

修 士 論 文

Mapping of Road Facilities and Information

on High Definition Maps using Mobile

Mapping System

(モービルマッピングシステムを用いた路側構造物

と道路情報の高精度 3D マップへの自動マッピング)

指導教員 上條俊介 准教授

東京大学大学院

情報理工学系研究科

電子情報学専攻

学籍番号・氏名 48-176452 張 越

© Copyright 2019, YUE ZHANG.

All rights reserved.

I

Abstract

Autonomous driving has become a hot and exciting research field in recent years.

We can benefit greater road safety, reduced congestion and more productivity from

these highly automated technologies. There are several on-board sensors on

autonomous vehicles which can be used for environmental perception. Since tasks like

navigation, path planning cannot be achieved by only on-board sensors, High

Definition (HD) Maps, which have high accuracy of object locations and important

roadway attributes are also significant components for autonomous or assistant driving.

And semantic information of traffic rules, which are important for motion planning of

vehicles, should be also contained in HD maps. However, semantic traffic regulations

are now putted into maps manually, not automatically in industry. Motivated by this,

this research aims to find an automatic way generating HD map with the semantic

information.

In this research, we extract positional and semantic information of traffic facilities

and road markings in the traffic scene based on camera images and laser scanning point

cloud data from mobile mapping system. And we integrate the extracted information

into our high definition map towards the automated construction of high-definition

maps with semantic traffic regulations.

II

Contents

Chapter 1. Introduction ... １

1.1. Background .. １

1.2. Objective .. ６

1.3. Thesis Structure ... ７

Chapter 2. Foundation and Application of Mapping .. ８

2.1. Foundation of Mobile Mapping System .. ８

2.1.1. Components of Mobile Mapping System .. ８

2.1.2. GPS Positioning ... ９

2.1.3. Laser Scanning and Prior Maps ... １２

2.2. 3D Map Construction by MMS ... １４

2.3. Applications of 3D Maps ... １５

Chapter 3. Foundation of Convolutional Neural Network １７

3.1. Origin of Convolutional Neural Network .. １７

3.2. Basic Components of Convolutional Neural Network １９

3.2.1. Convolutional Layer .. ２０

3.2.2. Pooling Layer ... ２１

3.2.3. Batch Normalization Layer .. ２２

3.2.4. Fully Connected Layer ... ２２

3.2.5. Activation Functions .. ２２

3.3. Training of Convolutional Neural Network ... ２４

3.3.1. Initialization ... ２５

3.3.2. Loss function .. ２５

3.3.3. Backpropagation .. ２６

3.3.4. Optimization .. ２６

3.3.5. Regularization .. ２７

3.4. Famous Architectures in Convolutional Neural Network ２８

3.4.1. LeNet.. ２８

3.4.2. AlexNet .. ２９

3.4.3. VGGNet ... ３０

3.4.4. GoogLeNet ... ３１

3.4.5. ResNet .. ３２

3.4.6. DenseNet .. ３３

Chapter 4. Road Facility Extraction from Laser Scanning Data ３５

4.1. Pole-like Traffic Facilities Extraction and Classification ３５

4.1.1. Related Works .. ３５

4.1.2. System Overview ... ３７

4.1.3. Pole-like Structures Extraction .. ３８

4.1.4. Pole-like Structures Classification ... ４０

4.1.5. Experimental Results ... ４３

4.2. Road Marking Extraction ... ４８

4.2.1. Ground Area Segmentation .. ４８

4.2.2. Road Marking Extraction by Intensity Thresholding ４９

III

Chapter 5. Image Based Road Facility Information Understanding ５１

5.1. Road Facility Detection ... ５１

5.1.1. Related Works of Object Detection ... ５１

5.1.2. Our Method and Experimental Results .. ５９

5.2. Road Line Detection .. ６２

Chapter 6. Integration of Point Cloud and Image for Mapping ６５

6.1. Camera Model and Coordinate Transforming ... ６５

6.2. Integration of Semantic Information on Map .. ６８

Chapter 7. Conclusions ... ７４

Reference ... ７５

Thanks ... ８１

Publication List ... ８２

IV

List of Figures

Figure 1.1. Hierarchy of Dynamic Map [2]. ... ３

Figure 1.2. HERE HD Live Map [3]... ５

Figure 1.3. Detailed intersection data in TomTom’s HD Map [4]. ５

Figure 1.4. Flowchart of proposed system. ... ７

Figure 2.1. Mobile Mapping System developed by Mitsubishi Electric [7]. ９

Figure 2.2. The constellation of GPS satellites [8]. .. １０

Figure 2.3. GPS trilateration positioning [9]. ... １１

Figure 2.4. HDL-64E Lidar made by Velodyne [10]. １２

Figure 2.5. Example of raw data collected by HDL-64E Lidar [10]. １３

Figure 2.6. Pipeline of 3D map construction. ... １４

Figure 3.1. Model of biological neuron [21]... １８

Figure 3.2. Model of an artificial neuron. ... １８

Figure 3.3. A brief illustration of ventral stream of the visual cortex in human vision

system [23]. ... １９

Figure 3.4. The work flow of a convolution operation. ２１

Figure 3.5. Example of max pooling and mean pooling. ２２

Figure 3.6. Graphes of activation functions: (a) Sigmoid function; (b) Tanh

function; (c) ReLu function; (d) LeakyReLu function [26]. ２４

Figure 3.7. Architecture of LeNet-5 [31]. ... ２９

Figure 3.8. An illustration of the architecture of AlexNet [32]. ３０

Figure 3.9. The 6 different architectures of VGGNet [34]. ３１

Figure 3.10. Architectures of Inception module [35]. ３２

Figure 3.11. Residual learning: a building block [36]. ３３

Figure 3.12. The architecture of a 5-layer dense block with a growth rate of k = 4

[37]. ... ３４

Figure 4.1. The procedure of the proposed pole-like road facilities extraction and

classification system. .. ３７

Figure 4.2. Point classification results. The colors of blue, red, green, and yellow

represents normal linear, horizontal linear, planar, and volumetric points,

respectively. .. ４２

Figure 4.3. Our MMS system: Mitsubishi Electric's MMS-K320 (bottom); and the

configuration of two SICK LMS-511 laser scanners and RTK GPS receivers

(top). .. ４４

Figure 4.4. Our experimental routes in Hitotsubashi area. ４４

Figure 4.5. Visualization examples of our pole-like structures extraction results. ...

... ４６

Figure 4.6. Example of undetected poles by our method. ４７

Figure 4.7. Visualization of Our pole-like structures classification results. The color

of blue, green, yellow and red stand for utility poles, traffic signs, street lights

and others, respectively. .. ４８

Figure 4.8. Ground area segmentation from point cloud data: (a) original point

cloud data; and (b) the result of ground segmentation. ４９

Figure 4.9. The result of road marking extraction: (a) before processing; (b) after

thresholding and outlier filtering. ... ５０

V

Figure 5.1. Object detection system overview [50]. ... ５２

Figure 5.2. A network structure with a spatial pyramid pooling layer. Here 256 is

the filter number of the conv 5 layer, and conv 5 is the last convolutional layer

[52]. ... ５３

Figure 5.3. Fast R-CNN architecture [54]. ... ５４

Figure 5.4. Faster R-CNN architecture [55]. .. ５４

Figure 5.5. Region Proposal Network (RPN). Left: Architecture of RPN. Right:

Example detections using RPN proposals on PASCAL VOC 2007 test [55].

... ５５

Figure 5.6. The YOLO Detection System [55]. .. ５５

Figure 5.7. The You Only Look Once Model [56]. ... ５６

Figure 5.8. A comparison between the model of SSD and YOLO [57]. ５７

Figure 5.9. The architecture of Darknet-53 [59]. .. ５８

Figure 5.10. A Comparison of significant detection models on time and the mAP

at .5 IOU metric [59]. .. ５９

Figure 5.11. Road facilities detection results in our dataset. ６１

Figure 5.12. LaneNet architecture [64]. .. ６２

Figure 5.13. Road line detection results in our dataset. ６４

Figure 6.1. The geometry of a pinhole camera model. ６５

Figure 6.2. Process of coordinate transforming between world coordinates and

pixel coordinates. .. ６６

Figure 6.3. A Visualization of coordinate transformation from pixel coordinate to

world coordinate: (a) original image; (b) image after IPM, which is in camera

coordinate; (c) image in world coordinate, where the pink part is road marking

extracted from point cloud data. ... ６８

Figure 6.4. Example of wrong detections when car is far from target: (a) the left

marking is wrongly detected since it is small in this image; (b) the left marking

can be detected correctly when car becomes near. ６９

Figure 6.5. Process of stop lines integration, blue point is center point of bounding

box: (a) original image; (b) image after IPM; (c) image in world coordinate

with point cloud; (d) stop line fitting. ... ６９

Figure 6.6. Process of crosswalk area generation, blue point is center point of

bounding box: (a) original image; (b) image in world coordinate with point

cloud; (c) crosswalk area generation; (d) crosswalk area extraction. ７０

Figure 6.7. Example of a whole road area part. .. ７１

Figure 6.8. Some road line fitting results. ... ７１

Figure 6.9. Integration results of instruction road markings, different colors stand

for different categories. ... ７２

Figure 6.10. Final result of our map with semantic information. ７３

VI

List of Tables

Table 1.1. Components and their Usage in HD Map .. ４

Table 4.1. Evaluation of our Pole-like Structures Extraction Method ４５

Table 4.2. Evaluation of our Pole-like Structures Classification Method ４７

Table 4.3. Parameters of cloth filter simulation applied in our experiment ４８

Table 5.1. Evaluation of our road facility detection results ６１

Table 5.2. Evaluation of our road line detection results.................................... ６３

１

Chapter 1.

Introduction

In this research, we studied how to construct the High Definition Map (HD Map)

in an automatic way instead of current manual way for self-driving vehicles based on

sensor fusion. In this chapter, the background, objective and structure of this thesis are

discussed.

1.1. Background

As road transportation which unites the world by connecting big and small parts

with each other, plays an important role in our everyday life and production,

autonomous driving has become a hot and exciting research field in recent years. We

can benefit greater road safety, reduced congestion and more productivity from these

highly automated technologies.

The main components of the autonomous vehicle can be broadly categorized into

hardware and software. Hardware splits broadly into sensors, Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) technology. And software is composed of

the following functional modules: perception, prediction, planning and control [1]. The

perception task is to do detection and tracking with the objects of interest (e.g. vehicles)

in the scene. The prediction module estimates the intentions and trajectories of all actors

into the future. Planning is responsible for making safe and efficient decisions for the

autonomous vehicle, while control outputs the commands which are necessary for the

autonomous vehicle to execute such decision.

Sensors are indispensable components which allow the autonomous vehicle to get

raw information about the surroundings. The main sensors in autonomous vehicles

include camera, Light Detection and Ranging (LiDAR), radar, GPS (Global Positioning

System) and Inertial Measurement Unit (IMUs). Since each of these sensors have their

respective advantages and disadvantages, sensor fusion is often applied to reduce the

uncertainty of data derived from disparate sources.

２

However, environment beyond cannot be apperceived by only on-board sensors.

And tasks such as navigation, path planning cannot be achieved by only on-board

sensors. So, in order to make reliable driving decisions, besides on-board sensors, maps,

which are also essential components of the intelligent transportation systems, would be

used for providing applications include self-localization, path planning, and perception

to make the cars safer and more comfortable.

The definition of a regular map is a visual representation of an entire area or a part

of an area, typically represented on a flat surface. Regular maps are not sufficient for

autonomous vehicles. They do not have information about traffic lanes, traffic signs,

and lights, position, and height of the curbs. Also, they are useless for localization since

they are designed for humans, not for autonomous vehicles. These maps can have

location errors up to a few meters. Therefore, maps with high accuracy of object

locations and important roadway attributes which are necessary for vehicle positioning

and control need to be made for autonomous or assistant driving. This kind of map is

what we called High Definition Map (HD Map).

Moreover, dynamic information such as statues of traffic lights, road condition of

the path can make vehicles safer and more reliable. The combination of dynamic

information with our usual static map is called Dynamic Map (DM) [2]. DM which

manages various data from vehicles and their surroundings distributed widely and

provides their data for ITS applications, is one of the key technologies towards

autonomous driving. DM can be used to provide vehicles with information such as

positions and mobility of cars and pedestrians nearby, statues of traffic lights, and traffic

jams or accidents on the road, helping not only autonomous driving but also assistance

driving for self-localization, path planning and decision making. From permanent static

data to dynamic data, DM consists of four types of data layers, as shown in Figure 1.1.

The lowest layer is common map with permanent static data. The second layer adds

transient static information (road markings, roadside infrastructures etc.) based on the

first layer. Transient dynamic information like traffic congestion, signal phase and

slippery road are included in the third layer. And the top layer, which includes highly

dynamic data (information of vehicles and pedestrians), is the final goal towards DM.

３

Figure 1.1. Hierarchy of Dynamic Map [2].

HD map is corresponding to the second layer of the DM. Since the construction of

DM needs the highly developed Internet of Things (IoT) technologies. Current

researches focus on construction of HD maps. HD maps enable vehicles to see beyond

the driver’s field of view, providing an accurate representation of the road ahead and

information on the surrounding environment. And as an integral part of the system,

High Definition (HD) Maps bring functions such as high-precision localization,

environment perception, planning and decision making, and real-time navigation cloud

services to autonomous vehicles. Typically, there are several roadway components can

be included in the HD map. Lane lines can be included in the map as they allow for

precise positioning of vehicle and other detected objects; 3D surrounding geometry can

be included in the map for it delivering realistic modelling of surroundings and driving

scenarios, and enabling slope and curvature values to be derived for Advanced Driver

Assistance Systems (ADAS) applications; Including lane markings in the map would

help ensure the vehicle adheres to the traffic rules and assist path planning; Adding

traffic signs and traffic lights would provide semantic information of traffic rules for

the vehicle; And Road borders and guardrails can be contained in the map to help find

drivable areas of the road and deliver improved driving scenarios. Table 1.1 lists

components usually contained in HD maps.

