東京大学 大学院新領域創成科学研究科 基盤科学研究系 先端エネルギー工学専攻

> 平成 30 年度 修士論文

高MDD化及び低抵抗化を実現する

主翼の空力設計法の研究

2019年1月29日提出 指導教員 吉田 憲司 教授

47176073 佐藤 宥毅

目次

1.	序	「論		.3
	1.1.		背景	3
	1.2.		先行研究の概要	4
	1	.2.1	目的と手法	4
	1	.2.2	成果と課題	7
	1.3.		研究目的と手法1	10
2.	2	次う	元翼設計法の検討1	11
	2.1	検	討方針	11
		(1)) RAE2822 翼型、GA(W)-1 翼型の M _{DD} 特性について	11
		(2)) 設計の方針1	12
	2.2	検	討結果1	13
	2	.2.1	高M _{DD} 化に向けた設計法の改良1	13
		(1)	上面前縁近傍における曲率に着目した設計1	13
		(2)	翼厚比の修正を加えた設計1	18
	2	.2.2	低C _d 化に向けた設計法の改良2	21
		(1)	フロントローディングの導入	21
		(2)	詳細な分析と形状修正法のパラメーター化	25
		(3)	分析結果の適用による低抵抗翼型の創出	30
	2.3	2	次元翼設計法のまとめ4	19
3.	3	次う	元翼設計法の検討5	56
	3.1	検診	打方針5	56
	3	.1.1	検討の流れ	56
	3	.1.2	検討対象(初期形状)の分析5	56
	3.2	検診	対結果5	59
	3	.2.1	最適2次元翼設計法の適用5	59
		(1)	初期形状の各断面における2次元翼特性の解析	59
		(2)	第2章の設計指針に基づく断面設計法の適用	32
		(3)	上面2段衝撃波と下面衝撃波の低減に向けたねじり角分布の検討	71
	3	.2.2	2 上面 2 段衝撃波と下面衝撃波の低減に向けた翼断面設計の改良	76
		(1)	2 次元翼断面の再設計	76
		(2)	ねじり角分布の検討結果を考慮した3次元翼への展開	78
	3.3	3	次元翼設計法のまとめ	32

4.	結論	
≁ ≭	-₩-₩-	or
少 与	又瞅	
謝辞	•••••	

1. 序論

1.1. 背景

今後増加し続けるジェット旅客機の需要から航空輸送量の増大が予測される。図 1-1 は、 2034 年までの航空旅客需要予測が世界的に増加し続けることを示しており、2034 年には 現在の約 2.5 倍である 15 兆 5,615 億人キロメートルになると予測されている。

この予測において、航空機には更なる経済性の向上が必要であり、合わせて環境及びエネル ギー問題への影響を解決する有効な対策も重要と考えられている。具体的には空力抵抗の 低減、エンジンの高効率化、機体の軽量化、システム全体としての改善などが挙げられるが、 以下では本研究の背景となる空力分野における課題と対策について述べる。

空力分野においては、高M_{DD}化と低抵抗化によって航空機の輸送効率を示す以下のパラメ ーターの向上を実現することができる。

$$M\frac{L}{D} \times \frac{1}{SFC}$$

M:巡航マッハ数、L: 揚力、D: 抵抗、SFC: 燃料消費量

ここで、M_{DD}(抵抗発散マッハ数)とは、衝撃波に起因した抵抗の急増(抵抗発散)が生じるマッハ数を表し、図 1-2 で定義される。この向上(高 M_{DD}化)は巡航速度の増加を可能とするため輸送効率、すなわち経済性の向上に繋がる。

また巡航時の抵抗(D)の低減も輸送効率の増加に繋がることは自明であるので、本研究では M_{DD} の向上及び抵抗(D)あるいは抵抗係数(C_D)の低減に主眼を置く。

図 1-2 抵抗発散マッハ数の定義

1.2. 先行研究の概要

1.2.1 目的と手法

先行研究では、通常の2次元翼(翼型)に比べ、高い MDD 性能を有する既存の超臨界翼型 (Supercritical 翼型、以下 SC 翼型と呼称)である DSMA523 翼型(図 1-6 参照)を改良 することによって、さらに高いMDD 翼型を創出するための設計法の構築を目的としている^[2]。 そこでは、DSMA523 翼型設計時とほぼ同時期に我が国で見出された神谷の高MDD 化に向け た設計アプローチ^[3]、すなわち「上面圧力分布の平均値を代表するパラメーター(F 値と言 われる)の低減が MDD 性能の改善に繋がる」という知見を利用して目標圧力分布の実現を 図る手法が採用されている。神谷のアプローチの妥当性は実験的にも検証されている。

先行研究では、SC 翼型に関する過去の知見を整理したうえで、抵抗発散性能の向上に向 けた新しい翼型の設計指針と検討方法を示している。また、CFD(Computational Fluid Dynamics、計算空気力学)を用いて翼型の空力性能の分析を行うため、その解析手法の概 要を述べると共に代表的な翼型について風洞試験結果との比較・検討を行うことで、CFD 解析手法の妥当性の評価結果をまとめている。CFD 解析には、宇宙航空研究開発機構

(JAXA)で開発された圧縮性流体解析ソルバ UPACS を用いている。また、一般に遷音速 領域では翼面上に衝撃波が発生するため、解析精度は衝撃波近傍の格子解像度に依存する ことが想定され、先行研究では独自に開発した解適合格子法を適用することで、衝撃波近傍 の解析精度を向上させている。また、その検証には DSMA523 翼型と、通常翼型の代表と して NACA0012 翼型を選定し、それらの他機関における風洞試験結果との比較を通して計 算精度を確認している。 先行研究における解析手法の概要を表 1-1 に示す。一般に、CFD による遷音速流の解析 では翼面上での垂直衝撃波の発生や衝撃波足元及び後縁での剥離が見られ、それらは境界 層の発達状態と強く関係する。そのため、翼型まわりの外部流における CFD 解析では乱流 モデルを適用した解析と風洞試験との比較が行われ、その妥当性について検討されている ^{[4],[5]}。計算格子には C 型構造格子を用いており、格子点数は(周方向)×(高さ方向)=533 点× 75 点で、総点数は約 40,000 点が採用されている(図 1-3 参照)。

21	
支配方程式	レイノルズ平均 NS 方程式
離散化手法	セル中心有限体積法
流速評価	Ausmdv スキーム
MUSKL の高精度化	2次精度
乱流モデル	Spalart-Allmaras

表 1-1 UPACS 解析手法

図 1-3 空間格子の拡大図

一般に、遷音速翼型まわりの流れ場では翼面上に垂直衝撃波が生じ、それは翼面の圧力分 布に急激な変化を与えるため、その格子解像度が重要となり、流れ場の格子依存性が強く現 れる。そのため、先行研究では格子依存性をなるべく少ない格子点数で取り除くために、翼 面に衝撃波が発生した場合、衝撃波近傍に格子点を追加して計算格子の分解能を改善する という解適合格子法を上下面に適用している(図1-4)。この解適合格子法では、一度 CFD 解析を行い、その結果の圧力分布から衝撃波位置を特定し、その前後に44点(合計88点)の 格子点を追加することで衝撃波の解像度を向上させて再度 CFD 解析を行うというものであ る。一例として、計算対象に最も単純な対称翼型として NACA0012 を選定して格子依存性 に関する検討を行った結果が図1-5 にまとめられている。

図 1-4 解適合を行った後の空間格子

図 1-5 Cd値の収束状況の比較

図 1-5 からわるように、先行研究で採用された解適合格子は少ない格子点数でも抵抗係数 (Cd)に関して十分飽和した値まで収束させることが出来ており、その有効性が確認されて いる。この結果をもとに先行研究では解適合格子法を適用する前の格子点数としては先述 の通り、約40000点(周方向525点×高さ方向75点)が採用されている。 1.2.2 成果と課題

先行研究においては、DSMA523 翼型に比べて更なる高*M_{DD}*翼型の創出には成功しているが(図 1-6 の D53_id03)、高 M_{DD}化を最も優先したため設計点におけるC_dの増加を許容せざるを得ない状況となってしまっている。そのため、抵抗低減に関して改善の余地が残っている。

先行研究における最終的な設計結果として、ベースとした既存 SC 翼型である DSMA523 翼型の *Mon* 特性と比べて抵抗発散マッハ数(Mon)が 0.022 増加するという結果(図 1-9 参照)が得られている。これは、前縁近傍の急激な圧力降下とそれに続く急な圧力上昇の領 域 (suction peak)の存在と翼下面後方での正圧領域の拡大による揚力増加 (rear loading) を生む圧力分布(図 1-7 参照)に起因し、それは揚力傾斜の増大と、それによって設計揚力 の実現に必要な迎角が減少し、結果として負になったことにより crest 位置(流れ方向と平 行な座標軸が翼上面と接する位置、すなわち最高地点の翼弦位置)が後退したことにより達 成されたものと考えられている。また、M_{DD}特性の検討により、抵抗発散マッハ数の大きさ は上面衝撃波位置の後退に強く依存していることが明らかとなり、特に crest 位置の後退は 図 1-8 の drag-thrust loop(翼面上の圧力を翼の厚さ方向座標に対してプロットした際に、 その閉曲線の面積が抵抗及び推力成分を表すようなもの)における上面の抵抗成分の低減 と衝撃波の後退を遅らせるため、抵抗発散性能の改善に有効であることが明らかにされて いる。

尚、先行研究では設計時の制約に翼厚比を入れていなかったので、最終的に得られた設計 翼型(D-53id03)の翼厚比は比較対象のDSMA523 翼型のものよりわずかに小さくなって いる(図1-6参照)。この点も厳密な評価の点では改善の余地が残っているものと考えられ る。

図 1-6 先行研究の最終成果の設計形状の比較

図 1-7 D-52id05,D-53id03 での $C_l = 0.684, M = 0.78$ における Cp 分布の比較

図 1-8 D-52id05,D-53id03 での $C_l = 0.684, M = 0.78$ における drag-thrust loop の比較

図 1-9 先行研究における設計形状の MDD 特性のまとめ

また先行研究では 2 次元翼設計のみを主眼としたため、実際の 3 次元翼への展開を想定 した空力設計法の分析には至っていない。この点も課題であると認識している。

1.3. 研究目的と手法

本研究では、従来の主翼設計法を見直し、より高 MDD 化と低抵抗化を可能とする新たな 設計法を構築して航空機の経済性向上に寄与することを目的に、先行研究の課題である設 計マッハ数における抵抗低減に加え、2 次元翼を 3 次元翼へ展開する上での抵抗低減の実現 を達成することを目標とする。具体的には、現在 JAXA 航空技術部門で検討している亜音 速旅客機の技術参照機体(TRA2012A と呼称)の空力性能を向上できる主翼を設計するこ とである。

