the amount of 

computation and the model will have a high probability to be overfitting. The pooling 

layer, which is a form of non-linear down-sampling, serves to progressively reduce the 

spatial size of the representation, to reduce the number of parameters and amount of 

computation in the network, and hence to also control overfitting. There are two main 

kinds of pooling layers which are usually used: 

 

Max pooling layer: Selecting the largest value in the pooling window as the sample 

value. 

 

Mean pooling layer: Averaging all the values in the pooling window and this 

average value is chosen as sample value. 

 

Figure 3.5 shows how max pooling layer and mean pooling layer works. 
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Figure 3.5. Example of max pooling and mean pooling. 

 

3.2.3. Batch Normalization Layer 

Batch normalization [24] is a technique for improving the performance and stability 

of artificial neural networks. It adds a normalization step (shifting inputs to zero 

mean/unit variance) to make the inputs of each trainable layers comparable across 

features. By doing this it ensures a high learning rate while keeping the network 

learning. 

 

3.2.4. Fully Connected Layer 

Fully connected layer usually appears at the end of CNN. The function of the fully 

connected layer is to map the feature maps to the label. Mathematically, we can think 

of a linear layer as a function which applies a linear transformation on a vectoral input 

of dimension 𝐼  and output a vector of dimension 𝑂. Usually the layer has a bias 

parameter: 

𝑓(𝑥)  =  𝑊 ∙ 𝑥 + 𝑏 (3.2) 

The features learned by previous convolution layer are generally local features. 

These local features will be connected as a global feature through the fully connected 

layer. Fully connected layer is not necessary. For the reason that the fully connected 

layer has a large number of parameters, which will affect the training speed. 

 

3.2.5. Activation Functions 

Convolution layer is a kind of linear operation. Stacking convolution layers make 

the CNN be a linear system. It means that the CNN will only be able to solve linear 

problems and make nonsense. Hence CNN needs non-linear factors in order to bring in 
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non-linearity property that enables them to approximate any function. This non-linear 

factor is called activation function. Every kind of activation function takes a vector and 

performs a certain fixed point-wise operation on it. Mainly, all the activation functions 

can be divided into two groups, which are non-parametric activation function and 

parametric activation functions. 

 

non-parametric activations: Sigmoid function, Tanh function, ReLu function, and 

LeakyReLu function [25] are commonly used in practice. The mathematical forms and 

graphs of them are shown as follows: 

Sigmoid Function: 

𝑓(𝑥)  =  𝜎(𝑥)  =  
1

1 + 𝑒−𝑥
(3.3) 

Tanh Function: 

𝑓(𝑥)  = 𝑡𝑎𝑛ℎ (𝑥)  =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3.4) 

ReLu Function: 

𝑓(𝑥)  =  {
𝑥          𝑥 > 0
0          𝑥 ≤ 0

(3.5) 

LeakyReLu Function: 

𝑓(𝑥)  =  {
𝑥            𝑥 > 0
𝜆𝑥          𝑥 ≤ 0

(3.6) 

where λ is a small value, often set to 0.01. 
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Figure 3.6. Graphes of activation functions: (a) Sigmoid function; (b) Tanh function; 

(c) ReLu function; (d) LeakyReLu function [26]. 

 

parametric activation functions: The typical parametric activation function is 

PReLu [27] (Parametric Rectified Linear Unit). The mathematical form is: 

𝑦𝑖  =  {
𝑥𝑖             𝑥𝑖 > 0
𝜆𝑥𝑖          𝑥𝑖 ≤ 0

(3.7) 

As its name suggests, λ is the parameter need to be learned. If we set λ to 0, then 

PReLu becomes ReLu. If we set λ to a small fixed value, it becomes LeakyReLu. 

 

3.3. Training of Convolutional Neural Network 

The ability to learn is the key concept of neural networks. The aim of the process 

is to find the optimal parameters (and structure) of the network for solving the given 

task. Once a network has been structured for a particular application, that network is 

ready to be trained. To start this process the initial weights are chosen randomly. 

Learning is then carried out on the training set by means of feeding the training data 

through the network. The networks will be trained based on gradient back propagation 

[28]. Namely, by computing the difference between the output of a neuron network and 

the expected output, we keep propagating the error back through the whole network 

guiding the parameters updating. The network is considered to be trained after reaching 

the target performance on the training data.  
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3.3.1. Initialization 

All the network parameters are generally initialized with Layer-sequential unit-

variance (LSUV) (e.g. parameters as Gaussian random variables with mean 0 and 

standard deviation 1 and biases are initialized to 0). Since the LSUV initialization works 

under assumption of preserving unit variance of the input, pixel intensities are given 

after subtracting the mean and dividing by the standard deviation. 

 

3.3.2. Loss function 

As a significant part in training CNN, loss function is used to quantify the capacity 

of the network to approximate the ground truth labels for all training inputs, which takes 

as inputs the weights, biases, and examples from the training data. It is a non-negative 

value, where the robustness of model increases along with the decrease of the value of 

loss function. Mean Square Error, Cross Entropy and Kullback Leibler Divergence are 

often used as loss function in tanning. 

 

Mean Square Error (MSE): It is a multi-class loss widely used in linear regression 

as the performance measure. 

𝐿𝑜𝑠𝑠(𝑥, 𝑦)  =  
1

𝑛
 ∑|𝑥𝑖 − 𝑦𝑖|

2

𝑖

(3.8) 

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a 

1 in the corresponding class dimension. 

 

Cross Entropy: It is commonly-used multi-class loss in binary classification 

(labels are assumed to take values 0 or 1) as a loss function. Cross entropy measures 

the divergence between two probability distribution, if the cross entropy is large, which 

means that the difference between two distribution is large, while if the cross entropy 

is small, which means that two distribution is similar to each other. It is computed as 

follows: 

𝐿𝑜𝑠𝑠(𝑥, 𝑦)  =  − ∑ 𝑦𝑖

𝑖

∗  log(
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

) (3.8) 

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a 
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1 in the corresponding class dimension. 

 

Kullback Leibler Divergence (KL divergence): It is also called relative entropy, 

information divergence/gain, which is a measure of how one probability distribution 

diverges from a second expected probability distribution. The mathematical form is: 

𝐿𝑜𝑠𝑠(𝑥, 𝑦) =  
1

𝑛
 ∑(𝑥𝑖 ∙  log 𝑥𝑖)

𝑛

𝑖=1

−  
1

𝑛
 ∑(𝑥𝑖 ∙  log 𝑦𝑖)

𝑛

𝑖=1

(3.9) 

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a 

1 in the corresponding class dimension. We can see the first term is entropy and the 

second is cross entropy. The KL divergence of 0 indicates that we can expect similar 

behavior of two different distributions, while a KL divergence of 1 indicates that the 

two distributions behave in such a different manner that the expectation given the first 

distribution approaches 0. 

 

3.3.3. Backpropagation 

Backpropagation, short for "backward propagation of errors" is an algorithm for 

supervised learning of artificial neural networks using gradient descent. 

Backpropagation is a method used in artificial neural networks to calculate the error 

contribution of each neuron after a batch of data (in image recognition, multiple images) 

is processed.  

For each training data, we compute the prediction and its associated loss. We sum 

up all the loss to compute the final error. Then we use the backpropagation algorithm 

to propagate the error in order to compute the partial derivatives of the cost function for 

all weights and bias. In this paper, since our goal is not to explain in details how works 

the backpropagation algorithm. We advise the curious reader to find details about 

backpropagation in [29]. 

 

3.3.4. Optimization 

Once all the derivatives are computed, we should find parameters of a neural 

network that significantly reduce a cost function, which typically includes a 

performance measure evaluated on the entire training data. We then iterate the 
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predication (e.g. forward pass), the backpropagation of errors (e.g. backward pass) and 

the optimization until convergence hopping to find a local minimum low enough to 

ensure good predictions. The most fundamental algorithm is Gradient Decent, and 

advanced algorithms include Stochastic Gradient descent (SGD), Momentum, AdaGrad, 

RMSProp and Adam. Details can be checked in [29]. 

 

3.3.5. Regularization 

Deep and large enough neural networks can memorize any data. During training, 

their accuracy on the training dataset typically converges towards perfection while it 

degrades on the test dataset. This phenomenon is called overfitting. To avoid overfitting, 

regularization has been imported. We will make a brief introduction on several 

regularization approaches. 