４

Table 1.1. Components and their Usage in HD Map

Components Usage

3D Surrounding Geometry Deliver realistic modelling of surroundings and

driving scenarios, and enabling slope and curvature

values to be derived for ADAS applications

Lane Lines Allow for precise positioning of vehicle and other

detected objects

Lane Markings Help ensure the vehicle adheres to the traffic rules

and assist path planning

Road Borders and Guardrails Help find drivable areas of the road and deliver

improved driving scenarios

Traffic Signs and Lights Provide semantic information of traffic rules for the

vehicle

Many self-driving car companies like Waymo and companies specialize in

providing mapping services (e.g. HERE, TomTom, DeepMap, lvl5 etc.) create their

own HD maps recently. Here, we will take HERE and TomTom’s HD maps as examples

to make an introduction of recent HD maps in industry.

The “HERE HD Live Map” [3] of the map company HERE, demonstrated in

Figure 1.2, contains information of objects, lanes, signs, road geometry to help precise

localization for vehicles. Besides, in order to deal with the dynamic and unpredictable

thing of the roadway, HERE’s map utilizes data from the cloud to compare current and

historical map data. Map errors can be noticed if the vehicles use the map to report any

disagreements between their perception and the map back to the mapping service.

When a vehicle detects a difference in the road and the map, algorithms are set into

motion to evaluate changing road conditions, and distribute those changes in near-real

time to other cars on the road. This information may be not precise and trustworthy

enough to update the map, but at least it can inform quality metadata and guide the

mapping company to collect updated information in that location.

５

Figure 1.2. HERE HD Live Map [3].

The HD Map made by TomTom [4] takes all the important roadway attributes

necessary for vehicle positioning and control. The content that TomTom provides helps

enable Open Street Map (OSM) to accurately determine the current and upcoming

precise location of the vehicle. TomTom’s new concept “RoadDNA” allows for precise

lateral and longitudinal positioning in a storage and processing friendly format while

still using the power of a detailed LIDAR point cloud data, which assists with providing

necessary content and libraries to work with in-vehicle hardware to efficiently

determine a vehicles position. Figure 1.3 shows an example of detailed intersection data

in TomTom’s HD Map.

Figure 1.3. Detailed intersection data in TomTom’s HD Map [4].

６

However, to the best of our knowledge, there are very little work on methods for

constructing HD Maps automatically. Attempts to automatically generate lane-level

precision maps for vehicles have been made in some researches. [5] presents a method

that combines coarse, inaccurate prior maps from OSM with local sensor information

from 3D laser scanner and a positioning system. They formulate a probabilistic model

of lane structure using information from prior maps, and develop a number of tractable

inference algorithms to leverage the coarse and structural information present in OSM,

and integrates it with the highly accurate local sensor measurements. [6] solves the

problem of inferring the position and relevant properties of lanes of urban roads with

poor or absent horizontal signalization by deep neural networks (DNN) based

segmentation approach. laser remission grid maps are segmented into road grid maps

which contain all information about the road-lanes required for the operation of their

autonomous car. However, information of semantic traffic regulations derived from

traffic facilities (traffic lights, traffic signs) and road markings are not in their lane-level

precision maps. As for industrial HD Maps, semantic traffic regulations are putted into

maps manually, not automatically. Motivated by this, this research aims to find an

automatic way generating HD map with the semantic information.

1.2. Objective

In this research, we propose a system towards the automated construction of high-

definition maps with semantic traffic regulations. Figure 1.4 demonstrates the flowchart

of proposed system. There are mainly three works be done in this thesis.

1. Firstly, we utilize point cloud data derived by mobile mapping system to

extract road facility poles and road markings, from which we can know the

accurate position of them in the map.

2. Since images can provide semantic meanings of these traffic facilities, we

apply LaneNet to segment road lines and YOLOv3 to detect traffic lights,

traffic signs and other road markings from images.

3. Finally, we apply coordinate transforming to integrate the information from

both point cloud and images into our high definition map.

７

Figure 1.4. Flowchart of proposed system.

1.3. Thesis Structure

The Structure of this paper listed as follows:

In Chapter 2, the basic knowledge in the mapping process and the application of

maps will be given.

In Chapter 3, we will make an introduction of Convolutional Neural Network.

In Chapter 4, we will discuss methods of road facilities extraction from laser

scanning data

In Chapter 5, the way to understand semantic information of road facilities by

image will be presented.

In Chapter 6, we will give the integration of information from laser scanners and

images, and demonstrate the result of our map.

In Chapter 7, we will draw the conclusion of this thesis and talk about future work.

８

Chapter 2.

Foundation and Application of Mapping

From the previous chapter we know that regular maps are not sufficient for

autonomous vehicles. In this chapter, we will introduce the foundation and application

of mapping for autonomous vehicles. Components of the mapping system and detailed

principles about the core component of the mapping system are introduced firstly. Then,

we discuss the process of constructing 3D maps. Finally, applications of these created

maps are described.

2.1. Foundation of Mobile Mapping System

In this section, we will give an introduction of the foundation of Mobile Mapping

System (MMS). We will introduce the components of MMS firstly. As the positioning

system and laser scanners are the core part of MMS in mapping, their principles of

working will be described in detail.

2.1.1. Components of Mobile Mapping System

The MMS is usually mounted on a car, van or other vehicles that can move with

traffic speed over roads and highways for the measurement of 3D coordinate data and

the acquisition of sequence of images of the road and its surroundings. An MMS usually

consists of a positioning and orientation system (POS), an Inertial Measurement Unit

(IMU), an odometer system, one or more laser scanners, one or more digital cameras

and a control unit. The part of the MMS without cameras is called Mobile Laser

Scanning (MLS) system. The POS continuously acquires data for calculating the

exterior orientation parameters (three coordinates and three attitude angles) using a

Global Navigation Satellite System (GNSS) receiver and the IMU, often complemented

with a wheel rotation counter. The odometer system captures even the minutest vehicle

movement. In locations which Global Positioning System (GPS) measurements may be

blocked, such as in tunnels, this equipment ensures that measurement accuracy is

９

maintained. Each laser scanner emits pulses, presently up to one million pulses per

second, to capture road surfaces and objects above and alongside the road. Images

acquired from cameras enables efficient mapping by compensating for the visual

shortcomings of laser point clouds when the angle of the laser scanner and camera is

adjusted by rigorous calibration, and calculation is conducted by precisely overlapping

laser point clouds with images. And the control unit to which all devices are connected

and from which they are steered eases life for the operator during data capture.

Figure 2.1 [7] shows the Mitsubishi Electric’s MMS. We can see this system

includes a unit with three GPS antennas, an IMU, cameras and laser scanners are

mounted on the roof, and the odometer system is mounted in the wheel.

Figure 2.1. Mobile Mapping System developed by Mitsubishi Electric [7].

2.1.2. GPS Positioning

GPS is originally designed to provide position, speed and time information since

it was initially developed by America in 1973. Nowadays there has been totally 31 GPS

satellites launched into the space and they have almost covered the whole planet as

shown in Figure 2.2 [8].

１０

Figure 2.2. The constellation of GPS satellites [8].

Thanks to the high reliability and global coverage, GPS has been opened to public

and now GPS is the mainly source for position information worldwide and basically

every airplane, vehicle and mobile device has a GPS receiver built inside to provide

customers with position information. Various kinds of researches have been done in this

field as well.

Beside American GPS, other countries also launched their own satellites

navigation system and all of these satellites has formed the modern GNSS. For example,

Russia has GLONESS, Europe has Galileo, China has BeiDou and Japan has QZSS.

Before the year of 2020, all the navigation satellite systems will be fully developed and

the overall satellites in the orbit will be around 80, which means the position

information will be much easier to get and more accurate in the future. Most of these

satellite systems have the same fundamental positioning algorithm and we will mainly

introduce the fundamental algorithm of GPS in this section.

GPS is composed of the space segments include satellites and satellite launchers,

the control segments include several monitor stations around the world and user

segments. To positioning the users, GPS fallow the law of trilateration [9] as shown in

Figure 2.3.

１１

Figure 2.3. GPS trilateration positioning [9].

When a GPS receiver can receive the signals from three GPS satellites, if we can

know the coordinates of these satellites, and the distances form each satellite to the

receiver, then we can draw three spheres as shown in Figure 2.3. The intersection of

sphere 1 and sphere 2 can be found as a circle as shown in the gray. And there will be

two intersects from sphere 3 and this intersection circle as shown in the 2 red points.

Usually, one of the red points should be near the ground and another is in the space. So

only one of them is reasonable and the position of the user can be determined.

Therefore, in the ideal case, a reliable positioning result can be provided by using

three GPS satellites. However, in the real world, at least four satellites are needed to

calculate the user positioning result. The distances from the satellites to the user are

defined as "pseudo range" and is computed by using the propagation time calculated

based on the time the signal is sent and the time the signal is received. In order to get

the time, clocks are built inside of the receiver. Because the clock in the GPS is not

synchronized with the clock in the receiver, there will be a time shift and it will bring

errors to the measured distance. Therefore, beside the altitude, longitude and latitude of

the user, the clock bias becomes the fourth unknown parameter, and at least four

equations are needed to solve four identically unknown parameters. This is why at least

four satellites are required to calculate the user positioning result.

１２

2.1.3. Laser Scanning and Prior Maps

Lidar (Light Detection And Ranging) is a form of laser scanning. It’s similar to

radar (Radio Detection And Ranging) but uses light instead of radio waves to detect

objects and their distances. Figure 2.4 displays the HDL-64E Lidar made by Velodyne.

the Lidar sensors measure precisely the road and its surroundings, including curbs,

drainage channels, even potholes — to within millimeters.

Figure 2.4. HDL-64E Lidar made by Velodyne [10].

Lidar emits light in the form of a pulsed laser to measure the reflected pulses with a

sensor. Differences in laser return times and wavelengths can then be used to generate

precise 3-D representations of the target. It primarily measures: (1) range, which means

distance from the sensor to the first surface hit by the laser pulse (2) scan angle and (3)

intensity, which is the reflective luminance of each point, represented as a digital

number in the range from 0 to 255. Combining these measurements with those from a

GNSS receiver, IMU and wheel counter provides 3D coordinates of millions or even

billions of points in a local or national reference system. Usually the sensors are

integrated on one rigid platform of which the mutual offsets have to be calibrated [11].

This is usually done by the manufacturer. Vibrations during the survey, shocks due to

holes in the pavement and sudden slowdowns will cause mutual displacements of the

sensors and other disturbances. To warrant high-precision surveys all the time regular

recalibration is required.

In addition to the 3D coordinates, one or more attributes may be assigned to each

point. The attributes may be directly measured by the sensor, this relates particularly to

the intensity of the return, computed from a neighborhood of points or obtained from

１３

other sources. RGB values, which may act as features for automatic object recognition.

may be assigned to laser points using the simultaneously recorded digital images or

image sources having other time stamps. Attributes of collected points create point

clouds data, which is assembled into “prior maps”. A prior map is a rich, 3-D map of

the road which can be used to help autonomous vehicles know precisely where it is at

any time. An example of raw data collected by HDL-64E Lidar is shown in Figure 2.5.

Figure 2.5. Example of raw data collected by HDL-64E Lidar [10].

For area within the measurement range of the scanner, collected point cloud data

can be used as the raw map directly. However, if the working area is larger than the

scanner’s measurement range, multiple stations are required, from where the separate

point clouds are collected, then these clouds have to be unified. This can be solved by

three kinds of methods [11]: manually select natural points being identifiable in

multiple point clouds; using artificial markers (e.g. spheres) during scanning, and

applying automatic or manual marker selection; or computationally intensive

technologies for automatic point cloud matching.

１４

2.2. 3D Map Construction by MMS

The main process of construction of 3D maps for autonomous vehicles is shown

in Figure 2.6. In the pipeline, Ground Control Points (GCPs), which are acquired by

actual measurement, are marked points on the ground used for the adjustment of MMS

measurement data.

Figure 2.6. Pipeline of 3D map construction.

We can see there are ten steps in total. We will make a brief introduction of these

steps. The first step is the MMS measurement which we have discussed in the previous

section. The second step is to analysis the position and orientation of the vehicle by

１５

obtained MMS data. And according to the calibrated vehicle’s position and orientation,

position and orientation of laser scanners and cameras can be calculated. The third and

fourth step do evaluation of obtained data based on GCPs within limits of accuracy.

When significant deviation occurs comparing to the GCPs data, step five needs to be

done to improve the accuracy based on the GCPs data. In the sixth step, if there are

GCPs that were not used for landmark processing, then using these GCPs to verify the

accuracy. Based on the verified data, points, lines, and planes of prescribed objects or

structures should be obtained in step seven. Relationships among the obtained shapes

should be given in the eighth step. In the ninth step, we annotate attributes of the

prescribed objects or structures using information derived from on-board camera and

field survey. And the output map data with high accuracy of object locations and

important roadway attributes, in prescribed format for autonomous vehicles, can be

acquired finally.

