研	究		速	報	
研	究诣	凁	報		

擁壁構造物の地震時滑動・転倒変位量の簡易計算

Simplified procedures to compute earthquake-induced sliding and overturning displacements of retaining walls

古 関 潤 一^{*}·加 藤 範 久^{**} Junichi KOSEKI and Norihisa KATO

1. はじめに

1995年の兵庫県南部地震では,鉄道構造物において水 平地盤上の擁壁の被害が各所で生じた¹²⁾.1999年に台湾 で生じた集集地震でも,各種の擁壁構造物が被害を受けた が,その中でも斜面地盤上に建設された道路擁壁の被害が 甚大であった³⁾.

上記のような巨大地震に対する新たな設計法として,他 の多くの土木構造物と同様に,擁壁構造物についても地震 時に生じる変位量を照査する設計法の導入が必要とされて いる.このような背景のもとで,模型実験結果に基づいて 擁壁構造物の地震時変位量を簡易的に計算する手法を構築 し,その妥当性について検討した結果^{4,5)}の概要を以下に 報告する.

2. 重力式擁壁の地震時変位量計算手法の構築

図1に重力式擁壁模型の水平加振実験から得られた滑動 量の時刻歴の例を示す.ただし,加振中のデータのみを結 合して示している.この実験では実物の約1/10の縮尺比 の擁壁模型(図2)に対して周波数5Hzの正弦波を20波 与え,加速度振幅を約50galずつ増加させた段階的水平加 振を行った.擁壁の支持地盤と背面地盤は相対密度約 90%の気乾状態の豊浦砂を用いて作成した.

実験中の観察より,背面地盤に滑り面が発生したのは 350 gal レベルの加振時であった.図1より,滑り面の発 生前は滑動量が加振1波目で大きく増加し,2波目以降は 徐々に増加しにくくなっている.一方,滑り面発生後はほ ぼ一定の割合で滑動量が増加している.滑り面の発生前は 支持地盤のせん断変形によって擁壁が変位し,滑り面発生 後は擁壁底部と支持地盤の間での滑りによって擁壁が変位 していると考えられることにより,このような変位累積特 性の違いを説明することが可能である.

擁壁の変位計算を対象とした既往の研究の多くで検討されている Newmark 法⁶ は、本来は剛体の滑り運動をモデ

*東京大学生産技術研究所 人間·社会系部門 **特許庁(元東京大学大学院 工学系研究科社会基盤工学専攻) ル化したものであるため,前述の特性から滑り面発生後に おいて適用するものとした.一方,滑り面発生前は,擁壁 の支持地盤の変形量を初期載荷骨格曲線と累積損傷度理論 を用いて算定することとした.以下にその手順を説明する.

2.1 滑り面発生前の変位計算

滑り面発生前の支持地盤の変形量を初期ひずみと累積ひ ずみに分けて算出する.初期ひずみとは地盤がそれまでに

図2 重力式擁壁模型の断面図(水平支持層厚5 cm)

56巻6号(2004)

経験したことのない大きさの外力が作用した場合に生じる 支持地盤のひずみと定義し,図3に示すような実験値の近 似曲線(初期載荷骨格曲線)を用いて計算する.一方,累 積ひずみは繰返し外力が作用する際に発生するひずみであ り,図4に示すような繰返し回数と応力比の片振幅および 累積ひずみの関係における実験値の近似曲線(累積損傷度 曲線)に対して,累積損傷度理論を適用して計算を行う. これらのせん断ひずみの和と支持地盤の厚さから擁壁の滑 動量を求める.

また,支持地盤に作用するモーメントと擁壁転倒角度の 関係において上記と同様な手順を適用し,擁壁の転倒角度 を初期転倒角度と累積転倒角度の和として求める.この場 合には転倒モードが卓越した斜面地盤上模型(図5参照) の実験値に基づいて各特性を設定した.

2.2 滑り面発生タイミングの算定

地盤のピーク強度(本模型実験では51°)と釣合い計算 によって求めた限界水平震度を用いた物部岡部式によって 擁壁背面地盤に生じる滑り面の角度を求め、その形成され る領域を設定する.この領域に生じるひずみとして先に擁 壁の滑動量から水平方向の直ひずみ、転倒角度から水平面 上でのせん断ひずみを求め、これらより最大せん断ひずみ を算出する.この最大せん断ひずみが設定値(本実験では 5%)に達した時点で滑り面が発生すると判定する.

2.3 滑り面発生前の変位計算

滑り面発生後の擁壁の滑動および転倒モードについて釣 合い計算を行い,滑動,転倒における Newmark 法の計算 で用いる閾値を算出しておく.転倒モードでの転倒中心は 擁壁のかかと先端とし,擁壁に作用する慣性力および修正 物部岡部式⁷⁾を用いた地震時土圧により算出される作用 モーメントに対し,前述した釣合い計算で求めた作用モー メントの閾値を用いて Newmark 法の計算を行う.なお, 滑り面発生後は地盤の残留強度 ϕ res (本実験では43°)を 用い,模型実験の条件を考慮して擁壁背面摩擦角は 3/4 ϕ res,擁壁底面摩擦角は2/3 ϕ res として計算した.

3. 重力式擁壁の地震時変位量の計算値と実測値の比較

前述した諸特性の設定に用いた厚さ5 cm の水平地盤上 に擁壁模型を設置した場合(図1参照)と最大厚さ50 cm の斜面地盤上に設置した場合(図5参照)の正弦波加振実 験に加えて,厚さ20 cm の水平地盤上に設置して不規則波 (図6参照)で加振を行った場合を対象に変位計算を行い, 計算手法の妥当性について検討した.