 

L2 Regularization: The first main approach to overcome overfitting is the classical 

weight decay, which adds a term to the cost function to penalize the parameters in each 

dimension, preventing the network from exactly modeling the training data and 

therefore help generalize to new examples: 

𝐸𝑟𝑟(𝑥, 𝑦) =  𝐿𝑜𝑠𝑠(𝑥, 𝑦)  + ∑ 𝜃𝑖
2

𝑖

(3.10) 

here 𝜃 means the vector containing all the network parameters. 

 

Data augmentation: It is a method of boosting the size of the training dataset so 

that the model cannot memorize all of it. This can take several forms depending of the 

dataset. For instance, if the objects are supposed to be invariant to rotation, it is well 

suited to apply different kind of rotations to the original images. 

 

Dropout [30]: The idea is to randomly set a certain percentage of the activations in 

each layer to 0. During the training, neurons must learn better representations without 

co-adapting to each other being active. During the testing, all the neurons are used to 

compute the prediction and Dropout acts like a form of model averaging over all 

possible instantiations of the model. 
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3.4. Famous Architectures in Convolutional Neural Network 

In this section, we will introduce several important modern CNN architectures. 

LeNet [31] which was developed by Yann LeCun in 1990, is the first successful 

application of CNN in digit recognition. LeNet consists of a sequence of convolutional 

layers and max pooling layers followed by a fully connected layer. AlexNet [32] is the 

milestone for deep learning in computer vision which occupied the first place on the 

ImageNet ILSVRC [33] challenge in 2012, showing significant gains in performance 

comparing to previous methods. The network has similar architecture to LeNet but is 

deeper and bigger and features convolutional layers stacked on top of each other. 

VGG16 [34], which was the runner-up in ILSVRC 2014 with almost 140 million of 

parameters, demonstrated the importance of depth as a critical component to good 

performance. The architecture of VGG16 consists of stacked convolutional layers and 

max pooling layers, with increasing depth and it uses a large number of parameters due 

to the final fully connected layers. GoogLeNet [35] was the winner of ILSVRC 2014 

challenge. The architecture includes inception modules which dramatically reduce the 

number of parameters, it uses multi-scale 3x3, 5x5 convolutional filters including 1x1 

convolutions for dimensionality reduction. ResNet [36] won the ILSVRC 2015 

challenge, which introduces skip connections for easier training that enable very deep 

architectures and makes use of batch normalization. Different from ResNet, which 

draws representational power from extremely deep network architectures, DenseNet 

[37] designed the dense blocks to improve the model from the perspective of feature 

maps reusing. We will make an introduction for these famous structures in the following 

subsections. 

 

3.4.1. LeNet 

The LeNet architecture is an excellent “first architecture” for CNN (especially 

when trained on the MNIST dataset, an image dataset for handwritten digit recognition). 

LeNet is small and easy to understand, yet large enough to provide interesting 

results. This network was the origin of much of the recent architectures, and a true 

inspiration for many people in this field. Figure 3.7 shows the architecture of LeNet-5. 

LeNet-5 features can be summarized as: 

• Sequence of 3 layers: convolution, pooling, non-linearity. 
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• Inputs are normalized using mean and standard deviation to accelerate training. 

• Sparse connection matrix between layers to avoid large computational cost. 

• Hyperbolic tangent or sigmoid as non-linearity function. 

• Trainable average pooling as pooling function. 

• Fully connected layers as final classifier. 

• Mean squared error as loss function. 

 

Figure 3.7. Architecture of LeNet-5 [31]. 
 

3.4.2. AlexNet 

This paper, titled “ImageNet Classification with Deep Convolutional Networks”, 

has been cited over 30,000 times and is widely regarded as one of the most influential 

publications in the field of computer vision. This architecture was applied to win the 

2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge), which achieved 

a top 5 test error rate of 15.4% (Top 5 error is the rate at which, given an image, the 

model does not output the correct label with its top 5 predictions), far exceeded the next 

best entry with an error of 26.2%. This was an astounding improvement that pretty 

much shocked the computer vision community.  

The layout of AlexNet is relatively simple compared to modern architectures. The 

network was comprised of 5 convolutional layers, 5 max-pooling layers, 5 dropout 

layers, and 3 fully connected layers. The network they designed was used for 

classification with 1000 possible categories. And the authors provided a multi-GPUs 

implementation in CUDA to bypass the memory needs. Figure 3.8 shows the 

architecture of AlexNet. The Main points of AlexNet includes: 

•  Trained the network on ImageNet data, which contained over 15 million 

annotated images from a total of over 22,000 categories. 
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•  Used data augmentation techniques that consisted of image translations, 

horizontal reflections, and patch extractions. 

• Implemented dropout layers in order to combat the problem of overfitting to the 

training data. 

• Trained the model using batch stochastic gradient descent, with specific values 

for momentum and weight decay. 

 

Figure 3.8. An illustration of the architecture of AlexNet [32]. 

 

This was the first time a model performed so well on a historically difficult 

ImageNet dataset. Techniques such as data augmentation and dropout still play an 

important role in CNN architectures today. AlexNet illustrated the advantages of CNN 

architectures in contrast with traditional methods in the field of computer vision. 

 

3.4.3. VGGNet 

The main contributions of VGGNet are showing that depth is a critical component 

for good performance, to use much smaller 3 × 3 filters in each convolutional layer, and 

also to combine them as a sequence of convolutions. Figure 3.9 demonstrates the 6 

different architectures of VGGNet. The great advantage of VGGNet was the insight 

that multiple 3×3 convolution in sequence can emulate the effect of larger receptive 

fields, for examples 5 × 5 and 7 × 7. This in turn simulates a larger filter while keeping 

the benefits of smaller filter sizes. One of the benefits is a decrease in the number of 

parameters. And as the spatial size of the input volumes at each layer decrease (result 
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of the convolutional and pooling layers), the depth of the volumes increase due to the 

increased number of filters when going down the network. These ideas were also used 

in more recent network architectures as GoogLeNet and ResNet.  

 

 

Figure 3.9. The 6 different architectures of VGGNet [34]. 

 

3.4.4. GoogLeNet 

The main contribution of GoogLeNet is the development of the Inception module 

which dramatically reduced the number of parameters (The authors of the paper 

emphasized that this new model places notable consideration on memory and power 

usage). The architecture of the Inception module is shown in Figure 3.10. GoogLeNet 

is a 22 layers CNN and was the winner of ILSVRC 2014 with a top 5 error rate of 6.7%. 

This work was one of the first CNN architectures that really strayed from the general 

approach of simply stacking convolution and pooling layers on top of each other in a 

sequential structure. 

In previous CNN architecture, you have to make a choice of whether to have a 
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pooling operation or a convolution operation for each layer. The most fantastic thing in 

GoogLeNet is that Inception module allows you to do is perform all of these operations 

in parallel. An Inception module consists of a medium sized filter convolution, a large-

sized filter convolution, and a pooling operation. (There are activation operations by 

ReLu after each convolutional layer) Basically, the model is able to perform the 

functions of these different operations while still remaining computationally 

considerate. 

 

 

Figure 3.10. Architectures of Inception module [35]. 

 

3.4.5. ResNet 

Before ResNet, CNN models improve network performance mainly by increasing 

the depth and width of the network or by reducing the size of filters. However, with the 

network depth increasing, there is a problem that accuracy gets saturated and then 

degrades rapidly and the same phenomena also appears in training when adding more 

layers to a suitably deep model [36]. To solve this problem, Kaiming He et al. proposed 

ResNet, which is a new 152-layer (the deepest version) network architecture that set 

new records in classification, detection, and localization through one incredible 

architecture. Aside from the new record in terms of the number of layers, ResNet won 
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ILSVRC 2015 with an incredible error rate of 3.6% comparing to humans who 

generally hover around a 5-10% error rate. 