2.3. Applications of 3D Maps

Various applications can be done based on the created 3D maps. In this section,

we will make a brief introduction of some examples about applications made by the

constructed 3D maps.

Vehicle self-localization is one of the significant applications. The main vehicle-

based positioning technologies, such as GNSS, 3D Lidar, and vision-based systems,

can be assisted by access to a prior map. A 3D building map helps GNSS address the

signal blockage and reflection problems caused by tall buildings in urban areas [12].

Another well studied positioning technique for urban area is map matching, which can

be done based on Lidar [13] or vision sensors [14]. [13] proposed a localization method

based on self-adaptive multi-layered scan matching and road line segment matching to

adapt the situation changes among different heights. This paper effectively matches the

features observed from different heights and improves the results by applying the line

segment matching in certain scenes. [14] used image data and HD map data to mitigate

the lateral error for lane level localization. In this paper, the image content of a camera

mounted on the platform is utilized to detect the road boundaries in the image. They

apply color masks to detect the road marks, do the Hough transform to fit lines to the

left and right road boundaries, find the corresponding road segment in the database,

estimate the homography transformation between the global and image coordinates of

１６

the road boundaries, and obtain the camera pose with respect to the global coordinate

system.

There are many other applications based on constructed 3D maps. 3D city

modeling is one of the applications. [15] investigated methods for 3D building

modelling in complex urban scenarios with the support of oblique. The terrestrial map

data collected by MMS is used to complement building models generated by airborne

data. Other applications include lane-level integrity provision for navigation and map

matching with GNSS, dead reckoning, and enhanced maps [16], 3D city visualizations

and metrology [17], road asset inventories [18], urban forest inventories [19], and lane

departure warnings [20] for vehicles. It would take too much space for us to present a

comprehensive discussion. If you are interested in these topics, please refer to the

original paper. We will talk more about pole-like objects detection and classification

based on point cloud map in Chapter 4.

１７

Chapter 3.

Foundation of Convolutional Neural

Network

In this chapter, we will explain the foundation of Convolutional Neural Network

(CNN). We will make a brief introduction of CNN in Section 3.1. In Section 3.2, we

will discuss several basic components of CNN including 4 kinds of layers and the non-

linear activation function. Then, training methods of CNN will be talked about in

Section 3.3. Finally, in Section 3.4, we will introduce several most famous and

important architectures which are LeNet, AlexNet, VGGNet, GoogleNet, ResNet, and

DenseNet in chronological order.

3.1. Origin of Convolutional Neural Network

It is estimated that the average human brain contains 86 billion neurons [21].

Together they form a huge network. Inspired by biological nervous systems, neural

network is a mathematical algorithm that simulates the behavioral characteristics of

human brain neural network and performs distributed parallel information processing.

Even though we have not been able to replicate the brain so far, the field of artificial

intelligence offers very effective solutions to many problems by simulating the

observations of biological research of various nervous systems.

Generally, neural network consists of a set of artificial neurons. Formally, an

artificial neural has 𝑛 inputs represented as a vector 𝑥⃗ ∈ 𝑅𝑛. Inputs in an artificial

neuron correspond to the dendrites in a biological neuron, while a single output of an

artificial neuron corresponds to the axon in a biological neuron, which is depicted in

Figure 3.1. Each input 𝑖 , 1 ≤ 𝑖 ≤ 𝑛 , has an assigned weight 𝑤1 , 𝑤2 , … , 𝑤𝑛 , and

bias 𝑏1 , 𝑏2 , … , 𝑏𝑛 . Weighted input values are combined and followed by a non-linear

activation, as shown in Figure 3.2.

１８

Figure 3.1. Model of biological neuron [21].

Figure 3.2. Model of an artificial neuron.

In 1959 Hubel & Wiesel [22] inserted a thin metal electrode into the cat's visual

cortex to see how a single neuron in the cat's brain responded to the image on the screen.

They found that neurons in the frontal area of the visual system reacted strongly to

specific light signals, but did not respond to any other pattern at all. This part of visual

system was called the Primary Visual Cortex (V1). Figure 3.3 [23] explains the

cognitive process of the human visual system. Information flows from the retina to V1

and then to the Secondary Visual Cortex (V2), next is V4 and last is IT (Inferior

Temporal Gyrus). The visual system is hierarchical and progressive, with each layer

handling a higher level of information than the previous layer.

１９

Figure 3.3. A brief illustration of ventral stream of the visual cortex in human vision

system [23].

The characteristics of V1 layer has inspired the structure of Convolutional Neural

Network (CNN). Since V1 layer has a function that it is able to transform 3D

information coming from outside into 2D information, the layers in a CNN are based

on a two-dimensional spatial structure. There are many simple cells in V1 layer with

local receptive field to detect low-level features, which inspired the design of

convolution kernels (filters) in CNN. There are also many complex cells in V1 layer

that are used to respond to the low-level feature detection of simple cells, which inspired

the design of a pooling layer in a CNN. The visual layers behind V1 have the same

principle as V1. By stacking these layers, features detection and pooling strategy

repeatedly executed. Finally, a human visual system formed. Similarly, the architecture

of CNN is also a repetitive overlay of convolutional and pooling layers, forming a deep

hierarchy and extracting high-level features.

3.2. Basic Components of Convolutional Neural Network

Even though there are many different architectures for CNN in the literature, the

majority of them can be built by stacking four main type of layers in different

combinations. Namely, the fully connected layer, the convolutional layer, pooling layer

and batch normalization layer. And the activation function, which is the non-linear

２０

factor, enables CNN to approximate any function. In this section, we will explain these

components.

3.2.1. Convolutional Layer

Convolution layers are an important layer in CNN. The purpose of convolutional

layers is to detect the features in the presented images. It consists of multiple feature

maps, each recognizing certain specific feature. The feature recognition can be thought

of as running the sub-image through a filter. The filtering is essentially done through

weight adjustments. Regular Neural Networks, only made of linear and activation

layers, do not scale well to full images. For instance, images of size 3 × 224 × 224 (3

color channels, 224 width, 224 height) would necessitate a first linear layer having 3 ×

224 × 224 + 1 = 150 parameters for a single neuron (e.g. output). However, convolution

layers take advantage of the fact that their input (e.g. images or feature maps) exhibits

many spatial relationships. In fact, neighboring pixels should not be affected by their

location within the image. Thus, a convolutional layer learns a set of 𝑁𝑘 filters 𝐹 =

 𝑓1 , 𝑓2 , . . . , 𝑓𝑁𝑘
 , which are convolved spatially with input image 𝑥 , to produce a set

of 𝑁𝑘 2D features maps 𝑧:

𝑧𝑘 = 𝑓𝑘 ⊗ 𝑥 (3.1)

where ⊗ is the convolution operator. When the filter correlates well with a region

of the input image, the response in the corresponding feature map location is strong.

Unlike conventional linear layer, weights are shared over the entire image reducing the

number of parameters per response and equivariance is learned (i.e. an object shifted in

the input image will simply shift the corresponding responses in a similar way). Figure

3.4 shows how a convolution operation works.

２１

Figure 3.4. The work flow of a convolution operation.

3.2.2. Pooling Layer

Convolution layer can extract the features of images. If these features are directly

using for image classification, GPU will face a huge challenge due to the amount of

computation and the model will have a high probability to be overfitting. The pooling

layer, which is a form of non-linear down-sampling, serves to progressively reduce the

spatial size of the representation, to reduce the number of parameters and amount of

computation in the network, and hence to also control overfitting. There are two main

kinds of pooling layers which are usually used:

Max pooling layer: Selecting the largest value in the pooling window as the sample

value.

Mean pooling layer: Averaging all the values in the pooling window and this

average value is chosen as sample value.

Figure 3.5 shows how max pooling layer and mean pooling layer works.

２２

Figure 3.5. Example of max pooling and mean pooling.

3.2.3. Batch Normalization Layer

Batch normalization [24] is a technique for improving the performance and stability

of artificial neural networks. It adds a normalization step (shifting inputs to zero

mean/unit variance) to make the inputs of each trainable layers comparable across

features. By doing this it ensures a high learning rate while keeping the network

learning.

3.2.4. Fully Connected Layer

Fully connected layer usually appears at the end of CNN. The function of the fully

connected layer is to map the feature maps to the label. Mathematically, we can think

of a linear layer as a function which applies a linear transformation on a vectoral input

of dimension 𝐼 and output a vector of dimension 𝑂. Usually the layer has a bias

parameter:

𝑓(𝑥) = 𝑊 ∙ 𝑥 + 𝑏 (3.2)

The features learned by previous convolution layer are generally local features.

These local features will be connected as a global feature through the fully connected

layer. Fully connected layer is not necessary. For the reason that the fully connected

layer has a large number of parameters, which will affect the training speed.

3.2.5. Activation Functions

Convolution layer is a kind of linear operation. Stacking convolution layers make

the CNN be a linear system. It means that the CNN will only be able to solve linear

problems and make nonsense. Hence CNN needs non-linear factors in order to bring in

２３

non-linearity property that enables them to approximate any function. This non-linear

factor is called activation function. Every kind of activation function takes a vector and

performs a certain fixed point-wise operation on it. Mainly, all the activation functions

can be divided into two groups, which are non-parametric activation function and

parametric activation functions.

non-parametric activations: Sigmoid function, Tanh function, ReLu function, and

LeakyReLu function [25] are commonly used in practice. The mathematical forms and

graphs of them are shown as follows:

Sigmoid Function:

𝑓(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥
(3.3)

Tanh Function:

𝑓(𝑥) = 𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3.4)

ReLu Function:

𝑓(𝑥) = {
𝑥 𝑥 > 0
0 𝑥 ≤ 0

(3.5)

LeakyReLu Function:

𝑓(𝑥) = {
𝑥 𝑥 > 0
𝜆𝑥 𝑥 ≤ 0

(3.6)

where λ is a small value, often set to 0.01.

２４

Figure 3.6. Graphes of activation functions: (a) Sigmoid function; (b) Tanh function;

(c) ReLu function; (d) LeakyReLu function [26].

parametric activation functions: The typical parametric activation function is

PReLu [27] (Parametric Rectified Linear Unit). The mathematical form is:

𝑦𝑖 = {
𝑥𝑖 𝑥𝑖 > 0
𝜆𝑥𝑖 𝑥𝑖 ≤ 0

(3.7)

As its name suggests, λ is the parameter need to be learned. If we set λ to 0, then

PReLu becomes ReLu. If we set λ to a small fixed value, it becomes LeakyReLu.

3.3. Training of Convolutional Neural Network

The ability to learn is the key concept of neural networks. The aim of the process

is to find the optimal parameters (and structure) of the network for solving the given

task. Once a network has been structured for a particular application, that network is

ready to be trained. To start this process the initial weights are chosen randomly.

Learning is then carried out on the training set by means of feeding the training data

through the network. The networks will be trained based on gradient back propagation

[28]. Namely, by computing the difference between the output of a neuron network and

the expected output, we keep propagating the error back through the whole network

guiding the parameters updating. The network is considered to be trained after reaching

the target performance on the training data.

２５

3.3.1. Initialization

All the network parameters are generally initialized with Layer-sequential unit-

variance (LSUV) (e.g. parameters as Gaussian random variables with mean 0 and

standard deviation 1 and biases are initialized to 0). Since the LSUV initialization works

under assumption of preserving unit variance of the input, pixel intensities are given

after subtracting the mean and dividing by the standard deviation.

3.3.2. Loss function

As a significant part in training CNN, loss function is used to quantify the capacity

of the network to approximate the ground truth labels for all training inputs, which takes

as inputs the weights, biases, and examples from the training data. It is a non-negative

value, where the robustness of model increases along with the decrease of the value of

loss function. Mean Square Error, Cross Entropy and Kullback Leibler Divergence are

often used as loss function in tanning.

Mean Square Error (MSE): It is a multi-class loss widely used in linear regression

as the performance measure.

𝐿𝑜𝑠𝑠(𝑥, 𝑦) =
1

𝑛
 ∑|𝑥𝑖 − 𝑦𝑖|

2

𝑖

(3.8)

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a

1 in the corresponding class dimension.

Cross Entropy: It is commonly-used multi-class loss in binary classification

(labels are assumed to take values 0 or 1) as a loss function. Cross entropy measures

the divergence between two probability distribution, if the cross entropy is large, which

means that the difference between two distribution is large, while if the cross entropy

is small, which means that two distribution is similar to each other. It is computed as

follows:

𝐿𝑜𝑠𝑠(𝑥, 𝑦) = − ∑ 𝑦𝑖

𝑖

∗ log(
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑗

) (3.8)

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a

２６

1 in the corresponding class dimension.

Kullback Leibler Divergence (KL divergence): It is also called relative entropy,

information divergence/gain, which is a measure of how one probability distribution

diverges from a second expected probability distribution. The mathematical form is:

𝐿𝑜𝑠𝑠(𝑥, 𝑦) =
1

𝑛
 ∑(𝑥𝑖 ∙ log 𝑥𝑖)

𝑛

𝑖=1

−
1

𝑛
 ∑(𝑥𝑖 ∙ log 𝑦𝑖)

𝑛

𝑖=1

(3.9)

where 𝑥 is the vector of 𝑛 predictions, and 𝑦 is the binary vector full of 0 besides a

1 in the corresponding class dimension. We can see the first term is entropy and the

second is cross entropy. The KL divergence of 0 indicates that we can expect similar

behavior of two different distributions, while a KL divergence of 1 indicates that the

two distributions behave in such a different manner that the expectation given the first

distribution approaches 0.

3.3.3. Backpropagation

Backpropagation, short for "backward propagation of errors" is an algorithm for

supervised learning of artificial neural networks using gradient descent.

