研究速報

各種要因が補修した鉄筋コンクリート構造物の劣化に 及ぼす影響に関する研究(2)

――補修条件の違いによる影響―

Influence of Various Factors on Deterioration of Repaired Concrete Structures (2) — An influence by the difference in terms of repair —

伊藤正憲 $* \cdot = 5$ 野祐 $-* \cdot d$ 中義昭 $* \cdot = 10$ 昭信 $* \cdot$ 北澤英宏 $* \cdot 深津章 文* \cdot 勝木$ 太 $* \cdot d$ 本健/*

Masanori ITO, Yuich UNO, Yoshiaki HIRONAKA, Akinobu HIRAMA, Hidehiro KITAZAWA, Akifumi FUKATSU, Futoshi KATSUKI and Taketo UOMOTO

1. はじめに

近年,補修したコンクリート構造物が早期に再劣化する 事例が報告されるようになってきた.特に,塩害による再 劣化事例の報告が増えてきている.これは一度劣化したコ ンクリート構造物を補修した後,どのような現象が起こっ ているのかを正確に把握してないことが原因と考えられ, これを解決することにより将来的には費用対効果に優れる 補修工法が合理的に選定できるシステムの構築も可能にな ると考えられる.

そこで本研究では、塩害による補修後の再劣化メカニズ ムの解明と適正な対策の提案を目的として、特に、道路橋 床版の塩害による再劣化を想定し、コンクリート中の塩分 量、補修範囲と深さ、表面被覆の有無等を要因として補修 条件の異なる鉄筋コンクリート試験体を作製し、実際の海 洋環境下や比較として内陸環境下に長期間暴露している.

本報では、これらの暴露試験の中から海洋暴露試験体を 対象とし1年後に試験体から取り出した鉄筋の腐食面積率 と腐食減量を調査した.さらに、内部の塩分の分布状況を EPMAの面分析により調査し、条件を変えた場合の補修後の 鉄筋腐食に影響する要因について検討した結果を報告する.

2. 実験概要

2.1 試験体概要

(1) コンクリートの配合

表1にコンクリートの使用材料等を示す.

(2) 鉄筋

鉄筋は JIS G 3112 に規定する SD 345-D 19 を使用し,加工 時の影響を考慮して折曲げ部両端にエポキシ樹脂を塗布し た.なお,樹脂塗装後の翌日に質量を測定して基準とした.

(3) 対象とした試験体

図1に試験体の形状と寸法を示す. 試験体は、模擬はつ

*東京大学生産技術研究所 都市基盤安全工学国際研究センター

表1 コンクリートの使用材料等

水セメント比	W/C 65%				
セメント	普通ポルトランドセメント(3.16g/cm³)				
細骨材	大井川産陸砂(2.58g/cm ³)				
粗骨材	青梅産硬質砂岩砕石(Gmax20mm, 2.64g/cm3)				
混和剤	AE減水剤標準型,AE剤				
塩化物イオン量	0, 2.4, 4.8kg/m ³				
スランフ゜	12cm				
空気量	4.50%				
圧縮強度	材齢 28日: 34.3N/mm ² , 材齢 1年; 47.5N/mm ²				

り部(補修部)の範囲および深さにより6タイプ(A~ F)のものを作製した.

(4) 補修方法および補修材料

模擬はつり部は、表面の汚れ等を取り除いた後、プライ マーを塗布し、断面修復材としてポリマーセメントモルタ ルを吹付けた.その後、表面を目粗しし、エポキシ樹脂系 プライマー塗布、同樹脂材でパテ処理を行った.引き続き、 柔軟型エポキシ樹脂中塗り材を2層塗布し、柔軟型ウレタ ン樹脂上塗り材を1層塗装した.なお、上面被覆を行わな い試験体は、上面以外の5面について被覆を施した.

2.2 補修条件

表2に設定した補修条件を示す.検討した要因ははつり 深さと範囲,母材コンクリート側に練混ぜ時に混入した塩 化物イオン量である.補修条件としたはつりの範囲は,部 分的に補修した場合を想定し,マクロセル腐食の発生を想 定したものである.はつり深さの要因は,塩分の再拡散と 鉄筋周囲の塩分の存在状態が再劣化に及ぼす影響を検討す ることを目的とした.また,上面の被覆材の有無は,床版 上面の防水の有無を想定したものである.