ResNet addressed the degradation problem by introducing a new module called 

Residual Block [36] see in Figure 3.11. Instead of hoping each few stacked layers 

directly fit a desired underlying mapping, ResNet explicitly let these layers fit a residual 

mapping. Formally, denoting the desired underlying mapping as 𝐻(𝑥), we let the 

stacked nonlinear layers fit another mapping of 𝐹(𝑥)  =  𝐻(𝑥)  −  𝑥 . The original 

mapping is recast into 𝐹(𝑥) + 𝑥 . So, instead of just computing that transformation 

from 𝑥 to 𝐹(𝑥) , we compute the term that you have to add, which is a slightly altered 

representation (Comparing to traditional CNN, going from 𝑥  to 𝐹(𝑥) which is a 

completely new representation that does not keep any information about the original 

input 𝑥 ). 

 

 

Figure 3.11. Residual learning: a building block [36]. 

 

3.4.6. DenseNet 

ResNet solved the gradient vanishing problem based on the idea that creating short 

paths from previous layers to later layers. However, there is a drawback of ResNet that 

the shallow feature maps can not be passed to deep layers, which makes it hard to 

explore new features. In fact, simply increasing the number of filters in each layer of 

ResNet can improve its performance provided the depth is sufficient [38]. Inspired by 

this, instead of drawing representational power from extremely deep or wide 

architectures, DenseNet exploits the potential of the network through feature reuse, 

yielding condensed models that are easy to train and highly parameter-efficient. 

DenseNet shows significant improvements over the state-of-the-art on most of previous 

architectures, whilst requiring less computation to achieve high performance. 
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The feature maps reusing is done by the designed dense block, whose number of 

𝐿 layers connections is 𝐿(𝐿 + 1)/2, comparing to the traditional CNN which contains 

𝐿 connections in 𝐿 layers. Namely, the input for each layer in a dense block comes 

from the output of all the previous layers. The connections in the dense block makes 

the transfer of features and gradient more efficient. Due to the design of such a block, 

the model also become easier to train. The architecture of a 5-layer dense block is 

displayed in Figure 3.12, where the growth rate k = 4 indicates that each layer outputs 

4 feature maps. 

 

 

Figure 3.12. The architecture of a 5-layer dense block with a growth rate of k = 4 [37]. 
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Chapter 4.  

Road Facility Extraction from Laser 

Scanning Data 

 

 

In this chapter, we will give the details on how to extract road facilities from laser 

scanning data. In section 4.1, we will discuss pole-like traffic facilities extraction and 

classification, and describe our method and experimental results. Road marking 

extraction will be introduced in section 4.2. 

 

4.1. Pole-like Traffic Facilities Extraction and Classification 

In this section, we will firstly talk about related works of pole-like traffic facilities 

extraction and classification. Then, we will describe our proposed method of pole-like 

traffic facilities extraction and classification. Finally, the experimental results will be 

given. 

 

4.1.1. Related Works 

For pole-like objects possess a cylinder like structure, cylindrical shape-based 

method is a kind of method to do poles extraction. [39] detects poles from ranged laser 

data by using Hough voting to detect circles. [40] introduces an algorithm which divides 

the point cloud in slices and compares projective parameters of pillar objects in adjacent 

slices to extract the pillar features of Chinese ancient buildings. However, there is a 

problem for this kind of method that the circular characteristic for poles is obvious only 

for indoor environments or close-range scans. 

Slicing-based Method is also an often-used approach to extract pole-like structures, 

which slice the point cloud data for finding vertical objects, and to reduce the influence 

of structures attached to the vertical trunk. Pu et al. [41] extend the work of [40] and 

propose a percentile-based method to detect the pole-like object. However, the 

validation method of these works is mainly based on the deviation of the neighboring 
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subparts, which is capable of dealing with pole-like objects with attachments only in 

the bottom or on the top of the trunks. In order to detect pole-like objects with rich 

attachments in the middle part, Huang et al. [42] take advantage of the unique 

characteristics of pole-like objects. They propose the localization algorithm based on 

slicing, clustering, pole seed generation and bucket augmentation. Then they integrate 

the bucket-shaped neighborhood of the segments and trim with region growing 

algorithms to obtain pole-like objects. 

A segmentation procedure is also routinely used for extracting poles. 

Segmentation is the process of grouping the points of the cloud into segments: points 

in the same region are given the same category and treated as a set. Since the grounds 

or façades which connect other objects in a huge cluster, filtering and segmentation of 

point cloud data is usually needed. In the paper of [43], they assume that ground points 

are already removed from the point cloud data, so they do not need to filter the ground 

area. Golovinskiy et al. [44] use iterative plane fitting to remove the ground, and 

separate the foreground from the background by a graph-cut-based method. Tombari et 

al. [45] apply a RANSAC-like iterative algorithm to remove all planar surfaces. 

Before the pole-like objects classification, point classification need to be done to 

analyze the composition of the point cloud. By applying Gaussian Mixture Model 

(GMM) with Expectation Maximization algorithm, Lalonde et al. [46] get a model of 

the three saliency features (linear, planar and volumetric) derived from the eigenvalues 

of the local covariance matrix of the points. In the paper of [45], they propose a 

histogram of scalar products to classify the vertical pole points using Support Vector 

Machine (SVM).  

Since the usage and shapes of the pole-like objects are quite diverse, the usage, 

shapes and even height are often used to classify poles in existing works. Pu et al. [41] 

make a detailed classification on the signs according to the planar shapes. However, 

they do not distinguish between non-planar poles (e.g. lights and utility poles). 

Golovinskiy et al. [44] make a mixed categorization of usage and height, resulting in 

seven categories including short post, lamp post, sign, light standard, traffic light, tall 

post and parking meters, while the utility poles are not reported. Yokohama et al. [43] 

classify the poles into three categories: street lights, utility poles and signs. By 

distinguishing between wire points and the general linear points, Huang et al. [42] make 

a more delicate classification of four categories: street lights, utility poles, signs and 
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non-pole category. In this thesis, since c is very high, we also utilize the feature of 

reflectance to help the classification. 

 

4.1.2. System Overview 

The procedure of our proposed pole-like road facilities extraction and 

classification system is demonstrated in Figure 4.1. Input of the system is a large-scale 

point cloud data of an urban area, and the outputted results are all possible pole-like 

structures which are classified into 4 categories: utility poles, traffic signs, street lights, 

and others (non-traffic facility poles). The system mainly consists of two stages in 

processing. The first stage is to extract the pole-like objects from input data. We remove 

the outlier points before clustering. Then Euclidean clustering is applied. Next, we take 

advantage of the unique characteristic of pole-like structures (the local parts of the pole-

like structures are also pole-like even they are broken down) to stitch clusters and filter 

them with their height. After that, z-slicing is used to analysis the shape feature of every 

cluster. And finally pole-like candidates are detected after thresholding. The second 

stage is to classify these candidates. We compute the statistical attributes for each 

candidate based on the extended distribution features of pole components and classify 

the candidates with a support vector machine. The classification step also help filters 

out non-traffic facility objects which also contain pole-like parts like trees and part of 

buildings. We will discuss details of these two stages in the following subsections. 

 

 

Figure 4.1. The procedure of the proposed pole-like road facilities extraction and 

classification system.  
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4.1.3. Pole-like Structures Extraction 

In our practice, we utilize two laser scanners, with 180° field of view, one 

configured to point up (pitch: +25°) and the other down (pitch: −25°) in our Mobile 

Mapping System. And the data collected by the upper one is applied as the input data 

in our pole-like traffic facilities extraction and classification, in which there is no 

ground area point. So, we can skip the step of removing ground area points from given 

point clouds. 

Since laser scans typically generate point cloud datasets of varying point densities. 

And additionally, measurement errors lead to sparse outliers which corrupt the results 

even more. It is necessary for the input point cloud data to remove noisy measurements 

before clustering. We exclude the outlier points by mean k-nearest neighbor distances 

for each point, and set the parameter 𝑘 = 10. 

Then we do the clustering for the point cloud data. A clustering method needs to 

divide an unorganized point cloud model into smaller parts so that the overall 

processing time for is significantly reduced. We use Euclidean cluster extraction 

algorithm to extract clusters and a k-d tree structure [47] is applied for finding the 

nearest neighbors. The algorithmic steps for that are as follows: 

 

Algorithm4.1: Euclidean cluster extraction 

Input: point cloud data P 

Output: point clusters C 

1: create a k-d tree representation for the input point cloud data P; 

2: set up an empty list of clusters C, and a queue of the points that need to be checked 

Q; 

3: then for every point 𝒑𝒊 ∈ 𝑷, perform the following steps: 

 add 𝒑𝒊 to the current queue Q; 

 for every point 𝒑𝒊 ∈  Q, do: 

 search for the set 𝑷𝒊
𝒌 of point neighbors of 𝒑𝒊 in a sphere with radius 

𝒓 < 𝒅𝒕𝒉; 

 for every neighbor 𝒑𝒊
𝒌 ∈ 𝑷𝒊

𝒌 , check if the point has already been 

processed, and if not add it to Q; 
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 when the list of all points in Q has been processed, add Q to the list of 

clusters C, and reset Q to an empty list. 