高 MDD 化の検討方法としては神谷の F 値に基づくアプローチではなく、抵抗特性に最も 影響を持つと物理的に考えられる断面形状の局所的な領域について形状修正を試み、各設 計形状について直接 MDD 特性を評価して最良形状を見出すという順問題的解法を適用する 方針をとった。

本研究では、先行研究と同様にJAXA 航空技術部門が開発した CFD コードと衝撃波近傍 の格子密度を自動的に高める格子生成ソフトを用いて、先行研究では実現しえなかった高 M_{DD} 化と低抵抗化の両立を目指して、以下に示す設計指針により翼型の設計を行った。尚、 今回の解析でも衝撃波に伴う境界層の剥離状況を把握するために粘性を考慮する必要があ るため、乱流モデルとしては先行研究同様、Spalart-Allmaras (SA)モデルを用いた。尚、 SA モデルを用いた遷音速翼型の解析結果の妥当性については、既に先行研究で実験との比 較を通して検証済みである。

2.2 次元翼設計法の検討

2.1 検討方針

(1) RAE2822 翼型、GA(W)-1 翼型の MDD 特性について

まず、本研究を進めるにあたり、先行研究で改良対象の基準とした DSMA523 翼型よ り高い MpD 性能を持つ翼型があれば、より最適な翼型を設計できるとの方針でその有無 に関して文献調査を行った。古くは DSMA523 翼型と異なる SC 翼型として RAE2822 翼 型^[6]、GA(W)-1 翼型^[7]などの設計例が見い出されたが、CFD 解析の結果、いずれも DSMA523 翼型の MpD 性能より劣っており(図 2-2)、また最近では近年の CFD 解析法 の発展に伴い直接 3 次元翼設計を行っている研究が主流で、むしろ 2 次元翼として設計 改善を行っている例が見当たらず、結果として本研究の方針に合致するものを見い出す には至らなかった。そのため、本研究でも先行研究同様、DSMA523 翼型が MpD 特性の 優れた SC 翼型の代表例であると認めて、これを基準翼型としてその改良に注力すること を主眼とした。

図 2-1 DSMA523 翼型、RAE2822 翼型、GA(W)-1 翼型、先行研究での最適翼型(D53-id03)の翼型

 図 2-2 DSMA523 翼型、RAE2822 翼型、GA(W)-1 翼型、先行研究での最適翼型(D53id03)の設計揚力におけるM_{DD}特性の比較

(2) 設計の方針

上述した DSMA523 翼型を基準翼型として改良を行うに当たって、設計指針として下 記の二つの狙いを設定した。

狙い①:『高 M_{DD} 化』(2-2-1 参照)

狙い②:『低 Cd 化』(2-2-2 参照)

その上で設計条件として、翼厚比(= t/c)を基準形状である DSMA523 翼型の t/c = 10.99(%)に合わせるか、先行研究の最適翼型である D53-id03 の t/c = 10.45(%)に合わせるかの二通りの検討方針が考えられる。本研究では、狙い①の検討時は、先行研究と同じ設計条件での高 M_{DD} 化を図るため、t/c は D53-id03 に合わせて先行研究の更なる改善を試みることにした。また狙い②の検討時には、狙い①と同様に先行研究と同じ設計条件での低 C_d 化の効果を評価するために、まずは t/c を D53-id03 に合わせた設計を行った上で、最終的に得られる最適形状の性能評価は DSMA523 と同じ条件で比較するため、t/c を DSMA523 翼型に合わせる設計も行う方針とした。

12

2.2 検討結果

2.2.1 高MDD化に向けた設計法の改良

(1) 上面前縁近傍における曲率に着目した設計

高M_{DD}化を実現するにあたって、まず初めに先行研究で取り組まれた形状修正案を調べた。その中で、上面前縁近傍の曲率に着目した設計については、先行研究でも取り組まれているものの改善の余地が残っていると判断したため、まずこの点の修正を行った。

但し、上面前縁近傍の曲率を修正することは、同時に上面の翼厚が変わることにも繋がる。そこで、まず翼厚比の変化を受け入れて翼厚比を固定することなく、高M_{DD}化を狙う設計の立場を取り、上面前縁近傍における曲率修正の有効性を確認することを主眼として設計を行った。そのため、今回の設計で高M_{DD}化に対する有効性が確認できた場合には、以降の設計で翼厚比を先行研究の最適翼型である D53・id03 の翼厚比へ固定するという方針をとった。今回の設計では着目した修正点が、M_{DD}及びC_dに対してどの程度の感度を持つかを調べることも考慮して Design54_id01、Design54_id02 の第1世代を考案した。

(以降では Design を省略し、D54_id01、D54_id02 のように表記する。) 以下で、D54_id01、D54_id02 の設計案について詳細を述べる。

まず、D54_id01 の設計案は、先行研究の D53_id03 をベースに前縁から上面の crest 位置までの形状を修正し、crest 位置の後方は翼厚が crest 位置の前方と 2 回微分がスム ースに繋がるように設定し、その上で翼厚が"薄く"なるように翼厚座標を比例配分で修 正した。具体的には、上面前縁近傍における"曲率を大きく"することで"M_{DD}が大きく なる代わりにC_dの増大を伴う"という傾向とその感度の確認を狙った。ここでの形状の修 正には、先行研究で用いられていた Bezier 関数による形状決定方法を採用した。具体的 には、前縁近傍の曲率を修正することによって翼厚比が 10.12 (%) となる設計を行った。

次に、D54_id02 の設計案は、D54_id01 同様、D53_id03 をベースに前縁から上面の crest 位置までの形状を修正し、crest 位置の後方は翼厚が crest 位置の前方と 2 回微分が スムースに繋がるように設定し、その上で翼厚が"厚く"なるように翼厚座標を比例配分 で修正した。具体的には、上面前縁近傍における"曲率を小さく"することで"M_{DD}が小 さくなる代わりにC_dの減少を伴う"という傾向とその感度の確認を狙った。ここでの形状 の修正には上述した D54_id01 と同様の形状決定方法を採用することによって、翼厚比が 11.24 (%) となる設計を行った。

図 2-2 に設計結果としての翼型形状、図 2-3 にそれらの圧力分布、また表 2-1 には設計 点での空力特性データ(3分力値等)、さらに図 2-4 は各マッハ数における抵抗特性を示 す。

図 2-3 D54_id01、D54_02の Cp 分布の計算結果

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D54_id01	0.78	0.2219	0.6841	0.0249	0.0184	0.0065	-0.1611	27.4860	0.4727
D54_id02	0.78	0.0488	0.6835	0.0218	0.0151	0.0066	-0.1871	31.3920	0.4684

表 2-1 D54_id01、D54_id02の3分力値等

図 2-4 D54_id01 の C_l=0.684 における M_{DD} 曲線の比較

D54_id01 では想定通り、上面前縁近傍における曲率を大きくすることで、M_{DD}が大き くなる代わりにC_dの増大を伴うという傾向を確認することができた(図 2-4 の赤●参照)。 これは Cp において、前縁近傍の上面の立ち上がりが急激となり衝撃波位置が後退したこ とに依存すると考えられる。

次に D54_id02 については、上面前縁近傍における曲率を小さくすることで、DSMA523 以上のM_{DD}を確認できたが D53-id03 には及ばないことが分かった(図 2-4 の青●参照)。 C_dについては減少に向かう傾向が確認できたが、(表 2-1 参照)これは翼厚比の減少に伴 う効果が大きいと考えられる。

以上を踏まえ、更なる改善として新たに D55_id01、D55_id02 の第 2 世代を考案した。 まず、D55_id01 の設計案は、D54_id01 をベースに前縁から上面の crest 位置までの形 状を修正し、crest 位置の後方は翼厚が crest 位置の前方と 2 回微分がスムースに繋がる ように翼厚が"薄く"なるように翼厚座標を比例配分で修正した。具体的には、上面前縁 近傍における曲率を"限界まで大きく"することで、翼厚の束縛がない状態で MoD を最 大限高めることを目的とした。ここでの形状の修正には上述した D54_id01 と同様の形状 決定方法を採用することによって、翼厚比が 9.12(%) となる設計を行った。

次に、D55_id02 の設計案は、D54_id01 をベースに前縁から上面の crest 位置までの 形状を修正し、crest 位置の後方は翼厚が crest 位置の前方と 2 回微分がスムースに繋が るように翼厚が"薄く"なるように翼厚座標を比例配分で修正した。具体的には、上面前 縁近傍における曲率を D55_id01 と D54_id01 の"中間程度に大きく"することで、翼厚 の束縛がない状態でM_{DD}を最大限高めることを目的とした。ここでの形状の修正には上述 した D54_id01 と同様の形状決定方法を採用することによって、翼厚比が 9.56(%) とな る設計を行った。

図 2-5 に設計結果としての翼型形状、図 2-6 にそれらの圧力分布、また表 2-2 には設計 点での空力特性データ(3分力値等)、さらに図 2-7 は各マッハ数における抵抗特性を示 す。

図 2-5 D55_id01、D55_02の設計形状

図 2-6 D55_id01、D55_02のCp分布の計算結果

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D55_id01	0.78	0.8271	0.6842	0.0334	0.0271	0.0063	-0.1257	20.4860	0.4754
D55_id02	0.78	0.3767	0.6840	0.0284	0.0219	0.0064	-0.1495	24.1260	0.4748

表 2-2 D55_id01、D55_id02 の 3 分力値等

図 2-7 D55_id01、D55_id02 の Ci=0.684 における MDD 曲線の比較

D55 世代では D54_id01 に比べて更に上面前縁近傍における曲率を大きくすることで、 M_{DD} の更なる向上が実現できた。(図 2-7 の赤線及び青線の M_{DD} 値と図 2-4 の赤線の M_{DD} 値の比較より。) 一方で、 C_d に関しては D54_id01 以上に増大する結果となった。今回設計した D55_id01 と D55_id02 では、上面前縁近傍における曲率をより大きくした D55_id01 の方が M_{DD} の大きな向上が実現できたことから、今後の設計指針としては、 D55_id01 をベースとして M_{DD} を向上させる傾向を維持しつつ、 C_d 低減の実現を目標として設計を進めることにした。

(2) 翼厚比の修正を加えた設計

『(1)上面前縁近傍における曲率に着目した設計』の結果を踏まえて、以降の設計世代ではM_{DD}を向上させる傾向を維持しつつ、C_dの低下を狙う検討結果について述べる。

ここでの D56 世代の設計では、 C_d 増大の抑制を狙うにあたり C_d の値に直接的に起因すると考えられる t/c を D53-id03 に合わせることで、t/c を合わせたときの C_d の増加量及び M_{DD} 特性を評価することを目標とした。

具体的に、D56_id01の設計案は、D55_id01をベースにD53-id03と等しい t/c となるように翼厚が厚くなるように翼厚座標を比例配分で修正した。t/c は 10.45(%) である。