Backpropagation is a method used in artificial neural networks to calculate the error

contribution of each neuron after a batch of data (in image recognition, multiple images)

is processed.

For each training data, we compute the prediction and its associated loss. We sum

up all the loss to compute the final error. Then we use the backpropagation algorithm

to propagate the error in order to compute the partial derivatives of the cost function for

all weights and bias. In this paper, since our goal is not to explain in details how works

the backpropagation algorithm. We advise the curious reader to find details about

backpropagation in [29].

3.3.4. Optimization

Once all the derivatives are computed, we should find parameters of a neural

network that significantly reduce a cost function, which typically includes a

performance measure evaluated on the entire training data. We then iterate the

２７

predication (e.g. forward pass), the backpropagation of errors (e.g. backward pass) and

the optimization until convergence hopping to find a local minimum low enough to

ensure good predictions. The most fundamental algorithm is Gradient Decent, and

advanced algorithms include Stochastic Gradient descent (SGD), Momentum, AdaGrad,

RMSProp and Adam. Details can be checked in [29].

3.3.5. Regularization

Deep and large enough neural networks can memorize any data. During training,

their accuracy on the training dataset typically converges towards perfection while it

degrades on the test dataset. This phenomenon is called overfitting. To avoid overfitting,

regularization has been imported. We will make a brief introduction on several

regularization approaches.

L2 Regularization: The first main approach to overcome overfitting is the classical

weight decay, which adds a term to the cost function to penalize the parameters in each

dimension, preventing the network from exactly modeling the training data and

therefore help generalize to new examples:

𝐸𝑟𝑟(𝑥, 𝑦) = 𝐿𝑜𝑠𝑠(𝑥, 𝑦) + ∑ 𝜃𝑖
2

𝑖

(3.10)

here 𝜃 means the vector containing all the network parameters.

Data augmentation: It is a method of boosting the size of the training dataset so

that the model cannot memorize all of it. This can take several forms depending of the

dataset. For instance, if the objects are supposed to be invariant to rotation, it is well

suited to apply different kind of rotations to the original images.

Dropout [30]: The idea is to randomly set a certain percentage of the activations in

each layer to 0. During the training, neurons must learn better representations without

co-adapting to each other being active. During the testing, all the neurons are used to

compute the prediction and Dropout acts like a form of model averaging over all

possible instantiations of the model.

２８

3.4. Famous Architectures in Convolutional Neural Network

In this section, we will introduce several important modern CNN architectures.

LeNet [31] which was developed by Yann LeCun in 1990, is the first successful

application of CNN in digit recognition. LeNet consists of a sequence of convolutional

layers and max pooling layers followed by a fully connected layer. AlexNet [32] is the

milestone for deep learning in computer vision which occupied the first place on the

ImageNet ILSVRC [33] challenge in 2012, showing significant gains in performance

comparing to previous methods. The network has similar architecture to LeNet but is

deeper and bigger and features convolutional layers stacked on top of each other.

VGG16 [34], which was the runner-up in ILSVRC 2014 with almost 140 million of

parameters, demonstrated the importance of depth as a critical component to good

performance. The architecture of VGG16 consists of stacked convolutional layers and

max pooling layers, with increasing depth and it uses a large number of parameters due

to the final fully connected layers. GoogLeNet [35] was the winner of ILSVRC 2014

challenge. The architecture includes inception modules which dramatically reduce the

number of parameters, it uses multi-scale 3x3, 5x5 convolutional filters including 1x1

convolutions for dimensionality reduction. ResNet [36] won the ILSVRC 2015

challenge, which introduces skip connections for easier training that enable very deep

architectures and makes use of batch normalization. Different from ResNet, which

draws representational power from extremely deep network architectures, DenseNet

[37] designed the dense blocks to improve the model from the perspective of feature

maps reusing. We will make an introduction for these famous structures in the following

subsections.

3.4.1. LeNet

The LeNet architecture is an excellent “first architecture” for CNN (especially

when trained on the MNIST dataset, an image dataset for handwritten digit recognition).

LeNet is small and easy to understand, yet large enough to provide interesting

results. This network was the origin of much of the recent architectures, and a true

inspiration for many people in this field. Figure 3.7 shows the architecture of LeNet-5.

LeNet-5 features can be summarized as:

• Sequence of 3 layers: convolution, pooling, non-linearity.

２９

• Inputs are normalized using mean and standard deviation to accelerate training.

• Sparse connection matrix between layers to avoid large computational cost.

• Hyperbolic tangent or sigmoid as non-linearity function.

• Trainable average pooling as pooling function.

• Fully connected layers as final classifier.

• Mean squared error as loss function.

Figure 3.7. Architecture of LeNet-5 [31].

3.4.2. AlexNet

This paper, titled “ImageNet Classification with Deep Convolutional Networks”,

has been cited over 30,000 times and is widely regarded as one of the most influential

publications in the field of computer vision. This architecture was applied to win the

2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge), which achieved

a top 5 test error rate of 15.4% (Top 5 error is the rate at which, given an image, the

model does not output the correct label with its top 5 predictions), far exceeded the next

best entry with an error of 26.2%. This was an astounding improvement that pretty

much shocked the computer vision community.

The layout of AlexNet is relatively simple compared to modern architectures. The

network was comprised of 5 convolutional layers, 5 max-pooling layers, 5 dropout

layers, and 3 fully connected layers. The network they designed was used for

classification with 1000 possible categories. And the authors provided a multi-GPUs

implementation in CUDA to bypass the memory needs. Figure 3.8 shows the

architecture of AlexNet. The Main points of AlexNet includes:

• Trained the network on ImageNet data, which contained over 15 million

annotated images from a total of over 22,000 categories.

３０

• Used data augmentation techniques that consisted of image translations,

horizontal reflections, and patch extractions.

• Implemented dropout layers in order to combat the problem of overfitting to the

training data.

• Trained the model using batch stochastic gradient descent, with specific values

for momentum and weight decay.

Figure 3.8. An illustration of the architecture of AlexNet [32].

This was the first time a model performed so well on a historically difficult

ImageNet dataset. Techniques such as data augmentation and dropout still play an

important role in CNN architectures today. AlexNet illustrated the advantages of CNN

architectures in contrast with traditional methods in the field of computer vision.

3.4.3. VGGNet

The main contributions of VGGNet are showing that depth is a critical component

for good performance, to use much smaller 3 × 3 filters in each convolutional layer, and

also to combine them as a sequence of convolutions. Figure 3.9 demonstrates the 6

different architectures of VGGNet. The great advantage of VGGNet was the insight

that multiple 3×3 convolution in sequence can emulate the effect of larger receptive

fields, for examples 5 × 5 and 7 × 7. This in turn simulates a larger filter while keeping

the benefits of smaller filter sizes. One of the benefits is a decrease in the number of

parameters. And as the spatial size of the input volumes at each layer decrease (result

３１

of the convolutional and pooling layers), the depth of the volumes increase due to the

increased number of filters when going down the network. These ideas were also used

in more recent network architectures as GoogLeNet and ResNet.

Figure 3.9. The 6 different architectures of VGGNet [34].

3.4.4. GoogLeNet

The main contribution of GoogLeNet is the development of the Inception module

which dramatically reduced the number of parameters (The authors of the paper

emphasized that this new model places notable consideration on memory and power

usage). The architecture of the Inception module is shown in Figure 3.10. GoogLeNet

is a 22 layers CNN and was the winner of ILSVRC 2014 with a top 5 error rate of 6.7%.

This work was one of the first CNN architectures that really strayed from the general

approach of simply stacking convolution and pooling layers on top of each other in a

sequential structure.

In previous CNN architecture, you have to make a choice of whether to have a

３２

pooling operation or a convolution operation for each layer. The most fantastic thing in

GoogLeNet is that Inception module allows you to do is perform all of these operations

in parallel. An Inception module consists of a medium sized filter convolution, a large-

sized filter convolution, and a pooling operation. (There are activation operations by

ReLu after each convolutional layer) Basically, the model is able to perform the

functions of these different operations while still remaining computationally

considerate.

Figure 3.10. Architectures of Inception module [35].

3.4.5. ResNet

Before ResNet, CNN models improve network performance mainly by increasing

the depth and width of the network or by reducing the size of filters. However, with the

network depth increasing, there is a problem that accuracy gets saturated and then

degrades rapidly and the same phenomena also appears in training when adding more

layers to a suitably deep model [36]. To solve this problem, Kaiming He et al. proposed

ResNet, which is a new 152-layer (the deepest version) network architecture that set

new records in classification, detection, and localization through one incredible

architecture. Aside from the new record in terms of the number of layers, ResNet won

３３

ILSVRC 2015 with an incredible error rate of 3.6% comparing to humans who

generally hover around a 5-10% error rate.

ResNet addressed the degradation problem by introducing a new module called

Residual Block [36] see in Figure 3.11. Instead of hoping each few stacked layers

directly fit a desired underlying mapping, ResNet explicitly let these layers fit a residual

mapping. Formally, denoting the desired underlying mapping as 𝐻(𝑥), we let the

stacked nonlinear layers fit another mapping of 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 . The original

mapping is recast into 𝐹(𝑥) + 𝑥 . So, instead of just computing that transformation

from 𝑥 to 𝐹(𝑥) , we compute the term that you have to add, which is a slightly altered

representation (Comparing to traditional CNN, going from 𝑥 to 𝐹(𝑥) which is a

completely new representation that does not keep any information about the original

input 𝑥).

Figure 3.11. Residual learning: a building block [36].

3.4.6. DenseNet

ResNet solved the gradient vanishing problem based on the idea that creating short

paths from previous layers to later layers. However, there is a drawback of ResNet that

the shallow feature maps can not be passed to deep layers, which makes it hard to

explore new features. In fact, simply increasing the number of filters in each layer of

ResNet can improve its performance provided the depth is sufficient [38]. Inspired by

this, instead of drawing representational power from extremely deep or wide

architectures, DenseNet exploits the potential of the network through feature reuse,

yielding condensed models that are easy to train and highly parameter-efficient.

DenseNet shows significant improvements over the state-of-the-art on most of previous

architectures, whilst requiring less computation to achieve high performance.

３４

The feature maps reusing is done by the designed dense block, whose number of

𝐿 layers connections is 𝐿(𝐿 + 1)/2, comparing to the traditional CNN which contains

𝐿 connections in 𝐿 layers. Namely, the input for each layer in a dense block comes

from the output of all the previous layers. The connections in the dense block makes

the transfer of features and gradient more efficient. Due to the design of such a block,

the model also become easier to train. The architecture of a 5-layer dense block is

displayed in Figure 3.12, where the growth rate k = 4 indicates that each layer outputs

4 feature maps.

Figure 3.12. The architecture of a 5-layer dense block with a growth rate of k = 4 [37].

３５

Chapter 4.

Road Facility Extraction from Laser

Scanning Data

In this chapter, we will give the details on how to extract road facilities from laser

scanning data. In section 4.1, we will discuss pole-like traffic facilities extraction and

classification, and describe our method and experimental results. Road marking

extraction will be introduced in section 4.2.

4.1. Pole-like Traffic Facilities Extraction and Classification

In this section, we will firstly talk about related works of pole-like traffic facilities

extraction and classification. Then, we will describe our proposed method of pole-like

traffic facilities extraction and classification. Finally, the experimental results will be

given.

4.1.1. Related Works

For pole-like objects possess a cylinder like structure, cylindrical shape-based

method is a kind of method to do poles extraction. [39] detects poles from ranged laser

data by using Hough voting to detect circles. [40] introduces an algorithm which divides

the point cloud in slices and compares projective parameters of pillar objects in adjacent

slices to extract the pillar features of Chinese ancient buildings. However, there is a

problem for this kind of method that the circular characteristic for poles is obvious only

for indoor environments or close-range scans.

Slicing-based Method is also an often-used approach to extract pole-like structures,

which slice the point cloud data for finding vertical objects, and to reduce the influence

of structures attached to the vertical trunk. Pu et al. [41] extend the work of [40] and

propose a percentile-based method to detect the pole-like object. However, the

validation method of these works is mainly based on the deviation of the neighboring

３６

subparts, which is capable of dealing with pole-like objects with attachments only in

the bottom or on the top of the trunks. In order to detect pole-like objects with rich

attachments in the middle part, Huang et al. [42] take advantage of the unique

characteristics of pole-like objects. They propose the localization algorithm based on

slicing, clustering, pole seed generation and bucket augmentation. Then they integrate

the bucket-shaped neighborhood of the segments and trim with region growing

algorithms to obtain pole-like objects.

A segmentation procedure is also routinely used for extracting poles.

Segmentation is the process of grouping the points of the cloud into segments: points

in the same region are given the same category and treated as a set. Since the grounds

or façades which connect other objects in a huge cluster, filtering and segmentation of

point cloud data is usually needed. In the paper of [43], they assume that ground points

are already removed from the point cloud data, so they do not need to filter the ground

area. Golovinskiy et al. [44] use iterative plane fitting to remove the ground, and

separate the foreground from the background by a graph-cut-based method. Tombari et

al. [45] apply a RANSAC-like iterative algorithm to remove all planar surfaces.

Before the pole-like objects classification, point classification need to be done to

analyze the composition of the point cloud. By applying Gaussian Mixture Model

(GMM) with Expectation Maximization algorithm, Lalonde et al. [46] get a model of

the three saliency features (linear, planar and volumetric) derived from the eigenvalues

of the local covariance matrix of the points. In the paper of [45], they propose a

histogram of scalar products to classify the vertical pole points using Support Vector

Machine (SVM).