4: the algorithm terminates when all points 𝒑𝒊 ∈ 𝑷 have been processed and are now 

part of the list of point clusters C. 

 

We consider that facility poles should obtain a certain amount of points in point 

cloud data. clusters which are less than 60 or more than 8000 points are excluded. 

Some of the traffic facilities poles would be divided into two or more parts due to 

the sparsity of points and the choice of radius in the clustering step. To deal with this 

situation, the stitch of clusters is applied. If two clusters have a relatively big distance 

mainly in the z direction, we consider them as one cluster. Suppose the centroid point 

of 10 lowest (in z direction) points in higher cluster is 𝑝ℎ = (𝑥ℎ, 𝑦ℎ, 𝑧ℎ), the centroid 

of 10 highest (in z direction) points in lower cluster is 𝑝𝑙 = (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙). And the vector 

from  𝑝𝑙   to  𝑝ℎ  is  𝑣⃗𝑑𝑖𝑓. The mathematical form of the condition is: 

{

|𝑧ℎ − 𝑧𝑙| < 𝑑𝑡ℎ

|
𝑣⃗𝑑𝑖𝑓

‖𝑣⃗𝑑𝑖𝑓‖
∙ 𝑧𝑢𝑛𝑖𝑡| < 𝜃𝑡ℎ

(4.1) 

Where 𝑧𝑢𝑛𝑖𝑡 means the unit vector in z direction,  𝑑𝑡ℎ is the threshold distance in 

z direction which we set a value of 1 meter, and 𝜃𝑡ℎ is the threshold angle between the 

two centroid points which we set a value of 0.35.  

Since the pole-like traffic facilities we want to extract (utility poles, traffic signs 

and street lights) have to be created according to some standards. Therefore, the height 

of potential facility poles should be in a certain range. Based on the statistics in our 

dataset, we set the range of the height filter from 1.5 meters to 9 meters. 

One of the important properties of the poles’ trunk part in the point cloud is that, 

if it’s horizontally sliced, each of its slices would still be a trunk-like segment (though 

some of the slices have an attachment part). Given a horizontal slice of a pole-like object, 

there are two obvious characteristics: first, the cross section of the slice is relatively 

small; second, the length of each slice is long enough. Moreover, the bounding box of 

a piece of a slice part is very close to the original shape. Therefore, we have the 

following two criteria regarding the cross area and the segment length based on the 

bounding box property of each candidate cluster: 
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{
max (𝐵𝑥, 𝐵𝑦) < 𝐿

𝐵𝑧 ≥ 𝑘 ∙ 𝐻𝑠𝑙𝑖𝑐𝑒
(4.2) 

Note that the width, depth and height of the bounding box are 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 , 

respectively. 𝐿  means the maximum value of a cross section that would be considered 

as a trunk, 𝐻𝑠𝑙𝑖𝑐𝑒   is the slicing height, and 𝑘  is the ratio coefficient of the length. We 

empirically set 𝐿 = 0.4𝑚, 𝐻𝑠𝑙𝑖𝑐𝑒 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒𝑠⁄   and 𝑘 = 0.8. 

Based on this property, we slice the input clusters along the z (upright) direction into 

10 pieces and count the number of slices satisfied the two criteria. Since some of the 

slices have an attachment part, most but not all of the slices should satisfy the two 

criteria for pole-like traffic facilities. In our case, we consider the cluster to be a 

candidate of pole-like traffic facility when more than half of the slices satisfy the two 

criteria, and not all of the slices satisfy the first criteria. 

 

4.1.4. Pole-like Structures Classification 

Due to the previous step of shape thresholding are relatively not so strict in order 

to extract more potential pole-like traffic facilities as possible. As a side effect, many 

candidates are actually trees with trunks or parts of buildings with pole-like structures. 

So, Classification aims to exclude these pole-like structures need to be done after 

extraction. The ones classified as trees or others would be removed from the candidates. 

Meanwhile, we should identify the detected traffic facility poles whether they are 

belongs to utility poles, traffic signs, or street lights. 

Some attributes from the candidates should be extracted before applying the 

classifier. The most straightforward attribute about a candidate is the height ℎ =

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛. Since the pole-like traffic facilities we would like to extract are man-

made objects. therefore, they have fixed height for certain sub-categories, which can be 

applied as a classify feature. Another significant attribute is the high intensity (which 

we set as bigger than 240) point rate of a candidate. For the intensity of a traffic sign 

would be high when the scanning faces to the sign. This can be also used as a classify 

feature to classify facing traffic signs. 

Since the usage of a traffic facility pole is highly dependent on its local shapes or 

attachments, which can be categorized as three kinds of components: linear, planar and 

volumetric, these features can be applied to do the classification. As all pole-like 
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candidates contain a vertical linear trunk. Besides that, traffic lights could contain linear 

branches or volumetric bulbs, signs contain planar components, and utility poles 

contain linear wires, and sometimes contain planar signs and volumetric parts. These 

components are further composed of local point-level patches of the same property, so 

we just need to make a classification on the neighborhood of each point. Principal 

Component Analysis (PCA) is applied here to classify every point. Suppose that 𝑀𝑖 

is the variance-covariance matrix of the point 𝑖. The mathematical form is: 

𝑀𝑖 =  
1

|𝑆𝑖|
∑(𝑝𝑗 − 𝑝̅𝑖)(𝑝𝑗 − 𝑝̅𝑖)

𝑇

𝑗𝜖𝑆𝑖

(4.3) 

where 𝑆𝑖 is the set of neighbor points which lie in the sphere area with radius 

𝑟𝑆 = 0.5𝑚, centered at the point 𝑖, and 𝑝̅𝑖 is the centroid of 𝑆𝑖. We denote eigenvalues 

of 𝑀𝑖  by 𝜆1 , 𝜆2 , and 𝜆3  (where 𝜆1 ≥ 𝜆2 ≥ 𝜆3), the corresponding eigenvectors 

are 𝑣⃗1 , 𝑣⃗2 , and 𝑣⃗3  respectively. The distribution of neighbors of point 𝑖 can be 

indicated by the magnitude relation of the eigenvalues [46]. When the maximum 

eigenvalue 𝜆1 is much larger than 𝜆2 and 𝜆3, it means that there is one principal 

direction and the distribution is linear; When 𝜆2 is approximate to 𝜆1 and they are 

very large compared with 𝜆3, it represents that there are two principal directions and 

the distribution is planar; When 𝜆1 , 𝜆2  and 𝜆3  are approximate to each other, it 

suggests that there’s no obvious principal direction and the distribution is thus 

volumetric. 

There are multiple kinds of mathematical forms to determine which criterion is 

satisfied [43, 46]. We use the equation of distribution features of [43]: 

{

𝑆1 =  𝜆1 − 𝛼𝜆2

𝑆2 =  𝜆2 − 𝜆3   
𝑆3 =  𝛽𝜆3          

 (4.4) 

Note that 𝛼 and 𝑖 are the adjustment coefficient which should be set according to 

the data. And to find feature is the most significant, we apply the dimensionality feature: 

𝑑 =  arg𝑖∈{1,2,3} max 𝑆𝑖 (4.5) 

When the surrounding structure of a point is linear or planar or volumetric, the 

value of 𝑑  becomes 1, 2, and 3 respectively. [43] uses the endpoint preserving 

Laplacian Smoothing in the cluster in order to recognize linear shapes of different radii 

so that it applies the parameter of 𝛼 = 10 and 𝛽 = 100. The smoothing has the problem 
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that it could cause problems in case of sparse regions, and is time-consuming [42]. 

Since a smaller 𝛼 and 𝛽 is enough for recognizing most linear, planar and volumetric 

structures, in our case, we use 𝛼 = 5 and 𝛽 = 4. 