図 2-8 に設計結果としての翼型形状、図 2-9 にそれらの圧力分布、また表 2-3 には設計 点での空力特性データ(3分力値等)、さらに図 2-10 は各マッハ数における抵抗特性を示 す。

図 2-9 D56_id01のCp分布の計算結果

表 2-3 D56_id01 の 3 分力値等

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D56_id02	0.78	1.5695	0.6842	0.0429	0.0368	0.0061	-0.0965	15.9590	0.4616

図 2-10 D56_id01 の C_l=0.684 における M_{DD} 曲線の比較

D56_id01の解析の結果から D54 世代及び D55 世代の形状修正で得られたM_{DD}の向上については、D56_id01において上面前縁の曲率を D55_id01の曲率と等しくなるように設定したにも関わらず、M_{DD}の向上を図ることができなかったことから(図 2-8 及び図 2-10 参照)、上面前縁近傍における曲率変化の影響は少なく、翼厚の変化に依存する点が大部分を占めるものであったと考えられる。

また、D56_id01においては前縁近傍の曲率の急激な変化や翼厚の増加に伴い、C_dの大幅な増加を招いた。翼厚をD53·id03に合わせるという条件の下でM_{DD}の向上を 実現するには、上面前縁近傍における曲率の修正だけでは改善の見込みは小さいこと が確認できたため、新たな形状修正案の考案が必要であることが明らかになった。 2.2.2 低Ca化に向けた設計法の改良

(1) フロントローディングの導入

以降の設計世代では、C_dの低下を主目的として設計を進めた検討結果について述べる。 ここでの D57, D58 世代ではC_dの低下と同時にM_{DD}の向上も狙う案として、フロントロー ディング(FL)の導入、すなわち翼前半部で揚力に寄与するように設けられた下面の正 圧部分を積極的に設けることを試みた。

具体的には、前縁の"壁の高さ(前縁近傍のほぼ垂直に近く立ち上がる翼厚の増大部分の高さ)"を小さくすると同時に、フロントローディングでの揚力確保により設計迎角(DSMA523 翼型と同一の設計C₁=0.684 を確保するために必要な迎角)を下げることで

上面のクレスト位置を後退させ、前縁からその位置までの負圧による推力成分を大きく して、C_dレベルの低下を見込んだ。また、必要迎角を小さくすることによって、衝撃波の 後退も緩和することでM_{DD}の向上も狙った。ここでの設計案 D57_id01 及び D58_id02 で は、D56_id01 をベースとして下面にフロントローディングを設け、その際に上面及び下 面の約 25%(CFD 格子点上では 64 点目)以降の基本形状は維持して設計を行った。尚、 t/c は D53-id03 と等しい 10.45 (%) に統一している。以下では D57_id01 と D58_id02 の 2 つの世代の設計案についての詳細を述べる。

まず、D57_id01の設計案は、D56_id01をベースに下面にフロントローディング形状 を試験的に導入した。フロントローディング形状の導入によって前縁の壁を小さくする と同時に、設計迎角を下げることで、C_dレベルの低下とM_{DD}の向上を同時に狙うことが主 眼である。

次に、D58_id02の設計案は、D56_id01をベースとして、D57_id01より大きいフロントローディング形状を導入した。フロントローディング形状の導入によって前縁の壁を小さくすると同時に設計迎角を下げることで、C_dレベルの低下とM_{DD}の向上を同時に狙うことが目的である。

フロントローディングの設計には以下に示す式を用いて z 座標を定義し、各パラメー ターは表 2-5 に示す値を採用した。ここで、i は前縁を 1 とした時の前縁からカウントし た点列数、 z_i^* はフロントローディング導入の基準翼型として採用した D56_id01 の下面形 状における i 番目の下面 z 座標を表している。Z_up_base 及び z_low_base は設計時に上 面および下面に対して採用した基準となる翼型、t/c_up 及び t/c_low は上面および下面に 対して翼厚修正のために掛けた値を表す(表 2-4 参照)。

また、図 2-11 に設計形状の図、図 2-12 に Cp 分布と表 2-6 に空力特性データ(設計点 での 3 分力値等)、さらに図 2-13 に各マッハ数での抵抗特性を示す。

D57_id01 のフロントローディング形状

$$\begin{aligned} &z_i = z_i^* + P_1 \sin\{\pi(x/x_{62})\} & \text{(i} = 1 \sim 61) \\ &z = z_i^* + P_1 \sin\{\pi(x/x_{62})\} + R_4 & \text{(i} = 62) \end{aligned}$$

D58_id02 のフロントローディング形状

$$\begin{aligned} z_i &= P_2[z_i^* + P_1 \sin\{\pi(x/2x_{62})\}] \quad (i = 1 \sim 38) \\ z_i &= P_2[z_i^* + P_1 \sin\{\pi(x/2x_{62})\}] + P_3 \quad (i = 39) \\ z_i &= z_i^* + Q_1 \sin[\pi\{(x - x_{40})/(x_{62} - x_{40})\}] + Q_3(x + Q_2)(x - x_{62})^2 \quad (i = 40 \sim 61) \\ z &= z_i^* + R_4 \quad (i = 62) \end{aligned}$$

表 2 ⁻ 4 D57_id01、D58_id02 の形状特性
--

Design	z_up_base	z_low_base	t∕c_up	t∕c_low
D57_id01	D56_id01	D56_id01	-	1.00791
D58_id02	D56_id01	D56_id01	-	1.0081

表 2-5 D57_id01、D58_id02のフロントローディング形状決定パラメーター

Design	P1	P2	P3	Q1	Q2	Q3	R1	R2	R3	R4
D57_id01	0.018	-	-	-	-	-	-	-	-	0.0015
D58_id02	0.014	0.2	0.0001	0.01	0.031	11.4	-	-	-	0.0012

図 2-12 D57_id01、D58_id02のCp分布の計算結果

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D57_id01	0.78	1.4715	0.6840	0.0413	0.0354	0.0059	-0.0891	16.5710	0.4654
D58_id02	0.78	1.4797	0.6839	0.0396	0.0338	0.0058	-0.0828	17.2740	0.4696

表 2-6 D57_id01、D58_id02の計算結果の 3 分力値等

図 2-13 D57_id01、D58_id02 の Ci=0.684 における MDD 曲線の比較

図 2-12 に示されるように D57_id01 から D58_id02 にかけてフロントローディング を設けるために、元の下面形状の削り始める翼弦位置の翼厚方向座標を高くし、さら に削る部分の翼弦方向を拡大することによって、前縁近傍にある"壁のような形状" に起因するC_dの増加を防ぐと同時に、揚力確保の効果を大きくすることを試みた。そ の結果、図 2-12 の圧力分布から推定されるように揚力の確保は実現できたが、図 2-13 からわかるように抵抗の低減には至らなかった。

以上の結果を踏まえて、より改善効果の大きい(=M_{DD}の向上とC_dの低下に向けて 最適な)フロントローディング形状を創出するために、詳細な分析を行った。 (2) 詳細な分析と形状修正法のパラメーター化

2-2-1(1)での設計から得られた知見をより深く分析するために、通常の Cp 分布と形状の関係や drag-thrust loop のみならず、局所的な抵抗及び推力成分(局所 Cp とその地点の勾配の積で整理)やそれらの前縁からの積分値(前縁からの抵抗及び推力寄与分の履歴)も一緒に分析できるような合計 9 つのグラフによる分析方法を導入した。以下でこれらのグラフの見方を説明する。

まず、単位長さあたりの局所的な抵抗成分*Č*dは以下の式で定義される。

$$\tilde{C}_d = -C_p \sin(\alpha - \theta)$$

α ; 迎角(翼弦方向を x 軸とした座標軸から測られる角度)

θ;翼面の接線が x 軸となす角度(勾配)

次に、9 つのグラフとは図 2-14 に示されるようなものであり、具体的には以下の通り である。

図 2-149 つのグラフの説明図

- 図①: Cpーz/c グラフ。
- 図②: \tilde{C}_d -z/c グラフ。
- 図③: $\sum \tilde{C}_d z/c$ グラフ。z/c方向に見た \tilde{C}_d の積分値の推移。
- 図④: 翼型 (z/c−x/c)。負圧の区間を強調(上面:赤●、下面:青●)。
- 図5): 翼型 (z/c-x/c)。推力成分を強調(上面:赤●、下面:青●)。
- 図⑥: 翼型(z/c-x/c)。前縁から積分していった抵抗値が正となる区間を強調(上面:
 赤●、下面:青●)。

図⑦: Cp-x/c グラフ。

図⑧: \tilde{C}_d -x/c グラフ。

図⑨: $\sum \tilde{C}_d - x/c$ グラフ。x/c方向に見た \tilde{C}_d の積分値の推移。

次に、図 2-15 に DSMA523 翼型の設計条件(M_{∞} =0.78、 α =0.76[°])における CFD 解析結果の 9 つのグラフを示す。

この図を用いた分析により、C_dの低減に必要と思われる形状の修正箇所がどこにある かを特定することが可能となり、本研究では以下の3つを形状修正パラメーターとして 設定するのが効果的であることを確認した。

A) パラメーター①: 前縁上面側の曲率

これは、図 2-16 左側に示されるように、前縁上面側の曲率κをコントロールするこ とによって、上面の前方部で thrust を最大限得ることを目的に導入するもので、上面 の翼厚にも寄与するものと考えられる。尚、上面の翼厚を厚くすることは、下面の翼厚 を薄くすること(『パラメーター③:フロントローディングの傾き』の改善に向けた設 計)にも繋がっている。

図 2-16 右側はパラメーター①の各値と C_dとの関係を示す。これより、曲率を小さ くするほど C_d低減に有効であることがわかり、かつその有効範囲も明らかとなっ た。

図 2-16 パラメーター①と Cdの相関

B) パラメーター②:前縁下面側の最大曲率を取る位置(FL 開始位置)

このパラメーターは図 2-17 左側に示される前縁近傍の円の中心の z 方向位置 (ZFL/c) で、C1の確保に最も寄与するものとして導入したが、その値の工夫によって は同時に Cdの低減も狙えるものと考えた。しかしながら、今回の検討においては新 たに導入した 3 つのパラメーターの中では最もCd低減への効果が小さいものであっ た。

図 2-17 右側にパラメーター②の各値と Ca との関係を示す。これより、下面の前縁 近傍に大きな曲率を設けたことによる鈍頭性の緩和(パラメーター②を大きくする、 あるいは絶対値で小さくすること)が、 \tilde{C}_d の増分を減少させる効果を有することが確 認され、その有効なパラメーター範囲も明らかとなった。