Since the usage and shapes of the pole-like objects are quite diverse, the usage,

shapes and even height are often used to classify poles in existing works. Pu et al. [41]

make a detailed classification on the signs according to the planar shapes. However,

they do not distinguish between non-planar poles (e.g. lights and utility poles).

Golovinskiy et al. [44] make a mixed categorization of usage and height, resulting in

seven categories including short post, lamp post, sign, light standard, traffic light, tall

post and parking meters, while the utility poles are not reported. Yokohama et al. [43]

classify the poles into three categories: street lights, utility poles and signs. By

distinguishing between wire points and the general linear points, Huang et al. [42] make

a more delicate classification of four categories: street lights, utility poles, signs and

３７

non-pole category. In this thesis, since c is very high, we also utilize the feature of

reflectance to help the classification.

4.1.2. System Overview

The procedure of our proposed pole-like road facilities extraction and

classification system is demonstrated in Figure 4.1. Input of the system is a large-scale

point cloud data of an urban area, and the outputted results are all possible pole-like

structures which are classified into 4 categories: utility poles, traffic signs, street lights,

and others (non-traffic facility poles). The system mainly consists of two stages in

processing. The first stage is to extract the pole-like objects from input data. We remove

the outlier points before clustering. Then Euclidean clustering is applied. Next, we take

advantage of the unique characteristic of pole-like structures (the local parts of the pole-

like structures are also pole-like even they are broken down) to stitch clusters and filter

them with their height. After that, z-slicing is used to analysis the shape feature of every

cluster. And finally pole-like candidates are detected after thresholding. The second

stage is to classify these candidates. We compute the statistical attributes for each

candidate based on the extended distribution features of pole components and classify

the candidates with a support vector machine. The classification step also help filters

out non-traffic facility objects which also contain pole-like parts like trees and part of

buildings. We will discuss details of these two stages in the following subsections.

Figure 4.1. The procedure of the proposed pole-like road facilities extraction and

classification system.

３８

4.1.3. Pole-like Structures Extraction

In our practice, we utilize two laser scanners, with 180° field of view, one

configured to point up (pitch: +25°) and the other down (pitch: −25°) in our Mobile

Mapping System. And the data collected by the upper one is applied as the input data

in our pole-like traffic facilities extraction and classification, in which there is no

ground area point. So, we can skip the step of removing ground area points from given

point clouds.

Since laser scans typically generate point cloud datasets of varying point densities.

And additionally, measurement errors lead to sparse outliers which corrupt the results

even more. It is necessary for the input point cloud data to remove noisy measurements

before clustering. We exclude the outlier points by mean k-nearest neighbor distances

for each point, and set the parameter 𝑘 = 10.

Then we do the clustering for the point cloud data. A clustering method needs to

divide an unorganized point cloud model into smaller parts so that the overall

processing time for is significantly reduced. We use Euclidean cluster extraction

algorithm to extract clusters and a k-d tree structure [47] is applied for finding the

nearest neighbors. The algorithmic steps for that are as follows:

Algorithm4.1: Euclidean cluster extraction

Input: point cloud data P

Output: point clusters C

1: create a k-d tree representation for the input point cloud data P;

2: set up an empty list of clusters C, and a queue of the points that need to be checked

Q;

3: then for every point 𝒑𝒊 ∈ 𝑷, perform the following steps:

 add 𝒑𝒊 to the current queue Q;

 for every point 𝒑𝒊 ∈ Q, do:

 search for the set 𝑷𝒊
𝒌 of point neighbors of 𝒑𝒊 in a sphere with radius

𝒓 < 𝒅𝒕𝒉;

 for every neighbor 𝒑𝒊
𝒌 ∈ 𝑷𝒊

𝒌 , check if the point has already been

processed, and if not add it to Q;

３９

 when the list of all points in Q has been processed, add Q to the list of

clusters C, and reset Q to an empty list.

4: the algorithm terminates when all points 𝒑𝒊 ∈ 𝑷 have been processed and are now

part of the list of point clusters C.

We consider that facility poles should obtain a certain amount of points in point

cloud data. clusters which are less than 60 or more than 8000 points are excluded.

Some of the traffic facilities poles would be divided into two or more parts due to

the sparsity of points and the choice of radius in the clustering step. To deal with this

situation, the stitch of clusters is applied. If two clusters have a relatively big distance

mainly in the z direction, we consider them as one cluster. Suppose the centroid point

of 10 lowest (in z direction) points in higher cluster is 𝑝ℎ = (𝑥ℎ, 𝑦ℎ, 𝑧ℎ), the centroid

of 10 highest (in z direction) points in lower cluster is 𝑝𝑙 = (𝑥𝑙, 𝑦𝑙 , 𝑧𝑙). And the vector

from 𝑝𝑙 to 𝑝ℎ is 𝑣⃗𝑑𝑖𝑓. The mathematical form of the condition is:

{

|𝑧ℎ − 𝑧𝑙| < 𝑑𝑡ℎ

|
𝑣⃗𝑑𝑖𝑓

‖𝑣⃗𝑑𝑖𝑓‖
∙ 𝑧𝑢𝑛𝑖𝑡| < 𝜃𝑡ℎ

(4.1)

Where 𝑧𝑢𝑛𝑖𝑡 means the unit vector in z direction, 𝑑𝑡ℎ is the threshold distance in

z direction which we set a value of 1 meter, and 𝜃𝑡ℎ is the threshold angle between the

two centroid points which we set a value of 0.35.

Since the pole-like traffic facilities we want to extract (utility poles, traffic signs

and street lights) have to be created according to some standards. Therefore, the height

of potential facility poles should be in a certain range. Based on the statistics in our

dataset, we set the range of the height filter from 1.5 meters to 9 meters.

One of the important properties of the poles’ trunk part in the point cloud is that,

if it’s horizontally sliced, each of its slices would still be a trunk-like segment (though

some of the slices have an attachment part). Given a horizontal slice of a pole-like object,

there are two obvious characteristics: first, the cross section of the slice is relatively

small; second, the length of each slice is long enough. Moreover, the bounding box of

a piece of a slice part is very close to the original shape. Therefore, we have the

following two criteria regarding the cross area and the segment length based on the

bounding box property of each candidate cluster:

４０

{
max (𝐵𝑥, 𝐵𝑦) < 𝐿

𝐵𝑧 ≥ 𝑘 ∙ 𝐻𝑠𝑙𝑖𝑐𝑒
(4.2)

Note that the width, depth and height of the bounding box are 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 ,

respectively. 𝐿 means the maximum value of a cross section that would be considered

as a trunk, 𝐻𝑠𝑙𝑖𝑐𝑒 is the slicing height, and 𝑘 is the ratio coefficient of the length. We

empirically set 𝐿 = 0.4𝑚, 𝐻𝑠𝑙𝑖𝑐𝑒 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒𝑠⁄ and 𝑘 = 0.8.

Based on this property, we slice the input clusters along the z (upright) direction into

10 pieces and count the number of slices satisfied the two criteria. Since some of the

slices have an attachment part, most but not all of the slices should satisfy the two

criteria for pole-like traffic facilities. In our case, we consider the cluster to be a

candidate of pole-like traffic facility when more than half of the slices satisfy the two

criteria, and not all of the slices satisfy the first criteria.

4.1.4. Pole-like Structures Classification

Due to the previous step of shape thresholding are relatively not so strict in order

to extract more potential pole-like traffic facilities as possible. As a side effect, many

candidates are actually trees with trunks or parts of buildings with pole-like structures.

So, Classification aims to exclude these pole-like structures need to be done after

extraction. The ones classified as trees or others would be removed from the candidates.

Meanwhile, we should identify the detected traffic facility poles whether they are

belongs to utility poles, traffic signs, or street lights.

Some attributes from the candidates should be extracted before applying the

classifier. The most straightforward attribute about a candidate is the height ℎ =

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛. Since the pole-like traffic facilities we would like to extract are man-

made objects. therefore, they have fixed height for certain sub-categories, which can be

applied as a classify feature. Another significant attribute is the high intensity (which

we set as bigger than 240) point rate of a candidate. For the intensity of a traffic sign

would be high when the scanning faces to the sign. This can be also used as a classify

feature to classify facing traffic signs.

Since the usage of a traffic facility pole is highly dependent on its local shapes or

attachments, which can be categorized as three kinds of components: linear, planar and

volumetric, these features can be applied to do the classification. As all pole-like

４１

candidates contain a vertical linear trunk. Besides that, traffic lights could contain linear

branches or volumetric bulbs, signs contain planar components, and utility poles

contain linear wires, and sometimes contain planar signs and volumetric parts. These

components are further composed of local point-level patches of the same property, so

we just need to make a classification on the neighborhood of each point. Principal

Component Analysis (PCA) is applied here to classify every point. Suppose that 𝑀𝑖

is the variance-covariance matrix of the point 𝑖. The mathematical form is:

𝑀𝑖 =
1

|𝑆𝑖|
∑(𝑝𝑗 − 𝑝̅𝑖)(𝑝𝑗 − 𝑝̅𝑖)

𝑇

𝑗𝜖𝑆𝑖

(4.3)

where 𝑆𝑖 is the set of neighbor points which lie in the sphere area with radius

𝑟𝑆 = 0.5𝑚, centered at the point 𝑖, and 𝑝̅𝑖 is the centroid of 𝑆𝑖. We denote eigenvalues

of 𝑀𝑖 by 𝜆1 , 𝜆2 , and 𝜆3 (where 𝜆1 ≥ 𝜆2 ≥ 𝜆3), the corresponding eigenvectors

are 𝑣⃗1 , 𝑣⃗2 , and 𝑣⃗3 respectively. The distribution of neighbors of point 𝑖 can be

indicated by the magnitude relation of the eigenvalues [46]. When the maximum

eigenvalue 𝜆1 is much larger than 𝜆2 and 𝜆3, it means that there is one principal

direction and the distribution is linear; When 𝜆2 is approximate to 𝜆1 and they are

very large compared with 𝜆3, it represents that there are two principal directions and

the distribution is planar; When 𝜆1 , 𝜆2 and 𝜆3 are approximate to each other, it

suggests that there’s no obvious principal direction and the distribution is thus

volumetric.

There are multiple kinds of mathematical forms to determine which criterion is

satisfied [43, 46]. We use the equation of distribution features of [43]:

{

𝑆1 = 𝜆1 − 𝛼𝜆2

𝑆2 = 𝜆2 − 𝜆3
𝑆3 = 𝛽𝜆3

 (4.4)

Note that 𝛼 and 𝑖 are the adjustment coefficient which should be set according to

the data. And to find feature is the most significant, we apply the dimensionality feature:

𝑑 = arg𝑖∈{1,2,3} max 𝑆𝑖 (4.5)

When the surrounding structure of a point is linear or planar or volumetric, the

value of 𝑑 becomes 1, 2, and 3 respectively. [43] uses the endpoint preserving

Laplacian Smoothing in the cluster in order to recognize linear shapes of different radii

so that it applies the parameter of 𝛼 = 10 and 𝛽 = 100. The smoothing has the problem

４２

that it could cause problems in case of sparse regions, and is time-consuming [42].

Since a smaller 𝛼 and 𝛽 is enough for recognizing most linear, planar and volumetric

structures, in our case, we use 𝛼 = 5 and 𝛽 = 4.

In our dataset, street lights without traffic signs can sometimes be confused with

other pole-like structure since they both consists of linear and volumetric points with

the similar proportion. Therefore, we introduce the class of horizontal linear points

besides linear points. There are two main differences between horizontal linear points

and other linear points. First is that the horizontal linear structure in traffic facilities are

thinner than other linear parts, where we set the adjustment coefficient 𝛼 in (4.4) a

larger value to represent the significant linearity of the structure. Second is that the

directions are typically horizontal, where we apply a threshold angle to determine

whether the eigenvector 𝑣⃗1 corresponding to 𝜆1 is perpendicular to the upright

direction.

The horizontal linear point is defined as:

{

𝑆1
′ = 𝜆1 − γ𝜆2 > 𝑆2, 𝑆3

|
𝑣⃗1

‖𝑣⃗1‖
∙ 𝑧𝑢𝑛𝑖𝑡| < 𝜃ℎ

(4.6)

Where γ is the adjustment coefficient which we set as 10, and 𝜃ℎ is the

threshold angle which we set the value as 0.4. We can see a point classification result

of different pole-like structures in Figure 4.2.

Figure 4.2. Point classification results. The colors of blue, red, green, and yellow

represents normal linear, horizontal linear, planar, and volumetric points,

respectively.

Classification of these traffic facility poles can be carried out based on the result

of point classification. In our case, we classify these poles into 4 categories which are

４３

utility poles, traffic signs, street lights and others as shown in Figure 4.2. Components

of each point class in these 4 categories are different: utility poles can contain all 4

kinds of point class where the class of normal linear is main; traffic signs mainly contain

the normal linear and planar points, and sometimes contain horizontal linear points; the

main part of street lights is normal linear points with few horizontal linear and planar

points; as for non-traffic facility objects, the volumetric points would be the main part

(tree), or one kind of points occupies the absolute dominate position. Moreover, since

the reflectance of faced traffic signs are very high, the number of high reflective points

which are close to the number of in traffic signs, can be an effective feature to classify

traffic signs. And the height range of poles, which are different among these pole

categories, can also be a classification feature. We applied the method of Support Vector

Machine (SVM) based on 6 kinds of feature do the 4-class classification.

4.1.5. Experimental Results

We use the MMS-K320 system, developed by Mitsubishi Electrics, to collect data.