2.3 暴露条件

海洋暴露実験は,静岡県伊豆半島東海岸(伊豆海洋公園 内:静岡県伊東市富戸841-1)の暴露場において実施した. 研

図1 試験体の形状と寸法

表2 設定した試験体の補修条件

			· · · · · · · · · · · · · · · · · · ·	
記号*	はつり		C1 ⁻ 量	丰石地磨
	範囲	深さ	(kg/m ³)	121111121复
1-A-無	全面	鉄筋裏		
1-B-無	部分		0	上面無し
1-E-無	補修無し		Ů	
1-E-有			₩	全面塗布
2-A-無	全面	坐位重	2.4	ù.
2-B-無	部分	<u></u>		上面無〕
2-C-無	全面	鉄筋半分		
2-D-無	部分			
2-A-有	全面	鉄筋裏		
2B-有	部分			
2-C-有	全面	鉄筋半分		
2-D-有	部分			
2-F-有	全面	鉄筋表面		全面塗布
3-A-有	全面	鉄筋裏		
3-B-有	部分		1.8	
3-C-有	全面	建位半八	4.0	
3-D-有	部分	*X110 + 75		

*:塩分量-タイプ-上面被覆の有無

この海洋暴露場は波打ち際に設置されており, ここで暴 露される試験体は, 満潮時には波で洗われ, 干潮時にも前 面に岩礁があるために常時海水飛沫を受ける極めて厳しい 環境である. なお, 試験体の暴露は, 実際の床版を想定し てかぶり側が下になるように設置した.

2.4 試験項目および方法

(1) 鉄筋の腐食面積率の測定

鉄筋腐食状況と腐食面積率測定は,暴露後1年時に試験 体から取り出した鉄筋に透明フィルムを巻き付けて,発錆

図2 塩分測定サンプルの採取方法

部分を写し取り(中央350mm分),腐食の状況を観察す るとともに,画像解析装置を用いて腐食面積率を測定した.

(2) 鉄筋の腐食量の測定

コンクリートに埋設する前の鉄筋の質量を予め測定して おき,解体時に取り出した鉄筋の質量減少から,腐食量を 求めた.錆の除去は,60℃のクエン酸二アンモニウム 10%水溶液に鉄筋を24時間浸漬し,ワイヤーブラシを用 いて行った.なお,黒皮分を補正するために暴露しなかっ た鉄筋についても同様の作業を行った.

(3) 塩分分析

塩分分析は, JCI-SC4で定める塩分分析法に従って全塩 分を測定した.図2に対象としたサンプルを示す.分析対 象は1-B-無,2-B-無,2-B-有,3-B-有であり,試験体を解 体し,2本の鉄筋の間の長さ50mmの部分を採取し,かぶ りから上面までのサンプルを切り出して分析した.

(4) EPMA 分析

図2で示した2本の鉄筋間の中央部分からサンプルを採取し、塩分の分布状況をマッピングによって調べた.なお、 EPMA分析は塩分分析を行った4試験体を対象とした.

3. 結果および考察

3.1 鉄筋の腐食状況

(1) 全面補修した場合(A, C, F 試験体)

図3に鉄筋腐食状況を、図4に塩分量2.4 kg/m³、被覆 有りの試験体タイプ別の腐食面積率を示す.なお、図3で は取り出した2本の鉄筋のうち1本の状況を示し、一点鎖 線より上半分が反かぶり側、下半分がかぶり側を表してい る.ここで、E試験体は腐食がほとんど認められなかっ た.

図3,4より全面補修した試験体では、いずれも反かぶ り側で腐食が卓越して発生していた.A試験体の場合,鉄 筋裏10mmまで完全にはつり取って補修することを想定

しており,比較的組織が緻密と考えられる断面修復材で覆 われている.従って,この結果は内在塩分が多い場合には, 従来適切と考えられていた補修を行っても期待される補修 効果が発揮できない場合があることを示している.

上面被覆の影響は、初期に塩化物イオンを2.4 kg/m³混 入した試験体では、上面を被覆することによって腐食が抑 制されていた(図3中の②と③、⑤と⑥). これは、上面 被覆が酸素等の腐食因子の浸入を抑制したことによるもの と考えられる.しかし、4.8 kg/m³程度の塩分が内在する 場合には、そのことよりも塩分の影響が卓越し、腐食が進 行したものと考えられる(④、⑦).