図 2-17 パラメーター②と Cdの相関

C) パラメーター③: フロントローディング部分の勾配

これは図 2-18 左側の点 A(下面 100 点中の前から 54 番目)と点 B(62 番目)の傾 きとして定義するもので、フロントローディングによるC_d低減効果を最大化すること を目的として導入した。パラメーター①~③の 3 つの中で、最もC_dの低減に大きな効果 が見込めるパラメーターと想定した。また、パラメーター①で上面の翼厚を厚くするこ とにより、パラメーター③の値を絶対値で小さく(傾きを緩やかに)することができ る。

図 2-18 右側にパラメーター③の各値と C_d との関係を示す。これより、 \tilde{C}_d 低減に最適なパラメーター③の値が見い出すことができることが分かった。

図 2-18 パラメーター③と Cdの相関

(3) 分析結果の適用による低抵抗翼型の創出

D59世代では、『(2) 詳細な分析と形状修正法のパラメーター化』で述べた分析に基 づき、3つのパラメーターに着目してC_d低減を目標とした設計を行った。基本的な設 計指針はD57_id01、D58_id02と同じく、D56_id01をベースとして下面にフロント ローディングを設けたが、その際上面及び下面の約25%(座標点として64番目)以降 の基本形状は維持して設計を行った。t/c はD53-id03と等しく10.45%に統一した。 以下に、D59_id01、D59_id02の設計案についての詳細を述べる。

まず、D59_id01 については、D56~58 及び DSMA523、D53_id03 の考察結果を 反映させて、3 つの形状修正パラメーター(①前縁上面側の曲率、②FL 開始位置、③ フロントローディングの勾配)と C_d との相関に基づいて設計を行った。この設計で は、前縁上面側の曲率を小さくして(上面の翼厚を厚くして)フロントローディング 形状を設計し、また FL 開始位置を前縁の近いところに設定すると共に、フロントロ ーディングの勾配を緩やかにすることで、D56~58 に比べてC_dの大幅な低下を狙うこ とを主眼とした。

次に、D59_id02 については、D59_id01 同様、D56~58 及び DSMA523、D53_id03 の考察結果を反映させて、3 つの形状修正パラメーターと C_d との相関に基づいて設計を 行った。この設計では、前縁上面側の曲率を小さくして(上面の翼厚を厚くして)、フ ロントローディング形状を設計し、D59_id01 に比べ C_d の低減量を妥協する代わりに M_{DD} の向上を狙うことを主眼とした。具体的には、FL 開始位置を前縁の近いところに設 定し、フロントローディングの勾配をある程度なだらかにすることで、D56~58 に比べ た C_d の低下を狙うと同時に、D59_id01 以上の C_l の確保を狙うことで M_{DD} の向上を目指し た。

形状の特性は表 2-7 に示すものを採用し、フロントローディングの設計には以下に示 す式を用いて z 座標を定義し、各パラメーターは表 2-8 に示す値を採用した。

図 2-19 に設計形状、また表 2-9 には設計点での空力特性データ(3分力値等)、さら に図 2-20 に各マッハ数での抵抗特性を示す。

D59_id01、D59_id02 のフロントローディング形状 $z_i = P_2[z_i^* + P_1 \sin{\pi(x/2x_{62})}]$ (i = 1~38) $z_i = P_2[z_i^* + P_1 \sin{\pi(x/2x_{62})}] + P_3$ (i = 39) $z_i = z_i^* + Q_1 \sin[\pi{(x - x_{40})/(x_{62} - x_{40})}] + Q_3(x + Q_2)(x - x_{62})^2$ (i = 40~60) $z = z_i^* + R_2$ (i = 60) $z = z_i^* + R_3$ (i = 61)

表 2-7	D59 id01.0	02の形状特性

Design	z_up_base	z_low_base	t∕c_up	t∕c_low
D59_id01	D56_id01	D56_id01	Ι	1.0037
D59_id02	D56_id01	D56_id01	-	1.0037

表 2-8 D59_id01,02のフロントローディング形状決定パラメーター

Design	P1	P2	P3	Q1	Q2	Q3	R1	R2	R3	R4
D59_id01	0.014	0.425	0.0001	0.008	0.031	8.5	I	0.002	0.0008	-
D59_id02	0.014	0.267	0.0001	0.01	0.031	10.5	-	0.0028	0.0008	-

Ę	表 2-9	D59_i	id01,02 Ø)計算結果	その3分力	」值等	

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D59_id01	0.78	1.1352	0.6837	0.0301	0.0239	0.0063	-0.1038	22.6930	0.4700
D59_id02	0.78	1.1330	0.6842	0.0307	0.0246	0.0061	-0.1011	22.2940	0.4708

図 2-20 D59_id01,02 の Ci=0.684 における MDD 特性の比較

パラメーター①~③に基づいた D59 世代の抵抗特性の解析結果(図 2-20)から、 M_{DD}の改善量及び C_d低減量への影響度合いを確認し、次の D60 世代の具体的な効果 の予測を立て、設計案を考えた。

その前提として、まずパラメーター①~③に着目した D59 世代の設計結果(図 2-19,20)をまとめると次のようになる。

D59_id01 及び D59_id02 では設計マッハ数において D57_id01 及び D58_id02 に比べ て上面の前縁近傍における大幅な曲率の減少に伴う上面翼厚比の増加によって、Cd が減 少する効果が確認できた。また同時に、フロントローディング形状の設計から、D59_id01 においては設計マッハ数において D59_id02 以上の Cd の減少が確認できたが、MDD に ついては低下を導く結果となっていることが明らかになった(図 2-20)。

次に、D60世代の目標は、 C_d を先行研究の最終形状である D53_id03 の C_d 値、及 びその基準翼型とした DSMA523 の設計マッハ数(M=0.78)における C_d 値まで下げ ることとした。すなわち、約 0.008(80 count)下げることを主眼とした。そのため に下記のアプローチを取った。

A) パラメーター①の検討方針

Ca低減への各パラメーターの効果としては、パラメーター①は1番目に有効である

が、パラメーター③の方が最も大きいものと想定している。そのため、パラメーター① の修正に伴う上面翼厚の変化は(翼厚拘束の影響は上下面の形状決定に影響があること から)C_d低減に繋がる影響があるため、次の設計(D60世代)でも上面の翼厚を厚くす る方針を取り入れ、その結果上面の翼厚を増やすことによってC_d低減を図ると同時に、 下面の翼厚を薄くすることが可能となるように工夫した。本設計ではD57~59世代の 設計パラメーターに応じたC_d感度の傾向から、このパラメーターによってC_dを 38 count 低減させることを主眼とした。

また、M_{DD}の向上を狙うに当たって、衝撃波の後退を防ぐために Peaky 翼型の設計 原理に従って前縁近傍に急激な加・減速域を設けること(すなわち suction peak の現 出)も有効な手段であると考えられる。そこで、上面に DSMA523 翼型の形状をその まま適用し、下面にフロントローディング形状を取り入れた設計を本世代において試 みた。

B) パラメーター②の検討方針

FL 開始位置に着目した設計により C_l を確保しつつ、 C_d の最も少ない下面前縁部の形状の創出を狙った。D57~59世代の設計パラメーターに応じた C_d 感度の傾向から、本パラメーターによる形状修正によって、 C_d を3 count 低減させることを主眼とした。

C) パラメーター③の検討方針

フロントローディングの勾配を小さくすることによって、C_dの低減を図った。D57~ 59世代の設計パラメーターに応じたC_d感度の傾向から、本パラメーターによる形状修正 によって、C_dを 45 count 低減させることを主眼とした。ここで、パラメーター③の工 夫によるC_dの低減量は、パラメーター①で狙う低減値との合計が最大となるように設定 した。(上面の前縁近傍における曲率の修正による上面翼厚比への影響が、翼厚拘束の 関係から下面の翼厚比を決定することから、フロントローディング形状の勾配に及ぶた め。)

以上のパラメーター①~③の検討に基づく設計によって、合計で86 countのC_dの 低減が見込めるものと想定した。t/c は D53-id03 と等しい 10.45%に統一して行っ た。以下で、D60_id01、D60_id03 の設計案についての詳細を述べる。

まず、D60_id01 について、前縁上面側の曲率を小さくしたうえで(上面の翼厚は厚 くなる)、フロントローディング形状を設計した。上面のベース形状は D56-id01 とし た。また、FL 開始位置を前縁の近くに置き、フロントローディングの勾配をなだらか にすることで、M=0.78 において D59_01 のC_d値から 86 count の低減を狙った。

次に、D60_id03 についても D60_id01 同様、前縁上面側の曲率を小さくしたうえで(上面の翼厚は厚くなる)、フロントローディング形状を設計したが、ここでは上面のベース

形状は DSMA523 とした。また、FL 開始位置を前縁の近くに置き、フロントローディン グの勾配をなだらかにすることで、M=0.78 において DSMA523 及び、D53_id03 より小 さな Ca 値を狙った。

形状の特性は表 2-10 に示すものを採用し、フロントローディングの設計には以下に示 す式を用いて z 座標を定義し、各パラメーターは表 2-11 に示す値を採用した。ここで、 以下に示す数式はフロントローディング形状の決定にあたって、D60 世代目以降で共通 して用いる数式である。

図 2-21 に設計形状の図、図 2-22 に各マッハ数での抵抗特性、また表 2-12 には設計 点での空力特性データ(3分力値等)、さらに図 2-23 と 2-24 に 9 つのグラフによる分析 図を示す。

D60世代目以降のフロントローディング形状

$$\begin{split} z_i &= P_2[z_i^* + P_1 \sin\{\pi(x/2x_{62})\}] \quad (i = 1 \sim 38) \\ z_i &= P_2[z_i^* + P_1 \sin\{\pi(x/2x_{62})\}] + P_3 \quad (i = 39) \\ z_i &= z_i^* + Q_1 \sin[\pi\{(x - x_{40})/(x_{62} - x_{40})\}] + Q_3(x + Q_2)(x - x_{62})^2 \quad (i = 40 \sim 58) \\ z &= z_i^* + R_1 \quad (i = 59) \\ z &= z_i^* + R_2 \quad (i = 60) \\ z &= z_i^* + R_3 \quad (i = 61) \end{split}$$

Design	z_up_base	z_low_base	t∕c_up	t/c_low
D60_id01	D56_id01	D56_id01	Ι	0.8085
D60 id03		D56 id01	1 1 7 8 3	0 79535

表 2-10 D60_id01,03 の形状特性

表 2-11 D60_id01,03 のフロントローディング形状決定パラメーター

Design	P1	P2	P3	Q1	Q2	Q3	R1	R2	R3	R4
D60_id01	0.014	0.23	0.0001	0.012	0.032218	10.7	0.0044	0.0023	0.0008	-
D60_id03	0.014	0.23	0.0001	0.012	0.032218	10.7	0.0044	0.0023	0.0008	-

表 2-12	D60_id01,0	3の計算結果の	3分力值等
--------	------------	---------	-------

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D60_id01	0.78	0.0605	0.6840	0.0238	0.0176	0.0062	-0.1854	28.7170	0.4798
D60_id03	0.78	-0.4003	0.6842	0.0206	0.0142	0.0065	-0.2049	33.1630	0.4803