The MMS system is shown in Figure 4.3. As we see the system is equipped with two

single-layer laser scanners and three cameras to perform a 3D measurement of the

surroundings. The two laser scanners have a 180° field of view. One is configured to

point up (pitch: +25°) and one down (pitch: −25°). The localization of the car is

obtained by one dual frequency GPS receiver, two single frequency GPS receivers, the

odometer and high-end IMU.

４４

Figure 4.3. Our MMS system: Mitsubishi Electric's MMS-K320 (bottom); and the

configuration of two SICK LMS-511 laser scanners and RTK GPS receivers (top).

Our experiment data is acquired around Hitotsubashi intersection, which is a dense

urban area in the Chiyoda-ku area of central Tokyo, Japan. Streets around this area are

surrounded by tall buildings, trees, and traffic facilities. Our experimental routes are

displayed in Figure 4.4.

Figure 4.4. Our experimental routes in Hitotsubashi area.

From the laser scanning data of our experimental routes, 287 candidate pole-like

４５

structures are extracted by our method. We manually labeled traffic facility poles in

these routes to evaluation of our proposed method. We apply precision and recall

criterion to evaluate our method. The computational formula of precision is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.7)

Where TP and FP mean true positive and false positive, respectively. And the

computational formula of recall is:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.8)

Where FN is false negative. Evaluation of our pole-like structures extraction

method is shown in Table 4.1. Among the all 274 poles (utility poles, traffic signs and

street lights), our method extracts 227 of them successfully, thus the recall is 82.8%.

And since 287 candidate poles are extracted, which means 60 of them are other objects

such as trees or sparse building facades. Therefore, the precision is 79.1%.

Table 4.1. Evaluation of our Pole-like Structures Extraction Method

Route
Ground

Truth
Extracted Correct Precision Recall

1 38 41 32 78.0% 84.2%

2 46 49 37 75.5% 80.4%

3 47 45 39 86.7% 83.0%

4 68 74 59 79.7% 86.8%

5 75 78 60 76.9% 80.0%

All 274 287 227 79.1% 82.8%

Figure 4.5 gives visualization examples of pole-like structures extraction results

in two routes.

４６

Figure 4.5. Visualization examples of our pole-like structures extraction results.

Figure 4.6 shows some examples of undetected poles by our method. Since we use

clustering during the pole-like structures extraction, poles that are very close to other

objects would be segmented as a whole so that we can not extract the pole correctly.

Besides, traffic signs on overpass cannot be extracted since they cannot be treated as a

standard pole structure. Nevertheless, we can infer these signs from images since

invariable categories of traffic signs could appear on overpass.

４７

Figure 4.6. Example of undetected poles by our method.

As we mentioned above, we trained an SVM classifier for poles classification.

Evaluation of our pole-like structures classification is shown in Table 4.2. And Figure

4.7 shows a visualization of our pole-like structures classification results.

Table 4.2. Evaluation of our Pole-like Structures Classification Method

Category Classified Correct Precision

Utility Poles 97 75 77.3%

Traffic Signs 88 67 76.1%

Street Lights 60 49 81.7%

Others 42 35 83.3%

All 287 226 80.4%

４８

Figure 4.7. Visualization of our pole-like structures classification results (route 3). The

color of blue, green, yellow and red stand for utility poles, traffic signs, street lights

and others, respectively.

4.2. Road Marking Extraction

In laser scanning data, road markings painted on road surfaces are highly

retroreflective, comparing to the asphalt road, which means that we can use the intensity

value to extract the road markings. However, since the intensity value of road markings

can be confused with some tall structures, we need to exclude these areas firstly in order

to delimit the road markings searching space in the ground area. After that, road

makings can be extracted by intensity value thresholding. We will follow these steps to

describe details of our method of road markings extraction in this section.

4.2.1. Ground Area Segmentation

Ground area segmentation needs to be done at the first. As mentioned above, tall

structure like buildings will confuse the intensity thresholding while sidewalks contain

some useful information. So, the method of ground area segmentation we took should

segment the road and sidewalk area while excluding buildings and other tall structures.

Therefore, we applied a method based on the cloth simulation filter (CSF) [48] for

ground area segmentation. Table 4.3 lists the parameters of CSF we applied in our

experiment. And a result of ground segmentation in a part of point cloud data is shown

in Figure 4.8.

Table 4.3. Parameters of cloth filter simulation applied in our experiment

４９

Parameters Value Description

Cloth resolution 2 m Set empirically

Max iteration 1000 More than 500 is suggested

Classification threshold 20 cm
Small values

 suit for cloth resolution

Figure 4.8. Ground area segmentation from point cloud data: (a) original point cloud

data; and (b) the result of ground segmentation.

4.2.2. Road Marking Extraction by Intensity Thresholding

After the segmentation of ground area, road markings can be extracted using the

adaptive intensity thresholding procedure. Since there are some noise points after

thresholding, we use the k-nearest neighbor distances filtering to remove noise points.

Figure 4.9 presents a sample of the road markings extracting result. As we can see, the

result shows the effectiveness of our method. Some curbs close to the sidewalks are

also extracted as road markings, which can be treated as boundaries of road lanes later.

５０

Figure 4.9. The result of road marking extraction: (a) before processing; (b) after

thresholding and outlier filtering.

５１

Chapter 5.

Image Based Road Facility Information

Understanding

5.1. Road Facility Detection

5.1.1. Related Works of Object Detection

As we talked in chapter 3, the Convolutional Neural Network based deep learning

have made more and more new record in many computer vision tasks in recent years.

Architectures of CNN have achieved higher and higher accuracy in image classification

task. For object detection, CNN based deep learning models also outperformed

conventional Histogram of Oriented Gradient (HOG) [49] + SVM method from 2014.

Therefore, we apply deep learning model to detect traffic facilities. There are two main

kinds of deep learning architecture for object detection:

1. Two stage CNN framework: This kind of model provides region proposals with

an algorithm or a light CNN network firstly, then applies a high-quality classifier to

classify these proposals. We will make an introduction of RCNN [50], SPP-net [52],

Fast-RCNN [54] and Faster-RCNN [55].

2. Single stage CNN framework: This kind of framework consider the task of

detection as a regression problem to achieve the real-time speed of object detection.

This kind of model includes YOLO [56], YOLOv2 [57], SSD [58], and YOLOv3 [59].

We will discuss the details of these object detection network in this subsection.

Girshick et al. [50] proposed a method named Regions with CNN Feature (R-

CNN) in 2014, which achieved excellent object detection accuracy by using a deep

Convolutional Neural Network to classify object proposals. Figure 5.1 shows the

architecture of R-CNN.

５２

Figure 5.1. Object detection system overview [50].

This system consists of 4 steps. Firstly, an image is inputted into this system. Then

it extracts around 2000 bottom-up region proposals by selective search [51], each

proposal is warped to the size of 227 × 227. After that, a CNN with 5 convolutional

layers and 2 fully connected layers is used to compute features for each proposal.

Finally, the linear SVMs are adopted to classify each region and the bounding box

regression method is applied to fix localization errors. However, R-CNN has notable

drawbacks: (1) Training is a multi-stage pipeline. R-CNN first finetunes a CNN on

object proposals. Then, it fits SVM classifier to CNN features. In the third training stage,

bounding-box regressors are learned; (2) Training is expensive in space and time. It

takes a lot of time with very deep networks, and proposals as well as features require

hundreds of gigabytes of storage; (3) Object detection is slow since it performs a CNN

forward pass and SVM classification for each object proposal without sharing

computation. Detection with VGG16 on a GPU takes 47s per image.

He et al. [52] proposed Spatial pyramid pooling networks (SPP-net) to speed up

R-CNN by sharing computation. A CNN mainly consists of two parts: convolutional

layers, and fully-connected layers that follow. In fact, convolutional layers do not

require a fixed image size and can generate feature maps of any sizes. According to this,

they added an SPP layer on top of the last convolutional layer. Figure 3 displays the

change of the network architecture by introducing the SPP layer. The SPP layer pools

the features and then concatenated as in spatial pyramid pooling [53] to generate fixed-

length outputs, which are then fed into the fully-connected layers (see Figure 5.2). SPP-

net accelerates R-CNN by 10 to 100× at test time. Training time is also reduced by 3×

due to faster proposal feature extraction.

５３

Figure 5.2. A network structure with a spatial pyramid pooling layer. Here 256 is the

filter number of the conv 5 layer, and conv 5 is the last convolutional layer [52].

Nevertheless, SPP-net also has notable drawbacks. Training is a multi-stage

pipeline which involves 3 stages like R-CNN. And unlike R-CNN, the fine-tuning

algorithm proposed in [50] cannot update the convolutional layers, which limits the

accuracy of very deep networks.

In order to fix the disadvantages of R-CNN and SPP-net, Girshick et al. [54]

proposed the method of Fast R-CNN in 2015. Figure 5.3 presents the architecture of

Fast R-CNN. There are 2 main differences we can find between the architecture of Fast

R-CNN and R-CNN: (1) Fast R-CNN adds the region of interest (ROI) pooling layer

before fully connected layers, using max pooling to down-sample each proposal to a

small feature map of 7×7 , which is similar to the spatial pyramid pooling layer in SPP-

net; (2) Fast R-CNN applies softmax classifier to take place of SVM, and uses a multi-

task loss function which jointly optimizes a softmax classifier and bounding-box

regressors, making it a single-stage for the training step (except for the region proposal

part. For Fast R-CNN, region proposal still needs to be done for images before inputting

into the network structure).

５４

Figure 5.3. Fast R-CNN architecture [54].

However, Fast-RCNN is still not fast enough for the real-time application. The

region proposal in Fast-RCNN still uses selective search algorithm, which takes up 90%

of the processing time. Now, proposals are the computational bottleneck in state-of-the-

art detection systems. Ren et al. [55] proposed Faster R-CNN (See Figure 5.4) in which

the selective search has been replaced by a Region Proposal network (RPN). An RPN

is a fully-convolutional network that simultaneously predicts object bounds and

objectness scores (measures membership to a set of object classes or background) at

each position. The advantage of RPN is the region proposal step can be nearly cost-free

by sharing convolutional features with Fast R-CNN. RPN can be trained end-to-end to

generate high-quality region proposals.

Figure 5.4. Faster R-CNN architecture [55].

５５

The working process of RPN is demonstrated in Figure 5.5. The RPN uses a spatial

window to slide feature map output by the last shared convolutional layer, which takes

an image feature map as input and outputs k rectangular object proposals (coordinates),

each with an objectness score (objects or background), where k denotes the number of

anchor boxes. Each sliding window is mapped to a lower-dimensional vector and this

vector is fed into two sibling fully-connected layers: a box-regression (reg) layer and a

box-classification (cls) layer. Therefore, the reg layer has 4k outputs encoding the

coordinates of k boxes, and the cls layer outputs 2k scores that estimate the probability

of object or not object for each proposal.

Figure 5.5. Region Proposal Network (RPN). Left: Architecture of RPN. Right:

Example detections using RPN proposals on PASCAL VOC 2007 test [55].

Faster RCNN is currently the dominant method for the task of object detection.

However, the speed of Faster RCNN is still slow for real-time applications. Redmon et

al. [56] proposed a You Only Look Once (YOLO) object detection approach in 2016.

The YOLO Detection System is shown in Figure 5.6. First, the input image is resized

to 448 × 448; Then runs a single CNN on the image; And the results are obtained by

thresholding the model’s confidence.

Figure 5.6. The YOLO Detection System [55].

Figure 5.7 describes the prediction method of YOLO. It divides the image into an

５６

S ∗ S grid and predicts B bounding boxes and C conditional class probabilities for each

grid cell. These predictions are encoded as an S × S × B × 5 + C tensor. Grid cells are

in charge of detecting the object of which center falls into the grid cell. At test time they

multiply the conditional class probabilities and the individual box confidence

predictions to get the class-specific confidence scores for each box. These scores

encode both the probability of that class appearing in the box and how well the predicted

box fits the object.

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) ∗ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (6.1)

In their paper, they applied S = 7, B = 2. C = 20 for evaluating YOLO on PASCAL

VOC2012, which reached to 45 frames per second on Titan-X GPU, and achieved mean

Average Precision (mAP) of 63.4%.

Figure 5.7. The You Only Look Once Model [56].

Although YOLO takes significant speed advantages over Faster-RCNN, YOLO

suffers from a significant number of localization errors when compared with Faster-

RCNN. And YOLO has relatively low recall compared to region proposal-based

methods. Inspired by the improvement of Faster-RCNN via the anchor proposal,

Redmon et al. [57] proposed YOLOv2, which is an improved YOLO method. There are

mainly 6 improvements from YOLO: (1) YOLOv2 adds batch normalization on all of

the convolutional layers; (2) YOLOv2 finetunes the classifier with full resolution of

５７

448×448 for 10 epochs instead of 224×224 in YOLO; (3) Instead of predicting

coordinates directly after fully connected layers in YOLO, YOLOv2 removes all of the

fully connected layers, and adopts anchor boxes to predict bounding boxes; (4) While

Faster R-CNN chooses dimensions of anchor boxes by hand, YOLOv2 applies k-means

clustering to find good priors. Along with this, YOLOv2 improves the model instability

of anchor by directly predicting the bounding box center location; (5) Unlike Faster R-

CNN running proposal networks at various feature maps in the network to get a range

of resolution, YOLOv2 designs the passthrough layer to concatenate the higher

resolution features with the low resolution features by stacking adjacent features into

different channels instead of spatial locations; (6)YOLOv2 changes input image size

every few iterations in training to predict well across a variety of input dimensions.