In our dataset, street lights without traffic signs can sometimes be confused with 

other pole-like structure since they both consists of linear and volumetric points with 

the similar proportion. Therefore, we introduce the class of horizontal linear points 

besides linear points. There are two main differences between horizontal linear points 

and other linear points. First is that the horizontal linear structure in traffic facilities are 

thinner than other linear parts, where we set the adjustment coefficient 𝛼 in (4.4) a 

larger value to represent the significant linearity of the structure. Second is that the 

directions are typically horizontal, where we apply a threshold angle to determine 

whether the eigenvector 𝑣⃗1  corresponding to 𝜆1  is perpendicular to the upright 

direction. 

The horizontal linear point is defined as:  

{

𝑆1
′ = 𝜆1 − γ𝜆2 > 𝑆2, 𝑆3 

|
𝑣⃗1

‖𝑣⃗1‖
∙ 𝑧𝑢𝑛𝑖𝑡| < 𝜃ℎ

(4.6) 

Where γ  is the adjustment coefficient which we set as 10, and 𝜃ℎ  is the 

threshold angle which we set the value as 0.4. We can see a point classification result 

of different pole-like structures in Figure 4.2. 

 

 

Figure 4.2. Point classification results. The colors of blue, red, green, and yellow 

represents normal linear, horizontal linear, planar, and volumetric points, 

respectively. 
 

Classification of these traffic facility poles can be carried out based on the result 

of point classification. In our case, we classify these poles into 4 categories which are 



４３ 

 

utility poles, traffic signs, street lights and others as shown in Figure 4.2. Components 

of each point class in these 4 categories are different: utility poles can contain all 4 

kinds of point class where the class of normal linear is main; traffic signs mainly contain 

the normal linear and planar points, and sometimes contain horizontal linear points; the 

main part of street lights is normal linear points with few horizontal linear and planar 

points; as for non-traffic facility objects, the volumetric points would be the main part 

(tree), or one kind of points occupies the absolute dominate position. Moreover, since 

the reflectance of faced traffic signs are very high, the number of high reflective points 

which are close to the number of in traffic signs, can be an effective feature to classify 

traffic signs. And the height range of poles, which are different among these pole 

categories, can also be a classification feature. We applied the method of Support Vector 

Machine (SVM) based on 6 kinds of feature do the 4-class classification. 

 

4.1.5. Experimental Results 

We use the MMS-K320 system, developed by Mitsubishi Electrics, to collect data. 

The MMS system is shown in Figure 4.3. As we see the system is equipped with two 

single-layer laser scanners and three cameras to perform a 3D measurement of the 

surroundings. The two laser scanners have a 180° field of view. One is configured to 

point up (pitch: +25°) and one down (pitch: −25°). The localization of the car is 

obtained by one dual frequency GPS receiver, two single frequency GPS receivers, the 

odometer and high-end IMU.  
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Figure 4.3. Our MMS system: Mitsubishi Electric's MMS-K320 (bottom); and the 

configuration of two SICK LMS-511 laser scanners and RTK GPS receivers (top). 

Our experiment data is acquired around Hitotsubashi intersection, which is a dense 

urban area in the Chiyoda-ku area of central Tokyo, Japan. Streets around this area are 

surrounded by tall buildings, trees, and traffic facilities. Our experimental routes are 

displayed in Figure 4.4. 

 

 

Figure 4.4. Our experimental routes in Hitotsubashi area. 
 

From the laser scanning data of our experimental routes, 287 candidate pole-like 
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structures are extracted by our method. We manually labeled traffic facility poles in 

these routes to evaluation of our proposed method. We apply precision and recall 

criterion to evaluate our method. The computational formula of precision is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.7) 

Where TP and FP mean true positive and false positive, respectively. And the 

computational formula of recall is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.8) 

Where FN is false negative. Evaluation of our pole-like structures extraction 

method is shown in Table 4.1. Among the all 274 poles (utility poles, traffic signs and 

street lights), our method extracts 227 of them successfully, thus the recall is 82.8%. 

And since 287 candidate poles are extracted, which means 60 of them are other objects 

such as trees or sparse building facades. Therefore, the precision is 79.1%. 

 

Table 4.1. Evaluation of our Pole-like Structures Extraction Method 

 

Route 
Ground 

Truth  
Extracted Correct Precision Recall 

1 38 41 32 78.0% 84.2% 

2 46 49 37 75.5% 80.4% 

3 47 45 39 86.7% 83.0% 

4 68 74 59 79.7% 86.8% 

5 75 78 60 76.9% 80.0% 

All 274 287 227 79.1% 82.8% 

 

Figure 4.5 gives visualization examples of pole-like structures extraction results 

in two routes. 
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Figure 4.5. Visualization examples of our pole-like structures extraction results. 
 

Figure 4.6 shows some examples of undetected poles by our method. Since we use 

clustering during the pole-like structures extraction, poles that are very close to other 

objects would be segmented as a whole so that we can not extract the pole correctly. 

Besides, traffic signs on overpass cannot be extracted since they cannot be treated as a 

standard pole structure. Nevertheless, we can infer these signs from images since 

invariable categories of traffic signs could appear on overpass.  
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Figure 4.6. Example of undetected poles by our method. 
 

As we mentioned above, we trained an SVM classifier for poles classification. 

Evaluation of our pole-like structures classification is shown in Table 4.2. And Figure 

4.7 shows a visualization of our pole-like structures classification results. 

 

Table 4.2. Evaluation of our Pole-like Structures Classification Method 

 

Category Classified Correct Precision 

Utility Poles 97 75 77.3% 

Traffic Signs 88 67 76.1% 

Street Lights 60 49 81.7% 

Others 42 35 83.3% 

All 287 226 80.4% 
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Figure 4.7. Visualization of our pole-like structures classification results (route 3). The 

color of blue, green, yellow and red stand for utility poles, traffic signs, street lights 

and others, respectively. 

 

4.2. Road Marking Extraction 

In laser scanning data, road markings painted on road surfaces are highly 

retroreflective, comparing to the asphalt road, which means that we can use the intensity 

value to extract the road markings. However, since the intensity value of road markings 

can be confused with some tall structures, we need to exclude these areas firstly in order 

to delimit the road markings searching space in the ground area. After that, road 

makings can be extracted by intensity value thresholding. We will follow these steps to 

describe details of our method of road markings extraction in this section. 

 

4.2.1. Ground Area Segmentation 

Ground area segmentation needs to be done at the first. As mentioned above, tall 

structure like buildings will confuse the intensity thresholding while sidewalks contain 

some useful information. So, the method of ground area segmentation we took should 

segment the road and sidewalk area while excluding buildings and other tall structures. 

Therefore, we applied a method based on the cloth simulation filter (CSF) [48] for 

ground area segmentation. Table 4.3 lists the parameters of CSF we applied in our 

experiment. And a result of ground segmentation in a part of point cloud data is shown 

in Figure 4.8. 

 

Table 4.3. Parameters of cloth filter simulation applied in our experiment 
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Parameters Value Description 

Cloth resolution 2 m Set empirically 

Max iteration 1000 More than 500 is suggested 

Classification threshold 20 cm 
Small values 

 suit for cloth resolution 

 

 

Figure 4.8. Ground area segmentation from point cloud data: (a) original point cloud 

data; and (b) the result of ground segmentation. 

 

4.2.2. Road Marking Extraction by Intensity Thresholding 

After the segmentation of ground area, road markings can be extracted using the 

adaptive intensity thresholding procedure. Since there are some noise points after 

thresholding, we use the k-nearest neighbor distances filtering to remove noise points. 

Figure 4.9 presents a sample of the road markings extracting result. As we can see, the 

result shows the effectiveness of our method. Some curbs close to the sidewalks are 

also extracted as road markings, which can be treated as boundaries of road lanes later.  
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Figure 4.9. The result of road marking extraction: (a) before processing; (b) after 

thresholding and outlier filtering. 
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Chapter 5.  

Image Based Road Facility Information 

Understanding 

 

 

5.1. Road Facility Detection 

5.1.1. Related Works of Object Detection 

As we talked in chapter 3, the Convolutional Neural Network based deep learning 

have made more and more new record in many computer vision tasks in recent years. 