擁壁変位量の計算値と実測値の比較を図7に示す. 各図

図5 重力式擁壁模型の断面図(斜面支持層厚50 cm)

研

究

図7 重力式擁壁模型変位量の計算値と実測値の比較 a)水平支持層厚5 cm(正弦波加振);b)斜面支持層厚50 cm(正弦波加振);c)水平支持層厚20 cm(不規則波加振)

支持地盤と加振波	実測値	計算値
形の条件		
厚さ 5cm(水平),	350gal レベル加	350gal レベル加
正弦波	振時の第3波	振時の第 12 波
厚さ 50cm(斜面),	200gal レベル加	250gal レベル加
正弦波	振時の第2波	振時の第10波
厚さ 20cm(水平),	500gal レベル加	500gal レベル加
不規則波	振時の第5波	振時の第5波

表1 重力式擁壁模型の滑り面発生タイミング

の横軸は、台加速度振幅(不規則波加振時は最大値)である.いずれの場合も、提案手法により実測値を良好に再現 することができた.また、背面地盤における滑り面の発生 タイミングも、表1に示すように比較的よく一致した.

4. 補強土擁壁の地震時変位量計算

重力式擁壁と同様に滑り面が発生する前後でモデル化の 手法を変えて、剛な一体型壁面工を有する補強土擁壁模型 (図8参照)の水平加振実験を対象とした変位計算を行っ た.ただし、ほぼ剛体と見なせる重力式擁壁とは異なり、 補強土擁壁では写真1に示すように補強された裏込め地盤 のせん断変形により壁面工が転倒する変位モードが現れる ため、転倒変位に関しては滑り面の発生の有無によらずこ のモードが支配的になるものとしてモデル化を行った.

図9に壁面工変位量の計算値と実測値の比較を示す.厚 さ5cmの水平地盤上に設置して正弦波加振した場合の結果 に基づいて各特性の設定を行っているため,この場合を対 象とした計算値は当然ながら実測値とよく一致した.厚さ 20cmの水平地盤を用いて不規則波加振を行った場合につ いても同じ特性を用いて計算を行ったところ,ほぼ整合し た結果が得られ,表2に示すように背面地盤の無補強領域 における滑り面の発生タイミングも比較的よく一致した.

図8 補強土擁壁模型の断面図(水平支持層厚5cm)

図 9 補強土擁壁模型変位量の計算値と実測値の比較
a)水平支持層厚 5 cm(正弦波加振);
b)水平支持層厚 20 cm(不規則波加振)

表2	補強土擁壁模型の滑り面発生タイ	ミング	グ
----	-----------------	-----	---

支持地盤と加振波	実測値	計算值
形の条件		
厚さ 5cm(水平),	700gal レベル加振	650gal レベル加
正弦波	時の第10波	振時の第15波
厚さ 20cm(水平),	1000gal レベル加	800gal レベル加
不規則波	振時の第2波	振時の第2波

56巻6号(2004)

生 産 研 究 495

写真1 補強土擁壁模型の壁面工の変位と裏込め地盤の変形状況の例(水平支持層厚5cm)

5.まとめ

重力式擁壁の地震時滑動・転倒変位量の簡易計算手法を 提案した.本提案手法の特徴は,模型実験から推察された 滑り面発生前後での擁壁の変位メカニズムの違いに着目 し,変位計算手法を変化させる点である.滑り面発生前で は支持地盤の変形に対して初期載荷骨格曲線と累積損傷度 曲線,滑り面発生後においては Newmark 法を利用する. 滑り面発生前の諸特性を2種類の正弦波加振実験結果に基 づいて設定したうえで,提案手法を不規則波加振模型実験 に適用し,滑り面発生前後において良好に実測値の挙動を 再現できることを示した.また,剛な一体型壁面工を有す る補強土擁壁についても転倒変位のモデル化を変更するこ とにより対応できることを示した.

辞

謝

模型実験の実際にあたって鉄道総合技術研究所の舘山勝 氏と渡辺健治氏より多大なご協力をいただいた.ここに記 して深謝の意を表す.

(2004年9月8日受理)

参考文献

- 古関潤一, 龍岡文夫: 阪神・淡路大震災における擁壁の挙 動について, 生産研究, 47巻11号, pp. 532-535, 1995.
- 2) 古関潤一:コンクリート擁壁の耐震性判定と補強, 生産研究, 52巻12号, pp.1-7,2000.
- 内村太郎,古関潤一,龍岡文夫,早野公敏,黄景川:台湾 集集地震における擁壁・補強土構造物への被害事例(その 1),第35回地盤工学研究発表会,pp.243-244,2000.
- 4) 古関潤一,加藤範久,渡辺健治,舘山勝:支持地盤のせん 断変形と背面地盤における滑り面発生を考慮した擁壁の地 震時変位計算,港湾・臨海部都市機能の耐震性向上に関す るシンポジウム-土構造物および抗土圧構造物の地盤挙動 および安定性-発表論文集,地盤工学会,pp. 180-187, 2003.
- 5) 古関潤一,加藤範久,渡辺健治,舘山勝:補強土擁壁と重 力式擁壁の地震時変位量の簡易計算手法,ジオシンセティ ックス論文集,第18巻,IGS日本支部,pp.367-374,2003.
- Newmark, N.M.: Effects of earthquakes on dams and embankments, Geotechnique, Vol. 15, No. 2, pp. 139–160, 1965.
- 7) 古関潤一,龍岡文夫,堀井克己,舘山勝,小島謙一,ムナ フユルマン:大きな地震荷重下において擁壁および補強土 壁に作用する地震時主働土圧の評価法,第10回日本地震 工学シンポジウム,pp.1563–1568,1998.