Another method of object detection with a single deep neural network, named SSD

[58] was proposed in 2016. Since YOLO only operates on a single scale feature map,

the performance of detecting small objects is not very well. In order to improve this

problem, SSD adds convolutional feature layers to the end of the truncated base

network. These layers decrease in size progressively and allow predictions of detections

at multiple scales, meaning that small objects and big objects are expected to be

detected in different layers. A comparison between YOLO and SSD is shown in Figure

5.8. We can see that the Conv5_3 layer is responsible to detect the smallest objects

while the Conv11_2 layer is responsible for the biggest objects.

Figure 5.8. A comparison between the model of SSD and YOLO [57].

５８

While the speed (Frames Per Second, FPS) of YOLO and YOLOv2 are faster than

SSD with a near size of input images, the accuracy of YOLO-448 (448 is the size of

input image) and YOLOv2-416 are both lower than SSD-300 according to experiment

results. As a tradeoff of speed and accuracy, YOLOv3 [59] makes improvements on the

accuracy with a little increasement in time. There are mainly 3 changes from YOLOv2

to YOLOv3: (1) YOLOv3 applies multilabel classification to predict the class of each

box, and they replace softmax by independent logistic classifiers. This helps the

detection of overlapping labels; (2) Inspired by feature pyramid networks (FPN) [60],

YOLOv3 predicts boxes across 3 different scales, which makes the model more robust

to small objects; (3) YOLOv3 designs a new network Darknet-53 for performing

feature extraction, which is a hybrid approach between the network used in YOLOv2,

Darknet-19, and that newfangled residual network [38]. The architecture of Darknet-53

showed in Figure 5.9, uses successive 3×3 and 1×1 convolutional layers with some

shortcut connections as well. This new network is much more powerful than Darknet-

19 and more efficient than ResNet-101 or ResNet-152 (While the accuracy is near).

Figure 5.10 demonstrated a comparison of several significant detection models on time

and accuracy. We can see YOLOv3 is a balanced model for the task of objects detection.

Figure 5.9. The architecture of Darknet-53 [59].

５９

Figure 5.10. A Comparison of significant detection models on time and the mAP at .5

IOU metric [59].

5.1.2. Our Method and Experimental Results

Since road lines are continuous by frames, we apply the segmentation network

architecture to extract them instead of the detection network, which will be described

in the next section. In our road facilities understanding, we acquire semantic regulations

of traffic lights, signs and road markings (except road lines) based on the architecture

of YOLOv3. We categorize these detection objects into 49 classes including 4 kinds of

traffic lights (red, green, yellow and unknown states), 12 kinds of road markings

(including crosswalks, stop lines, direction arrows, speed limitation and no U-turn

markings), and 33 kinds of traffic signs (can mainly categorized as speed limitation

signs, turning signs, restriction signs, instruction signs, warning signs and other signs).

Since the size of detection object differs a lot in traffic scene, and there would be

both small and large objects in the same image, we applied multiscale feature maps for

detection, where shallow layers work for small size objects (e.g. traffic lights) detection

６０

and deeper layers work for large size objects (e.g. crosswalks) detection. And we also

disabled flip data augmentation for distinguish left and right objects as separate classes

(e.g. left and right turn on road signs).

We labeled 4684 on-board camera images derived from Hitotsubashi and Shinjuku

intersections in Tokyo. 3607 images are used as training data, and 1077 images as test

data. Darknet-53 is used as backbone for training and we trained our model for 100,000

iterations with the input image size of 608×608.

To evaluate our detection results, we follow the PAS-CAL [61] protocol and

average by summing in 10% recall steps. The process for computing average precision

is given in algorithm 5.1. Only when the overlap region with ground truth above 50%

will it be considered as a correct detection.

Algorithm 5.1: Average Precision

1: average precision = 0

2: for i=0 to 1 step 0.1 do

3: p = max(precision(recall>=i))

4: average precision = average precision + p / 11

5: end for

6: return average precision

As our final goal of road facilities detection in image is to integrate their semantic

regulation with point cloud map data. And the same target would appear in several

sequential frames. Therefore, the semantic regulation of a road facility can be projected

to the map as long as it appears at least one time in frames. So, we also take the

occurrence probability as a criterion for evaluation, where we count the real number of

each object as ground truth, and consider it correct if one object is correct detected at

least one time in several frames. Table 5.1 gives the evaluation of our detection results

and some testing results are demonstrated in Figure 5.11.

６１

Table 5.1. Evaluation of our road facility detection results

Road Facility Detection
Traffic

Light

Road

Marking

Traffic

Sign
All

Average Precision (%) 90.7 84.9 86.5 86.5

Occurrence Probability (%) 97.0 96.3 96.7 96.6

Figure 5.11. Road facilities detection results in our dataset.

６２

5.2. Road Line Detection

Traditional lane detection methods [62, 63] rely on a combination of highly-

specialized, hand-crafted and heuristics features to identify lane segments, which are

computationally expensive and prone to scalability due to road scene variations. Neven

et al. [64] proposes an instance segmentation network named LaneNet to train for pixel-

wise lane segmentation. Figure 5.12 shows the architecture of LaneNet. As we can see

from the figure that LaneNet is branched, multi-task network, containing a lane

segmentation branch which is the top one and a lane embedding branch which is the

bottom one. The lane segmentation branch aims to output a binary segmentation map

in which pixels are classified as lane or background. And the embedding branch further

disentangles the segmented lane pixels into different lane instances. By means of the

multi-task architecture, LaneNet can segment different road lines as different instances

without labeling them as different classes. After the pixel embeddings, a clustering loss

function is trained to assign id for each lane which is outputted by lane segmentation

branch.

Figure 5.12. LaneNet architecture [64].

We labeled 2342 image frames in our dataset, in which 1208 frames (together with

3626 frames from tuSimple lane dataset [65]) for training, 1134 frames for testing. The

training epochs of our experiment are 200,000. We obey the evaluation methodology

of tuSimple lane dataset to evaluate our result, which calculates accuracy (acc), false

positive (FP), and false negative (FN). The accuracy is calculated by average correct

number of points per image:

６３

𝑎𝑐𝑐 = ∑
𝐶𝑖𝑚𝑔

𝑆𝑖𝑚𝑔
𝑖𝑚𝑔

 (6.2)

where 𝐶𝑖𝑚𝑔 is the number of correct points in the image, and 𝑆𝑖𝑚𝑔 means the number of

ground-truth points in the image. And the false positive and false negative scores are

calculated by:

𝐹𝑃 =
𝐹𝑝𝑟𝑒𝑑

𝑁𝑝𝑟𝑒𝑑
 (6.3)

𝐹𝑁 =
𝑀𝑝𝑟𝑒𝑑

𝑁𝑔𝑡
 (6.4)

where 𝐹𝑝𝑟𝑒𝑑 is the number of wrongly predicted lanes, 𝑁𝑝𝑟𝑒𝑑 is the number of predicted

lanes, 𝑀𝑝𝑟𝑒𝑑 is the number of missed ground-truth lanes and 𝑁𝑔𝑡 is the number of all

ground-truth lanes. The evaluation of our road line detection results is shown in Table

5.2, and some testing results in our dataset are given in Figure 5.13.

Table 5.2. Evaluation of our road line detection results

acc FP FN

90.2% 6.4% 8.2%

６４

Figure 5.13. Road line detection results in our dataset.

６５

Chapter 6.

Integration of Point Cloud and Image for

Mapping

6.1. Camera Model and Coordinate Transforming

In order to matching the semantic information derived from images on the point

cloud map, we need to find the coordinate transformation from image pixel coordinates

to world coordinates. Therefore, we will make an introduction of the geometry of a

pinhole camera model and how to match the coordinates in this section. Photometric

cameras using an optical lens can be modelled as a pinhole camera. Figure 6.1 shows

the geometry of a pinhole camera model and Figure 6.2 displays the process of

projecting a feature in the world coordinates into the pixel coordinates.

Figure 6.1. The geometry of a pinhole camera model.

６６

Figure 6.2. Process of coordinate transforming between world coordinates and pixel

coordinates.

As we can see in Figure 6.2, since the camera moves in real world, the first step is to

project a point in the real world to the camera film by the rotation and translation of the

camera. The mathematical form is:

(

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

) = (

𝑟11 𝑟12

𝑟21 𝑟22

𝑟13 𝑡1

𝑟23 𝑡2
𝑟31 𝑟32

0 0
𝑟33 𝑡3

0 1

) (

𝑋𝑊

𝑌𝑊

𝑍𝑊

1

) (6.1)

where

𝑅 = (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 1
) (6.2)

is the rotation matrix. And

𝑇 = (

𝑡1

𝑡2

𝑡3

) (6.3)

is the translation matrix. The joint matrix (𝑅|𝑇) is called camera extrinsic parameters.

The camera extrinsic parameters are used to describe the camera motion around a static

scene.

Then camera coordinates are transformed to the film coordinate by the perspective

matrix equation as:

𝑍𝐶 (
𝑥
𝑦
1

) = (
𝑓 0 0
0 𝑓 0
0 0 1

0
0
0

) (

𝑋𝐶

𝑌𝐶

𝑍𝐶

1

) (6.4)

where 𝑓 is the camera focal length in the distance unit.

６７

At last the pixel coordinates comes from the sampling of the CCD sampling.

𝑢 =
1

𝑠𝑥
𝑓

𝑋𝐶

𝑍𝐶
+ 𝑐𝑥 = 𝑓𝑥

𝑋𝐶

𝑍𝐶
+ 𝑐𝑥 (6.5)

𝑣 =
1

𝑠𝑦
𝑓

𝑌𝐶

𝑍𝐶
+ 𝑐𝑦 = 𝑓𝑦

𝑌𝐶

𝑍𝐶
+ 𝑐𝑦 (6.6)

where 𝑠𝑥 and 𝑠𝑦 are the dimension of pixel in frame grabber. The 𝑓𝑥, 𝑓𝑦 are the focal

lengths expressed in pixel units and (𝑐𝑥, 𝑐𝑦) is the principal point in the image because

normally the principal point in the film coordinates is the upper left corner while in the

pixel coordinates the principal point should the center of the image.

Finally, the whole process of the projection can be shown in the equation as:

𝑍𝐶 (
𝑢
𝑣
1

) = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

0
0
0

) (

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡1

𝑡2

𝑡3

0 0 0 1

) (

𝑈
𝑉
𝑊
1

) (6.7)

where

K = (
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

) (6.8)

is the camera intrinsic parameters matrix. If an image from the camera is scaled by a

factor, all of these parameters should be scaled by the same factor. The matrix of

intrinsic parameters does not depend on the scene viewed. So, once estimated, it can be

re-used as long as the focal length is fixed

we can see that the range information is lost in this projection, but the angle or

orientation of the feature can be obtained if the focal length is known and the lens does

not cause distortion. So, a single camera only provides only information about the

direction of the features exist in the pedestrian's view, while as it doesn’t provide any

information regarding the depth. However, our goal is to matching semantic

information of traffic lights, traffic signs and road markings from image to the point

cloud map. The road surface is always perpendicular to the car’s z-axis, meaning that

we can matching with road markings only by the x-y plane. And since there would be

a distance between two traffic poles (traffic lights, signs), we can also match the them

in the x-y plane with a certain range. Since cameras are mounted in a fixed position on

the MMS car and we have the intrinsic and extrinsic parameters of the camera, we can

６８

use the Inverse Perspective Mapping (IPM) to transform to transform the pixel

coordinates back to the camera coordinates, and get the world coordinates based on the

GPS position of the MMS car. Figure 6.3 shows a visualization of coordinate

transformation from pixel coordinate to world coordinate.

Figure 6.3. A Visualization of coordinate transformation from pixel coordinate to

world coordinate: (a) original image; (b) image after IPM, which is in camera

coordinate; (c) image in world coordinate, where the pink part is road marking

extracted from point cloud data.

6.2. Integration of Semantic Information on Map

From above we have talked about how to transform coordinates from pixels in

image to the map. In our experiments, we divide our facilities into 5 categories for

integration: stop lines, crosswalks, instruction road markings, facility poles (traffic

lights and signs), and road lines. Since there are wrong detections for first four

categories when the camera is far from the target, which can detect correctly when the

target becomes near (as shown in Figure 6.4). To solve this kind of problem, for each

object, if it is classified as different categories in several frames, we calculate the

probability (percentage) of each category and consider the one with the largest

probability as the correct one. Then we obtain the center point of bounding-box in the

last correct-detected frame, and transform the center point to world coordinate for

integration. The method of integrate these four categories is a little bit different, we will

describe in following. And we will also introduce the method of integrate road lines

which differs from first four categories.

６９

Figure 6.4. Example of wrong detections when car is far from target: (a) the left

marking is wrongly detected since it is small in this image; (b) the left marking can

be detected correctly when car becomes near.

For stop lines, since they can be considered vertical to the car trajectory when the

car is near. Therefore, we transform the center point to world coordinate and fit a

straight line along the x-axis. Figure 6.5 displays the process of stop lines integration.

Figure 6.5. Process of stop lines integration, blue point is center point of bounding

box: (a) original image; (b) image after IPM; (c) image in world coordinate with point

cloud; (d) stop line fitting.

７０

For crosswalk area, since they are usually with a certain range of width and height.

Therefore, we generate a square area from the center point to represent a crosswalk area.

Figure 6.6 shows the process of the crosswalk area generation.