Architectures of CNN have achieved higher and higher accuracy in image classification 

task. For object detection, CNN based deep learning models also outperformed 

conventional Histogram of Oriented Gradient (HOG) [49] + SVM method from 2014. 

Therefore, we apply deep learning model to detect traffic facilities. There are two main 

kinds of deep learning architecture for object detection:  

1. Two stage CNN framework: This kind of model provides region proposals with 

an algorithm or a light CNN network firstly, then applies a high-quality classifier to 

classify these proposals. We will make an introduction of RCNN [50], SPP-net [52], 

Fast-RCNN [54] and Faster-RCNN [55]. 

2. Single stage CNN framework: This kind of framework consider the task of 

detection as a regression problem to achieve the real-time speed of object detection.  

This kind of model includes YOLO [56], YOLOv2 [57], SSD [58], and YOLOv3 [59]. 

We will discuss the details of these object detection network in this subsection. 

Girshick et al. [50] proposed a method named Regions with CNN Feature (R-

CNN) in 2014, which achieved excellent object detection accuracy by using a deep 

Convolutional Neural Network to classify object proposals. Figure 5.1 shows the 

architecture of R-CNN. 
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Figure 5.1. Object detection system overview [50]. 

 

This system consists of 4 steps. Firstly, an image is inputted into this system. Then 

it extracts around 2000 bottom-up region proposals by selective search [51], each 

proposal is warped to the size of 227 × 227. After that, a CNN with 5 convolutional 

layers and 2 fully connected layers is used to compute features for each proposal. 

Finally, the linear SVMs are adopted to classify each region and the bounding box 

regression method is applied to fix localization errors. However, R-CNN has notable 

drawbacks: (1) Training is a multi-stage pipeline. R-CNN first finetunes a CNN on 

object proposals. Then, it fits SVM classifier to CNN features. In the third training stage, 

bounding-box regressors are learned; (2) Training is expensive in space and time. It 

takes a lot of time with very deep networks, and proposals as well as features require 

hundreds of gigabytes of storage; (3) Object detection is slow since it performs a CNN 

forward pass and SVM classification for each object proposal without sharing 

computation. Detection with VGG16 on a GPU takes 47s per image. 

He et al. [52] proposed Spatial pyramid pooling networks (SPP-net) to speed up 

R-CNN by sharing computation. A CNN mainly consists of two parts: convolutional 

layers, and fully-connected layers that follow. In fact, convolutional layers do not 

require a fixed image size and can generate feature maps of any sizes. According to this, 

they added an SPP layer on top of the last convolutional layer. Figure 3 displays the 

change of the network architecture by introducing the SPP layer. The SPP layer pools 

the features and then concatenated as in spatial pyramid pooling [53] to generate fixed-

length outputs, which are then fed into the fully-connected layers (see Figure 5.2). SPP-

net accelerates R-CNN by 10 to 100× at test time. Training time is also reduced by 3× 

due to faster proposal feature extraction. 
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Figure 5.2. A network structure with a spatial pyramid pooling layer. Here 256 is the 

filter number of the conv 5 layer, and conv 5 is the last convolutional layer [52]. 
 

Nevertheless, SPP-net also has notable drawbacks. Training is a multi-stage 

pipeline which involves 3 stages like R-CNN. And unlike R-CNN, the fine-tuning 

algorithm proposed in [50] cannot update the convolutional layers, which limits the 

accuracy of very deep networks. 

In order to fix the disadvantages of R-CNN and SPP-net, Girshick et al. [54] 

proposed the method of Fast R-CNN in 2015. Figure 5.3 presents the architecture of 

Fast R-CNN. There are 2 main differences we can find between the architecture of Fast 

R-CNN and R-CNN: (1) Fast R-CNN adds the region of interest (ROI) pooling layer 

before fully connected layers, using max pooling to down-sample each proposal to a 

small feature map of 7×7 , which is similar to the spatial pyramid pooling layer in SPP-

net; (2) Fast R-CNN applies softmax classifier to take place of SVM, and uses a multi-

task loss function which jointly optimizes a softmax classifier and bounding-box 

regressors, making it a single-stage for the training step (except for the region proposal 

part. For Fast R-CNN, region proposal still needs to be done for images before inputting 

into the network structure). 
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Figure 5.3. Fast R-CNN architecture [54]. 
 

However, Fast-RCNN is still not fast enough for the real-time application. The 

region proposal in Fast-RCNN still uses selective search algorithm, which takes up 90% 

of the processing time. Now, proposals are the computational bottleneck in state-of-the-

art detection systems. Ren et al. [55] proposed Faster R-CNN (See Figure 5.4) in which 

the selective search has been replaced by a Region Proposal network (RPN). An RPN 

is a fully-convolutional network that simultaneously predicts object bounds and 

objectness scores (measures membership to a set of object classes or background) at 

each position. The advantage of RPN is the region proposal step can be nearly cost-free 

by sharing convolutional features with Fast R-CNN. RPN can be trained end-to-end to 

generate high-quality region proposals. 

 

 

Figure 5.4. Faster R-CNN architecture [55]. 
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The working process of RPN is demonstrated in Figure 5.5. The RPN uses a spatial 

window to slide feature map output by the last shared convolutional layer, which takes 

an image feature map as input and outputs k rectangular object proposals (coordinates), 

each with an objectness score (objects or background), where k denotes the number of 

anchor boxes. Each sliding window is mapped to a lower-dimensional vector and this 

vector is fed into two sibling fully-connected layers: a box-regression (reg) layer and a 

box-classification (cls) layer. Therefore, the reg layer has 4k outputs encoding the 

coordinates of k boxes, and the cls layer outputs 2k scores that estimate the probability 

of object or not object for each proposal. 

 

 

Figure 5.5. Region Proposal Network (RPN). Left: Architecture of RPN. Right: 

Example detections using RPN proposals on PASCAL VOC 2007 test [55]. 
 

Faster RCNN is currently the dominant method for the task of object detection. 

However, the speed of Faster RCNN is still slow for real-time applications. Redmon et 

al. [56] proposed a You Only Look Once (YOLO) object detection approach in 2016. 

The YOLO Detection System is shown in Figure 5.6. First, the input image is resized 

to 448 × 448; Then runs a single CNN on the image; And the results are obtained by 

thresholding the model’s confidence. 

 

 

Figure 5.6. The YOLO Detection System [55]. 
 

Figure 5.7 describes the prediction method of YOLO. It divides the image into an 
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S ∗ S grid and predicts B bounding boxes and C conditional class probabilities for each 

grid cell. These predictions are encoded as an S × S × B × 5 + C tensor. Grid cells are 

in charge of detecting the object of which center falls into the grid cell. At test time they 

multiply the conditional class probabilities and the individual box confidence 

predictions to get the class-specific confidence scores for each box. These scores 

encode both the probability of that class appearing in the box and how well the predicted 

box fits the object. 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ  =  𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (6.1) 

In their paper, they applied S = 7, B = 2. C = 20 for evaluating YOLO on PASCAL 

VOC2012, which reached to 45 frames per second on Titan-X GPU, and achieved mean 

Average Precision (mAP) of 63.4%. 

 

 

Figure 5.7. The You Only Look Once Model [56]. 
 

Although YOLO takes significant speed advantages over Faster-RCNN, YOLO 

suffers from a significant number of localization errors when compared with Faster-

RCNN. And YOLO has relatively low recall compared to region proposal-based 

methods. Inspired by the improvement of Faster-RCNN via the anchor proposal, 

Redmon et al. [57] proposed YOLOv2, which is an improved YOLO method. There are 

mainly 6 improvements from YOLO: (1) YOLOv2 adds batch normalization on all of 

the convolutional layers; (2) YOLOv2 finetunes the classifier with full resolution of 
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448×448 for 10 epochs instead of 224×224 in YOLO; (3) Instead of predicting 

coordinates directly after fully connected layers in YOLO, YOLOv2 removes all of the 

fully connected layers, and adopts anchor boxes to predict bounding boxes; (4) While 

Faster R-CNN chooses dimensions of anchor boxes by hand, YOLOv2 applies k-means 

clustering to find good priors. Along with this, YOLOv2 improves the model instability 

of anchor by directly predicting the bounding box center location; (5) Unlike Faster R-

CNN running proposal networks at various feature maps in the network to get a range 

of resolution, YOLOv2 designs the passthrough layer to concatenate the higher 

resolution features with the low resolution features by stacking adjacent features into 

different channels instead of spatial locations; (6)YOLOv2 changes input image size 

every few iterations in training to predict well across a variety of input dimensions. 