図 2-22 D60_id01,03 の Ci=0.684 における MDD 特性の比較

ここで、パラメーター①~③に着目した D60 世代までの設計結果(図 2-22~2-24) をまとめると次のようになる。

D60_id01 では設計マッハ数において、D59_id01 に比べて上面の前縁近傍における大幅な曲率の減少に伴う上面翼厚比の増加によって(図 2-21)、Caの大幅な減少をもたらす結果となったことが分かるが、Mpp については大幅な低下を導く結果となっていることが確認された(図 2-22)。

D60_id03では設計マッハ数において、D59_id01に比べて上面の基本形状をDSMA523 に変えることによる前縁近傍における曲率の減少によって(図 2-21)、Cd の大幅な低減 をもたらす結果となったことが分かるが、MDD については D60_id01 と同様に大幅な低 減を導く結果となっていることが確認された(図 2-22)。

次に、以上の結果を踏まて、次の D61 世代の具体的な性能改善の予測を立てた。以下に D61 世代の設計案を述べる。D61 世代の目標は、設計マッハ数(M=0.78)におけるC_d値をパラメーター①~③の設計指針で狙える改善量の限界まで下げることである。これは M=0.78 において DSMA523 翼型のC_d値以下を狙うための一手であり、次の設計世代ではその目標の確実な達成を狙った。t/c は D53-id03 と等しい 10.45%に統一した。以下で、D61_id01 及び D61_id02 の設計案についての詳細を述べる。

まず、D61_id01 について、前縁上面側の曲率を小さくしたうえで(上面の翼厚は 厚くなる)、フロントローディング形状を設計した。上面のベース形状は D56-id01 と した。また、FL 開始位置を前縁の近くに置き、フロントローディングの勾配をなだ らかにすることで、M=0.78 における D60_id01 の Cd 値に対して合計で約 15 count 以上の低減を狙った。

次に、D61_id02 について、D61_id01 同様、前縁上面側の曲率を小さくしたうえで (上面の翼厚は厚くなる)、フロントローディング形状を設計した。ここでは上面のベ ース形状は DSMA523 とした。また、FL 開始位置を前縁の近くに置き、フロントロー ディングの勾配をなだらかにすることで、M=0.78 における D60_id03 のC_d値に対して 合計で約 58 count 以上の低減を狙った。

形状の特性は表 2-13 に示すものを採用し、フロントローディングの設計には D60 世代 の設計時に作成した式を用いて z 座標を定義し、各パラメーターは表 2-14 に示す値を採 用した。

図 2-25 に設計形状、図 2-26 に各マッハ数での抵抗特性、また表 2-15 には設計点での空力特性データ(3分力値等)、さらに図 2-27 と 2-28 に 9 つのグラフによる分析図を示す。

X = 10 D01 $IU01,02 = 0.000$	表 2-13	D61	id01.02	の形状特性
------------------------------	--------	-----	---------	-------

Design	z_up_base	z_low_base	t∕c_up	t∕c_low
D61_id01	D56_id01	D56_id01		0.8085
D61_id02	DSMA523	D56_id01	1.085	0.9025

表 2-14 D61_id01,02 のフロントローディング形状決定パラメーター

Design	P1	P2	P3	Q1	Q2	Q3	R1	R2	R3	R4
D61_id01	0.014	0.205	0.0001	0.012	0.0277	10.7	0.005795	0.0031	0.001	-
D61_id02	0.014	0.225	0.0001	0.0125	0.03693	9.9	0.0044	0.0023	0.0008	-

図 2-25 D61_id01、D61_id02の設計形状

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D61_id01	0.78	0.0582	0.6840	0.0258	0.0197	0.0060	-0.1935	26.5590	0.4783
D61_id02	0.78	-0.1090	0.6842	0.0196	0.0130	0.0066	-0.1898	34.9770	0.4817

表 2-15 D61_id01、D61_id02,の計算結果の 3 分力値等

図 2-26 D61_id01、D61_id02 と他形状のM_{DD}特性の比較

パラメーター①~③に着目した D61 世代までの設計結果(図 2-26~2-28) をまとめる と下記となる。

D61_id01 では設計マッハ数において、D60_id01 に比べて上面の前縁近傍における曲率の減少に伴う上面翼厚比の増大によって、前縁から crest までで Cd の大幅な増加を もたらす結果となったことが分かる (図 2-27 の 9 つのグラフの⑨に相当する右列最下 段の図参照)。また MDD についても大幅な低下を導く結果となっていることが確認され た (図 2-26)。

D61_id02 では設計マッハ数において、D60_id03 に比べて上面の前縁近傍における曲率の増大に伴う上面翼厚比の減少によって、前縁から crest までで C_d の大幅な低減を もたらす結果となったことが分かる。一方、下面においては crest までで抵抗の増大が 生じたが、上下面の合計としては抵抗の低下が実現されている(図 2-28 の 9 つのグラ フの⑨に相当する右列最下段の図参照)。また M_{DD} については増大する傾向が確認され た(図 2-26)。

次に、以上の結果を踏まて、以下に次の D62 世代の設計案を述べる。D62 世代の 目標は、設計マッハ数 (M=0.78) におけるC_d値を DSMA523 以下にすることで、t/c は D53-id03 と等しい 10.45%に統一した。以下で、D62_id01、D62_id02 の設計案 についての詳細を述べる。

まず、D62_id01 について、D61_id01 をベースとして前縁上面側の曲率、FL 開始 位置、フロントローディングの勾配を D57~D61 世代の分析から推定されるC_dの改 善効果の取り込みを想定した最適値とすることで、M=0.78 において DSMA523 以下 のC_d値を狙った。

次に、D62_id02 について、D62_id01 同様、D61_id02 をベースとして前縁上面側 の曲率、FL 開始位置、フロントローディングの勾配を D57~D61 世代の分析から推 定されるC_dの改善効果の取り込みを想定した最適値とすることで、M=0.78 において DSMA523 以下のC_d値を狙った。

形状の特性は表 2-16 に示すものを採用し、フロントローディングの設計には D60 世 代の設計時に作成した式を用いて z 座標を定義し、各パラメーターは表 2-17 に示す値 を採用した。

図 2-29 に設計形状、図 2-30 に各マッハ数での抵抗特性、また表 2-18 には設計点での空力特性データ(3分力値等)、さらに図 2-31 と 20-32 に 9 つのグラフによる分析図を示す。

表 2-16	D62	id01,	02	の形状特性
--------	-----	-------	----	-------

Design	z_up_base	z_low_base	t∕c_up	t∕c_low
D62_id01	D56_id01	D56_id01	Ι	0.9629
D62_id02	DSMA523	D56_id01	0.9437	1.0541

表 2-17 D62_id01,02 のフロントローディング形状決定パラメーター

Design	P1	P2	P3	Q1	Q2	Q3	R1	R2	R3	R4
D62_id01	0.014	0.214	0.0001	0.008	0.026	12.3	0.0024	0.00112	0.0003	-
D62_id02	0.014	0.175	0.0001	0.007	0.026	12.8	0.0039	0.0021	0.00073	-

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D62_id01	0.78	0.0204	0.6838	0.0231	0.0169	0.0062	-0.1680	29.6050	0.4770
D62 id02	0.78	0.3811	0.6840	0.0202	0.0138	0.0065	-0.1659	33.7870	0.4830

表 2-18 D62_id01,02 の計算結果の 3 分力値等

図 2-30 D62_id01,02 と他形状のM_{DD}特性の比較

図 2-32 D62_id02の解析結果

ここで、D62世代の設計結果(図 2-30~2-32)をまとめると下記となる。

D62_id01 では、Ca の大幅な低減を実現することができたものの、一方で MDD は DSMA523 を下回る結果となってしまった。D62_id02 では、Ca の大幅な低減を実現す ると同時に、MDD においても DSMA523 を上回る結果を得ることができた。図 2-31 及 び図 2-32 における 9 つのグラフの③に相当する図 (左列最下段の図) から、D62_id01 で は前縁上面に近傍における抵抗の増大量が大きいことが分かる。

D62_id01 では上面に **DSMA523** の形状を採用し、**D61_id02** の改善の傾向を踏襲した 設計を行ったことにより、低 Ca 化と高 Mpp 化の両方が実現できたことが分かる。

以上より、D62世代の設計形状 (D62_id01,02) は、いずれも先行研究の課題であった C_d値が DSMA523 翼型より大きい点を十分解消できていることが確認できた。

2.3 2次元翼設計法のまとめ

2.2 節では、以下に示す 2 つの狙いの達成を目標として、翼厚比を先行研究の最適翼型である D53-id03 の t/c = 10.45(%)に合わせて設計を行った。

・狙い①:『高 MDD 化』(2-2-1 参照)

・狙い②:『低 Cd 化』(2-2-2 参照)

本研究における設計検討の最終結果として、D62_id02 形状において D53_id03 の MDD よりは低いものの、設計のベースとなった DSMA523 翼型を十分超えるMDDの実現 と DSMA523 翼型及び D53_id03 のいずれの Cd 値も下回るCdの実現をも達成すること ができた。図 2-33 と図 2-34 に、DSMA523 翼型、先行研究の最適設計結果

(D53_id03)、本研究の最終設計結果(D62_id02)の形状と抵抗特性の比較をまとめる。

図 2-34 DSMA523、D53_id03、D62_id02 形状のM_{DD}特性の比較

尚、本研究で得られた D62_id02 は D53_id03 の改善を目標としていたため、翼厚 比は D53_id03 と同一であり、DSMA523 翼型の翼厚比と異なっている。これは DSMA523 翼型の M_{DD} 特性及び C_d 性能との厳密な比較にはなっていない。そのため、 最後に次の設計世代(D88 世代)において、D62_id02の形状をベースとして DSMA523 翼型の翼厚に合わせた形状を設計した。よって、t/c は 10.99(%)であ る。ここで『2.2.1 高 M_{DD} 化に向けた設計法の改良』では、 M_{DD} の改善にあたって、上 面の前縁近傍における曲率の持つ感度を調べたが、低 C_d 化を無視し高 M_{DD} 化に特化す る設計においてはこのパートに着目した形状修正の効果は小さいものであるという知 見を得ることができた。

以下で、D88_id01、D88_id02の設計案についての詳細を述べる。

まず、D88_id01 について、上面は D62_id02 の形状をそのまま採用したうえで、 フロントローディング部の形状を設計した。その際、翼厚の修正は下面のみで行うこ ととした。これにより、DSMA523 翼型のM_{DD}以上を実現すると同時に、設計マッハ 数(M=0.78)において DSMA523 翼型のC_d値以下を狙った。