Figure 6.6. Process of crosswalk area generation, blue point is center point of

bounding box: (a) original image; (b) image in world coordinate with point cloud; (c)

crosswalk area generation; (d) crosswalk area extraction.

For road lines fitting, since the line detection results are pixels frame by frame, we

firstly use coordinate transforming to transform pixels of each frame into world

coordinate. Then we segment one whole road area part into several segments according

to its length (we consider a whole road area part begins and ends with crosswalks, where

Figure 6.7 gives an example of a whole road area part). Finally, we apply the Ransac

algorithm to fit straight lines in each segmented area. Some road line fitting results are

shown Figure 6.8.

７１

Figure 6.7. Example of a whole road area part.

Figure 6.8. Some road line fitting results.

７２

As for instruction road markings, since they are all in road lanes which lie between

two road lines. Therefore, we use the information of road lines to restrict the searching

area and generate clusters around center points. Figure 6.9 gives integration results of

instruction road markings.

Figure 6.9. Integration results of instruction road markings, different colors stand for

different categories.

After all of the road facilities are added, integration of semantic information on

our map are completed. Figure 6.10 demonstrates the final result of our map with

semantic information.

７３

(a)

(b)

Figure 6.10. Final result of our map with semantic information.

７４

Chapter 7.

Conclusions

In this thesis, we presented a study on automated mapping of road facilities and

their semantic information on HD maps by MMS. Firstly, we utilize point cloud data

derived by mobile mapping system to extract road facility poles and road markings,

from which we can know the accurate position of them in the map. Then we applied

deep-learning model for road facilities detection to obtain traffic regulation information

from these facilities. Finally, Integration of information derived from point cloud and

image was done by coordinate transforming to construct HD map with semantic

information automatically.

For future work, based on derived semantic information, how to generate a lane-

level model for division of region with different traffic regulations should be taken into

consideration. After traffic regulations are defined on every road of HD map, motion

planning of vehicles can be the further step towards higher level autonomous driving.

Besides, since extracted traffic poles on the map can provide good features for

localization, accurate self-localization of vehicles based on the map can also be a

direction for further study.

７５

Reference

[1] Yang, Bin, Ming Liang, and Raquel Urtasun. "HDNET: Exploiting HD Maps for

3D Object Detection." In Conference on Robot Learning, pp. 146-155. 2018.

[2] Takada Hiroaki, Sato Kenya. SYSTEMS, CONTROL AND INFORMATION

60(11), pp. 457-462, 2016.

[3] https://www.here.com/products/automotive/hd-maps.

[4] http://proceedings.esri.com/library/userconf/proc16/papers/360_461.pdf.

[5] Joshi, Avdhut, and Michael R. James. "Generation of accurate lane-level maps from

coarse prior maps and lidar." IEEE Intelligent Transportation Systems Magazine 7,

no. 1 (2015): 19-29.

[6] Carneiro, Raphael V., Rafael C. Nascimento, Rânik Guidolini, Vinicius B. Cardoso,

Thiago Oliveira-Santos, Claudine Badue, and Alberto F. De Souza. "Mapping Road

Lanes Using Laser Remission and Deep Neural Networks." arXiv preprint

arXiv:1804.10662 (2018).

[7] http://www.mitsubishielectric.com/bu/mms/features/index.html.

[8] http://www.gps.gov/.

[9] Kaplan, Elliott, and Christopher Hegarty. Understanding GPS: principles and

applications. Artech house, 2005.

[10] https://velodynelidar.com/hdl-64e.html.

[11] Potó, V., Á. Somogyi, T. Lovas, Á. Barsi, V. Tihanyi, and Z. S. Szalay. "Creating

hd map for autonomous vehicles-a pilot study." In 34th international colloquium

on advanced manufacturing and repairing technologies in vehicle industry. 2017.

[12] Ellul, C., M. Adjrad, and P. Groves. "The Impact of 3D Data Quality on Improving

GNSS Performance Using City Models-Initial Simulations." In ISPRS Annals, vol.

4. International Society for Photogrammetry and Remote Sensing, 2016.

[13] Yoneda, Keisuke, Chenxi Yang, Seiichi Mita, Tsubasa Okuya, and Kenji

Muto. "Urban road localization by using multiple layer map matching and l

ine segment matching." In Intelligent Vehicles Symposium (IV), 2015 IEEE,

pp. 525-530. IEEE, 2015.

[14] Hosseinyalamdary, S., and M. Peter. "LANE LEVEL LOCALIZATION; USING

IMAGES AND HD MAPS TO MITIGATE THE LATERAL ERROR."

International Archives of the Photogrammetry, Remote Sensing & Spatial

Information Sciences 42 (2017).

７６

[15] Toschi, I., M. M. Ramos, E. Nocerino, F. Menna, F. Remondino, K. Moe, D. Poli,

K. Legat, and Francesco Fassi. "Oblique photogrammetry supporting 3D urban

reconstruction of complex scenarios." International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2017):

519-526.

[16] Toledo-Moreo, Rafael, David Bétaille, and François Peyret. "Lane-level integrity

provision for navigation and map matching with GNSS, dead reckoning, and

enhanced maps." IEEE Transactions on Intelligent Transportation Systems 11, no.

1 (2010): 100.

[17] Paparoditis, Nicolas, Jean-Pierre Papelard, Bertrand Cannelle, Alexandre De

vaux, Bahman Soheilian, Nicolas David, and Erwann Houzay. "Stereopolis I

I: A multi-purpose and multi-sensor 3D mobile mapping system for street v

isualisation and 3D metrology." Revue française de photogrammétrie et de t

élédétection 200, no. 1 (2012): 69-79.

[18] Sairam, Nivedita, Sudhagar Nagarajan, and Scott Ornitz. "Development of mobile

mapping system for 3d road asset inventory." Sensors 16, no. 3 (2016): 367.

[19] Holopainen, Markus, Ville Kankare, Mikko Vastaranta, Xinlian Liang, Yi Lin,

Matti Vaaja, Xiaowei Yu et al. "Tree mapping using airborne, terrestrial and mobile

laser scanning–A case study in a heterogeneous urban forest." Urban forestry &

urban greening 12, no. 4 (2013): 546-553.

[20] Jin, Hang, Marc Miska, Edward Chung, Maoxun Li, and Yanming Feng. "Road

feature extraction from high resolution aerial images upon rural regions based on

multi-resolution image analysis and gabor filters." In Remote Sensing-Advanced

Techniques and Platforms. InTech, 2012.

[21] Wikipedia, "Biological neural network" https://en.wikipedia.org/wiki/Biologi

cal_neural_network.

[22] Hubel, David H., and Torsten N. Wiesel. "Receptive fields and functional

architecture of monkey striate cortex." The Journal of physiology 195, no. 1 (1968):

215-243.

[23] Wang, Haohan, and Bhiksha Raj. "On the origin of deep learning." arXiv preprint

arXiv:1702.07800 (2017).

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” in International Conference on Machine

７７

Learning, pp. 448–456, 2015.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural

network acoustic models,” in Proc. ICML, vol. 30, 2013.

[26] Wikipedia, "Activation function." https://en.wikipedia.org/wiki/Activation_fun

ction.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings ofthe IEEE

international conference on computer vision, pp. 1026–1034, 2015.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[29] J. Christopher M.Bishop, M.Jordan, Pattern Recognition and Machine Learning.

Springer, 2006.

[30] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, pp. 1097–1105, 2012.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition

challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,

2015.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770–778, 2016.

７８

[37] Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.

"Densely connected convolutional networks." In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 4700-4708. 2017.

[38] Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." arXiv

preprint arXiv:1605.07146 (2016).

[39] Press, P., and David Austin. "Approaches to pole detection using ranged laser

data." In Proceedings of Australasian Conference on Robotics and Automation.

2004.

[40] Luo, De-an, and Yan-min Wang. "Rapid extracting pillars by slicing point clouds."

In Proc. XXI ISPRS Congress, IAPRS, vol. 37, pp. 215-218. 2008.

[41] Pu, Shi, Martin Rutzinger, George Vosselman, and Sander Oude Elberink.

"Recognizing basic structures from mobile laser scanning data for road inventory

studies." ISPRS Journal of Photogrammetry and Remote Sensing 66, no. 6 (2011):

S28-S39.

[42] Huang, Jing, and Suya You. "Pole-like object detection and classification from

urban point clouds." In Robotics and Automation (ICRA), 2015 IEEE International

Conference on, pp. 3032-3038. IEEE, 2015.

[43] Yokoyama, Hiroki, Hiroaki Date, Satoshi Kanai, and Hiroshi Takeda. "Detection

and classification of pole-like objects from mobile laser scanning data of urban

environments." International Journal of Cad/Cam 13, no. 2 (2013): 31-40.

[44] Golovinskiy, Aleksey, Vladimir G. Kim, and Thomas Funkhouser. "Shape-based

recognition of 3D point clouds in urban environments." In Computer Vision, 2009

IEEE 12th International Conference on, pp. 2154-2161. IEEE, 2009.

[45] Tombari, Federico, Nicola Fioraio, Tommaso Cavallari, Samuele Salti, Alioscia

Petrelli, and Luigi Di Stefano. "Automatic detection of pole-like structures in 3d

urban environments." In Intelligent Robots and Systems (IROS 2014), 2014

IEEE/RSJ International Conference on, pp. 4922-4929. IEEE, 2014.

[46] Lalonde, Jean‐François, Nicolas Vandapel, Daniel F. Huber, and Martial Hebert.

"Natural terrain classification using three‐dimensional ladar data for ground robot

mobility." Journal of field robotics 23, no. 10 (2006): 839-861.

[47] Bentley, Jon Louis. A survey of techniques for fixed radius near neighbor searching.

No. SLAC-0186. 1975.

[48] Zhang, Wuming, Jianbo Qi, Peng Wan, Hongtao Wang, Donghui Xie, Xiaoyan

７９

Wang, and Guangjian Yan. "An easy-to-use airborne LiDAR data filtering method

based on cloth simulation." Remote Sensing 8, no. 6 (2016): 501.

[49] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human

detection." In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1, pp. 886-893. IEEE, 2005.

[50] Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik. "Rich feature

hierarchies for accurate object detection and semantic segmentation." In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 580-587. 2014.

[51] Uijlings, Jasper RR, Koen EA Van De Sande, Theo Gevers, and Arnold WM

Smeulders. "Selective search for object recognition." International journal of

computer vision 104, no. 2 (2013): 154-171.

[52] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid

pooling in deep convolutional networks for visual recognition." IEEE transactions

on pattern analysis and machine intelligence 37, no. 9 (2015): 1904-1916.

[53] Lazebnik, Svetlana, Cordelia Schmid, and Jean Ponce. "Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories." In null, pp.

2169-2178. IEEE, 2006.

[54] Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference

on computer vision, pp. 1440-1448. 2015.

[55] Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. "Faster r-cnn: Towards

real-time object detection with region proposal networks." In Advances in neural

information processing systems, pp. 91-99. 2015.

[56] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look

once: Unified, real-time object detection." In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 779-788. 2016.

[57] Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." arXiv

preprint (2017).

[58] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C. Berg. "Ssd: Single shot multibox detector." In

European conference on computer vision, pp. 21-37. Springer, Cham, 2016.

[59] Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv

preprint arXiv:1804.02767 (2018).

８０

[60] Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. "Feature pyramid networks for object detection." In CVPR, vol. 1,

no. 2, p. 4. 2017.

[61] Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. "The pascal visual object classes (voc) challenge."

International journal of computer vision 88, no. 2 (2010): 303-338.

[62] Borkar, Amol, Monson Hayes, and Mark T. Smith. "A novel lane detection system

with efficient ground truth generation." IEEE Transactions on Intelligent

Transportation Systems 13, no. 1 (2012): 365-374.

[63] Wu, Pei-Chen, Chin-Yu Chang, and Chang Hong Lin. "Lane-mark extraction for

automobiles under complex conditions." Pattern Recognition 47, no. 8 (2014):

2756-2767.

[64] Neven, Davy, Bert De Brabandere, Stamatios Georgoulis, Marc Proesmans, and

Luc Van Gool. "Towards End-to-End Lane Detection: an Instance Segmentation

Approach." arXiv preprint arXiv:1802.05591 (2018).

[65] The tuSimple lane challange, http://benchmark.tusimple.ai/

８１

Thanks

This thesis is under the instruction of Professor Kamijo. He gave me a lot of

guidance as an academic advisor to advance this research. Also, researcher Yanlei Gu

are the people who gives me a lot of important advice on my research. Ms. Miwa,

Professor Kamijo's secretary, also provided huge help to my research life in the lab. I

won’t finish my thesis without their meaningful discussions and help.

To the other members in the lab, I want to thank Dailin Li, Yongjie Liu, Qianlong

Wang, Ya Wang and Hirotsugu Kitamura when I was new in the laboratory. Mahdi

Javanmardi, Ehsan Javanmardi, Jiali Bao, Xiao Wang, I want to thank them for giving

me many useful inspirations on my research. I want to thank Huiyang Zhang, Yoshihiko

Kamiya, Rin Kawanami, Kazuki Motari, Duyu Chen for accompanying me through my

research and making all the time more meaningful time.

Finally, I want to thank my family and friends for their supporting of my research

work during the past two years.

８２

Publication List

研究会発表:

[1] Yue Zhang, Ehsan Javanmardi, Mahdi Javanmardi, Yanlei Gu, Shunsuke Kamijo, "

Towards ADAS Map: Automatic Extraction and Integration of Semantic Traffic

Regulation from MMS Data", IEICE Technical Report, vol. 118, no. 79, ITS2018-2, pp.

7-12, June 12, 2018.