Another method of object detection with a single deep neural network, named SSD 

[58] was proposed in 2016. Since YOLO only operates on a single scale feature map, 

the performance of detecting small objects is not very well. In order to improve this 

problem, SSD adds convolutional feature layers to the end of the truncated base 

network. These layers decrease in size progressively and allow predictions of detections 

at multiple scales, meaning that small objects and big objects are expected to be 

detected in different layers. A comparison between YOLO and SSD is shown in Figure 

5.8. We can see that the Conv5_3 layer is responsible to detect the smallest objects 

while the Conv11_2 layer is responsible for the biggest objects.  

 

 

Figure 5.8. A comparison between the model of SSD and YOLO [57]. 

 



５８ 

 

While the speed (Frames Per Second, FPS) of YOLO and YOLOv2 are faster than 

SSD with a near size of input images, the accuracy of YOLO-448 (448 is the size of 

input image) and YOLOv2-416 are both lower than SSD-300 according to experiment 

results. As a tradeoff of speed and accuracy, YOLOv3 [59] makes improvements on the 

accuracy with a little increasement in time. There are mainly 3 changes from YOLOv2 

to YOLOv3: (1) YOLOv3 applies multilabel classification to predict the class of each 

box, and they replace softmax by independent logistic classifiers. This helps the 

detection of overlapping labels; (2) Inspired by feature pyramid networks (FPN) [60], 

YOLOv3 predicts boxes across 3 different scales, which makes the model more robust 

to small objects; (3) YOLOv3 designs a new network Darknet-53 for performing 

feature extraction, which is a hybrid approach between the network used in YOLOv2, 

Darknet-19, and that newfangled residual network [38]. The architecture of Darknet-53 

showed in Figure 5.9, uses successive 3×3 and 1×1 convolutional layers with some 

shortcut connections as well. This new network is much more powerful than Darknet-

19 and more efficient than ResNet-101 or ResNet-152 (While the accuracy is near). 

Figure 5.10 demonstrated a comparison of several significant detection models on time 

and accuracy. We can see YOLOv3 is a balanced model for the task of objects detection. 

 

 

Figure 5.9. The architecture of Darknet-53 [59]. 
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Figure 5.10. A Comparison of significant detection models on time and the mAP at .5 

IOU metric [59]. 
 

5.1.2. Our Method and Experimental Results 

Since road lines are continuous by frames, we apply the segmentation network 

architecture to extract them instead of the detection network, which will be described 

in the next section. In our road facilities understanding, we acquire semantic regulations 

of traffic lights, signs and road markings (except road lines) based on the architecture 

of YOLOv3. We categorize these detection objects into 49 classes including 4 kinds of 

traffic lights (red, green, yellow and unknown states), 12 kinds of road markings 

(including crosswalks, stop lines, direction arrows, speed limitation and no U-turn 

markings), and 33 kinds of traffic signs (can mainly categorized as speed limitation 

signs, turning signs, restriction signs, instruction signs, warning signs and other signs). 

Since the size of detection object differs a lot in traffic scene, and there would be 

both small and large objects in the same image, we applied multiscale feature maps for 

detection, where shallow layers work for small size objects (e.g. traffic lights) detection 
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and deeper layers work for large size objects (e.g. crosswalks) detection. And we also 

disabled flip data augmentation for distinguish left and right objects as separate classes 

(e.g. left and right turn on road signs). 

We labeled 4684 on-board camera images derived from Hitotsubashi and Shinjuku 

intersections in Tokyo. 3607 images are used as training data, and 1077 images as test 

data. Darknet-53 is used as backbone for training and we trained our model for 100,000 

iterations with the input image size of 608×608. 

To evaluate our detection results, we follow the PAS-CAL [61] protocol and 

average by summing in 10% recall steps. The process for computing average precision 

is given in algorithm 5.1. Only when the overlap region with ground truth above 50% 

will it be considered as a correct detection. 

 

Algorithm 5.1: Average Precision 

1: average precision = 0 

2: for i=0 to 1 step 0.1 do 

3:   p = max(precision(recall>=i)) 

4:   average precision = average precision + p / 11 

5: end for 

6: return average precision 

 

As our final goal of road facilities detection in image is to integrate their semantic 

regulation with point cloud map data. And the same target would appear in several 

sequential frames. Therefore, the semantic regulation of a road facility can be projected 

to the map as long as it appears at least one time in frames. So, we also take the 

occurrence probability as a criterion for evaluation, where we count the real number of 

each object as ground truth, and consider it correct if one object is correct detected at 

least one time in several frames. Table 5.1 gives the evaluation of our detection results 

and some testing results are demonstrated in Figure 5.11. 
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Table 5.1. Evaluation of our road facility detection results 

 

Road Facility Detection 
Traffic 

Light 

Road 

Marking 

Traffic 

Sign 
All 

Average Precision (%) 90.7 84.9 86.5 86.5 

Occurrence Probability (%) 97.0 96.3 96.7 96.6 

 

 

Figure 5.11. Road facilities detection results in our dataset. 
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5.2. Road Line Detection 

Traditional lane detection methods [62, 63] rely on a combination of highly-

specialized, hand-crafted and heuristics features to identify lane segments, which are 

computationally expensive and prone to scalability due to road scene variations. Neven 

et al. [64] proposes an instance segmentation network named LaneNet to train for pixel-

wise lane segmentation. Figure 5.12 shows the architecture of LaneNet. As we can see 

from the figure that LaneNet is branched, multi-task network, containing a lane 

segmentation branch which is the top one and a lane embedding branch which is the 

bottom one. The lane segmentation branch aims to output a binary segmentation map 

in which pixels are classified as lane or background. And the embedding branch further 

disentangles the segmented lane pixels into different lane instances. By means of the 

multi-task architecture, LaneNet can segment different road lines as different instances 

without labeling them as different classes. After the pixel embeddings, a clustering loss 

function is trained to assign id for each lane which is outputted by lane segmentation 

branch. 

 

 

Figure 5.12. LaneNet architecture [64]. 
 

We labeled 2342 image frames in our dataset, in which 1208 frames (together with 

3626 frames from tuSimple lane dataset [65]) for training, 1134 frames for testing. The 

training epochs of our experiment are 200,000. We obey the evaluation methodology 

of tuSimple lane dataset to evaluate our result, which calculates accuracy (acc), false 

positive (FP), and false negative (FN). The accuracy is calculated by average correct 

number of points per image: 



６３ 

 

𝑎𝑐𝑐 = ∑
𝐶𝑖𝑚𝑔

𝑆𝑖𝑚𝑔
𝑖𝑚𝑔

 (6.2) 

where 𝐶𝑖𝑚𝑔 is the number of correct points in the image, and 𝑆𝑖𝑚𝑔 means the number of 

ground-truth points in the image. And the false positive and false negative scores are 

calculated by: 

𝐹𝑃 =
𝐹𝑝𝑟𝑒𝑑

𝑁𝑝𝑟𝑒𝑑
 (6.3) 

𝐹𝑁 =
𝑀𝑝𝑟𝑒𝑑

𝑁𝑔𝑡
 (6.4) 

where 𝐹𝑝𝑟𝑒𝑑 is the number of wrongly predicted lanes, 𝑁𝑝𝑟𝑒𝑑 is the number of predicted 

lanes, 𝑀𝑝𝑟𝑒𝑑 is the number of missed ground-truth lanes and 𝑁𝑔𝑡 is the number of all 

ground-truth lanes. The evaluation of our road line detection results is shown in Table 

5.2, and some testing results in our dataset are given in Figure 5.13. 

 

Table 5.2. Evaluation of our road line detection results 

 

acc FP FN 

90.2% 6.4% 8.2% 
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Figure 5.13. Road line detection results in our dataset. 
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Chapter 6.  