次に、D88_id02 について、上面は D62_id02 の形状をそのまま採用したうえで、 フロントローディング部の形状を設計し、翼厚の修正は下面と上面が半分ずつ負担す るものとした。これにより、DSMA523 翼型のM_{DD}以上を実現すると同時に、設計マ ッハ数(M=0.78)において DSMA523 翼型のC_d値以下を狙った。 図 2-35 に設計形状、図 2-36 に各マッハ数での抵抗特性、また表 2-9 には設計点での 空力特性データ(3分力値等)、さらに図 2-37 と 2-38 に 9 つのグラフによる分析図を示 す。

表 2-9	D88_id01、	D88_id02,の計算結果の3分力値等	
-------	-----------	----------------------	--

Design	Mach	Alpha	CI	Cd	Cdp	Cdf	Cm	l∕ d	F
DSMA523	0.78	0.7600	0.6839	0.0227	0.0159	0.0067	-0.1590	30.1740	0.4664
D53_id03	0.78	-0.0463	0.6836	0.0226	0.0160	0.0066	-0.1797	30.2520	0.4708
D88_id01	0.78	0.6641	0.6839	0.0224	0.0160	0.0063	-0.1535	30.5900	0.4777
D88_id02	0.78	0.6085	0.6839	0.0219	0.0156	0.0064	-0.1564	31.2080	0.4773

図 2-36 D88_id01、D88_id02 と他形状の M_{DD} 特性の比較

- 以上より、本研究において最終的に下記の結果が得られた。
 - 先行研究の最適翼型である D53-id03 の t/c = 10.45%に合わせた D62_id02 形 状において、D53_id03 の Mpp よりは低いものの、設計のベースとなった DSMA523 翼型を十分に超えるMppの実現と DSMA523 翼型及び D53_id03 のいずれの Cd値を下回るCdの実現を達成した。
 - ② 翼厚比を基準形状である DSMA523 の t/c = 10.99%に合わせた D88_id02 形状において、比較対象である DSMA523 翼型を十分超えるM_{DD}の実現と DSMA523 翼型の Cd 値を下回るCdの実現を達成した。
 - ③ 但し、上記の項目①と②の双方に対して、フロントローディングの導入に伴い下面に衝撃波が派生するという新たな課題も明らかとなった(9つのグラフの⑥に相当する右列最上段の図を参照)。

上記の結果①及び②で示した通り、2次元翼の設計においては、DSMA523 翼型を基準翼型として改良を行うに当たっての設計指針として設定した、『高 M_{DD} 化』と『低 C_d 化』の二つの狙いを達成することができた。

一方で結果③に示した通り、下面に衝撃波の発生が確認されたが、これは2次元翼の設計結果を3次元翼に展開する際に3次元効果で緩和される可能性があるので、今回の2次元翼設計においては許容するものとした。

3. 3次元翼設計法の検討

3.1 検討方針

3.1.1 検討の流れ

本章では第2章で構築した2次元翼(翼型)の設計法を3次元翼に展開し、その改善効 果を検討した結果について述べる。3次元翼への展開を行うにあたって、3次元翼の抵抗(抵 抗係数:C_D)の低減効果を考える対象の基準形状としては、JAXA で検討中の環境適合型 旅客機の技術参照機体(TRA2012Aと呼称)^[8]を選定した。ここで、TRA とは Technology Reference Aircraft の略である。

本章における設計は、近年の CFD 設計で良く使われる 3 次元翼としての最適設計手法の 適用ではなく、むしろ従来から行われていた 3 次元翼の翼幅(スパン)方向(η=y/s)の各 断面に対して、2 次元翼として最適化を図るという方法を適用した。これにより前章の結果 を利用することが可能と考えられるからである。

3.1.2 検討対象(初期形状)の分析

まず初めに、設計の初期形状となる検討対象の TRA2012A の設計点(M=0.781、 α = 0.816°)におけるスパン方向の局所の断面揚力係数 C₁、断面抵抗係数 C_d、翼厚比 t/c、ねじり角(= θ)、コード長(=c)の特性を分析すると同時に、M_{DD}特性も調べた。図 3-1 は 3 次元 CFD 解析で用いた TRA2012A の半裁形状と、その設計点における CFD 解析結果の 一つとして Cp 分布を示す。また表 3-1 は空力特性データを表す。これより、設計点におけ る全機として揚力係数は C_L=0.526 であり、本研究における TRA2012A 主翼の性能改良設計はこの設計揚力係数状態において検討されている。尚、以下で特に断りの無い限り、解析 結果として得られた C_L,C_D 等の値は全機(3 次元翼と胴体及び翼胴フェアリングの組み合 わせ形態)のものを表すものとする。

図 3-2 は TRA2012A の抵抗特性を示し、これより M_{DD} は 0.789 であることがわかる。また 図 3-3、図 3-4、図 3-5 は TRA2012A の翼厚比(t/c)、局所翼弦長(c)、及び断面揚力係数 (C₁)、無次元荷重(c・C₁)、ねじり角(θ[deg])のスパン方向分布を示す。

図 3-1 JAXA 環境適合型旅客機の技術参照機体(TRA2012A)の CFD 解析結果

表 3-1 TRA2012A の設計点での空力性能

図 3-2 TRA2012A の設計揚力状態における抵抗特性

図 3-3 TRA2012A の翼厚比(t/c)、局所翼弦長(c[m])のスパン方向分布

図 3-4 TRA2012Aの断面揚力係数(Cl)、無次元荷重(c・Cl)のスパン方向分布

図 3-5 TRA2012A のねじり角 (θ [deg]) のスパン方向分布

3.2 検討結果

3.2.1 最適 2 次元翼設計法の適用

(1) 初期形状の各断面における2次元翼特性の解析

第2章で設計した最適2次元翼形状を3次元翼に展開するにあたって、まず検討対象 の TRA2012A の各スパン位置で切り抜いた断面の 2 次元翼としての空力性能を分析し た。その際、2 次元翼としての各断面での流入マッハ数は TRA2012A の設計点における 主流マッハ数 (M=0.781) と同一とし、迎角は設計点の迎角 ($\alpha=0.816^\circ$) に局所的な ねじり角 (θ(y): 図 3-5 参照)を加えたものを設定した。これを粗い仮定であるが、"2 次元翼としての設計状態"と定義した。本来アスペクト比の大きい 3 次元翼において各 断面の流れ場を 2 次元翼として近似可能とするためには、流入マッハ数は前縁に直角方 向のものを用い、また迎角は全機の迎角にねじり角を加えたものにするのみならず、3次 元翼として発生する吹き下し分布の影響も加味しなければならない。ここで、吹き下し分 布の推定は CFD 解析によっても可能ではあるが、局所的な迎角への寄与分としての吹き 下し角度の正確な推定は直線翼の場合は揚力線理論により可能であるものの、後退翼や 翼幅の一部で局所翼弦長が不連続的に変化しているような3次元翼の場合はCFD 解析結 果を使ってもその推定は容易ではなく、その意味では 2 次元翼近似には限界があると言 える。そのため、通常は各翼幅位置で流れ方向に平行な面(η=一定の面)で切った断面 形状の Cp 分布をもとに、局所揚力係数を同一に維持して断面設計を行う手法が取られ る。

そこで本研究では、先述した粗い仮定による設計状態の設定を採用し、その2次元 CFD 解析による空力性能と3次元 CFD 解析で得られた各断面の Cp 分布等による空力性能を 比較し、その差異の存在を前提として形状修正パラメーターの空力性能への影響度を把 握しながら断面形状の空力性能の改善を試み、最終的に3次元翼としての性能改善に繋 げるというアプローチを採用した。

図 3-6(a)~(g)に、初期形状の各翼幅位置における断面形状と 3 次元 CFD 解析による断面 Cp 分布(実線)と、その断面形状を 2 次元翼と見なして上述の"2 次元翼としての設計状態"で 2 次元 CFD 解析を行って得られた Cp 分布(破線)との比較を示す。ここで、両 Cp 分布の差が 3 次元翼の効果を示しており、それに基づく局所揚力係数も異なることになる。

次に、本研究でこの翼断面の性能改善(高 MDD 化と低抵抗化)を目指すにあたって、 最初のアプローチとして第2章で得られた最適2次元翼形状を適用することが考えられ る。但し、翼厚比はTRA2012Aの各段面形状のものに合わせて比例配分で修正する必要 がある。その適用に際しては、ねじり角分布も設計パラメーターとして新たに追加される。 そこで、ねじり角分布をある分布に設定した場合の3次元翼を設計し、それに対して再 度3次元 CFD 解析を行って同一の全機設計揚力係数 CL で抵抗係数や MDD 特性を比較す ることで、設計結果の良否を評価するという方針を採用した。以下で、その設計課程と分 析結果並びに評価結果について述べる。

図 3-6 初期形状の 3 次元 CFD 解析による各翼幅位置での断面 Cp 分布(実線)と 各断面形状の 2 次元 CFD 解析による Cp 分布(破線)の比較

(2) 第2章の設計指針に基づく断面設計法の適用

ここでは、第2章の設計指針に従って、TRA2012Aの空力性能の改善を目指した各翼 幅位置における新しい翼型の創出方法について述べる。今回の設計の主目的は全機形状 としての抵抗低減とするため、前節『(1)初期形状の各断面における2次元翼特性の解析』 において実施した各断面における2次元翼形状とt/cを合わせて、全機の設計CLを実現 する迎角における各断面の2次元翼としての抵抗係数Caがより小さくなる形状を創出す ることを目標とした。ここで今回の設計における各断面の2次元翼としての設計Clとは、 TRA2012Aの各断面が全機設計条件の迎角に局所的なねじり角を加味した迎角状態に置 かれた場合に2次元 CFD解析によって得られる揚力係数の値として定義する。具体的な 設計方法としては、新しい設計断面の上面形状にはTRA2012Aの各断面の上面形状を採 用し、下面形状に第2章のD62_id02の設計結果を取り入れた。この設計形状をDesign01 と呼称する。以下に、この各設計形状の2次元 CFD解析の結果を示す。

まず図 3-7 の揚力特性 (C₁vs. α)の比較より、設計形状 Design01 はフロントローデ イングを有するため、同一の C₁状態においてはその実現に必要な迎角は初期形状に比べ て減少することが明確に認められる。但し、揚力傾斜は初期形状と概ね同一であることが わかる。次に図 3-8 の揚抗特性 (C₁vs. C_d)の比較から、Design01の方が同一 C₁に対し て y/s=90%断面を除いて全ての断面で抵抗低減が達成されていることが認められる。さ らに図 3-9 は各スパン位置での両形状及び Cp 分布の比較をまとめたものである。この図 より、最適 2 次元翼がフロントローディングを有することから、同一揚力係数に対して は上面の負圧レベルが減少し (Cp の絶対値が減少し)、そのため衝撃波が後退することで crest 位置が下流へ移動することに伴う負圧領域の拡大が抵抗低減に寄与していることが 読み取れる。但し、フロントローディングを設けた影響で下面前方部に急激な膨張領域