一方,F試験体は,はつり深さを除く条件が同じA,C 試験体と比較して腐食面積率が大きくなっている.ここで, F試験体は,図1に示すように鉄筋背面に沿ってはつり界 面が存在していることから,試験体作製時に発生した鉄筋 の錆を完全に除去できていなかったこと,および補修材料 が完全に充填されなかったことなどが影響したものと考え られる.実際の補修工事においてもF試験体のような条件 での施工は避けるべきであると考えられる.

さらに、図5に初期に混入した塩分量と腐食減量の関係 を示すが、腐食面積率の結果と同じく、内在塩分量が多く なるに従い、腐食減量は大きくなり、明らかにコンクリー トの内在塩分が鉄筋腐食に影響していると考えられる.

(2) 部分補修した場合(B,D 試験体)

図6に鉄筋の腐食状況を示す.補修を部分的に行った場合,既設コンクリートと断面修復材界面のコンクリート側 にマクロセルが原因と考えられる腐食が発生していた.B 試験体では,境界部の鉄筋のほぼ全周に,D試験体では,

鉄筋の半分の位置にコンクリートと断面修復材の境界があ るためかぶり側のコンクリート部により多くの腐食が発生 していた.なお,マクロセルによる鉄筋の腐食は塩分を混 入していない試験体(⑨)でも観察され,一般的に言われ ているように部分補修がマクロセル腐食を発生させる要因 であることも確認された.

図7に初期に混入した塩分量と腐食減量の関係を示す. 部分補修を想定した試験体についても全面補修した場合と 同様に初期に混入した塩分量が多くなるに従い鉄筋の腐食 減量は多くなる傾向にあり,補修しなかった部分の腐食と ともにマクロセル腐食に対しても内在する塩分がなんらか の影響を及ぼしているものと考えられた.

3.2 塩分分析と EPMA 分析

図8に表面からの距離と塩化物イオン量の関係を示す. 海洋暴露1年間で表面被覆材が無く,塩分を混入しなかっ た試験体はコンクリート側から塩化物イオンが約50 mm 浸透していた.また,初期に塩分を2.4 kg/m³混入した試 験体においても混入した分だけ多くなっているが,塩化物 イオンの浸透傾向は同等であった.

同図の下側に境界面付近について拡大したものを示す.

ここで、かぶり側は表面被覆材が塗られているため塩分の浸透は無いので、測定された断面修復材中心付近(110 mm)の塩化物イオン量は0.01%以下であった.しかし、これより10 mm境界面寄り(95 mm)の塩化物イオン量は若干多くなる傾向にあった.これはコンクリート中

研

究

図7 初期塩分量と腐食減量の関係

写真1 EPMA 面分析結果(3-B-有)

の塩分が断面修復材側へ移動したことを示していると考え られ、鉄筋の腐食にこの塩分の移動現象が何らかの影響を 及ぼしている可能性が考えられた.

写真1に境界付近の EPMA の塩分分析結果の一例を示 す. なお、EPMAの面分析結果では白色が最も塩分濃度が 高いことを示している、写真に示すように約5mm程度塩 分が断面修復材内に分布している状況が確認でき, 塩分分 析と同じ現象を EPMA の面分析画像としても確認するこ とができた.

4. ま 5 め

補修条件の異なる試験体を海洋環境下に暴露し、鉄筋の 腐食に影響する要因について検討した、その結果、以下の ことが明らかとなった.

- (1) コンクリート側から断面修復材側への塩分の移動現象 が確認できた.
- (2) 全面補修の場合、反かぶり側で腐食が卓越していた. これは内在塩分とその移動現象、および酸素の供給等 によるものと考えられた.
- (3) 全面補修と部分補修では腐食形態が異なり、部分補修 の場合、塩分を混入していなものでもマクロセルによ る腐食が進行していた.

5. おわりに

本研究は、東京大学生産技術研究所魚本研究室と産学18 団体との共同研究「劣化したコンクリート構造物の補修工 法に関する共同研究」として行っているものである.

(2004年3月11日受理)

文 献 考 豢

字野祐一ほか:各種要因が補修後の再劣化に及ぼす影響, 1) コンクリート工学年次論文報告集, Vol. 25, No. 1, pp.1559-1564, 2003