Integration of Point Cloud and Image for 

Mapping 

 

 

6.1. Camera Model and Coordinate Transforming 

In order to matching the semantic information derived from images on the point 

cloud map, we need to find the coordinate transformation from image pixel coordinates 

to world coordinates. Therefore, we will make an introduction of the geometry of a 

pinhole camera model and how to match the coordinates in this section. Photometric 

cameras using an optical lens can be modelled as a pinhole camera. Figure 6.1 shows 

the geometry of a pinhole camera model and Figure 6.2 displays the process of 

projecting a feature in the world coordinates into the pixel coordinates. 

 

 

Figure 6.1. The geometry of a pinhole camera model. 
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Figure 6.2. Process of coordinate transforming between world coordinates and pixel 

coordinates. 

 

As we can see in Figure 6.2, since the camera moves in real world, the first step is to 

project a point in the real world to the camera film by the rotation and translation of the 

camera. The mathematical form is: 

(

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

) = (

𝑟11 𝑟12

𝑟21 𝑟22

𝑟13 𝑡1

𝑟23 𝑡2
𝑟31 𝑟32

0 0
𝑟33 𝑡3

0 1

) (

𝑋𝑊

𝑌𝑊

𝑍𝑊

1

) (6.1) 

where 

𝑅 = (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 1
) (6.2) 

is the rotation matrix. And 

𝑇 = (

𝑡1

𝑡2

𝑡3

) (6.3) 

is the translation matrix. The joint matrix (𝑅|𝑇) is called camera extrinsic parameters. 

The camera extrinsic parameters are used to describe the camera motion around a static 

scene. 

Then camera coordinates are transformed to the film coordinate by the perspective 

matrix equation as: 

𝑍𝐶 (
𝑥
𝑦
1

) = (
𝑓 0 0
0 𝑓 0
0 0 1

0
0
0

) (

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

) (6.4) 

where 𝑓 is the camera focal length in the distance unit. 
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At last the pixel coordinates comes from the sampling of the CCD sampling.  

𝑢 =
1

𝑠𝑥
𝑓

𝑋𝐶

𝑍𝐶
+ 𝑐𝑥 = 𝑓𝑥

𝑋𝐶

𝑍𝐶
+ 𝑐𝑥 (6.5) 

𝑣 =
1

𝑠𝑦
𝑓

𝑌𝐶

𝑍𝐶
+ 𝑐𝑦 = 𝑓𝑦

𝑌𝐶

𝑍𝐶
+ 𝑐𝑦 (6.6) 

where 𝑠𝑥 and 𝑠𝑦 are the dimension of pixel in frame grabber. The 𝑓𝑥, 𝑓𝑦 are the focal 

lengths expressed in pixel units and (𝑐𝑥, 𝑐𝑦) is the principal point in the image because 

normally the principal point in the film coordinates is the upper left corner while in the 

pixel coordinates the principal point should the center of the image. 

Finally, the whole process of the projection can be shown in the equation as: 

𝑍𝐶 (
𝑢
𝑣
1

) = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

0
0
0

) (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡1

𝑡2

𝑡3

0    0    0 1

) (

𝑈
𝑉
𝑊
1

) (6.7) 

where 

K = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

) (6.8) 

is the camera intrinsic parameters matrix. If an image from the camera is scaled by a 

factor, all of these parameters should be scaled by the same factor. The matrix of 

intrinsic parameters does not depend on the scene viewed. So, once estimated, it can be 

re-used as long as the focal length is fixed 

we can see that the range information is lost in this projection, but the angle or 

orientation of the feature can be obtained if the focal length is known and the lens does 

not cause distortion. So, a single camera only provides only information about the 

direction of the features exist in the pedestrian's view, while as it doesn’t provide any 

information regarding the depth. However, our goal is to matching semantic 

information of traffic lights, traffic signs and road markings from image to the point 

cloud map. The road surface is always perpendicular to the car’s z-axis, meaning that 

we can matching with road markings only by the x-y plane. And since there would be 

a distance between two traffic poles (traffic lights, signs), we can also match the them 

in the x-y plane with a certain range. Since cameras are mounted in a fixed position on 

the MMS car and we have the intrinsic and extrinsic parameters of the camera, we can 
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use the Inverse Perspective Mapping (IPM) to transform to transform the pixel 

coordinates back to the camera coordinates, and get the world coordinates based on the 

GPS position of the MMS car. Figure 6.3 shows a visualization of coordinate 

transformation from pixel coordinate to world coordinate. 

 

 

Figure 6.3. A Visualization of coordinate transformation from pixel coordinate to 

world coordinate: (a) original image; (b) image after IPM, which is in camera 

coordinate; (c) image in world coordinate, where the pink part is road marking 

extracted from point cloud data. 

 

6.2. Integration of Semantic Information on Map 

From above we have talked about how to transform coordinates from pixels in 

image to the map. In our experiments, we divide our facilities into 5 categories for 

integration: stop lines, crosswalks, instruction road markings, facility poles (traffic 

lights and signs), and road lines. Since there are wrong detections for first four 

categories when the camera is far from the target, which can detect correctly when the 

target becomes near (as shown in Figure 6.4). To solve this kind of problem, for each 

object, if it is classified as different categories in several frames, we calculate the 

probability (percentage) of each category and consider the one with the largest 

probability as the correct one. Then we obtain the center point of bounding-box in the 

last correct-detected frame, and transform the center point to world coordinate for 

integration. The method of integrate these four categories is a little bit different, we will 

describe in following. And we will also introduce the method of integrate road lines 

which differs from first four categories. 
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Figure 6.4. Example of wrong detections when car is far from target: (a) the left 

marking is wrongly detected since it is small in this image; (b) the left marking can 

be detected correctly when car becomes near. 

 

For stop lines, since they can be considered vertical to the car trajectory when the 

car is near. Therefore, we transform the center point to world coordinate and fit a 

straight line along the x-axis. Figure 6.5 displays the process of stop lines integration. 

 

 

Figure 6.5. Process of stop lines integration, blue point is center point of bounding 

box: (a) original image; (b) image after IPM; (c) image in world coordinate with point 

cloud; (d) stop line fitting. 
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For crosswalk area, since they are usually with a certain range of width and height. 

Therefore, we generate a square area from the center point to represent a crosswalk area. 

Figure 6.6 shows the process of the crosswalk area generation. 

 

 

Figure 6.6. Process of crosswalk area generation, blue point is center point of 

bounding box: (a) original image; (b) image in world coordinate with point cloud; (c) 

crosswalk area generation; (d) crosswalk area extraction. 
 

For road lines fitting, since the line detection results are pixels frame by frame, we 

firstly use coordinate transforming to transform pixels of each frame into world 

coordinate. Then we segment one whole road area part into several segments according 

to its length (we consider a whole road area part begins and ends with crosswalks, where 

Figure 6.7 gives an example of a whole road area part). Finally, we apply the Ransac 

algorithm to fit straight lines in each segmented area. Some road line fitting results are 

shown Figure 6.8. 
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Figure 6.7. Example of a whole road area part. 
 

 

Figure 6.8. Some road line fitting results. 
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As for instruction road markings, since they are all in road lanes which lie between 

two road lines. Therefore, we use the information of road lines to restrict the searching 

area and generate clusters around center points. Figure 6.9 gives integration results of 

instruction road markings. 

 

 

Figure 6.9. Integration results of instruction road markings, different colors stand for 

different categories. 
 

After all of the road facilities are added, integration of semantic information on 

our map are completed. Figure 6.10 demonstrates the final result of our map with 

semantic information. 
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(a) 

 

(b) 

Figure 6.10. Final result of our map with semantic information. 
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Chapter 7.  

Conclusions 

 

 

In this thesis, we presented a study on automated mapping of road facilities and 

their semantic information on HD maps by MMS. Firstly, we utilize point cloud data 

derived by mobile mapping system to extract road facility poles and road markings, 

from which we can know the accurate position of them in the map. Then we applied 

deep-learning model for road facilities detection to obtain traffic regulation information 

from these facilities. Finally, Integration of information derived from point cloud and 

image was done by coordinate transforming to construct HD map with semantic 

information automatically. 

For future work, based on derived semantic information, how to generate a lane-

level model for division of region with different traffic regulations should be taken into 

consideration. After traffic regulations are defined on every road of HD map, motion 

planning of vehicles can be the further step towards higher level autonomous driving. 

Besides, since extracted traffic poles on the map can provide good features for 

localization, accurate self-localization of vehicles based on the map can also be a 

direction for further study. 
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