(加速領域=Cpの減少領域)が作られ、その結果として衝撃波の発生を誘発してしまっている。衝撃波の発生は通常、抵抗の増加を招くが境界層の剥離が生じていないことから、2次元翼全体としては上面の抵抗成分の減少が効いて抵抗低減が達成されているものと考えられる。

62

(g) y/s=90%断面 図 3-9 初期形状と2次元翼設計形状のCp分布の比較 (Cp分布における"初期形状"とは、3次元 CFD 解析による断面 Cp分布を示す)

次に、今回創出した設計翼型(Design01)をTRA2012Aの各断面と入れ替える形で 3次元翼へ展開することを考える。その際、設計パラメーターとなるのは先述した通り ねじり角分布である。本研究では図 3-10 のねじり角分布を想定した。

図 3-10 初期形状と Design01 に適用した捩じり角分布の比較

図 3-10 は初期形状のねじり角分布(黒●) と Dseign01 の適用に際して設定したねじ り角分布(赤●)の比較を示す。ここで赤●の分布は、フロントローディグを設けたこ とにより設計 C_1 実現のための迎角が減少したことを考慮したねじり角分布で、 Design01 をこの分布で配列すれば全機の設計迎角状態で同一の設計 C_L が達成されるも のと推測されるものである。この捩じり角分布を採用した 3 次元翼形状を改めて Design01 と呼ぶことにする。

しかしながら、断面形状が初期形状から変わったことにより、3 次元 CFD 解析と各断 面ごとの 2 次元 CFD 解析との差異は初期形状の場合と異なることが想定されるため、 このねじり角分布の適用は必ずしも厳密な設計 C_L の実現には有効とは限らない。そこ で、初期形状のねじり角分布(黒●)とこのねじり角分布(赤●)の中間的なねじり角 分布を設定し、全機形状の迎角を変えて polar curve(揚抗特性の曲線)を算出すること で、設計 C_L における全機 C_D が初期形状より低減させる可能性を検討した。この中間的 なねじり角分布を適用した設計形状を Design02 と呼ぶことにする(詳細は後述)。 以下に、本手法による 3 次元翼設計に対する CFD 解析の結果について述べる。

図 3-11 は Design01 と初期形状の 3 次元 CFD 解析による全機の揚抗特性と揚力特性の比較を示す。図(a)より、Design01の抵抗が全機設計揚力係数(CL=0.526)で初期形状より低減されていることが認められる。これは各断面での 2 次元翼としての設計 C₁で

の 断面抵抗 Cd が低減されていることの反映であるものと理解される。図(b)の揚力特性において同一 CL では Design01 の方がより迎角が大きくなっているのは、図 3-10 のねじり角分布において全体的に初期形状よりねじり角が小さくなっていることの表れであるものと考えられる。

図 3-11 初期形状と Design01 の 3 次元 CFD 解析による空力性能の比較

図 3-12 は Design01 と初期形状の Design01 形状の 3 次元 CFD 解析による Cp 分布 の比較である。図 3-9 と異なる点は、Design01 に対する 3 次元 CFD 解析による断面 Cp 分布を抜き出して(赤実線)、それを重ね合わせて描いている点である。これは初期 形状の 3 次元 CFD 解析による断面 Cp 分布(黒実線)と比較されるべきものである。 図より、Design01 ではフロントローディングを設けたことにより、上面の負圧レベル が低減(Cp の絶対値が減少)しており、内翼では最初の衝撃波による圧力上昇後に再 び圧力が低下して(膨張して)、その後再度衝撃波が発生している様子("2 段衝撃波 ")が見られる。また下面には前方部に衝撃波が見られている点も特徴的である。この 上面の 2 段衝撃波と下面の衝撃波の発生は、通常の 3 次元遷音速翼では見られない現象 で、今回用いた乱流モデルにおいては衝撃波による境界層剥離が生じていないことか ら、図 3-11 の 3 次元 CFD 解析による抵抗低減効果は妥当と考えられる反面、これまで の常識と比較して通常の設計に用いられない Cp 分布形でもあるので、再考の余地があ るものと考えられる。そこで、次にその改善に向けた検討結果を以下に示す。

図 3-12 初期形状と Design01 の 3 次元 CFD 解析による断面 Cp 分布の比較

(3) 上面2段衝撃波と下面衝撃波の低減に向けたねじり角分布の検討

前述したとおり、『(2) 第 2 章の設計指針に基づく断面設計法の適用』においては、Cb の低減という目標は達成できたものの下面前半部に衝撃波が存在し、また上面には 2 段 衝撃波が存在するという 2 点は通常の設計において見られない特徴であり、再考の余地 を有する課題と言える。この問題の解決に向けた一案として、2 次元設計断面を 3 次元翼 に展開する際のねじり角分布の適度な調整による改善の可能性が考えられ、ここではね じり角分布の違いが衝撃波の強さにどの程度の影響を与えるかを把握することを目的と して、『(2) 第 2 章の設計指針に基づく断面設計法の適用』で用いた設計翼型をそのまま 用いて、ねじり角分布は図 3-13 の初期形状(黒●) と Design01 (赤●)の中間的なねじ り角分布 (青●)を適用した 3 次元翼形状 (Design02 と呼称)を設計し、その 3 次元 CFD 解析を実施した。以下に、この設計結果を示す。

図 3-13 初期形状と Design01 と Design02 に適用した捩じり角分布の比較

図 3-14 は Design01 及び Design02 と初期形状の 3 次元 CFD 解析による揚抗特性と 揚力特性の比較を示す。図(a)より、設計 C_L (図中の Δ) では Design02 の抵抗は Design01 とほぼ同一であり、Design01 同様、初期形状より抵抗が低減されていること が認められる。これも基本的に断面形状の設計効果が反映されているものと考えられ る。但、ねじり角分布を Design01 より大きめに設定しているので Design01 とは異な り、図(b)より同一 C_L を実現する迎角は初期形状のものより大幅に減少することがわか る。

(a) 揚抗特性

図 3-14 初期形状と Design01 及び Design02 の 3 次元 CFD 解析による空力性能の比較

図 3-15 は Design01 及び Design02 と初期形状の局所揚力荷重($C_l \cdot c$)及び揚力係数 (C_l)等の分布を示す。右上図より、2次元翼としての設計 C_l (赤破線)は同一であるの に、3次元翼としての CFD 解析による局所揚力係数は Design01(赤実線)と Design02 (青実線)で異なっていることがわかる。これは適用したねじり角分布の差異が反映され た結果として理解できる。また右下図より、局所抵抗係数(C_d)は Design01 も Desig02 も y/s=50%より外側で抵抗値が負になっており、これは捩じり角を考慮した局所的な迎 角が負になってしまったことにより推力成分に変換されていることを意味する。この効 果が3次元翼全体としての抵抗低減に効いているものと考えられる。

図 3-15 Design01、Design02、初期形状の 3 次元 CFD 解析による各断面での空力特性の比較

(左上図:局所揚力荷重 C₁・c、右上図:局所揚力係数 C₁、左下図:局所抵抗荷重 C_d・c、 右下図:局所抵抗係数 C_d)

図 3-16 は、Design02 と初期形状及び Design01 の 3 次元 CFD 解析による断面 Cp 分 布の比較である。図 3-12 と異なる点は、Design02 に対する 3 次元 CFD 解析による断 面の Cp 分布を抜き出して(青実線)、それを重ね合わせて描いている点である。これは 初期形状及び Design01 の 3 次元 CFD 解析による断面 Cp 分布(黒及び赤実線)と比較 されるべきものである。図より、Design02 も Design01 同様、フロントローディングを 設けたことにより、上面の負圧レベルが低減(Cp の絶対値が減少)しており、上面の 2 段衝撃波と下面の衝撃波の発生が認められる。これより、ねじり角分布の修正は下面衝 撃波や上面の 2 段衝撃波に対する影響度合いが極めて小さいものと考えられる。従っ て、Design01 で明らかとなったこれらの課題を解決するためには、もう一度翼型の設 計から考え直す必要があると考えられる。

(g) y/s=90%断面 図 3-16 初期形状と Design02 の断面形状と Cp 分布の比較

3.2.2 上面 2 段衝撃波と下面衝撃波の低減に向けた翼断面設計の改良

2次元翼断面の再設計

3.2.1 で生じた下面衝撃波や上面の2段衝撃波の改善にはねじり角分布だけでは限界が あることが分かったため、2次元翼としての設計段階で下面衝撃波を緩和する形状を創出 する必要が生じた。そこで、以下にその改善に向けた試みの結果を述べる。

第2章の設計結果の知見から、下面衝撃波を緩和するには、フロントローディング部の形状として、パラメーター③の勾配を小さくすることが有効と考えられる。そこで、その点を取り込んだ新しい翼断面を設計した(Design06と呼称)。図3-17にその形状とそれに対する2次元 CFD 解析による断面 Cp 分布の比較を示す。

図 3-17 下面衝撃波緩和のための設計形状(Design06)と初期形状及び Design01 の各翼 幅断面の 2 次元 CFD 解析による断面 Cp 分布の比較

(2) ねじり角分布の検討結果を考慮した3次元翼への展開

上記の『(1) 2 次元翼断面の再設計』において得られた新たな 2 次元翼断面を用いて、 再度 3 次元翼設計を実施し、その評価を行った。まず、内翼での揚力の負担を大きくして 外翼では減らすような工夫が下面の衝撃波の解消に有効であるとのこれまでの知見を活 かして、ねじり角分布として図 3-18 に示されるようなものを想定し、新たな 3 次元翼を 設計した。次にその形状の 3 次元 CFD 解析を行って抵抗特性を推定し、初期形状との比 較を通して評価を行った。以下に検討結果を述べる。

図 3-18 初期形状と Design01 及び Design06 に適用した捩じり角分布の比較

図 3-19 は Design01 及び Design02 と初期形状の 3 次元 CFD 解析による揚抗特性と 揚力特性の比較を示す。図(a)より、設計 CL(図中の Δ)では Design06 の抵抗は Design01 よりは大きくなっているものの、Design01 同様、初期形状より抵抗が低減さ れていることが認められる。これも基本的に断面形状の設計効果が反映されているもの と考えられる。

図 3-20 は、Design06 と初期形状及び Design01 の 3 次元 CFD 解析による断面 Cp 分 布の比較、図 3-21 は Design06 と初期形状及の 3 次元 CFD 解析による設計揚力状態に おける抵抗特性である。

図 3-19 初期形状と Design01 及び Design06 の 3 次元 CFD 解析による空力性能の比較

(g) y/s=90%断面

図 3-21 TRA2012A と Design06 の設計揚力状態における抵抗特性

図 3-20 より、3 次元 CFD 解析において Design06 の下面衝撃波が緩和されているこ とが確認できた。但し、外翼部ではまだ緩和効果が十分ではないので、今後更に同種の 改善設計の必要性が明らかになった。一方で改善の方向性としては、ねじり角分布の検 討によって内翼側の下面衝撃波及び上面の2段衝撃波の緩和を実現できたことから、 Design06 では全断面に対して設計形状を適用したが、それに対して今後の改善案の設 計指針としては外翼側に初期形状の断面形状を適用することによって、抵抗低減効果を 維持しつつ下面衝撃波及び上面の2段衝撃波の無い主翼設計が行えるものと推測され る。これは、Design06 で適用したねじり角分布では外翼側のみに下面衝撃波及び上面 の2段衝撃波の発生を許したことから、外翼側にこのような衝撃波を生まない形状を採 用しつつ内翼側の形状によって低 Ca 化及び高 Mpp 化を狙うという狙いである。

また図 3-21 より、今回 3 次元翼展開を行った最終成果である Design06 においては 2 次元翼設計の効果で得られた高 MDD 化の効果を活かして、本 3 次元翼設計の比較対象で ある TRA2012A の主翼を十分超える M_{DD} の実現(ΔM_{DD} =0.009)を図ることができた ことが確認できた。

3.3 3次元設計法のまとめ

本研究における 3 次元翼設計では、第 2 章で構築した高 MDD 化と低 Ca 化の両方を実現 する翼型の設計法の適用を通して 3 次元翼へ展開する方針を取った。狙いとしては、JAXA 航空技術部門の環境適合航空機の技術参照機体である TRA2012A の抵抗低減の実現を目標 とした。具体的には、TRA2012A の 3 次元翼の翼幅方向の各断面に対して、2 次元翼とし ての最適設計結果を適用するという方法を採用した。

本研究における設計結果として、TRA2012A を下回る CD を実現する 3 次元翼を設計す ることができたが、断面の圧力分布において下面に衝撃波と上面に 2 段衝撃波が確認され た。そこで、3 次元翼への展開時の設計パラメーターとしてねじり角分布を取り上げ、その CD への影響感度を調べると同時に、2 次元翼としての断面の再設計も試みたところ、内翼 側において下面の衝撃波及び上面の 2 段衝撃波を緩和できる形状を設計することができた。 また上記の成果に加えて、TRA2012A を十分に超える M_{DD} を実現することもできた。一方 において、外翼側ではまだ下面衝撃波及び上面 2 段衝撃波が残っており、その設計の改善 は今後の課題である。しかしながら、この点に関しては今回の 2 次元翼断面の再設計及び ねじり角分布の適切な設定のアプローチをさらに改善して行くことで十分対応可能である ものと推察される。

4. 結論

本研究では、従来の主翼設計法を見直し、より高 MDD 化と低抵抗化を可能とする新たな 設計法を構築して航空機の経済性向上に寄与することを目的に、先行研究の課題である設 計マッハ数における抵抗低減に加え、2次元翼を3次元翼へ展開する上での抵抗低減の実現 の達成方法を構築することを目標として設計を行った。具体的には、現在 JAXA 航空技術 部門で検討している亜音速旅客機である TRA2012A の空力性能を向上できる主翼を設計す ることとした。高 MDD 化の検討方法としては、先行研究で採用された神谷の F 値に基づく アプローチではなく、抵抗特性に最も影響を持つと考えられる断面形状の局所的な領域に ついての物理的考察を通して形状修正を試み、各設計形状について直接 MDD 特性を評価し て最良形状を見い出すという順問題的解法を適用する方針をとった。

2次元翼の設計においては、遷音速旅客機に適した代表的な超臨界翼型である DSMA523 翼型を基準翼型として改良を行うに当たって、設計指針として下記の二つの狙いを設定した。

狙い①:『高 M_{DD} 化』(2-2-1 参照)

狙い②: 『低 C_d 化』(2-2-2 参照)

その上で設計条件として、翼厚比 (t/c) を基準形状である DSMA523 翼型の翼厚比 t/c = 10.99(%)に合わせるか、先行研究の最適翼型である D53-id03 の t/c = 10.45(%)に合わせる かの二通りの検討方針を考えた。D53-id03 の t/c = 10.45(%)に合わせた最終結果としては、 D62_id02 形状において D53_id03 の M_{DD} よりは低いものの、設計のベースとなった DSMA523 翼型を十分超えるM_{DD}の向上 (Δ M_{DD}=+0.009)の実現と DSMA523 翼型及び D53_id03 のいずれの Ca 値を下回るCd の低減 (Δ Ca=-0.0024)を達成することができた。 また翼厚比が異なるのは正しい比較ではないことから、DSMA523 翼型の t/c = 10.99(%)に 合わせた検討も行い、最終結果として D88_id02 形状において比較対象である DSMA523 翼型を十分超えるM_{DD}の向上 (Δ M_{DD}=+0.003) と DSMA523 翼型の Ca 値を下回るCd の低 減 (Δ Ca=-0.0007)を確認することができた。

次に、3次元翼への展開を行うにあたって、CDの低減効果を考える対象の基準機体とし TRA2012Aを選定し、第2章で構築した2次元翼の設計法を3次元翼に展開し、その改善 効果を調べることを目的とした。本研究の3次元翼設計では、TRA2012A主翼(3次元翼) の翼幅(スパン)方向の各断面に対して2次元翼としての最適設計結果を適用するという 方法を採用した。その結果、TRA2012Aを下回るCDの低減効果(ΔCa=-0.0034)を達成す ることができたが、圧力分布において下面に衝撃波と上面に2段の衝撃波が確認され、改 善余地が残った。そこで最適な2次元翼を3次元翼に展開する際に設計パラメーターとし て用いたねじり角分布が設計結果(抵抗特性)に与える影響感度を調べたところ、2次元翼 断面の修正と捩じり角分布の適正化を行うと、TRA2012Aを下回るCDの低減効果(ΔCa=-0.0018)を実現しつつ、下面衝撃波及び上面2段衝撃波を緩和する3次元形状を設計する ことも可能となった。また同時に、TRA2012A の M_{DD} を十分超えるM_{DD}の向上(Δ M_{DD}=+0.009)も実現できた。但し、外翼側においては下面衝撃波及び上面2段衝撃波の緩 和ができず、その改善は今後の課題として残ったが、この点に関しては内翼側の設計改善の 効果の分析を更に深めることで、その改善見通しを得ることは十分可能であるものと考え られる。

よって本研究成果は当初の目標を達成し、将来の経済的な航空機の主翼設計法の開発に +分資するものであると考えられる。

参考文献

- [1] JADC, "民間航空機に関する市場予測 2015-2034", p21-35, (2015),
 (http://www.jadc.jp/files/topics/98_ext_01_0.pdf)
- [2] 佐藤亮介,"Supe rcritical 翼型の改良による高 MDD 翼型の創出",修士論文,(2016)
- [3] 神谷信彦, "遷音速における二次元翼の抵抗発散", NAL TR-299, 航空宇宙技術研究所, (1973)
- [4] 高梨進, "航空機開発における風洞試験と CFD", 第 9 回航空機計算空気力学シンポジ ウム論文集, p313-318,(1991)
- [5] Dahlin, John A., William D. Bachalo, and Louis S. Stivers Jr., "An Experimental Study of Transonic Flow About a Supercritical Airfoil." NASA TM-81336,(1983)
- [6] P. H. Cook, M A McDonald, M C P Firmin, "Aerofoil RAE 2822 pressure distributions, and boundary layer and wake measurements", AGARD AR-138, Experimental Data Base for Computer Program Assessment, (1979)
- [7] Robert J. McGhee, et a1," LOW-SPEED AERODYNAMIC CHARACTERISTICS OF A 17-PERCENT-THICK AIRFOIL SECTION DESIGNED FOR GENERAL AVIATION APPLICATIONS ",NASA TN D-7428
- [8] 川崎重工株式会社 航空宇宙カンパニー 技術本部"宇宙航空研究開発機構 研究開発業
 務 「120 席級旅客機全機巡行形態の空力設計」JX-PSPC-402039 成果報告書",(2014)

謝辞

本研究を進めるにあたり、指導教官である吉田憲司教授には、多大なるご助言・ご協力を いただきました。論文執筆の添削を始めとし、吉田先生にはお手数とご迷惑をおかけするこ とが多々ありましたことお詫び申し上げます。また、研究活動の過程で研究者としての心構 えを学ばせていただくと同時に、課題や問題に直面した際の姿勢など今後の人生において も活きるようなご指導を賜りました。吉田先生が熱心に向き合ってくださったおかげでと ても楽しく、充実した2年間を送ることができました。心より感謝いたします。

エイ・エス・アイ総研の石川敬掲氏には、研究指針の相談をはじめとして、仕事をする上 でのマナーなど研究活動にとどまらない自身の成長に繋がるアドバイスをたくさん頂きま したことを感謝致します。

株式会社菱友システムの黒田文武氏には、本論文の3章に当たる3次元翼設計の方針に ついてご相談に乗って頂きましたし、計算格子の作成方法についても何度もご相談に乗っ て頂きましたことを感謝致します。

JAXA 航空技術部門航空システム研究ユニットの郭東滑氏には、TRA2012A の情報提供を 頂きましたと同時に、風洞試験においても様々な貴重な経験をさせて頂きました。ここに、 改めて感謝の意を表します。

同ユニットの湯原達規氏には、風洞試験においてお世話になると同時に、研究活動及び学 生生活のお話にもお付き合い頂きました。ここに、改めた感謝の意を表します。

同ユニットの徳川直子氏には、学習院大学の学生と共に研究活動におけるご相談に乗っ て頂きました。ここに、改めて感謝の意を表します。

株式会社 TOUA の筧由里子氏には、JAXA 航空技術部門で研究活動を行うための環境を整 えて頂きました。お蔭様で、とても快適な環境で研究を進めることができました。ここに、 改めて感謝の意を表します。

そして、JAXA 宇宙航空研究センター(飛行場分室)次世代航空機 C2 号館のその他の皆様 には、毎日の生活において何かとお世話になりました。皆様のお蔭で快適な環境で研究活動 に励むことができました。ありがとうございました。

最後に、同研究室の春日洋平さん、宮崎正也さん、また学習院大学徳川直子研究室の石 月健治君、由里直人君、及びDLR(ドイツ航空宇宙センター、Deutsches Zentrum für Luftund Raumfahrt)からの研修生である Sven Christian Nauck には、研究活動における多く のご指導とご助言を頂きましたことを感謝致します。研究活動に限らず、プライベートな会 話やお付き合いも頂き、苦楽を共にしながら充実した学生生活多くることができました。あ りがとうございました。

> 東京大学大学院 新領域創成科学研究科 先端エネルギー工学専攻 吉田憲司研究室 修士2年 佐藤 宥毅